WorldWideScience

Sample records for exhaust after-treatment systems

  1. Analysis of tractor particulate emissions in a modified NRSC test after implementing a particulate filter in the exhaust system

    Directory of Open Access Journals (Sweden)

    Siedlecki Maciej

    2017-01-01

    Full Text Available Retrofitting, which means retrofitting old generation engine systems with modern exhaust after treatment systems, is becoming increasingly popular, which allow vehicles to adhere to the newer and more stringent emission norms. This can save the operators of such vehicles money using older engineered designs without the need to design a new unit or buy an expensive new machine or vehicle. At present, there is a growing interest in emissions from off-road vehicles and the introduction of minimum limits for older vehicles that must be met in order to be able to allow for their operation. For the purposes of this article, the Stage IIIA farm tractor has been fitted with a particulate filter in the exhaust system. The study investigated the impact of the use of exhaust after treatment systems on particle emissions in terms of mass, size distribution and number using PEMS analyzers in the modified NRSC stationary test by engine loading, using a mobile engine dynamometer and comparison of test results.

  2. On-board ammonia generation and exhaust after treatment system using same

    Science.gov (United States)

    Driscoll, Josh; Robel, Wade J.; Brown, Cory A.; Urven, Jr., Roger L.

    2010-03-30

    Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.

  3. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  4. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  5. Urea-SCR technology for deNOx after treatment of diesel exhausts

    CERN Document Server

    Nova, Isabella

    2014-01-01

    Of intense interest both to academics and industry professionals, this groundbreaking book-length treatment of selective catalytic reduction of NOx using ammonia/urea includes papers by researchers at the leading edge of diesel exhaust abatement.

  6. Pollutant emissions from vehicles with regenerating after-treatment systems in regulatory and real-world driving cycles.

    Science.gov (United States)

    Alvarez, Robert; Weilenmann, Martin; Novak, Philippe

    2008-07-15

    Regenerating exhaust after-treatment systems are increasingly employed in passenger cars in order to comply with regulatory emission standards. These systems include pollutant storage units that occasionally have to be regenerated. The regeneration strategy applied, the resultant emission levels and their share of the emission level during normal operation mode are key issues in determining realistic overall emission factors for these cars. In order to investigate these topics, test series with four cars featuring different types of such after-treatment systems were carried out. The emission performance in legislative and real-world cycles was monitored as well as at constant speeds. The extra emissions determined during regeneration stages are presented together with the methodology applied to calculate their impact on overall emissions. It can be concluded that exhaust after-treatment systems with storage units cause substantial overall extra emissions during regeneration mode and can appreciably affect the emission factors of cars equipped with such systems, depending on the frequency of regenerations. Considering that the fleet appearance of vehicles equipped with such after-treatment systems will increase due to the evolution of statutory pollutant emission levels, extra emissions originating from regenerations of pollutant storage units consequently need to be taken into account for fleet emission inventories. Accurately quantifying these extra emissions is achieved by either conducting sufficient repetitions of emission measurements with an individual car or by considerably increasing the size of the sample of cars with comparable after-treatment systems.

  7. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  8. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling.

    Science.gov (United States)

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  9. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    Science.gov (United States)

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  10. 49 CFR 325.91 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 325.91 Section 325.91... EMISSION STANDARDS Exhaust Systems and Tires § 325.91 Exhaust systems. Link to an amendment published at 75 FR 57193, Sept. 20, 2010. A motor vehicle does not conform to the visual exhaust system inspection...

  11. 46 CFR 169.609 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Exhaust systems. 169.609 Section 169.609 Shipping COAST... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... Yacht Council, Inc. Standard P-1, “Safe Installation of Exhaust Systems for Propulsion and Auxiliary...

  12. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Science.gov (United States)

    2010-07-01

    ... exhaust duct excludes the length of pipe representative of the vehicle exhaust pipe) shall be minimized... exhaust manifold, immediately after exhaust aftertreatment systems, or after a length of pipe representative of the vehicle exhaust pipe; or (iv) Partial dilution of the exhaust gas prior to entering the...

  13. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenørn, Thomas; Pedersen, Jannik

    2013-01-01

    microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of sin-gle particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot......This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microiner-tial impactor with transmission electron...

  14. Automotive Fuel and Exhaust Systems.

    Science.gov (United States)

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  15. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    Science.gov (United States)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  16. Physical characterization of diesel exhaust nucleation mode particles

    Energy Technology Data Exchange (ETDEWEB)

    Lahde, T.

    2013-11-01

    An increasing concern of the adverse health effects of aerosol particles is forcing the combustion engine industry to develop engines with lower particle emissions. The industry has put most of their efforts into soot control and has achieved a significant reduction in diesel exhaust particle mass. Nevertheless, it is not clear that the large particles, dominating the mass, cause the harmfulness of the exhaust particles in the biological interaction. Nowadays, the harmful potential of diesel exhaust particles often connects with the particle surface area, and the view has turned to particle number below 100 nm size range. Unfortunately, the achieved low exhaust particle mass does not necessarily imply a low particle number. This text focuses on the physical characteristics of diesel exhaust nucleation model particles. The volatility characteristics and the electrical charge state of the particles are studied first. Second, the relation between the nonvolatile nucleation mode emissions and the soot, the nitrogen oxide (NO{sub x}) emissions and the engine parameters are covered. The nucleation mode particles had distinctively different physical characteristics with different after-treatment systems. The nucleation mode was volatile and electrically neutral with a diesel particle filter after-treatment system. Without an after-treatment system or with an after-treatment system with low particle removal efficiency, the nucleation mode was partly nonvolatile and included an electrical charge. The difference suggests different formation routes for the nucleation particles with different after-treatment systems. The existence of the nonvolatile nucleation mode particles also affected the soot mode charge state. The soot charge state was positively biased when the nonvolatile nucleation mode was detected but slightly negatively biased when the nonvolatile nucleation mode was absent. The nonvolatile nucleation mode was always negatively biased. This electrical charge

  17. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  18. Air flow quality analysis of modenas engine exhaust system

    Science.gov (United States)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  19. 49 CFR 393.83 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exhaust systems. 393.83 Section 393.83... NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.83 Exhaust systems. (a) Every motor... shall have a system to direct the discharge of such fumes. No part shall be located where its location...

  20. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    Science.gov (United States)

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  1. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Ozgur, D.

    1991-01-01

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  2. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  3. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  4. Modelling how reversal of immune exhaustion elicits cure of chronic hepatitis C after the end of treatment with direct-acting antiviral agents.

    Science.gov (United States)

    Baral, Subhasish; Roy, Rahul; Dixit, Narendra M

    2018-05-09

    A fraction of chronic hepatitis C patients treated with direct-acting antivirals (DAAs) achieved sustained virological responses (SVR), or cure, despite having detectable viremia at the end of treatment (EOT). This observation, termed EOT + /SVR, remains puzzling and precludes rational optimization of treatment durations. One hypothesis to explain EOT + /SVR, the immunologic hypothesis, argues that the viral decline induced by DAAs during treatment reverses the exhaustion of cytotoxic T lymphocytes (CTLs), which then clear the infection after treatment. Whether the hypothesis is consistent with data of viral load changes in patients who experienced EOT + /SVR is unknown. Here, we constructed a mathematical model of viral kinetics incorporating the immunologic hypothesis and compared its predictions with patient data. We found the predictions to be in quantitative agreement with patient data. Using the model, we unraveled an underlying bistability that gives rise to EOT + /SVR and presents a new avenue to optimize treatment durations. Infected cells trigger both activation and exhaustion of CTLs. CTLs in turn kill infected cells. Due to these competing interactions, two stable steady states, chronic infection and viral clearance, emerge, separated by an unstable steady state with intermediate viremia. When treatment during chronic infection drives viremia sufficiently below the unstable state, spontaneous viral clearance results post-treatment, marking EOT + /SVR. The duration to achieve this desired reduction in viremia defines the minimum treatment duration required for ensuring SVR, which our model can quantify. Estimating parameters defining the CTL response of individuals to HCV infection would enable the application of our model to personalize treatment durations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Technique for radiation treatment of exhaust gas due to combustion

    International Nuclear Information System (INIS)

    Machi, Sueo

    1978-01-01

    As the Japanese unique research in the field of preservation of environment, the technique to remove simultaneously sulphur dioxide and nitrogen oxides in exhaust gas using electron beam irradiation is noteworthy. This research was started by the experiment in the central research laboratory of Ebara Manufacturing Co., Ltd., in which it was found that the sulphur dioxide of initial concentration of 1,000 ppm was almost completely vanished when the exhaust gas of heavy oil combustion in a batch type vessel was irradiated for 9 minutes by electron beam. Based on this experiment, JAERI installed a continuous irradiation equipment with a large accelerator, and has investigated the effect of various parameters such as dose rate, irradiation temperature, total dose and agitation. This resulted in the remarkable finding that nitrogen oxides were also completely removed as well as sulphur dioxide when the exhaust gas containing both sulphur dioxide and nitrogen oxides was irradiated for a few seconds. In this case, if water of about 0.3% is added, removal rate of sulphur dioxide is greatly increased. The research group of University of Tokyo obtained other findings concerning removal rates. Then, after the pilot plant stage in Ebara Manufacturing Co., Ltd. from 1974, the test plant of exhaust gas treatment for a sintering machine, having the capacity of 3,000 Nm 3 /hr, has been constructed in Yawata Works of Nippon Steel Corp. This is now operating properly. (Wakatsuki, Y.)

  6. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  7. Development of an exhaust sensor for control of internal combustion engines and exhaust treatment systems - CatSens. Final report; Entwicklung eines Abgassensors zur Regelung von Verbrennungsmotoren und Abgasnachbehandlungssystemen - CatSens. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lepperhoff, G.; Milanovic, I.

    2002-05-01

    A sensor system for controlling combustion processes in small-scale furnaces and internal combustion engines and for on-board diagnosis of exhaust treatment systems, e.g. NO{sub x} adsorber catalytic converters in motor cars, was developed. [German] Im Rahmen des Verbundprojektes soll ein Sensorsystem zur Regelung der Verbrennungsprozesse in Kleinfeuerungsanlagen und Verbrennungsmotoren sowie zur Regelung und Ueberwachung (On-Board Diagnose) von Abgasnachbehandlungseinrichtungen wie z.B. NO{sub x}-Adsorberkatalysatoren in Kraftfahrzeugen, entwickelt werden. (orig.)

  8. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    Science.gov (United States)

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 30 CFR 36.25 - Engine exhaust system.

    Science.gov (United States)

    2010-07-01

    ... (see § 36.23(b)(2)). (3) In lieu of a space-place flame arrester, an exhaust-gas cooling box or... exhaust system for convenient, temporary attachment of a pressure gage at a point suitable for measuring the total back pressure in the system. The connection also shall be suitable for temporary attachment...

  10. Fault tree analysis of Project S-4404, Upgrade Canyon Exhaust System

    International Nuclear Information System (INIS)

    Browne, E.V.; Low, J.M.; Lux, C.R.

    1992-01-01

    Project S-4404, Upgrade Canyon Exhaust Systems, is a $177 million project with the purpose of upgrading the Exhaust Systems for both F and H Canyon Facilities. This upgrade will replace major portions of the F and H-Canyon exhaust systems, downstream of their respective sand filters with higher capacity and more reliable systems. Because of the high cost, DOE requested Program Control ampersand Integration (PC ampersand I) to examine specific deletions to the project. PC ampersand I requested Nuclear Processes Safety Research (NPSR) to perform an analysis to compare failure rates for the existing F ampersand H Canyon exhaust systems with the proposed exhaust system and specific proposed exhaust system alternatives. The objective of this work was to perform an analysis and compare failure rates for the existing F ampersand H Canyon exhaust systems with the proposed project exhaust system and proposed project alternatives. Based on fault tree analysis, two conclusions are made. First, D ampersand D activities can be eliminated from the project with no significant decrease to exhaust system safety. Deletion of D ampersand D activities would result in a cost savings of $29 million. Second, deletion of DOE Order 6430.1A requirements regarding DBAs would decrease exhaust system safety by a factor of 12

  11. Exhaust gas purifying system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H; Saito, Z

    1976-10-07

    The exhaust gas purification system is a so-called three-way catalytic converter. It consists of an oxidation converter, a reduction converter, or a thermal converter. An exhaust sensor made up of an oxygen sensor, a carbon sensor, a carbon monoxide sensor, hydrocarbon sensor, or a nitrogen peroxide sensor, tests the composition of the exhaust and controls the air-fuel feed system in dependence of the exhaust mixture in such a manner that in the intake system an air-fuel mixture is taken in which the stoichiometric air-fuel relation is produced. Moreover, a thermostatically controlled air intake device is built into the fuel injection system which supplies the air of the fuel injection system with a relatively consistent temperature.

  12. Dedicated exhaust gas recirculation control systems and methods

    Science.gov (United States)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    2018-05-01

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.

  13. System for measuring engine exhaust constituents

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.W.

    1992-01-01

    This patent describes a system for measuring an automotive engine exhaust constituent. It comprises: a meter for determining the mass of air flowing through the engine and for generating an engine airflow signal corresponding to the airflow; sample handling apparatus; diluent adding means; processor means. This patent also describes a method for using an analyzer to determine the amount of lubricating oil consumed by an automotive engine. It comprises: determining the amount of sulfur dioxide within the room air being drawn into the engine; maintaining a constant total flow comprised of a constant fraction of the engine's exhaust gas and a diluent gas through the analyzer, while: determining the amount of sulfur dioxide contained within the engine's exhaust, determining the amount of sulfur dioxide contained within the engine's exhaust, while operating the engine on room air; determining an efficiency factor for the analyzer; and using the efficiency factor and the concentration of sulfur in the engine oil and the amounts of sulfur dioxide determined in steps a and d to determine the amount of lubrication oil leaving the engine through its exhaust

  14. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  15. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    Science.gov (United States)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  16. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  17. Design and Experimental Study of an Over-Under TBCC Exhaust System.

    Science.gov (United States)

    Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan

    2014-01-01

    Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.

  18. Formation of methyl nitrite and methyl nitrate during plasma treatment of diesel exhaust

    DEFF Research Database (Denmark)

    Wallington, TJ; Hoard, JW; Andersen, Mads Peter Sulbæk

    2003-01-01

    FIR spectroscopy was used to identify CH3ONO and CH3ONO2 as products of the nonthermal plasma treatment of simulated diesel exhaust. This is the first observation of CH3ONO formation in such systems. The yield of CH3ONO relative to CH3ONO2 scaled linearly with the average [NO]/ [NO2] ratio in the...

  19. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  20. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  1. PUREX exhaust ventilation system installation test report

    International Nuclear Information System (INIS)

    Blackaby, W.B.

    1997-01-01

    This Acceptance Test Report validates the testing performed, the exceptions logged and resolved and certifies this portion of the SAMCONS has met all design and test criteria to perform as an operational system. The proper installation of the PUREX exhaust ventilation system components and wiring was systematically evaluated by performance of this procedure. Proper operation of PUREX exhaust fan inlet, outlet, and vortex damper actuators and limit switches were verified, using special test equipment, to be correct and installed wiring connections were verified by operation of this equipment

  2. 40 CFR 205.171-2 - Test exhaust system sample selection and preparation.

    Science.gov (United States)

    2010-07-01

    ... Systems § 205.171-2 Test exhaust system sample selection and preparation. (a)(1) Exhaust systems... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test exhaust system sample selection and preparation. 205.171-2 Section 205.171-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  3. REVIEW ARTICLE: MODELLING AND ANALYSIS OF A GASOLINE ENGINE EXHAUST GAS SYSTEMS

    OpenAIRE

    Barhm Mohamad

    2018-01-01

    The engine exhaust gas behaviour is strongly influencing the engine performance. This paper presents the modelling and analysis of four stroke - gasoline engine exhaust gas systems. An automotive example is considered whereby the pulsating exhausts gas flow through an exhaust pipe and silencer are considered over a wide range of speeds. Analytical procedures are outlined enabling the general analysis and modelling of vehicle engine exhaust gas systems also in this paper present...

  4. Prenatal exposure to diesel exhaust particles and effect on the male reproductive system in mice

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Hougaard, Karin Sørig; Talsness, Chris

    2009-01-01

    In utero exposure to diesel exhaust particles may reduce sperm production in adulthood. We investigated the effect of prenatal exposure to diesel exhaust particles on the male reproductive system and assessed endocrine disruption and regulation of aquaporin expression as possible mechanisms...... of action. Dams inhaled 20 mg/m(3) of diesel exhaust particle standard reference material 2975 (SRM2975) or clean air for 1h/day on day 7-19 during pregnancy. Male offspring were killed on day 170 after birth. The dams that had inhaled SRM2975 delivered offspring, which in adulthood had reduced daily sperm...

  5. Spatially distributed effects of mental exhaustion on resting-state FMRI networks.

    Science.gov (United States)

    Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer

    2014-01-01

    Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.

  6. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  7. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  8. Exhaust bypass flow control for exhaust heat recovery

    Science.gov (United States)

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  9. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211-94 Section 86.211-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...

  10. System for exposing animals to radiolabeled diesel exhaust

    International Nuclear Information System (INIS)

    Lopez, J.A.; Wolf, I.; Wolff, R.K.; Sun, J.D.; Mokler, B.V.

    1981-01-01

    One approach to determining the deposition and fate of inhaled diesel particles is the conduct of inhalation exposure studies with radiolabeled diesel fuel. A system was designed, constructed and tested for the simultaneous exposure of animals to radiolabeled diesel exhaust and collection of large quantities of radiolabeled diesel exhaust particles from a single cylinder diesel engine. The system performance was characterized and evaluated over a range of operating conditions: 0 to 1800 watts of engine load, 1000 to 2500 rpm and dilution air rates of 1:2 and 1:10. The exposure system met required design and operating criteria for safety, portability, space and flexibility

  11. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  12. Portable Exhauster Position Paper

    International Nuclear Information System (INIS)

    KRISKOVICH, J.R.

    1999-01-01

    This document identifies the tasks that are involved in preparing the ''standby'' portable exhauster to support Interim Stabilization's schedule for saltwell pumping. A standby portable exhaust system will be assigned to any facility scheduled to be saltwell pumped with the exception of 241-S farm, 241-SX farm or 241-T farm. The standby portable exhauster shall be prepared for use and placed in storage. The standby portable exhaust system shall be removed from storage and installed to ventilate tanks being pumped that reach 25% LFL. There are three tasks that are evaluated in this document. Each task shall be completed to support portable exhaust system installation and operation. They are: Pre Installation Task; Portable Exhaust System Storage Task; and Portable Exhaust System Installation and Operation Task

  13. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    Directory of Open Access Journals (Sweden)

    Westerholm Roger

    2010-07-01

    Full Text Available Abstract Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3 or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin and endothelial-independent (sodium nitroprusside and verapamil vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel

  14. Effects of Freshwater Clam Extract Supplementation on Time to Exhaustion, Muscle Damage, Pro/Anti-Inflammatory Cytokines, and Liver Injury in Rats after Exhaustive Exercise

    Directory of Open Access Journals (Sweden)

    Kuang-Wen Liao

    2013-03-01

    Full Text Available The potent anti-inflammatory activities and tissue-protective effects of freshwater clams (Corbicula fluminea have been well reported. The aim of this study was to determine the effects of freshwater clam extract (FCE supplementation on time to exhaustion, muscle damage, pro- and anti-inflammatory cytokines, and liver injury in rats after exhaustive exercise. Thirty-two rats were divided into four groups: sedentary control (SC; SC group with FCE supplementation (SC+FCE; exhaustive exercise (E; and E group with FCE supplementation (E+FCE. The SC+FCE and E+FCE groups were treated with gavage administration of 20 mg/kg for seven consecutive days. Blood samples were collected for the evaluation of biochemical parameters. The cytokine levels of TNF-α and IL-10 were also examined. Twenty-four hours after exhaustive exercise, the rat livers were removed for H & E staining. The FCE supplementation could extend the time to exhaustion in exercised rats. The levels of CPK, LDH, AST, ALT, lactate, TNF-α and H & E stains of the liver injury were significantly decreased in the E+FCE group, but the blood glucose and IL-10 were significantly higher in comparison with the E group. This study suggests that FCE supplementation may improve endurance performance and reduce exercise-induced muscle damage, inflammatory stress and liver injury.

  15. Method for removing soot from exhaust gases

    Science.gov (United States)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    2018-01-16

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine and collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).

  16. Designing, Constructing and Installing a Local Exhaust Ventilation System to Minimize Welders\\' Exposure to Welding Fumes

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2017-10-01

    Full Text Available Background & Aims of the Study: Welder’s exposure to welding fumes can cause occupational diseases. The current study sought to examine exposure to welding fumes among welders who work in the repair shop of Sarcheshmeh Copper Complex and design a local exhaust ventilation system to control exposure to welding fumes. Materials & Methods: This applied analytical study was conducted in the summer of 2016 among welders working in the repair shop of Sarcheshmeh Copper Complex. The study comprised three phases; in the first one, welders’ exposure to welding fumes was assessed at the beginning of the study. After that, a local exhaust ventilation system was designed and installed in the aforementioned repair shop. In the final stage, welders’ exposure to welding fumes was assessed again after installation of the ventilation system. The procedure recommended by NIOSH (method number 7300 was used for individual sampling of welders. Results: Based on the obtained findings, before installing the ventilation system, welding technicians were exposed to 0.3 mg/m3 of copper fumes and 0.04 mg/m3 of chromium fumes. Journeyman welders were also exposed to 2.16 mg/m3 of manganese fumes, while stellar welders were exposed to 6.9 mg/m3 of iron fumes. In the light of these measurements, a local exhaust ventilation system was designed and installed. Subsequently, measurement of exposure to welding fumes showed a significant reduction. That is, welding technicians were exposed to 0.17 mg/m3 and 0.015 mg/m3 of copper and chromium fumes respectively. Additionally, journeyman welders were exposed to 0.86 mg/m3 of manganese fumes, whereas stellar welders were exposed to 4.3 mg/m3 of iron fumes. Conclusions: A comparison of standard limits of exposure to welding fumes and the results obtained from measurements in sampling stations before and after the installation of the local exhaust ventilation system reveals that this controlling measure was very effective in the

  17. Muscle satellite cells are activated after exercise to exhaustion in Thoroughbred horses.

    Science.gov (United States)

    Kawai, M; Aida, H; Hiraga, A; Miyata, H

    2013-07-01

    Although satellite cells are well known as muscle stem cells capable of adding myonuclei during muscle repair and hypertrophy, the response of satellite cells in horse muscles to a run to exhaustion is still unknown. To investigate the time course of satellite cell activation in Thoroughbred horse muscle after running to exhaustion. We hypothesised that this type of intense exercise would induce satellite cell activation in skeletal muscle similar to a resistance exercise. Nine de-trained Thoroughbred horses (6 geldings and 3 mares) aged 3-6 years were studied. Biopsy samples were taken from the gluteus medius muscle of the horses before and 1 min, 3 h, 1 day, 3 days, 1 week and 2 weeks after a treadmill run to exhaustion. The numbers of satellite cells for each fibre type were determined by using immunofluorescence staining. Total RNA was extracted from these samples, and the expressions of interleukin (IL)-6, paired box transcriptional factor (Pax) 7, myogenic differentiation 1 (MyoD), myogenin, proliferating cell nuclear antigen (PCNA), insulin-like growth factor (IGF)-I and hepatocyte growth factor (HGF) mRNA were analysed using real-time reverse transcription-PCR. The numbers of satellite cells were significantly increased in type I and IIa fibres at 1 week and in type IIa/x fibre at 2 weeks post exercise. The expression of IL-6 mRNA increased significantly by 3 h post exercise. The expression of PCNA mRNA also increased by 1 day after running, indicating that running can initiate satellite cell proliferation. The expression of Pax7, MyoD, myogenin, IGF-I and HGF mRNA peaked at 1 week post exercise. Satellite cell activation and proliferation could be enhanced after a run to exhaustion without detectable injury as assessed by the histochemical analysis. Understanding the response of satellite cell activation to running exercise provides fundamental information about the skeletal muscle adaptation in Thoroughbred horses. © 2012 EVJ Ltd.

  18. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  19. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    Science.gov (United States)

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Soundproofed exhaust system; Gegen stoerenden Abgasschall. Akustik

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Faerber, M.

    2008-03-15

    Acoustic emissions of heating systems are a nuisance, especially the humming noise of big heating boilers and cogeneration units. Noise reduction measures, e.g. with exhaust sound absorbers, should be considered already in the projecting stage. (orig.)

  1. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    Science.gov (United States)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  2. Study on the design of inlet and exhaust system of a stationary internal combustion engine

    International Nuclear Information System (INIS)

    Kesgin, Ugur

    2005-01-01

    The design and operational variables of inlet and exhaust systems are decisive to determine overall engine performance. The best engine overall performance can be obtained by proper design of the engine inlet and exhaust systems and by matching the correct turbocharger to the engine. This paper presents the results of investigations to design the inlet and exhaust systems of a stationary natural gas engine family. To do this, a computational model is verified in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust systems are used. Using this engine model, the effects of the parameters of the inlet and exhaust systems on the engine performance are obtained. In particular, the following parameters are chosen: valve timing, valve diameter, valve lift profiles, diameter of the exhaust manifold, inlet and exhaust pipe lengths, and geometry of pipe junctions. Proper sizing of the inlet and exhaust pipe systems is achieved very precisely by these investigations. Also, valve timing is tuned by using the results obtained in this study. In general, a very high improvement potential for the engines studied here is presented

  3. Basement depressurization using dwelling mechanical exhaust ventilation system

    International Nuclear Information System (INIS)

    Collignan, B.; O'Kelly, P.; Pilch, E.

    2004-01-01

    The mechanical ventilation exhaust system is commonly used in France to generate air renewal into building and especially into dwelling. It consists of a permanent mechanical air extraction from technical rooms (kitchen, bathrooms and toilets) using a unique fan connected to exhaust ducts. Natural air inlets in living room and bed rooms ensure an air flow from living spaces towards technical rooms. To fight against radon into building, the most recognised efficient technique is the Soil Depressurization System (S.D.S.) consisting in depressurizing the house basement. The aim of this study is to test the ability of the dwelling mechanical ventilation system to depressurize the basement in conjunction with air renewal of a house. For that purpose, a S.D.S. has been installed in an experimental house at CSTB during its construction. At first, tests undertaken with a variable velocity fan connected to the S.D.S. have characterised the permeability of the basement. It is shown that basement can be depressurized adequately with a relatively low air flow rate. At a second stage, S.D.S. has been connected to the exhaust ventilation fan used for the mechanical ventilation of the house. Results obtained show the ability of such ventilation system to generate sufficient depressurization in the basement and to ensure simultaneously adequate air change rate in the dwelling. (author)

  4. Software configuration plan for the 1,000 CFM portable exhauster's small logic control system

    International Nuclear Information System (INIS)

    Kaiser, T.D.

    1998-01-01

    This document describes the formal documentation for maintaining the control system associated with the 1,000 CFM portable exhauster's. The objective of the software configuration control plan is to provide assurances that the portable exhauster's control system will be operable for the duration of 241-C-106 and 241-AY-102 operations (project 320). The design was based upon the criteria documented in the portable exhauster functional design criteria (HNF-SD-WM-DB-035) and procurement specification (HNF-S-0490) for the exhauster interlock systems

  5. Exhaust, Dust Collection and Ventilation Systems. Module SH-44. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on exhaust, dust collection, and ventilation systems is one of 50 modules concerned with job safety and health. This module discusses the types of contaminants that can be controlled by ventilation, the types of ventilation systems, and the component parts of local exhaust systems. Following the introduction, 10 objectives…

  6. Prediction of dynamics of bellows in exhaust system of vehicle using equivalent beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Kim, Yong Dae; Lee, Nam Young; Lee, Sang Woo [Noise and vibration CAE Team, Hyundai Motor Company, Ulsan (Korea, Republic of)

    2015-11-15

    The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.

  7. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... probe may not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe must be... the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to the HC... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...

  8. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The... sample transport system from the engine exhaust pipe to the HC analyzer and the NOX analyzer must be... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...

  9. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... shall not be greater than 0.10 cm. The fitting that attaches the probe to the exhaust pipe shall be as... internally to the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and...

  10. The Application of the Exhaustive Polling Theory in Intelligent Traffic System

    Directory of Open Access Journals (Sweden)

    Wang Meng Yao

    2016-01-01

    Full Text Available This paper presents a new use of exhaustive service polling system in the intelligent traffic light control system.Vehicles arrival rate is measured in the system. Through the relationship between arrival rate and mean waiting time ,mean queue length in exhaustive service polling system, achieved an technology that intelligent adjust the length of traffic light time according to the arrive rate.The more arrive rate the longer green light time. With the intelligent control, the road capacity is more.

  11. Predictors of Relapse after Discontinuing Systemic Treatment in Childhood Autoimmune Chronic Uveitis.

    Science.gov (United States)

    Simonini, Gabriele; Bracaglia, Claudia; Cattalini, Marco; Taddio, Andrea; Brambilla, Alice; De Libero, Cinzia; Pires Marafon, Denise; Caputo, Roberto; Cimaz, Rolando

    2017-06-01

    To identify clinical predictors of relapse in childhood autoimmune chronic uveitis after stopping systemic treatment. A retrospective, multicenter, cohort study. Ninety-four children in remission, receiving no treatments and with at least a 6-month followup, were enrolled. A higher probability of maintaining remission after discontinuing treatment was shown in idiopathic compared with juvenile idiopathic arthritis uveitis (Mantel-Cox chi-square = 23.21) if inactivity had been obtained within 6 months from starting systemic treatment (Mantel-Cox chi-square = 24.17) and by antitumor necrosis factor-α treatment (Mantel-Cox chi-square = 6.43). Type of disease, time, and type of systemic therapy to achieve inactivity predict different duration of uveitis remission after treatment withdrawal.

  12. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  13. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  14. Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Madsen, Ulla; Breum, N. O.; Nielsen, Peter V.

    Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation of the capt......Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation...

  15. Working memory and attention are still impaired after three years in patients with stress-related exhaustion.

    Science.gov (United States)

    Jonsdottir, Ingibjörg H; Nordlund, Arto; Ellbin, Susanne; Ljung, Thomas; Glise, Kristina; Währborg, Peter; Sjörs, Anna; Wallin, Anders

    2017-12-01

    Cognitive impairment is one of the most pronounced symptoms reported by patients with stress-related mental health problems. Impairments related to executive function and to some extent speed and attention are therefore common in patients with stress-related burnout/exhaustion. In this paper we present a follow-up of cognitive performance in patients with stress-related exhaustion several years after they initially sought medical care. Thirty patients and 27 healthy controls, mean age 49 years (SD 6.5) and 55 years (SD 6.7) respectively, were included, all of whom had undergone baseline measurements of neuropsychological functioning. The mean follow-up time was three years. Half of the patients still reported mental health problems at follow-up and over time no major changes in cognitive performance were noted. The patients still performed significantly poorer than controls with regard to cognitive functions, mainly related to speed, attention and memory function. Long-lasting impairment of cognitive functions related to speed, attention and memory function noted in patients with stress-related exhaustion should be acknowledged and taken into consideration during treatment and when discussing a return to work. Follow-up periods longer than three years are needed to explore the persistence of the cognitive impairment. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  16. A Hybrid approach for aeroacoustic analysis of the engine exhaust system

    OpenAIRE

    Sathyanarayana, Y; Munjal, ML

    2000-01-01

    This paper presents a new hybrid approach for prediction of noise radiation from engine exhaust systems. It couples the time domain analysis of the engine and the frequency domain analysis of the muffler, and has the advantages of both. In this approach, cylinder/cavity is analyzed in the time domain to calculate the exhaust mass flux history at the exhaust valve by means of the method of characteristics, avoiding the tedious procedure of interpolation at every mesh point and solving a number...

  17. Vacuum exhaustion system for thermonuclear reactor and cryopump thereof

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada.

    1992-01-01

    An impurity removing device is connected to a gas exhaust side of a plasma vacuum vessel by way of a gate valve, a cryopump is connected to the exit side of the device by way of an exit valve, a fuel transfer line is disposed for transferring fuels to a fuel purification system and a vacuum pump line is disposed to an exhaust gas line. Further, a tritium monitor is disposed to an exhaustion line and the line on the side of the exit of the monitor is branched into two ways, in which a tritium transfer pipe is disposed to one of them and an atmosphere release pipe is disposed on the other of them by way of an atmosphere releasing valve. Further, a condensation shebron is disposed for flowing in and out fuel isotope gases discharged from the plasma vacuum vessel, and a funnel discharge pipe is disposed for discharging a liquefied and condensed fluid. Since the gases to be exhausted are liquefied and condensed without coagulation or coagulation products are removed while operating the pump, the exhaust gases are processed continuously to reduce tritium inventory and make the regeneration step unnecessary and remarkably improve the heat efficiency. (N.H.)

  18. A system recovering heat from exhaust gases. Abgasenergie-Rueckgewinnungseinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    John, E; Hultsch, H; Brendorp, W

    1990-08-16

    The proposed exhaust gas heat recovery system is provided with a hydraulic clutch (8) which is located between a gas tubine (2) to be driven by the exhaust gases of an internal combustion engine (20) and a drive unit (18) of the internal combustion engine (20). A mechanical blocking device (6) prevents the turbine from running at explosion speed when the hydraulic clutch (8) is emptied or when the oil pressure of the hydraulic clutch drops below a certain minimum.

  19. Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-18

    Tests were performed to evaluate a sample conditioning unit for stack monitoring at Hanford Tank Waste Treatment and Immobilization Plant (WTP) exhaust stacks with elevated air temperatures. The LV-S2, LV-S3, HV-S3A and HV-S3B exhaust stacks are expected to have elevated air temperature and dew point. At these emission points, exhaust temperatures are too high to deliver the air sample directly to the required stack monitoring equipment. As a result, a sample conditioning system is considered to cool and dry the air prior to its delivery to the stack monitoring system. The method proposed for the sample conditioning is a dilution system that will introduce cooler, dry air to the air sample stream. This method of sample conditioning is meant to reduce the sample temperature while avoiding condensation of moisture in the sample stream. An additional constraint is that the ANSI/HPS N13.1-1999 standard states that at least 50% of the 10 μm aerodynamic diameter (AD) particles present in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. Based on estimates of particle penetration through the LV-S3 sampling system, the diluter should perform with about 80% penetration or better to ensure that the total sampling system passes the 50% or greater penetration criterion.

  20. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems.

    Science.gov (United States)

    Geertsema, Roger S; Lindsell, Claire E

    2015-09-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO₂ concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems.

  1. Cooking exhaust systems for low energy dwellings

    NARCIS (Netherlands)

    Jacobs, P.; Borsboom, W.A.

    2017-01-01

    Especially in airtight low energy dwellings exhaust systems are of utmost importance as cooking can be a major source of PM2.5 exposure. Dwellings should be designed including facilities enabling extraction of at least 83 dm3/s (300 m3/h) directly to outside. Residents should be able to select an

  2. Method of controlling temperature of a thermoelectric generator in an exhaust system

    Science.gov (United States)

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  3. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  4. Effectiveness of interim stage filter in the exhaust system of glove boxes

    International Nuclear Information System (INIS)

    Patre, D.K.; Vangara, H.; Thanamani, S.; Gopalakrishnan, R.K.; Mhatre, Amol M.

    2018-01-01

    All operations in radiochemical laboratories are carried out in containment systems like Glove boxes and Fume hoods. For controlling air contamination two separate air cleaning systems are incorporated. Laboratory has general ventilation system and glove boxes are provided with a negative pressure system (NPS). Glove box exhaust air is passed through three stage filtration systems: in situ, interim and final before discharging to the atmosphere. In addition to the individual HEPA filters of each glove box, there is an interim HEPA filter bank introduced at the laboratory end. This was introduced to reduce a load on main exhaust filter system. Finally the exhaust air is discharged through the final stage HEPA filter located in the filter house through the Stack. The interim HEPA filter bank provides additional protection for the release of particulate activity and reduces load on the final stage filters. In the present work efforts have been put to validate the interim stage filter, which has been introduced, to limit the environmental release

  5. System study application to the safety analysis of the exhaust and the tritium systems of a fusion reactor

    International Nuclear Information System (INIS)

    Djerassi, H.; Rouillard, J.; Leger, D.; Zappellini, G.; Gambi, G.

    1988-01-01

    An applicative example of the general methodology system study to the safety analysis of the exhaust and tritium systems, in a tokamak device, is shown. The framework of the study is split into the following tasks: initial information collection, functional analysis, failure scenarios identification and description, reliability data assessment, accident sequence quantification, consequence seriousness evaluation, risk assessment. Results concerning risk contribution from direct failures show that, in the exhaust system and in the tritium system, the risk contribution to public is rather smaller than the safety design targets. Nevertheless, if the reactor building is not taken into account, the risk contribution from the exhaust system can be significant. Risk contribution to the workers seems to be not to heavy

  6. Acceptance test procedure for SY Tank Farm replacement exhauster unit

    Energy Technology Data Exchange (ETDEWEB)

    Becken, G.W.

    1994-12-16

    The proper functioning of a new 241-SY Tank Farm replacement exhauster will be acceptance tested, to establish operability and to provide an operational baseline for the equipment. During this test, a verification of all of the alarm and control circuits associated with the exhaust, which provide operating controls and/or signals to local and remote alarm/annunciator panels, shall be performed. Test signals for sensors that provide alarms, warnings, and/or interlocks will be applied to verify that alarm, warning, and interlock setpoints are correct. Alarm and warning lights, controls, and local and remote readouts for the exhauster will be verified to be adequate for proper operation of the exhauster. Testing per this procedure shall be conducted in two phases. The first phase of testing, to verify alarm, warning, and interlock setpoints primarily, will be performed in the MO-566 Fab Shop. The second phase of testing, to verify proper operation and acceptable interface with other tank farm systems, will be conducted after the exhauster and all associated support and monitoring equipment have been installed in the SY Tank Farm. The exhauster, which is mounted on a skid and which will eventually be located in the SY tank farm, receives input signals from a variety of sensors mounted on the skid and associated equipment. These sensors provide information such as: exhauster system inlet vacuum pressure; prefilter and HEPA filter differential pressures; exhaust stack sampler status; exhaust fan status; system status (running/shut down); and radiation monitoring systems status. The output of these sensors is transmitted to the exhauster annunciator panel where the signals are displayed and monitored for out-of-specification conditions.

  7. Design, Implementation & Assessment of Local Exhaust Ventilation System and dust collectors for crushing unit

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani shahna

    2015-09-01

    Full Text Available Background & objective: Industrial ventilation systems and dust collectors are effective solutions to reduce particulate emissions in the workplace and environmental in mineral processes. In this study, Local Exhaust Ventilation System and dust collectors for control of emitted silica, coke, silicon carbide dusts from crushing unit was designed and evaluated. Methods: : Local Exhaust ventilation system based on standards and guides was designed and implemented after field study of the processes and sources of air pollutants. A set comprised of the four parallel cyclones (Stairmand model and a new design of the scrubber had been used for dust control. After set-up of systems, its effectiveness in reducing the exposure of workers in the workshops and dust collecting were assessed. Results: Test results were significant differences between the concentration of particles in both on and off the ventilation system revealed (P <0.05. The system has been implemented as means of personal exposure to pollutants and environmental emissions were reduced 93.01% and 64.64%, respectively. Also, alone and integrated collection efficiency of cyclone and scrubber, were 94.2%, 59.05% and 97.4%, respectively. The results show good agreement with the values of the parameters ventilation system was designed. Conclusion: Implementation of integrated dust collectors is a good option in industries that have the financial and technical constraints to improve change processes and devices. This method with attainment to health and environmental standards not only can be resolve of the pollution problems, but also will be economically justified of such projects with reduction of depreciation expense and dust recycling.

  8. Electron-beam flue-gas treatment system

    International Nuclear Information System (INIS)

    Aoki, Sinji; Suzuki, Ryoji

    1994-01-01

    The damage of forests in the world due to acid rain has become serious problems, and the development of high efficiency and economical desulfurization and denitration technologies for combustion exhaust gas has been desired. Japan leads the world in exhaust gas treatment technology. The conventional technologies have been the desulfurization by lime gypsum process and the denitration by ammonia catalytic reduction process. The solution by entirely new concept is the electron beam treatment technology for exhaust gas. This technology is a dry process without drain, and does not require catalyst. The byproduct from this technology was approved as a fertilizer. The electron beam treatment technology is called EBA (electron beam with ammonia). The exhaust gas treatment technology by electron beam process is constituted by the cooling of exhaust gas, ammonia addition, electron beam irradiation and the separation of byproduct. The features of the technology are the simultaneous removal of sulfur and nitrogen oxides, dry process, the facilities are simple and the operation is easy, easy following to load variation and the utilization of byproduct. The reaction mechanism of desulfurization and denitration, the course of development, the electron beam generator, and the verifying test are reported. (K.I.)

  9. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Zhang, Jian; Fan, Jinlin; Ngo, Huu Hao; Guo, Wenshan; Zeng, Chujun; Wu, Yiwen; Wang, Siyuan

    2018-02-01

    In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH 4 + -N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H 2 S, NH 3 and N 2 O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively. Copyright © 2017. Published by Elsevier Ltd.

  10. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  11. Treatment of exhaust gas from the semiconductor manufacturing process. 3; Handotai seizo sochi kara no hai gas shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, A. [Ebara Research Co. Ltd., Kanagawa (Japan); Mori, Y.; Osato, M.; Tsujimura, M. [Ebara Corp., Tokyo (Japan)

    1995-10-20

    Demand has been building up for an individual dry type scrubber for treating exhaust gas from the semiconductor manufacturing process. Some factors for the wide acceptance of such a scrubber would be the capability for complete treatment, easy maintenance and safety features, etc. Practical gas analysis and optimum scrubbing techniques would have to be applied, as well as effective monitoring, alarm, and fail-safe techniques. The overall exhaust gas line, i.e. the line connecting the scrubber system and the upstream process, including that extending to pump system, has to be fully considered for enabling effective scrubbing performance. Such factors, which have until now not been given any priority, would have to be fully studied for the development of a practical, individual dry type scrubber. Cooperation on this matter from the semiconductor manufacturing industry would also be essential. 6 refs., 3 figs., 5 tabs.

  12. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  13. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    Science.gov (United States)

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  14. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2017-02-01

    Full Text Available Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF. The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  15. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J [Peoria, IL; Driscoll, James Joshua [Dunlap, IL; Coleman, Gerald N [Peterborough, GB

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  16. Heat transfer modeling in exhaust systems of high-performance two-stroke engines

    OpenAIRE

    Lujan Martinez, José Manuel; Climent Puchades, Héctor; Olmeda González, Pablo Cesar; JIMENEZ MACEDO, VICTOR DANIEL

    2014-01-01

    Heat transfer from the hot gases to the wall in exhaust systems of high-performance two-stroke engines is underestimated using steady state with fully developed flow empirical correlations. This fact is detected when comparing measured and modeled pressure pulses in different positions in the exhaust system. This can be explained taking into account that classical expressions have been validated for fully developed flows, a situation that is far from the flow behavior in reciprocating interna...

  17. Effects of administration of the standardized Panax ginseng extract G115 on hepatic antioxidant function after exhaustive exercise.

    Science.gov (United States)

    Voces, J; Alvarez, A I; Vila, L; Ferrando, A; Cabral de Oliveira, C; Prieto, J G

    1999-06-01

    The effect of prolonged treatment with the standardized Panax ginseng extract G115 on the antioxidant capacity of the liver was investigated. For this purpose, rats that had received G115 orally at different doses for 3 months and untreated control rats were subjected to exhaustive exercise on a treadmill. A bell-shaped dose response on running time was obtained. The results showed that the administration of G115 significantly increases the hepatic glutathione peroxidase activity (GPX) and the reduced glutathione (GSH) levels in the liver, with a dose-dependent reduction of the thiobarbituric acid reactant substances (TBARS). After the exercise, there is reduced hepatic lipid peroxidation, as evidenced by the TBARS levels in both the controls and the treated animals. The GPX (glutathione peroxidase) and SOD (superoxide dismutase) activity are also significantly increased in the groups receiving G115, compared with the controls. The hepatic transaminase levels, ALT (Alanine-amino-transferase) and AST (Aspartate-amino-transferase), in the recuperation phase 48 h after the exercise, indicate a clear hepatoprotective effect related to the administration of the standardized Panax ginseng extract G115. At hepatic level, G115 increases the antioxidant capacity, with a marked reduction of the effects of the oxidative stress induced by the exhaustive exercise.

  18. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Science.gov (United States)

    2010-07-01

    ... transport sample to analyzers. (I) Temperature sensor. A temperature sensor (T1) to measure the NO2 to NO... feet (1.22 m) from the exhaust duct. (iii) The sample transport system from the engine exhaust duct to.... (A) For diesel fueled and biodiesel fueled locomotives and engines, the wall temperature of the HC...

  19. Vehicle exhaust treatment using electrical discharge and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, R.G.; Balmer, M.L.; Barlow, S.E.; Orlando, T.M. [Pacific Northwest National Lab., Richland, WA (United States); Goulette, D.; Hoard, J. [Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.

    1997-12-31

    Current 3-way catalytic converters have proven quite effective at removing NO{sub x} from the exhaust of spark ignition vehicles operating near stoichiometric air-to-fuel ratios. However, diesel engines typically operate at very high air-to-fuel ratios. Under such lean burn conditions current catalytic converters are ineffective for NO{sub x} removal. As a result, considerable effort has been made to develop a viable lean NO{sub x} catalyst. Although some materials have been shown to reduce NO{sub x} under lean burn conditions, none exhibit the necessary activity and stability at the high temperatures and humidities found in typical engine exhaust,. As a result, alternative technologies are being explored in an effort to solve the so-called lean NO{sub x} problem. Packed-bed barrier discharge systems are well suited to take advantage of plasma-surface interactions due to the large number of contaminant surface collisions in the bed. The close proximity of the active surface to transient species produced by the plasma may lead to favorable chemistry at considerably lower temperatures than required by thermal catalysts. The authors present data in this paper illustrating that the identity and surface properties of the packing material can alter the discharge-driven chemistry in synthetic leanburn exhaust mixtures. Results using non-porous glass beads as the packing material suggest the limits of NO{sub x} reduction using purely gas phase discharge chemistry. By comparison, encouraging results are reported for several alternative packing materials.

  20. Exhaust systems for combustion products: solutions and innovations; Les systemes d'evacuation des produits de combustion: solutions et innovations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This document summarizes the content of a conference-debate organized by Cegibat, the information service of Gaz de France (GdF) for building engineering professionals, about the exhaust systems for gas boilers: 1 - overview of airtight systems: horizontal suction-grip duct, vertical suction-grip duct, collective ducts for tight boilers, separate ducts; 2 - example of products: separate ducts; reuse of an individual smoke duct; 3 - overview of non-airtight exhaust systems: individual smoke ducts, collective smoke ducts, ventilation-gas systems; 4 - examples of non-airtight systems: diagnosis and rehabilitation of smoke ducts, low pressure mechanical exhaust system; 5 - works in progress and perspectives of evolution. (J.S.)

  1. Application of Irradiation. Application to polymer processing, exhaust gas treatment, sterilization of medical instruments and food

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, Takeshi; Sawai, Teruko

    2000-03-01

    Many fields such as industry, agriculture, medical treatment and environment use radiation. This report explained some examples of irradiation applications. Radiation source is {sup 60}Co {gamma}-ray. Polymer industry use radiation for radiation curing (thermally stable polymer), tire, expanded polymer, radiation induced graft copolymerization and electron beam curing. On environmental conservation, radiation is used for elimination of NOx and SOx in exhaust combustion gas. In the medical treatment, radiation is applied to sterilization of medical instruments, that occupied about 50% volume, and blood for transfusion, which is only one method to prevent GVHD after transfusion. On agriculture, irradiation to spice, dry vegetable, frozen kitchen, potato and garlic are carried out in 30 countries. However, potato is only a kind food in Japan. Radiation breeding and pest control are put in practice. (S.Y.)

  2. Animals afflicted with lead poisoning from motor exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Scheel-Thomsen, A

    1956-01-01

    Three cases of dogs treated for ulcerous conditions of the oral cavity and a trembling of the limbs, which were eventually discovered to be lead poisoning derived from constant exposure to gasoline and automotive exhaust, are reported. The first case, typical of all three, was first treated in April 1951. The lesions healed after a stay in the hospital but recurred after he returned home. The dog was also asymptomatic when at the owner's summer home for any length of time. It was discovered that at his winter home the dog spent much of his time around a large automobile garage. After treatment with Antoxol (dimercaprol) and benzyl benzoate, he recovered and had no more symptoms of lead poisoning until his death from cancer several years later. Each of the three involved an animal whose daily activities exposed him to the continual presence of gasolines and exhaust fumes containing tetraethyl lead.

  3. DNA damage in rats after a single oral exposure to diesel exhaust particles

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Risom, Lotte; Wallin, Håkan

    2008-01-01

    gavage of diesel exhaust particles (DEP) in terms of DNA damage, oxidative stress and DNA repair in colon epithelial cells, liver, and lung of rats. Eight rats per group were exposed to Standard Reference Material 2975 at 0.064 or 0.64 mg/kg bodyweight for 6 and 24 h. Increased levels of 8-oxo-7...... of DEP, but not in the colon and liver. A general response of the antioxidant defence system is further indicated by elevated levels of heme oxygenase 1 mRNA in the liver and lung 24 h after administration. The level of bulky DNA adducts was increased in liver and lung at both doses after 6 and 24h (DNA...... adducts in colon epithelium were not investigated). In summary, DEP administered via the gastrointestinal tract at low doses relative to ambient exposure generates DNA damage and increase the expression of defence mechanisms in organs such as the lung and liver. The oral exposure route should be taken...

  4. Mass spectrometry profiling reveals altered plasma levels of monohydroxy fatty acids and related lipids in healthy humans after controlled exposure to biodiesel exhaust.

    Science.gov (United States)

    Gouveia-Figueira, Sandra; Karimpour, Masoumeh; Bosson, Jenny A; Blomberg, Anders; Unosson, Jon; Sehlstedt, Maria; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Nording, Malin L

    2018-08-14

    Experimental human exposure studies are an effective tool to study adverse health effects from acute inhalation of particulate matter and other constituents of air pollution. In this randomized and double-blinded crossover study, we investigated the systemic effect on bioactive lipid metabolite levels after controlled biodiesel exhaust exposure of healthy humans and compared it to filtered air at a separate exposure occasion. Eicosanoids and other oxylipins, as well as endocannabinoids and related lipids, were quantified in plasma from 14 healthy volunteers at baseline and at three subsequent time points (2, 6, and 24 h) after 1 h exposure sessions. Protocols based on liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) methods were developed to detect temporal changes in circulating levels after biodiesel exhaust exposure. The exhaust was generated by a diesel engine fed with an undiluted rapeseed methyl ester fuel. Among the 51 analyzed lipid metabolites, PGF 2α , 9,10-DiHOME, 9-HODE, 5-HETE, 11-HETE, 12-HETE, and DEA displayed significant responsiveness to the biodiesel exhaust exposure as opposed to filtered air. Of these, 9-HODE and 5-HETE at 24 h survived the 10% false discovery rate cutoff (p emphasis on metabolites with inflammation related properties and implications on cardiovascular health and disease. These observations aid future investigations on air pollution effects, especially with regard to cardiovascular outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The outline design of FEB-E particle exhaust and pumping system

    International Nuclear Information System (INIS)

    Zhu Yukun; Huang Jinhua; Feng Kaiming; Deng Peizhi; Li Yiqiang

    1999-01-01

    The particle exhaust of Fusion Experimental Breeder FEB-E is carried out with divertor. The FEB-E divertor consists of 48 wedge shaped cassette modules connected with primary pumping system and cooling system. The FEB-E pumping system consists of two major subsystems, the torus rough pumping system and the torus high vacuum pumping system. The torus high vacuum pumping system consists of a series of internal cryopumps located in most of the lower ports (up to 20) and additional turbomolecular pumps located outside of the bio-shield. These cryopumps are capable of providing a nominal gross pumping speed of 576 m 3 ·s -1 , regulated with inlet valves for throttle control of the exhaust particle flow in the case of high neutral pressure (>1 Pa) in the divertor. However, limited conductance through the divertor pumping slot and through the clearance between the underside of the divertor and the vacuum vessel results in the effective net pumping speed of 160 m 3 ·s -1 in the divertor private region. This pumping speed implies that a neutral pressure operation range of 0.5 - 1.0 Pa is required in the divertor private region to achieve an exhausting throughput range of 80 - 160 Pa·m 3 ·s -1 . The regeneration of cryopump is activated at the end of the 1000 s of the breeder burning

  6. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  7. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  8. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, E.; Besserer, U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Jacqmin, G. [NUKEM GmbH, Industreistr, Alzenau (Germany)

    1995-02-01

    The Tritium Laboratory Karlsruhe (TLK) accomplished commissioning; tritium involving activities will start this year. The laboratory is destined mainly to investigating processing of fusion reactor fuel and to developing analytic devices for determination of tritium and tritiated species in view of control and accountancy requirements. The area for experimental work in the laboratory is about 800 m{sup 2}. The tritium infrastructure including systems for tritium storage, transfer within the laboratory and processing by cleanup and isotope separation methods has been installed on an additional 400 m{sup 2} area. All tritium processing systems (=primary systems), either of the tritium infrastructure or of the experiments, are enclosed in secondary containments which consist of gloveboxes, each of them connected to the central depressurization system, a part integrated in the central detritiation system. The atmosphere of each glovebox is cleaned in a closed cycle by local detritiation units controlled by two tritium monitors. Additionally, the TLK is equipped with a central detritiation system in which all gases discharged from the primary systems and the secondary systems are processed. All detritiation units consist of a catalyst for oxidizing gaseous tritium or tritiated hydrocarbons to water, a heat exchanger for cooling the catalyst reactor exhaust gas to room temperature, and a molecular sieve bed for adsorbing the water. Experiments with tracer amounts of tritium have shown that decontamination factors >3000 can be achieved with the TLK detritiation units. The central detritiation system was carefully tested and adjusted under normal and abnormal operation conditions. Test results and the behavior of the tritium barrier preventing tritiated exhaust gases from escaping into the atmosphere will be reported.

  9. Infrared thermography application on predictive maintenance for exhaust fan motor

    International Nuclear Information System (INIS)

    I Wayan Widiana; Jakaria; Artadi Heru; Mulyono

    2013-01-01

    To determine the condition of the exhaust fan motor in terms of heat dissipation, predictive maintenance needs to be done. One way is to use infrared thermography. The method used is an infrared thermography with qualitative technique which the analysis focused on the distribution patterns of heat captured by the infrared camera. From measurement results expected to be obtained data of the heat distribution occurs in the motor exhaust fan so it can be given treatment or further improvements recommendations to avoid failure of the operation. Results of measurements on the motor exhaust fan 9 and the motor exhaust fan 10 indicates that there is excessive heat dissipation (over heating). The recommendation given is increasing the motor capacity of 11 kW to 18 kW with a consideration of the addition load on exhaust fan system and age of motor more than 22 years. (author)

  10. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  11. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  12. Diesel exhaust emissions : health effects

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, M. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    Despite modern day ventilation, underground miners are exposed to diesel particulate matter (DPM) composed of elemental carbon, organic carbon, sulphates, metals and ashes. Diesel exhaust contains over 40 air contaminants that have been recognized as toxic, carcinogenic or reproductive and developmental hazards. Nearly all components of diesel exhaust interact with the human body at the bloodstream or tissue level. This presentation discussed the following 4 potential levels of threat posed by the physical and chemical nature of diesel exhaust: (1) cancer of the lungs and bladder, (2) toxins that affect the nervous, endocrine, reproductive and immune system as well as the liver and kidneys, (3) fine particulate matter that can cause premature death and an increase in respiratory illness, and (4) nitrogen oxides that contribute to increased ozone and smog. Non-cancer health effects from short-term exposure include acute irritation and respiratory symptoms. This presentation also referred to cancer risk assessments of diesel exhaust by national, state, and world health organizations. Particulate exposure standards for Canada, Quebec, Ontario and the United States were listed along with the percentage of DPM samples in excess of various exposure limits in 2008 according to Canadian underground mine data. DPM concentration levels in mines are in the range that environmental agencies would consider high for general population exposure. Solutions for underground mines include pollution control at the source; use of modern engines with certification for underground mining; emissions based maintenance; exhaust treatment; use of clean or alternative fuels such as hydrogen; regular sampling and monitoring; ventilation; training and technology transfer; and regulations. tabs., figs.

  13. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort

    Directory of Open Access Journals (Sweden)

    Colebunders Robert

    2011-02-01

    Full Text Available Abstract Background Antiretroviral therapy (ART partially corrects immune dysfunction associated with HIV infection. The levels of T-cell immune activation and exhaustion after long-term, suppressive ART and their correlation with CD4 T-cell count reconstitution among ART-treated patients in African cohorts have not been extensively evaluated. Methods T-cell activation (CD38+HLA-DR+ and immune exhaustion (PD-1+ were measured in a prospective cohort of patients initiated on ART; 128 patient samples were evaluated and subcategorized by CD4 reconstitution after long-term suppressive treatment: Suboptimal [median CD4 count increase 129 (-43-199 cells/μl], N = 34 ], optimal [282 (200-415 cells/μl, N = 64] and super-optimal [528 (416-878 cells/μl, N = 30]. Results Both CD4+ and CD8 T-cell activation was significantly higher among suboptimal CD4 T-cell responders compared to super-optimal responders. In a multivariate model, CD4+CD38+HLADR+ T-cells were associated with suboptimal CD4 reconstitution [AOR, 5.7 (95% CI, 1.4-23, P = 0.014]. T-cell exhaustion (CD4+PD1+ and CD8+PD1+ was higher among suboptimal relative to optimal (P P = 0.022]. Conclusion T-cell activation and exhaustion persist among HIV-infected patients despite long-term, sustained HIV-RNA viral suppression. These immune abnormalities were associated with suboptimal CD4 reconstitution and their regulation may modify immune recovery among suboptimal responders to ART.

  14. Fast exhaustive search for polynomial systems in F2

    NARCIS (Netherlands)

    Bouillaguet, C.; Chen, H.-C.; Cheng, C.M.; Chou, T.; Niederhagen, R.F.; Shamir, A.; Yang, B.Y.

    2010-01-01

    Abstract. We analyze how fast we can solve general systems of multivariate equations of various low degrees over F2; this is a well known hard problem which is important both in itself and as part of many types of algebraic cryptanalysis. Compared to the standard exhaustive-search technique, our

  15. Fast exhaustive search for polynomial systems in F2

    NARCIS (Netherlands)

    Bouillaguet, C.; Chen, H.-C.; Cheng, C.M.; Chou, T.; Niederhagen, R.F.; Shamir, A.; Yang, B.Y.; Mangard, S.; Standaert, F.X.

    2010-01-01

    Abstract: We analyze how fast we can solve general systems of multivariate equations of various low degrees over $F_2$; this is a well known hard problem which is important both in itself and as part of many types of algebraic cryptanalysis. Compared to the standard exhaustive search technique, our

  16. Cycling before and after Exhaustion Differently Affects Cardiac Autonomic Control during Heart Rate Matched Exercise

    Directory of Open Access Journals (Sweden)

    Matthias Weippert

    2017-11-01

    Full Text Available During cycling before (PRE and after exhaustion (POST different modes of autonomic cardiac control might occur due to different interoceptive input and altered influences from higher brain centers. We hypothesized that heart rate variability (HRV is significantly affected by an interaction of the experimental period (PRE vs. POST and exercise intensity (HIGH vs. LOW; HIGH = HR > HR at the lactate threshold (HRLT, LOW = HR ≤ HRLT despite identical average HR.Methods: Fifty healthy volunteers completed an incremental cycling test until exhaustion. Workload started with 30 W at a constant pedaling rate (60 revolutions · min−1 and was gradually increased by 30 W · 5 min−1. Five adjacent 60 s inter-beat (R-R interval segments from the immediate recovery period (POST 1–5 at 30 W and 60 rpm were each matched with their HR-corresponding 60 s-segments during the cycle test (PRE 1–5. An analysis of covariance was carried out with one repeated-measures factor (PRE vs. POST exhaustion, one between-subject factor (HIGH vs. LOW intensity and respiration rate as covariate to test for significant effects (p < 0.050 on the natural log-transformed root mean square of successive differences between adjacent R-R intervals (lnRMSSD60s.Results: LnRMSSD60s was significantly affected by the interaction of experimental period × intensity [F(1, 242 = 30.233, p < 0.001, ηp2 = 0.111]. LnRMSSD60s was higher during PRE compared to POST at LOW intensity (1.6 ± 0.6 vs. 1.4 ± 0.6 ms; p < 0.001. In contrast, at HIGH intensity lnRMSSD60s was lower during PRE compared to POST (1.0 ± 0.4 vs. 1.2 ± 0.4 ms; p < 0.001.Conclusion: Identical net HR during cycling can result from distinct autonomic modulation patterns. Results suggest a pronounced sympathetic-parasympathetic coactivation immediately after the cessation of peak workload compared to HR-matched cycling before exhaustion at HIGH intensity. On the opposite, at LOW intensity cycling, a stronger coactivational

  17. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    OpenAIRE

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; M?ller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this...

  18. Developing Computational Fluid Dynamics (CFD Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Fernández-Yáñez

    2017-06-01

    Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.

  19. State of the glutathione system at different periods after irradiation

    International Nuclear Information System (INIS)

    Petushok, N.; Trebukhina, R.

    1997-01-01

    The effect of the 3-fold irradiation on the glutatione system was studied. Activation of these system was shown to take place at early terms (1 hour) after irradiation, then it was exhausted that resulted in accumulation of lipid peroxidation products in blood. This phase changes in glutathione system could be correspond to certain stages of stress-syndrome. (author)

  20. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Nyska, Abraham [Tel Aviv University, Tel Aviv (Israel); Richards, Judy E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Andrews, Debora [Research Core Unit, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC 27711 (United States); Gilmour, M. Ian [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States)

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  1. Aerobic training for improved memory in patients with stress-related exhaustion

    DEFF Research Database (Denmark)

    Eskilsson, Therese; Slunga Järvholm, Lisbeth; Malmberg Gavelin, Hanna

    2017-01-01

    BACKGROUND: Patients with stress-related exhaustion suffer from cognitive impairments, which often remain after psychological treatment or work place interventions. It is important to find effective treatments that can address this problem. Therefore, the aim of this study was to investigate...... the effects on cognitive performance and psychological variables of a 12-week aerobic training program performed at a moderate-vigorous intensity for patients with exhaustion disorder who participated in a multimodal rehabilitation program. METHODS: In this open-label, parallel, randomized and controlled...... was cognitive function, and secondary outcome measures were psychological health variables and aerobic capacity. RESULTS: In total, 51% patients in the aerobic training group and 78% patients in the control group completed the intervention period. The aerobic training group significantly improved in maximal...

  2. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  3. Candidal Arthritis After Complete Treatment of Systemic Candidiasis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Hsieh

    2005-04-01

    Full Text Available Over the last few decades, the incidence of invasive candidal infections in neonatal intensive care units has increased dramatically. Various complications, such as arthritis, endocarditis, meningitis, and endophthalmitis, have been reviewed. We present the case of a premature infant with systemic candidemia. Arthritis was discovered 6 months after completion of amphotericin B therapy, and was successfully treated with oral fluconazole for 6 weeks. We conclude that long-term follow-up is particularly important in patients with treated candidemia. To prevent complications, prolonged treatment with high-dose amphotericin B is suggested for systemic fungal infection, and oral fluconazole is an effective alternative for candidal arthritis.

  4. Applying Systems Engineering to Improve the Main Gas Turbine Exhaust System Maintenance Strategy for the CG-47 Ticonderoga Class Cruiser

    Science.gov (United States)

    2015-09-01

    national security and prosperity (U.S. Navy 2014). In perspective, oceans are the lifeblood of the planet and its entire population . The National...maintenance strategy, reliability-centered maintenance, cost, schedule, performance, growth -work, new-work, optimal fleet response plan, time-directed...76 5. Main Gas Turbine Exhaust System Growth -Work ..................77 E. RECOMMENDATIONS TO IMPROVE THE MAIN GAS TURBINE EXHAUST SYSTEM

  5. Improvement of the thermal and mechanical flow characteristics in the exhaust system of piston engine through the use of ejection effect

    Science.gov (United States)

    Plotnikov, L. V.; Zhilkin, B. P.; Brodov, Yu M.

    2017-11-01

    The results of experimental research of gas dynamics and heat transfer in the exhaust process in piston internal combustion engines are presented. Studies were conducted on full-scale models of piston engine in the conditions of unsteady gas-dynamic (pulsating flows). Dependences of the instantaneous flow speed and the local heat transfer coefficient from the crankshaft rotation angle in the exhaust pipe are presented in the article. Also, the flow characteristics of the exhaust gases through the exhaust systems of various configurations are analyzed. It is shown that installation of the ejector in the exhaust system lead to a stabilization of the flow and allows to improve cleaning of the cylinder from exhaust gases and to optimize the thermal state of the exhaust pipes. Experimental studies were complemented by numerical simulation of the working process of the DM-21 diesel engine (production of “Ural diesel-motor plant”). The object of modeling was the eight-cylinder diesel with turbocharger. The simulation was performed taking into account the processes nonstationarity in the intake and exhaust pipes for the various configurations of exhaust systems (with and without ejector). Numerical simulation of the working process of diesel was performed in ACTUS software (ABB Turbo Systems). The simulation results confirmed the stabilization of the flow due to the use of the ejection effect in the exhaust system of a diesel engine. The use of ejection in the exhaust system of the DM-21 diesel leads to improvement of cleaning cylinders up to 10 %, reduces the specific fuel consumption on average by 1 %.

  6. The mesolimbic system participates in the naltrexone-induced reversal of sexual exhaustion: opposite effects of intra-VTA naltrexone administration on copulation of sexually experienced and sexually exhausted male rats.

    Science.gov (United States)

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-11-01

    Male rats allowed to copulate until reaching sexual exhaustion exhibit a long-lasting sexual behavior inhibition (around 72 h) that can be reversed by systemic opioid receptor antagonist administration. Copulation activates the mesolimbic dopaminergic system (MLS) and promotes endogenous opioid release. In addition, endogenous opioids, acting at the ventral tegmental area (VTA), modulate the activity of the MLS. We hypothesized that endogenous opioids participate in the sexual exhaustion phenomenon by interacting with VTA opioid receptors and consequently, its reversal by opioid antagonists could be exerted at those receptors. In this study we determined the effects of intra-VTA infusion of different doses of the non-specific opioid receptor antagonist naltrexone (0.1-1.0 μg/rat) on the already established sexual behavior inhibition of sexually exhausted male rats. To elucidate the possible involvement of VTA δ-opioid receptors in the naltrexone-mediated reversal of sexual exhaustion, the effects of different doses of the selective δ-opioid receptor antagonist, naltrindole (0.03-1.0 μg/rat) were also tested. Results showed that intra-VTA injection of 0.3 μg naltrexone reversed the sexual inhibition of sexually exhausted rats, evidenced by an increased percentage of animals capable of showing two successive ejaculations. Intra-VTA infused naltrindole did not reverse sexual exhaustion at any dose. It is concluded that the MLS is involved in the reversal of sexual exhaustion induced by systemic naltrexone, and that μ-, but not δ-opioid receptors participate in this effect. Intra-VTA naltrexone infusion to sexually experienced male rats had an inhibitory effect on sexual activity. The opposite effects of intra-VTA naltrexone on male rat sexual behavior expression of sexually experienced and sexually exhausted rats is discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Heat exhaustion in a deep underground metalliferous mine.

    Science.gov (United States)

    Donoghue, A M; Sinclair, M J; Bates, G P

    2000-03-01

    To examine the incidence, clinical state, personal risk factors, haematology, and biochemistry of heat exhaustion occurring at a deep underground metalliferous mine. To describe the underground thermal conditions associated with the occurrence of heat exhaustion. A 1 year prospective case series of acute heat exhaustion was undertaken. A history was obtained with a structured questionnaire. Pulse rate, blood pressure, tympanic temperature, and specific gravity of urine were measured before treatment. Venous blood was analysed for haematological and biochemical variables, during the acute presentation and after recovery. Body mass index (BMI) and maximum O2 consumption (VO2 max) were measured after recovery. Psychrometric wet bulb temperature, dry bulb temperature, and air velocity were measured at the underground sites where heat exhaustion had occurred. Air cooling power and psychrometric wet bulb globe temperature were derived from these data. 106 Cases were studied. The incidence of heat exhaustion during the year was 43.0 cases/million man-hours. In February it was 147 cases/million man-hours. The incidence rate ratio for mines operating below 1200 m compared with those operating above 1200 m was 3.17. Mean estimated fluid intake was 0.64 l/h (SD 0.29, range 0.08-1.50). The following data were increased in acute presentation compared with recovery (p value, % of acute cases above the normal clinical range): neutrophils (p air velocity was 0.54 m/s (SD 0.57, range 0.00-4.00). Mean air cooling power was 148 W/m2 (SD 49, range 33-290) Mean psychrometric wet bulb globe temperature was 31.5 degrees C (SD 2.0, range 25.2-35.3). Few cases (air velocity > 1.56 m/s, air cooling power > 248 W/m2, or psychrometric wet bulb globe temperature air cooling power > 250 W/m2 at all underground work sites.

  8. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    OpenAIRE

    Mahdi Jamshidi Rastani; Farshid Ghorbani Shahna; Abdolrahman Bahrami; Somayeh Hosseini

    2016-01-01

    Introduction: Adherence to the design values and ventilation standards (VS) after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS) and design values. Material...

  9. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine

    International Nuclear Information System (INIS)

    Niu, Zhiqiang; Diao, Hai; Yu, Shuhai; Jiao, Kui; Du, Qing; Shu, Gequn

    2014-01-01

    Highlights: • A 3-D model for exhaust-based thermoelectric waste heat recovery is developed. • Various heat, mass and electric transfer characteristics are elucidated. • Channel size needs to be moderate to balance heat transfer and pressure drop. • Bafflers need to be placed at all locations near all TEG modules. • Baffler angle needs to be sufficiently large, especially for downstream locations. - Abstract: Thermoelectric generator (TEG) has attracted considerable attention for the waste heat recovery of internal combustion engine. In this study, a 3-D numerical model for engine exhaust-based thermoelectric generator (ETEG) system is developed. By considering the detailed geometry of thermoelectric generator (TEG) and exhaust channel, the various transport phenomena are investigated, and design optimization suggestions are given. It is found that the exhaust channel size needs to be moderate to balance the heat transfer to TEG modules and pressure drop along channel. Increasing the number of exhaust channels may improve the performance, however, since more space and TEG modules are needed, the system size and cost need to be considered as well. Although only placing bafflers at the channel inlet could increase the heat transfer coefficient for the whole channel, the near wall temperature downstream might decrease significantly, leading to performance degradation of the TEG modules downstream. To ensure effective utilization of hot exhaust gas, the baffler angle needs to be sufficiently large, especially for the downstream locations. Since larger baffler angles increase the pressure drop significantly, it is suggested that variable baffler angles, with the angle increasing along the flow direction, might be a middle course for balancing the heat transfer and pressure drop. A single ETEG design may not be suitable to all the engine operating conditions, and making the number of exhaust channels and baffler angle adjustable according to different engine

  10. Evaluation of exhaust system for gaseous waste from the source production laboratory for radiotherapy - IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.C.B. de; Costa, O.L.; Feher, A.; Geraldo, B.; Carvalho, V.S.; Barbosa, N.K.O.; Vicente, R.; Zeituni, C.A.; Rostelato, M.E.C.M., E-mail: dcsouza@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Exhaust systems in fume hood for chemicals and hazardous materials as radioactive substances are of great importance for the protection of the Occupationally Exposed Individual and the environment. They protect against external contaminations by particulate matter, volatile and against inhalation of radioactive gases. This work intends to evaluate the exhaustion system of the Laboratory of Production of Radioactive Sources at the Nuclear and Energy Research Institute (IPEN). (author)

  11. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... gas mixture temperature, measured at a point immediately ahead of the critical flow venturi, must be... analytical system description. (a) General. The exhaust gas sampling system described in this section is... requirements are as follows: (1) This sampling system requires the use of a Positive Displacement Pump—Constant...

  12. 40 CFR 1065.130 - Engine exhaust.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Engine exhaust. 1065.130 Section 1065... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.130 Engine exhaust. (a) General. Use the exhaust system installed with the engine or one that represents a typical in-use configuration. This...

  13. HEAT TRANSFER IN EXHAUST SYSTEM OF A COLD START ENGINE AT LOW ENVIRONMENTAL TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Snežana D Petković

    2010-01-01

    Full Text Available During the engine cold start, there is a significantly increased emission of harmful engine exhaust gases, particularly at very low environmental temperatures. Therefore, reducing of emission during that period is of great importance for the reduction of entire engine emission. This study was conducted to test the activating speed of the catalyst at low environmental temperatures. The research was conducted by use of mathematical model and developed computer programme for calculation of non-stationary heat transfer in engine exhaust system. During the research, some of constructional parameters of exhaust system were adopted and optimized at environmental temperature of 22 C. The combination of design parameters giving best results at low environmental temperatures was observed. The results showed that the temperature in the environment did not have any significant influence on pre-catalyst light-off time.

  14. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  15. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    Science.gov (United States)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  16. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  17. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  18. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...

  19. Turnover intention and emotional exhaustion "at the top": adapting the job demands-resources model to leaders of addiction treatment organizations.

    Science.gov (United States)

    Knudsen, Hannah K; Ducharme, Lori J; Roman, Paul M

    2009-01-01

    Compared with the large literature on subordinate employees, there are few studies of emotional exhaustion and turnover intention for organizational leaders. There is little research that has extended the job demands-resources (JD-R) model of emotional exhaustion to leaders. In this study, the authors adapted the JD-R framework to analyze data collected from a sample of 410 leaders of addiction treatment organizations. The authors considered whether two job demands (performance demands and centralization) and two job resources (innovation in decision making and long-range strategic planning) were associated with emotional exhaustion and turnover intention. The authors also examined whether emotional exhaustion fully or partially mediated the associations between the job-related measures and turnover intention. The results supported the partially mediated model. Both job demands were positively associated with emotional exhaustion, and the association for long-range strategic planning was negative. Emotional exhaustion was positively associated with turnover intention. Centralization and innovation in decision making were also directly associated with turnover intention. Future research should continue to examine this theoretical framework among leaders of other types of organizations using more refined measures of demands and resources.

  20. Functional requirements for portable exhauster system to be used during saltwell pumping

    International Nuclear Information System (INIS)

    Nelson, O.D.

    1998-01-01

    This document defines functional requirements for portable exhausters used to ventilate primary tanks during saltwell pumping, and provide back-up to primary and annulus ventilation systems at C-106 and AY-102

  1. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Science.gov (United States)

    2010-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi... gas mixture temperature, measured at a point immediately ahead of the critical flow venturi, must be.... (a) General. The exhaust gas sampling system described in this section is designed to measure the...

  2. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD

    International Nuclear Information System (INIS)

    Huang, K. David; Quang, Khong Vu; Tseng, K.-T.

    2009-01-01

    A hybrid pneumatic power system (HPPS) is integrated by an internal combustion engine (ICE), a high efficiency turbine, an air compressor and an energy merger pipe, which can not only recycle and store exhaust gas energy but also convert it into useful mechanical energy. Moreover, it can make the ICE operate in its optimal state of maximum efficiency; and thus, it can be considered an effective solution to improve greatly the exhaust emissions and increase the overall energy efficiency of the HPPS. However, in this system, the flow energy merger of both high pressure compressed air flow and high temperature exhaust gas flow of the ICE greatly depends on the merging capability of the energy merger pipe. If the compressed air pressure (P air ) at the air inlet is too high, smooth transmission and mixture of the exhaust gas flow are prevented, which will interfere with the operation condition of the ICE. This shortcoming is mostly omitted in the previous studies. The purpose of this paper is to study the effect of the level of P air and the contraction of cross-section area (CSA) at the merging position on the flow energy merger and determine their optimum adjustments for a better merging process by using computation fluid dynamics (CFD). In addition, the CFD model was validated on the basis of the experimental data, including the temperature and static pressure of the merger flow at the outlet of the energy merger pipe. It was found that the simulation results were in good agreement with the experimental data. The simulation results show that exhaust gas recycling efficiency and merger flow energy are significantly dependent on the optimum adjustment of the CSA for changes in P air . Under these optimum adjustments, the exhaust gas recycling efficiency can reach about 83%. These results will be valuable bases to research and design the energy merger pipe of the HPPS.

  3. Liberalization by Exhaustion : Transformative Change in the German Welfare State and Vocational Training System

    OpenAIRE

    Busemeyer, Marius R.; Trampusch, Christine

    2013-01-01

    This article argues that two core domains of the German coordinated market economy have undergone transformative institutional change: the welfare state and the vocational training system. We argue that this process is best described as a process of liberalization resulting from the exhaustion of traditional institutions. Exhaustion describes a mechanism of institutional change in which endogenous negative feedback effects, caused by the overextension of resources, lead to a transformation of...

  4. Technical Analysis Ballast Water Treatment By Using Economizer Utilizing Main Engines Exhaust Heat To Comply With International Ship Ballast Water Management At Mv. Leader Win

    Directory of Open Access Journals (Sweden)

    Hari Prastowo

    2017-03-01

    Full Text Available Based on the International Ballast Water Management regulations (IBWM, waste water ballast itself has the attention of some researchers to reduce the amount of waste species present in the ballast water with a variety of methods, as of biological, physical, mechanical, and chemical. The decision-making tools such as ballast water heater, flow-through system and others where possible these tools can minimize waste species in ballast water at a certain temperature or pressure of the flow according to the calculations. This study was aimed to calculate and analysis the effectiveness of the system treatment between Option 1 (Economizer & Bundle and Option 2 (Economizer & Heat Excharger then it will compare. First option is using economizer and bundles to transfer a heat from a source heat of exhaust gas then medium by thermal oil circulated. The second option is using economizer and heat excharger where a same heat source , but sea water from ballast tank sirculated to heat excharger. And from economizer to heat excharger is using thermal oil as a heat medium. For all calculation and anaalysis is using softwere HTRI. First option having a duty 2.503 MegaWatts at economizer and 1.9567 MegaWatts at bundles. Over design 2.01% at Economizer and 7.1%5 at bundles. Pessure drop 63.287 kPa at thermal oil after economizer and 68.196 kPa after bundles. Treatment time to this option is 44.424 hors. Second option having a duty 3.38 MegaWatts at economizer and 3.1227 MegaWatts at heat excharger. Over design 5.85% at Economizer and 3.49%5 at heat excharger. Pessure drop 38.697 kPa at thermal oil after economizer and 28.476 kPa after heat excharger. Treatment time to second option is 42.03 hours. Option 2 (Economizer & Heat Excharger is more optimum than option in analytical techniques. By analysis of treatment system, are expected this thesis can be applied to either the MV. Leader Win Vessel to comply with the operational needs according to standard

  5. Biological regeneration of humic acid-loaded partially exhausted activated carbon (down flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Martin, R.J.; Khaliq, F.

    1995-01-01

    This paper represents the report on the biological regeneration of partially exhausted (down flow) activated carbon following the experimental studies carried out at the university of Birmingham, UK. The Research investigated the extent of bio regeneration of humic acid of concentration 100 mg/l. Bio regeneration in the partial exhaustion system (down flow) was evaluated in terms of substrate removal. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. The regeneration performance of the bio regeneration, partially exhausted (with humic acid) carbon increased during initial cycles, later on, it deteriorated significantly with each successive regeneration cycle. Microbial fouling of the carbon, especially at the bottom of the carbon bed was found to produce a substantial deterioration of the bio regeneration performance. (author)

  6. TASKA-M exhaust system and its main components

    International Nuclear Information System (INIS)

    Kleefeldt, K.W.; Mueller, R.A.; Schramm, K.

    1985-01-01

    TASKA-M is a study for a mirror based D-T plasma device for fusion technology tests. Mature technology was applied whereever possible. The axial confinement time is relatively short, resulting in a large gas throughput compared to the fusion power level of 6.8 MW. The technological requirements of the exhaust system will not cause undue development problems in either of the two major areas: highly loaded dumps for the conversion of the escaping particle and plasma streams to thermal gas; vacuum pumping facilities. (orig.)

  7. A spike at benefit exhaustion: Still possible after four years of unemployment

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie; Weatherall, Cecilie Dohlmann

    European policymakers wonder whether the long-term unemployed can still find jobs if the benefit period is shortened. We investigate this question by analysing how long-term unemployed react to the threat of running out of unemployment insurance (UI) after receiving it for almost four years....... The empirical analysis is based on very precise administrative records of men’s unemployment spells. To identify the effect of UI exhaustion, we exploit a legislative change in the duration of benefits that progressively reduced UI entitlement from five to four years. Our results show a spike 3-6 months before...

  8. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  9. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  10. Hepatoprotective Effects of Ixora parviflora Extract against Exhaustive Exercise-Induced Oxidative Stress in Mice

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-09-01

    Full Text Available Ixora parviflora, a species of the Rubiaceae, is rich in polyphenols and flavonoids, and has been traditionally used as a folk medicine. An I. parviflora extract (IPE has great antioxidant activity in vitro, including a scavenging effect on superoxide radicals, reducing power, and ferrous ion-chelating ability. However, whether IPE is efficacious against oxidative damage in vivo is not known. The purpose of this study was to determine the protective effects of IPE treatment on hepatic oxidative stress and antioxidant defenses after exhaustive exercise in mice. Fifty male C57BL/6 mice (6 week old were randomly divided into five groups and designated a sedentary control with vehicle (C, and exhaustive exercise with vehicle (IPE0, low dosage (IPE10, medium dosage (IPE50 and high dosage (IPE100 of IPE at 0, 10, 50, and 100 mg/kg, respectively. After a single bout of exhaustive swimming exercise challenge, levels of blood ammonia and creatine kinase (CK, and hepatic superoxide dismutase (SOD protein expression, thiobarbituric acid-reactive substance (TBARS, and gp91phox, p22phox, and p47phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressions in the IPE0 group were significantly affected compared to those of the C group, but they were all significantly inhibited by the IPE treatments. Results of the present in vivo study in mice indicate that I. parviflora extract possesses antioxidative and hepatoprotective potential following exhaustive exercise.

  11. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  12. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    Science.gov (United States)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  13. Turnover intention and emotional exhaustion “at the top”: Adapting the job demands-resources model to leaders of addiction treatment organizations

    Science.gov (United States)

    Knudsen, Hannah K.; Ducharme, Lori J.; Roman, Paul M.

    2009-01-01

    Compared to the large literature on subordinate employees, there are few studies of emotional exhaustion and turnover intention for organizational leaders. There is little research that has extended the job demands-resources (JD-R) model of emotional exhaustion to leaders. In this study, we adapted the JD-R framework in order to analyze data collected from a sample of 410 leaders of addiction treatment organizations. We considered whether two job demands (performance demands and centralization) and two job resources (innovation in decision-making and long-range strategic planning) were associated with emotional exhaustion and turnover intention. We also examined whether emotional exhaustion fully or partially mediated the associations between the job-related measures and turnover intention. The results supported the partially mediated model. Both job demands were positively associated with emotional exhaustion, while the association for long-range strategic planning was negative. Emotional exhaustion was positively associated with turnover intention. Centralization and innovation in decision-making were also directly associated with turnover intention. Future research should continue to examine this theoretical framework among leaders of other types of organizations using more refined measures of demands and resources. PMID:19210050

  14. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    Science.gov (United States)

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (1-5 μm, exceptionally 13 μm), rarely engine wear and escape into the atmosphere.

  16. Design basis and requirements for 241-SY modular exhauster mechanical installation

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1994-01-01

    A new ventilation system is being installed to serve as the K-1 primary exhauster. The existing K-1 primary exhauster will then become the backup. This ventilation system services waste tanks 241-SY-101, 102 and 103. The nominal flow rate through the ventilation system is 1,000 cfm. The new ventilation system will contain a moisture eliminator, a heater, a prefilter, two stages of HEPA filtration, an exhaust fan, a stack and stack sampling system. The purpose of this document is to serve as the design and functional requirements for the mechanical installation of the new 241-SY modular exhauster. The mechanical installation will include modifying the existing ductwork (i.e., installing a ''T'' to connect the new exhauster to the existing system), modifying the existing condensate drain lines to accommodate the new lines associated with the new exhauster, a maintenance platform near the stack of the new exhauster, guy wires and guy wire footings to support the stack of the new exhauster, as well as other miscellaneous tasks associated with the mechanical installation design effort

  17. Limiter/vacuum system for plasma impurity control and exhaust in tokamaks

    International Nuclear Information System (INIS)

    Abdou, M.; Brooks, J.; Mattas, R.

    1980-01-01

    A detailed design of a limiter/vacuum system for plasma impurity control and exhaust has been developed for the STARFIRE tokamak power plant. It is shown that the limiter/vacuum concept is a very attractive option for power reactors. It is relatively simple and inexpensive and deserves serious experimental verification

  18. Reduction of NOx in synthetic diesel exhaust via two-step plasma-catalysis treatment

    International Nuclear Information System (INIS)

    Tonkyn, R.G.; Barlow, S.E.; Hoard, John W.

    2003-01-01

    Significant reduction of NO x in synthetic light duty diesel exhaust has been achieved over a broad temperature window by combining atmospheric plasma with appropriate catalysts. The technique relies on the addition of hydrocarbon reductant prior to passing the simulated exhaust through a non-thermal plasma and a catalyst bed. The observed chemistry in the plasma includes conversion of NO to NO 2 as well as the partial oxidation of the hydrocarbon. The overall NO x reduction has a maximum of less than 80%, with this maximum obtained only at high-energy input into the plasma, high concentration of hydrocarbon reductant and low space velocity. We present data in this paper illustrating that a multiple-step treatment strategy, whereby two or more plasma-catalyst reactors are utilized in series, can increase the maximum NO x conversion obtainable. Alternatively, this technique can reduce the energy and/or hydrocarbon requirements for a fixed conversion efficiency. When propene is used as the reductant, the limiting reagent for the overall process is most likely acetaldehyde. The data suggest that acetaldehyde is formed in concert with NO oxidation to NO 2 in the plasma stage. The limited NO x reduction efficiency attained in a single step, even with excess energy, oxygen content and/or hydrocarbon-to-NO x ratio is well explained by this hypothesis, as is the effectiveness of the multiple-step treatment strategy. We present the data here illustrating the advantage of this approach under a wide variety of conditions

  19. Aerobic training for improved memory in patients with stress-related exhaustion: a randomized controlled trial.

    Science.gov (United States)

    Eskilsson, Therese; Slunga Järvholm, Lisbeth; Malmberg Gavelin, Hanna; Stigsdotter Neely, Anna; Boraxbekk, Carl-Johan

    2017-09-02

    Patients with stress-related exhaustion suffer from cognitive impairments, which often remain after psychological treatment or work place interventions. It is important to find effective treatments that can address this problem. Therefore, the aim of this study was to investigate the effects on cognitive performance and psychological variables of a 12-week aerobic training program performed at a moderate-vigorous intensity for patients with exhaustion disorder who participated in a multimodal rehabilitation program. In this open-label, parallel, randomized and controlled trial, 88 patients diagnosed with exhaustion disorder participated in a 24-week multimodal rehabilitation program. After 12 weeks in the program the patients were randomized to either a 12-week aerobic training intervention or to a control group with no additional training. Primary outcome measure was cognitive function, and secondary outcome measures were psychological health variables and aerobic capacity. In total, 51% patients in the aerobic training group and 78% patients in the control group completed the intervention period. The aerobic training group significantly improved in maximal oxygen uptake and episodic memory performance. No additional improvement in burnout, depression or anxiety was observed in the aerobic group compared with controls. Aerobic training at a moderate-vigorous intensity within a multimodal rehabilitation program for patients with exhaustion disorder facilitated episodic memory. A future challenge would be the clinical implementation of aerobic training and methods to increase feasibility in this patient group. ClinicalTrials.gov: NCT03073772 . Retrospectively registered 21 February 2017.

  20. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust

    Science.gov (United States)

    Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun

    2018-02-01

    The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.

  1. Diesel engine exhaust particulate filter with intake throttling incineration control

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, O.; Rosebrock, T.

    1980-07-08

    A description is given of a diesel engine exhaust filter and particulate incineration system in combination with a diesel engine having a normally unthrottled air induction system for admitting combustion air to the engine and an exhaust system for carrying off spent combustion products exhausted from the engine, said filter and incineration system comprising: a combustion resistant filter disposed in the exhaust system and operative to collect and retain portions of the largely carbonaceous particulate matter contained in the engine exhaust products, said fiber being capable of withstanding without substantial damage internal temperatures sufficient to burn the collected particulate matter, a throttle in the indication system and operable to restrict air flow into the engine to reduce the admittance of excess combustion air and thereby increase engine exhaust gas temperature, and means to actuate said throttle periodically during engine operation to an air flow restricting burn mode capable of raising the particulates in said filter to their combustion temperature under certain engine operating conditions and to maintain said throttle mode for an interval adequate to burn retained particulates in the filter.

  2. Engine with pulse-suppressed dedicated exhaust gas recirculation

    Science.gov (United States)

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  3. Formation of formaldehyde in biogas-engines and methods for reducing these emissions by exhaust-gas after-treatment; Entstehung von Formaldehydemissionen in Biogasmotoren und deren Verminderung durch inner- und nachmotorische Massnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Markus; Wachtmeister, Georg; Prager, Maximilian [TU Muenchen (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen

    2011-07-01

    Having found numerous biogas-(co)generation plants exceeding the formaldehyde emission limits given in German Technical Instructions on Air Quality Control (TA Luft), the mechanisms of in-engine formation of formaldehyde were investigated at the Institute of Internal Combustion Engines (LVK) of the Technische Universitaet Muenchen in collaboration with the German Forschungsvereinigung Verbrennungskraftmaschinen e.V (FVV, Research Association for Combustion Engines; research project No. 918). In these investigations the potential for reducing formaldehyde emissions with in-engine measures was found to be limited unless deteriorations in engine efficiency and nitric oxides' emissions are accepted. As a result, after- treatment of the exhaust gases is necessary, especially with respect to the tightening of the formaldehyde limits in January 2009. To get information about the yet unknown long-term behaviour of exhaust-gas after-treatment on biogas plants, a further project was launched. Within half a year emissions of formaldehyde and methane, the latter of them with regard to its global warming potential, were investigated at two biogas plants equipped with two different technologies of after-treatment. These investigations proved regenerative thermal oxidation (RTO) as well as catalytic oxidation (Oxi-Kat) capable for reducing the emissions of formaldehyde below valid limits, though further research has to be conducted to improve the durability of the Oxi-Kat as well as the performance of the RTO in non-steady-state operation, especially cold start. Emissions of methane were effectively reduced with the RTO whereas the Oxi-Kat, which in fact was optimized for reducing emissions of formaldehyde, only had a negligible effect on it. It is expected that further research on catalytic coatings will improve the Oxi-Kat's performance in methane-oxidation. This project was sponsored by the Federal Ministry for the Environment, Nature Conservation and Reactor Safety

  4. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  5. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  6. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2016-04-15

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  7. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    International Nuclear Information System (INIS)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum

    2016-01-01

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  8. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    . Challenges with this technology include dosing the appropriate amount of urea to reach sufficient NOx conversion, while at the same time keeping NH3- slip from the exhaust system below the legislation. This requires efficient control algorithms. The focus of this thesis is modelling and control of the SCR...... parameters were estimated using bench-scale monolith isothermal data. Validation was done by simulating the out-put from a full-scale SCR monolith that was treating real engine gases from the European Transient Cycle (ETC). Results showed that the models were successfully calibrated, and that some......, and simulating the system....

  9. The state of the vegetative nervous system in patients with gonarthrosis for surgical treatment before and after surgical treatment

    Directory of Open Access Journals (Sweden)

    Karaseva T.lu.

    2012-12-01

    Full Text Available Aim. Analyzing the vegetative tensity of organism» functional systems before and after surgical treatment of elderly patients with metabolic-and-dystrophic gonarthrosis. Methods. The evaluation of vegetative homeostasis, reactivity of the vegetative nervous system by the data of variation pulsometry («REAN-POLY» RGPA-6/12, Taganrog in 60 patients with gonarthrosis at the age of 50-72 years and the disease duration — 9+1.5 years before and after surgical treatment: total tunnelization (Group I, tunnelization with osteotomy of leg bones for correction of limb biomechanical axis (Group II, treatment-and-diagnostic arthroscopy (Group III. Results. The reduction of the level of hypoxia tolerance and the decrease of the processes of general adaptation one month after surgery in Group I was registered in 40% of patients. As for patients of Group II, by the end of the period of fixation with the llizarov device — in 50%. As for those of Group III after arthroscopy — in 10% of patients. Among the patients whose 1С / 1С calculated parameter after surgical treatment was registered <1.0, its values were >10.0 before treatment in 70% of cases. At rest, marked vagotonia was registered with hypersympathicotonic reaction to orthotest, as well as with sharp decrease of the proportion of second-order slow waves while transition to standing position (VLF proportion <10.0%, thereby reflecting organism»s energy deficiency state. Conclusion. Preoperative examination. When VLF proportion after orthotest is registered <10.0%, such patients should be referred to risk group and prescribed in-depth examination. The index of centralization (1С dynamics for orthotest (1С test/1С rest is one of the criteria of functional recovery level for the particular patient: its increase points to the positive dynamics of restorative rehabilitative process, and the values <1.0 —to the negative one.

  10. Operability test procedure for the Rotary Mode Core Sampling System Exhausters 3 and 4

    International Nuclear Information System (INIS)

    WSaldo, E.J.

    1995-01-01

    This document provides a procedure for performing operability testing of the Rotary Mode Core Sampling System Exhausters 3 ampersand 4. Upon completion of testing activities an operability testing report will be issued

  11. 75 FR 57191 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Science.gov (United States)

    2010-09-20

    ... 28, 1975, the Federal Highway Administration (FHWA)'s Bureau of Motor Carrier Safety published in the... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration 49 CFR Part 325 [Docket...: Exhaust Systems AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Direct final rule...

  12. Rehabilitation for improved cognition in patients with stress-related exhaustion disorder

    DEFF Research Database (Denmark)

    Malmberg Gavelin, Hanna; Eskilsson, Therese; Boraxbekk, Carl-Johan

    2018-01-01

    Stress-related exhaustion has been associated with selective and enduring cognitive impairments. However, little is known about how to address cognitive deficits in stress rehabilitation and how this influences stress recovery over time. The aim of this open-label, parallel randomized controlled...... trial (ClinicalTrials.gov: NCT03073772) was to investigate the long-term effects of 12 weeks cognitive or aerobic training on cognitive function, psychological health, and work ability for patients diagnosed with exhaustion disorder (ED). One-hundred-and-thirty-two patients (111 women) participating...... in multimodal stress rehabilitation were randomized to receive additional cognitive training (n = 44), additional aerobic training (n = 47), or no additional training (n = 41). Treatment effects were assessed before, immediately after and one-year post intervention. The primary outcome was global cognitive...

  13. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  14. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  15. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  16. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    Science.gov (United States)

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  17. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  18. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    Science.gov (United States)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  19. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Directory of Open Access Journals (Sweden)

    Mostofa Kamal Nasir

    2014-01-01

    Full Text Available Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO, hydrocarbons (HC, carbon dioxide (CO2, particulate matter (PM, and oxides of nitrogen (NOx. Intelligent transport system (ITS technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  20. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  1. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    Science.gov (United States)

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  2. Investigations on burning efficiency and exhaust emission of in-line type emulsified fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Y.K. [National Chinyi University of Technology (Taiwan). Dept. of Mechanical Engineering; Cheng, H.C. [Point Environmental Protection Technology Company Limited (Taiwan)

    2011-07-28

    In this research, the burning efficiency as well as exhaust emission of a new water-in-oil emulsified fuel system was studied. This emulsified system contains two core processes, the first one is to mix 97% water with 3% emulsifier by volume, and get the milk-like emulsified liquid, while the second one is to compound the milk-like emulsified liquid with heavy oil then obtain the emulsified fuel. In order to overcome the used demulsification problem during in reserve or in transport, this system was designed as a made and use in-line type. From the results of a series of burning tests, the fuel saving can be 8--15%. Also, from the comparison of decline for the heat value and total energy output of emulsified fuel, one can find that the water as the dispersed phase in the combustion process will lead to a micro-explosion as well as the water gas effect, both can raise the combustion temperature and burning efficiency. By comparing the waste gas emission of different types of emulsified fuel, one can know that, the CO2 emission reduces approximately 14%, and NOx emission reduces above 46%, meaning the reduction of the exhaust gas is truly effective. From the exhaust temperature of tail pipe, the waste heat discharge also may reduce 27%, it is quite advantageous to the global warming as well as earth environmental protection.

  3. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  4. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  5. Ganoderma tsugae Hepatoprotection against Exhaustive Exercise-Induced Liver Injury in Rats

    Directory of Open Access Journals (Sweden)

    Wan-Teng Lin

    2013-01-01

    Full Text Available Several studies have been shown that accelerated apoptosis is involved in post-exercise lymphocytopenia and tissue damage after high-intensity exercise. Ganoderma tsugae (GT is one of the well-known medicinal mushrooms that possess various pharmacological functions. This mushroom has traditionally been used for health promotion purposes. This study investigates the hepatoprotective effects of GT on exhaustive exercise-induced liver damage. Twenty-four male Sprague-Dawley rats were randomly divided into four groups and designated as exhaustive exercise only (E, exhaustive exercise with low dosage (EL, medium dosage (EM and high dosage (EH GT at 0, 0.1875, 0.9375 and 1.875 g/kg/day, respectively. After 30 days all rats were euthanized immediately after an exhaustive running challenge on a motorized treadmill. The rat livers were immediately harvested. Evidence of apoptotic liver cell death was revealed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay and caspases mediated cascade events. DNA fragmentation, an apoptosis process, can be examined using TUNEL assay. A few TUNEL-positive hepatocytes, compared to the exercise only group, were observed in the livers from exhaustive animals supplemented with GT. Immunoblot analysis also showed that caspase-6-mediated specific cleavage of lamin A/C was increased significantly in the livers of group E, but was significantly decreased in the EM and EH groups. Our observations demonstrate that GT possesses anti-apoptotic and hepatoprotective potential after exhaustive exercise.

  6. Ganoderma tsugae hepatoprotection against exhaustive exercise-induced liver injury in rats.

    Science.gov (United States)

    Huang, Chi-Chang; Huang, Wen-Ching; Yang, Suh-Ching; Chan, Chih-Chi; Lin, Wan-Teng

    2013-01-29

    Several studies have been shown that accelerated apoptosis is involved in post-exercise lymphocytopenia and tissue damage after high-intensity exercise. Ganoderma tsugae (GT) is one of the well-known medicinal mushrooms that possess various pharmacological functions. This mushroom has traditionally been used for health promotion purposes. This study investigates the hepatoprotective effects of GT on exhaustive exercise-induced liver damage. Twenty-four male Sprague-Dawley rats were randomly divided into four groups and designated as exhaustive exercise only (E), exhaustive exercise with low dosage (EL), medium dosage (EM) and high dosage (EH) GT at 0, 0.1875, 0.9375 and 1.875 g/kg/day, respectively. After 30 days all rats were euthanized immediately after an exhaustive running challenge on a motorized treadmill. The rat livers were immediately harvested. Evidence of apoptotic liver cell death was revealed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspases mediated cascade events. DNA fragmentation, an apoptosis process, can be examined using TUNEL assay. A few TUNEL-positive hepatocytes, compared to the exercise only group, were observed in the livers from exhaustive animals supplemented with GT. Immunoblot analysis also showed that caspase-6-mediated specific cleavage of lamin A/C was increased significantly in the livers of group E, but was significantly decreased in the EM and EH groups. Our observations demonstrate that GT possesses anti-apoptotic and hepatoprotective potential after exhaustive exercise.

  7. Performance evaluation of a novel personalized ventilation-personalized exhaust system for airborne infection control.

    Science.gov (United States)

    Yang, J; Sekhar, S C; Cheong, K W D; Raphael, B

    2015-04-01

    In the context of airborne infection control, it is critical that the ventilation system is able to extract the contaminated exhaled air within the shortest possible time. To minimize the spread of contaminated air exhaled by occupants efficiently, a novel personalized ventilation (PV)-personalized exhaust (PE) system has been developed, which aims to exhaust the exhaled air as much as possible from around the infected person (IP). The PV-PE system was studied experimentally for a particular healthcare setting based on a typical consultation room geometry and four different medical consultation positions of an IP and a healthy person (HP). Experiments using two types of tracer gases were conducted to evaluate two types of PE: Top-PE and Shoulder-PE under two different background ventilation systems: Mixing Ventilation and Displacement Ventilation. Personalized exposure effectiveness, intake fraction (iF) and exposure reduction (ε) were used as indices to evaluate the PV-PE system. The results show that the combined PV-PE system for the HP achieves the lowest intake fraction; and the use of PE system for the IP alone shows much better performance than using PV system for the HP alone. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Aero-acoustic design and test of a multiple splitter exhaust noise suppressor for a 0.914m diameter lift fan

    Science.gov (United States)

    Stimpert, D. L.

    1973-01-01

    A lift fan exhaust suppression system to meet future VTOL aircraft noise goals was designed and tested. The test vehicle was a 1.3 pressure ratio, 36 inch (91.44 cm) diameter lift fan with two chord rotor to stator spacing. A two splitter fan exhaust suppression system thirty inches (76.2 cm) long achieved 10 PNdB exhaust suppression in the aft quadrant compared to a design value of 20 PNdB. It was found that a broadband noise floor limited the realizable suppression. An analytical investigation of broadband noise generated by flow over the treatment surfaces provided very good agreement with the measured suppression levels and noise floor sound power levels. A fan thrust decrement of 22% was measured for the fully suppressed configuration of which 11.1% was attributed to the exhaust suppression hardware.

  9. After Cancer Treatment

    Science.gov (United States)

    ... Better Home Your Health Resources Healthcare Management After Cancer Treatment After Cancer Treatment Share Print From the day you were diagnosed ... of the questions you may have after your cancer treatment ends. Path to well being Will I need ...

  10. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    International Nuclear Information System (INIS)

    Turnyanskiy, M.; Neu, R.; Albanese, R.; Ambrosino, R.; Bachmann, C.; Brezinsek, S.; Donne, T.; Eich, T.; Falchetto, G.; Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C.; Reimerdes, H.; Romanelli, F.; Wenninger, R.; You, J.-H.

    2015-01-01

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  11. European roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnyanskiy, M., E-mail: mikhail.turnyanskiy@euro-fusion.org [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Neu, R. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Technische Universität München, Fachgebiet Plasma-Wand-Wechselwirkung, D-85748 Garching (Germany); Albanese, R.; Ambrosino, R. [Assoc. EURATOM/ENEA/CREATE/DIETI – Univ. Napoli Federico II, Via Claudio 21, I-80125 (Italy); Bachmann, C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Brezinsek, S. [Association EURATOM/Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Donne, T. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Eich, T. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany); Falchetto, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Federici, G.; Kalupin, D.; Litaudon, X.; Mayoral, M.L.; McDonald, D.C. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); Reimerdes, H. [EPFL, CRPP, CH-1015 Lausanne (Switzerland); Romanelli, F.; Wenninger, R. [EUROfusion PMU Garching, Boltzmannstraße 2, D-85748 Garching (Germany); You, J.-H. [Max-Planck-Institut für Plasmapysik, Boltzmannstraße 2, D-85748 Garching (Germany)

    2015-10-15

    Highlights: • A summary of the main aims of the Mission 2 for a solution on heat-exhaust systems. • A description of the EUROfusion consortium strategy to address Mission 2. • A definition of main unresolved issues and challenges in Mission 2. • Work Breakdown Structure to set up the collaborative efforts to address these challenges. - Abstract: Horizon 2020 is the largest EU Research and Innovation programme to date. The European fusion research programme for Horizon 2020 is outlined in the “Roadmap to the realization of fusion energy” and published in 2012 [1]. As part of it, the European Fusion Consortium (EUROfusion) has been established and will be responsible for implementing this roadmap through its members. The European fusion roadmap sets out a strategy for a collaboration to achieve the goal of generating fusion electricity by 2050. It is based on a goal-oriented approach with eight different missions including the development of heat-exhaust systems which must be capable of withstanding the large heat and particle fluxes of a fusion power plant (FPP). A summary of the main aims of the mission for a solution on heat-exhaust systems and the EUROfusion consortium strategy to set up an efficient Work Breakdown Structure and the collaborative efforts to address these challenges will be presented.

  12. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  13. Part 1. Assessment of carcinogenicity and biologic responses in rats after lifetime inhalation of new-technology diesel exhaust in the ACES bioassay.

    Science.gov (United States)

    McDonald, Jacob D; Doyle-Eisele, Melanie; Seagrave, JeanClare; Gigliotti, Andrew P; Chow, Judith; Zielinska, Barbara; Mauderly, Joe L; Seilkop, Steven K; Miller, Rodney A

    2015-01-01

    component of TDE was considered the primary driver of lung tumorigenesis in rats exposed chronically to historical diesel emissions. Emissions from a 2007-compliant, 500-horsepower-class engine and after treatment system operated on a variable-duty cycle were used to generate the animal inhalation test atmospheres. Four groups were exposed to one of three concentrations (dilutions) of exhaust combined with crankcase emissions, or to clean air as a negative control. Dilutions of exhaust were set to yield average integrated concentrations of 4.2, 0.8, and 0.1 ppm nitrogen dioxide (NO2). Exposure atmospheres were analyzed by daily measurements of key effects of NTDE in the present study were generally consistent with those observed previously in rats exposed chronically to NO2 alone. This suggests that NO2 may have been the primary driver of the biologic responses to NTDE in the present study. There was little evidence of effects characteristic of rats exposed chronically to high concentrations of DPM in TDE, such as an extensive accumulation of DPM within alveolar macrophages and inflammation leading to neoplastic transformation of epithelia and lung tumors. components and periodic detailed physical-chemical characterizations. Exposures were conducted 16 hours/day (overnight, during the rats' most active period), 5 days/week. Responses to exposure were evaluated via hematology, serum chemistry, bronchoalveolar lavage (BAL), lung cell proliferation, histopathology, and pulmonary function. The exposures were accomplished as planned, with average integrated exposure concentrations within 20% of the target dilutions. The major components from exhaust were the gaseous inorganic compounds, nitrogen monoxide (NO), NO2, and carbon monoxide (CO). Minor components included low concentrations of DPM and volatile and semi-volatile organic compounds (VOCs and SVOCs). Among the more than 100 biologic response variables evaluated, the majority showed no significant difference from control

  14. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds.

    Science.gov (United States)

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks' air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection.

  15. Effect of previous exhaustive exercise on metabolism and fatigue development during intense exercise in humans

    DEFF Research Database (Denmark)

    Iaia, F. M.; Perez-Gomez, J.; Nordsborg, Nikolai

    2010-01-01

    The present study examined how metabolic response and work capacity are affected by previous exhaustive exercise. Seven subjects performed an exhaustive cycle exercise ( approximately 130%-max; EX2) after warm-up (CON) and 2 min after an exhaustive bout at a very high (VH; approximately 30 s), high...

  16. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge ADJIBADE

    2017-09-01

    Full Text Available This work presents an experimental study of H20-NH3-H2 diffusion absorption refrigeration under two types of energy sources, i.e. the conventional electric energy from grid (electric and exhaust gas from internal combustion engine. Dynamic method is used to evaluate the behavior of the components of the system for both energy sources. Results obtained show that the performance of each component under different types of energy sources is almost coherent. For the generator, the electrical heater system requires more time to warm up, around three minutes, compared to the 40 s for system running with exhaust gas. For the evaporator, the decreasing rate is higher for the exhaust gas source and it took only about two hours to reach steady-state while for the electrical heat, the steady-state is reached after about seven hours of operation. For both energy sources, the evaporation temperature stabilizes to 3 °C and the minimum temperature to boil off ammonia is around 140 °C.

  17. Effect of diesel generator exhaust pollutants on growth of Vinca ...

    African Journals Online (AJOL)

    The effects of exhaust pollutants of generator on root and shoot length, root and shoot weight, number of leaflets and leaf area, leaf and total plant dry weight of Vinca rosea and Ruellia tuberosa were studied. The treatment of exhaust pollutants produced significant effects on root, shoot growth, number of leaflet and leaf ...

  18. Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle

    Science.gov (United States)

    Kühn, Roland; Koeppen, Olaf; Kitte, Jens

    2014-06-01

    Numerous research projects in automotive engineering focus on the industrialization of the thermoelectric generator (TEG). The development and the implementation of thermoelectric systems into the vehicle environment are commonly supported by virtual design activities. In this paper a customized simulation architecture is presented that includes almost all vehicle parts which are influenced by the TEG (overall system simulation) but is nevertheless capable of real-time use. Moreover, an optimized planar TEG with minimum nominal power output of about 580 W and pressure loss at nominal conditions of 10 mbar, synthesized using the overall system simulation, and the overall system simulation itself are used to answer a generally neglected question: What influence does the position of a TEG have on the back pressure of the subsequent exhaust gas system of the vehicle? It is found that the influence of the TEG on the muffler is low, but the catalytic converter is strongly influenced. It is shown that the TEG can reduce the back pressure of an exhaust gas system so much that its overall back pressure is less than the back pressure of a standard exhaust gas system.

  19. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)

    2014-01-15

    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  20. HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    DEFF Research Database (Denmark)

    Gao, Xin

    This thesis presents two case studies on improving the efficiency and the loadfollowing capability of a high temperature polymer electrolyte membrane (HTPEM) fuel cell system by the application of thermoelectric (TE) devices. TE generators (TEGs) are harnessed to recover the system exhaust gas...... developed three-dimensional numerical model in ANSYS Fluent®. This thesis introduces the progress of this project in a cognitive order. The first chapter initially prepares the theory and characteristics of the fuel cell system and TE devices. Project motivations are conceived. Then similar studies existing...... power output on the subsystem design and performance were also systematically analyzed. The TEG subsystem configuration is optimized. The usefulness and convenience of the model are proved. TE coolers (TECs) are integrated into the methanol evaporator of the HT-PEM system for improving the whole system...

  1. Neuropsychological sequelae of work-stress-related exhaustion.

    Science.gov (United States)

    Österberg, Kai; Skogsliden, Sofia; Karlson, Björn

    2014-01-01

    The aim was to assess long-term cognitive performance after substantial recovery from work-stress-related exhaustion, in relation to subjective cognitive complaints and return to active work. In total, 54 patients previously diagnosed with work-stress-related exhaustion participated in a neuropsychological examination ∼2 years after initial sick leave. Most participants were substantially recovered at follow-up, with only 13% still meeting the criteria for exhaustion disorder suggested by the Swedish National Board of Health and Welfare. When participants' scores on 14 neuropsychological tests were compared to a matched group of 50 controls, the former patient group showed lower performance mainly on attention tests of the reaction time type, but also slightly lower scores on visuo-spatial constructional ability. However, the former patient group performed better than controls on two memory tests and, in part, on a test of simultaneous capacity. Self-ratings of everyday cognitive problems remained significantly higher in the former patient group than among controls, but the extent of self-rated cognitive problems was generally unrelated to performance on the neuropsychological tests. No relationship between performance on these tests and the extent of work resumption was observed. In summary, persons with previous work-stress-related exhaustion showed persistent signs of a minor attention deficit, despite considerable general recovery and return to work.

  2. Work-related exhaustion and telomere length: a population-based study.

    Directory of Open Access Journals (Sweden)

    Kirsi Ahola

    Full Text Available Psychological stress is suggested to accelerate the rate of biological aging. We investigated whether work-related exhaustion, an indicator of prolonged work stress, is associated with accelerated biological aging, as indicated by shorter leukocyte telomeres, that is, the DNA-protein complexes that cap chromosomal ends in cells.We used data from a representative sample of the Finnish working-age population, the Health 2000 Study. Our sample consisted of 2911 men and women aged 30-64. Work-related exhaustion was assessed using the Maslach Burnout Inventory--General Survey. We determined relative leukocyte telomere length using a quantitative real-time polymerase chain reaction (PCR -based method.After adjustment for age and sex, individuals with severe exhaustion had leukocyte telomeres on average 0.043 relative units shorter (standard error of the mean 0.016 than those with no exhaustion (p = 0.009. The association between exhaustion and relative telomere length remained significant after additional adjustment for marital and socioeconomic status, smoking, body mass index, and morbidities (adjusted difference 0.044 relative units, standard error of the mean 0.017, p = 0.008.These data suggest that work-related exhaustion is related to the acceleration of the rate of biological aging. This hypothesis awaits confirmation in a prospective study measuring changes in relative telomere length over time.

  3. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise.

    Science.gov (United States)

    Koskinen, Satu O A; Kyröläinen, Heikki; Flink, Riina; Selänne, Harri P; Gagnon, Sheila S; Ahtiainen, Juha P; Nindl, Bradley C; Lehti, Maarit

    2017-11-01

    Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.

  4. Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas

    International Nuclear Information System (INIS)

    Wang Huijuan; Guo He; Liu Yongjie; Yi Chengwu

    2015-01-01

    In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment. (paper)

  5. Theoretical and Experimental Aspects of Acoustic Modelling of Engine Exhaust Systems with Applications to a Vacuum Pump

    Science.gov (United States)

    Sridhara, Basavapatna Sitaramaiah

    In an internal combustion engine, the engine is the noise source and the exhaust pipe is the main transmitter of noise. Mufflers are often used to reduce engine noise level in the exhaust pipe. To optimize a muffler design, a series of experiments could be conducted using various mufflers installed in the exhaust pipe. For each configuration, the radiated sound pressure could be measured. However, this is not a very efficient method. A second approach would be to develop a scheme involving only a few measurements which can predict the radiated sound pressure at a specified distance from the open end of the exhaust pipe. In this work, the engine exhaust system was modelled as a lumped source-muffler-termination system. An expression for the predicted sound pressure level was derived in terms of the source and termination impedances, and the muffler geometry. The pressure source and monopole radiation models were used for the source and the open end of the exhaust pipe. The four pole parameters were used to relate the acoustic properties at two different cross sections of the muffler and the pipe. The developed formulation was verified through a series of experiments. Two loudspeakers and a reciprocating type vacuum pump were used as sound sources during the tests. The source impedance was measured using the direct, two-load and four-load methods. A simple expansion chamber and a side-branch resonator were used as mufflers. Sound pressure level measurements for the prediction scheme were made for several source-muffler and source-straight pipe combinations. The predicted and measured sound pressure levels were compared for all cases considered. In all cases, correlation of the experimental results and those predicted by the developed expressions was good. Predicted and measured values of the insertion loss of the mufflers were compared. The agreement between the two was good. Also, an error analysis of the four-load method was done.

  6. Radiation chemical studies on the electron-beam treatment of exhaust gases

    International Nuclear Information System (INIS)

    Washino, Masamitsu; Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake

    1980-03-01

    This report summarizes the radiation chemical studies on the synthetic models of exhaust gases which has been done in JAERI-Takasaki. Radiation-induced reactions of low concentrations of SO 2 and NO was studied in dry and moist mixtures of N 2 and O 2 . SO 2 was oxidized to H 2 SO 4 only in the moist mixtures. Oxidation of NO and reduction of NO 2 took place simultaneously and approached to a radiation-chemical stationary state in the dry N 2 -O 2 systems. NO was easily oxidized to NO 2 and finally to HNO 3 in the moist systems. Addition of NH 3 in the mixture enhanced the NO-removing reactions and suppressed the NO 2 - and HNO 3 -formations. A set of reaction mechanisms deduced is proposed. The reaction proceeds by the mechanism of such indirect effect of radiation as the energies absorbed by the main components are transferred and utilized effectively to the SO 2 - and NO sub(x)-removing reactions. (author)

  7. Dual-purpose power plants, experiences with exhaust gas purification plants

    International Nuclear Information System (INIS)

    Dietrich, R.

    1993-01-01

    From 1984 to 1988, the research and development project ''pollutant reduction for exhaust gases from heat production systems'' sponsored by the Federal Ministry of Research and Technology (BMFT) has been carried out by TUeV in Bavaria. This project was to show the state of exhaust gas technology for small and medium-sized plants (boilers and motoric heat generators). When publishing the final report, no positive balance could be given. Based on the results, the succession project ''Exhaust gas purification plants in field test'' (ARIF) has been started. This project has the following objectives: -Measuring technical investigation of the exhaust gas purification of motoric driven heat generator systems in field test. - Suitability of hand measuring devices for emissions for a discontinuous control of the exhaust gas purification plat by the operator. - Control of new methods regarding pollutant reduction for motoric and conventional heat generators. (orig.) [de

  8. Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions

    International Nuclear Information System (INIS)

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Reig, Alberto

    2015-01-01

    EGR (Exhaust gas recirculation) plays a major role in current Diesel internal combustion engines as a cost-effective solution to reduce NO_x emissions. EGR systems will suffer a significant evolution with the introduction of NO_x after-treatment and the proliferation of more complex EGR architectures such as low pressure EGR or dual EGR. In this paper the combination of HPEGR (high pressure EGR) LPEGR (low pressure EGR) is presented as a method to minimise fuel consumption with reduced NO_x emissions. Particularly, the paper proposes to switch between HPEGR and LPEGR architectures depending on the engine operating conditions in order to exploit the potential of both systems. In this sense, given a driving cycle, in the case at hand the NEDC, the proposed strategy seeks the EGR layout to use at each instant of the cycle to minimise the fuel consumption such that NO_x emissions are kept below a certain limit. The experimental results obtained show that combining both EGR systems sequentially along the NEDC allows to keep NO_x emission below a much lower limit with minimum fuel consumption. - Highlights: • The combination of HP–LPEGR reduces the NO_x with a small impact on consumption. • The switching strategy between HP – LPEGR is derived from Optimal Control Theory. • The proposed strategy is validated experimentally.

  9. DNA damage in lung after oral exposure to diesel exhaust particles in Big Blue (R) rats

    DEFF Research Database (Denmark)

    Müller, Anne Kirstine; Farombi, E.O.; Møller, P.

    2004-01-01

    Several chemical mutagens and carcinogens, including polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs, are adsorbed to the surface of diesel exhaust particles (DEP). DEP can induce formation of reactive oxygen species and cause oxidative DNA damage as well as bulky carcinogen DNA adducts....... Lung tissue is a target organ for DEP induced cancer following inhalation. Recent studies have provided evidence that the lung is also a target organ for DNA damage and cancer after oral exposure to other complex mixtures of PAHs. The genotoxic effect of oral administration of DEP was investigated...

  10. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    Science.gov (United States)

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  11. Aerodynamic Control of Exhaust

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    In the autumn of 1985 the Unive!Sity of Aalborg was approached by the manufacturer C. P. Aaberg, who had obtained aerodynilmic control of the exhaust by means of injection. The remaining investigations comprising optimizations of the system with regard to effect, consumption, requirements...

  12. Quality of clinical supervision and counselor emotional exhaustion: the potential mediating roles of organizational and occupational commitment.

    Science.gov (United States)

    Knudsen, Hannah K; Roman, Paul M; Abraham, Amanda J

    2013-01-01

    Counselor emotional exhaustion has negative implications for treatment organizations as well as the health of counselors. Quality clinical supervision is protective against emotional exhaustion, but research on the mediating mechanisms between supervision and exhaustion is limited. Drawing upon data from 934 counselors affiliated with treatment programs in the National Institute on Drug Abuse's Clinical Trials Network (CTN), this study examined commitment to the treatment organization and commitment to the counseling occupation as potential mediators of the relationship between quality clinical supervision and emotional exhaustion. The final ordinary least squares (OLS) regression model, which accounted for the nesting of counselors within treatment organizations, indicated that these two types of commitment were plausible mediators of the association between clinical supervision and exhaustion. Higher quality clinical supervision was strongly correlated with commitment to the treatment organization as well as commitment to the occupation of SUD counseling. These findings suggest that quality clinical supervision has the potential to yield important benefits for counselor well-being by strengthening ties to both their employing organization as well the larger treatment field, but longitudinal research is needed to establish these causal relationships. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Simulation of exhaust gas heat recovery from a spray dryer

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    This study explored various alternatives in improving the energy utilization of spray drying process through the exhaust gas heat recovery. Extensible and user-friendly simulation code was written in Visual Basic for Applications within Microsoft Excel for this purpose. The effects of process parameters were analyzed on the energy efficiency and energy saving in the industrial-scale spray drying system with exhaust gas heat recovery in an air-to-air heat exchanger and in the system with partial recirculation of exhaust air. The spray dryer is equipped with an indirect heater for heating the drying air. The maximum gains of 16% in energy efficiency and 50% in energy saving were obtained for spray drying system equipped with heat exchanger for exhaust air heat recovery. In addition, 34% in energy efficiency and 61% in energy saving for system with recirculation of exhaust air in the present range of process parameters. The high energy efficiency was obtained during drying of large amount of dilute slurry. The energy saving was increased using the large amount of hot drying air. - Highlights: • We model industrial-scale spray drying process with the exhaust gas heat recovery. • We develop an Excel VBA computer program to simulate spray dryer with heat recovery. • We examine effects of process parameters on energy efficiency and energy saving. • High energy efficiency is obtained during drying of large amount of dilute slurry. • Energy saving is increased using the large amount of hot drying air

  14. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  15. Effect of one session endurance exhausting exercise on some coagulation markers of mature and immature wistar rats

    Directory of Open Access Journals (Sweden)

    Shadmehr MirdarHarijani

    2013-06-01

    Full Text Available Background: The incidence of thrombosis is lower in children and prepubertal period than adults. But its incidence increases in adolescence.The aim of this study was comparing the effect of one session of endurance exhaustive exercise in different times on some of coagulation systems markers in pre and after maturation wistar rats. Material and Methods: 27mature male wistar rats with 241±5 grams mean weight and 27 immature male rats with 97±5 grams mean weight which were 14 and 5 weeks old, respectively, after two weeks getting accustomed to the new environment and treadmill, were divided into one control and two exercising groups. Then, sampling was performed immediately and after 24 hours after exercise. Exhausting endurance exercise program involved increasing the speed of treadmill until getting exhausted. Fibrinogen, APTT, and PT were measured with the Clause and coagulation methods. The analysis was performed by using independent t-test, one-way variance analysis and tukey test. Significance level was assigned for all statistical analysis (p≤0.050. Results: Results in immature and mature rats groups indicated that amounts of fibrinogen has had significant reduction immediately after exercise (p=0.004, p=0.047, and 24 hours after exercise were significantly increased only in mature rats (p=0.000. Also, APTT in all groups decreased immediately and 24 hours after exercise but it was significant just 24 hours after exercise. Conclusion: Due to the increased fibrinogen and decreased APTT at 24 hours after exhaustive endurance exercise in mature and immature rats, it seems that performing such activities in children and inactive adults must be accompanied with special considerations.

  16. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  17. Opportunity to reduce the exhaust gases with engine adjust

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2002-01-01

    According to statistics in the Republic of Macedonia, the number of old vehicles is about 90%. These are vehicles produced between 1975 and 1990 with classical systems for forming and burning the fuel mixture. The most of them do not have system for processing exhaust gases (catalytic converter) and are serious air pollutants of carbon monoxide (CO). In this article we try to make an attempt to reduce exhaust gases in some kinds of these vehicles with adjusting to the system for burning fuel mixture and with adjusting to the system for forming fuel mixture (carburetor). At the same time the changes on the rotate bending moment and engine power are followed. It is noticed that with a proper adjustment the emission of exhaust gases can be reduced without a serious depreciation of the rotate bending moment and the engine power. (Author)

  18. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    Science.gov (United States)

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  19. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  20. In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice

    Directory of Open Access Journals (Sweden)

    Odagiri Takashi

    2010-03-01

    Full Text Available Abstract Background Epidemiological studies have suggested that suspended particulate matter (SPM causes detrimental health effects such as respiratory and cardiovascular diseases, and that diesel exhaust particles from automobiles is a major contributor to SPM. It has been reported that neonatal and adult exposure to diesel exhaust damages the central nervous system (CNS and induces behavioral alteration. Recently, we have focused on the effects of prenatal exposure to diesel exhaust on the CNS. In this study, we examined the effects of prenatal exposure to low concentration of diesel exhaust on behaviour and the monoaminergic neuron system. Spontaneous locomotor activity (SLA and monoamine levels in the CNS were assessed. Methods Mice were exposed prenatally to a low concentration of diesel exhaust (171 μg DEP/m3 for 8 hours/day on gestational days 2-16. SLA was assessed for 3 days in 4-week-old mice by analysis of the release of temperature-associated infrared rays. At 5 weeks of age, the mice were sacrificed and the brains were used for analysis by high-performance liquid chromatography (HPLC. Results and Discussion Mice exposed to a low concentration of diesel exhaust showed decreased SLA in the first 60 minutes of exposure. Over the entire test period, the mice exposed prenatally to diesel exhaust showed decreased daily SLA compared to that in control mice, and the SLA in each 3 hour period was decreased when the lights were turned on. Neurotransmitter levels, including dopamine and noradrenaline, were increased in the prefrontal cortex (PFC in the exposure group compared to the control group. The metabolites of dopamine and noradrenaline also increased in the PFC. Neurotransmitter turnover, an index of neuronal activity, of dopamine and noradrenaline was decreased in various regions of the CNS, including the striatum, in the exposure group. The serum corticosterone level was not different between groups. The data suggest that decreased

  1. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  2. Evaluation of an exhaust gas evacuation system during propane-fueled lift truck maintenance

    International Nuclear Information System (INIS)

    Roberge, B.; Beaudet, Y.; Lazure, L.; Menard, L.; Turcotte, A.

    2006-01-01

    Exposure to carbon monoxide (CO) gas in the workplace can cause health problem. CO gas is colourless and odourless, and exposure to it can cause intoxication, particularly for mechanics working on internal combustion engines fed by propane-fueled lift trucks. Regular procedures for evacuating the gases emitted during routine mechanical repairs involve the use of rigid evacuating pipes attached to the building and hooked to a flexible pipe at the end of the exhaust pipe. With lift trucks, this procedure is limited because of the configuration of these vehicles, and also because this type of work is often done in places without access to permanent mechanical ventilation. The object of this study was to propose a new evacuation method for CO gas fumes that would lower the exposures of fumes for mechanics and for workstations. It identified the criteria that should be considered, such as the configuration of the existing exhaust system of lift trucks, and feasibility of using this system at a variety of on-site locations. The design of the device was described and evaluated. 7 refs., 6 tabs., 8 figs., 3 appendices

  3. Design and analysis on fume exhaust system of blackbody cavity sensor for continuously measuring molten steel temperature

    Directory of Open Access Journals (Sweden)

    Guohui Mei

    2017-03-01

    Full Text Available Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.

  4. Chemical and biological characterization of exhaust emissions from ethanol and ethanol blended diesel fuels in comparison with neat diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R.; Christensen, Anders [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Toernqvist, M. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Ehrenberg, L. [Stockholm Univ. (Sweden). Dept. of Radiobiology; Haupt, D. [Luleaa Univ. of Technology (Sweden)

    1997-12-01

    This report presents results from a project with the aim of investigating the potential environmental and health impact of emissions from ethanol, ethanol blended diesel fuels and to compare these with neat diesel fuels. The exhaust emissions were characterized regarding regulated exhaust components, particulate and semivolatile Polycyclic Aromatic Compounds (PAC) and with bioassays. The bioassays were mutagenicity and TCDD receptor affinity tests. Results: Neat ethanol fuels are `low emission` fuels, while European diesel fuel quality (EDF) and an ethanol blended EDF are `high emission` fuels. Other fuels, such as Swedish Environmental Class one (MK1) and an ethanol blended MK1, are `intermediate` fuels regarding emissions. When using an oxidizing catalyst exhaust after-treatment device a reduction of harmful substances in the exhaust emissions with respect to determined exhaust parameters was found. The relatively low emission of PAH from ethanol fuelled engines would indicate a lower cancer risk from ethanol than from diesel fuels due to this class of compounds. However, the data presented emphasize the importance of considering the PAH profile 27 refs, 3 figs, 19 tabs

  5. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  6. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  7. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  8. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available A novel plasma-driven catalysis (PDC reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2 film prepared by radiofrequency (RF magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  9. Conflict and emotional exhaustion in obstetrician-gynaecologists: a national survey.

    Science.gov (United States)

    Yoon, John D; Rasinski, Kenneth A; Curlin, Farr A

    2010-12-01

    Conflicts over treatment decisions have been linked to physicians' emotional states. To measure the prevalence of emotional exhaustion and conflicts over treatment decisions among US obstetrician/gynaecologists (ob/gyns), and to examine the relationship between the two and the physician characteristics that predict each. Mailed survey of a stratified random sample of 1800 US ob/gyn physicians. Criterion variables were levels of emotional exhaustion and frequency of conflict with colleagues and patients. Predictors included physicians' religious characteristics and self-perceived empathy. Response rate among eligible physicians was 66% (1154/1760). 36% of ob/gyns reported high levels of emotional exhaustion, and majorities reported conflict with colleagues (59%) and patients (61%). Those reporting conflict were much more likely to report emotional exhaustion (58% vs 29% who never conflict, OR, 95% CI 2.8, 1.6 to 4.8 for conflict with colleagues; 55% versus 26%, OR, 95% CI 2.2, 1.4 to 3.5 for conflict with patients). Physicians with lower self-perceived empathy were more likely to report physician-patient conflicts (65% vs 58% with higher empathy, OR, 95% CI 1.4, 1.0 to 1.9), as were female ob/gyns (66% vs 57% of males, OR, 95% CI 1.5, 1.1 to 2.0). Foreign-born physicians were less likely to report such conflicts (47% vs 64% of US born, OR, 95% CI 0.5, 0.4 to 0.8). Physicians' religious characteristics were not significantly associated with reporting conflict. Conflicts over treatment decisions are associated with physicians' empathy, gender, immigration history and level of emotional exhaustion. With respect to the latter, conflict in the clinical encounter may represent an overlooked source or sign of burnout among ob/gyns.

  10. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  11. Temperature monitoring of vehicle engine exhaust gases under vibration condition using optical fibre temperature sensor systems

    International Nuclear Information System (INIS)

    Zhao, W Z; Suna, T; Grattana, K T V; Shen, Y H; Wei, C L; Al-Shamma'a, A I

    2006-01-01

    Two optical approaches, comprising and contracting both the fluorescence decay lifetime and the fibre Bragg grating (FBG) methods, were developed and evaluated for temperature monitoring of exhaust gases for use on a vehicle engine. The FBGs used in the system were written into specially designed Bi-Ge co-doped photosensitive fibres, to enable them to sustain high temperatures to over 800 0 C, which is far beyond that of FBGs written into most commercial photosensitive fibres. The sensors were subjected to a range of vibration tests, as a part of an optical exhaust monitoring network under development, and results from the test carried out are reported

  12. Implementation of an experimental pilot reproducing the fouling of the exhaust gas recirculation system in diesel engines

    Directory of Open Access Journals (Sweden)

    Crepeau Gérald

    2012-04-01

    Full Text Available The European emission standards EURO 5 and EURO 6 define more stringent acceptable limits for exhaust emissions of new vehicles. The Exhaust Gas Recirculation (EGR system is a partial but essential solution for lowering the emission of nitrogen oxides and soot particulates. Yet, due to a more intensive use than in the past, the fouling of the EGR system is increased. Ensuring the reliability of the EGR system becomes a main challenge. In partnership with PSA Peugeot Citroën, we designed an experimental setup that mimics an operating EGR system. Its distinctive features are (1 its ability to reproduce precisely the operating conditions and (2 its ability to measure the temperature field on the heat exchanger surface with an Infra Red camera for detecting in real time the evolution of the fooling deposit based on its thermal resistance. Numerical codes are used in conjunction with this experimental setup to determine the evolution of the fouling thickness from its thermal resistance.

  13. Combined particle emission reduction and heat recovery from combustion exhaust-A novel approach for small wood-fired appliances

    International Nuclear Information System (INIS)

    Messerer, A.; Schmatloch, V.; Poeschl, U.; Niessner, R.

    2007-01-01

    Replacing fossil fuels by renewable sources of energy is one approach to address the problem of global warming due to anthropogenic emissions of greenhouse gases. Wood combustion can help to replace fuel oil or gas. It is advisable, however, to use modern technology for combustion and exhaust gas after-treatment in order to achieve best efficiency and avoid air quality problems due to high emission levels often related to small scale wood combustion. In this study, simultaneous combustion particle deposition and heat recovery from the exhaust of two commercially available wood-fired appliances has been investigated. The experiments were performed with a miniature pipe bundle heat exchanger operating in the exhaust gas lines of a fully automated pellet burner or a closed fireplace. The system has been characterised for a wide range of aerosol inlet temperatures (135-295 deg. C) and flow velocities (0.13-1.0ms -1 ), and particle deposition efficiencies up to 95% have been achieved. Deposition was dominated by thermophoresis and diffusion and increased with the average temperature difference and retention time in the heat exchanger. The aerosols from the two different appliances exhibited different deposition characteristics, which can be attributed to enhanced deposition of the nucleation mode particles generated in the closed fire place. The measured deposition efficiencies can be described by simple linear parameterisations derived from laboratory studies. The results of this study demonstrate the feasibility of thermophoretic particle removal from biomass burning flue gas and support the development of modified heat exchanger systems with enhanced capability for simultaneous heat recovery and particle deposition

  14. Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-pipe Shrouds

    Science.gov (United States)

    Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.

    1947-01-01

    Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.

  15. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef

    2013-01-01

    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  16. A simple risk scoring system for prediction of relapse after inpatient alcohol treatment.

    Science.gov (United States)

    Pedersen, Mads Uffe; Hesse, Morten

    2009-01-01

    Predicting relapse after alcoholism treatment can be useful in targeting patients for aftercare services. However, a valid and practical instrument for predicting relapse risk does not exist. Based on a prospective study of alcoholism treatment, we developed the Risk of Alcoholic Relapse Scale (RARS) using items taken from the Addiction Severity Index and some basic demographic information. The RARS was cross-validated using two non-overlapping samples, and tested for its ability to predict relapse across different models of treatment. The RARS predicted relapse to drinking within 6 months after alcoholism treatment in both the original and the validation sample, and in a second validation sample it predicted admission to new treatment 3 years after treatment. The RARS can identify patients at high risk of relapse who need extra aftercare and support after treatment.

  17. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  18. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  19. Measuring Airflow in Local Exhaust Ventilation Systems. Module 23. Vocational Education Training in Environmental Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on measuring airflow in local exhaust ventilation systems. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each…

  20. Analysis of vibration of exhaust valve pipeline in nuclear power plant

    International Nuclear Information System (INIS)

    Tan Ping

    2005-01-01

    Pipeline system for conveying pressurized steam often operates under time-varying conditions due to the valve operations. This may cause vibration problems as a result the pipeline system suffered vibration damage. In this paper, a finite element formulation for the exhaust dynamic equations that include the effect of all pipe supports, and hangers is introduced and applied to the dynamic analysis of the pipeline system used in a nuclear power plant. the vibration response of steam-conveying pipeline induced by valve exhaust has been studied. The model is validated with a fieldwork experimental pipeline system. the mechanical vibrations from steam exhaust valves can be eliminated by careful design of the valve plug and seat. (authors)

  1. Acceptance test report for portable exhauster POR-008/Skid F

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Portable Exhauster POR-008 was procured via HNF-0490, Specification for a Portable Exhausted System for Waste Tank Ventilation. Prior to taking ownership, acceptance testing was performed at the vendors. However at the conclusion of testing a number of issues remained that required resolution before the exhausters could be used by Project W-320. The purpose of acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-O49O, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuum exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document

  2. Monitoring of diesel engine combustions based on the acoustic source characterisation of the exhaust system

    Science.gov (United States)

    Jiang, J.; Gu, F.; Gennish, R.; Moore, D. J.; Harris, G.; Ball, A. D.

    2008-08-01

    Acoustic methods are among the most useful techniques for monitoring the condition of machines. However, the influence of background noise is a major issue in implementing this method. This paper introduces an effective monitoring approach to diesel engine combustion based on acoustic one-port source theory and exhaust acoustic measurements. It has been found that the strength, in terms of pressure, of the engine acoustic source is able to provide a more accurate representation of the engine combustion because it is obtained by minimising the reflection effects in the exhaust system. A multi-load acoustic method was then developed to determine the pressure signal when a four-cylinder diesel engine was tested with faults in the fuel injector and exhaust valve. From the experimental results, it is shown that a two-load acoustic method is sufficient to permit the detection and diagnosis of abnormalities in the pressure signal, caused by the faults. This then provides a novel and yet reliable method to achieve condition monitoring of diesel engines even if they operate in high noise environments such as standby power stations and vessel chambers.

  3. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  4. Oxidative Stress, Inflammatory and Immune Response after Inhalation Exposure to Biodiesel Exhaust

    Science.gov (United States)

    Biodiesel (BD) is an advanced fuel produced from renewable domestic sources. The broad uses of BD in different industries including mining may lead to potential health effects. We hypothesized that the toxicity of biodiesel exhaust (BDE) is dependent at least on three major mecha...

  5. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    Science.gov (United States)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  6. Engineering task plan for five portable exhausters

    International Nuclear Information System (INIS)

    Rensink, G.E.

    1997-01-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures

  7. Marine diesel engines exhaust noise. Pt. VII: Calculation of the acoustical performance of diesel engine exhaust systems / Uitlaatgeluid van scheepsdieselmotoren. Dl. VII: Berekening van de akoestische eigenschappen van uitlaatsystemen van dieselmotoren

    NARCIS (Netherlands)

    Buiten, J.; Gerretsen, E.; Vellekoop, J.C.

    1974-01-01

    A method is given lor the calculation of the transfer damping of diesel engine exhaust systems. Also the complete computer program in FORTRAN IV, based on this calculation method is given. The method includes such system elements as chamber resonators, 1,5-pipes, absorbing siìencers and shunts to

  8. Effect on the musculosceletal system in women with dominant urinary stress incontinence after TVT or TVT-O

    OpenAIRE

    Klemp, Evelyn

    2010-01-01

    Introduction: According to current studies approximately 10-41% of the female population worldwide suffers from stress incontinence (SUI). After exhausting all conservative measures for treatment and clear indication the retropubic trans vaginal tape = TVT or the trans obturator tape = TVTO are the preferred operative interventions. Current publications frequently compare the two surgical options and also describe the occurrence of postoperative pain in the adductor muscles. None of the...

  9. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  10. Acute stress induces hyperacusis in women with high levels of emotional exhaustion.

    Directory of Open Access Journals (Sweden)

    Dan Hasson

    Full Text Available BACKGROUND: Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis in individuals with high levels of emotional exhaustion (EE. METHODS: Hyperacusis was assessed using uncomfortable loudness levels (ULL in 348 individuals (140 men; 208 women; age 23-71 years. Multivariate analyses (ordered logistic regression, were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA. Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording. RESULTS: There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA. However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5-6.5 dB. Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns and 2.2 (4 kHz, right ear; left ns times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. CONCLUSION: Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems.

  11. Acute stress induces hyperacusis in women with high levels of emotional exhaustion.

    Science.gov (United States)

    Hasson, Dan; Theorell, Töres; Bergquist, Jonas; Canlon, Barbara

    2013-01-01

    Hearing problems is one of the top ten public health disorders in the general population and there is a well-established relationship between stress and hearing problems. The aim of the present study was to explore if an acute stress will increase auditory sensitivity (hyperacusis) in individuals with high levels of emotional exhaustion (EE). Hyperacusis was assessed using uncomfortable loudness levels (ULL) in 348 individuals (140 men; 208 women; age 23-71 years). Multivariate analyses (ordered logistic regression), were used to calculate odds ratios, including interacting or confounding effects of age, gender, ear wax and hearing loss (PTA). Two-way ANCOVAs were used to assess possible differences in mean ULLs between EE groups pre- and post-acute stress task (a combination of cold pressor, emotional Stroop and Social stress/video recording). There were no baseline differences in mean ULLs between the three EE groups (one-way ANOVA). However, after the acute stress exposure there were significant differences in ULL means between the EE-groups in women. Post-hoc analyses showed that the differences in mean ULLs were between those with high vs. low EE (range 5.5-6.5 dB). Similar results were found for frequencies 0.5 and 1 kHz. The results demonstrate that women with high EE-levels display hyperacusis after an acute stress task. The odds of having hyperacusis were 2.5 (2 kHz, right ear; left ns) and 2.2 (4 kHz, right ear; left ns) times higher among those with high EE compared to those with low levels. All these results are adjusted for age, hearing loss and ear wax. Women with high levels of emotional exhaustion become more sensitive to sound after an acute stress task. This novel finding highlights the importance of including emotional exhaustion in the diagnosis and treatment of hearing problems.

  12. Operation technology of the ventilation system of the radioactive waste treatment facility(II) - Design and operation note

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Lee, B. C.; Bae, S. M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    As the radioactive waste treatment work, such as compaction and/or solidification of wastes, are done directly by the workers in the Radioactive Waste Treatment Facility, the reasonable design and operation of the ventilation system is essential. In this report, the design criteria and specification of the ventilation equipment, system operation method are described for the effective design and operation of ventilation system in the radioactive waste treatment facility. And the anti-vibration work which was done in the Radioactive Waste Treatment Facility in KAERI to reduce the effect of vibration due to the continuous operation of big rotational equipment, the intake fans and the exhaust fans, are described in the report. 11 refs., 10 figs., 12 tabs. (Author)

  13. The Identification of Incentive Effects of Benefit Exhaustion in Unemployment Insurance Systems

    DEFF Research Database (Denmark)

    Pico Geerdsen, Lars

    The paper examines the different assumptions which have been applied in the literature in order to identify the motivation effect of benefits exhaustion. The different assumptions are tested on a common data set.......The paper examines the different assumptions which have been applied in the literature in order to identify the motivation effect of benefits exhaustion. The different assumptions are tested on a common data set....

  14. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due

    2015-01-01

    This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...

  15. Development of electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Namba, Hideki; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitake; Aoki, Shinji; Izutsu, Masahiro.

    1995-01-01

    Smoke treatment system making use of electron beam irradiation made it possible to simultaneously eliminate SOx and NOn from exhaust gas. The fundamental study of the system was started in the seventies and at present, its application in practical use is under way. A pilot plant for the smoke treatment system was constructed in cooperation of Chubu Electric Power Company, Inc., Japan Atomic Energy Research Institute and Ebara Corporation and several tests with the actual exhaust gas were conducted during the period, Oct. 1992-Dec. 1993 and the treatment efficiency and the control capacity of this system was confirmed to be so high as the conventional systems and many engineering data were obtained. A high treatment efficiency (>94% for desulfurization and >80% for denitrification) was obtainable by choosing the optimum irradiation amount of electron beam and the optimum temperature of gas to treat. And this system was found superior from a financial aspect to the conventional smoke treatment system. (M.N.)

  16. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    Science.gov (United States)

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  17. Successful treatment with cladribine of Erdheim-Chester disease with orbital and central nervous system involvement developing after treatment of langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Perić Predrag

    2016-01-01

    Full Text Available Introduction. Erdheim-Chester disease (ECD is a rare, systemic form of non-Langerhans cell histiocytosis of the juvenile xantho-granuloma family with characteristic bilateral symmetrical long bone osteosclerosis, associated with xanthogranulomatous extras-keletal organ involvement. In ECD, central nervous system (CNS and orbital lesions are frequent, and more than half of ECD patients carry the V600E mutation of the proto-oncogene BRAF. The synchronous or metachronous development of ECD and Langerhans cell histiocytosis (LCH in the same patients is rare, and the possible connection between them is still obscure. Cladribine is a purine substrate analogue that is toxic to lymphocytes and monocytes with good hematoencephalic penetration. Case report. We presented a 23-year-old man successfully treated with cladribine due to BRAF V600E-mutation-negative ECD with bilateral orbital and CNS involvement. ECD developed metachronously, 6 years after chemotherapy for multisystem LCH with complete disease remission and remaining central diabetes insipidus. During ECD treatment, the patient received 5 single-agent chemotherapy courses of cladribine (5 mg/m2 for 5 consecutive days every 4 weeks, with a reduction in dose to 4 mg/m2 in a fifth course, delayed due to severe neutropenia and thoracic dermatomal herpes zoster infection following the fourth course. Radiologic signs of systemic and CNS disease started to resolve 3 months after the end of chemotherapy, and CNS lesions completely resolved within 2 years after the treatment. After 12-year follow-up, there was no recurrence or appearance of new systemic or CNS xanthogranu-lomatous lesions or second malignancies. Conclusion. In accordance with our findings and recommendations provided by other authors, cladribine can be considered an effective alternative treatment for ECD, especially with CNS involvement and BRAF V600E-mutation-negative status, when interferon-α as the first-line therapy fails.

  18. Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations

    Directory of Open Access Journals (Sweden)

    Ricardo Chacartegui

    2013-12-01

    Full Text Available Wastewater treatment stations take advantage of the biogas produced from sludge in anaerobic digesters to generate electricity (reciprocating gas engines and heat (cooling water and engine exhaust gases. A fraction of this electricity is used to operate the plant while the remaining is sold to the grid. Heat is almost entirely used to support the endothermic anaerobic digestion and a minimum fraction of it is rejected to the environment at a set of fan coolers. This generic description is applicable to on-design conditions. Nevertheless, the operating conditions of the plant present a large seasonal variation so it is commonly found that the fraction of heat rejected to the atmosphere increases significantly at certain times of the year. Moreover, the heat available in the exhaust gases of the reciprocating engine is at a very high temperature (around 650 oC, which is far from the temperature at which heat is needed for the digestion of sludge (around 40 oC in the digesters. This temperature difference offers an opportunity to introduce an intermediate system between the engines and the digesters that makes use of a fraction of the available heat to convert it into electricity. An Organic Rankine Cycle (ORC with an appropriate working fluid is an adequate candidate for these hot/cold temperature sources. In this paper, the techno-economic effect of adding an Organic Rankine Cycle as the intermediate system of an existing wastewater treatment station is analysed. On this purpose, different working fluids and system layouts have been studied for a reference wastewater treatment station giving rise to optimal systems configurations. The proposed systems yield very promising results with regard to global efficiency and electricity production (thermodynamically and economically.

  19. Analysis of motorcycle exhaust regular testing data--a case study of Taipei City.

    Science.gov (United States)

    Chen, Yi-Chi; Chen, Lu-Yen; Jeng, Fu-Tien

    2009-06-01

    In Taiwan, a continuous increase in the number of motorcycles has made exhaust pollution one of the major emission sources of air pollutants. The regular testing program carried out by the Republic of China Environmental Protection Agency was designed to reduce air pollutant emissions by enhancing maintenance and repair. During the execution period, abundant testing results were accumulated to discuss pollutant emissions from motorcycles. Exhaust testing data of motorcycles in Taipei City from 1996 to 2005 were chosen as the basic data to survey changes in motorcycle exhaust. Effects of motorcycle age and mileage on exhaust pollution were studied. The introduction of advanced emission standards enhances the elimination of high-emitting motorcycles. The testing data indicate that the testing rate rose from approximately 50 to 70% and the failure rate changed from approximately 15 to 10%. The operation cycles of two-stroke motorcycles make them high-emitting vehicles. Concentrations of carbon monoxide and hydrocarbons are higher in two-stroke motorcycle exhaust than that in four-stroke motorcycles. In contrast, the concentration of carbon dioxide produced from complete oxidation processes is lower in exhaust from two-stroke motorcycles. Therefore, failure rates of two-stroke motorcycles are higher than those of four-stroke motorcycles and were also observed to deactivate more easily. On the basis of analytical results of testing data, we found that failure rates show a gradually increasing trend for motorcycles older than 3 yr or used for mileages greater than 10,000 km, and failure rates are highly correlated to the age/mileage of motorcycles. We reason that the accumulation of age or mileage means accumulating usage time of engines and emission control systems. Concentrations of pollutant emissions would increase because of engine wear and emission control system deactivation. After discussing changes of failure rates and pollutant emissions, some suggestions are

  20. Influence of Rack Design and Disease Prevalence on Detection of Rodent Pathogens in Exhaust Debris Samples from Individually Ventilated Caging Systems.

    Science.gov (United States)

    Bauer, Beth A; Besch-Williford, Cynthia; Livingston, Robert S; Crim, Marcus J; Riley, Lela K; Myles, Matthew H

    2016-11-01

    Sampling of bedding debris within the exhaust systems of ventilated racks may be a mechanism for detecting murine pathogens in colony animals. This study examined the effectiveness of detecting pathogens by PCR analysis of exhaust debris samples collected from ventilated racks of 2 different rack designs, one with unfiltered air flow from within the cage to the air-exhaust pathway, and the other had a filter between the cage and the air-exhaust pathway. For 12 wk, racks were populated with either 1 or 5 cages of mice (3 mice per cage) infected with one of the following pathogens: mouse norovirus (MNV), mouse parvovirus (MPV), mouse hepatitis virus (MHV), Helicobacter spp., Pasteurella pneumotropica, pinworms, Entamoeba muris, Tritrichomonas muris, and fur mites. Pathogen shedding by infected mice was monitored throughout the study. In the filter-containing rack, PCR testing of exhaust plenums yielded negative results for all pathogens at all time points of the study. In the rack with open air flow, pathogens detected by PCR analysis of exhaust debris included MHV, Helicobacter spp., P. pneumotropica, pinworms, enteric protozoa, and fur mites; these pathogens were detected in racks housing either 1 or 5 cages of infected mice. Neither MPV nor MNV was detected in exhaust debris, even though prolonged viral shedding was confirmed. These results demonstrate that testing rack exhaust debris from racks with unfiltered air flow detected MHV, enteric bacteria and parasites, and fur mites. However, this method failed to reliably detect MNV or MPV infection of colony animals.

  1. Changes in autonomic nervous system activity after treatment with alpha-blocker in men with lower urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Kang Hee Shim

    2018-01-01

    Full Text Available Purpose: To determine changes in autonomic nervous system activity after treatment in men with lower urinary tract symptoms (LUTS, we evaluated changes in patients' symptoms, uroflowmetry, and heart rate variability (HRV after treatment with alpha-blockers for 12 weeks. Materials and Methods: Ninety-five men who had LUTS (International Prostate Symptom Score [IPSS] ≥8 were included in this study. We divided them into two groups on the basis of a low frequency/high frequency (LF/HF ratio of 1.6. After treatment with Xatral XL (Handok Inc., Korea 10 mg for 3 months, we rechecked their IPSS, uroflowmetry, HRV and compared these with the baseline measurements. Results: Fifty-four men were assigned to the low LF/HF group (group A: LF/HF ≤1.6 and 41 men to the high LF/HF group (group B: LF/HF >1.6. At baseline and 12 weeks, none of the parameters differed significantly between the groups except for HF, which is one of the parameters of HRV. IPSS, the IPSS-voiding subscore, and the IPSS-storage subscore decreased and maximal uroflow increased significantly after 12 weeks of treatment. Whereas the baseline LF/HF ratio increased from 0.89±0.407 to 1.80±1.804 after treatment in group A, it decreased from 3.93±5.471 to 1.79±1.153 in group B. Conclusions: The efficacies of Xatral XL were clear in both groups. We found that the LF/HF ratio in the two groups merged to a value of approximately 1.79 after treatment. We suggest that this could be a clue to the importance of balance in autonomic nervous system activity in men with LUTS.

  2. Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment

    Directory of Open Access Journals (Sweden)

    Xiong Yang

    2018-04-01

    Full Text Available Recovery and treatment of methane from coal mine ventilation air methane (VAM with cost-effective technologies have been an ongoing challenge due to low methane concentrations. In this study, a type of coconut shell-based active carbon was employed to enrich VAM with a three-bed vacuum pressure swing adsorption unit. A new vacuum exhaust step for the VPSA process was introduced. The results show that the vacuum exhaust step can increase the methane concentration of the product without changing adsorption and desorption pressure. Under laboratory conditions, the concentration of product increased from 0.4% to 0.69% as the vacuum exhaust ratio increased from 0 to 3.1 when the feed gas concentration was 0.2%. A 500 m³/h pilot-scale test system for VAM enrichment was built rendering good correlation with the laboratory results in terms of the vacuum exhaust step. By using a two-stage three-bed separation unit, the VAM was enriched from 0.2% to over 1.2%.

  3. A Numerical and Experimental Study of Local Exhaust Capture Efficiency

    DEFF Research Database (Denmark)

    Madsen, U.; Breum, N. O.; Nielsen, Peter Vilhelm

    1993-01-01

    Direct capture efficiency of a local exhaust system is defined by introducing an imaginary control box surrounding the contaminant source and the exhaust opening. The imaginary box makes it possible to distinguish between contaminants directly captured and those that escape. Two methods for estim...... location is less important for the case studied. The choice of sampling strategy to obtain a representative background concentration is essential as substantial differences on direct capture efficiency are found. Recommendations are given......Direct capture efficiency of a local exhaust system is defined by introducing an imaginary control box surrounding the contaminant source and the exhaust opening. The imaginary box makes it possible to distinguish between contaminants directly captured and those that escape. Two methods...... for estimation of direct capture efficiency are given: (1) a numerical method based on the time-averaged Navier-Stokes equations for turbulent flows; and (2) a field method based on a representative background concentration. Direct capture efficiency is sensitive to the size of the control box, whereas its...

  4. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  5. Grout disposal facility vault exhauster: Technical background document on demonstration of best available control technology for toxics

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Glantz, C.S.; Rittman, P.D.

    1994-09-01

    The Grout Disposal Facility (GDF) is currently operated on the US Department of Energy's Hanford Site. The GDF is located near the east end of the Hanford Site's 200 East operations area, and is used for the treatment and disposal of low-level radioactive liquid wastes. In the grout treatment process, selected radioactive wastes from double-shell tanks are mixed with grout-forming solids; the resulting grout slurry is pumped to near-surface concrete vaults for solidification and permanent disposal. As part of this treatment process, small amounts of toxic particles and volatile organic compounds (VOCs) may be released to the atmosphere through the GDF's exhaust system. This analysis constitutes a Best Available Control Technology for Toxics (T-BACT) study, as required in the Washington Administrative Code (WAC 173-460) to support a Notice of Construction for the operation of the GDF exhaust system at a modified flow rate that exceeds the previously permitted value. This report accomplishes the following: assesses the potential emissions from the GDF; estimates air quality impacts to the public from toxic air pollutants; identifies control technologies that could reduce GDF emissions; evaluates impacts of the control technologies; and recommends appropriate emissions controls

  6. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling

    Science.gov (United States)

    2015-08-01

    backpressure can decrease engine power by ~1% per inch Hg.27 A specific exhaust heat exchanger design would need to take this effect into account...Materials. 2009;39:2142–2148. 4. Sprouse III C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery...Adams TG. Effect of exhaust system design on engine performance. 1980. SAE Technical Paper No. 800319. 16 1 DEFENSE TECHNICAL

  7. ATP for the portable 500 CFM exhauster POR-004 skid B

    International Nuclear Information System (INIS)

    Keller, C.M.

    1997-01-01

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-004 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results

  8. ATP for the portable 500 CFM exhauster POR-006 skid D

    International Nuclear Information System (INIS)

    Keller, C.M.

    1997-01-01

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-006 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results

  9. ATP for the portable 500 CFM exhauster POR-005 skid C

    International Nuclear Information System (INIS)

    Keller, C.M.

    1997-01-01

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-005 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results

  10. Decreasing the exhaust outlet temperatures on a class III bus with the lowest impact on the exhaust backpressure and the fuel consumption

    Science.gov (United States)

    Aslan, E.; Ozturk, Y.; Dileroglu, S.

    2017-07-01

    The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.

  11. Development of Exhaust Leak Detector Device for Automotive Service Industry: A Prototype Design

    OpenAIRE

    Eida Nadirah Roslin; Siti Khadijah Ismail; Mohd Zaki Bahrom; Mansor Aluidin

    2016-01-01

    The exhaust system plays a vital role in removing the gaseous emissions that is being produced within the combustion chamber during fuel-air mixture activities. The exhaust system is defined as a series of chambers and pipes that starts at the engine and ends at the back of the car with the tail pipe. However if there are any leaks in the exhaust system, it provide a direct path for the emission gaseous including carbon monoxide to enter can be very dangerous as it provides a direct path for ...

  12. Coupled simulation of a system for the utilization of exhaust heat and cooling of the interior of commercial vehicles; Gekoppelte Simulation eines Abgaswaermenutzungs- und Fahrzeugkuehlsystems im Nutzfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Ambros, Peter; Fezer, Axel; Kapitel, Julian [TheSys GmbH, Kirchentellinsfurt (Germany)

    2012-11-01

    Based on a simulation software called GT-Suite by Gamma Technology, a one-dimensional model of a waste-heat recovery system with utility vehicle boundary conditions was developed. Using this model, it is possible to simulate stationary operating points of this type WHR. A Clausius-Rankine cycle is used in the power-heat cogeneration. The Clausius-Rankine cycle is linked to the exhaust system by two boilers. The first boiler is installed in the main exhaust steam, the second boiler is implemented in the exhaust gas recirculation. Besides the waste-heat recovery system, the integrated cooling system of the vehicle is also modeled. (orig.)

  13. Parametric study on ship’s exhaust-gas behavior using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Sunho Park

    2017-01-01

    Full Text Available The influence of design parameters related to a ship’s exhaust-gas behavior was investigated using computational fluid dynamics (CFD for an 8,000 TEU container carrier. To verify the numerical methods, the results were studied by comparing with experimental results. Several test conditions, i.e. various load conditions of ship, wind angle, deckhouse breadth, radar mast height, and exhaust-pipe height and shape were considered for a ship’s exhaust gas flow around the 8,000 TEU container carrier. The influence of the design parameters on contamination by the exhaust gas was quantified, after which the principal parameters to avoid contamination were selected. Finally, the design guideline of yP/H = 2 was suggested to avoid the contamination from the ship’s exhaust gas using the CFD results, model tests, and sea trials.

  14. Analysis of exhaust composition after purification in dielectric barrier discharges - Sub-project: Diesel exhaust purification in pulsed plasmas. Final report; Analyse der Abgaszusammensetzung bei Abgasreinigung in stillen Entladungen - Teilvorhaben: Reinigung von Dieselabgasen in gepulsten Plasmen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    Diesel engine exhaust purification by dielectric barrier discharges was investigated with varied pulse generators and with a combination of dielectric barrier discharge and catalytic converters and diesel particulate filters. The detailed exhaused analysis served to describe the reactions in the systems and to detect the formation of new and potentially harmful exhaust components. [German] Die Anwendung einer dielektrisch behinderten Entladung zur Reinigung dieselmotorischen Abgases wurde untersucht. Die Wirkung der elektrischen Entladung auf das Abgas wurde durch Variation der verwendeten Pulsgeneratoren sowie durch Kombination der Entladung mit Katalysatoren und Diesel-Partikelfiltern beeinflusst. Die detaillierte Abgasanalyse ermoeglichte die Erklaerung der in den Systemen ablaufenden Reaktionen. Insbesondere diente sie dazu, die moegliche Bildung neuer, moeglicherweise unerwuenschter Abgaskomponenten zu erkennen. (orig.)

  15. Non-conventional plasma assisted catalysts for diesel exhaust treatment. A case study

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Srinivas Kumar, P.K.; Ravi, V.

    2002-01-01

    The author reports the application of pulse discharges along with catalysts in treating the exhaust gas at higher temperatures. In the present work, a plasma reactor, filled with catalysts, called as plasma catalytic reactor, is studied for removal of oxides of nitrogen, total hydrocarbons and carbon monoxide. The experiments are conducted on an actual diesel engine exhaust at no-load and at different temperatures starting from room temperature to 300 degree C. The removal efficiencies of these pollutants are studied. The experiments are carried out with both conventional and non-conventional catalysts. The idea is to explore the pollutant removal efficiency characteristics by non-conventional catalysts. The efficiency results are compared with that of conventional catalysts. The experiments are carried out at a constant pulse repetition rate of 120 pps. Both pellet and honeycomb type catalysts are used in the study

  16. Fate of SO(sub 2) During Plasma Treatment of Diesel Engine Exhaust

    International Nuclear Information System (INIS)

    Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E.

    1999-01-01

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO(sub 2) to achieve efficient reduction of NO(sub x) and particulates in diesel engine exhaust. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO(sub 2) is also active in converting SO(sub 2) to SO(sub 3). A non-thermal plasma can be used for the selective partial oxidation of NO to NO(sub 2) in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO(sub 2) without oxidizing SO(sub 2) to SO(sub 3). It is shown that the presence of hydrocarbons in the plasma is essential for enhancing the selective partial oxidation of NO and suppressing the oxidation of SO(sub 2)

  17. Effect of adjuvant systemic treatment on cosmetic outcome and late normal-tissue reactions after breast conservation

    International Nuclear Information System (INIS)

    Johansen, Joergen; Overgaard, Jens; Overgaard, Marie

    2007-01-01

    To investigate whether adjuvant treatment with CMF or tamoxifen predisposes to an unfavorable cosmetic outcome or increased breast morbidity after radiotherapy in breast conservation. Data from 266 patients who entered a randomized breast conservation trial (DBCG-82TM protocol) was analyzed. The patients were treated with lumpectomy and axillary dissection followed by external beam radiotherapy to the residual breast. High-risk patients (n 94), as well as 31 low-risk patients, received additional radiation to the regional lymph nodes. Adjuvant systemic treatment was given to all high-risk patients: premenopausal patients (n = 67) received eight cycles of CMF intravenously (600/40/600 mg/m 2 ) every fourth week; postmenopausal patients (n = 27) received 30 mg of tamoxifen daily for one year. Clinical assessments included cosmetic outcome, breast fibrosis, skin telangiectasia, and dyspigmentation which were scored on a 4-point categorical scale after median 6.6 years. The observations were analyzed in multivariate logistic regression analysis which included potential risk factors on outcome related to systemic treatment, surgery, radiation technique, tumor, and patient characteristics. In premenopausal patients, systemic treatment with CMF independently predicted a fair/poor cosmetic outcome, RR = 2.2 (95% CI 1.2-4.2), as well as increased skin telangiectasia, RR = 3.3 (1.4-8.2). There was no impact of tamoxifen treatment on cosmetic outcome in postmenopausal patients (p 0.32). However, univariate analysis showed that tamoxifen was significantly associated with breast fibrosis (p <0.004), as was radiation to the regional lymph nodes (p <0.0001). A strong interaction between axillary irradiation and tamoxifen treatment occurred since 26 of 27 high-risk postmenopausal patients had received both tamoxifen and axillary irradiation. In multivariate regression analysis, axillary irradiation independently predicted moderate/severe breast fibrosis with a relative risk of 5

  18. Fiscal 2000 achievement report. Development of technologies for waste treatment and recycling (Development of technologies for appropriate treatment of air bags); 2000 nendo haikibutsu recycle kanren gijutsu kaihatsu seika hokokusho. Air bag tekisei shori gijutsu no kaihatsu nado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A centralized treatment process respecting environmental protection and safety for unused air bags aboard disused automobiles is developed. In concrete terms, a heating facility owned by Daicel Chemical Industries, Ltd., is used, which includes an apparatus for examining exhaust gas dioxins and an exhaust gas treatment apparatus and, with this facility, studies are made for appropriately treating waste gas and waste water to be generated when air bag modules undergo centralized heating. Endeavors in fiscal 2000 center about (1) the development of waste gas treatment technologies, (2) development of waste water treatment technologies, (3) chemical analysis of waste water sludge, dusts and air bag residues, and (4) the study of appropriate treatment of non-azide air bag modules. As to the development of exhaust gas treatment technology, it was proved that the exhaust gas treatment system consisting of secondary incineration furnace, exhaust gas cooling tower and bag filter worked effectively. (NEDO)

  19. Work plan for new SY tank farm exhauster, on-site fabrication activities

    International Nuclear Information System (INIS)

    McClees, J.

    1994-01-01

    The replacement SY tank farm exhauster unit is a new piece of equipment, designed to replace the existing SY tank farm K1 Ventilation System exhauster unit. This work plan describes the shop fabrication activities associated with the receiving, assembly, repair, modification, and testing of the new SY tank farm primary exhauster. A general list of these activities include, but are not limited to: repair all shipping damages, including procurement of replacement parts; fabricate hardware needed to install exhauster in the field (e.g., Vent duct tie-in, duct concrete footings/hangers, stack concrete footings, etc.); incorporate equipment modification as provided by WHC Engineering (e.g., Rewire the Alarm Annunciator Cabinet as fail-safe, connections between the exhauster and stack sample cabinet, etc.); test the entire exhauster unit, to the extent possible, prior to field installation; and prepare exhauster unit for transfer to and installation at SY tank farm

  20. Validation of Karolinska Exhaustion Scale: psychometric properties of a measure of exhaustion syndrome.

    Science.gov (United States)

    Saboonchi, Fredrik; Perski, Aleksander; Grossi, Giorgio

    2013-12-01

    The syndrome of exhaustion is currently a medical diagnosis in Sweden. The description of the syndrome largely corresponds to the suggested core component of burnout, that is exhaustion. Karolinska Exhaustion Scale (KES) has been constructed to provide specific assessment of exhaustion in clinical and research settings. The purpose of the present study was to examine the psychometric properties of this scale in its original and revised versions by examining the factorial structure and measures of convergent and discriminant validity. Data gathered from two independent samples (n1 = 358 & n2 = 403) consisting of patients diagnosed with 'reaction to severe stress, and adjustment disorder' were subjected to confirmatory factor analysis. The study's instruments were Karolinska Exhaustion Scale and Shirom Melam Burnout Measure. Correlation analyses were employed to follow up the established factorial structure of the scale. The study was ethically approved by Karolinska Institute regional ethic committee. The findings demonstrated adequate fit of the data to the measurement model provided by the revised version of KES Limitations: The main limitation of the present study is the lack of a gold standard of exhaustion for direct comparison with KES. (KES-26) and partially supported convergent validity and discriminant validity of the scale. The demonstrated psychometric properties of KES-26 indicate sound construct validity for this scale encouraging use of this scale in assessment of exhaustion. The factorial structure of KES-26 may also be used to provide information concerning possible different clinical profiles. © 2012 The Authors Scandinavian Journal of Caring Sciences © 2012 Nordic College of Caring Science.

  1. Optimization of valve opening process for the suppression of impulse exhaust noise

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun

    2017-02-01

    Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.

  2. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma

    International Nuclear Information System (INIS)

    Ye Dan; Gao Dengshan; Yu Gang; Shen Xianglin; Gu Fan

    2005-01-01

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 μm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions

  3. Work-home interface stress: an important predictor of emotional exhaustion 15 years into a medical career.

    Science.gov (United States)

    Hertzberg, Tuva Kolstad; Rø, Karin Isaksson; Vaglum, Per Jørgen Wiggen; Moum, Torbjørn; Røvik, Jan Ole; Gude, Tore; Ekeberg, Øivind; Tyssen, Reidar

    2016-01-01

    The importance of work-home interface stress can vary throughout a medical career and between genders. We studied changes in work-home interface stress over 5 yr, and their prediction of emotional exhaustion (main dimension of burn-out), controlled for other variables. A nationwide doctor cohort (NORDOC; n=293) completed questionnaires at 10 and 15 yr after graduation. Changes over the period were examined and predictors of emotional exhaustion analyzed using linear regression. Levels of work-home interface stress declined, whereas emotional exhaustion stayed on the same level. Lack of reduction in work-home interface stress was an independent predictor of emotional exhaustion in year 15 (β=-0.21, p=0.001). Additional independent predictors were reduction in support from colleagues (β=0.11, p=0.04) and emotional exhaustion at baseline (β=0.62, pwork-home interface stress among women, and reduction of collegial support and lack of reduction in working hours among men. Thus, change in work-home interface stress is a key independent predictor of emotional exhaustion among doctors 15 yr after graduation. Some gender differences in predictors of emotional exhaustion were found.

  4. Life After Breast Cancer Treatment

    Science.gov (United States)

    ... know what to expect after treatment ends. Emotional effects of treatment The last day of treatment It is normal to have different feelings, emotions and fears after treatment ends. Not everyone feels ...

  5. Biodiesel exhaust: the need for a systematic approach to health effects research.

    Science.gov (United States)

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure. © 2015 Asian Pacific Society of Respirology.

  6. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  7. Position paper - primary ventilation system configuration

    International Nuclear Information System (INIS)

    Dalpiaz, E.L.

    1994-06-01

    The purpose of this paper is to develop and document a position on the configuration of the primary ventilation system. This configuration will be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility. The primary ventilation system provides a single treatment train and exhaust fan for each waste storage tank. The ventilation systems from each of two tanks are grouped with an additional treatment train and exhaust fan that function as backup to either of the two systems

  8. Exploring the relationships between high involvement work system practices, work demands and emotional exhaustion : A multi-level study.

    NARCIS (Netherlands)

    Oppenauer, V.; van de Voorde, F.C.

    2018-01-01

    This study explores the impact of enacted high involvement work systems (HIWS) practices on employee emotional exhaustion. This study hypothesized that work overload and job responsibility mediate the relationship between HIWS practices (ability, motivation, opportunity and work design HIWS

  9. The state of glutathion system of blood, brain and liver of white rats after chronic gamma-irradiation

    International Nuclear Information System (INIS)

    Petushok, N.Eh.; Lashak, L.K.; Trebukhina, R.V.

    1999-01-01

    The effects of 3-fold gamma-irradiation in total dose 0,75 Gy on the glutathion system in different periods after exposure (1 hour, 1 day, 1 and 4 weeks) in blood, brain and liver of white rats were studied. It was concluded that liver and brain have higher ability to maintain the stability of antioxidant system than blood has. After shot disturbances caused by irradiation in brain and liver the state of glutathion system of detoxication has normalized, while concentration of malonic dialdehyde was raised in all terms. The most pronounced changes of antioxidant system were registered in blood at early terms (1 hour) after irradiation that was manifested in increasing of reduced glutathion content, raising of glutathion reductase and catalase activity. In remote period the activity of this system in blood was exhausted

  10. Effects of temperature on feed intake and plasma chemistry after exhaustive exercise in triploid brown trout (Salmo trutta L).

    Science.gov (United States)

    Preston, Andrew C; Taylor, John F; Fjelldal, Per Gunnar; Hansen, Tom; Migaud, Hervé

    2017-04-01

    The physiological effect of temperature on feed intake and haematological parameters after exhaustive swimming in diploid and triploid brown trout (Salmo trutta) was investigated. Trout were exposed to an incremental temperature challenge (2 °C/day) from ambient (6 °C) to either 10 or 19 °C. Feed intake profiles did not differ between ploidy at 10 °C; however, triploids had a significantly higher total feed intake at 19 °C. After 24 days, each temperature-ploidy group was exposed to exhaustive swimming for 10 min. The haematological response differed between ploidy, with the magnitude of the response affected by temperature and ploidy. Post-exercise, acid-base and ionic differences were observed. Plasma lactate increased significantly from rest for both temperature and ploidy groups, but glucose increased significantly at higher temperature. Post-exercise, triploids at 19 °C had significantly higher osmolality and cholesterol than diploids, but differences were resumed within 4 h. Elevated alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in fish at higher temperature suggested greater tissue damage; however, both ploidy responded similarly. Despite no significant differences in deformity prevalence, the type and location of deformities observed differed between ploidy (decreased intervertebral space with higher prevalence in tail area and fin regions for diploids, while vertebral compression, fusion in cranial and caudal trunks for triploids). These results suggest triploids have greater appetite than diploids at elevated temperature and that triploids suffer similar blood disturbances after exercise as diploids. These findings have implications for the management of freshwater ecosystems and suggest that stocking triploid brown trout may offer an alternative to diploid brown trout.

  11. Power generation efficiency of an SOFC-PEFC combined system with time shift utilization of SOFC exhaust heat

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Shin' ya [Power Engineering Lab., Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Kouen-cho, Kitami, Hokkaido 0908507 (Japan)

    2010-01-15

    A microgrid, with little environmental impact, is developed by introducing a combined SOFC (solid oxide fuel cell) and PEFC (proton exchange membrane fuel cell) system. Although the SOFC requires a higher operation temperature compared to the PEFC, the power generation efficiency of the SOFC is higher. However, if high temperature exhaust heat may be used effectively, a system with higher total power generation efficiency can be built. Therefore, this paper investigates the operation of a SOFC-PEFC combined system, with time shift operation of reformed gas, into a microgrid with 30 houses in Sapporo, Japan. The SOFC is designed to correspond to base load operation, and the exhaust heat of the SOFC is used for production of reformed gas. This reformed gas is used for the production of electricity for the PEFC, corresponding to fluctuation load of the next day. Accordingly, the reformed gas is used with a time shift operation. In this paper, the relation between operation method, power generation efficiency, and amount of heat storage of the SOFC-PEFC combined system to the difference in power load pattern was investigated. The average power generation efficiency of the system can be maintained at nearly 48% on a representative day in February (winter season) and August (summer season). (author)

  12. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  13. Effluent treatment for nuclear thermal propulsion ground testing

    Science.gov (United States)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  14. Specific emissions analysis for a combustion engine in dynamometer operation in relation to the thermal state of the exhaust gas aftertreatment systems in a modified NRSC test

    Directory of Open Access Journals (Sweden)

    Merkisz Jerzy

    2017-01-01

    Full Text Available Exhaust gas aftertreatment systems have been present in motor vehicles for decades and have contributed to reducing their impact on the environment and people. Most of them for oxidation or reduction of harmful emissions of particulates and fumes require a certain temperature to be reached that changes with the exhaust temperature, i.e. the points of engine operation. The article describes the effect of oxidation reactor and particulate filter temperatures on specific emissions of gaseous compounds and particulate matter during the modified NRSC engine test. Before the first measurement cycle, the engine was idling, before the second measurement cycle, the exhaust system was heated with exhaust gases at full engine load until passive regeneration of the particle filter occurred (noticeable decrease in instantaneous particle concentration.

  15. Viral-specific T-cell transfer from HSCT donor for the treatment of viral infections or diseases after HSCT.

    Science.gov (United States)

    Qian, C; Wang, Y; Reppel, L; D'aveni, M; Campidelli, A; Decot, V; Bensoussan, D

    2018-02-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for treatment of some malignant and non-malignant hematological diseases. However, post-HSCT patients are severely immunocompromised and susceptible to viral infections, which are a major cause of morbidity and mortality. Although antiviral agents are now available for most types of viral infections, they are not devoid of side effects and their efficacy is limited when there is no concomitant antiviral immune reconstitution. In recent decades, adoptive transfer of viral-specific T cells (VSTs) became an alternative treatment for viral infection after HSCT. However, two major issues are concerned in VST transfer: the risk of GVHD and antiviral efficacy. We report an exhaustive review of the published studies that focus on prophylactic and/or curative therapy by donor VST transfer for post-HSCT common viral infections. A low incidence of GVHD and a good antiviral efficacy was observed after adoptive transfer of VSTs from HSCT donor. Viral-specific T-cell transfer is a promising approach for a broad clinical application. Nevertheless, a randomized controlled study in a large cohort of patients comparing antiviral treatment alone to antiviral treatment combined with VSTs is still needed to demonstrate efficacy and safety.

  16. Improvement of exhaustion and fixation of chrome tan by hydroxy organic acids

    International Nuclear Information System (INIS)

    Nashy, E.H.A.; Khedr, M.H.; EL-Sayed, N.H.

    2005-01-01

    Chrome tan is the most important tanning agent in the tanning industry, but it causes extreme pollution due to the incomplete exhaustion of the serious chrome cations in tanning bath. The exhaustion and fixation of chrome tan were improved in this study through treatment of delimed hide with three carboxylic acids named citric, malic and tartaric acids before exposure to tanning process. The process was optimized taking into the account the shaking rate, chrome concentration (%), initial ph, acids concentration, and temperature and contact time. The optimum conditions for exhaustion, fixation, shrinkage temperature as well as skin quality showed that agitation rate of 150 rpm, chrome concentration of 16%, initial ph of 8.5, acid concentration of 3% tartaric acid, temperature of 35 degree C and contact time of 24 hr.The best results obtained are 88% exhaustion, 88.32% fixation and 106 degree C shrinkage temperature in aqueous medium

  17. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  18. Optical system for CO and NO gas detection in the exhaust manifold of combustion engines

    International Nuclear Information System (INIS)

    Mello, M.; De Vittorio, M.; Passaseo, A.; Lomascolo, M.; De Risi, A.

    2007-01-01

    The experimental characterization of an innovative optical system for detection of carbon monoxide (CO) and nitride oxide (NO) in the exhaust manifold of otto and diesel engines is reported. A photodetector based on gallium nitride (GaN) and an UV light source are integrated in a chamber of analysis and form the detection system. The UV light source, consisting of a spark produced by an arc discharge, induces electronic transitions in the gas molecules flowing between the light source and the GaN photodetector. The transitions modify the fraction of light in the UV spectral region which is detected by the GaN photodetector, as a function of the species concentration. By means of its structural properties, gallium nitride (GaN) allows to operate at high temperature and high speed and to work in situ in the exhaust manifold of combustion engines at temperatures as high as 600 o C, at which the deposited organic residuals on the detector can be oxidized. This assures a clear surface necessary for a real time optical measurement of the species concentration to be used for a closed loop control of the fuel injection process. The system was applied to the detection of CO and NO with concentration between 0% and 2% in a buffer of pure nitrogen gas, showing an increase in the measured photocurrent as a function of the above gases

  19. Work-home interface stress: an important predictor of emotional exhaustion 15 years into a medical career

    Science.gov (United States)

    HERTZBERG, Tuva Kolstad; RØ, Karin Isaksson; VAGLUM, Per Jørgen Wiggen; MOUM, Torbjørn; RØVIK, Jan Ole; GUDE, Tore; EKEBERG, Øivind; TYSSEN, Reidar

    2015-01-01

    The importance of work-home interface stress can vary throughout a medical career and between genders. We studied changes in work-home interface stress over 5 yr, and their prediction of emotional exhaustion (main dimension of burn-out), controlled for other variables. A nationwide doctor cohort (NORDOC; n=293) completed questionnaires at 10 and 15 yr after graduation. Changes over the period were examined and predictors of emotional exhaustion analyzed using linear regression. Levels of work-home interface stress declined, whereas emotional exhaustion stayed on the same level. Lack of reduction in work-home interface stress was an independent predictor of emotional exhaustion in year 15 (β=−0.21, p=0.001). Additional independent predictors were reduction in support from colleagues (β=0.11, p=0.04) and emotional exhaustion at baseline (β=0.62, pseparate analyses, significant adjusted predictors were lack of reduction in work-home interface stress among women, and reduction of collegial support and lack of reduction in working hours among men. Thus, change in work-home interface stress is a key independent predictor of emotional exhaustion among doctors 15 yr after graduation. Some gender differences in predictors of emotional exhaustion were found. PMID:26538002

  20. Tritium recovery and separation from CTR plasma exhausts and secondary containment atmospheres

    International Nuclear Information System (INIS)

    Forrester, R.C. III; Watson, J.S.

    1975-01-01

    Recent experimental successes have generated increased interest in the development of thermonuclear reactors as power sources for the future. This paper examines tritium containment problems posed by an operating CTR and sets forth some processing schemes currently being evaluated at the Oak Ridge National Laboratory. An appreciation of the CTR tritium management problem can best be realized by recalling that tritium production rates for various fission reactors range from 2 x 10 4 to 9 x 10 5 Ci/yr per 1000 MW(e). Present estimates of tritium production in a CTR blanket exceed 10 9 Ci/yr for the same level of power generation, and tritium process systems may handle 10 to 20 times that amount. Tritium's high permeability through most materials of construction at high temperatures makes secondary containment mandatory for most piping. Processing of these containment atmospheres will probably involve conversion of the tritium to a nonpermeating form (T 2 O) followed by trapping on conventional beds of desiccant material. In a similar fashion, all purge streams and process fluid vent gases will be subjected to tritium recovery prior to atmospheric release. Two tritium process systems will be required, one to recover tritium produced by breeding in the blanket and another to recover unburned tritium in the plasma exhaust. Plasma exhaust processing will be unconventional since the exhaust gas pressure will lie between 10 -3 and 10 -6 torr. Treatment of this gas stream will entail the removal of small quantities of protium and helium from a much larger deuterium-tritium mixture which will be recycled. (U.S.)

  1. A MATHEMATICAL MODEL OF THERMAL POWER PLANTS SMOKE EXHAUSTERS INDUCTION MOTORS SYSTEM OPERATION MODES

    Directory of Open Access Journals (Sweden)

    K. M. Vasyliv

    2017-06-01

    Full Text Available Purpose. Development of a model-software complex (MSC for computer analysis of modes of the system of induction motors (IM of smoke exhausters of thermal power plant (TPP, the basic elements of which are mathematical models and corresponding software written in the programming language FORTRAN. Methodology. Mathematical model serves as a system of differential equations of electrical and mechanical condition. The equation of electric state is written in phase coordinates based on Kirchhoff's laws, and mechanical condition described by the d'Alembert equation. Mathematical model focuses on explicit numerical integration methods. Scientific novelty. The equation of state of electrical connections takes into account the mutual electromagnetic circuits for transformer of own needs (TON and induction motors and interdependence (in all possible combinations between: TON (from which motors powered and each of the two IM and blood pressure between themselves. The complex allows to simulate electromagnetic and electromechanical processes in transitional and steady, symmetric and asymmetric modes including modes of self-induction motors. Results. Complex is used for computer analysis of electromagnetic and electromechanical processes and established the basic laws of motion modes of starting, stopping and self-start of IM of smoke exhausters of the TPP unit. Practical value. The complex is suitable for computer analysis of modes of other similar units of own needs of thermal power plants.

  2. Systemic Immediate Hypersensitive Reactions after Treatment with Sweet Bee Venom: A Case Report

    Directory of Open Access Journals (Sweden)

    NaYoung Jo

    2015-12-01

    Full Text Available Objectives: A previous study showed that bee venom (BV could cause anaphylaxis or other hypersensitivity reactions. Although hypersensitivity reactions due to sweet bee venom (SBV have been reported, SBV has been reported to be associated with significantly reduced sensitization compared to BV. Although no systemic immediate hypersensitive response accompanied by abnormal vital signs has been reported with respect to SBV, we report a systemic immediate hypersensitive response that we experienced while trying to use SBV clinically. Methods: The patient had undergone BV treatment several times at other Oriental medicine clinics and had experienced no adverse reactions. She came to acupuncture & moxibustion department at Semyung university hospital of Oriental medicine (Je-cheon, Korea complaining of facial hypoesthesia and was treated using SBV injections, her first SBV treatment. SBV, 0.05 cc, was injected at each of 8 acupoints, for a total of 0.40 cc: Jichang (ST4, Daeyeong (ST5, Hyeopgeo (ST6, Hagwan (ST7, Yepung (TE17, Imun (TE21, Cheonghoe (GB2, and Gwallyeo (SI18. Results: The patient showed systemic immediate hypersensitive reactions. The main symptoms were abdominal pain, nausea and perspiration, but common symptoms associated with hypersensitivity, such as edema, were mild. Abdominal pain was the most long-lasting symptom and was accompanied by nausea. Her body temperature decreased due to sweating. Her diastolic blood pressure could not be measured on three occasions. She remained alert, though the symptoms persisted. The following treatments were conducted in sequence; intramuscular epinephrine, 1 mg/mL, injection, intramuscular dexamethasone, 5 mg/mL, injection, intramuscular buscopan, 20 mg/mL, injection, oxygen (O2 inhalation therapy, 1 L/minutes, via a nasal prong, and intravascular injection of normal saline, 1 L. After 12 hours of treatment, the symptoms had completely disappeared. Conclusion: This case shows that the use of SBV

  3. Exhaust gas purification with sodium bicarbonate. Analysis and evaluation; Abgasreinigung mit Natriumhydrogencarbonat. Analyse und Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Quicker, Peter; Rotheut, Martin; Schulten, Marc [RWTH Aachen Univ. (Germany). Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER); Athmann, Uwe [dezentec ingenieurgesellschaft mbH, Essen (Germany)

    2013-03-01

    The dry exhaust gas cleaning uses sodium bicarbonate in order to absorb acid components of exhaust gases such as sulphur dioxide or hydrochloric acid. Recently, sodium and calcium based adsorbents are compared with respect to their economic and ecologic options. None of the investigations performed considered decidedly practical experiences from the system operation such as differences in the management, availability, personnel expenditure and maintenance expenditure. Under this aspect, the authors of the contribution under consideration report on exhaust gas cleaning systems using sodium carbonate as well as lime adsorbents. The operators of these exhaust gas cleaning systems were questioned on their experiences, and all relevant operational data (consumption of additives, consumption of energy, emissions, standstill, maintenance effort) were recorded and evaluated at a very detailed level.

  4. Design and experimental study on desulphurization process of ship exhaust

    Science.gov (United States)

    Han, Mingyang; Hao, Shan; Zhou, Junbo; Gao, Liping

    2018-02-01

    This desulfurization process involves removing sulfur oxides with seawater or alkaline aqueous solutions and then treating the effluent by aeration and pH adjustment before discharging it into the ocean. In the desulfurization system, the spray tower is the key equipment and the venturi tubes are the pretreatment device. The two stages of plates are designed to fully absorb sulfur oxides in exhaust gases. The spiral nozzles atomize and evenly spray the desulfurizers into the tower. This study experimentally investigated the effectiveness of this desulfurization process and the factors influencing it under laboratory conditions, with a diesel engine exhaust used to represent ship exhaust. The experimental results show that this process can effectively absorb the SO2 in the exhaust. When the exhaust flow rate was 25 m3/h and the desulfurizer flow rate was 4 L/min, the sulfur removal efficiency (SRE) reached 99.7%. The flow rate, alkalinity, and temperature of seawater were found to have significant effects on the SRE. Adjusting seawater flow rate (SWR) and alkalinity within certain ranges can substantially improve the SRE.

  5. Systems for eliminating pathogens from exhaust air of animal houses

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Landman, W.J.M.; Melse, R.W.; Huynh Thi Thanh Thuy,

    2005-01-01

    Recent outbreaks of highly infectious viral diseases like swine fever and avian influenza in The Netherlands have shown that despite extensive bio-security measures aiming at minimizing physical contacts between farms, disease spread could not be halted. Dust in exhaust air from swine and chicken

  6. Vacuum exhaust duct used for thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo; Kondo, Mitsuaki; Honda, Tsutomu.

    1990-01-01

    The present invention concerns a vacuum exhaust duct used for a thermonuclear device. A cylindrical metal liners is lined with a gap to the inside of a vacuum exhaust duct main body. Bellows are connected to both ends of the metal liners and the end of the bellows is welded to the vacuum exhaust duct main body. Futher, a heater is mounted to the metal liner on the side of the vacuum exhaust duct main body, and the metal liner is heated by the heater to conduct baking for the vacuum exhaust duct main body. Accordingly, since there is no requirement for elevating the temperature of the vacuum exhaust duct upon conducting baking, the vacuum exhaust duct scarcely suffers substantial deformation due to heat expansion. Further, there is also no substantial deformation for the bellows disposed between the outer circumference of the vacuum vessel and a portion of a vacuum exhaust duct, so that the durability of the bellows is greatly improved. (I.S.)

  7. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  8. Device for purifying exhaust gas

    International Nuclear Information System (INIS)

    Makita, Kiyoshi.

    1973-01-01

    Purpose: To ensure the reliability in collection of krypton even on accident in liquidizing distillation tower. Constitution: Exhaust gas flows through active carbon adsorption tower where short half-life rare gas in exhaust gas is separated by adsorption, then through heat exchanger, then continuous distillation tower where krypton 85 is separated, then through batch distillation tower where krypton 85 is condensed, and then flows into storing cylinder. On accident in liquidizing distillation tower, at the first period exhaust gas flows through series connected active carbon adsorption tower, krypton 85 adsorbed in adsorption tower being transferred to cooling type adsorption tower, at the next period exhaust gas flows through tower, krypton 85 adsorbed in adsorption tower being transferred to tower. (M. K.)

  9. A study of diesel-hydrogen fuel exhaust emissions in a compression ignition engine/generator assembly

    International Nuclear Information System (INIS)

    Karri, V.; Hafez, H.A.; Kirkegaard, J.F.

    2006-01-01

    A compression engine and duel-fuel supply system was studied in order to determine the influence of hydrogen gas on a diesel engine's exhaust system. Commercially available solenoid valves and pulse actuators were used in a customized mechatronic control unit (MICU) to inject the hydrogen gas into the cylinders during the experiments. The MICU was designed as a generic external attachment. Diesel fuel was used to ignite the hydrogen gas-air mixture after compression. Various different electrical loads were then applied using an alternator in order to stimulate the engine governor and control diesel flow. Results of the study showed that measured carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO x ) loads of exhaust emissions increased, while emissions of carbon dioxide (CO 2 ) decreased. Results also showed that higher temperatures and levels of NO x occurred when hydrogen was mixed with the induced air. It was concluded that higher levels of hydrogen may be needed to reduce emissions. 17 refs., 5 tabs., 2 figs

  10. PIXE analysis of exhaust gas from diesel engine

    International Nuclear Information System (INIS)

    Miyake, Hirosi; Michijima, Masami; Onishi, Masayuki; Fujitani, Tatsuya.

    1986-01-01

    The variation of elemental concentrations in exhaust gas of a Diesel engine with the outputs was studied. Particulates in high temperature gas were collected on silica fiber filters and analyzed by PIXE method. Concentrations of S and V were nearly proportional to particulate masses and fuel consumption rates per discharging rates of exhaust gas respectively. While, concentrations of Fe and Mn were markedly increased together with engine outputs, and Mn/Fe ratios were nearly equal to those of the material of piston rings and the cylinder liner. Concentrations of the elements contained in lubricant, such as Ca and Mo, were also conspicuously increased with the outputs. It was shown that PIXE analysis is a useful tool for engine diagonostics owing to its high sensitive multi-elemental availability without chemical treatments. (author)

  11. Two studies on the effects of small exhaust fans on indoor air quality: Field study of exhaust fans for mitigating indoor air quality problems; Indoor air quality, exhaust fan mitigation

    International Nuclear Information System (INIS)

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality

  12. Effect of exhausting exercise and calcium supplementation on potassium, magnesium, copper, zinc and calcium levels in athletes

    International Nuclear Information System (INIS)

    Cinar, V.; Baltaci, A.K.; Mogulkoc, R.

    2009-01-01

    Present study was performed to determine four week calcium supplementation and athleticism exercise on plasma potassium, calcium, magnesium, cupper and zinc levels in resting and exhaustion. Research was carried out on 30 healthy male people. Group 1; Exercise, Group 2; Exercise + Calcium supplementation, Group 3; Sedentary + Calcium supplemented. All elements levels increased by exhausting exercise (P<0.05). Plasma K and Ca levels increased in exercise group after supplementation (P<0.05). Ca levels increased in exercise + supplemented group (P<0.05). This increase was much more in group three (P<0.05). Plasma Cu levels increased by Ca supplementation in sedentary (P<0.05). Exhausting exercise increased Zn levels in sedentary after supplementation (P<0.05). The results of present study show that calcium supplementation for 4 week does not have clear affect on potassium and Mg. However, calcium levels were increased by supplementation and Cu after the supplementation. It was also exhausting exercise that caused increase in all parameters. (author)

  13. The new generation of exhaust aftertreatment systems for lean fuel gasoline engines; Die neue Generation von Abgasnachbehandlungssystemen fuer magerlaufende Benzinmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Eckhoff, Stephan; Hoyer, Ruediger; Adam, Frank; Lammarck, Christian; Mueller, Wilfried [Umicore AG und Co. KG, Hanau-Wolfgang (Germany)

    2010-07-01

    Stratified gasoline direct injection engines show a great potential for the reduction of CO{sub 2} emissions and therefore improved fuel economy. The next generation of stratified gasoline engines with turbo charger and more efficient combustion are expected to have even lower exhaust temperatures compared with current series vehicle with stratified combustion. For this reason exhaust gas aftertreatment systems are required which have low light off temperatures for HC and CO during lean combustion and a high NOx-storage efficiency at low temperatures. This study shows the great improvements made over the last years for the development of new TWC and NOx-storage catalysts for the aftertreatment for lean GDI. A precious metal related cost reduction of about 40% was achieved for the new generation of aftertreatment systems. (orig.)

  14. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Koyama, T; Sasaki, K; Mori, K; Mori, K [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  15. 46 CFR 119.425 - Engine exhaust cooling.

    Science.gov (United States)

    2010-10-01

    ..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (2) Horizontal dry exhaust pipes are...) They are installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (b) The exhaust pipe...

  16. PIXE analysis of vehicle exhaust particulate

    International Nuclear Information System (INIS)

    Shi Xianfeng; Yao Huiying; Liu Bo; Sun Minde; Xu Huawei; Mi Yong; Shen Hao

    2001-01-01

    PIXE technique on the analysis of vehicle exhaust particulate is introduced. The clement composition and concentration of particulate are obtained. Some elements which are related to environmental pollution such as sulfur lead, silicon and manganese, were analyzed and discussed in detail by PIXE technique Nowadays although unleaded gasoline is widely used, the lead concentration is still very high in exhaust particulate. The concentrations of silicon and manganese in exhaust particulate from different model vehicles are also quite high from measurements. It shows that an evidence for exhaust pollution control could be provided from this work

  17. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  18. Evaluation tests of treatment planning systems concerning 3D dose calculation

    International Nuclear Information System (INIS)

    Simonian-Sauve, M.; Smart, C.

    1998-01-01

    The development of irradiation techniques in radiotherapy shows a clear tendency towards the systematic use of three-dimensional (3D) information. Great efforts are being made to set up 3D conformal radiotherapy. Consequently, in the aim of greater coherence and accuracy, 'the dosimetric tool' must also meet the requirements of 3D radiotherapy, as it plays a role in the treatment chain. To know if the treatment planning system is a '3D', '2D', or even '1D' system, one should not be satisfied with reading the technical documentation and the program algorithm description not entirely trust the constructor's assertions. It is essential to clearly and precisely evaluate the possibilities of the treatment planning system. Even if it is proved not to satisfy perfectly all the tests which would qualify it as a real 3D calculation system, the study of the test results helps to give clear explanations of the dosimetric results. Two series of test cases are proposed. The first series allows us to understand in which conditions the treatment planning system takes into account the scatter influence in a volume. The second series is designed to inform us about the capacity of the dose calculation algorithm when the medium encloses non-homogeneities. These test cases do not constitute an exhaustive 'check-list' able to tackle completely the question of 3D calculation. They are submitted as examples and should be considered as an evaluation methodology for the software implanted in the treatment planning system. (authors)

  19. Exhaustion and Emotional Demands in China:A Large-Scale Investigation across Occupations

    Institute of Scientific and Technical Information of China (English)

    Kelly Z.Peng

    2017-01-01

    As the Chinese economy moves toward a market-based model,employees are likely to face more emotional demands and exhaustion at work.However,there are some unique aspects to the emotional demands of work in the Chinese cultural context.We investigate emotional demands and exhaustion in China with a large-scale sample across the six major occupations identified by the Holland classification system.Results show that incumbents of social and enterprising jobs face higher emotional demands.Unexpectedly,exhaustion differs significantly between conventional and other types of jobs.Building on the Job Demand-Resources (JD-R) model,job crafting and the cultural context,we propose that the nonlinear relationship of emotional demands and exhaustion exists only when emotional intelligence is low.Our study may inform practitioners and policy makers in Chinese enterprises about emotional demands and exhaustion for various occupations and the importance of selection and training programs in emotional intelligence.

  20. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    Science.gov (United States)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  1. Exhaustion measured by the SF-36 vitality scale is associated with a flattened diurnal cortisol profile

    DEFF Research Database (Denmark)

    Lindeberg, Sara I; Eek, Frida; Lindbladh, Eva

    2008-01-01

    cortisol profile. The study population included 78 working individuals. The study group was dichotomised into exhausted and non-exhausted groups by means of the SF-36 vitality scale. Salivary cortisol was measured at three times during 1 workday: at awakening, 30min after awakening, and in the evening....... The results showed that diurnal cortisol variation was significantly reduced in exhausted individuals. The difference in cortisol variation was mainly due to lowered morning cortisol in the exhausted group. Differences in cortisol levels at each sampling time or in mean diurnal output of cortisol were...... not statistically significant. The results would support the notion that exhaustion is associated with HPA axis hypoactivity as assessed by salivary cortisol. Furthermore, the SF-36 vitality provides a measure of exhaustion that may be useful in epidemiological studies in order to explore long-term health effects...

  2. Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NO x concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O 2 ↔ NO + O and N + OH ↔ NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased. - Highlights: • Premixed combustion system with EGR is studied for a high efficiency and low NO x . • All research is performed with various EGR and equivalence ratios. • It verified that efficiency increases and the NO x emission decreases with EGR method. • NO production rates are remarkably changed by N + O 2 ↔ NO + O and N + OH ↔ NO + H with EGR

  3. The Csr System Regulates Escherichia coli Fitness by Controlling Glycogen Accumulation and Energy Levels

    Directory of Open Access Journals (Sweden)

    Manon Morin

    2017-10-01

    Full Text Available In the bacterium Escherichia coli, the posttranscriptional regulatory system Csr was postulated to influence the transition from glycolysis to gluconeogenesis. Here, we explored the role of the Csr system in the glucose-acetate transition as a model of the glycolysis-to-gluconeogenesis switch. Mutations in the Csr system influence the reorganization of gene expression after glucose exhaustion and disturb the timing of acetate reconsumption after glucose exhaustion. Analysis of metabolite concentrations during the transition revealed that the Csr system has a major effect on the energy levels of the cells after glucose exhaustion. This influence was demonstrated to result directly from the effect of the Csr system on glycogen accumulation. Mutation in glycogen metabolism was also demonstrated to hinder metabolic adaptation after glucose exhaustion because of insufficient energy. This work explains how the Csr system influences E. coli fitness during the glycolysis-gluconeogenesis switch and demonstrates the role of glycogen in maintenance of the energy charge during metabolic adaptation.

  4. Engineering task plan for rotary mode core sampling exhausters CAM high radiation interlock

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The Rotary Mode Core Sampling (RMCS) system is primarily made up of the Rotary Mode Core Sample Trucks (RMCST) and the RMCS Exhausters. During RMCS operations an Exhauster is connected to a tank riser and withdraws gases from the tank dome vapor space at approximately 200 Standard Cubic Feet per Minute (SCFM). The gases are passed through two High Efficiency Particulate Air (HEPA) filters before passing out the exhaust stack to the atmosphere. A Continuous Air Monitor (CAM) monitors the exhaust gases in the exhaust stack for beta particle and gamma radiation. The CAM has a high radiation alarm output and a detector fail alarm output. The CAM alarms are currently connected to the data logger only. The CAM alarms require operator response per procedure LMHC 1998 but no automatic functions are initiated by the CAM alarms. Currently, there are three events that can cause an automatic shut down of the Exhauster. These are, Low Tank Pressure, Highnow Stack Flow and High HEPA Filter Differential Pressure (DP)

  5. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  6. Application of the grey system theory for forecasting the content of 238U in soil near a uranium mine exhaust outlet

    International Nuclear Information System (INIS)

    Ye Yongjun; Ding Dexin; Li Xiangyang; Zhou Xinghuo; Liu Dong

    2008-01-01

    In order to forecast the content of 238 U in soil near a uranium mine exhaust outlet, a general GM(1,1) forecasting model was established based on grey system theory, analyzing association degree and residual error distinction. According to the measuring datum of the content of 238 U in soil near a uranium mine exhaust outlet from 2001 to 2006, used the model to forecast the content of 238 U in soil, The results show that the forecasting value agrees with the measuring results and the forecasting precision is higher; at the same time the content of 238 U in soil in 2007 is also forecasted based on the model, the relative error was 4.8%; which shows the GM(1,1) forecasting model has higher practical value, and is a effective method for forecasting the content of 238 U in soil near a uranium mine exhaust outlet. (authors)

  7. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    Joa, Sang Beom

    2008-02-01

    The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emissions from diesel vehicles are known to be harmful to human health and environment. An experimental study of the diesel fuel reformation by a plasmatron and diesel engine exhaust cleaning by means of plasma chemical pretreatment of fuel is described. Plasma chemical reformation of fuel was carried by a DC arc plasmatron that was fabricated to increase an ability of the gas activation. Some portion of the fuel was activated in an arc discharge and turned into the hydrogen-rich synthesis gas. The yield of reformation for the diesel fuel showed 80 % ∼ 100 % when the small quantities of fuel (flow rate up to about 6 cc/min) were reformed. The regulation for an emission from the diesel vehicle is getting more stringent, the research in the field of the in-cylinder processing technologies (pretreatment) becomes more important issue as well as the catalyst after-treatment. The used high durability plasmatron has the characteristics of low contamination level, low anode erosion rate, low plasma temperature, and effective activation of the process gas. The developed fuel reformation system with the plasmatron was connected to the air feeding inlet sleeve of the diesel engine Kookje 3T90LT-AC (Korea) in order to study the reduction of NOx content in the engine's emission. Tubular reformation chamber was connected to the engine through the heat exchanger DOVER B10Hx20/1P-SC-S. Its cooling jacket was connected in series with the cooling system of the plasmatron. At the exit of this device gas temperature did not exceed ∼40 .deg. C at plasmatron power up to 1.5 kW which seemed quite acceptable. Gas composition was studied here using RBR-Ecom KD gas analyzer. The design of the DC arc plasmatron applied for the plasma chemical fuel reformation was improved boosting the degree of fuel-air mixture activation that provided the

  8. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    Directory of Open Access Journals (Sweden)

    Y Hu

    2015-09-01

    Full Text Available The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA and 5-hydroxytryptamine (5-HT levels were subsequently detected with high-performance liquid chromatography (HPLC. For immunohistochemistry study, the expression of DRD 2 and HT 2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P0.05. Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue.

  9. Argon/UF6 plasma exhaust gas reconstitution experiments using preheated fluorine and on-line diagnostics. [fissioning uranium plasma core reactor design

    Science.gov (United States)

    Roman, W. C.

    1979-01-01

    The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.

  10. Physiological, biochemical and defense system responses of parthenium hysterophorus to vehicular exhaust pollution

    International Nuclear Information System (INIS)

    Khalid, N.; Hussain, M.; Hameed, M.; Ahmad, R.

    2017-01-01

    Pollution caused by vehicular exhaust emissions detrimentally affect plants and other living beings. This investigation was carried out to evaluate the effects of vehicular exhaust pollutants on Parthenium hysterophorus at various sites along two major roads [Pindi Bhattian to Lillah (M-2) and Faisalabad to Sargodha (FSR)]in the Punjab, Pakistan. Control samples of P. hysterophorus were also collected from 100m away from the roads. Chlorophyll contents, photosynthetic rate, transpiration rate, stomatal conductance, substomatal CO/sub 2/ concentration, water use efficiency, total free amino acids and total antioxidant activity of P. hysterophorus were measured. The results depicted significant reductions in chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents of P. hysterophorus. Likewise, reduction in stomatal conductance was also recorded which resulted in lowered photosynthetic and transpiration rates. The overall reduction in photosynthetic rate of P. hysterophorus was 30.92% and 35.38% along M-2 and FSR roads, respectively. The limited photosynthesis resulted in increased levels of sub stomatal /sub 2/ concentration and water use efficiency. The elevated levels of free amino acids and total antioxidant activity were noted and could be attributed to activation of plant's defense system to cope with the deleterious effects of vehicular air pollutants. The significant correlations between various attributes of P. hysterophorus with traffic density signifies the stress caused by vehicular emissions. (author)

  11. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  12. Separate and combined associations of pain and emotional exhaustion with sickness absence.

    Science.gov (United States)

    Saastamoinen, Peppiina; Leino-Arjas, Päivi; Rahkonen, Ossi; Lahelma, Eero

    2016-01-01

    Pain and emotional exhaustion are prevalent conditions with consequences for sickness absence. Although they often co-occur, their combined associations with sickness absence are poorly understood. This study aimed to examine the separate and combined associations of pain and emotional exhaustion with subsequent sickness absence. The data were derived from a cross-sectional questionnaire survey sent to 40 to 60-year-old employees of the City of Helsinki in 2000 to 2002 (n = 6457) linked with the City of Helsinki personnel register information on sickness absence (3 years on from the survey). Self-certified (1-3 days) and medically certified sickness absence spells (4-14 days, more than 14 days) were used as outcomes. Acute and chronic pain and emotional exhaustion were measured in a questionnaire survey. For the purposes of this study, sickness absence and pain variables were merged to form a new variable with 6 mutually exclusive categories. The main statistical method was negative binomial regression analysis. The synergy index was used to estimate the interaction. Among women, acute and chronic pain with and without emotional exhaustion predicted sickness absence, particularly absence lasting for more than 2 weeks, whereas emotional exhaustion alone did not. The associations persisted when further adjusted for socioeconomic and sociodemographic factors, health-related behaviors, and somatic and mental health. A synergistic interaction effect was found for co-occurring pain and emotional exhaustion on medically certified sickness absence. The results for men were mainly similar, but less stable. In order to tackle sickness absence, special attention should be paid to the prevention and treatment of employees with co-occurring pain and emotional exhaustion.

  13. Children's Exhaustive Readings of Questions

    Science.gov (United States)

    Cremers, Alexandre; Tieu, Lyn; Chemla, Emmanuel

    2017-01-01

    Questions, just like plain declarative sentences, can give rise to multiple interpretations. As discussed by Spector & Egré (2015), among others, questions embedded under know are ambiguous between "weakly exhaustive" (WE), "intermediate exhaustive" (IE), and "strongly exhaustive" (SE) interpretations (for…

  14. Lung clearance of inhaled particles after exposure to carbon black generated from a resuspension system

    International Nuclear Information System (INIS)

    Lee, P.S.; Gorski, R.A.; Hering, W.E.; Chan, T.L.

    1987-01-01

    A system to resuspend carbon black particles for providing submicron aerosols for inhalation exposure studies has been developed. The effect of continuous exposure to carbonaceous material (as a surrogate for the carbonaceous particles in diesel exhaust) on the pulmonary clearance of inhaled diesel tracer particles was studied in male Fischer 344 rats. Submicron carbon black particles with a mass median aerodynamic diameter (MMAD) of 0.22 micron and a size distribution similar to that of exhaust particles from a GM 5.7-liter diesel engine were successfully generated and administered to test animals at a nominal concentration of 6 mg/m3 for 20 hr/day, 7 days/week, for periods lasting 1 to 11 weeks. Immediately after the carbon black exposure, test animals were administered 14 C-tagged diesel particles for 45 min in a nose-only chamber. The pulmonary retention of inhaled radioactive tracer particles was determined at preselected time intervals. Based upon the data collected up to 1 year postexposure, prolonged exposure to carbon black particles exhibits a similar inhibitory effect on pulmonary clearance as does prolonged exposure to diesel exhaust with a comparable particulate dose. This observation indicates that the excessive accumulation of carbonaceous material may be the predominant factor affecting lung clearance

  15. IncobotulinumtoxinA treatment of facial nerve palsy after neurosurgery.

    Science.gov (United States)

    Akulov, Mihail A; Orlova, Ol'ga R; Orlova, Aleksandra S; Usachev, Dmitrij J; Shimansky, Vadim N; Tanjashin, Sergey V; Khatkova, Svetlana E; Yunosha-Shanyavskaya, Anna V

    2017-10-15

    This study evaluates the effect of incobotulinumtoxinA in the acute and chronic phases of facial nerve palsy after neurosurgical interventions. Patients received incobotulinumtoxinA injections (active treatment group) or standard rehabilitation treatment (control group). Functional efficacy was assessed using House-Brackmann, Yanagihara System and Sunnybrook Facial Grading scales, and Facial Disability Index self-assessment. Significant improvements on all scales were seen after 1month of incobotulinumtoxinA treatment (active treatment group, р<0.05), but only after 3months of rehabilitation treatment (control group, р<0.05). At 1 and 2years post-surgery, the prevalence of synkinesis was significantly higher in patients in the control group compared with those receiving incobotulinumtoxinA treatment (р<0.05 and р<0.001, respectively). IncobotulinumtoxinA treatment resulted in significant improvements in facial symmetry in patients with facial nerve injury following neurosurgical interventions. Treatment was effective for the correction of the compensatory hyperactivity of mimic muscles on the unaffected side that develops in the acute period of facial nerve palsy, and for the correction of synkinesis in the affected side that develops in the long-term period. Appropriate dosing and patient education to perform exercises to restore mimic muscle function should be considered in multimodal treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  17. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    Cheng-xiong, Pan; Jing-zhou, Zhang; Yong, Shan

    2013-01-01

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  18. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Science.gov (United States)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was

  19. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Directory of Open Access Journals (Sweden)

    J. Alanen

    2017-07-01

    Full Text Available Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission

  20. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    Krueger, W.A.

    1990-06-01

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  1. The Use of Invisalign® System in the Management of the Orthodontic Treatment before and after Class III Surgical Approach.

    Science.gov (United States)

    Pagani, Renato; Signorino, Fabrizio; Poli, Pier Paolo; Manzini, Pietro; Panisi, Irene

    2016-01-01

    The approach to skeletal dysmorphisms in the maxillofacial area usually requires an orthodontic treatment by means of fixed appliances, both before and after the surgical phase. Since its introduction, Invisalign system has become a popular treatment choice for the clinicians because of the aesthetics and comfort of the removable clear aligners compared with the traditional appliances. Therefore, the aim of the present report was to illustrate the management of a malocclusion by means of Invisalign system associated with the traditional surgical technique. The present paper shows a case of a 23-year-old male patient characterized by a Class III malocclusion with lateral deviation of the mandible to the left side and cross-bite on teeth 2.2, 2.3, and 2.4. Invisalign system was used during the pre- and postsurgical phases rather than fixed appliances. The posttreatment cephalometric analysis emphasized the stability of the dental and skeletal symmetry corrections, occlusion and functional balance, over a 6-year follow-up. The results achieved at the end of the treatment showed how Invisalign can be effective in the management of the orthodontic phases in orthognathic surgery. The follow-up after 6 years emphasizes the stability of the treatment over time.

  2. The Use of Invisalign® System in the Management of the Orthodontic Treatment before and after Class III Surgical Approach

    Directory of Open Access Journals (Sweden)

    Renato Pagani

    2016-01-01

    Full Text Available The approach to skeletal dysmorphisms in the maxillofacial area usually requires an orthodontic treatment by means of fixed appliances, both before and after the surgical phase. Since its introduction, Invisalign system has become a popular treatment choice for the clinicians because of the aesthetics and comfort of the removable clear aligners compared with the traditional appliances. Therefore, the aim of the present report was to illustrate the management of a malocclusion by means of Invisalign system associated with the traditional surgical technique. The present paper shows a case of a 23-year-old male patient characterized by a Class III malocclusion with lateral deviation of the mandible to the left side and cross-bite on teeth 2.2, 2.3, and 2.4. Invisalign system was used during the pre- and postsurgical phases rather than fixed appliances. The posttreatment cephalometric analysis emphasized the stability of the dental and skeletal symmetry corrections, occlusion and functional balance, over a 6-year follow-up. The results achieved at the end of the treatment showed how Invisalign can be effective in the management of the orthodontic phases in orthognathic surgery. The follow-up after 6 years emphasizes the stability of the treatment over time.

  3. 46 CFR 182.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 182.430 Section 182... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.430 Engine exhaust pipe... equipment might come in contact with an exhaust pipe. (b) Exhaust gas must not leak from the piping or any...

  4. 46 CFR 119.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... an exhaust pipe. (b) Exhaust gas must not leak from the piping or any connections. The piping must be...

  5. Steady-state exhaust of helium ash in the W-shaped divertor of JT-60U

    International Nuclear Information System (INIS)

    Sakasai, A.; Takenaga, H.; Hosogane, N.

    2001-01-01

    By injecting a neutral beam of 60 keV helium (He) atoms as central fueling of helium into the ELMy H-mode plasmas, helium exhaust has been studied in the W-shaped pumped divertor on JT-60U. Efficient He exhaust was realized by He pumping using argon frosted cryopumps in the JT-60U new divertor. In steady state, good He exhaust capability (τ He */τ E =4 and high enrichment factor, where τ He * is a global particle confinement time of helium and τ E is the energy confinement time) was successfully demonstrated in attached ELMy H-mode plasmas. Good He exhaust capability was also obtained in detached ELMy H-mode plasmas, which was comparable to one in attached plasmas. This result of the helium exhaust is sufficient to support a detached divertor operation on ITER. After the divertor modification, helium exhaust in reversed shear plasmas has been investigated using He gas puff. Helium removal inside the internal transport barrier (ITB) is about two times as difficult as that outside the ITB in reversed shear discharges. (author)

  6. Treatment Using the SpyGlass Digital System in a Patient with Hepatolithiasis after a Whipple Procedure.

    Science.gov (United States)

    Harima, Hirofumi; Hamabe, Kouichi; Hisano, Fusako; Matsuzaki, Yuko; Itoh, Tadahiko; Sanuki, Kazutoshi; Sakaida, Isao

    2018-05-23

    An 89-year-old man was referred to our hospital for treatment of hepatolithiasis causing recurrent cholangitis. He had undergone a prior Whipple procedure. Computed tomography demonstrated left-sided hepatolithiasis. First, we conducted peroral direct cholangioscopy (PDCS) using an ultraslim endoscope. Although PDCS was successfully conducted, it was unsuccessful in removing all the stones. The stones located in the B2 segment were difficult to remove because the endoscope could not be inserted deeply into this segment due to the small size of the intrahepatic bile duct. Next, we substituted the endoscope with an upper gastrointestinal endoscope. After positioning the endoscope, the SpyGlass digital system (SPY-DS) was successfully inserted deep into the B2 segment. Upon visualizing the residual stones, we conducted SPY-DS-guided electrohydraulic lithotripsy. The stones were disintegrated and completely removed. In cases of PDCS failure, a treatment strategy using the SPY-DS can be considered for patients with hepatolithiasis after a Whipple procedure.

  7. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    International Nuclear Information System (INIS)

    Nelson, O.D.; Keller, G.M.

    1997-01-01

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage

  8. Detrimental effects of prenatal exposure to filtered diesel exhaust on mouse spermatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Naoka; Niwata, Yuichiro; Takeda, Ken [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Chiba (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Oshio, Shigeru [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Chiba (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Ohu University, Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Fukushima (Japan); Ohu University, Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Koriyama, Fukushima (Japan); Yoshida, Seiichi [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Oita University of Nursing and Health Sciences, Department of Health and Sciences, Oita (Japan); Tsukue, Naomi [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Sugawara, Isamu [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); The Research Institute of Tuberculosis, Mycobacterial Reference Center, Tokyo (Japan); Takano, Hirohisa [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); National Institute for Environmental Studies, Environmental Health Sciences Division, Ibaraki (Japan)

    2008-11-15

    We recently showed that prenatal exposure to diesel exhaust (DE) disrupts spermatogenesis in mouse offspring. This study was undertaken to determine whether filtered DE in which 99.97% of diesel exhaust particles >0.3{mu}m in diameter were removed affects spermatogenesis in growing mice. After prenatal exposure to filtered DE for 2-16 days postcoitum, we examined daily sperm production (DSP), testicular histology, serum testosterone levels and mRNA expression of hormone synthesis process-related factors. In the filtered DE exposed group, DSP was markedly reduced at 12 weeks compared with the control group; clean air exposed group. Histological examination showed multinucleated giant cells and partial vacuolation in the seminiferous tubules of the exposed group. Testosterone was elevated significantly at 5 weeks. Moreover, luteinizing hormone receptor mRNA at 5 and 12 weeks, 17{alpha}-hydroxylase/C17-20-lyase and 17{beta}-hydroxysteroid dehydrogenase mRNAs at 12 weeks were significantly elevated. These results suggest that filtered DE retains its toxic effects on the male reproductive system following prenatal exposure. (orig.)

  9. Selective gas exhaustion method

    International Nuclear Information System (INIS)

    Hirano, Yoichi

    1998-01-01

    The present invention provides a method capable of evacuating gases at an exhaustion rate which varies depending on the kind of gases. For example, in a thermonuclear experimental device, a hydrogen gas exhaustion rate is determined to 0 and an exhaustion rate for other impure gases is made greater. Namely, a baffle plate is cooled to a temperature to a level at which the vapor pressure of gases to evacuate a baffle plate is required in a pump incorporating a baffle plate, for example, a cryopump or a sorption pump. In this case, the level of the vapor pressure required for evacuating the exhaustion gas ingredients is 1 x 10 -8 Torr or less, preferably, 1 x 10 -9 Torr. In a thermonuclear experimental device, a gas having a lower boiling point next to hydrogen is neon, but neon is scarcely present in natural world. Nitrogen has a lower boiling point next thereto, and if the temperature is lowered to such a level that the vapor pressure for evacuating gases such as nitrogen, and carbon monoxide, oxygen, fluorine, argon or methane having a boiling point at or lower than nitrogen is required. Then, evacuation rate sufficient for gases other than hydrogen gas can be obtained. (I.S.)

  10. Burn injuries related to motorcycle exhaust pipes: a study in Greece.

    Science.gov (United States)

    Matzavakis, Ioannis; Frangakis, Constantine E; Charalampopoulou, Ava; Petridou, Eleni

    2005-05-01

    To identify measures that should reduce the incidence of burn injuries resulting from motorcycle exhaust pipes through epidemiological analysis of such injuries. During a 5-year period, 251 persons who suffered burn injuries related to motorcycle exhaust pipes have contacted four major hospitals belonging to the Emergency Department Injury Surveillance System (EDISS) operating since 1996 in Greece. These burn injuries were studied in relation to person, environment and vehicle characteristics. The estimated countrywide incidence of burns from motorcycle exhaust pipes was 17 per 100,000 person-years (208 per 100,000 motorcycle-years). The incidence was two times higher for children than for older persons and among the latter it was 60% higher among females than among males. Most of burn injuries (70.5%) concerned motorcycle passengers, mainly when getting on or off motorcycle, with peak incidence during summer. The most frequent location of burn wounds was below the knee and particularly the right leg. It was estimated that the risk of motorcycle exhaust pipe burns when wearing shorts could be reduced by 46% through wearing long pants. Among the victims 65.3% experienced second degree burns. Motorcycle exhaust burns could be substantially reduced by systematically wearing long pants, by incorporating in the design of motorcycles external thermo resistant shields with adequate distance to the exhaust pipe, and by avoiding riding with children on motorcycles.

  11. Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship

    International Nuclear Information System (INIS)

    Choi, Byung Chul; Kim, Young Min

    2013-01-01

    A dual loop waste heat recovery power generation system that comprises an upper trilateral cycle and a lower organic Rankine cycle, in which discharged exhaust gas heat is recovered and re-used for propulsion power, was theoretically applied to an internal combustion engine for propulsion in a 6800 TEU container ship. The thermodynamic properties of this exhaust gas heat recovery system, which vary depending on the boundary temperature between the upper and lower cycles, were also investigated. The results confirmed that this dual loop exhaust gas heat recovery power generation system exhibited a maximum net output of 2069.8 kW, and a maximum system efficiency of 10.93% according to the first law of thermodynamics and a maximum system exergy efficiency of 58.77% according to the second law of thermodynamics. In this case, the energy and exergy efficiencies of the dual loop system were larger than those of the single loop trilateral cycle. Further, in the upper trilateral cycle, the volumetric expansion ratio of the turbine could be considerably reduced to an adequate level to be employed in the practical system. When this dual loop exhaust gas heat recovery power generation system was applied to the main engine of the container ship, which was actually in operation, a 2.824% improvement in propulsion efficiency was confirmed in comparison to the case of a base engine. This improvement in propulsion efficiency resulted in about 6.06% reduction in the specific fuel oil consumption and specific CO 2 emissions of the main engine during actual operation. - Highlights: • WHRS was theoretically applied to exhaust gas of a main engine for ship propulsion. • A dual loop EG-WHRS using water and R1234yf as working fluids has been suggested. • Limitation of single loop trilateral cycle was improved by the dual loop system. • The propulsion efficiency of 2.824% was improved by the dual loop EG-WHRS. • This resulted in about 6.06% reduction in the SFOC and specific CO

  12. Chemical laser exhaust pipe design research

    Science.gov (United States)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  13. Study on the Optimizing Operation of Exhaust Air Heat Recovery and Solar Energy Combined Thermal Compensation System for Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available This study proposed an exhaust air heat recovery and solar energy combined thermal compensation system (ESTC for ground-coupled heat pumps. Based on the prediction of the next day’s exhaust air temperature and solar irradiance, an optimized thermal compensation (OTC method was developed in this study as well, in which the exhaust air heat recovery compensator and solar energy compensator in the ESTC system run at high efficiency throughout various times of day. Moreover, a modified solar term similar days group (STSDG method was proposed to improve the accuracy of solar irradiance prediction in hazy weather. This modified STSDG method was based on air quality forecast and AQI (air quality index correction factors. Through analyzing the operating parameters and the simulation results of a case study, the ESTC system proved to have good performance and high efficiency in eliminating the heat imbalance by using the OTC method. The thermal compensation quantity per unit energy consumption (TEC of ESTC under the proposed method was 1.25 times as high as that under the traditional operation method. The modified STSDG method also exhibited high accuracy. For the accumulated solar irradiance of the four highest daily radiation hours, the monthly mean absolute percentage error (MAPE between the predicted values and the measured values was 6.35%.

  14. PRE-TREATMENT WITH DIESEL EXHAUST EXTRACT ALTERS INFLUENZA VIRUS REPLICATION IN LUNG EPITHELIAL CELLS

    Science.gov (United States)

    Diesel Exhaust (DE) has been demonstrated to generate inflammatory responses in the lung and modify immune responses to allergens. However, little is known about the effects of DE on common respiratory viral infections. We examined whether exposure to DE extracts (DEE) modifies i...

  15. Simplified fuel cycle tritium inventory model for systems studies -- An illustrative example with an optimized cryopump exhaust system

    International Nuclear Information System (INIS)

    Kuan, W.; Ho, S.K.

    1995-01-01

    It is desirable to incorporate safety constraints due to fuel cycle tritium inventories into tokamak reactor design optimization. An optimal scenario to minimize tritium inventories without much degradation of plasma performance can be defined for each tritium processing component. In this work, the computer code TRUFFLES is used exclusively to obtain numerical data for a simplified model to be used for systems studies. As an illustration, the cryopump plasma exhaust subsystem is examined in detail for optimization purposes. This optimization procedure will then be used to further reduce its window of operation and provide constraints on the data used for the simplified tritium inventory model

  16. Effect of adjuvant systemic treatment on cosmetic outcome and late normal-tissue reactions after breast conservation

    DEFF Research Database (Denmark)

    Johansen, Jørgen; Overgaard, Jens; Overgaard, Marie

    2007-01-01

    To investigate whether adjuvant treatment with CMF or tamoxifen predisposes to an unfavorable cosmetic outcome or increased breast morbidity after radiotherapy in breast conservation. Data from 266 patients who entered a randomized breast conservation trial (DBCG-82TM protocol) was analyzed......-risk patients: premenopausal patients (n = 67) received eight cycles of CMF intravenously (600/40/600 mg per m(2)) every fourth week; postmenopausal patients (n = 27) received 30 mg of tamoxifen daily for one year. Clinical assessments included cosmetic outcome, breast fibrosis, skin telangiectasia....... In premenopausal patients, systemic treatment with CMF independently predicted a fair/poor cosmetic outcome, RR = 2.2 (95% CI 1.2-4.2), as well as increased skin telangiectasia, RR = 3.3 (1.4-8.2). There was no impact of tamoxifen treatment on cosmetic outcome in postmenopausal patients (p = 0.32). However...

  17. Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle

    International Nuclear Information System (INIS)

    Domingues, António; Santos, Helder; Costa, Mário

    2013-01-01

    This study evaluates the vehicle exhaust WHR (waste heat recovery) potential using a RC (Rankine cycle ). To this end, both a RC thermodynamic model and a heat exchanger model have been developed. Both models use as input, experimental data obtained from a vehicle tested on a chassis dynamometer. The thermodynamic analysis was performed for water, R123 and R245fa and revealed the advantage of using water as the working fluid in applications of thermal recovery from exhaust gases of vehicles equipped with a spark-ignition engine. Moreover, the heat exchanger effectiveness for the organic working fluids R123 and R245fa is higher than that for the water and, consequently, they can also be considered appropriate for use in vehicle WHR applications through RCs when the exhaust gas temperatures are relatively low. For an ideal heat exchanger, the simulations revealed increases in the internal combustion engine thermal and vehicle mechanical efficiencies of 1.4%–3.52% and 10.16%–15.95%, respectively, while for a shell and tube heat exchanger, the simulations showed an increase of 0.85%–1.2% in the thermal efficiency and an increase of 2.64%–6.96% in the mechanical efficiency for an evaporating pressure of 2 MPa. The results confirm the advantages of using the thermal energy contained in the vehicle exhaust gases through RCs. Furthermore, the present analysis demonstrates that improved evaporator designs and appropriate expander devices allowing for higher evaporating pressures are required to obtain the maximum WHR potential from vehicle RC systems. -- Highlights: ► This study evaluates the vehicle exhaust waste heat recovery potential using Rankine cycle systems. ► A thermodynamic model and a heat exchanger model were developed. ► Experimental data obtained in a vehicle tested on a chassis dynamometer was used as models input. ► Thermodynamic analysis was performed for water, R123 and R245fa. ► Results confirm advantages of using the thermal energy

  18. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2010-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in re...

  19. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    OpenAIRE

    Juan Miguel Mantilla; Camilo Andrés Falla; Jorge Arturo Gómez

    2009-01-01

    Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes) which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’...

  20. An Investigation on Exhaustion of SAP ERP Users: Influence of Pace of Change and Technostress

    Directory of Open Access Journals (Sweden)

    Prashanta Kumar Roy

    2017-10-01

    Full Text Available Despite recent growing research interest on ERP research, the understanding on ERP induced exhaustion is still limited. This study examines how the pace of change of ERP functionalities and interface causes exhaustion in workplace. For this purpose, we conducted an investigation on 128 ERP users from two different organizations in Bangladesh. We extended theory of technostress by integrating pace of change of ERP system. Result suggests that pace of change on ERP system significantly affect work-overload, work-life conflict and role ambiguity on ERP users. Result also shows that work-overload and role ambiguity are strong predictors for ERP induced exhaustion.

  1. System design description for portable 1,000 CFM exhauster Skids POR-007/Skid E and POR-008/Skid F

    International Nuclear Information System (INIS)

    Nelson, O.D.

    1998-01-01

    The primary purpose of the two 1,000 CFM Exhauster Skids, POR-007-SKID E and POR-008-SKID F, is to provide backup to the waste tank primary ventilation systems for tanks 241-C-106 and 241-AY-102, and the AY-102 annulus in the event of a failure during the sluicing of tank 241-C-106 and subsequent transfer of sluiced waste to 241-AY-102. This redundancy is required since both of the tank ventilation systems have been declared as Safety Class systems

  2. Disability Surveillance in multiple sclerosis patients before and after methylprednisolone treatment

    Directory of Open Access Journals (Sweden)

    Ghabaae M

    2007-10-01

    Full Text Available Background: Multiple sclerosis (MS is a chronic inflammatory disease of the central nervous system resulting from demyelination and axonal loss. Although treatment of MS has progressed, patients continue to have attacks and treatment for such episodes remains a subject of ongoing study. The object of this study is to determine the effect of intravenous methylprednisolone (IVMP on the degree of disability in MS patients."nMethods: This cross-sectional study involved 63 patients with a definite diagnosis of MS, based on the MacDonald criteria, at the Iranian Center for Neurological Research at Imam Khomeini Hospital, Tehran, Iran, from March 2004 through March 2005. After obtaining informed consent, investigators gathered data including each patient's age, gender, pyramidal activity status, cortical, cerebellar and brain stem activity status, sensory signals in the extremities, including vibration, touch, pain, position, visual status, as well as bladder and intestinal activity, and Expanded Disability Status Scale (EDSS score. SPSS version 11 was used for data analysis."nResults: A five-day regimen of IVMP (5g significantly reduced the immediate post-treatment score from 4.595 to 3.635, which represents a 96% improvement in the EDSS. The greatest change in functional system disability was seen in the pyramidal system with a mean score of 1.13. After treatment, the rate of disability reduction in the sensory system, cerebellum, vision, bladder and intestinal activity was 0.57, 0.49, 0.46, 0.4, and 0.38, respectively. Patients who had experienced fewer relapses responded better to treatment. There was no statistically significant relationship between patient age and the level of response to treatment. However, the rate of disability reduction after treatment was greater in males than females (p=0.05."nConclusion: These results show that IVMP treatment induces an immediate post-treatment effect that could partly account for clinical and

  3. New processes for the reduction and capture of mercury emissions in the exhaust gas treatment; Neue Verfahren zur Minderung und Erfassung von Quecksilber-Emissionen in der Abgasbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Boness, Michael [Sick Maihak GmbH, Meersburg (Germany); Kanefke, Rico [Currenta GmbH und Co. OHG, Leverkusen (Germany). Sonderabfallverbrennung Leverkusen; Vosteen, Bernhard W. [Vosteen Consulting GmbH, Koeln (Germany)

    2013-03-01

    The highly volatile heavy metal mercury is deemed to be very toxic. There exist a lot of natural as well as anthropogenic sources for the pollution of the environment with mercury such as the coal-fired power generation, the electrolytic production of chlorine, the cement burning including the release of mercury from the cement raw meal, the waste incineration and the artisanal production of gold by amalgamation with liquid mercury. The authors of the contribution under consideration report on new procedures for the reduction and capture of mercury emissions in the exhaust gas treatment. The bromine supported precipitation of mercury in the exhaust gas treatment is an efficient and economic process which takes account of the future requirements of lower limit values for mercury. Simultaneously, a new measurement technique for a continuous capture of mercury with new standards on detection sensitivity, accuracy and reliability in connection with a more simple and cost-effective maintenance is developed. The bromine supported precipitation as well as the continuous capture of mercury are trendsetters and are actually the best available technologies for the reduction of mercury emissions.

  4. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  5. Identification of black-box linear models : the case of thermal periodic contact of exhaust valves in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Shojaeefard, M.H.; Fazelpour, M. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Automotive Engineering; Goudarzi, K. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2009-07-01

    In internal combustion engines, hot exhaust gases that pass through the exhaust valve lead to high temperatures in the exhaust valve and the valve seat. Heat must be transferred from the exhaust valve to valve seat as they come in contact with each other during the opening and closing cycle in order to avoid damaging the exhaust valve. The heat transfer rate from the valve to valve seat is a function of many factors, including the thermal contact conductance (TCC) between the valve and valve seat. The objective of this study was to experimentally calculate the TCC for six different frequencies in the quasi-steady-state condition and also to obtain a transfer function to estimate the exhaust valve temperature by using black-box models of system identification. Periodic contact was taken into consideration in the study. The paper presented the experimental setup including the loading system, heat and cooling system, temperature measurement system, specimens properties, and data acquisition system. The paper also described the test procedure and experimental results. System identification was also described. It was concluded that the TCC decreased as the frequency of contact increased. The temperature transfer function was calculated by using the system identification method and having the temperatures at both sides of the contact surface. By knowing the temperature of one rod, the temperature of the other rod was estimated with high accuracy. 16 refs., 4 tabs., 7 figs.

  6. Low pressure EGR system having full range capability

    Science.gov (United States)

    Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir

    2009-09-22

    An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.

  7. Concept of Heat Recovery from Exhaust Gases

    Science.gov (United States)

    Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir

    2017-10-01

    The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.

  8. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  9. Flow effects due to pulsation in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2014-01-01

    Highlights: • Using POD analysis to identify large coherent flow structures in a complex geometry. • Flow field alters significant for constant and pulsating boundary conditions. • The discharge coefficient of the exhaust port decreases 2% with flow pulsation. • Pulsation causes a pumping mechanism due to a phase shift of pressure and momentum. - Abstract: In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the passage guiding the exhaust gasses from the combustion chamber to the energy recovering device, e.g. a turbocharger. Thus, energy losses in the course of transmission shall be reduced as much as possible. However, in one-dimensional engine models used for engine design, the exhaust port is reduced to its discharge coefficient, which is commonly measured under constant inflow conditions neglecting engine-like flow pulsation. In this present study, the influence of different boundary conditions on the energy losses and flow development during the exhaust stroke are analyzed numerically regarding two cases, i.e. using simple constant and pulsating boundary conditions. The compressible flow in an exhaust port geometry of a truck engine is investigated using three-dimensional Large Eddy Simulations (LES). The results contrast the importance of applying engine-like boundary conditions in order to estimate accurately the flow induced losses and the discharge coefficient of the exhaust port. The instantaneous flow field alters significantly when pulsating boundary conditions are applied. Thus, the induced losses by the unsteady flow motion and the secondary flow motion are increased with inflow pulsations. The discharge coefficient decreased about 2% with flow pulsation. A modal flow decomposition method, i.e. Proper Orthogonal Decomposition (POD), is used to analyze the coherent structures induced with the particular

  10. Mechanisms of corrosion, falling short of dew point and formation of corrosion in boilers and exhaust systems. Mechanismen der Korrosionsbildung, der Taupunktunterschreitung und Entstehung von Korrosionen in Kessel- und Abgassystemen

    Energy Technology Data Exchange (ETDEWEB)

    Marx, E.

    1994-09-01

    In order to save energy boilers for heating systems are run on increasingly lower exhaust gas- and boiler temperatures. Combustion as such depends of type of fuel, boiler and burner design, design of exhaust systems and atmospheric disturbance variables. This article looks at the influence which these factors have on corrosion. Falling short of the dew point is an important parameter in this context. Possibilities of avoiding corrosion are explained. (BWI)

  11. Development of exhaust gas treatment technologies for environment protection

    International Nuclear Information System (INIS)

    David, E.; Stefanescu, I.; Stanciu, V.; Niculescu, V.; Sandru, C.; Armeanu, A.; Bucura, F.; Sisu, C.

    2006-01-01

    Full text: The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the immediate term over the next 10 - 20 years at least, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove other pollutants such as SO x and NO x which are released in the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this types of plants. Hence, efficient, cost-effective capture/separation technologies will need to be developed in order to allow their large-scale use. (authors)

  12. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company.

    Science.gov (United States)

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad

    2012-01-01

    Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies.

  13. Acceptance test report for portable exhauster POR-007/Skid E

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    This document describes Acceptance Testing performed on Portable Exhauster POR-007/Skid E. It includes measurements of bearing vibration levels, pressure decay testing, programmable logic controller interlocks, high vacuum, flow and pressure control functional testing. The purpose of Acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-0490, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuum exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document

  14. Vital exhaustion and risk for cancer

    DEFF Research Database (Denmark)

    Bergelt, Corinna; Christensen, Jane Hvarregaard; Prescott, Eva

    2005-01-01

    Vital exhaustion, defined as feelings of depression and fatigue, has previously been investigated mainly as a risk factor for cardiovascular disease. The authors investigated the association between depressive feelings and fatigue as covered by the concept of vital exhaustion and the risk...

  15. Internal combustion engine exhaust pipe flow simulation. Part I: theoretical aspects

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla

    2009-01-01

    Full Text Available Unsteady gas flow theory can be used for simulating a spark ignition internal combustion engine’s exhaust system, using pressure waves. The method explained here is based on the discretization of interpolated spaces (called meshes which are located throughout the whole length of the exhaust pipe, irrespective of its form or size. The most important aspects of this theory are theoretically explored, such as pressure wave movement and shock and their application to cases found in real engines’ exhaust pipes. This work also considers how the simulation must be made, based on the previous exploration. The results (presented as e- quations in this first paper show the great influence exerted by pressure wave movement on flow through the engine and there- fore on its final performance.

  16. Contextualizing Emotional Exhaustion and Positive Emotional Display : The Signaling Effects of Supervisors' Emotional Exhaustion and Service Climate

    NARCIS (Netherlands)

    Lam, Catherine K.; Huang, Xu; Janssen, Onne; Lam, K.C.

    In this study, we investigated how supervisors' emotional exhaustion and service climate jointly influence the relationship between subordinates' emotional exhaustion and their display of positive emotions at work. Using data from frontline sales employees and their immediate supervisors in a

  17. Effects of a process-based cognitive training intervention for patients with stress-related exhaustion.

    Science.gov (United States)

    Gavelin, Hanna Malmberg; Boraxbekk, Carl-Johan; Stenlund, Therese; Järvholm, Lisbeth Slunga; Neely, Anna Stigsdotter

    2015-01-01

    Stress-related exhaustion has been linked to a pattern of selective cognitive impairments, mainly affecting executive functioning, attention and episodic memory. Little is known about potential treatments of these cognitive deficits. The purpose of this study was to evaluate the effects of a process-based cognitive training intervention, designed to target the specific cognitive impairments associated with stress-related exhaustion. To this end, patients diagnosed with exhaustion disorder (ED) were randomized to either a multimodal stress rehabilitation program with the addition of a process-based cognitive training intervention (training group, n = 27) or a treatment-as-usual control condition, consisting of multimodal stress rehabilitation with no additional training (control group, n = 32). Treatment effects were evaluated through an extensive cognitive test battery, assessing both near and far transfer effects, as well as self-report forms regarding subjective cognitive complaints and burnout levels. Results showed pronounced training-related improvements on the criterion updating task (p effects to updating (p = 0.01) and episodic memory (p = 0.04). Also, the trained group reported less subjective memory complaints (p = 0.02) and levels of burnout decreased for both groups, but more so for the trained group (p = 0.04), following the intervention. These findings suggest that process-based cognitive training may be a viable method to address the cognitive impairments associated with ED.

  18. Study of reaction between water and exhaust gases from diesel engines used in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Mazukhina, S.I.; Kalabin, G.V.; Romanov, V.S.

    1988-05-01

    A method of mathematical simulation, based on the principle of local equilibrium of the kinetic components, was proposed for formulating and solving problems related to the combustion of fuel and the treatment of exhaust gases from a diesel engine in underground workings. Results of a study of the effects of exhaust gas quantity and composition on the reaction between the gases and water are presented. It is shown that the kinetic model correlates well with the equilibrium model, adequately describes the process, and gives a reliable picture of the changes over a period of time. The proposed method can be used to study the gas emission with different fuel mixtures and liquid neutralizing agents with a view to reducing the toxicity of diesel-engine exhaust gases.

  19. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation

    International Nuclear Information System (INIS)

    Vale, S.; Heber, L.; Coelho, P.J.; Silva, C.M.

    2017-01-01

    Highlights: • 1-D numerical TEG model in diesel freight vehicles exhaust pipe. • Over 800 W of electrical power for the heavy-duty vehicle. • Plain fins provide better performance than offset strip fins. • The height of the thermocouple legs plays a significant role. • 2% maximum efficiency needs further improvements. - Abstract: A parametric study and optimization approaches of a thermoelectric generator (TEG) for the recovery of energy from the exhaust gas in Diesel vehicles used in freight transport is reported. The TEG is installed in the tailpipe of a commercial vehicle (3.5 tonnes) and a heavy-duty vehicle (40 tonnes). The exhaust gas is used as the heat source and the cooling water as the heat sink. Two different heat exchanger configurations are considered: plain fins and offset strip fins. The influence of the height, length and spacing of the fins on the electrical and net power is analysed for the fixed width and length of the TEG. The influence of the length and width of the TEG and of the height of the thermocouple legs is also investigated. According to the criteria used in this study, plain fins are the best choice, yielding a maximum electrical power of 188 W for the commercial vehicle and 886 W for the heavy-duty vehicle. The best recovery efficiency is about 2%, with an average thermoelectric material efficiency of approximately 4.4%, for the light-duty vehicle. Accordingly, there is significant room for further improvement and optimisation based on the thermoelectric modules and the system design.

  20. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  1. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  2. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-21). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  3. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  4. Vital exhaustion and risk for cancer

    DEFF Research Database (Denmark)

    Bergelt, Corinna; Christensen, Jane Hvarregaard; Prescott, Eva

    2005-01-01

    Vital exhaustion, defined as feelings of depression and fatigue, has previously been investigated mainly as a risk factor for cardiovascular disease. The authors investigated the association between depressive feelings and fatigue as covered by the concept of vital exhaustion and the risk...... for cancer....

  5. Performance of Installed Cooking Exhaust Devices

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

    2011-11-01

    The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

  6. Waste treatment of ships. Change in understanding of wastes and trend of waste treatment systems; Senjo no haikibutsu shori. 1. Haikibutsu ni taisuru ninshiki no henka to shori hoshiki no doko

    Energy Technology Data Exchange (ETDEWEB)

    Inatomi, M. [Hitachi Zosen Corp., Osaka (Japan)

    1996-07-25

    This paper explains treatment of wastes produced in ships. Wastes produced in ships should be essentially treated on ships. Since storage and transport of difficult-to-treat wastes to harbor for land treatment is expensive, wastes produced in ships are treated on ships as much as possible. Combustibles such as waste oil, plastics, paper and wood fiber waste are treated by incinerator. Food waste is dumped into the sea after crushing by disposer. Excrement and urine are dumped into the sea through a waste water treatment plant. Oil content in oily bilge is burned after heating and vapor separation. Food waste is temporarily stored in ships because its dumping along the coast and into harbor is impossible. Kitchen refuse decomposer utilizing bacteria was proposed for ships. Press for used cans and crushing/thermal compaction/storage equipment for plastics were also put on the market. The primary regulation on diesel engine exhaust gas may be cleared by improvement of engine bodies. 1 ref., 1 fig., 1 tab.

  7. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  8. Rehabilitation for improved cognition in patients with stress-related exhaustion disorder: RECO - a randomized clinical trial.

    Science.gov (United States)

    Malmberg Gavelin, Hanna; Eskilsson, Therese; Boraxbekk, Carl-Johan; Josefsson, Maria; Stigsdotter Neely, Anna; Slunga Järvholm, Lisbeth

    2018-04-25

    Stress-related exhaustion has been associated with selective and enduring cognitive impairments. However, little is known about how to address cognitive deficits in stress rehabilitation and how this influences stress recovery over time. The aim of this open-label, parallel randomized controlled trial (ClinicalTrials.gov: NCT03073772) was to investigate the long-term effects of 12 weeks cognitive or aerobic training on cognitive function, psychological health, and work ability for patients diagnosed with exhaustion disorder (ED). One-hundred-and-thirty-two patients (111 women) participating in multimodal stress rehabilitation were randomized to receive additional cognitive training (n = 44), additional aerobic training (n = 47), or no additional training (n = 41). Treatment effects were assessed before, immediately after and one-year post intervention. The primary outcome was global cognitive function. Secondary outcomes included domain-specific cognition, self-reported burnout, depression, anxiety, fatigue and work ability, aerobic capacity, and sick-leave levels. Intention-to-treat analysis revealed a small but lasting improvement in global cognitive functioning for the cognitive training group, paralleled by a large improvement on a trained updating task. The aerobic training group showed improvements in aerobic capacity and episodic memory immediately after training, but no long-term benefits. General improvements in psychological health and work ability were observed, with no difference between interventional groups. Our findings suggest that cognitive training may be a viable method to address cognitive impairments for patients with ED, whereas the effects of aerobic exercise on cognition may be more limited when performed during a restricted time period. The implications for clinical practice in supporting patients with ED to adhere to treatment are discussed.

  9. Quantification of vehicle fleet PM_1_0 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques

    International Nuclear Information System (INIS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-01-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM_1_0 and PM_2_._5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM_2_._5 fraction contributes 66% of PM_1_0 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM_1_0 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM_1_0 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM_1_0 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations. - Highlights: • Calculations of exhaust/non-exhaust particulate emission factors using tunnel sampling and source apportionment techniques. • Non-exhaust emission dominates in the fine particle fraction, considered responsible for adverse human health impacts. • Emission factors for non-exhaust sources (e.g. tyre and brake) were calculated. • Fleet source PM_1_0 emission factor were also calculated, which can be used in dispersion modelling and health risk assessment. • Tukey mean

  10. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  11. A Research on The Exhaust Emission of The Gasoline Engines in Tekirdag

    OpenAIRE

    M.R. Durgut; S. Arin; E.Kilic

    2006-01-01

    The exhaust gases as a result of combustion in internal combustion engines, sump ventilatory systemand vaporization of fuel system are the pollution sources caused by the vehicles. Preventing the pollution inits source is the main method for controlling the pollution: In this study, the exhaust emissions of 1844vehicles with gasoline were examined randomly applied to measuring station. The measured CO, CO2 HC,O2 values were discussed in their suitability to the limits determined by Turkish St...

  12. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    Science.gov (United States)

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. RNs and LPNs: emotional exhaustion and intention to leave.

    Science.gov (United States)

    Havaei, Farinaz; MacPhee, Maura; Dahinten, V Susan

    2016-04-01

    To describe and compare registered nurse (RN) and licensed practical nurse (LPN) emotional exhaustion, intention to leave and reasons for leaving. Different skill mix/care delivery models are being used to address nurse shortages and rising health-care costs. Skill mix may include RNs and LPNs. More LPNs are being employed in areas, such as acute care, that have been previously staffed by all RNs. Little is known about nurse outcomes since the introduction of LPNs to acute care settings. This study was a cross-sectional correlational design. A stratified, random sample of acute care nurses completed surveys via Fluidsurveys. The survey was modelled after the RN4CAST nursing workforce survey. For both groups of nurses higher levels of emotional exhaustion were associated with intention to leave and workload was the most frequent reason cited for intention to leave. More RNs than LPNs cited career advancement as a reason to leave, and more LPNs than RNs identified poor salary as a reason to leave. Emotional exhaustion is linked to intention to leave health care. Nurse managers should address work environment factors associated with turnover intentions, such as professional development opportunities and shared decision-making. © 2015 John Wiley & Sons Ltd.

  14. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  15. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  16. Annual cycle solar energy utilization with seasonal storage. Part 7. Examination on design and control of the system partially recovering exhaust heat of heat pump; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 7. Bubuntekina hainetsu kaishu wo koryoshita baai no sekkei seigyoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    The capacity and performance of the existing system that recovers the overall heating and cooling exhaust heat completely into a seasonal storage tank and the system that discharges the exhaust heat slightly to the outside and recovers it partially were compared and investigated. The system uses a central single-duct discharge system as an air-conditioning system. A heat pump and a flat-plate solar collector installed on the roof of a building are used as the heat source. The seasonal storage tank in the ground just under the building is a cylindrical water tank of 5 m deep with the concrete used as body. The upper surface of a storage tank is heat-insulated by a stylo-platform of 200 mm, and the lower side surface by a stylo-platform of 100 mm. Calculation when the difference in temperature used in a seasonal storage tank is set to 35{degree}C and 25{degree}C was performed for the system that has two control methods. The overall exhaust heat recovery system is almost the same in energy performance as the partial exhaust heat recovery system. The partial exhaust heat recovery system is more advantageous on the economic side. 4 refs., 6 figs., 3 tabs.

  17. University of Missouri research reactor exhaust ventilation/laboratory fume hood upgrade

    International Nuclear Information System (INIS)

    Edwards, C.B. Jr.; McKibben, J.C.; McCracken, C.B.

    1989-01-01

    The University of Missouri research reactor (MURR) facility is located in Research Park, 1 mile south of the Columbia campus. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-and-graphite-reflected core, serviced by six radial beam tubes for research, and has sample irradiation facilities in both a flux trap and in the graphite region. The reactor operates at full power 150 h/week, 52 week/yr, making it one of the best operating schedules and the most extensively used of any university research reactor. This extensive utilization includes many programs, such as radioisotope applications, neutron activation analysis, etc., that depend heavily on fume hoods, glove boxes, and hot cells that put a tremendous demand on the exhaust system. The exhaust system is required to be operable whenever the reactor is operating and must have the capability of being operated from an emergency electrical generator on loss of site electrical power. The originally installed exhaust ventilation system was below needed capacity and, with increased program requirements and system age, the necessity to upgrade the system was paramount. The challenge was to complete the upgrade construction while continuing to operate the reactor and maintain all the other ongoing programs, rather than take the easy way of an extended shutdown. This paper discusses how MURR met this challenge and solved these problems, problems that are similarly experienced by almost all research reactors to some degree when major work is required on critical systems

  18. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  19. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    Science.gov (United States)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  20. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  1. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  2. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts.

    Directory of Open Access Journals (Sweden)

    Frederico D Lima

    Full Text Available BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14 and control (n = 14 groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7 and control (n = 7 rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH content and reduced/oxidized (GSH/GSSG ratio, higher superoxide dismutase (MnSOD activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.

  3. Development of alternative ship propulsion in terms of exhaust emissions

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław

    2016-01-01

    Full Text Available The introduction of new emission limits for exhaust emissions of ship engines contributes to the development of new powertrain solutions. New solutions in the simplest approach concern the reduction of the concentration of sulfur in motor fuels. Typically, the aforementioned fuels have a lower value of viscosity which causes a number of supply system problems. It is becoming more and more common to use fuel cells in engine rooms of various types of marine vessels. Unlike conventional systems that use internal combustion engines, these systems have zero exhaust emissions. Hydrogen, methanol, methane and other substances may be used as a fuel in fuel cells. However, so far the best operating parameters are manifested by cells powered by hydrogen, which is associated with difficulties in obtaining and storing this fuel. Therefore, the use of turbine engines allows the obtaining of large operating and environmental advantages. The paper presents a comparison of the ecological parameters of turbine and piston engines.

  4. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Solution to Reduce Air Environmental Pollution from Ships

    Directory of Open Access Journals (Sweden)

    Phẁm Tân HỚu

    2015-06-01

    Full Text Available Exhaust gas emissions from ships are increasingly polluting the air environment seriously. Therefore, the MARPOL 73/78 Annex VI is applied for all ships from 2017, Annex VI provided that the concentrations of NOx,SOx CO contained in ship’s exhaust gases must be less than 6.4 g/kWh, 0.6 g/kWh, and 5.5g/kWh respectively. Today, there are many solutions to reduce pollution emissions from exhaust gas of ships, such as improving combustion, using oil emulsion, using biofuel,…However, these solutions also have a handful of disadventages such as being unable to thoroughly resoulve problems, high cost, and very difficult to improve the quality of ship exhaust gas emissions for old ships. Exhaust gas treatment method uses a centralized treatment system where exhaust gas from the thermal engines is taken in a centralized treatment system before discharging into the air. After centralized treatment system, in comparision with raw exhaust gas, soot can be reduced by 98%, NOx can be reduced by 75%, SOx can be reduced by 80%. This method of treatment is not only low cost, good quality but also make marine heat-engines still use traditional fuels as well as need not improve its structure.

  6. Effect of diesel generator exhaust pollutants on growth of Vinca ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The effects of exhaust pollutants of generator on root and shoot length, root and shoot weight, number of .... single cylinders with cooling system of air dry. The frequency is 50 .... and reproduction along CO2 gradients. Nonlinear.

  7. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    Science.gov (United States)

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Effect of Exhaust Gas Recirculation (EGR) on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    OpenAIRE

    Khalil Ibrahim Abaas

    2016-01-01

    Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a fo...

  9. Exhaust gas sensors for NO{sub x} storage catalysts and ammonia SCR systems; Abgassensoren fuer NO{sub x}-Speicherkatalysatoren und Ammoniak-SCR-Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Moos, R. [Bayreuth Univ. (DE). Bayreuth Engine Research Center (BERC)

    2008-07-01

    Measuring of the air-to-fuel ratio and/or the exhaust gas oxygen content with the help of an exhaust gas sensor has been established thirty years ago. Whereas the original thimble type lambda probe, which is still shown today in textbooks, is a product of classical ceramic technology, newer sensors are manufactured in planar multilayer technology stemming from electronic technology. This is the basis for additional functionalities like NO{sub x} or ammonia sensitivities. Due to increasing requirements for OBD, the sensor of the future might be a multifunctional device which allows for measuring application specific components as well as lambda in a wide range. From a technical standpoint, it would even today be feasible to manufacture an integrated exhaust gas sensor that can measure ammonia, NO{sub x}, and lambda at the same time. Whether the direct catalyst status diagnosis will become ripe for serial application does not depends only on technical questions and cost considerations but also on the issue whether one is willing to establish a completely novel way of catalyst detection in the exhaust pipe. (orig.)

  10. Test plan for N2 HEPA filters assembly shop stock used on PFP E4 exhaust system

    International Nuclear Information System (INIS)

    DICK, J.D.

    1999-01-01

    At Plutonium Finishing Plant (PFP) and Plutonium Reclamation Facility (PRF) Self-contained HEPA filters, encased in wooden frames and boxes, are installed in the E4 Exhaust Ventilation System to provide confinement of radioactive releases to the environment and confinement of radioactive contamination within designated zones inside the facility. Recently during the routine testing in-leakage was discovered downstream of the Self-contained HEPA filters boxes. This Test Plan describes the approach to conduct investigation of the root causes for the in-leakage of HEPA filters

  11. Are exhaust fans effective in reducing contamination to staff from the Technegas ventilation process?

    International Nuclear Information System (INIS)

    Sam, S.; Ring, M.; Chu, J.; Lin, P.

    2002-01-01

    Full text: To investigate the effectiveness of a Nederman exhaust fan (Edward Keller Industrial products Australia) in removing aerosol contamination released from the Technegas generator. A yellow impermeable gown was worn by the technologist administering the Technegas as per departmental protocol. The exhaust fan was used during administration on alternate day. After each ventilation scan the gown was placed into a clear plastic bag and sealed with tape. A new gown was used for each ventilation scan. The gowns were surveyed for contamination using a Geiger counter, then imaged for 5 minutes using a Picker 2000XP dual head camera. This process was repeated for each ventilation scan Factors such as patient compliance, breathing difficulties, age and sex were documented for each study. Twenty patients were studied 11 - without the exhaust fan and 9 with. The use of the exhaust fan has the potential to significantly reduce contamination from Technegas. Routine use should be considered to maintain the As Low As Reasonably Achievable (ALARA) principle. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. Effect of olive oil on IL-6, TNF-α and cortisol hormone levels in active girls after one session of an exhaustive exercise: a brief report

    Directory of Open Access Journals (Sweden)

    Bakhtyar Tartibian

    2013-09-01

    Full Text Available Background: The aim of this research was to determine the effect of olive oil on interleukin 6 (IL-6, Tumor necrosis factor a (TNF-a and cortisol hormone in response to exhaustive exercise in active girls.Methods: Twenty four healthy girls aged 21-27 years participated in this study. The subjects were randomly assigned to supplement (n=12 and control (n=12 groups. Supplemented group was fed with olive oil for one week. Blood samples were taken in a week before of exercise test, before exercise, immediately and 1 hour after the end of the exercise.Results: There was a significant increase in the level of cortisol, IL-6 and TNF-α in the supplement and control groups in compared with a week before of exercise test and before exercise test (P≤0.05. There was no significant difference in cortisol levels between the two groups (P≥0.05, but there was a significant difference between the levels of TNF-α and IL-6 in immediately and one hour after the end of exercise (P≤0.05. These markers were lower in the supplement group.Conclusion: Our results show olive oil prevent from increasing inflammatory markers in active girls during exhaustive exercise.

  13. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NO x and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NO x and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NO x concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NO x concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ► The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ► Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ► EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  14. TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1996-04-01

    The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User's Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications

  15. Regeneration of nitrobenzene-exhausted granular activated carbon by dielectric barrier discharge method

    International Nuclear Information System (INIS)

    Lan, Tian; Gao, Wenli; Li, Zhongjian; Lei, Lecheng

    2013-01-01

    A novel method for the regeneration of nitrobenzene-exhausted granular activated carbon using dielectric barrier discharge (DBD) was proposed in this study. The influence of several parameters including voltage, frequency, and plasma medium on the regeneration efficiency were studied. Under optimum conditions, regeneration efficiency can reach over 80% and remain nearly stable after 5 times of regeneration cycle. The texture characteristic and surface chemistry of Granular Activated Carbon (GAC) samples were also investigated. Analysis shows that the pore volume and specific surface area of regenerated GAC is strongly recovered compared to the exhausted GAC, but the discharge can cause some pores to diminish. Acidic functional groups on GAC's surface especially carboxylic groups had a growing tendency after DBD process. Experimental results show that the regeneration of GAC by DBD method mainly attributes to high active species and thermal effect, while O 3 has minor effect.

  16. On Gas Dynamics of Exhaust Valves

    OpenAIRE

    Winroth, Marcus

    2017-01-01

    With increasing effects of global warming, efforts are made to make transportation in general more fuel efficient. When it comes to internal combustion engines, the most common way to improve fuel efficiency is through ‘downsizing’. Downsizing means that a smaller engine (with lower losses and less weight) performs the task of a larger engine. This is accomplished by fitting the smaller engine with a turbocharger, to recover some of the energy in the hot exhaust gases. Such engine systems nee...

  17. Pronounced limb and fibre type differences in subcellular lipid droplet content and distribution in elite skiers before and after exhaustive exercise.

    Science.gov (United States)

    Koh, Han-Chow E; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer; Ørtenblad, Niels

    2017-09-01

    Although lipid droplets in skeletal muscle are an important energy source during endurance exercise, our understanding of lipid metabolism in this context remains incomplete. Using transmission electron microscopy, two distinct subcellular pools of lipid droplets can be observed in skeletal muscle - one beneath the sarcolemma and the other between myofibrils. At rest, well-trained leg muscles of cross-country skiers contain 4- to 6-fold more lipid droplets than equally well-trained arm muscles, with a 3-fold higher content in type 1 than in type 2 fibres. During exhaustive exercise, lipid droplets between the myofibrils but not those beneath the sarcolemma are utilised by both type 1 and 2 fibres. These findings provide insight into compartmentalisation of lipid metabolism within skeletal muscle fibres. Although the intramyocellular lipid pool is an important energy store during prolonged exercise, our knowledge concerning its metabolism is still incomplete. Here, quantitative electron microscopy was used to examine subcellular distribution of lipid droplets in type 1 and 2 fibres of the arm and leg muscles before and after 1 h of exhaustive exercise. Intermyofibrillar lipid droplets accounted for 85-97% of the total volume fraction, while the subsarcolemmal pool made up 3-15%. Before exercise, the volume fractions of intermyofibrillar and subsarcolemmal lipid droplets were 4- to 6-fold higher in leg than in arm muscles (P exercise, intermyofibrillar lipid droplet volume fraction was 53% lower (P = 0.0082) in both fibre types in arm, but not leg muscles. This reduction was positively associated with the corresponding volume fraction prior to exercise (R 2  = 0.84, P exercise-induced change in the subsarcolemmal pool could be detected. These findings indicate clear differences in the subcellular distribution of lipid droplets in the type 1 and 2 fibres of well-trained arm and leg muscles, as well as preferential utilisation of the intermyofibrillar pool

  18. Membrane processes for the treatment of exhausted effluents from leather industry; Processi a membrana per il trattamento degli effluenti esausti dell'industria conciaria

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, A.; Molinari, R.; Drioli, E. [Arcavata di Rende Univ. della Calabria, Arcavata di Rende, CS (Italy). Istituto di Ricerca su Membrane e Modellistica di Reattori Chimici

    2001-03-01

    This paper considers the potentiality of some membrane processes such as ultrafiltration (UF), nano filtration (NF) and reverse osmosis (RO), in the treatment of exhausted effluents produced by the tanning cycle, based on the experimental results of the Research Group. [Italian] In questo studio vengono analizzate le potenzialita' applicative di alcuni processi a membrana, quali ultrafiltrazione (UF), nanofiltrazione (NF) e osmosi inversa (Ol), nel trattamento degli effluenti esausti del ciclo conciario, sulla base di risultati sperimentali del gruppo di ricerca del Cnr-Irmerc.

  19. Two stage catalytic converter system to reduce exhaust emissions of HC, CO and NO in a motor vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nagalingam, B; Gopalakrishnan, K V; Murthy, B S

    1978-09-01

    Two-stage catalytic converter system is currently receiving considerable attention as a means to control the primary pollutants, namely, HC, CO and NO in the automobile exhaust. In order to explore the possibility of developing catalysts from indigenous and inexpensive sources of materials, sponge iron for NO reduction and manganese ore pebbles for HC/CO oxidation were tested as candidate-catalysts in an engine dynamometer test bed to study their catalytic activity. The results of these experiments are reported.

  20. Experiment and CFD simulation of exhaust tube in highvoltage circuit breaker

    Directory of Open Access Journals (Sweden)

    Ye Xiangyang

    2018-01-01

    Full Text Available In a high-voltage circuit breaker, the exhaust tube connects the arc zone with the exhaust volume. During the arc interruption process, the exhaust tube transports the hot gas from the arc interruption zone to the exhaust volume through its distributed holes. The design of a high performance exhaust tube in the circuit breaker development aims for well controlled hot gas evacuation mass flow and pressure waves. In this paper, the exhaust tube behaviour is investigated using Computational Fluid Dynamics (CFD. To verify the CFD simulation, a basic experimental study with pressure measurements at different positions of the exhaust tube is performed. Further, the design parameters influencing the exhaust tube behaviour and circuit breaker performance are investigated and discussed.

  1. Performance related factors are the main determinants of the von Willebrand factor response to exhaustive physical exercise.

    Directory of Open Access Journals (Sweden)

    Janine E van Loon

    Full Text Available Physical stress triggers the endothelium to release von Willebrand Factor (VWF from the Weibel Palade bodies. Since VWF is a risk factor for arterial thrombosis, it is of great interest to discover determinants of VWF response to physical stress. We aimed to determine the main mediators of the VWF increase by exhaustive physical exercise.105 healthy individuals (18-35 years were included in this study. Each participant performed an incremental exhaustive exercise test on a cycle ergometer. Respiratory gas exchange measurements were obtained while cardiac function was continuously monitored. Blood was collected at baseline and directly after exhaustion. VWF antigen (VWF:Ag levels, VWF collagen binding (VWF:CB levels, ADAMTS13 activity and common variations in Syntaxin Binding Protein-5 (STXBP5, rs1039084 and rs9399599, Syntaxin-2 (STX2, rs7978987 and VWF (promoter, rs7965413 were determined.The median VWF:Ag level at baseline was 0.94 IU/mL [IQR 0.8-1.1] and increased with 47% [IQR 25-73] after exhaustive exercise to a median maximum VWF:Ag of 1.38 IU/mL [IQR 1.1-1.8] (p<0.0001. VWF:CB levels and ADAMTS13 activity both also increased after exhaustive exercise (median increase 43% and 12%, both p<0.0001. The strongest determinants of the VWF:Ag level increase are performance related (p<0.0001. We observed a gender difference in VWF:Ag response to exercise (females 1.2 IU/mL; males 1.7 IU/mL, p = 0.001, which was associated by a difference in performance. Genetic variations in STXBP5, STX2 and the VWF promoter were not associated with VWF:Ag levels at baseline nor with the VWF:Ag increase.VWF:Ag levels strongly increase upon exhaustive exercise and this increase is strongly determined by physical fitness level and the intensity of the exercise, while there is no clear effect of genetic variation in STXBP5, STX2 and the VWF promoter.

  2. Compensability index for compensation radiotherapy after treatment interruptions

    International Nuclear Information System (INIS)

    Putora, Paul Martin; Schmuecking, Michael; Aebersold, Daniel; Plasswilm, Ludwig

    2012-01-01

    The goal of our work was to develop a simple method to evaluate a compensation treatment after unplanned treatment interruptions with respect to their tumour- and normal tissue effect. We developed a software tool in java programming language based on existing recommendations to compensate for treatment interruptions. In order to express and visualize the deviations from the originally planned tumour and normal tissue effects we defined the compensability index. The compensability index represents an evaluation of the suitability of compensatory radiotherapy in a single number based on the number of days used for compensation and the preference of preserving the originally planned tumour effect or not exceeding the originally planned normal tissue effect. An automated tool provides a method for quick evaluation of compensation treatments. The compensability index calculation may serve as a decision support system based on existing and established recommendations

  3. Removing method for radon gas exhausted from nuclear fuel material

    International Nuclear Information System (INIS)

    Kato, Kenji.

    1993-01-01

    A centrifugal separator is disposed in the midway of an exhaustion pipe of a nuclear fuel handling facility, and exhausted gases are sent into a rotational cylinder of the separator. Radon gases in the midway of exhaustion are separated from the exhaustion gases by the centrifugal force of the separator and caused to stagnate at the periphery of the circumferential wall of the rotational cylinder. At the same time, the exhaustion gases having the radon gases separated therefrom are exhausted from the periphery of a rotational shaft of the rotational cylinder. Then, the radon gases stagnated in the rotational cylinder are decayed depending on the half-decay time. With such procedures, the radon gases can be removed continuously without discharging them to the outside. Further, it is preferred that an exhaustion blower or the like for putting the inside of the nuclear fuel handing facility to a negative pressure is disposed as in a conventional case. Further, a plurality of centrifugal separators may be disposed to exhaustion pipes, to remove radon gases in the exhaust gases by a multi stage way. Radon gases can be removed in a saved space with no requirement for exchange of adsorbents or temperature control. (T.M.)

  4. Association of periodontal disease with systemic health indices in dogs and the systemic response to treatment of periodontal disease.

    Science.gov (United States)

    Rawlinson, Jennifer E; Goldstein, Richard E; Reiter, Alexander M; Attwater, Daniel Z; Harvey, Colin E

    2011-03-01

    To determine whether severity of periodontal disease (PD) was associated with systemic health indices in dogs and whether treatment of PD altered systemic health indices. Prospective cohort study. 38 dogs. Healthy dogs with clinical signs of PD were included in the study. Physical examination, serum biochemical analysis, a CBC, urine evaluation, measurement of serum C-reactive protein (CRP) concentration, and a microalbuminuria test were performed prior to treatment of PD. All tooth roots were scored for gingivitis and attachment loss, and appropriate treatment of PD was performed. Laboratory data were obtained 4 weeks after treatment. The Spearman rank correlation and Wilcoxon signed rank test were used for statistical analysis. Analyses of the correlation of several variables with attachment loss or gingivitis or of differences before and after treatment revealed significant results for several variables. After applying Bonferroni corrections for family-wise error rate, significant rank correlations were found between attachment loss and platelet number (r = 0.54), creatinine concentration (r = -0.49), and the within-dog difference in CRP concentrations before and after treatment (r = 0.40). The BUN concentration was significantly higher after treatment than before treatment. Increasing severity of attachment loss was associated with changes in systemic inflammatory variables and renal indices. A decrease in CRP concentration after treatment was correlated with the severity of PD. The BUN concentration increased significantly after treatment of PD. There is a need for continued research into the systemic impact of PD.

  5. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  6. The effect of exhaust plume/afterbody interaction on installed Scramjet performance

    Science.gov (United States)

    Edwards, Thomas Alan

    1988-01-01

    Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has

  7. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    Science.gov (United States)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  8. Particle exhaust studies in Tore Supra with a pump limiter

    International Nuclear Information System (INIS)

    Klepper, C.C.; Haste, G.R.; Horton, L.D.; Mioduszewski, P.K.; Uckan, T.; Bonnel, P.; Bruneau, J.L.; Chatelier, M.; Gil, C.; Grisolia, C.; Loarer, T.; Martin, G.; Pegourie, B.; Rodriguez, L.; Watkins, J.G.

    1990-01-01

    The aim of the Tore Supra pump limiter program is to study particle exhaust with a pump limiter system in long-pulse discharges with continuous pellet fueling and strong auxiliary heating. The pump limiter system consists of six vertical modules, located at the bottom of the machine, and one horizontal module at the outer midplane. The results presented here were obtained with the horizontal module only. This module was equipped with two titanium pumps with a total pumping speed of 100000 L/s. The instrumentation of the limiter included pressure gauges, a residual gas analyzer, Langmuir probes, a spectrometer viewing the neutralizer plate for H α and impurity measurements, and water calorimeters. All diagnostics have been commissioned and are operational. Initial results were obtained in low-density discharges, with no gas puffing during the shot. While only a modest effect on the plasma density was observed, large exhaust fluxes were measured in the pump limiter. The most likely source of this gas was outgassing of the graphite walls. Straightforward particle balance between the plasma efflux and the pump limiter exhaust, as applied in previous pump limiter experiments, did not apply. The core plasma and the edge plasma seemed to be largely decoupled and a multi-layer model is being developed to explain the experimental results. (orig.)

  9. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Science.gov (United States)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  10. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2010-09-01

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two ''off the shelf'' units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow

  11. Preliminary Experimental Study on Pressure Loss Coefficients of Exhaust Manifold Junction

    Directory of Open Access Journals (Sweden)

    Xiao-lu Lu

    2014-01-01

    Full Text Available The flow characteristic of exhaust system has an important impact on inlet boundary of the turbine. In this paper, high speed flow in a diesel exhaust manifold junction was tested and simulated. The pressure loss coefficient of the junction flow was analyzed. The steady experimental results indicated that both of static pressure loss coefficients L13 and L23 first increased and then decreased with the increase of mass flow ratio of lateral branch and public manifold. The total pressure loss coefficient K13 always increased with the increase of mass flow ratio of junctions 1 and 3. The total pressure loss coefficient K23 first increased and then decreased with the increase of mass flow ratio of junctions 2 and 3. These pressure loss coefficients of the exhaust pipe junctions can be used in exhaust flow and turbine inlet boundary conditions analysis. In addition, simulating calculation was conducted to analyze the effect of branch angle on total pressure loss coefficient. According to the calculation results, total pressure loss coefficient was almost the same at low mass flow rate of branch manifold 1 but increased with lateral branch angle at high mass flow rate of branch manifold 1.

  12. Heat-pipe assisted thermoelectric generators for exhaust gas applications

    OpenAIRE

    Gonçalves, L. M.; Martins, Jorge; Antunes, Joaquim; Rocha, Romeu; Brito, F. P.

    2012-01-01

    Millions of hybrid cars are already running on our roads with the purpose of reducing fossil fuel dependence. One of their main advantages is the recovery of wasted energy, namely by brake recovery. However, there are other sources of wasted energy in a car powered by an internal combustion engine, such as the heat lost through the cooling system, lubrication system (oil coolers) and in the exhaust system. These energies can be recuperated by the use of thermoelectric generators (TEG) based o...

  13. Development of biological treatment of high concentration sodium nitrate waste liquid

    International Nuclear Information System (INIS)

    Ogawa, Naoki; Kuroda, Kazuhiko; Shibata, Katsushi; Kawato, Yoshimi; Meguro, Yoshihiro; Takahashi, Kuniaki

    2009-01-01

    An electrolytic reduction, chemical reduction, and biological reduction have been picked up as a method of nitrate liquid waste treatment system exhausted from the reprocessing process. As a result of comparing them, it was shown that the biological treatment was the most excellent method in safety and the economy. (author)

  14. Laboratory study of subjective perceptions to low temperature heating systems with exhaust ventilation in Nordic countries

    DEFF Research Database (Denmark)

    Jin, Quan; Simone, Angela; Olesen, Bjarne W.

    2017-01-01

    Given the global trends of rising energy demand and the increasing utilization of low-grade renewable energy, low-temperature heating systems can play key roles in improving building energy efficiency while providing a comfortable indoor environment. To meet the need to retrofit existing buildings...... in Nordic countries for greater energy efficiency, this study focused on human subjects’ thermal sensation, thermal comfort, thermal acceptability, draft acceptability, and perceived air quality when three low-temperature heating systems were used: conventional radiator, ventilation radiator, or floor...... heating with exhaust ventilation. Human subject tests were carried out in the climate chamber at the Technical University of Denmark. In total, 24 human subjects, 12 females and 12 males, participated in the tests during the winter season. The results show that no significant differences in thermal...

  15. Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition

    International Nuclear Information System (INIS)

    Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.

    2015-01-01

    In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30° angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50 and 100%) and four water mass flow rates (50, 40, 30 and 20 g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition. - Highlights: • A vortex generator heat exchanger is used for diesel exhaust heat recovery. • A thermodynamic analysis is performed for experimental data. • Exergy recovery, irreversibility are calculated in different exhaust gases amount. • Optimization study is performed using response surface method

  16. Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

    OpenAIRE

    H. Hazar; S. Sap

    2017-01-01

    In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating th...

  17. Compensability index for compensation radiotherapy after treatment interruptions

    Directory of Open Access Journals (Sweden)

    Putora Paul

    2012-12-01

    Full Text Available Abstract Background The goal of our work was to develop a simple method to evaluate a compensation treatment after unplanned treatment interruptions with respect to their tumour- and normal tissue effect. Methods We developed a software tool in java programming language based on existing recommendations to compensate for treatment interruptions. In order to express and visualize the deviations from the originally planned tumour and normal tissue effects we defined the compensability index. Results The compensability index represents an evaluation of the suitability of compensatory radiotherapy in a single number based on the number of days used for compensation and the preference of preserving the originally planned tumour effect or not exceeding the originally planned normal tissue effect. An automated tool provides a method for quick evaluation of compensation treatments. Conclusions The compensability index calculation may serve as a decision support system based on existing and established recommendations.

  18. Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions

    Science.gov (United States)

    Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng

    The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.

  19. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    Directory of Open Access Journals (Sweden)

    Mahdi Jamshidi Rastani

    2016-06-01

    Full Text Available Introduction: Adherence to the design values and ventilation standards (VS after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS and design values. Material and Method: The present research is a descriptive and cross-sectional study, conducted in three sections of measuring, monitoring and evaluating the operating parameters on hoods, channels and fan of ventilation system based on the current status of the system, documentation (design, and recommended standards (VS. Static pressure, velocity pressure, surface area, and flow rate were measured based on the recommendations of various sources and ACGIH industrial ventilation manual, and the data were compared with the design and recommended values, using the SPSS software version 16.   Result: The results of paired sample t-test between flow rate and velocities of design and current status, showed significant differences in various parts. Accordingly, the results revealed a reduction of more than 50% in the design duct velocity compared to the current duct velocity, while design duct velocity is 1.3 more than the standard duct velocity of current status, and current duct velocity is about 65% of standard duct velocity. Conclusion: The reduction and nonconformity of the results of measurements of operating parameters (after a minimum of two decades with design and standard values are corroborant and sufficient reason for obstructions, abrasions, leaks, imbalance of system ducts and their inefficiency in some branches. Since there is no base line measurements for system (supposing that the system worked with maximum amounts of setup time, one of the reasons for these

  20. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Sprouse, Charles; Depcik, Christopher

    2013-01-01

    Escalating fuel prices and future carbon dioxide emission limits are creating a renewed interest in methods to increase the thermal efficiency of engines beyond the limit of in-cylinder techniques. One promising mechanism that accomplishes both objectives is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. This paper reviews the history of internal combustion engine exhaust waste heat recovery focusing on Organic Rankine Cycles since this thermodynamic cycle works well with the medium-grade energy of the exhaust. Selection of the cycle expander and working fluid are the primary focus of the review, since they are regarded as having the largest impact on system performance. Results demonstrate a potential fuel economy improvement around 10% with modern refrigerants and advancements in expander technology. -- Highlights: ► This review article focuses on engine exhaust waste heat recovery works. ► The organic Rankine cycle is superior for low to medium exergy heat sources. ► Working fluid and expander selection strongly influence efficiency. ► Several authors demonstrate viable systems for vehicle installation

  1. Gastrointestinal cancer after treatment of Hodgkin's disease

    International Nuclear Information System (INIS)

    Birdwell, Sandra H.; Hancock, Steven L.; Varghese, Anna; Cox, Richard S.; Hoppe, Richard T.

    1997-01-01

    Purpose: This study aimed to quantify the risk of gastrointestinal cancer following Hodgkin's disease treatment according to age at treatment, type of treatment, and anatomic sites. Methods and Materials: Cases were identified from the records of 2,441 patients treated for Hodgkin's disease between 1961 and 1994. Follow-up averaged 10.9 years, representing 26,590 person-years of observation. Relative risks (RR) for gastrointestinal cancer incidence and mortality were computed by comparison with expected annualized rates for a general population matched for age, sex, and race. Results: Gastrointestinal cancers developed in 25 patients. The incidence RR was 2.5 [95% confidence interval (CI), 1.5-3.5] and mortality RR was 3.8 (CI, 2.4-4.7). Sites associated with significantly increased risks included the stomach [RR 7.3 (CI, 3.4-13.8)], small intestine [RR 11.6 (CI, 1.9-38.3)], and pancreas [RR 3.5 (CI, 1.1-8.5)]. Risk was significantly elevated after combined modality therapy, RR 3.9 (CI, 2.2-5.6). The risk after radiotherapy alone was 2.0 (CI, 1.0-3.4), not a statistically significant elevation. The RR for gastrointestinal cancer was greatest after treatment at young age and decreased with advancing age. It was significantly elevated within 10 years after treatment [RR 2.0 (CI, 1.1-3.5)] and increased further after 20 years [RR 6.1 (CI, 2.5-12.7)]. Risk assessed by attained age paralleled risk according to age at treatment. Fifteen cases of gastrointestinal cancers arose within the irradiation fields. Conclusion: Patients treated for Hodgkin's disease are at modestly increased risk for secondary gastrointestinal cancer, especially after combined modality therapy and treatment at a young age. Risk was highest more than 20 years after treatment, but was significantly elevated within 10 years. Gastrointestinal sites with increased risk included the stomach, pancreas, and small intestine

  2. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.

    2003-01-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO x ), carbon dioxide (CO 2 ) and carbon monoxide (CO). In addition, O 2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO x ) and carbon dioxide (CO 2 ) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O 2 ) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO x gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO x but increased the particulate matter concentrations in the exhaust gases

  3. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdeh, Nidal H. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    2003-11-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO{sub x}), carbon dioxide (CO{sub 2}) and carbon monoxide (CO). In addition, O{sub 2} concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO{sub x}) and carbon dioxide (CO{sub 2}) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O{sub 2}) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO{sub x} gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO{sub x} but increased the particulate matter concentrations in the exhaust gases. (Author)

  4. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  5. The 4D-var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere

    Science.gov (United States)

    Ssessanga, Nicholas; Kim, Yong Ha; Choi, Byungyu; Chung, Jong-Kyun

    2018-03-01

    We have developed a four-dimensional variation data assimilation technique (4D-var) and utilized it to reconstruct three-dimensional images of the ionospheric hole created during Kwangmyongsong-4 rocket launch. Kwangmyongsong-4 was launched southward from North Korea Sohae space center (124.7°E, 39.6°N) at 00:30 UT on 7 February 2016. The data assimilated were Global Positioning System total electron content from the South Korean Global Positioning System-receiver network. Due to lack of publicized information about Kwangmyongsong-4, the rocket was assumed to inherit its technology from previous launches (Taepodong-2). The created ionospheric hole was assumed to be made by neutral molecules, water (H2O) and hydrogen (H2), deposited in exhaust plumes. The dispersion model was developed based on advection and diffusion equation, and a simple asymmetric diffusion model assumed. From the analysis, using the adjoint technique, we estimated an ionospheric hole with the largest depletion existing around 6-7 min after launch and gradually recovering within 30 min. These results are in agreement with temporal total electron content analyses of the same event from previous studies. Furthermore, Kwangmyongsong-4 second stage exhaust emissions were estimated as 1.9 × 1026 s-1 of which 40% was H2 and the rest H2O.

  6. Experimental and simulation-based investigations of marine diesel engine performance against static back pressure

    NARCIS (Netherlands)

    Sapra, H.D.; Godjevac, M.; Visser, K.; Stapersma, D.; Dijkstra, Chris

    2017-01-01

    After-treatment technologies are adopted in automobiles and ships to meet strict emission regulations, which increase exhaust back pressure. Furthermore, underwater exhaust systems are employed on board ships to save space, and reduce noise and pollution on working decks. However, water at

  7. Exhausted implanted pulse generator in sacral nerve stimulation for faecal incontinence: What next in daily practice for patients?

    Science.gov (United States)

    Duchalais, Emilie; Meurette, Guillaume; Perrot, Bastien; Wyart, Vincent; Kubis, Caroline; Lehur, Paul-Antoine

    2016-02-01

    The efficacy of sacral nerve stimulation in faecal incontinence relies on an implanted pulse generator known to have a limited lifespan. The long-term use of sacral nerve stimulation raises concerns about the true lifespan of generators. The aim of the study was to assess the lifespan of sacral nerve stimulation implanted pulse generators in daily practice, and the outcome of exhausted generator replacement, in faecal incontinent patients. Faecal incontinent patients with pulse generators (Medtronic Interstim™ or InterstimII™) implanted in a single centre from 2001 to 2014 were prospectively followed up. Generator lifespan was measured according to the Kaplan-Meier method. Patients with a generator explanted/turned off before exhaustion were excluded. Morbidity of exhausted generator replacement and the outcome (Cleveland Clinic Florida Faecal Incontinence (CCF-FI) and Faecal Incontinence Quality of Life (FIQL) scores) were recorded. Of 135 patients with an implanted pulse generator, 112 (InterstimII 66) were included. Mean follow-up was 4.9 ± 2.8 years. The generator reached exhaustion in 29 (26%) cases. Overall median lifespan of an implanted pulse generator was approximately 9 years (95% CI 8-9.2). Interstim and InterstimII 25th percentile lifespan was 7.2 (CI 6.4-8.3) and 5 (CI 4-not reached) years, respectively. After exhaustion, generators were replaced, left in place or explanted in 23, 2 and 4 patients, respectively. Generator replacement was virtually uneventful. CCF-FI/FIQL scores remained unchanged after generator replacement (CCF-FI 8 ± 2 vs 7 ± 3; FIQL 3 ± 0.6 vs 3 ± 0.5; p = ns). In this study, the implanted pulse generator observed median lifespan was 9 years. After exhaustion, generators were safely and efficiently replaced. The study also gives insight into long-term needs and costs of sacral nerve stimulation (SNS) therapy.

  8. Experimental exposure to diesel exhaust increases arterial stiffness in man

    Directory of Open Access Journals (Sweden)

    Newby David E

    2009-03-01

    Full Text Available Abstract Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 μg/m3 or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA, as well as at the femoral and carotid arteries for pulse wave velocity (PWV. PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP, augmentation index (AIx and time to wave reflection (Tr were calculated. Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02 and in AIx of 7.8% (p = 0.01, along with a 16 ms reduction in Tr (p = 0.03, 10 minutes post-exposure. Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.

  9. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  10. Experimental Study on the Plasma Purification for Diesel Engine Exhaust Gas

    Science.gov (United States)

    Chen, Jing; Zu, Kan; Wang, Mei

    2018-02-01

    It is known that the use of ternary catalysis is capable of significantly reducing the emission of pollutants from petrol vehicles. However, the disadvantages such as the temperature and other limitations make it unsuitable for diesel engines. The plasma-assisted catalyst technology has been applied in dealing with the diesel exhaust in the experiment in order to do further research on the effects of plasma in exhaust processing. The paper not only includes the experimental observation on the change of particle concentration after the operation of purification device, but also builds the kinetic model of chemical reactions to simulate the reactions of nitrogen oxides in plasma through using the software of Matlab, then compares the calculation results with experimental samples and finally gets some useful conclusions in practice.

  11. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.

    2010-11-01

    The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range

  12. Three-dimensional approach to exhaust gas energy analysis

    Science.gov (United States)

    Sekavčnik, M.; Ogorevc, T.; Katrašnik, T.; Rodman-Oprešnik, S.

    2012-06-01

    Presented work is based on an extensive CFD simulation of the exhaust stroke of a single-cylinder four-stroke internal combustion engine with the exhaust manifold attached. Since the dynamics of the exhaust flow are extremely 3D, an innovative approach to calculate the local entropy generation is developed and implemented in the discussed 3D numerical model. It allows temporal and spatial determination of critical regions and periods of entropy generation in the process with objective to reduce it.

  13. An analytical study on the performance of the organic Rankine cycle for turbofan engine exhaust heat recovery

    Science.gov (United States)

    Saadon, S.; Abu Talib, A. R.

    2016-10-01

    Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.

  14. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  15. [Acute and remote biochemical and physiological effects of exhaustive weightlifting exercise].

    Science.gov (United States)

    Minigalin, A D; Shumakov, A R; Baranova, T I; Danilova, M A; Kalinskiĭ, M I; Morozov, V I

    2011-01-01

    The goal of the work was a study of exhaustive weightlifting exercise effect on prolonged changes in physiological and biochemical variables characterized functional status of skeletal muscles. An exercise gave rise to significant blood lactate concentration increase that was indicative of an anaerobic metabolism to be a predominant mechanism of muscle contraction energy supply. A reduction of m. rectus femoris EMG activity (amplitude and frequency), tonus of tension and an increase in tonus of relaxation were found immediately after exercise. Both EMG amplitude and frequency were increased 1 day post-exercise. However, after 3 days of recovery, EMG amplitude and frequency were decreased again and, in parallel, blood serum creatine kinase (CK) activity was significantly increased. After 9 recovery days, all measured variables with the exception of CK were normalized. A significant reverse correlation was found between blood serum lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tonus variables were observed to be significantly reversely correlated on the 3rd post-exercise day. Presented data demonstrate that exhaustive exercise-induced muscle injury resulted in phase alterations in electrical activity and tonus which correlated with lactate concentration and CK activity in blood serum.

  16. Biological regeneration of phenol-loaded activated carbon (up flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Mirajuddin; Martin, R.J.

    1995-01-01

    This paper represents the report on the biological regeneration of totally activated carbon following the experimental studies carried out at the University of Birmingham, U.K. Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon. This study deals with in situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration for a given adsorbate were studied. The research investigated the extent of bio regeneration for phenol of concentration 50 mg/l. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initialing exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the duration of regeneration for a fixed initial biomass content of the bioreactor. The regenerated phenol loaded GAC bed had nearly gained its original adsorption after the 5-day period of regeneration. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  17. Treatment of exhausted tannin liquors of the leather industry by nano filtration; Tratamiento por nanofiltracion de los licores agotados de taninos en la industria del curtido

    Energy Technology Data Exchange (ETDEWEB)

    Adzet, J.; Buonomenna, M. G.; Cassano, A.; Drioli, E.; Molineri, R.

    2002-07-01

    The use of a nano filtration process is described in order to rationalize the vegetable tonnage step in leather industry through the recovery of tannins from the exhausted baths and their reuse as tanning agents. The results obtained on pilot scale using a membrane module, identified after a screening of various nano filtration membranes, the operating and fluid-dynamic conditions and the mass balance of the nano filtration process are reported and discussed. Skins treated with the recovered solutions revealed chemical and physical parameters very similar to those measured on control skins tanned with standard solutions. According to the obtained results, it is possible to suggest a process scheme that, starting from the exhausted tanning baths, through a nano filtration membrane purification/concentration, permits to increase the tannin/non tannin ratio of the retentate solution. Advantages are in terms of: reduction of environmental impact, simplification of cleaning-up processes of wastewaters, decrease of disposal costs, saving of chemicals and water. (Author)

  18. Utilization of sodium bicarbonate for the neutralization of acid components in exhaust gases; Verwendung von Natriumbicarbonat zur Neutralisation saurer Bestandteile in Abgasen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas [Solvay Chemicals GmbH, Rheinberg (Germany). Technisches Marketing

    2013-03-01

    The SOLVAIR dry process using sodium bicarbonate as absorbent facilitates an uncomplicated and efficient purification of exhaust gases from different processes. The products from exhaust gas purification can be used either directly in a producing process or subsequently to a treatment process in the chemical process. The author of this contribution reports on the utilization of sodium bicarbonate in the neutralisation of pour components in exhaust gases such as hydrochloric acid, sulphur dioxide and nitrous dioxides. Further aspects of this contribution are the energy efficiency and the recycling of reaction products.

  19. Psychosocial work environment and emotional exhaustion among middle-aged employees

    Directory of Open Access Journals (Sweden)

    Saastamoinen Peppiina

    2011-04-01

    Full Text Available Abstract Background This study examined the associations of job control, organizational justice and bullying at the workplace with emotional exhaustion. This was done by adjusting firstly for age and occupational class, secondly physical work factors, thirdly mutually adjusting for the three psychosocial factors and fourthly adjusting for all studied variables simultaneously. Data were derived from the Helsinki Health Study baseline surveys conducted in 2001 and 2002, including 40-60-year-old employees of the City of Helsinki (n = 5819, response rate 66%. Exhaustion was measured with a six-item subscale from Maslach Burnout Inventory (MBI. Psychosocial factors included Karasek's job control, organizational justice and bullying at the workplace. Logistic regression analysis was used. Results Among women 23% and among men 20% reported symptoms of emotional exhaustion. Among women all psychosocial factors were associated with exhaustion when adjusted for age and occupational class as confounders. When physical work factors were additionally adjusted for, the associations slightly attenuated but remained. When psychosocial work factors were simultaneously adjusted for each other, their associations with exhaustion attenuated but remained. Among men all psychosocial factors were associated with exhaustion when adjusted for confounders only. When adjusted for physical work factors the associations slightly attenuated. When psychosocial factors were simultaneously adjusted for each other, associations of organizational justice and bullying with exhaustion attenuated but remained whereas job control lost its association. Conclusions Identifying risk factors for emotional exhaustion is vital for preventing subsequent processes leading to burnout. Psychosocial factors are likely to contribute to exhaustion among female as well as male employees. Thus management and occupational health care should devote more attention to the psychosocial work environment

  20. Literature review supporting assessment of potential radionuclides in the 291-Z exhaust ventilation

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Ballinger, M.Y.; Jette, S.J.; Thomas, L.M. Glissmeyer, J.A.; Davis, W.E.

    1994-08-01

    This literature review was prepared to support a study conducted by Pacific Northwest Laboratory to assess the potential deposition and resuspension of radionuclides in the 291-Z ventilation exhaust building located in the 200 West Area of the US Department of Energy's Hanford Project near Richland, Washington. The filtered ventilation air from three of the facilities at the Plutonium Finishing Plant (PFP) complex are combined together in the 291-Z building before discharge through a common stack. These three facilities contributing filtered exhaust air to the discharge stream are (1) the PFP, also known as the Z-Plant or 234-5Z, (2) the Plutonium Reclamation Facility (PRF or 236-Z), and (3), the Waste Incinerator Building (WIB or 232-Z). The 291-Z building houses the exhaust fans that pull air from the 291-Z central collection plenum and exhausts the air to the stack. Section 2.0 of this report is a description of the physical characteristic of the ventilation system from the High Efficiency Particulate Air (HEPA) filters to the exhaust stack. A description of the processes performed in the facilities that are vented through 291-Z is given in Section 3.0. The description focuses on the chemical and physical forms of potential aerosols given off from the unit operations. A timeline of the operations and events that may have affected the deposition of material in the ventilation system is shown. Aerosol and radiation measurements taken in previous studies are also discussed. Section 4.0 discusses the factors that influence particle deposition and adhesion. Mechanisms of attachment and resuspension are covered with specific attention to the PFP ducts. Conclusions and recommendations are given in Section 5.0

  1. Avoiding the Use of Exhausted Drinking Water Filters: A Filter-Clock Based on Rusting Iron

    Directory of Open Access Journals (Sweden)

    Arnaud Igor Ndé-Tchoupé

    2018-05-01

    Full Text Available Efficient but affordable water treatment technologies are currently sought to solve the prevalent shortage of safe drinking water. Adsorption-based technologies are in the front-line of these efforts. Upon proper design, universally applied materials (e.g., activated carbons, bone chars, metal oxides are able to quantitatively remove inorganic and organic pollutants as well as pathogens from water. Each water filter has a defined removal capacity and must be replaced when this capacity is exhausted. Operational experience has shown that it may be difficult to convince some low-skilled users to buy new filters after a predicted service life. This communication describes the quest to develop a filter-clock to encourage all users to change their filters after the designed service life. A brief discussion on such a filter-clock based on rusting of metallic iron (Fe0 is presented. Integrating such filter-clocks in the design of water filters is regarded as essential for safeguarding public health.

  2. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    Science.gov (United States)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  3. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  4. [Evaluation of autonomic nervous system function with heart rate variability analysis in patients with hyperthyroidism and during euthyroidism after pharmacologic and surgical treatment].

    Science.gov (United States)

    Barczyński, M; Tabor, S; Thor, P

    1997-01-01

    The aim of the present study was both to estimate autonomic nervous system (ANS) function in patients with hyperthyroidism by the heart rate variability (HRV) analysis and to evaluate the impact of pharmacological and surgical treatment on the ANS function. Analysis of the HRV underwent 10 female patients in course of thyreotoxicosis and after reaching full clinical and biochemical euthyroidism, after pharmacological therapy and in month after surgical treatment. The 10 minutes records at rest, in horizontal position were evaluated. The HRV parameters like mean of the heart rate, mean of RR intervals, standard deviation of all normal RR intervals (SDNN), range of the heart rate variability, low frequency (LF), high frequency (HF) components of the heart rate power spectral density and LF/HF ratio were assessed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. The statistical significance (p hyperthyroidism in comparison to the control group (151.6/346.8 ms; 2.4/0.74; 24.4/57.2 ms2). In course of pharmacological euthyroidism there were statistically significant (p hyperthyroidism (270/151.6 ms; 0.995/2.4; 39/24.4 ms2). In euthyroidism after surgical treatment all the above parameters kept the similar levels as in pharmacological euthyroidism (no statistical significance for p hyperthyroid patients there is advantage of sympathetic part of ANS over parasympathetic one which is due to sharp reduction of parasympathetic system activity. Pharmacological therapy with thyreostatics normalises balance of ANS to the level of the control group and after surgical treatment the balance keeps the same. Moreover, in the estimation of ANS as important as LF/HF ratio is the mean range of RR intervals.

  5. Muscle interstitial potassium kinetics during intense exhaustive exercise

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Mohr, Magni; Pedersen, Lasse Dannemann

    2003-01-01

    Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma...... was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 m......M at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P exercise period in AL compared with L (9.2 +/- 0.7 vs. 6.4 +/- 0.9 mM; P

  6. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 1: Design layouts

    Science.gov (United States)

    Nelson, D. P.

    1981-01-01

    The design layouts and detailed design drawings of coannular exhaust nozzle models for a supersonic propulsion system are presented. The layout drawings show the assembly of the component parts for each configuration. A listing of the component parts is also given.

  7. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of ...

  8. Bilingual children with primary language impairment: 3 months after treatment.

    Science.gov (United States)

    Pham, Giang; Ebert, Kerry Danahy; Kohnert, Kathryn

    2015-01-01

    Evidence on the treatment effectiveness for bilingual children with primary language impairment (PLI) is needed to advance both theory and clinical practice. Of key interest is whether treatment effects are maintained following the completion of short-term intense treatments. To investigate change in select language and cognitive skills in Spanish-English bilingual children with PLI 3 months after children have completed one of three experimental treatment conditions. There are two main study aims. First, to determine if skills in Spanish, English and cognitive processing decline, improve or are maintained after treatment has been completed. Second, to determine if differential rates of change are a function of the type of treatment children received. Participants were 48 children, aged 5:6-11:3, who spoke Spanish and English and were diagnosed with moderate to severe PLI. Participants received 6 weeks of treatment focused on English only (EO), bilingual skills in Spanish and English (BI) or nonlinguistic cognitive processing (NCP). Treatment effects reported in a previous study were determined by comparing pre- and post-treatment performance on a variety of language and cognitive measures. Here we re-administered each measure 3 months after completion of the experimental treatments. Hierarchical linear models were calculated for each measure using pre-, post- and follow-up testing scores to estimate change trajectories and compare outcomes between treatment conditions. Participants in all three treatment conditions either maintained skills or showed improvement even after treatment was discontinued for 3 months. Main findings included (1) comparable, positive rates of change on all English language outcomes for EO and BI conditions; (2) maintenance of Spanish language skills, and (3) modest improvements in NCP following the discontinuation of treatment. This study is the first to examine longer-term treatment effects for bilingual school-age children with PLI

  9. Bilingual children with primary language impairment: 3 months after treatment

    Science.gov (United States)

    Pham, Giang; Ebert, Kerry Danahy; Kohnert, Kathryn

    2018-01-01

    Background Evidence on the treatment effectiveness for bilingual children with primary language impairment (PLI) is needed to advance both theory and clinical practice. Of key interest is whether treatment effects are maintained following the completion of short-term intense treatments. Aims To investigate change in select language and cognitive skills in Spanish–English bilingual children with PLI 3 months after children have completed one of three experimental treatment conditions. There are two main study aims. First, to determine if skills in Spanish, English and cognitive processing decline, improve or are maintained after treatment has been completed. Second, to determine if differential rates of change are a function of the type of treatment children received. Methods & Procedures Participants were 48 children, aged 5:6–11:3, who spoke Spanish and English and were diagnosed with moderate to severe PLI. Participants received 6 weeks of treatment focused on English only (EO), bilingual skills in Spanish and English (BI) or nonlinguistic cognitive processing (NCP). Treatment effects reported in a previous study were determined by comparing pre- and post-treatment performance on a variety of language and cognitive measures. Here we re-administered each measure 3 months after completion of the experimental treatments. Hierarchical linear models were calculated for each measure using pre-, post- and follow-up testing scores to estimate change trajectories and compare outcomes between treatment conditions. Outcomes & Results Participants in all three treatment conditions either maintained skills or showed improvement even after treatment was discontinued for 3 months. Main findings included (1) comparable, positive rates of change on all English language outcomes for EO and BI conditions; (2) maintenance of Spanish language skills, and (3) modest improvements in NCP following the discontinuation of treatment. Conclusions & Implications This study is the first

  10. Baking exhaustion device in thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Mitsunori.

    1987-02-02

    Purpose: To rapidly remove tritium and impurity from the vacuum region in the access port of the baking exhaustion device in a thermonuclear device. Constitution: Each of the gaps at the boundary between a fixed shielding member and a blanket module and at the boundary between the blanket and a divertor is made extremely small so as to minimize the neutron streaming from plasmas. Accordingly, in the case of evacuating the vacuum region in the access port, the gap conductance is extremely poor and the exhaustion speed is low. Then, baking pipeways for flowing high temperature fluids are embedded to the surface layer at the position facing to the vacuum region and the plasma evacuation duct and the vacuum region are connected with an evacuation duct of the access port. By flowing high temperature fluids in the pipeways and conducting evacuation, baking exhaustion can be carried out rapidly. (Kamimura, M.).

  11. CRNL research reactor retrofit Emergency Filtration System

    International Nuclear Information System (INIS)

    Philippi, H.M.

    1990-01-01

    This paper presents a brief history of NRX and NRU research reactor effluent air treatment systems before describing the selection and design of an appropriate retrofit Emergency Filtration System (EFS) to serve these reactors and the future MX-10 isotope production reactor. The conceptual design of the EFS began in 1984. A standby concrete shielding filter-adsorber system, sized to serve the reactor with the largest exhaust flow, was selected. The standby system, bypassed under normal operating conditions, is equipped with normal exhaust stream shutoff and diversion valves to be activated manually when an emergency is anticipated, or automatically when emergency levels of gamma radiation are detected in the exhaust stream. The first phase of the EFS installation, that is the construction of the EFS and the connection of NRU to the system, was completed in 1987. The second phase of construction, which includes the connection of NRX and provisions for the future connection of MX-10, is to be completed in 1990

  12. Life cycle assessment applied to wastewater treatment; Analyse de cycle de vie appliquee aux systemes de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Renou, S.

    2006-01-15

    Nowadays, the environmental performances of wastewater treatment systems are not properly analyzed. Thus, the development of an exhaustive and reliable method is needed to help stakeholders to choose the best environmental solutions. Life cycle assessment (LCA) was selected as a starting point to answer this problem. LCA has been tested. This tool is essential to analyze the environmental performances of wastewater treatment systems. In order to fulfill our goal, the best compromise seems to be the association of LCA, to assess global impacts, with others methodologies, to assess local impacts. Finally, a software has been developed to compare urban sludge treatment and recovering process trains. Two impacts, energy and greenhouse effect, are currently included in. The software and its development steps are described and illustrated through two case studies. This tool has made LCA easier to apply and more useful to wastewater field stakeholders. (author)

  13. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  14. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... avoid moisture condensation. A filter pair loading of 1 mg is typically proportional to a 0.1 g/bhp-hr..., the temperatures where condensation of water in the exhaust gases could occur. This may be achieved by... sampling zone in the primary dilution tunnel and as required to prevent condensation at any point in the...

  15. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  16. The Effect of Condensing Steam Turbine Exhaust Hood Body Geometry on Exhaust Performance Efficiency

    Science.gov (United States)

    Gribin, V. G.; Paramonov, A. N.; Mitrokhova, O. M.

    2018-06-01

    The article presents data from combined numerical and experimental investigations of the effect that the overall dimensions of the exhaust hood of a steam turbine with an underslung condenser has on the aerodynamic losses in the hood. Owing to the properly selected minimum permissible overall dimensions of the exhaust hood, more efficient operation of this turbine component is achieved, better vibration stability of the turbine set shaft line is obtained, and lower costs are required for arranging the steam turbine plant in the turbine building. Experiments have shown that the main overall dimensions of the hood body have a determining effect on the exhaust hood flow path profile and on its aerodynamic performance. Owing to properly selected ratios between the exhaust hood body main sizes without a diffuser, a total loss coefficient equal to approximately unity has been obtained. By using an axial-radial diffuser, the energy loss can be decreased by 30-40% depending on the geometrical parameters and level of velocities in the inlet section of a hood having the optimal overall dimensions. By using the obtained results, it becomes possible to evaluate the overall dimensions necessary for achieving the maximal aerodynamic hood efficiency and, as a consequence, to obtain better technical and economic indicators of the turbine plant as a whole already at the initial stage of its designing. If a need arises to select overall dimensions smaller than their optimal values, the increase of energy loss can be estimated using the presented dependences. The cycle of investigations was carried out on the experimental setups available in the fundamental research laboratory of the Moscow Power Engineering Institute National University's Department of Steam and Gas Turbines with due regard to the operating parameters and similarity criteria.

  17. Treatment of pathological gambling - integrative systemic model.

    Science.gov (United States)

    Mladenović, Ivica; Lažetić, Goran; Lečić-Toševski, Dušica; Dimitrijević, Ivan

    2015-03-01

    Pathological gambling was classified under impulse control disorders within the International Classification of Diseases (ICD-10) (WHO 1992), but the most recent Diagnostic and Statistical Manual, 5th edition (DSM-V), (APA 2013), has recognized pathological gambling as a first disorder within a new diagnostic category of behavioral addictions - Gambling disorder. Pathological gambling is a disorder in progression, and we hope that our experience in the treatment of pathological gambling in the Daily Hospital for Addictions at The Institute of Mental Health, through the original "Integrative - systemic model" would be of use to colleagues, dealing with this pathology. This model of treatment of pathological gambling is based on multi-systemic approach and it primarily represents an integration of family and cognitive-behavioral therapy, with traces of psychodynamic, existential and pharmacotherapy. The model is based on the book "Pathological gambling - with self-help manual" by Dr Mladenovic and Dr Lazetic, and has been designed in the form of a program that lasts 10 weeks in the intensive phase, and then continues for two years in the form of "extended treatment" ("After care"). The intensive phase is divided into three segments: educational, insight with initial changes and analysis of the achieved changes with the definition of plans and areas that need to be addressed in the extended treatment. "Extended treatment" lasts for two years in the form of group therapy, during which there is a second order change of the identified patient, but also of other family members. Pathological gambling has been treated in the form of systemic-family therapy for more than 10 years at the Institute of Mental Health (IMH), in Belgrade. For second year in a row the treatment is carried out by the modern "Integrative-systemic model". If abstinence from gambling witihin the period of one year after completion of the intensive phase of treatment is taken as the main criterion of

  18. Cognitive Changes After Adjuvant Treatment in Older Adults with Early-Stage Breast Cancer.

    Science.gov (United States)

    Lange, Marie; Heutte, Natacha; Noal, Sabine; Rigal, Olivier; Kurtz, Jean-Emmanuel; Lévy, Christelle; Allouache, Djelila; Rieux, Chantal; Lefel, Johan; Clarisse, Bénédicte; Leconte, Alexandra; Veyret, Corinne; Barthélémy, Philippe; Longato, Nadine; Tron, Laure; Castel, Hélène; Eustache, Francis; Giffard, Bénédicte; Joly, Florence

    2018-06-22

    accelerated cognitive decline. Initial cognitive functioning should be included in the balance of benefits and harms of systemic therapy for patients who are likely to be at highest risk for cognitive decline after cancer treatments. Regular cognitive follow-up of patients who had cognitive impairment before cancer treatment should monitor symptoms suggestive of neurodegenerative disease and avert the effect of cognitive disorders on patients' autonomy. © AlphaMed Press 2018.

  19. HPLC analysis of aldehydes in automobile exhaust gas: Comparison of exhaust odor and irritation in different types of gasoline and diesel engines

    International Nuclear Information System (INIS)

    Roy, Murari Mohon

    2008-01-01

    This study investigated high performance liquid chromatography (HPLC) to identify and measure aldehydes from automobile exhaust gas. Four aldehydes: formaldehyde (HCHO), acetaldehyde (CH 3 CHO), acrolein (H 2 C=CHCHO) and propionaldehyde (CH 3 CH 2 CHO) and one ketone, acetone (CH 3 ) 2 CO are separated. The other higher aldehydes in exhaust gas are very small and cannot be separated. A new method of gas sampling, hereafter called bag sampling in HPLC is introduced instead of the trapping gas sampling method. The superiority of the bag sampling method is its transient gas checking capability. In the second part of this study, HPLC results are applied to compare exhaust odor and irritation of exhaust gases in different types of gasoline and diesel engines. Exhaust odor, irritation and aldehydes are found worst in direct injection (DI) diesel engines and best in some good multi-point injection (MPI) gasoline and direct injection gasoline (DIG) engines. Indirect injection (IDI) diesel engines showed odor, irritation and aldehydes in between the levels of MPI gasoline, DIG and DI diesel engines

  20. Advanced engine management of individual cylinders for control of exhaust species

    Science.gov (United States)

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  1. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  2. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.

    Science.gov (United States)

    Blaurock, B; Hippeli, S; Metz, N; Elstner, E F

    1992-01-01

    Aqueous solutions of engine exhaust condensation products were derived from cars powered by diesel or four-stroke gasoline engines (with and without three-way catalytic converter). The cars were operated on a static test platform. Samples of the different exhaust solutions accumulated in a Grimmer-type distillation trap (VDI 3872) during standard test programs (Federal Test Procedure) were incubated with important biomolecules. As indicators of reactive oxygen species or oxidative destruction, ascorbic acid, cysteine, glutathione, serum albumin, the enzymes glycerinaldehyde phosphate dehydrogenase and xanthine oxidase, and the oxygen free-radical indicator keto-methylthiobutyrate were used. During and after the incubations, oxygen activation (consumption) and oxidative destruction were determined. Comparison of the oxidative activities of the different types of exhaust condensates clearly showed that the exhaust condensate derived from the four-stroke car equipped with a three-way catalytic converter exhibited by far the lowest oxidative and destructive power.

  3. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Fu, Jianqin; Deng, Banglin; Liu, Jingping; Wang, Linjun; Xu, Zhengxin; Yang, Jing; Shu, Gequn

    2014-01-01

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  4. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    OpenAIRE

    Naeimi Hessamedin; Domiry Ganji Davood; Gorji Mofid; Javadirad Ghasem; Keshavarz Mojtaba

    2011-01-01

    Nowadays, computational fluid dynamics codes (CFD) are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction loss...

  5. The determination of aldehydes in the exhaust gases of LPG fuelled engines

    NARCIS (Netherlands)

    Rutten, G.A.F.M.; Burtner, C.W.J.; Visser, H.; Rijks, J.A.

    1988-01-01

    The exhaust gas of a LPG fuelled engine is drawn through two bubblers in series in an ice bath, and filled with saturated 2,4-dinitrophenylhydrazine in 2M HCl. After heating the derivatives are extracted with toluene-cyclohexane and 1l samples injected on-column on a OV1 capillary column. Using an

  6. Analysis of heat recovery from a spray dryer by recirculation of exhaust air

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    Highlights: • We study a spray dryer with heat recovery by partial recirculation of exhaust air. • We examine effects of process parameters on energy efficiency and energy savings. • Decreasing drying air temperature and flow rate will increase energy efficiency. • Increasing recirculation ratio and slurry feed rate will increase energy efficiency. - Abstract: Model simulations were employed to investigate the influences of process parameters on the energy recovery in spray drying process that partially recycle the exhaust drying gas. The energy efficiency and energy saving were studied for various values of recirculation ratios with respect to the temperature and flow rate of the drying air, slurry feed rate and concentration of slurry in spray drying of advanced ceramic materials. As a result, significant gains in energy efficiency and energy saving were obtained for a spray drying system with high recirculation ratio of exhaust air. The high slurry feed rate and the low slurry concentration, inlet drying air temperature and drying air flow rate enhanced the energy efficiency of spray drying system. However, the high energy saving was obtained in spray dryers operating at low slurry feed rate and high slurry concentration

  7. Mixed gated/exhaustive service in a polling model with priorities

    NARCIS (Netherlands)

    Boon, M.A.A.; Adan, I.J.B.F.

    2008-01-01

    In this paper we consider a single-server polling system with switch-over times. We introduce a new service discipline, mixed gated/exhaustive service, that can be used for queues with two types of customers: high and low priority customers. At the beginning of a visit of the server to such a queue,

  8. The Glass Half Empty: How Emotional Exhaustion Affects the State-Trait Discrepancy in Self-Reports of Teaching Emotions.

    Science.gov (United States)

    Goetz, Thomas; Becker, Eva S; Bieg, Madeleine; Keller, Melanie M; Frenzel, Anne C; Hall, Nathan C

    2015-01-01

    Following from previous research on intensity bias and the accessibility model of emotional self-report, the present study examined the role of emotional exhaustion in explaining the discrepancy in teachers' reports of their trait (habitual) versus state (momentary, "real") emotions. Trait reports (habitual emotions, exhaustion) were assessed via trait questionnaires, and state reports (momentary emotions) were assessed in real time via the experience sampling method by using personal digital assistants (N = 69 high school teachers; 1,089 measures within teachers). In line with our assumptions, multi-level analyses showed that, as compared to the state assessment, teachers reported higher levels of habitual teaching-related emotions of anger, anxiety, shame, boredom, enjoyment, and pride. Additionally, the state-trait discrepancy in self-reports of negative emotions was accounted for by teachers' emotional exhaustion, with high exhaustion levels corresponding with a greater state-trait discrepancy. Exhaustion levels did not moderate the state-trait discrepancy in positive emotions indicating that perceived emotional exhaustion may reflect identity-related cognitions specific to the negative belief system. Implications for research and educational practice are discussed.

  9. The Glass Half Empty: How Emotional Exhaustion Affects the State-Trait Discrepancy in Self-Reports of Teaching Emotions

    Science.gov (United States)

    Goetz, Thomas; Becker, Eva S.; Bieg, Madeleine; Keller, Melanie M.; Frenzel, Anne C.; Hall, Nathan C.

    2015-01-01

    Following from previous research on intensity bias and the accessibility model of emotional self-report, the present study examined the role of emotional exhaustion in explaining the discrepancy in teachers’ reports of their trait (habitual) versus state (momentary, “real”) emotions. Trait reports (habitual emotions, exhaustion) were assessed via trait questionnaires, and state reports (momentary emotions) were assessed in real time via the experience sampling method by using personal digital assistants (N = 69 high school teachers; 1,089 measures within teachers). In line with our assumptions, multi-level analyses showed that, as compared to the state assessment, teachers reported higher levels of habitual teaching-related emotions of anger, anxiety, shame, boredom, enjoyment, and pride. Additionally, the state-trait discrepancy in self-reports of negative emotions was accounted for by teachers’ emotional exhaustion, with high exhaustion levels corresponding with a greater state-trait discrepancy. Exhaustion levels did not moderate the state-trait discrepancy in positive emotions indicating that perceived emotional exhaustion may reflect identity-related cognitions specific to the negative belief system. Implications for research and educational practice are discussed. PMID:26368911

  10. Measurements of ion concentration in gasoline and diesel engine exhaust

    Science.gov (United States)

    Yu, Fangqun; Lanni, Thomas; Frank, Brian P.

    The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.

  11. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.

    Science.gov (United States)

    Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri

    2013-11-21

    ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Omega-3 polyunsaturated fatty acid docosahexaenoic acid and its role in exhaustive-exercise-induced changes in female rat ovulatory cycle.

    Science.gov (United States)

    Mostafa, Abeer F; Samir, Shereen M; Nagib, R M

    2018-04-01

    Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.

  13. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    Directory of Open Access Journals (Sweden)

    Lance M Hallberg

    2017-06-01

    Full Text Available Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES, in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay, blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay, and hippocampus (lipid peroxidation assay, across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective.

  14. Exhaustible-resource theory and the uranium market

    International Nuclear Information System (INIS)

    Hsieh, Y.L.

    1982-01-01

    Exhaustible-resource theory has been developed rapidly by economists since the OPEC shocks of 1973-1974 and the theory now provides a framework for analyzing the optimal production pattern for resource commodities. However, applications of the theory to particular markets, such as crude oil, have not provided accurate predictions due no doubt to theoretical problems in explaining exploration and discovery events, market organization changes, and uncertainty. This thesis investigated the uranium market in an effort to determine how well the exhaustible-resource theory explains the past price and quantity time paths of this energy resource, and what might be expected in the future. The exhaustible-resource theory was first developed in a form appropriate to an application to the uranium market. An econometric simulation model that combines the history of uranium price formation and the exhaustible-resource theory was developed to forecast future uranium prices. The model was designed not only to reflect the physical processes of drilling activities, changing reserves, production, and prices of uranium through individual equations, but also to account for the interaction of all these interrelationships at the same time

  15. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  16. Effect of Exhaust Gas Recirculation (EGR on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    Directory of Open Access Journals (Sweden)

    Khalil Ibrahim Abaas

    2016-07-01

    Full Text Available Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a four-cylinder direct injection (DI diesel engine at constant engine speed (1500 rpm and variable loads (from no load to 86 kN/m2, the tests were repeated with constant load (77 kN/m2 and variable engine speeds (from 1250 to 3000 rpm.The experimental results showed that adding EGR to diesel engine provided significant reductions in brake power (bp, brake thermal efficiency and exhaust gas temperatures, while high increments in brake specific  fuel  consumption  (bsfc.  High  EGR  percentage  (as  30%  in  this  article  caused  an  11.7% reduction  in  brake  thermal  efficiency,  26.38%  reduction  in  exhaust  gas  temperatures  and  12.28%  in volumetric efficiency at full load conditions.

  17. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  18. Exhaustive and stable electromembrane extraction of acidic drugs from human plasma

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Seip, Knut Fredrik

    2015-01-01

    The first part of the current work systematically described the screening of different types of organic solvents as the supported liquid membrane (SLM) for electromembrane extraction (EME) of acidic drugs, including different alcohols, ketones, and ethers. Seven acidic drugs with a wide logP rang......). With this SLM, exhaustive EME was performed from diluted human plasma, and the recoveries of five out of seven analytes were over 91% after 10min EME. This approach was evaluated using HPLC-UV, and the evaluation data were found to be satisfactory...... to increasing viscosity and decreasing α and π* values. The system-current during EME was found to be dependent on the type and the volume of the SLM. In contact with human plasma, an SLM of pure 1-heptanol was unstable, and to improve stability, 1-heptanol was mixed with 2-nitrophenyl octyl ether (NPOE...

  19. Emotional exhaustion may trigger cut in working hours

    NARCIS (Netherlands)

    Koppes, L.

    2012-01-01

    Researchers in the Netherlands have been examining to what extent workers are modifying their hours to cope with high levels of work-related emotional exhaustion. Findings reveal that most full-time employees would prefer a cut in their hours, with those reporting emotional exhaustion wanting a

  20. A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions

    Science.gov (United States)

    Schoeberl, M. R.; Morris, G. A.

    1999-01-01

    To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.