WorldWideScience

Sample records for exhalation

  1. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  2. The exhalant jet of mussels Mytilus edulis

    DEFF Research Database (Denmark)

    Riisgard, Hans Ulrik; Jørgensen, Bo Hoffmann; Lundgreen, Kim

    2011-01-01

    The exhalant jet flow of mussels in conjunction with currents and/or other mussels may strongly influence the mussels' grazing impact. Literature values of mussel exhalant jet velocity vary considerably and the detailed fluid mechanics of the near-mussel flow generated by the exhalant jet has hit...

  3. Exhaled CO, a predictor of lung function?

    DEFF Research Database (Denmark)

    Fabricius, Peder; Scharling, Henrik; Løkke, Anders

    2007-01-01

    BACKGROUND: Smoking is associated with an accelerated loss of lung function and inhalation accelerates the decline further. Exhaled CO reflects the exposure of smoke to the lungs. AIM: To investigate whether self-reported inhalation and type of cigarette influenced the level of exhaled CO and whe...

  4. Comparison of Select Analytes in Exhaled Aerosol from E-Cigarettes with Exhaled Smoke from a Conventional Cigarette and Exhaled Breaths

    Directory of Open Access Journals (Sweden)

    Gerald A. Long

    2014-10-01

    Full Text Available Exhaled aerosols were collected following the use of two leading U.S. commercial electronic cigarettes (e-cigarettes and a conventional cigarette by human subjects and analyzed for phenolics, carbonyls, water, glycerin and nicotine using a vacuum-assisted filter pad capture system. Exhaled breath blanks were determined for each subject prior to each product use and aerosol collection session. Distribution and mass balance of exhaled e-cigarette aerosol composition was greater than 99.9% water and glycerin, and a small amount (<0.06% of nicotine. Total phenolic content in exhaled e-cigarette aerosol was not distinguishable from exhaled breath blanks, while total phenolics in exhaled cigarette smoke were significantly greater than in exhaled e-cigarette aerosol and exhaled breaths, averaging 66 µg/session (range 36 to 117 µg/session. The total carbonyls in exhaled e-cigarette aerosols were also not distinguishable from exhaled breaths or room air blanks. Total carbonyls in exhaled cigarette smoke was significantly greater than in exhaled e-cigarette aerosols, exhaled breath and room air blanks, averaging 242 µg/session (range 136 to 352 µg/session. These results indicate that exhaled e-cigarette aerosol does not increase bystander exposure for phenolics and carbonyls above the levels observed in exhaled breaths of air.

  5. "EXHALE"

    DEFF Research Database (Denmark)

    Quist, Morten; Langer, Seppo W; Rørth, Mikael

    2013-01-01

    BACKGROUND: Lung cancer is the leading cause of cancer death in North America and Western Europe. Patients with lung cancer in general have reduced physical capacity, functional capacity, poor quality of life and increased levels of anxiety and depression. Intervention studies indicate...... that physical training can address these issues. However, there is a lack of decisive evidence regarding the effect of physical exercise in patients with advanced lung cancer. The aim of this study is to evaluate the effects of a twelve weeks, twice weekly program consisting of: supervised, structured training......: The present randomized controlled study will provide data on the effectiveness of a supervised exercise intervention in patients receiving systemic therapy for advanced lung cancer. It is hoped that the intervention can improve physical capacity and functional level, during rehabilitation of cancer patients...

  6. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  7. Radon exhalation rates of some granites used in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available In order to address concern about radon exhalation in building material, radon exhalation rate was determined for different granites available on Serbian market. Radon exhalation rate, along with mass exhalation rate and effective radium content were determined by closed chamber method and active continuous radon measurement technique. For this research, special chambers were made and tested for back diffusion and leakage, and the radon concentrations measured were included in the calculation of radon exhalation. The radon exhalation rate ranged from 0.161 Bq/m2h to 0.576 Bq/m2h, the mass exhalation rate from 0.167 Bq/kgh to 0.678 Bq/kgh, while the effective radium content was found to be from 12.37 Bq/kg to 50.23 Bq/kg. The results indicate that the granites used in Serbia have a low level of radon exhalation.

  8. Human exhalation characterization with the aid of schlieren imaging technique

    DEFF Research Database (Denmark)

    Xu, Chunwen; Nielsen, Peter Vilhelm; Liu, Li

    2017-01-01

    Highlights •Noninvasive schlieren technique was applied to characterize human exhalation. •New methods were proposed to predict exhaled velocity um and up, respectively. •Potential infection risk depended on breathing patterns and spatial distribution of exhaled air. •New data was added to airflo...

  9. Exhaled CO, a predictor of lung function?

    DEFF Research Database (Denmark)

    Fabricius, P; Scharling, H; Lokke, A

    2007-01-01

    .001). Increasing CO levels were correlated to a lower FEV(1)%pred and to an accelerated decline in lung function. However, in multiple linear regression analyses these correlations were not significant. CONCLUSION: Inhalation and type of cigarette affects exhaled CO levels. CO measures have no predictive value...

  10. Continuous Exhaled Breath Analysis on the Icu

    Science.gov (United States)

    Bos, Lieuwe D. J.; Sterk, Peter J.; Schultz, Marcus J.

    2011-09-01

    During admittance to the ICU, critically ill patients frequently develop secondary infections and/or multiple organ failure. Continuous monitoring of biological markers is very much needed. This study describes a new method to continuously monitor biomarkers in exhaled breath with an electronic nose.

  11. Novel method of measurement of radon exhalation from building materials.

    Science.gov (United States)

    Awhida, A; Ujić, P; Vukanac, I; Đurašević, M; Kandić, A; Čeliković, I; Lončar, B; Kolarž, P

    2016-11-01

    In the era of the energy saving policy (i.e. more air tight doors and windows), the radon exhaled from building materials tends to increase its concentration in indoor air, which increases the importance of the measurement of radon exhalation from building materials. This manuscript presents a novel method of the radon exhalation measurement using only a HPGe detector or any other gamma spectrometer. Comparing it with the already used methods of radon exhalation measurements, this method provides the measurement of the emanation coefficient, the radon diffusion length and the radon exhalation rate, all within the same measurement, which additionally defines material's radon protective properties. Furthermore it does not necessitate additional equipment for radon or radon exhalation measurement, which simplifies measurement technique, and thus potentially facilitates introduction of legal obligation for radon exhalation determination in building materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Uniformity in radon exhalation from construction materials using can technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Amri, E.A.; Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2003-06-01

    The uniformity in radon exhalation rates for 46 tiles of granite, marble and ceramic used as construction materials were determined using 'Can Technique' employing CR-39 nuclear track detectors (NTDs). On each tile, two sealed cans, each enclosing one NTD fixed at the center of the tile surface area covered by the can, were mounted at two different locations of each individual tiles. The track production rates on the NTDs representing radon exhalation rates were measured. The radon exhalation rates from the surface of individual tiles showed uniform exhalations within the calculated uncertainties of the measured values. This makes Can Technique an alternative simple method to measure radon exhalation rates. Calibration required to convert track production rates into radon exhalation rates for the used can and NTD was done using an active technique. The correlation between the measurements by the two techniques shows a good linear correlation coefficient (0.83)

  13. Hydrogen peroxide in exhaled air of healthy children: reference values

    NARCIS (Netherlands)

    Q. Jobsis (Quirijn); R.H. Raatgeep (Rolien); S.L. Schellekens; W.C.J. Hop (Wim); P.W.M. Hermans (Peter); J.C. de Jongste (Johan)

    1998-01-01

    textabstractAn increased content of hydrogen peroxide (H2O2), a marker of inflammation, has been described in the condensate of exhaled air from adults and children with inflammatory lung disorders, including asthma. However, the normal range of [H2O2] in the exhaled

  14. Fast and accurate exhaled breath ammonia measurement.

    Science.gov (United States)

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  15. Radon exhalation from building materials used in Libya

    Science.gov (United States)

    Saad, A. F.; Al-Awami, Hend H.; Hussein, N. A.

    2014-08-01

    Radon exhalation rates have been determined for various different samples of domestic and imported building materials available in the Libyan market for home construction and interior decoration. Radon exhalation rates were measured by the sealed-can technique based on CR-39 nuclear track detectors (NTDs). The results show that radon exhalation rates from some imported building materials used as foundations and for decoration are extremely high, and these samples are the main sources of indoor radon emanation. Radium contents and annual effective doses have also been estimated.

  16. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry.

    Science.gov (United States)

    Bikov, Andras; Paschalaki, Koralia; Logan-Sinclair, Ron; Horváth, Ildiko; Kharitonov, Sergei A; Barnes, Peter J; Usmani, Omar S; Paredi, Paolo

    2013-07-09

    Exhaled breath volatile organic compound (VOC) analysis for airway disease monitoring is promising. However, contrary to nitric oxide the method for exhaled breath collection has not yet been standardized and the effects of expiratory flow and breath-hold have not been sufficiently studied. These manoeuvres may also reveal the origin of exhaled compounds. 15 healthy volunteers (34 ± 7 years) participated in the study. Subjects inhaled through their nose and exhaled immediately at two different flows (5 L/min and 10 L/min) into methylated polyethylene bags. In addition, the effect of a 20 s breath-hold following inhalation to total lung capacity was studied. The samples were analyzed for ethanol and acetone levels immediately using proton-transfer-reaction mass-spectrometer (PTR-MS, Logan Research, UK). Ethanol levels were negatively affected by expiratory flow rate (232.70 ± 33.50 ppb vs. 202.30 ± 27.28 ppb at 5 L/min and 10 L/min, respectively, p gasses levels which showed good inter and intra session reproducibility. Exhalation parameters such as expiratory flow and breath-hold may affect VOC levels significantly; therefore standardisation of exhaled VOC measurements is mandatory. Our preliminary results suggest a different origin in the respiratory tract for these two gasses.

  17. Modelling the risk of airborne infectious disease using exhaled air.

    Science.gov (United States)

    Issarow, Chacha M; Mulder, Nicola; Wood, Robin

    2015-05-07

    In this paper we develop and demonstrate a flexible mathematical model that predicts the risk of airborne infectious diseases, such as tuberculosis under steady state and non-steady state conditions by monitoring exhaled air by infectors in a confined space. In the development of this model, we used the rebreathed air accumulation rate concept to directly determine the average volume fraction of exhaled air in a given space. From a biological point of view, exhaled air by infectors contains airborne infectious particles that cause airborne infectious diseases such as tuberculosis in confined spaces. Since not all infectious particles can reach the target infection site, we took into account that the infectious particles that commence the infection are determined by respiratory deposition fraction, which is the probability of each infectious particle reaching the target infection site of the respiratory tracts and causing infection. Furthermore, we compute the quantity of carbon dioxide as a marker of exhaled air, which can be inhaled in the room with high likelihood of causing airborne infectious disease given the presence of infectors. We demonstrated mathematically and schematically the correlation between TB transmission probability and airborne infectious particle generation rate, ventilation rate, average volume fraction of exhaled air, TB prevalence and duration of exposure to infectors in a confined space. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD

    NARCIS (Netherlands)

    Fens, N.; de Nijs, S. B.; Peters, S.; Dekker, T.; Knobel, H. H.; Vink, T. J.; Willard, N. P.; Zwinderman, A. H.; Krouwels, F. H.; Janssen, H.-G.; Lutter, R.; Sterk, P. J.

    2011-01-01

    Eosinophilic inflammation in chronic obstructive pulmonary disease (COPD) is predictive for responses to inhaled steroids. We hypothesised that the inflammatory subtype in mild and moderate COPD can be assessed by exhaled breath metabolomics. Exhaled compounds were analysed using gas chromatography

  19. Slower rise of exhaled breath temperature in cystic fibrosis.

    Science.gov (United States)

    Bade, Geetanjali; Gupta, Sumita; Kabra, Sushil Kumar; Talwar, Anjana

    2015-02-01

    To measure exhaled breath temperature in patients with cystic fibrosis. 17 patients (6-18 years) with cystic fibrosis and 15 age- and gender-matched healthy controls were recruited in this cross sectional study. Exhaled breath temperature was measured in subjects recruited in both the groups with a device X-halo and analyzed as plateau temperature achieved and rate of temperature rise. Patients with cystic fibrosis showed no significant difference in plateau temperature [34.4(32.3-34.6) versus 33.9 (33.0-34.4)oC; P=0.35] while mean (SEM.) rate of temperature rise was significantly less in patients [0.09 (0.01) versus 0.14 (0.02) ƼC/s ; P=0.04] as compared to controls. There was a slower rise of exhaled breath temperature in patients with cystic fibrosis whereas plateau temperature was not significantly different from controls.

  20. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect

    DEFF Research Database (Denmark)

    Gorham, Katrine A; Andersen, Mads Peter Sulbæk; Meinardi, Simone

    2009-01-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were f...

  1. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    An increase in produced hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  2. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet

    2005-01-01

    An increase in hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to the lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  3. Measurement of radon exhalation rate in various building materials ...

    Indian Academy of Sciences (India)

    mended by Organization for Economic Coopera- tion and Development (OECD 1979). Hence, the result shows that this study area is safe as far as the health hazards of radium are concerned. It is recommended that the radon exhalation rate should be measured for all building materials and a standard code placed on all ...

  4. Evaluation of oxidative stress using exhaled breath 8-isoprostane ...

    African Journals Online (AJOL)

    Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order to show ...

  5. Measurement of radon exhalation rate in various building materials ...

    Indian Academy of Sciences (India)

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpurdistricts of ...

  6. Exhaled breath profiling in diagnosing wheezy preschool children

    NARCIS (Netherlands)

    K.D.G. van de Kant (Kim D.); J.J.B.N. van Berkel (Joep J. B.); Q. Jöbsis (Quirijn); V. Lima Passos (Valéria); E.M.M. Klaassen (Ester M.); L. van der Sande (Linda); O.C.P. Schayck (Onno); J.C. de Jongste (Johan); F.J. van Schooten (Frederik Jan); E. Derks (Eduard); E. Dompeling (Edward); J.W. Dallinga (J.)

    2013-01-01

    textabstractAlthough wheeze is common in preschool children, the underlying pathophysiology has not yet been disentangled. Volatile organic compounds (VOCs) in exhaled breath may serve as noninvasive markers of early wheeze. We aimed to assess the feasibility of VOC collection in preschool children,

  7. Screening for emphysema via exhaled volatile organic compounds.

    NARCIS (Netherlands)

    Cristescu, S.M.; Gietema, H.A.; Blanchet, L.M.; Kruitwagen, C.L.J.J.; Munnik, P.; Klaveren, R.J.J. van; Lammers, J.W.; Buydens, L.; Harren, F.J.M.; Zanen, P.

    2011-01-01

    Chronic obstructive pulmonary disease (COPD)/emphysema risk groups are well defined and screening allows for early identification of disease. The capability of exhaled volatile organic compounds (VOCs) to detect emphysema, as found by computed tomography (CT) in current and former heavy smokers

  8. Screening for emphysema via exhaled volatile organic compounds

    NARCIS (Netherlands)

    S.M. Cristescu (S.); H.A. Gietema (Hester); L. Blanchet (Lionel); C.L.J.J. Kruitwagen (Cas); P. Munnik (P.); R.J. van Klaveren (Rob); J.-W.J. Lammers (Jan-Willem); L.M.C. Buydens (Lutgarde); F.J.M. Harren (F. J M); P. Zanen (Pieter)

    2011-01-01

    textabstractChronic obstructive pulmonary disease (COPD)/emphysema risk groups are well defined and screening allows for early identification of disease. The capability of exhaled volatile organic compounds (VOCs) to detect emphysema, as found by computed tomography (CT) in current and former heavy

  9. H. pylori infection increases levels of exhaled nitrate

    NARCIS (Netherlands)

    Lechner, Matthias; Karlseder, Alban; Niederseer, David; Lirk, Philipp; Neher, Andreas; Rieder, Josef; Tilg, Herbert

    2005-01-01

    Helicobacter pylori infection is one of the most common chronic bacterial infections worldwide. Despite the existence of a breath test for the diagnosis of H. pylori infection, no study has described the composition of volatile compounds, especially the levels of nitrate, in the exhaled air of

  10. Methodological aspects of exhaled nitric oxide measurements in infants.

    NARCIS (Netherlands)

    Gabriele, C.; Wiel, E.C. van der; Nieuwhof, E.M.; Moll, H.A.; Merkus, P.J.F.M.; Jongste, J.C. de

    2007-01-01

    Guidelines for the measurement of fractional exhaled nitric oxide (FE(NO)) recommend refraining from lung function tests (LFT) and certain foods and beverages before performing FE(NO) measurements, as they may lead to transiently altered FE(NO) levels. Little is known of such factors in infants. The

  11. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2017-10-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  12. Exhaled nitric oxide dynamics in asthmatic reactions induced by diisocyanates.

    Science.gov (United States)

    Mason, P; Scarpa, M C; Guarnieri, G; Giordano, G; Baraldi, E; Maestrelli, P

    2016-12-01

    Isocyanate-induced asthmatic reactions are associated with delayed increase in fractional exhaled nitric oxide measured at expiratory flow of 50 mL/s (FeNO50), a biomarker of airway inflammation. The time course of FeNO increase is compatible with the activation of NO synthase, but the origin of NO production in the lung is undetermined. The aim of this study was to define the dynamics of airway and alveolar NO during specific inhalation challenge (SIC) with isocyanates and the role of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase. Spirometry, exhaled NO parameters (FeNO50, bronchial wall NO concentration, NO airway diffusing capacity, NO flux to luminal space, alveolar NO) and ADMA levels in exhaled breath condensate were measured before and at intervals up to 24 h after exposure to isocyanates. The results were compared between 17 SIC-positive and eight SIC-negative subjects. A significant FeNO50 increase in SIC-positive subjects was detected 24 h after exposure and was associated with the augmented NO flux from airway wall to the lumen, whereas airway NO diffusion and alveolar NO were not affected. The changes in NO dynamics were specific for the subjects who developed an asthmatic reaction, but were independent from the pattern and magnitude of bronchoconstriction. There was no evidence that exhaled NO is modulated by the changes in ADMA concentration. Because isocyanate-induced increase in FeNO50 was almost exclusively determined by the increase in NO flux, the use of FeNO50 appears adequate to monitor the exhaled NO dynamics during SIC. FeNO50 measurement may provide additional information to spirometry, because bronchoconstriction and airway inflammatory responses are dissociated. © 2016 John Wiley & Sons Ltd.

  13. Can exhaled volatile organic compounds predict asthma exacerbations in children?

    Science.gov (United States)

    van Vliet, Dillys; Smolinska, Agnieszka; Jöbsis, Quirijn; Rosias, Philippe; Muris, Jean; Dallinga, Jan; Dompeling, Edward; van Schooten, Frederik-Jan

    2017-03-01

    Asthma control does not yet meet the goals of asthma management guidelines. Non-invasive monitoring of airway inflammation may help to improve the level of asthma control in children. (1) To identify a set of exhaled volatile organic compounds (VOCs) that is most predictive for an asthma exacerbation in children. (2) To elucidate the chemical identity of predictive biomarkers. In a one-year prospective observational study, 96 asthmatic children participated . During clinical visits at 2 month intervals, asthma control, fractional exhaled nitric oxide, lung function (FEV1, FEV1/VC) and VOCs in exhaled breath were determined by means of gas chromatography time-of-flight mass spectrometry. Random Forrest classification modeling was used to select predictive VOCs, followed by plotting of receiver operating characteristic-curves (ROC-curves). An inverse relationship was found between the predictive power of a set of VOCs and the time between sampling of exhaled breath and the onset of exacerbation. The sensitivity and specificity of the model predicting exacerbations 14 days after sampling were 88% and 75%, respectively. The area under the ROC-curve was 90%. The sensitivity for prediction of asthma exacerbations within 21 days after sampling was 63%. In total, 7 VOCs were selected for the classification model: 3 aldehydes, 1 hydrocarbon, 1 ketone, 1 aromatic compound, and 1 unidentified VOC. VOCs in exhaled breath showed potential for predicting asthma exacerbations in children within 14 days after sampling. Before using this in clinical practice, the validity of predicting asthma exacerbations should be studied in a larger cohort.

  14. Exhaled nitric oxide and other exhaled biomarkers in bronchial challenge with exercise in asthmatic children: current knowledge.

    Science.gov (United States)

    Barreto, Mario; Zambardi, Rosanna; Villa, Maria Pia

    2015-01-01

    The fractional concentration of exhaled nitric oxide (FENO), a known marker of atopic-eosinophilic inflammation, may be used as a surrogate to assess exercise-induced bronchoconstriction (EIB) in asthmatic children. The predictive value of baseline FENO for EIB appears to be influenced by several factors, including age, atopy, current therapy with corticosteroids and measurement technique. Nonetheless, FENO cut-off values appear to be able to rule out EIB. FENO levels decrease during EIB, apparently through neural mechanisms rather than by decreased airway-epithelial surface. Partition of FENO into proximal and peripheral contributions of the respiratory tract may improve our understanding on NO exchange during exercise and help to screen subjects prone to EIB. Other biomarkers of inflammation and oxidative stress contained in exhaled gases and exhaled breath condensate (EBC) may shed light on the pathophysiology of EIB. Exhaled breath temperature is a promising real-time measurement whose routine use for assessing EIB warrants further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  16. Exhaled breath analysis: physical methods, instruments, and medical diagnostics

    Science.gov (United States)

    Vaks, V. L.; Domracheva, E. G.; Sobakinskaya, E. A.; Chernyaeva, M. B.

    2014-07-01

    This paper reviews the analysis of exhaled breath, a rapidly growing field in noninvasive medical diagnostics that lies at the intersection of physics, chemistry, and medicine. Current data are presented on gas markers in human breath and their relation to human diseases. Various physical methods for breath analysis are described. It is shown how measurement precision and data volume requirements have stimulated technological developments and identified the problems that have to be solved to put this method into clinical practice.

  17. Exposure of postoperative nurses to exhaled anesthetic gases.

    Science.gov (United States)

    Sessler, D I; Badgwell, J M

    1998-11-01

    The National Institute of Occupational Safety and Health (NIOSH) has established recommended exposure limits of 25 parts per million (ppm) as a time-weighted average for nitrous oxide and a ceiling of 2 ppm for volatile anesthetics. We quantified exposure of postanesthetic nurses to exhaled anesthetic gases. This study was conducted in the postanesthesia care unit (PACU) of a medium-sized hospital. PACU air exchanges averaged 8 vol/h; however, much of this air was recirculated. We evaluated 50 adults anesthetized with either isoflurane (n = 19) or desflurane (n = 31). Roughly half the patients were tracheally extubated in the operating room, whereas the others were extubated just after admission to the PACU. Exhaled anesthetic gases were sampled through a 20-m hose attached to the participating nurses' shoulders (breathing zone). We also evaluated nursing exposure to exhaled anesthetic gases during recovery of 15 patients who had been anesthetized with nitrous oxide. Exposure was quantified with lapel dosimeters. Anesthetic and recovery durations were each approximately 1 h, with most patients being tracheally extubated in the PACU. Breathing-zone anesthetic concentrations in the patients given isoflurane exceeded NIOSH recommendations in 37% of the patients, representing 12% of recovery time. Breathing-zone anesthetic concentrations in the patients given desflurane, however, exceeded NIOSH limits in 87% of the patients, representing 49% of recovery time. Altogether, noncompliant episodes were detected in 68% of these patients, representing 35% of the entire recovery duration. Breathing-zone anesthetic concentrations in the patients given nitrous oxide exceeded NIOSH limits in 53% of the patients. Our data suggest that postoperative nurses' exposure to exhaled anesthetic gases exceeds NIOSH limits under some circumstances. Some epidemiological evidence suggests that exposure to waste anesthetic gases may be associated with reproductive toxicity. Accordingly, the

  18. Determination of Polycyclic Aromatic Hydrocarbons In Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available The retention by humans of 20 polycyclic aromatic hydrocarbons (PAHs from mainstream cigarette smoke was evaluated. The analysis was done by a new technique using solid phase extraction (SPE for the cleanup and the concenration of PAHs. The new technique has excellent sensitivity and accuracy, which were necessary for the analysis of the very low levels of PAHs present in the exhaled cigarette smoke. The study was done on a common commercial cigarette with 10.6 mg ‘tar’ by U.S. Federal Trade Commission (FTC recommendation. The results were obtained from ten human subjects, each smoking three cigarettes. The exhaled smoke was collected using a vacuum assisted procedure that avoids strain in exhaling. The study showed that the PAHs with a molecular weight lower than about 170 Daltons are retained with high efficiency. The heavier molecules are less retained, but even compounds such as indeno[1,2,3-cd]pyrene, dibenz[a, h]anthracene, and benzoperylene are retained with efficiencies around 50%. The dependence of retention efficiency for PAHs (in % on their octanol-water partition coefficient (LogPow was found to be nonlinear and showed considerable variability for several compounds that have very close LogPow values. Better correlation was obtained between the retention efficiency and PAHs vapor pressure (Log VP.

  19. Advances in the clinical applications of exhaled nitric oxide measurements.

    Science.gov (United States)

    Taylor, D Robin

    2012-12-01

    This article focuses on recent data which highlight the clinical settings in which exhaled nitric oxide (F(E)NO) is potentially helpful, or not, as a clinical tool. It is becoming clearer that, selectively applied, F(E)NO measurements can provide reliable clinical guidance, particularly when values are low. Such values are associated with high negative predictive values (>90%). Increased F(E)NO levels are associated with much more modest positive predictive values (75%-85%) and these are less reliable. These general principles apply when diagnosing steroid responsiveness in relation to asthma, chronic cough, and COPD. Although randomised trials do not support routine use of exhaled NO measurements in uncomplicated bronchial asthma, there is evidence that in patients with difficult asthma, or asthma associated with pregnancy, F(E)NO enhances overall management, and the decision to commence or increase inhaled steroid therapy (yes/no) may be made more accurately. Exhaled NO is potentially relevant in the assessment of occupational asthma (serial measurements) and also in diagnosing bronchiolitis obliterans in lung transplant patients.

  20. Frequency content of forced exhalations of normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, J.L.; Seiler, F.A.

    1986-03-01

    The frequency content of the flow-time relationship during forced exhalation determines the equipment response characteristics required for measurements of small animals. Flow-time data were collected by flow plethysmography at 1 msec intervals during single forced exhalations of 22 male and 22 female 14 wk old, healthy, anesthetized F344/N rats. Lungs of apneic rats were inflated to 30 cm H/sub 2/O transpulmonary pressure and deflated at -50 cm H/sub 2/O airway pressure. Similar data were collected from the testing system without a rat. Amplitudes and phases at 4 Hz intervals from 4 to 96 Hz Hz were calculated by LaPlace transform. Amplitudes were related to lung volume. Cumulative percentages of the total amplitude to 96 Hz were similar for males and females at each frequency. Of the total cumulative amplitude to 96 Hz, 50%, 95%, and 99% was contributed by frequencies lower than 12, 52, and 76 HZ, respectively. Amplitudes of rats exceeded those of the system alone between 20 and 40 Hz, due to lung elastic recoil. Thus, systems capable of measuring events of frequencies up to 50 Hz should be adequate for evaluating forced exhalations of rats.

  1. Exhaled nitric oxide in diagnosis and management of respiratory diseases

    Directory of Open Access Journals (Sweden)

    Abba Abdullah

    2009-01-01

    Full Text Available The analysis of biomarkers in exhaled breath constituents has recently become of great interest in the diagnosis, treatment and monitoring of many respiratory conditions. Of particular interest is the measurement of fractional exhaled nitric oxide (FENO in breath. Its measurement is noninvasive, easy and reproducible. The technique has recently been standardized by both American Thoracic Society and European Respiratory Society. The availability of cheap, portable and reliable equipment has made the assay possible in clinics by general physicians and, in the near future, at home by patients. The concentration of exhaled nitric oxide is markedly elevated in bronchial asthma and is positively related to the degree of esinophilic inflammation. Its measurement can be used in the diagnosis of bronchial asthma and titration of dose of steroids as well as to identify steroid responsive patients in chronic obstructive pulmonary disease. In primary ciliary dyskinesia, nasal NO is diagnostically low and of considerable value in diagnosis. Among lung transplant recipients, FENO can be of great value in the early detection of infection, bronchioloitis obliterans syndrome and rejection. This review discusses the biology, factors affecting measurement, and clinical application of FENO in the diagnosis and management of respiratory diseases.

  2. Dispersal of Exhaled Air and Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter Vilhelm

    2002-01-01

    . Numerical simulations support the experiments. Air exhaled through the mouth can lock in a thermally stratified layer, if the vertical temperature gradient in breathing zone height is sufficiently large. With exhalation through the nose, exhaled air flows to the upper part of the room. The exhalation flow...... from both nose and mouth is able to penetrate the breathing zone of another person standing nearby. The stratification of exhaled air breaks down if there is physical movement in the room. As movement increases, the concentration distribution in the room will move towards a fully mixed situation......The influence of the human exhalation on flow fields, contaminant distributions, and personal exposures in displacement ventilated rooms is studied together with the effects of physical movement. Experiments are conducted in full-scale test rooms with life-sized breathing thermal manikins...

  3. Exhaled nitric oxide in children after accidental exposure to chlorine gas.

    Science.gov (United States)

    Grasemann, Hartmut; Tschiedel, Eva; Groch, Manuela; Klepper, Jörg; Ratjen, Felix

    2007-08-01

    Chronic exposure to chlorine gas has been shown to cause occupational asthma. Acute inhalation of chlorine is known to cause airway inflammation and induce airway nitric oxide formation. Exhaled nitric oxide may therefore be a marker of airway damage after chlorine gas exposure. After accidental chlorine gas exposure in a swimming pool, exhaled nitric oxide and pulmonary function were repeatedly measured in 18 children over a 1-mo period. Symptomatic children with impaired pulmonary function had higher nitric oxide levels on the day after the exposure compared to day 8 and day 28. Differences in exhaled nitric oxide were more pronounced at a higher exhalation flow compared to lower flow, suggesting peripheral rather than central airway damage. This was in accordance with the observed changes in pulmonary function. No changes in exhaled nitric oxide were seen in asymptomatic children. These data suggest that acute chlorine gas exposure results in a mild increase of exhaled nitric oxide in symptomatic children.

  4. Variability in Measures of Exhaled Breath Na, Influence of pulmonary Blood Flow and salivary Na

    Directory of Open Access Journals (Sweden)

    Courtney M. Wheatley

    2010-04-01

    Full Text Available The assessment of inflammatory markers and ions in exhaled breath condensate (EBC is being utilized more frequently in diseases such as asthma and cystic fibrosis with marked variability in EBC measures, including those of exhaled Na + . We sought to determine if variability in exhaled Na + was due to differences in pulmonary blood flow (PBF or Na + in the mouth (salivary Na + . We measured exhaled Na + three times with coinciding sampling of salivary Na + and assessment of PBF (using acetylene rebreathing in 13 healthy subjects (54% female, age = 27 ± 7 yrs., ht. = 172 ± 10 cm, wt. = 70 ± 21 kg, BMI = 22 ± 7 kg/m 2 mean ± SD. Exhaled Na + averaged 2.7 ± 1.2 mmol/l, and salivary Na + averaged 5.51 ± 4.58 mmol/l. The coefficients of variation across all three measures in all 13 subjects averaged 30% for exhaled Na + and 83% for salivary Na + , within subjects the variability across the three measures averaged 30% for exhaled Na + and 38% for salivary Na + . Across all three measures in all 13 subjects the relationship between PBF and exhaled Na + averaged 0.027 ( P = 0.87, and the relationship between salivary Na + and exhaled Na + concentrations averaged 0.59 ( P = 0.001. Also, we sought to determine the relationship between exhaled Na + and serum Na + in an addition 20 subjects. There was a moderate and significant relationship between serum Na + and exhaled Na + (r = 0.37, P = 0.04. These findings suggest there that the variability in exhaled Na + is caused, at least in part, by droplet formation from within the mouth as turbulent air passes through and that there is a flux of ions from the pulmonary blood into the airways.

  5. Lack of heritability of exhaled volatile compound pattern: an electronic nose twin study.

    Science.gov (United States)

    Tarnoki, David Laszlo; Bikov, Andras; Tarnoki, Adam Domonkos; Lazar, Zsofia; Szilagyi, Blanka Krisztina; Korosi, Beata Zita; Horvath, Tamas; Littvay, Levente; Losonczy, Gyorgy; Horvath, Ildiko

    2014-03-01

    Electronic noses can distinguish various disorders by analyzing exhaled volatile organic compound (VOC) pattern; however it is unclear how hereditary and environmental backgrounds affect the exhaled VOC pattern. A twin study enrolling monozygotic (MZ) and dizygotic (DZ) twins is an ideal tool to separate the influence of these factors on the exhaled breath pattern. Exhaled breath samples were collected in duplicates from 28 never smoking twin pairs (in total 112 samples) without lung diseases and processed with an electronic nose (Cyranose 320). Univariate quantitative hereditary modeling (ACE analysis) adjusted for age and gender was performed to decompose the phenotypic variance of the exhaled volatile compound pattern (assessing principal components (PCs) derived from electronic nose data) into hereditary (A), shared (C), and unshared (E) environmental effects. Exhaled VOC pattern showed good intra-subject reproducibility as assessed with the Bland-Altman plot. Significant correlations were found between exhaled VOC patterns of both MZ and DZ twins. The hereditary background did not influence the VOC pattern. The shared environmental effect on PC 1, 2 and 3 was estimated to be 93%, 94% and 54%, respectively. The unshared (unique) environmental influence explained a smaller variance (7%, 6% and 46%). For the first time using the twin design, we have shown that the environmental background largely affects the exhaled volatile compound pattern in never smoking volunteers without respiratory disorders. Further studies should identify these environmental factors and also assess their influence on exhaled breath patterns in patients with lung diseases.

  6. Determination of Carbonyl Compounds in Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu S

    2014-12-01

    Full Text Available This paper presents the findings on a quantitative evaluation of carbonyl levels in exhaled cigarette smoke from human subjects. The cigarettes evaluated include products with 5.0 mg ‘tar’, 10.6 mg ‘tar’ and 16.2 mg ‘tar’, where ‘tar’ is defined as the weight of total wet particulate matter (TPM minus the weight of nicotine and water, and the cigarettes are smoked following U.S. Federal Trade Commission (FTC recommendations. The measured levels of carbonyls in the exhaled smoke were compared with calculated yields of carbonyls in the inhaled smoke and a retention efficiency was obtained. The number of human subjects included a total of ten smokers for the 10.6 mg ‘tar’, five for the 16.2 mg ‘tar’, and five for the 5.0 mg ‘tar’ product, each subject smoking three cigarettes. The analyzed carbonyl compounds included several aldehydes (formaldehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde and n-butyraldehyde, and two ketones (acetone and 2-butanone. The smoke collection from the human subjects was vacuum assisted. Exhaled smoke was collected on Cambridge pads pretreated with a solution of dinitrophenylhydrazine (DNPH followed by high performance liquid chromatography (HPLC analysis of the dinitrophenylhydrazones of the carbonyl compounds. The cigarette butts from the smokers were collected and analyzed for nicotine. The nicotine levels for the cigarette butts from the smokers were used to calculate the level of carbonyls in the inhaled smoke, based on calibration curves. These were generated separately by analyzing the carbonyls in smoke and the nicotine in the cigarette butts obtained by machine smoking under different puffing regimes. The comparison of the level of carbonyl compounds in exhaled smoke with that from the inhaled smoke showed high retention of all the carbonyls. The retention of aldehydes was above 95% for all three different ‘tar’ levels cigarettes. The ketones were retained with a

  7. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    Science.gov (United States)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  8. An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls

    NARCIS (Netherlands)

    Dragonieri, Silvano; Brinkman, Paul; Mouw, Evert; Zwinderman, Aeilko H.; Carratú, Pierluigi; Resta, Onofrio; Sterk, Peter J.; Jonkers, Rene E.

    2013-01-01

    Sarcoidosis is a systemic granulomatous disease of unknown cause that affects the lungs in over 90% of cases. Breath analysis by electronic nose technology provides exhaled molecular profiles that have potential in the diagnosis of several respiratory diseases. We hypothesized that exhaled molecular

  9. Distribution of Exhaled Contaminants and Personal Exposure in a Room using Three Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de

    2012-01-01

    . Human exhalation is studied in detail for different distribution systems: displacement and mixing ventilation as well as a system without mechanical ventilation. Two thermal manikins breathing through the mouth are used to simulate the exposure to human exhaled contaminants. The position and distance...

  10. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children.

    NARCIS (Netherlands)

    Robroeks, C.M.; Rosias, P.P.; Vliet, D van; Jobsis, Q.; Yntema, J.L.; Brackel, H.J.; Damoiseaux, J.G.; Hartog, GM den; Wodzig, W.K.; Dompeling, E.

    2008-01-01

    Chronic airway inflammation is present in cystic fibrosis (CF). Non-invasive inflammometry may be useful in disease management. The aim of the present cross-sectional study was to investigate: (i) the ability of fractional exhaled nitric oxide and inflammatory markers (IM) [exhaled breath condensate

  11. Hydrogen peroxide in exhaled air is increased in stable asthmatic children

    NARCIS (Netherlands)

    Q. Jobsis (Quirijn); R.H. Raatgeep (Rolien); P.W.M. Hermans (Peter); J.C. de Jongste (Johan)

    1997-01-01

    textabstractExhaled air condensate provides a noninvasive means of obtaining samples from the lower respiratory tract. Hydrogen peroxide (H2O2) in exhaled air has been proposed as a marker of airway inflammation. We hypothesized that in stable asthmatic children the

  12. CFD Analysis of the Human Exhalation Flow using Different Boundary Conditions and Ventilation Strategies

    DEFF Research Database (Denmark)

    Villafruela, J.M.; Olmedo, Inés; Ruiz de Adana, M.

    2013-01-01

    This paper analyses the dispersion of the exhaled contaminants by humans in indoor environments, with special attention to the exhalation jet and its interaction with the indoor airflow pattern in both mixing and displacement ventilation conditions. The way in which three different numerical...... different environmental conditions and to validate whether a steady boundary condition of the exhalation flow may simulate human breathing in an effective and accurate way. The results show a very good agreement of the numerical results obtained for Test a and the experimental data. This fact confirms...... the use of numerical simulation as a powerful tool to predict the contaminant distribution exhaled by a human. The numerical tests with steady boundary conditions for the exhalation flow require a transitory resolution procedure and the predictions provided by these models display some discrepancies...

  13. Determination of radon exhalation rates from tiles using active and passive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-06-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m{sup -2} h{sup -1}, which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile.

  14. Change of Exhaled Acetone Concentration in a Diabetic Patient with Acute Decompensated Heart Failure.

    Science.gov (United States)

    Yokokawa, Tetsuro; Ichijo, Yasuhiro; Houtsuki, Yu; Matsumoto, Yoshiyuki; Oikawa, Masayoshi; Yoshihisa, Akiomi; Sugimoto, Koichi; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Shimouchi, Akito; Takeishi, Yasuchika

    2017-10-21

    In heart failure patients, exhaled acetone concentration, a noninvasive biomarker, is increased according to heart failure severity. Moreover, exhaled acetone concentration is also known to be affected by diabetes mellitus. However, there have been no reports on exhaled acetone concentration in heart failure patients with diabetes mellitus. A 77-year old man was admitted to our hospital with acute decompensated heart failure and atrioventricular block. He had controlled diabetes mellitus under insulin treatment with hemoglobin A1c of 6.5%. He underwent treatment of diuretics and permanent pacemaker implantation. His condition improved and he was discharged at Day 12. Due to the heart failure improvement, his levels of exhaled acetone concentration decreased from 1.623 ppm at admission to 0.664 ppm at discharge. This is the first report to reveal a change of exhaled acetone concentration in a diabetic patient with acute decompensated heart failure.

  15. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain

    Energy Technology Data Exchange (ETDEWEB)

    López-Coto, I., E-mail: israel.lopez@dfa.uhu.es [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain); Mas, J.L. [Dpto. Física Aplicada I. Escuela Politécnica Superior, University of Sevilla, C/Virgen de Africa 7, 41012 Sevilla (Spain); Vargas, A. [Universitat Politècnica de Catalunya, Instituto de Técnicas Energéticas, Campus Sud Edificio ETSEIB, Planta 0, Pabellón C, Av. Diagonal 647, 08028 Barcelona (Spain); Bolívar, J.P. [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain)

    2014-09-15

    Highlights: • Variability of radon exhalation rates from PG piles has been studied using numerical simulation supported by experimental data. • Most relevant parameters controlling the exhalation rate are radon potential and moisture saturation. • Piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. • A proposed cover here is expected to allow exhalation rates reductions up to 95%. - Abstract: Nearly 1.0 × 10{sup 8} tonnes of phosphogypsum were accumulated during last 50 years on a 1200 ha disposal site near Huelva town (SW of Spain). Previous measurements of exhalation rates offered very variable values, in such a way that a worst case scenario could not be established. Here, new experimental data coupled to numerical simulations show that increasing the moisture contents or the temperature reduces the exhalation rate whilst increasing the radon potential or porosity has the contrary effect. Once the relative effects are compared, it can be drawn that the most relevant parameters controlling the exhalation rate are radon potential (product of emanation factor by {sup 226}Ra concentration) and moisture saturation of PG. From wastes management point of view, it can be concluded that piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. Furthermore, a proposed cover here is expected to allow exhalation rates reductions up to 95%. We established that the worst case scenario corresponds to a situation of extremely dry winter. Under these conditions, the radon exhalation rate (0.508 Bq m{sup −2} s{sup −1}) would be below though close to the upper limit established by U.S.E.P.A. for inactive phopsphogypsum piles (0.722 Bq m{sup −2} s{sup −1})

  16. Carbon Monoxide in Exhaled Breath Testing and Therapeutics

    Science.gov (United States)

    Ryter, Stefan W.; Choi, Augustine M.K.

    2013-01-01

    Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation, and potential diagnostic value remains incompletely characterized. Among other candidate “medicinal gases” with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease. PMID:23446063

  17. Natural radioactivity and radon specific exhalation rate of zircon sands

    Energy Technology Data Exchange (ETDEWEB)

    Righi, S.; Verita, S.; Bruzzi, L. [Bologna Univ., Centro Interdipartimentale di Ricerca per le Scienze Ambientali and Dipt. di Fisica, Ravenna (Italy); Albertazzi, A. [Italian Ceramic Center, Bologna (Italy)

    2006-07-01

    The study focuses on the radon emanation from zircon sands and their derivatives, which are widely used in many sectors of industry. In particular, the results obtained by experimental measurements on samples of zircon sands and zircon flours commonly used in Italian ceramic industries are reported. Zircon sands contain a significant concentration of natural radioactivity because Th and U may substitute zirconium in the zircon crystal lattice. The relevant routes of exposure of workers to T.E.N.O.R.M. from zircon materials are external radiation and internal exposure, either by inhalation of aerosols in dusty working conditions or by inhalation of radon in workplaces. The main objective of this investigation is to provide experimental data able to better calculate the internal exposure of workers due to radon inhalation. Zircon samples were surveyed for natural radioactivity, radon specific exhalation rate and emanation fraction. Measurements of radioactivity concentration were carried out using {gamma}-spectrometry. Methods used for determining radon consisted in determining the {sup 222}Rn activity accumulated in a vessel after a given accumulation build-up time. The average activity concentrations of {sup 238}U and {sup 232}Th in samples result about 2600 and 550 Bq kg-1, respectively; these concentrations are significantly higher than the world average noticed in soils, rocks and Earth crust. The {sup 222}Rn specific exhalation rates result very low probably due to the low porosity of the material and the consequent difficulty for radon to be released from the zircon crystal lattice. (author)

  18. Radon exhalation measurements for environmental and geophysics study

    Science.gov (United States)

    Immé, G.; Catalano, R.; Mangano, G.; Morelli, D.

    2014-02-01

    Transport of radon through materials is a process strongly influenced by several parameters characterizing the materials themselves, such as porosity, permeability, grain size, content of radionuclides and diffusion coefficient of this gas through the interstitial pores and/or fractures of material. In order to enlighten more on the radon transport mechanisms, we are carrying out a systematic study on both in-soil radon measurements and laboratory analysis. Laboratory measurements are carried out on different types of samples from geologically different sites in the East Sicily (Italy), to measure the exhalation rate of radon at different controlled physical conditions, varying the parameters of porosity and grain size, content of radio, in order to characterize the dependence of the process of radon transport by these parameters.We report in particular preliminary results of our study on radionuclide content and on the radon exhalation rate from building materials used in Mt. Etna and in the Hyblean Plateau villages.This study is important from the radioprotection point of view and could represent a contribution to better define the transport process of radon through fractured media to clarify on correlation between radon concentration and geodynamical, volcanic and tectonic, events.

  19. Carbon monoxide in exhaled breath testing and therapeutics.

    Science.gov (United States)

    Ryter, Stefan W; Choi, Augustine M K

    2013-03-01

    Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation and its potential diagnostic value remain incompletely characterized. Among other candidate 'medicinal gases' with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease.

  20. Application of the can technique and radon gas analyzer for radon exhalation measurements.

    Science.gov (United States)

    Fazal-ur-Rehman; Al-Jarallah, M I; Musazay, M S; Abu-Jarad, F

    2003-01-01

    A passive "can technique" and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bqm(-2)h(-1) with an average of 1.35+/-1.40 Bqm(-2)h(-1). The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  1. Application of the can technique and radon gas analyzer for radon exhalation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I.; Musazay, M.S.; Abu-Jarad, F

    2003-12-01

    A passive 'can technique' and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bq m{sup -2} h{sup -1} with an average of 1.35{+-}1.40 Bq m{sup -2} h{sup -1}. The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  2. Hydrogen peroxide in exhaled breath condensate: A clinical study

    Directory of Open Access Journals (Sweden)

    C Nagaraja

    2012-01-01

    Full Text Available Objectives: To study the ongoing inflammatory process of lung in healthy individuals with risk factors and comparing with that of a known diseased condition. To study the inflammatory response to treatment. Background: Morbidity and mortality of respiratory diseases are raising in trend due to increased smokers, urbanization and air pollution, the diagnosis of these conditions during early stage and management can improve patient′s lifestyle and morbidity. Materials and Methods: One hundred subjects were studied from July 2010 to September 2010; the level of hydrogen peroxide concentration in exhaled breath condensate was measured using Ecocheck. Results: Of the 100 subjects studied, 23 were healthy individuals with risk factors (smoking, exposure to air pollution, and urbanization; the values of hydrogen peroxide in smokers were 200-2220 nmol/l and in non-smokers 340-760 nmol/l. In people residing in rural areas values were 20-140 nmol/l in non-smokers and 180 nmol/l in smokers. In chronic obstructive pulmonary disease cases, during acute exacerbations values were 540-3040 nmol/l and 240-480 nmol/l following treatment. In acute exacerbations of bronchial asthma, values were 400-1140 nmol/l and 100-320 nmol/l following treatment. In cases of bronchiectasis, values were 300-340 nmol/l and 200-280 nmol/l following treatment. In diagnosed pneumonia cases values were 1060-11800 nmol/l and 540-700 nmol/l following treatment. In interstitial lung diseases, values ranged from 220-720 nmol/l and 210-510 nmol/l following treatment. Conclusion: Exhaled breath condensate provides a non-invasive means of sampling the lower respiratory tract. Collection of exhaled breath condensate might be useful to detect the oxidative destruction of the lung as well as early inflammation of the airways in a healthy individual with risk factors and comparing the inflammatory response to treatment.

  3. Exhaled aerosol pattern discloses lung structural abnormality: a sensitivity study using computational modeling and fractal analysis.

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    Full Text Available Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases.In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns.Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma.Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities.

  4. Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents

    DEFF Research Database (Denmark)

    Tsushima, S.; Wargocki, Pawel; Tanabe, S.

    2017-01-01

    Conditions in which exhaled and dermally emitted bioeffluents could be sampled separately or together (whole-body emission) were created. Five lightly dressed males exhaled the air through a mask to another, identical chamber or without a mask to the chamber in which they were sitting; the outdoor...... air supply rate was the same in both chambers. The carbon dioxide concentration in the chamber with exhaled air was 2000 ppm. Chamber temperatures were 23°C or 28°C, and ozone was present or absent in the supply airflow. When dermally emitted bioeffluents were present, the perceived air quality (PAQ...

  5. Housing characteristics in relation to exhaled nitric oxide in China.

    Science.gov (United States)

    Hou, Fan; Huang, Xiji; Liu, Chuanyao; Sun, Huizhen; Zhou, Ting; Song, Yuanchao; Rong, Yi; Zhu, Beibei; Chen, Wei; Wang, Jing; Wang, Jianshu; He, Meian; Miao, Xiaopin; Hoffmann, Barbara; Wu, Tangchun; Chen, Weihong; Yuan, Jing

    2015-01-01

    To investigate indoor factors affecting fractional exhaled nitric oxide (FeNO) in community residents. A total of 2404 adults (865 men, 1539 women, mean age 51.7 ± 13.3 years) were recruited to the study. Factors affecting FeNO were analyzed by multiple linear regression analysis. Participants without a kitchen exhaust fan/hood had higher FeNO (GM: 10.21%, 95% CI: 4.18%-16.59%). Participants engaged in home cooking who used only liquefied petroleum gas had higher FeNO (GM: 5.75%, 95% CI: 0.10%-11.73%) compared to those using natural gas for residential (home) cooking. Nonuse of a kitchen exhaust fan/hood and use of liquefied petroleum gas among persons engaged in home cooking were associated with higher FeNO levels.

  6. Electronic Nose To Detect Patients with COPD From Exhaled Breath

    Science.gov (United States)

    Velásquez, Adriana; Durán, Cristhian M.; Gualdron, Oscar; Rodríguez, Juan C.; Manjarres, Leonardo

    2009-05-01

    To date, there is no effective tool analysis and detection of COPD syndrome, (Chronic Obstructive Pulmonary Disease) which is linked to smoking and, less frequently to toxic substances such as, the wood smoke or other particles produced by noxious gases. According to the World Health Organization (WHO) estimates of this disease show it affects more than 52 million people and kills more than 2.7 million human beings each year. In order to solve the problem, a low-cost Electronic Nose (EN) was developed at the University of Pamplona (N. S) Colombia, for this specific purpose and was applied to a sample group of patients with COPD as well as to others who were healthy. From the exhalation breath samples of these patients, the results were as expected; an appropriate classification of the patients with the disease, as well as from the healthy group was obtained.

  7. Clinical Effects, Exhaled Breath Condensate pH and Exhaled Nitric Oxide in Humans After Ethyl Acrylate Exposure.

    Science.gov (United States)

    Hoffmeyer, F; Bünger, J; Monsé, C; Berresheim, H; Jettkant, B; Beine, A; Brüning, T; Sucker, K

    Ethyl acrylate is an irritant known to affect the upper airways and eyes. An increase of the eye blink frequency in humans was observed during exposure to 5 ppm. Studies on the lower airways are scant and our study objective was the evaluation of pH in exhaled breath condensate (EBC-pH) and nitric oxide in exhaled breath (FeNO) as markers of inflammation. Sixteen healthy volunteers were exposed for 4 h to ethyl acrylate at a concentration of 5 ppm and to sham (0.05 ppm) in an exposure laboratory. Clinical irritation symptoms, EBC-pH (at a pCO2 of 5.33 kPa) and FeNO were assessed before and after exposure. Differences after ethyl acrylate exposure were adjusted for those after sham exposure. 5 ppm ethyl acrylate induced clinical signs of local irritation in the nose and eyes, but not in lower airways. Exposure produced a subtle, but statistically significant, decrease in breathing frequency (1 breath/min; p = 0.017) and a lower EBC-pH (by 0.045 units; p = 0.037). Concerning FeNO, we did not observe significant changes compared to sham exposure. We conclude that local effects induced by 5 ppm ethyl acrylate consist of sensory irritation of eyes and nose. In addition, acute ethyl acrylate exposure to 5 ppm resulted in a net decrease of EBC-pH. Whether that can be interpreted in terms of additional lower airway irritation or already inflammatory alterations set in needs further investigations.

  8. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    Science.gov (United States)

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  9. The Validity of Exhaled Nitric Oxide (NO) in Breath Condensate in ...

    African Journals Online (AJOL)

    The Validity of Exhaled Nitric Oxide (NO) in Breath Condensate in the Evaluation of Controlled Asthma. Ahmed Elsayed Elhefny, Sahar Mohammad Mourad, Tamer Saeed Morsy, Maher Abdelnbi Kamel, Haydi Moustafa Mohamed ...

  10. Airway inflammation phenotype prediction in asthma patients using lung sound analysis with fractional exhaled nitric oxide

    National Research Council Canada - National Science Library

    Terufumi Shimoda; Yasushi Obase; Yukio Nagasaka; Hiroshi Nakano; Reiko Kishikawa; Tomoaki Iwanaga

    2017-01-01

    Background: We previously reported the results of lung sound analysis in patients with bronchial asthma and demonstrated that the exhalation-to-inhalation sound pressure ratio in the low frequency range between 100 and 200 Hz (E/I LF...

  11. 42 CFR 84.137 - Inhalation and exhalation valves; check valves; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... distortion. (b) Exhalation valves shall be: (1) Protected against damage and external influence; and (2... or in the hose fitting near the facepiece of all Type A, AE, B, and BE supplied-air respirators. ...

  12. Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents

    DEFF Research Database (Denmark)

    Tsushima, S.; Wargocki, Pawel; Tanabe, S.

    2018-01-01

    ) was less acceptable, and the odor intensity was higher than when only exhaled bioeffluents were present. The presence or absence of exhaled bioeffluents in the unoccupied chamber made no significant difference to sensory assessments. At 28°C and with ozone present, the odor intensity increased and the PAQ...... at 28°C. Dermally emitted bioeffluents seem to play a major role in the sensory nuisance experienced when occupied volumes are inadequately ventilated....

  13. Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide.

    Science.gov (United States)

    Insko, Michael A; Deckwerth, Thomas L; Hill, Paul; Toombs, Christopher F; Szabo, Csaba

    2009-07-01

    Sodium sulphide (Na(2)S) disassociates to sodium (Na(+)) hydrosulphide, anion (HS(-)) and hydrogen sulphide (H(2)S) in aqueous solutions. Here we have established and characterized a method to detect H(2)S gas in the exhaled breath of rats. Male rats were anaesthetized with ketamine and xylazine, instrumented with intravenous (i.v.) jugular vein catheters, and a tube inserted into the trachea was connected to a pneumotach connected to a H(2)S gas detector. Sodium sulphide, cysteine or the natural polysulphide compound diallyl disulphide were infused intravenously while the airway was monitored for exhaled H(2)S real time. Exhaled sulphide concentration was calculated to be in the range of 0.4-11 ppm in response to i.v. infusion rates ranging between 0.3 and 1.1 mg x kg(-1) x min(-1). When nitric oxide synthesis was inhibited with N(omega)-nitro-L-arginine methyl ester the amount of H(2)S exhaled during i.v. infusions of sodium sulphide was significantly increased compared with that obtained with the vehicle control. An increase in circulating nitric oxide using DETA NONOate [3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene] did not alter the levels of exhaled H(2)S during an i.v. infusion of sodium sulphide. An i.v. bolus of L-cysteine, 1 g.kg(-1), and an i.v. infusion of the garlic derived natural compound diallyl disulphide, 1.8 mg x kg(-1) x min(-1), also caused exhalation of H(2)S gas. This method has shown that significant amounts of H(2)S are exhaled in rats during sodium sulphide infusions, and the amount exhaled can be modulated by various pharmacological interventions.

  14. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain.

    Science.gov (United States)

    López-Coto, I; Mas, J L; Vargas, A; Bolívar, J P

    2014-09-15

    Nearly 1.0 × 10(8) tonnes of phosphogypsum were accumulated during last 50 years on a 1,200 ha disposal site near Huelva town (SW of Spain). Previous measurements of exhalation rates offered very variable values, in such a way that a worst case scenario could not be established. Here, new experimental data coupled to numerical simulations show that increasing the moisture contents or the temperature reduces the exhalation rate whilst increasing the radon potential or porosity has the contrary effect. Once the relative effects are compared, it can be drawn that the most relevant parameters controlling the exhalation rate are radon potential (product of emanation factor by (226)Ra concentration) and moisture saturation of PG. From wastes management point of view, it can be concluded that piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. Furthermore, a proposed cover here is expected to allow exhalation rates reductions up to 95%. We established that the worst case scenario corresponds to a situation of extremely dry winter. Under these conditions, the radon exhalation rate (0.508 Bqm(-2)s(-1)) would be below though close to the upper limit established by U.S.E.P.A. for inactive phopsphogypsum piles (0.722 Bqm(-2)s(-1)). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    Energy Technology Data Exchange (ETDEWEB)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia (Spain); Prado, Celia; Periago, Juan F. [Institute of Safety and Occupational Health (ISSL), Murcia (Spain); Grimalt, Joan O., E-mail: joan.grimalt@idaea.csic.es [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia (Spain)

    2010-03-03

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m{sup -3} in the swimming pool studies and between 97 and 460 ng m{sup -3} in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  16. RADIUM AND RADON EXHALATION RATE IN SOIL SAMPLES OF HASSAN DISTRICT OF SOUTH KARNATAKA, INDIA.

    Science.gov (United States)

    Jagadeesha, B G; Narayana, Y

    2016-10-01

    The radon exhalation rate was measured in 32 soil samples collected from Hassan district of South Karnataka. Radon exhalation rate of soil samples was measured using can technique. The results show variation of radon exhalation rate with radium content of the soil samples. A strong correlation was observed between effective radium content and radon exhalation rate. In the present work, an attempt was made to assess the levels of radon in the environment of Hassan. Radon activities were found to vary from 2.25±0.55 to 270.85±19.16 Bq m(-3) and effective radium contents vary from 12.06±2.98 to 1449.56±102.58 mBq kg(-1) Surface exhalation rates of radon vary from 1.55±0.47 to 186.43±18.57 mBq m(-2) h(-1), and mass exhalation rates of radon vary from 0.312±0.07 to 37.46±2.65 mBq kg(-1) h(-1). © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Detection of Δ9-tetrahydrocannabinol in exhaled breath collected from cannabis users.

    Science.gov (United States)

    Beck, Olof; Sandqvist, Sören; Dubbelboer, Ilse; Franck, Johan

    2011-10-01

    Exhaled breath has recently been proposed as a new possible matrix for drugs of abuse testing. A key drug is cannabis, and the present study was aimed at investigating the possibility of detecting tetrahydrocannabinol and tetrahydrocannabinol carboxylic acid in exhaled breath after cannabis smoking. Exhaled breath was sampled from 10 regular cannabis users and 8 controls by directing the exhaled breath by suction through an Empore C(18) disk. The disk was extracted with hexane/ethyl acetate, and the resulting extract was evaporated to dryness and redissolved in 100 μL hexane/ethyl acetate. A 3-μL aliquot was injected onto the LC-MS-MS system and analyzed using positive electrospray ionization and selected reaction monitoring. In samples collected 1-12 h after cannabis smoking, tetrahydrocannabinol was detected in all 10 subjects. The rate of excretion was between 9.0 and 77.3 pg/min. Identification of tetrahydrocannabinol was based on correct retention time relative to tetrahydrocannabinol-d(3) and correct product ion ratio. In three samples, peaks were observed for tetrahydrocannabinol carboxylic acid, but these did not fulfill identification criteria. Neither tetrahydrocannabinol or tetrahydrocannabinol carboxylic acid was detected in the controls. These results confirm older reports that tetrahydrocannabinol is present in exhaled breath following cannabis smoking and extend the detection time from minutes to hours. The results further support the idea that exhaled breath is a promising matrix for drugs-of-abuse testing.

  18. Environmental Effects on Fractional Exhaled Nitric Oxide in Allergic Children

    Directory of Open Access Journals (Sweden)

    Stefania La Grutta

    2012-01-01

    Full Text Available Fractional exhaled nitric oxide (FeNO is a non-invasive marker of airway inflammation in asthma and respiratory allergy. Environmental factors, especially indoor and outdoor air quality, may play an important role in triggering acute exacerbations of respiratory symptoms. The authors have reviewed the literature reporting effects of outdoor and indoor pollutants on FeNO in children. Although the findings are not consistent, urban and industrial pollution—mainly particles (PM2.5 and PM10, nitrogen dioxide (NO2, and sulfur dioxide (SO2—as well as formaldehyde and electric baseboard heating have been shown to increase FeNO, whilst ozone (O3 tends to decrease it. Among children exposed to Environmental Tobacco Smoke (ETS with a genetic polymorphisms in nitric oxide synthase genes (NOS, a higher nicotine exposure was associated with lower FeNO levels. Finally, although more studies are needed in order to better investigate the effect of gene and environment interactions which may affect the interpretation of FeNO values in the management of children with asthma, clinicians are recommended to consider environmental exposures when taking medical histories for asthma and respiratory allergy. Further research is also needed to assess the effects of remedial interventions aimed at reducing/abating environmental exposures in asthmatic/allergic patients.

  19. Exhaled nitric oxide - circadian variations in healthy subjects

    Directory of Open Access Journals (Sweden)

    Antosova M

    2009-12-01

    Full Text Available Abstract Objective Exhaled nitric oxide (eNO has been suggested as a marker of airway inflammatory diseases. The level of eNO is influenced by many various factor including age, sex, menstrual cycle, exercise, food, drugs, etc. The aim of our study was to investigate a potential influence of circadian variation on eNO level in healthy subjects. Methods Measurements were performed in 44 women and 10 men, non-smokers, without respiratory tract infection in last 2 weeks. The eNO was detected at 4-hour intervals from 6 a.m. to 10 p.m. using an NIOX analyzer. We followed the ATS/ERS guidelines for eNO measurement and analysis. Results Peak of eNO levels were observed at 10 a.m. (11.1 ± 7.2 ppb, the lowest value was detected at 10 p.m. (10.0 ± 5.8 ppb. The difference was statistically significant (paired t-test, P Conclusions The daily variations in eNO, with the peak in the morning hours, could be of importance in clinical practice regarding the choice of optimal time for monitoring eNO in patients with respiratory disease.

  20. Exhaled aerosol transmission of pandemic and seasonal H1N1 influenza viruses in the ferret.

    Directory of Open Access Journals (Sweden)

    Frederick Koster

    Full Text Available Person-to-person transmission of influenza viruses occurs by contact (direct and fomites and non-contact (droplet and small particle aerosol routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected 'donor' ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa.

  1. Exhaled Aerosol Transmission of Pandemic and Seasonal H1N1 Influenza Viruses in the Ferret

    Science.gov (United States)

    Koster, Frederick; Gouveia, Kristine; Zhou, Yue; Lowery, Kristin; Russell, Robert; MacInnes, Heather; Pollock, Zemmie; Layton, R. Colby; Cromwell, Jennifer; Toleno, Denise; Pyle, John; Zubelewicz, Michael; Harrod, Kevin; Sampath, Rangarajan; Hofstadler, Steven; Gao, Peng; Liu, Yushi; Cheng, Yung-Sung

    2012-01-01

    Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected ‘donor’ ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa. PMID:22509254

  2. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Cara L. Fiore

    2017-01-01

    Full Text Available Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water, in samples exiting the sponge (exhalent seawater, and in samples collected just outside the reef area (off reef seawater. Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is needed to determine whether the impact of sponge DOM is greater in habitats with higher sponge cover and diversity. This work provides the first insight into the molecular-level impact of sponge holobiont metabolism on

  3. Exhaled aerosol transmission of pandemic and seasonal H1N1 influenza viruses in the ferret.

    Science.gov (United States)

    Koster, Frederick; Gouveia, Kristine; Zhou, Yue; Lowery, Kristin; Russell, Robert; MacInnes, Heather; Pollock, Zemmie; Layton, R Colby; Cromwell, Jennifer; Toleno, Denise; Pyle, John; Zubelewicz, Michael; Harrod, Kevin; Sampath, Rangarajan; Hofstadler, Steven; Gao, Peng; Liu, Yushi; Cheng, Yung-Sung

    2012-01-01

    Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected 'donor' ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa.

  4. EXHALED AND PLASMA NITRITE: a comparative study among healthy, cirrhotic and liver transplant patients

    Directory of Open Access Journals (Sweden)

    Viviane S AUGUSTO

    2014-03-01

    Full Text Available Context There is a relative lack of studies about exhaled nitrite (NO2- concentrations in cirrhotic and transplanted patients. Objective Verify possible differences and correlations between the levels of NO2-, measured in plasma and exhaled breath condensate collected from patients with cirrhosis and liver transplant. Method Sixty adult male patients, aged between 27 and 67 years, were subdivided into three groups: a control group comprised of 15 healthy volunteers, a cirrhosis group composed of 15 volunteers, and a transplant group comprised of 30 volunteers. The NO2- concentrations were measured by chemiluminescence. Results 1 The analysis of plasma NO2- held among the three groups showed no statistical significance. 2 The comparison between cirrhotic and control groups, control and transplanted and cirrhotic and transplanted was not statistically significant. 3 The measurements performed on of NO2- exhaled breath condensate among the three groups showed no statistical difference. 4 When comparing the control group samples and cirrhotic, control and transplanted and cirrhotic and transplanted, there was no significant changes in the concentrations of NO2-. Conclusion No correlations were found between plasma and exhaled NO2-, suggesting that the exhaled NO2- is more reflective of local respiratory NO release than the systemic circulation.

  5. Influence of environmental concentrations of NO on the exhaled NO test.

    Science.gov (United States)

    Piacentini, G L; Bodini, A; Vino, L; Zanolla, L; Costella, S; Vicentini, L; Boner, A L

    1998-10-01

    Measurement of levels of exhaled nitric oxide (NO) has been proposed as a noninvasive method for evaluating the degree of airway inflammation in asthmatic patients. Some concern in the interpretation of results of such measurement may arise from possible interference by high environmental concentrations of NO inhaled by these patients. The aim of this study was to verify whether environmental concentrations of NO in the range from 0 to 150 ppb can influence levels of exhaled NO. We tested two groups of subjects. The first group, consisting of 16 subjects, was tested when environmental levels of NO were from 0 to 3 ppb and from 20 to 60 ppb, and exhaled NO mean ppb (+/- SEM) levels were 9.81 +/- 1.43 and 9.78 +/- 1.47 (p = ns) (mean +/- SEM), respectively. The second group, consisting of 30 subjects, was tested at ambient NO concentrations of 0 to 3 ppm, 80 to 100 ppm, and 120 to 150 ppb, and for 18 of these subjects who underwent testing under all three conditions investigated, the mean levels of exhaled NO were 9.23 +/- 1.51, 7.78 +/- 1.19, and 9.33 +/- 1.55 ppb (p = ns), respectively. The results of this study suggest that significantly different ambient levels of NO have no effect on levels of exhaled NO.

  6. Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Oguma

    Full Text Available Exhaled volatile organic compounds (VOC are being considered as biomarkers for various lungs diseases, including cancer. However, the accurate measurement of extremely low concentrations of VOC in expired air is technically challenging. We evaluated the clinical contribution of exhaled VOC measured with a new, double cold-trap method in the diagnosis of lung cancer.Breath samples were collected from 116 patients with histologically confirmed lung cancer and 37 healthy volunteers (controls after inspiration of purified air, synthesized through a cold-trap system. The exhaled VOC, trapped in the same system, were heat extracted. We analyzed 14 VOC with gas chromatography.The concentrations of exhaled cyclohexane and xylene were significantly higher in patients with lung cancer than in controls (p = 0.002 and 0.0001, respectively, increased significantly with the progression of the clinical stage of cancer (both p < 0.001, and decreased significantly after successful treatment of 6 patients with small cell lung cancer (p = 0.06 and 0.03, respectively.Measurements of exhaled VOCs by a double cold-trap method may help diagnose lung cancer and monitor its progression and regression.

  7. The influence of thoron on measurement results of radon exhalation rate

    CERN Document Server

    Xiao De Tao; Ling Qiu; Leung, J K C

    2002-01-01

    Because of thoron exhalation, the measurement results of radon exhalation rate using a local still method is usually larger than the true value of radon flux rate of the monitored material surface. The influence of sup 2 sup 1 sup 6 Po(ThA) on radon exhalation rate can be eliminated for sensitive radon monitors. Theoretical evaluations of the influence of sup 2 sup 1 sup 2 Bi(ThC) and sup 2 sup 1 sup 2 Po(ThC')on radon exhalation rate are carried out in a sampler with diameter of 188 mm, and height of 125 mm, and supplied electrostatic field inside (generated by high voltage and electret) under following conditions: the sampling time are 1, 2, 3 h, respectively, thoron exhalation rate is 100 times of radon's. The calculation results indicate that the measurement results of radon flux rate are possibly 35.5% larger than true value due to the influence of thoron for fast and multifunctional radon monitors with electret, high voltage, respectively and using CR-39 SSNTD as detector, but this influence is negligib...

  8. Diagnostic Chemical Analysis of Exhaled Human Breath Using a Novel Sub-Millimeter Spectroscopic Approach

    Science.gov (United States)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Branco, Daniela R.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    As many as 3000 chemicals are reported to be found in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. Present state of the art techniques used for analysis of exhaled human breath include mass spectrometry based methods, infrared spectroscopic sensors, electro chemical sensors and semiconductor oxide based testers. Some of these techniques are commercially available but are somewhat limited in their specificity and exhibit fairly high probability of false alarm. Here, we present the results of our most recent study which demonstrated a novel application of a terahertz high resolutions spectroscopic technique to the analysis of exhaled human breath, focused on detection of ethanol in the exhaled breath of a person which consumed an alcoholic drink. This technique possesses nearly ``absolute'' specificity and we demonstrated its ability to uniquely identify ethanol, methanol, and acetone in human breath. This project is now complete and we are looking to extend this method of chemical analysis of exhaled human breath to a broader range of chemicals in an attempt to demonstrate its potential for biomedical diagnostic purposes.

  9. An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.

    Science.gov (United States)

    Holmes, Martin S; Seheult, Jansen N; O'Connell, Peter; D'Arcy, Shona; Ehrhardt, Carsten; Healy, Anne Marie; Costello, Richard W; Reilly, Richard B

    2015-08-01

    Dry powder inhaler (DPI) users frequently exhale into their inhaler mouthpiece before the inhalation step. This error in technique compromises the integrity of the drug and results in poor bronchodilation. This study investigated the effect of four exhalation factors (exhalation flow rate, distance from mouth to inhaler, exhalation duration, and relative air humidity) on dry powder dose delivery. Given that acoustic energy can be related to the factors associated with exhalation sounds, we then aimed to develop a method of identifying and quantifying this critical inhaler technique error using acoustic based methods. An in vitro test rig was developed to simulate this critical error. The effect of the four factors on subsequent drug delivery were investigated using multivariate regression models. In a further study we then used an acoustic monitoring device to unobtrusively record the sounds 22 asthmatic patients made whilst using a Diskus(™) DPI. Acoustic energy was employed to automatically detect and analyze exhalation events in the audio files. All exhalation factors had a statistically significant effect on drug delivery (pacoustic method detected exhalations with an accuracy of 89.1%. We were able to classify exhalations occurring 5 cm or less in the direction of the inhaler mouthpiece or recording device with a sensitivity of 72.2% and specificity of 85.7%. Exhaling into a DPI has a significant detrimental effect. Acoustic based methods can be employed to objectively detect and analyze exhalations during inhaler use, thus providing a method of remotely monitoring inhaler technique and providing personalized inhaler technique feedback.

  10. Spirometry filters can be used to detect exhaled respiratory viruses.

    Science.gov (United States)

    Mitchell, Alicia B; Mourad, Bassel; Tovey, Euan; Buddle, Lachlan; Peters, Matthew; Morgan, Lucy; Oliver, Brian G

    2016-09-26

    Respiratory viruses are very common in the community and contribute to the burden of illness for patients with chronic respiratory diseases, including acute exacerbations. Traditional sampling methods are invasive and problematic to repeat. Accordingly, we explored whether respiratory viruses could be isolated from disposable spirometry filters and whether detection of viruses in this context represented presence in the upper or lower respiratory tract. Discovery (n  =  53) and validation (n  =  49) cohorts were recruited from a hospital outpatient department during two different time periods. Spirometry mouthpiece filters were collected from all participants. Respiratory secretions were sampled from the upper and lower respiratory tract by nasal washing (NW), sputum, and bronchoalveolar lavage (BAL). All samples were examined using RT-PCR to identify a panel of respiratory viruses (rhinovirus, respiratory syncytial virus, influenza A, influenza B, parainfluenza virus 1, 2 & 3, and human metapneumovirus). Rhinovirus was quantified using qPCR. Paired filter-NW samples (n  =  29), filter-sputum samples (n  =  24), filter-BAL samples (n  =  39) and filter-NW-BAL samples (n  =  10) provided a range of comparisons. At least one virus was detected in any sample in 85% of participants in the discovery cohort versus 45% in the validation cohort. Overall, 72% of viruses identified in the paired comparator method matched those detected in spirometry filters. There was a high correlation between viruses identified in spirometry filters compared with viruses identified in both the upper and lower respiratory tract using traditional sampling methods. Our results suggest that examination of spirometry filters may be a novel and inexpensive sampling method for the presence of respiratory viruses in exhaled breath.

  11. Exhaled Nitric Oxide Decreases during Academic Examination Stress in Asthma.

    Science.gov (United States)

    Ritz, Thomas; Trueba, Ana F; Liu, Jiayan; Auchus, Richard J; Rosenfield, David

    2015-11-01

    Fractional exhaled nitric oxide (FeNO) is known to vary with multiple endogenous and exogenous factors. Laboratory stress and depressive mood have been associated with altered FeNO levels, but little is known about the susceptibility of FeNO to longer-lasting states of psychological stress in asthma. We sought to study changes in FeNO, lung function, and endogenous cortisol levels in students in a low-stress period during the academic term and in high-stress periods of up to 5 days during final exams. One hundred nine participants (35 with asthma) enrolled in a final examination stress study were assessed during the academic term (low stress) and during final exams (high stress). FeNO, spirometric lung function (FEV1, peak flow), salivary cortisol, and negative affect were measured at three time points. Control variables were medication use, cold symptoms, sex, and age. FeNO decreased substantially from low-stress baseline to the high-stress examination periods, with more pronounced decreases occurring in subjects with asthma (-11.5 ppb) than control subjects (-1.2 ppb). FEV1 decreased in both groups. Negative affect and cortisol increased during final exams, but these increases were smaller in asthma. Greater initial depression and greater cortisol increases were related to larger FeNO decreases during the final exam period, the latter only in asthma. Inhaled corticosteroid use did not affect these changes. Psychological stress and depressive mood are accompanied by decreases in both FeNO and lung function in asthma. Fluctuations related to life stress and mood levels should be considered in FeNO monitoring for asthma.

  12. Exhaled carbon monoxide in asthmatics: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Huang Mao

    2010-04-01

    Full Text Available Abstract Background The non-invasive assessment of airway inflammation is potentially advantageous in asthma management. Exhaled carbon monoxide (eCO measurement is cheap and has been proposed to reflect airway inflammation and oxidative stress but current data are conflicting. The purpose of this meta-analysis is to determine whether eCO is elevated in asthmatics, is regulated by steroid treatment and reflects disease severity and control. Methods A systematic search for English language articles published between 1997 and 2009 was performed using Medline, Embase and Cochrane databases. Observational studies comparing eCO in non-smoking asthmatics and healthy subjects or asthmatics before and after steroid treatment were included. Data were independently extracted by two investigators and analyzed to generate weighted mean differences using either a fixed or random effects meta-analysis depending upon the degree of heterogeneity. Results 18 studies were included in the meta-analysis. The eCO level was significantly higher in asthmatics as compared to healthy subjects and in intermittent asthma as compared to persistent asthma. However, eCO could not distinguish between steroid-treated asthmatics and steroid-free patients nor separate controlled and partly-controlled asthma from uncontrolled asthma in cross-sectional studies. In contrast, eCO was significantly reduced following a course of corticosteroid treatment. Conclusions eCO is elevated in asthmatics but levels only partially reflect disease severity and control. eCO might be a potentially useful non-invasive biomarker of airway inflammation and oxidative stress in nonsmoking asthmatics.

  13. Human exhaled air energy harvesting with specific reference to PVDF film

    Directory of Open Access Journals (Sweden)

    Manisha Rajesh Mhetre

    2017-02-01

    Full Text Available Spirometer is a medical equipment used to measure lung capacity of a human being. It leads to diagnosis of several diseases. The researchers worked on harvesting energy from human exhalation while carrying out measurements using spirometer. A prototype has been developed using piezoelectric material i.e. PVDF (polyvinylidene fluoride film as sensor. This paper presents the methodology and experimentation carried out for exhaled air energy harvesting using PVDF film. Experimental results obtained are encouraging. Measurements are also carried out on various subjects having different height, weight, age and gender. Data analysis shows variation in the energy harvested with different physical parameters and gender. Experimentation shows that voltage generated due to exhaled air is promising for harvesting.

  14. Experimental and Numerical Investigation of Effect of Air Stability on Exhaled Air Dispersion

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter Vilhelm

    2014-01-01

    As more and more investigations have reported the influence of thermal stratification indoors on contaminant dispersion, this paper focuses on investigating this phenomenon from the perspective of air stability which is defined in accordance with atmospheric stability. One breathing thermal manikin...... studies. As the thermal stratification under displacement ventilation blocks the vertical movement of exhaled air, the exhaled contaminant may be trapped between temperature stratifications. As the dispersion of contaminant is closely related to the health of human indoors, the temperature structure...... was used for experimental study, and a numerical person was built to simulate the manikin. The velocity, temperature and concentration of tracer gas in exhaled air are affected by air stability to different degrees. The similarity of this effect among these parameters can also be observed through numerical...

  15. A common variant in RAB27A gene is associated with fractional exhaled nitric oxide levels in adults

    NARCIS (Netherlands)

    Bouzigon, E.; Nadif, R.; Thompson, E. E.; Concas, M. P.; Kuldanek, S.; Du, G.; Brossard, M.; Lavielle, N.; Sarnowski, C.; Vaysse, A.; Dessen, P.; van der Valk, R. J. P.; Duijts, L.; Henderson, A. J.; Jaddoe, V. W. V.; de Jongste, J. C.; Casula, S.; Biino, G.; Dizier, M. -H.; Pin, I.; Matran, R.; Lathrop, M.; Pirastu, M.; Demenais, F.; Ober, C.; Koppelman, G. H.; Kerkhof, Marjan

    BackgroundExhaled nitric oxide (FeNO) is a biomarker for eosinophilic inflammation in the airways and for responsiveness to corticosteroids in asthmatics. ObjectiveWe sought to identify in adults the genetic determinants of fractional exhaled nitric oxide (FeNO) levels and to assess whether

  16. Exhalation of {sup 222}Rn from phosphogypsum piles located at the Southwest of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Duenas, C. [Department of Applied Physics I, Faculty of Science, University of Malaga, Campus de Teatinos, 29071 Malaga (Spain)]. E-mail: mcduenas@uma.es; Liger, E. [Department of Applied Physics II, Technical College of Informatic Engineering, University of Malaga, 29071 Malaga (Spain); Canete, S. [Department of Applied Physics I, Faculty of Science, University of Malaga, Campus de Teatinos, 29071 Malaga (Spain); Perez, M. [Department of Applied Physics I, Faculty of Science, University of Malaga, Campus de Teatinos, 29071 Malaga (Spain); Bolivar, J.P. [Department of Applied Physics, EPS, University of Huelva, 21819 Huelva (Spain)

    2007-06-15

    Phosphogypsum (PG) is a waste product of the phosphoric acid production process and contains, generally, high activity concentrations of uranium series radionuclides. It is stored in piles formed over the last 40 years close to the town of Huelva (Southwest of Spain). The very broad expanse of the PG piles (about 1200 ha) produces a local, but unambiguous, radioactive impact to their surroundings. In 1992, the regional government of Andalusia restored an area of 400 ha by covering it with a 25-cm thick layer of natural soil and, currently, there is an additional zone of 400 ha in course of restoration (unrestored) and the same area of active PG stacks. Due to the high activity concentration of {sup 226}Ra in active PG stacks (average 647 Bq kg{sup -1}), a significant exhalation of {sup 222}Rn could be produced from the surface of the piles. Measurements have been made of {sup 222}Rn exhalation from active PG stacks and from restored and unrestored zones. The {sup 222}Rn exhalation from unrestored zones is half of that of the active PG stacks. Following restoration, the {sup 222}Rn exhalation is approximately eight times lower than the active PG stacks. The activity concentrations of natural radionuclides ({sup 226}Ra, {sup 40}K, {sup 232}Th) in the mentioned zones have been determined. This study was also conducted to determine the effect of {sup 226}Ra activity concentration on the {sup 222}Rn exhalation, and a good correlation was obtained between the {sup 222}Rn exhalation and {sup 226}Ra activity, porosity and density of soil.

  17. Diagnostic significance of nitric oxide concentrations in exhaled air from the airways in allergic rhinitis patients

    Directory of Open Access Journals (Sweden)

    Anna Kłak

    2016-05-01

    Full Text Available Introduction : The effect of nitric oxide (NO on the human body is very important due its physiological regulation of the following functions of airways: modulation of ciliary movement and maintenance of sterility in sinuses. Aim: To evaluate the diagnostic significance of NO concentrations in exhaled air from the upper and lower airways in patients diagnosed with allergic rhinitis (AR. Material and methods: The subjects included in the study were a group of 30 people diagnosed with sensitivity to environmental allergens and a control group consisting of 30 healthy subjects. The measurement of NO in the air exhaled from the lower and upper airways was performed using an on-line method by means of Restricted Exhaled Breath (REB, as well as using the measurement procedure (chemiluminescence set out in the guidelines prepared in 2005 by the American Thoracic Society and the European Respiratory Society. Results: In the late phase of the allergic reaction, higher values of the level of exhaled NO concentration from the lower airways were observed in the groups of subjects up to the threshold values of 25.17 ppb in the group of subjects with year-round allergic rhinitis and 21.78 ppb in the group with diagnosed seasonal allergic rhinitis. The difference in the concentration of NO exhaled from the lungs between the test group and the control group in the 4th h of the test was statistically significant (p = 0.045. Conclusions : Exhaled NO should be considered as a marker of airway inflammation. It plays an important role in the differential diagnosis of allergy.

  18. Diagnostic significance of nitric oxide concentrations in exhaled air from the airways in allergic rhinitis patients.

    Science.gov (United States)

    Kłak, Anna; Krzych-Fałta, Edyta; Samoliński, Bolesław K; Zalewska, Marta

    2016-04-01

    The effect of nitric oxide (NO) on the human body is very important due its physiological regulation of the following functions of airways: modulation of ciliary movement and maintenance of sterility in sinuses. To evaluate the diagnostic significance of NO concentrations in exhaled air from the upper and lower airways in patients diagnosed with allergic rhinitis (AR). The subjects included in the study were a group of 30 people diagnosed with sensitivity to environmental allergens and a control group consisting of 30 healthy subjects. The measurement of NO in the air exhaled from the lower and upper airways was performed using an on-line method by means of Restricted Exhaled Breath (REB), as well as using the measurement procedure (chemiluminescence) set out in the guidelines prepared in 2005 by the American Thoracic Society and the European Respiratory Society. In the late phase of the allergic reaction, higher values of the level of exhaled NO concentration from the lower airways were observed in the groups of subjects up to the threshold values of 25.17 ppb in the group of subjects with year-round allergic rhinitis and 21.78 ppb in the group with diagnosed seasonal allergic rhinitis. The difference in the concentration of NO exhaled from the lungs between the test group and the control group in the 4(th) h of the test was statistically significant (p = 0.045). Exhaled NO should be considered as a marker of airway inflammation. It plays an important role in the differential diagnosis of allergy.

  19. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide.

    Science.gov (United States)

    Toombs, Christopher F; Insko, Michael A; Wintner, Edward A; Deckwerth, Thomas L; Usansky, Helen; Jamil, Khurram; Goldstein, Brahm; Cooreman, Michael; Szabo, Csaba

    2010-06-01

    Hydrogen sulphide (H(2)S) is an endogenous gaseous signaling molecule and potential therapeutic agent. Emerging studies indicate its therapeutic potential in a variety of cardiovascular diseases and in critical illness. Augmentation of endogenous sulphide concentrations by intravenous administration of sodium sulphide can be used for the delivery of H(2)S to the tissues. In the current study, we have measured H(2)S concentrations in the exhaled breath of healthy human volunteers subjected to increasing doses sodium sulphide in a human phase I safety and tolerability study. We have measured reactive sulphide in the blood via ex vivo derivatization of sulphide with monobromobimane to form sulphide-dibimane and blood concentrations of thiosulfate (major oxidative metabolite of sulphide) via ion chromatography. We have measured exhaled H(2)S concentrations using a custom-made device based on a sulphide gas detector (Interscan). Administration of IK-1001, a parenteral formulation of Na(2)S (0.005-0.20 mg kg(-1), i.v., infused over 1 min) induced an elevation of blood sulphide and thiosulfate concentrations over baseline, which was observed within the first 1-5 min following administration of IK-1001 at 0.10 mg kg(-1) dose and higher. In all subjects, basal exhaled H(2)S was observed to be higher than the ambient concentration of H(2)S gas in room air, indicative of on-going endogenous H(2)S production in human subjects. Upon intravenous administration of Na(2)S, a rapid elevation of exhaled H(2)S concentrations was observed. The amount of exhaled H(2)S rapidly decreased after discontinuation of the infusion of Na(2)S. Exhaled H(2)S represents a detectable route of elimination after parenteral administration of Na(2)S.

  20. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children.

    Science.gov (United States)

    Robroeks, Charlotte M H H T; Rosias, Philippe P R; van Vliet, Dillys; Jöbsis, Quirijn; Yntema, Jan-Bart L; Brackel, Hein J L; Damoiseaux, Jan G M C; den Hartog, Gertjan M; Wodzig, Will K W H; Dompeling, Edward

    2008-11-01

    Chronic airway inflammation is present in cystic fibrosis (CF). Non-invasive inflammometry may be useful in disease management. The aim of the present cross-sectional study was to investigate: (i) the ability of fractional exhaled nitric oxide and inflammatory markers (IM) [exhaled breath condensate (EBC) acidity, nitrite, nitrate, hydrogen peroxide (H(2)O(2)), 8-isoprostane, Th1/Th2 cytokines] to indicate (exacerbations of) CF; and (ii) the ability of these non-invasive IM to indicate CF disease severity. In 98 children (48 CF/50 controls), exhaled nitric oxide was measured using the NIOX, and condensate was collected using a glass condenser. In CF interferon (IFN-gamma) and nitrite concentrations were significantly higher, whereas exhaled nitric oxide levels were significantly lower compared with controls (3.3 +/- 0.3 pg/ml, 2.2 +/- 0.2 microM, 10.0 +/- 1.2 p.p.b. vs. 2.6 +/- 0.2 pg/ml, 1.4 +/- 0.1 microM, 15.4 +/- 1.4 p.p.b. respectively). Using multivariate logistic regression models, the presence of CF was best indicated by 8-isoprostane, nitrite and IFN-gamma [sensitivity 78%, specificity 83%; area under receiver operating characteristic curve (AUC) 0.906, p < 0.001]. An exacerbation of CF was best indicated by 8-isoprostane and nitrite (sensitivity 40%, specificity 97%, AUC curve 0.838, p = 0.009). Most indicative biomarkers of CF severity were exhaled nitric oxide, and condensate acidity (sensitivity 96%, specificity 67%; AUC curve 0.751, p = 0.008). In this cross-sectional study, the combination of different exhaled IM could indicate (exacerbations of) CF, and severity of the disease in children. Longitudinal data are necessary to further confirm the role of these markers for the management of CF in children.

  1. An Experimental Study of Human Exhalation during Breathing and Coughing in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Liu, Li; Lia, Yuguo; Nielsen, Peter V.

    2009-01-01

    flow rates and temperatures for breathing and coughing, respectively. Smoke visualizations are conducted to show the formation, movement and vanishing of the exhalation jets from nose and mouth separately. The transient velocity distribution generated by breathing and coughing in different places......This study investigates the characteristics of human exhalation during breathing and coughing. Experiments employing one breathing thermal manikin are conducted in a full-scale test room with a mixing ventilation system. Two artificial lungs are used to generate discontinuous airflows with specific...

  2. Detection of nitric oxide in exhaled air using cavity enhanced absorption spectroscopy

    Science.gov (United States)

    Medrzycki, R.; Wojtas, J.; Rutecka, B.; Bielecki, Z.

    2013-07-01

    The article describes an application one of the most sensitive optoelectronic method - Cavity Enhanced Absorption Spectroscopy in investigation of nitric oxide in exhaled breath. Measurement of nitric oxide concentration in exhaled breath is a quantitative, non-invasive, simple, and safe method of respiratory inflammation and asthma diagnosis. For detection of nitric oxide by developed optoelectronic sensor the vibronic molecular transitions were used. The wavelength ranges of these transitions are situated in the infrared spectral region. A setup consists of the optoelectronic nitric oxide sensor integrated with sampling and sample conditioning unit. The constructed detection system provides to measure nitric oxide in a sample of 0-97% relative humidity.

  3. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Baraldi, Eugenio; Carraro, Silvia

    2005-01-01

    NO was measured in healthy subjects of 4 to 17 years according to American Thoracic Society guidelines (single breath online, exhalation flow 50 mL/s) with a chemiluminescence analyzer (NIOX Exhaled Nitric Oxide Monitoring System, Aerocrine, Sweden) in 3 European and 2 US centers. Each child performed 3...... NO in 405 children was 9.7 ppb, and the upper 95% confidence limit was 25.2 ppb. FE NO increased significantly with age, and higher FE NO was seen in children with self-reported rhinitis/conjunctivitis or hay fever. The success rate was age-dependent and improved from 40% in the children 4 years old...

  4. Exhaled nitric oxide and carbon monoxide in mechanically ventilated brain-injured patients.

    Science.gov (United States)

    Korovesi, I; Kotanidou, A; Papadomichelakis, E; Livaditi, O; Sotiropoulou, C; Koutsoukou, A; Marczin, N; Orfanos, S E

    2016-03-02

    The inflammatory influence and biological markers of prolonged mechanical-ventilation in uninjured human lungs remains controversial. We investigated exhaled nitric oxide (NO) and carbon monoxide (CO) in mechanically-ventilated, brain-injured patients in the absence of lung injury or sepsis at two different levels of positive end-expiratory pressure (PEEP). Exhaled NO and CO were assessed in 27 patients, without lung injury or sepsis, who were ventilated with 8 ml kg(-1) tidal volumes under zero end-expiratory pressure (ZEEP group, n  =  12) or 8 cm H2O PEEP (PEEP group, n  =  15). Exhaled NO and CO was analysed on days 1, 3 and 5 of mechanical ventilation and correlated with previously reported markers of inflammation and gas exchange. Exhaled NO was higher on day 3 and 5 in both patient groups compared to day 1: (PEEP group: 5.8 (4.4-9.7) versus 11.7 (6.9-13.9) versus 10.7 (5.6-16.6) ppb (p  <  0.05); ZEEP group: 5.3 (3.8-8.8) versus 9.8 (5.3-12.4) versus 9.6 (6.2-13.5) ppb NO peak levels for days 1, 3 and 5, respectively, p  <  0.05). Exhaled CO remained stable on day 3 but significantly decreased by day 5 in the ZEEP group only (6.3 (4.3-9.0) versus 8.1 (5.8-12.1) ppm CO peak levels for day 5 versus 1, p  <  0.05). The change scores for peak exhaled CO over day 1 and 5 showed significant correlations with arterial blood pH and plasma TNF levels (r s  =  0.49, p  =  0.02 and r s  =  -0.51 p  =  0.02, respectively). Exhaled NO correlated with blood pH in the ZEEP group and with plasma levels of IL-6 in the PEEP group. We observed differential changes in exhaled NO and CO in mechanically-ventilated patients even in the absence of manifest lung injury or sepsis. These may suggest subtle pulmonary inflammation and support application of real time breath analysis for molecular monitoring in critically ill patients.

  5. Control of exposure to exhaled air from sick occupant with wearable personal exhaust unit

    OpenAIRE

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Barova, Maria I.

    2014-01-01

    Exposure reduction to exhaled air from a sick doctor wearing personal exhaust unit incorporated in headset-microphone was studied. Experiments were performed in a full-scale test room furnished as a double-bed hospital room with overhead ventilation at 3, 6 and 12 ACH. Room air temperature was 22 °C. Breathing thermal manikin with realistic body and breathing cycle was used to mimic doctor. Second thermal manikin and heated dummy were used to resemble lying patients. Exhaled air by the doctor...

  6. Chemical analysis of exhaled human breath using a terahertz spectroscopic approach

    Science.gov (United States)

    Fosnight, Alyssa M.; Moran, Benjamin L.; Medvedev, Ivan R.

    2013-09-01

    As many as 3500 chemicals are reported in exhaled human breath. Many of these chemicals are linked to certain health conditions and environmental exposures. This experiment demonstrated a method of breath analysis utilizing a high resolution spectroscopic technique for the detection of ethanol, methanol, and acetone in the exhaled breath of a person who consumed alcohol. This technique is applicable to a wide range of polar molecules. For select species, unambiguous detection in a part per trillion dilution range with a total sample size in a femtomol range is feasible. It compares favorably with other methods of breath analysis.

  7. Assessing recent smoking status by measuring exhaled carbon monoxide levels.

    Directory of Open Access Journals (Sweden)

    AnnSofi Sandberg

    Full Text Available BACKGROUND: Cigarette smoke causes both acute and chronic changes of the immune system. Excluding recent smoking is therefore important in clinical studies with chronic inflammation as primary focus. In this context, it is common to ask the study subjects to refrain from smoking within a certain time frame prior to sampling. The duration of the smoking cessation is typically from midnight the evening before, i.e. 8 hours from sampling. As it has been shown that a proportion of current smokers underestimates or denies smoking, objective assessment of recent smoking status is of great importance. Our aim was to extend the use of exhaled carbon monoxide (CO(breath, a well-established method for separating smokers from non-smokers, to assessment of recent smoking status. METHODS AND FINDINGS: The time course of CO(breath decline was investigated by hourly measurements during one day on non-symptomatic smokers and non-smokers (6+7, as well as by measurements on three separate occasions on non-smokers (n = 29, smokers with normal lung function (n = 38 and smokers with chronic obstructive pulmonary disease (n = 19 participating in a clinical study. We used regression analysis to model the decay, and receiver operator characteristics analysis for evaluation of model performance. The decline was described as a mono-exponential decay (r(2 = 0.7 with a half-life of 4.5 hours. CO decline rate depends on initial CO levels, and by necessity a generic cut-off is therefore crude as initial CO(breath varies a lot between individuals. However, a cut-off level of 12 ppm could classify recent smokers from smokers having refrained from smoking during the past 8 hours with a specificity of 94% and a sensitivity of 90%. CONCLUSIONS: We hereby describe a method for classifying recent smokers from smokers having refrained from smoking for >8 hours that is easy to implement in a clinical setting.

  8. Prognostic Role of Exhaled Breath Condensate pH and Fraction Exhaled Nitric Oxide in Systemic Sclerosis Related Interstitial Lung Disease.

    Science.gov (United States)

    Guillen-Del Castillo, Alfredo; Sánchez-Vidaurre, Sara; Simeón-Aznar, Carmen P; Cruz, María J; Fonollosa-Pla, Vicente; Muñoz, Xavier

    2017-03-01

    Interstitial lung disease (ILD) is one of the major causes of death in systemic sclerosis (SSc). This study investigated exhaled breath (EB) and exhaled breath condensate (EBC) biomarkers in patients with SSc and analyzed their role as a prognostic tool in SSc-related ILD. Fraction exhaled nitric oxide (FeNO) and exhaled carbon monoxide (eCO) measured in EB, together with pH, nitrite, nitrate and interleukin-6 levels measured in EBC were prospectively analyzed in 35 patients with SSc. Twelve patients had established ILD by chest high-resolution computed tomography (HRCT), and 23 patients showed no evidence of ILD. EB and EBC biomarkers were determined at inclusion, and pulmonary function tests were annually performed during 4 years of follow-up. No differences at baseline biomarkers levels were found between groups. In all patients studied, low EBC pH levels were associated with a decreased diffusing capacity for carbon monoxide (DLCO) during follow-up. Low FeNO levels were correlated with lower forced vital capacity (FVC) at baseline, 4years of follow-up and with a decrease in FVC and DLCO during monitoring. Among ILD patients, high eCO levels were correlated with lower baseline FVC. In the global cohort, a worse progression-free survival was identified in patients with EBC pH values lower than 7.88 and FeNO levels lower than 10.75ppb (Log Rank P=.03 and P<.01, respectively). EB and EBC could help to detect patients likely to present a deterioration on lung function during follow up. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate.

    NARCIS (Netherlands)

    Beurden, W.J.C van; Harff, G.A.; Dekhuijzen, P.N.R.; Bosch, M.J. van den; Creemers, J.P.H.M.; Smeenk, F.J.M.W.

    2002-01-01

    We investigated the sensitivity and reproducibility of a test procedure for measuring hydrogen peroxide (H202) in exhaled breath condensate and the effect of storage of the condensate on the H2O2 concentration, and compared the results to previous studies.Twenty stable COPD patients breathed into

  10. Design and test of an artificial reference cow to simulate methane release through exhalation

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, P.W.G.; Ogink, N.W.M.

    2015-01-01

    To mitigate methane emission from dairy cows, a technique is needed to evaluate individual methane emission from a large number of cows under practical conditions in barns. For developing such a measurement technique, a known reference source that can simulate cow exhalation of methane would be a

  11. Variations in exhaled nitric oxide concentration after three types of dives

    NARCIS (Netherlands)

    van Ooij, Pieter-Jan; Houtkooper, Antoinette; van Hulst, Rob

    2010-01-01

    An increase in exhaled nitric oxide concentration (FENO) occurs during an exacerbation of chronic obstructive lung disease or other inflammatory processes of the airway. Raised FENO levels are also observed during normobaric, mild hyperoxic exposures, whereas after hyperbaric hyperoxic exposure the

  12. Evaluation of oxidative stress using exhaled breath 8‑isoprostane ...

    African Journals Online (AJOL)

    2013-08-05

    Aug 5, 2013 ... Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order ...

  13. 42 CFR 84.1150 - Exhalation valve leakage test; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Exhalation valve leakage test; minimum requirements. 84.1150 Section 84.1150 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust...

  14. 42 CFR 84.1137 - Inhalation and exhalation valves; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Inhalation and exhalation valves; minimum requirements. 84.1137 Section 84.1137 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE...

  15. The effect of the composition and production process of concrete on the 222Rn exhalation rate

    NARCIS (Netherlands)

    Jong, P. de; Dijk, W. van; Hulst, J.G.A. van; Heijningen, R.J.J. van

    1997-01-01

    In a series of 18 concrete samples, the influence of several parameters related to composition and production processes on the radon exhalation rate was studied. The investigated parameters were: amount and type of cement, water-cement ratio, curing conditions and curing time, type of aggregates,

  16. Control of exposure to exhaled air from sick occupant with wearable personal exhaust unit

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Barova, Maria I.

    2014-01-01

    °C. Breathing thermal manikin with realistic body and breathing cycle was used to mimic doctor. Second thermal manikin and heated dummy were used to resemble lying patients. Exhaled air by the doctor was mixed with tracer gas to mimic pathogens. The unit was positioned frontally by the mouth...

  17. The lock-up phenomenon of exhaled flow in a stable thermally-stratified indoor environment

    DEFF Research Database (Denmark)

    Zhou, Qi; Qian, Hua; Ren, Haigang

    2017-01-01

    Highlights •The lock-up phenomenon in thermally-stratified environment is explained using jet mechanics. •Non-dimensional governing equations of buoyant jet are derived. •The lock-up height of exhaled flow can be predicted by using a simple buoyant jet model. •A smaller Ar number or a steeper...

  18. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    1999-08-01

    This report describes a closed-chamber method for laboratory measurements of the rate at which radon-222 degasses (exhales) from small building material samples. The chamber is 55 L in volume and the main sample geometry is a slab of dimensions 5x30x30 cm{sup 3} . Numerical modelling is used to assess (and partly remove) the bias of the method relative to an ideal measurement of the free exhalation rate. Experimental results obtained with the method are found to be in agreement with the results of an open-chamber method (which is subject to different sources of error). Results of radon-222 exhalation rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete, autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 mBq h{sup -1} kg{sup -1}. Under consideration of the specific applications of the investigated building materials, the contribution to the indoor radon-222 concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical materials will increase the indoor concentration by less than 10 Bq m{sup -3}. (au) 6 tabs., 15 ills., 29 refs.

  19. Altered exhaled biomarker profiles in children during and after rhinovirus-induced wheeze.

    Science.gov (United States)

    van der Schee, Marc P; Hashimoto, Simone; Schuurman, Annemarie C; van Driel, Janine S Repelaer; Adriaens, Nora; van Amelsfoort, Romy M; Snoeren, Tessa; Regenboog, Martine; Sprikkelman, Aline B; Haarman, Eric G; van Aalderen, Wim M C; Sterk, Peter J

    2015-02-01

    Preschool rhinovirus-induced wheeze is associated with an increased risk of asthma. In adult asthma, exhaled volatile organic compounds (VOC) are associated with inflammatory activity. We therefore hypothesised that acute preschool wheeze is accompanied by a differential profile of exhaled VOC, which is maintained after resolution of symptoms in those children with rhinovirus-induced wheeze. We included 178 children (mean±sd age 22±9 months) from the EUROPA cohort comparing asymptomatic and wheezing children during respiratory symptoms and after recovery. Naso- and oropharyngeal swabs were tested for rhinovirus by quantitative PCR. Breath was collected via a spacer and analysed using an electronic nose. Between-group discrimination was assessed by constructing a 1000-fold cross-validated receiver operating characteristic curve. Analyses were stratified by rhinovirus presence/absence. Wheezing children demonstrated a different VOC profile when compared with asymptomatic children (prhinovirus. After symptomatic recovery, discriminative accuracy was maintained in children with rhinovirus-induced wheeze (AUC 0.84, 95% CI 0.06), whereas it dropped significantly in infants with non-rhinovirus-induced wheeze (AUC 0.67, 95% CI 0.06). Exhaled molecular profiles differ between preschool children with and without acute respiratory wheeze. This appears to be sustained in children with rhinovirus-induced wheeze after resolution of symptoms. Therefore, exhaled VOC may qualify as candidate biomarkers for early signs of asthma. Copyright ©ERS 2015.

  20. A different analysis applied to a mathematical model on output of exhaled nitric oxide

    NARCIS (Netherlands)

    Rottier, BL; Cohen, J; van der Mark, TW; Douma, WR; Duiverman, EJ; ten Hacken, NHT

    The relatively recent detection of nitric oxide ( NO) in the exhaled breath has prompted a great deal of experimentation in an effort to understand the pulmonary exchange dynamics. There has been very little progress in theoretical studies to assist in the interpretation of the experimental results.

  1. Mass spectrometric profile of exhaled breath--field study by PTR-MS

    NARCIS (Netherlands)

    Moser, Berthold; Bodrogi, Florian; Eibl, Guenther; Lechner, Matthias; Rieder, Josef; Lirk, Philipp

    2005-01-01

    Recently, increased interest has focused on the diagnostic potential of volatile organic compounds (VOC) exhaled in human breath as this substance group has been conjectured in indoor air quality and disease screening. Proton transfer reaction-mass spectrometry (PTR-MS) has been established as a new

  2. The association between exhaled nitric oxide and sleep apnea: the role of BMI.

    Science.gov (United States)

    JalilMirmohammadi, Seyyed; Mehrparvar, Amir Houshang; Safaei, Sara; Samimi, Ehsan; Torab Jahromi, Mona

    2014-08-01

    Obstructive sleep apnea syndrome is associated with airway inflammation. Measurement of exhaled nitric oxide is a non-invasive method for evaluation of airway diseases. It seems that obesity is an exacerbating factor for airway inflammation. We aimed to evaluate the changes of exhaled nitric oxide after sleep in patients suffering from OSA regarding BMI. In 54 patients referred for polysomnography, exhaled nitric oxide measurements were performed before and after sleep. Subjects were divided into three categories: normal, obese with sleep apnea and non-obese, based on polysomnographic recordings and BMI. 47 subjects had abnormal apnea/hypopnea index (AHI mean = 39.7) and 7 were normal regarding AHI (AHI mean = 3.0). BMI was significantly correlated to AHI, number of desaturations and hypoxia. Among those with apnea, 31 subjects were obese and 16 were non-obese. Exhaled nitric oxide levels in normal and OSA subjects showed no significant change, but a significant increase was found in obese patients with apnea (14.7 pre-sleep mean, 20.0 post-sleep mean). Obesity is an effective factor in the inflammation of airways in patients with obstructive apnea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Impact of bacterial colonization on exhaled inflammatory markers in wheezing preschool children

    NARCIS (Netherlands)

    Kant, K.D. van de; Klaassen, E.M.; Aerde, K.J. van; Damoiseaux, J.; Bruggeman, C.A.; Stelma, F.F.; Stobberingh, E.E.; Muris, J.W.M.; Jobsis, Q.; Schayck, O.C. van; Dompeling, E.

    2012-01-01

    Wheeze is a common symptom in preschool children. The role of bacteria, regulatory T (T(reg)) cells and their association with airway inflammation in preschool wheeze is largely unknown. We evaluated inflammatory markers in exhaled breath condensate (EBC), bacterial colonization and circulating

  4. Asthma, atopy and exhaled nitric oxide in a cohort of 6-yr-old New Zealand children.

    Science.gov (United States)

    Crane, Julian; Lampshire, Philippa; Wickens, Kristin; Epton, Michael; Siebers, Robert; Ingham, Tristram; Pattemore, Philip; Town, Ian

    2012-02-01

    Exhaled nitric oxide has been promoted as a non-invasive measure of airway inflammation, with clinical utility for the diagnosis and management of asthma. We studied associations between exhaled nitric oxide, asthma and atopy in a variety of clinically relevant phenotypes in a cohort of 6-yr-old children. Asthma was defined using standard questionnaire criteria, atopy was measured using skin prick tests (SPT) and specific IgE to common allergens, and exhaled nitric oxide was measured using a chemiluminescence analyser according to American and European Thoracic Society criteria. Exhaled nitric oxide was strongly related to atopy and in particular to sensitization to house dust mites. Children with non-allergic asthma had no increase in exhaled nitric oxide compared with non-asthmatic children. Compared with children who never wheezed both late onset and persistent, wheezing was associated with increased FE(NO), while early transient wheezing was not. Elevated levels of exhaled nitric oxide amongst children with allergic asthma were almost entirely explained by their levels of specific IgE to aeroallergens, predominantly D pteronyssinus. Airway inflammation as measured by exhaled nitric oxide in young New Zealand children is related to their level of specific IgE to aeroallergens. This has implications for the utility of nitric oxide as a diagnostic and management tool in childhood asthma and for the importance of specific IgE as a marker of asthma severity. © 2011 John Wiley & Sons A/S.

  5. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.

    Science.gov (United States)

    Campos, M P; Costa, L J P; Nisti, M B; Mazzilli, B P

    2017-06-01

    Phosphogypsum can be classified as a Naturally Occurring Radioactive Material (NORM) residue of the phosphate fertilizer industry. One of the main environmental concerns of its use as building material is the radon exhalation. The aim of this study is to measure the radon exhalation rate from plates and bricks manufactured with phosphogypsum from three installations of the main Brazilian producer, Vale Fertilizantes, in order to evaluate the additional health risk to dwellers. A simple and reliable accumulator method involving a PVC pipe sealed with a PVC pipe cover commercially available with CR-39 radon detector into a diffusion chamber was used for measuring radon exhalation rate from phosphogypsum made plates and bricks. The radon exhalation rate from plates varied from 0.19 ± 0.06 Bq m(-2) h(-1), for phosphogypsum from Bunge Fertilizers, from 1.3 ± 0.3 Bq m(-2) h(-1), for phosphogypsum from Ultrafertil. As for the bricks, the results ranged from 0.11 ± 0.01 Bq m(-2) h(-1), for phosphogypsum from Bunge Fertilizers, to 1.2 ± 0.3 Bq m(-2) h(-1), for phosphogypsum from Ultrafertil. The results obtained in this study for the radon exhalation rate from phosphogypsum plates and bricks are of the same order of magnitude than those from ordinary building materials. So, it can be concluded that the recycling of phosphogypsum as building material is a safe practice, since no additional health risk is expected from the radiological point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Study of different factors which can explain the radon exhalation potential of soils; Recherche de differents parametres caracterisant le potentiel d`exhalation en radon des sols

    Energy Technology Data Exchange (ETDEWEB)

    Demongeot, St

    1997-10-27

    Radon is a natural radioactive gas belonging to the Uranium-238 chain, which is present in the earth crust and produced by the disintegration of radium-226. It is considered as the major source of radiological exposure of man to natural radiation because it can accumulate in indoor atmosphere. So, this health risk must be take into account.The aim of this study is to find some tools in order to identify high radon level area. The first part of this study has consisted in measurement of radon emission from different not sufficient for the estimation of the radon exhalation potential in a given area. In the second part of this work, we have studied the variations of in situ radon concentration as a function of different geological and pedologic parameters of the site. With the results obtained, we have determined the data which have to be considered, and the methodology to be applied for the determination of the radon exhalation of a given area. Furthermore, by the mean of numerical simulations (TRACH Model), it was possible to know the scale of radon flux variation in a given point versus the hydric state of the ground and thus the permeability: these parameters are not easy to measure because of their variabilities with time. The methodology ESPERAS (EStimation du Potential d`Exhalation en Radon des Sols) developed during this work was applied first, at a local scale and then to greater area. The values estimated by this way are in a good agreement with the results of measurements. So, we can determine the areas which are affected by high radon levels. (author)

  7. Post-operative elimination of sevoflurane anesthetic and hexafluoroisopropanol metabolite in exhaled breath: Pharmacokinetic models for assessing liver function

    Science.gov (United States)

    Sevoflurane (SEV), a commonly used anesthetic agent for invasive surgery, is directly eliminated via exhaled breath and indirectly by metabolic conversion to inorganic fluoride and hexafluoroisopropanol (HFIP), which is also eliminated in the breath. We studied the post-operativ...

  8. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns.

    Science.gov (United States)

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-11-10

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  9. Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2007-01-01

    the concentration of exhaled air pollution increased in the room. The two types of personalized ventilation performed differently. Subsequent analyses of airborne infection transmission risk indicated that personalized ventilation could become a supplement to traditional methods of infection control....

  10. Exploring Airway Diseases by NMR-Based Metabonomics: A Review of Application to Exhaled Breath Condensate

    Directory of Open Access Journals (Sweden)

    Matteo Sofia

    2011-01-01

    Full Text Available There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC may help in detecting abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction. Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR spectroscopy. By using this approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and personalized therapy.

  11. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    Science.gov (United States)

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.

  12. Modelling radiation exposure in homes from siporex blocks by using exhalation rates of radon

    Directory of Open Access Journals (Sweden)

    Nikolić Mladen D.

    2015-01-01

    Full Text Available Building materials are the second major source of indoor radon, after soil. The contribution of building materials to indoor radon amount depends upon the radium content and exhalation rates, which can be used as a primary index for radon levels in the dwellings. This paper presents the results of using the experimentally determined exhalation rates of siporex blocks and concrete plates, to assess the radiation exposure in dwellings built of siporex blocks. The annual doses in rooms have been estimated depending on the established modes of ventilation. Realistic scenario was created to predict an annual effective dose for an old person, a housewife, a student, and an employed tenant, who live in the same apartment, spending different periods of time in it. The results indicate the crucial importance of good ventilation of the living space.

  13. Factors governing the dispersion of exhaled particles during vaping of an e-cigarette

    OpenAIRE

    Prasauskas, Tadas; Martuzevičius, Dainius; Setyan, Ari; O?Connell, Grant; Cahours, Xavier; Colard, Stephane

    2016-01-01

    Electronic cigarettes (e-cigarettes) are a relatively new alternative to conventional cigarettes and the prevalence of use is increasing amongst smokers worldwide. This raises new questions for example on the potential impact of e-cigarette use on indoor air quality and bystander exposures; evidence on this topic is still emerging. To that end, the aim of this study was to investigate the impact of different factors on the dispersion of exhaled e-cigarette particles at a bystander’s position,...

  14. Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses

    Directory of Open Access Journals (Sweden)

    Akbar Abbasi

    2017-01-01

    Conclusions: The estimated numbers of lung cancer deaths attributable to indoor radon due to granite stones in 2013 were 145 (3.33% and 103 (2.37% for poor and normal ventilation systems, respectively. According to our estimations, the values of 3.33% and 2.37% of lung cancer deaths in 2013 are attributed to radon exhalation of granite stones with poor and normal ventilation systems, respectively.

  15. Spirometry effects on conventional and multiple flow exhaled nitric oxide in children.

    Science.gov (United States)

    Eckel, Sandrah P; Linn, William S; Salam, Muhammad T; Bastain, Theresa M; Zhang, Yue; Rappaport, Edward B; Liu, Meng; Berhane, Kiros

    2015-03-01

    Clinical and research settings often require sequencing multiple respiratory tests in a brief visit. Guidelines recommend measuring the concentration of exhaled nitric oxide (FeNO) before spirometry, but evidence for a spirometry carryover effect on FeNO is mixed. Only one study has investigated spirometry carryover effects on multiple flow FeNO analysis. The objective of this study was to evaluate evidence for carryover effects of recent spirometry on three exhaled NO summary measures: FeNO at 50 ml/s, airway wall NO flux [J'awNO] and alveolar NO concentration [CANO] in a population-based sample of schoolchildren. Participants were 1146 children (191 with asthma), ages 12-15, from the Southern California Children's Health Study who performed spirometry and multiple flow FeNO on the same day. Approximately, half the children performed spirometry first. Multiple linear regression was used to estimate differences in exhaled NO summary measures associated with recent spirometry testing, adjusting for potential confounders. In the population-based sample, we found no evidence of spirometry carryover effects. However, for children with asthma, there was a suggestion that exhaled NO summary measures assessed ≤6 min after spirometry were lower (FeNO: 25.8% lower, 95% CI: -6.2%, 48.2%; J'awNO: 15.1% lower 95% CI: -26.5%, 43.0%; and CANO 0.43 parts per billion lower, 95% CI: -0.12, 0.98). In clinical settings, it is prudent to assess multiple flow FeNO before spirometry. In studies of healthy subjects, it may not be necessary to assess FeNO first.

  16. Factors attributable to the level of exhaled nitric oxide in asthmatic children

    Directory of Open Access Journals (Sweden)

    Banovcin P

    2009-12-01

    Full Text Available Abstract Background Asthma is a heterogeneous disease with variable symptoms especially in children. Exhaled nitric oxide (FeNO has proved to be a marker of inflammation in the airways and has become a substantial part of clinical management of asthmatic children due to its potential to predict possible exacerbation and adjust the dose of inhalant corticosteroids. Objectives We analyzed potential factors that contribute to the variability of nitric oxide in various clinical and laboratory conditions. Materials and methods Study population consisted of 222 asthmatic children and 27 healthy control subjects. All children underwent a panel of tests: fractioned exhaled nitric oxide, exhaled carbon monoxide, asthma control test scoring, blood sampling, skin prick tests, and basic spirometry. Results FeNO and other investigated parameters widely changed according to clinical or laboratory characteristics of the tested children. Asthmatics showed increased levels of FeNO, exhaled carbon monoxide, total serum IgE, and higher eosinophilia. Boys had higher FeNO levels than girls. We found a significant positive correlation between FeNO levels and the percentage of blood eosinophils, %predicted of forced vital capacity, total serum IgE levels, and increasing age. Conclusions Various phenotypes of children's asthma are characterized by specific pattern of the results of clinical and laboratory tests. FeNO correlates with total serum IgE, blood eosinophilia, age, and some spirometric parameters with different strength. Therefore, the coexistence of atopy, concomitant allergic rhinitis/rhinoconjunctivitis, and some other parameters should be considered in critical evaluation of FeNO in the management of asthmatic children.

  17. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks.

    Directory of Open Access Journals (Sweden)

    Donald K Milton

    2013-03-01

    Full Text Available The CDC recommends that healthcare settings provide influenza patients with facemasks as a means of reducing transmission to staff and other patients, and a recent report suggested that surgical masks can capture influenza virus in large droplet spray. However, there is minimal data on influenza virus aerosol shedding, the infectiousness of exhaled aerosols, and none on the impact of facemasks on viral aerosol shedding from patients with seasonal influenza. We collected samples of exhaled particles (one with and one without a facemask in two size fractions ("coarse">5 µm, "fine"≤5 µm from 37 volunteers within 5 days of seasonal influenza onset, measured viral copy number using quantitative RT-PCR, and tested the fine-particle fraction for culturable virus. Fine particles contained 8.8 (95% CI 4.1 to 19 fold more viral copies than did coarse particles. Surgical masks reduced viral copy numbers in the fine fraction by 2.8 fold (95% CI 1.5 to 5.2 and in the coarse fraction by 25 fold (95% CI 3.5 to 180. Overall, masks produced a 3.4 fold (95% CI 1.8 to 6.3 reduction in viral aerosol shedding. Correlations between nasopharyngeal swab and the aerosol fraction copy numbers were weak (r = 0.17, coarse; r = 0.29, fine fraction. Copy numbers in exhaled breath declined rapidly with day after onset of illness. Two subjects with the highest copy numbers gave culture positive fine particle samples. Surgical masks worn by patients reduce aerosols shedding of virus. The abundance of viral copies in fine particle aerosols and evidence for their infectiousness suggests an important role in seasonal influenza transmission. Monitoring exhaled virus aerosols will be important for validation of experimental transmission studies in humans.

  18. A Pilot Study to Assess Solanesol Levels in Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available This paper describes the results obtained during the measurement of the level of solanesol in exhaled cigarette smoke from human subjects. The study was performed with three different cigarettes with U.S. Federal Trade Commission (FTC ‘tar’ values of 5.0 mg, 10.6 mg, and 16.2 mg. The number of human subjects was ten smokers for each of the evaluated products, each subject smoking three cigarettes within one hour. The exhaled smoke was collected using a vacuum assisted procedure that avoids strain in exhaling, and the solanesol was analyzed using an original high performance liquid chromatography (HPLC technique. The cigarette butts from the smokers were collected and also analyzed for solanesol. The results obtained for the cigarette butts from the smokers were used to calculate the level of solanesol delivered to the smoker, based on calibration curves. These curves were generated separately by analyzing the solanesol in smoke and in the cigarette butts obtained by machine smoking under different puffing regimes. Knowing the levels of solanesol delivered to the smoker and the exhaled levels it was possible to calculate the retention and retention % of this compound from mainstream smoke for different cigarettes types. The amount of retained solanesol is the lowest for the 5.0 mg ‘tar’ product, and the highest for the 16.2 mg ‘tar’ product, although there is not much difference between the 10.6 mg ‘tar’ product and the 16.2 mg ‘tar’ product. For the 10.6 mg ‘tar’ cigarettes the retention % was between 60% and 72%, for the 5.0 mg product the retention % was slightly lower ranging between 53% and 70%, while for the 16.2 mg ‘tar’ product, the retention % was slightly higher ranging between 62% and 82%.

  19. Multiple flow rates measurement of exhaled nitric oxide in patients with sarcoidosis: a pilot feasibility study.

    Science.gov (United States)

    Choi, J; Hoffman, L A; Sethi, J M; Zullo, T G; Gibson, K F

    2009-07-01

    Fraction of end tidal exhaled nitric oxide (FeNO) has been introduced as a non-invasive marker of airway inflammation in patients with asthma and may have value in monitoring disease activity in patients with sarcoidosis. This pilot study explored: 1) feasibility of the multiple flow rates maneuver to estimate alveolar (C(AlV)NO) and airway wall (J(AW)NO) NO in patients with sarcoidosis; and 2) utility of exhaled NO (FeNO, C(Alv)NO and J(AW)NO) measurements to detect and monitor treatment response in patients with active pulmonary sarcoidosis. Patients with sarcoidosis (n = 42) and healthy non-smokers (n = 20) underwent FeNO measurement at 7 flow-rates (50 to 400 ml/s). Using the Tsoukias and George (1998) model, C(Alv)NO and J(AW)NO were estimated. Both patients and healthy non-smokers were able to perform the multiple flow rates maneuver without discomfort, with first measurement success rate of 57% and 65%, respectively. No significant difference was found between patients with sarcoidosis and healthy non-smokers in exhaled NO. None were correlated with pulmonary function tests, except a significant negative correlation between C(Alv)NO and FVC% (p = 0.001) and DLCO% (p = 0.012). In 8 patients with active sarcoidosis, FeNO, C(Alv)NO or J(AW)NO were not different from those of patients with inactive sarcoidosis. Treatment of active sarcoidosis using oral prednisone and methotrexate did not show any consistent pattern of changes in C(Alv)NO or J(AW)NO. Due to a large inter-subject variability and difficulty controlling use of the inhaled corticosteroids, exhaled NO measurement did not appear to be a clinically useful method of monitoring disease progression in sarcoidosis.

  20. Exhaled breath profiling in patients with COPD and OSA overlap syndrome: a pilot study.

    Science.gov (United States)

    Dragonieri, Silvano; Quaranta, Vitaliano N; Carratu, Pierluigi; Ranieri, Teresa; Resta, Onofrio

    2016-11-03

    The analysis of volatile organic compounds (VOCs) by an electronic nose (e-nose) is a groundbreaking method that provides distinct exhaled molecular patterns in several respiratory and systemic diseases. It has been shown that an e-nose can detect obstructive sleep apnea (OSA) as well as chronic obstructive pulmonary disease (COPD). OSA and COPD are sometimes associated into the so-called overlap syndrome (OVS). In this pilot study we hypothesized that an e-nose could discriminate the exhaled breath of patients with OVS from that of subjects with OSA and COPD alone. Thirteen patients with OSA, 15 patients with COPD and 13 with OVS participated in a cross-sectional study. Exhaled breath was collected by a formerly validated method and sampled by using an electronic nose (Cyranose 320). Raw data were analyzed by canonical discriminant analysis on principal component reduction. Cross-validation accuracy (CVA) and ROC-curves were calculated. External validation in newly recruited patients (6 OSA, 6 OVS and 6 COPD) was tested using the previous training set. Breathprints of patients with OSA clustered distinctly from those with OVS (CVA  =  96.2%) as well as those with COPD (CVA  =  82.1%). Breathprints from OVS were not significantly separated from those of COPD (CVA  =  67.9%). External validation confirmed the above findings. The e-nose can distinguish with high accuracy the exhaled VOC-profile of patients with OSA from those with OVS as well as those with COPD. This warrants future studies to confirm the potential of this technique in the non-invasive detection of sleep apnea.

  1. Position of exhalation port and mask design affect CO2 rebreathing during noninvasive positive pressure ventilation.

    Science.gov (United States)

    Schettino, Guilherme P P; Chatmongkolchart, Sunisa; Hess, Dean R; Kacmarek, Robert M

    2003-08-01

    Noninvasive positive pressure ventilation may be considered a first line intervention to treat patients with hypercapnic respiratory failure. However, CO2 rebreathing from the ventilator circuit or mask may impair CO2 elimination and load the ventilatory muscles. This study was conducted to evaluate the effect of exhalation port location and mask design on CO2 rebreathing during noninvasive positive pressure ventilation. Lung model evaluation. Experimental laboratory of a large university-affiliated hospital. A dual-chamber test lung was used to simulate the ventilatory mechanics of a patient with obstructive lung disease. Hypercapnic respiratory failure (end-tidal CO2 of 75 mm Hg) and obstructive lung disease were simulated in a double-chamber lung model. A facial mask (inner volume of 165 mL) with exhalation port within the mask (Facial-MEP) or the same mask with exhalation port in the ventilator circuit (Facial-WS) and a total face mask with exhalation port within the mask (inner volume 875 mL, Total Face) were tested during continuous positive airway pressure and pressure support ventilation provided by a single-limb circuit ventilator at the same frequency and tidal volume. A capnometer and a flow transducer were placed in the lung model upper airway to measure the volume of CO2 rebreathed and tidal volume (Vt). The inspiratory load was estimated from the pressure variation in the lung model driving chamber (PDR). Volume of CO2 rebreathed was smaller during Facial-MEP compared with the other masks in all tested conditions (p ventilation.

  2. Prediction of asthma exacerbations in children by innovative exhaled inflammatory markers: results of a longitudinal study.

    Directory of Open Access Journals (Sweden)

    Dillys van Vliet

    Full Text Available In asthma management guidelines the primary goal of treatment is asthma control. To date, asthma control, guided by symptoms and lung function, is not optimal in many children and adults. Direct monitoring of airway inflammation in exhaled breath may improve asthma control and reduce the number of exacerbations.1 To study the use of fractional exhaled nitric oxide (FeNO and inflammatory markers in exhaled breath condensate (EBC, in the prediction of asthma exacerbations in a pediatric population. 2 To study the predictive power of these exhaled inflammatory markers combined with clinical parameters.96 asthmatic children were included in this one-year prospective observational study, with clinical visits every 2 months. Between visits, daily symptom scores and lung function were recorded using a home monitor. During clinical visits, asthma control and FeNO were assessed. Furthermore, lung function measurements were performed and EBC was collected. Statistical analysis was performed using a test dataset and validation dataset for 1 conditionally specified models, receiver operating characteristic-curves (ROC-curves; 2 k-nearest neighbors algorithm.Three conditionally specified predictive models were constructed. Model 1 included inflammatory markers in EBC alone, model 2 included FeNO plus clinical characteristics and the ACQ score, and model 3 included all the predictors used in model 1 and 2. The area under the ROC-curves was estimated as 47%, 54% and 59% for models 1, 2 and 3 respectively. The k-nearest neighbors predictive algorithm, using the information of all the variables in model 3, produced correct predictions for 52% of the exacerbations in the validation dataset.The predictive power of FeNO and inflammatory markers in EBC for prediction of an asthma exacerbation was low, even when combined with clinical characteristics and symptoms. Qualitative improvement of the chemical analysis of EBC may lead to a better non-invasive prediction of

  3. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research

    Science.gov (United States)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.

    2016-09-01

    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  4. Electronic Nose and Exhaled Breath NMR-based Metabolomics Applications in Airways Disease.

    Science.gov (United States)

    Santini, Giuseppe; Mores, Nadia; Penas, Andreu; Capuano, Rosamaria; Mondino, Chiara; Trové, Andrea; Macagno, Francesco; Zini, Gina; Cattani, Paola; Martinelli, Eugenio; Motta, Andrea; Macis, Giuseppe; Ciabattoni, Giovanni; Montuschi, Paolo

    2016-01-01

    Breathomics, the multidimensional molecular analysis of exhaled breath, includes analysis of exhaled breath with gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses), and metabolomics of exhaled breath condensate (EBC), a non-invasive technique which provides information on the composition of airway lining fluid, generally by high-resolution nuclear magnetic resonance (NMR) spectroscopy or MS methods. Metabolomics is the identification and quantification of small molecular weight metabolites in a biofluid. Specific profiles of volatile compounds in exhaled breath and metabolites in EBC (breathprints) are potentially useful surrogate markers of inflammatory respiratory diseases. Electronic noses (e-noses) are artificial sensor systems, usually consisting of chemical cross-reactive sensor arrays for characterization of patterns of breath volatile compounds, and algorithms for breathprints classification. E-noses are handheld, portable, and provide real-time data. E-nose breathprints can reflect respiratory inflammation. E-noses and NMR-based metabolomics of EBC can distinguish patients with respiratory diseases such as asthma, COPD, and lung cancer, or diseases with a clinically relevant respiratory component including cystic fibrosis and primary ciliary dyskinesia, and healthy individuals. Breathomics has also been reported to identify patients affected by different types of respiratory diseases. Patterns of breath volatile compounds detected by e-nose and EBC metabolic profiles have been associated with asthma phenotypes. In combination with other -omics platforms, breathomics might provide a molecular approach to respiratory disease phenotyping and a molecular basis to tailored pharmacotherapeutic strategies. Breathomics might also contribute to identify new surrogate markers of respiratory inflammation, thus, facilitating drug discovery. Validation in newly recruited, prospective independent cohorts is essential for development of e

  5. Trichloroethene levels in human blood and exhaled breath from controlled inhalation exposure.

    OpenAIRE

    Pleil, J D; Fisher, J W; Lindstrom, A B

    1998-01-01

    The organic constituents of exhaled human breath are representative of bloodborne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds, sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, the sampl...

  6. Analytical study of radionuclide concentration and radon exhalation rate in market available building materials of Ramsar

    Science.gov (United States)

    Bavarnegin, Elham; Vahabi-moghaddam, Masoud; Babakhani, Asad; Fathabadi, Nasrin

    2012-07-01

    Samples of structural and covering market available building materials from Ramsar, a northern city of Iran, were analyzed for their radon exhalation rate using an active radon gas analyzer with an emanation container. The radon exhalation rate varied from below the minimum detection limit of 0.01 to 0.31 Bq·m-2·h-1 with an average of 0.08 Bq·m-2·h-1. The 226Ra, 232Th, and 40K contents were also measured using a high resolution HPGe gamma-ray spectrometer system. The radionuclides contents varied from below the minimum detectable activity up to 73.5, 169, and 1,350 Bq.kg-1, with the average value of 16 ± 6, 25 ± 11, and 280 ± 101 Bq.kg-1, respectively. It was concluded from the results that some granite samples along with the block sample were the main source of radon exhalation rate, and the mean values of 226Ra, 232Th, and 40K in building material samples are below the world average values. Therefore, the use of these market available building materials in construction of Ramsar dwellings is considered to be safe for human habitation.

  7. Design and evaluation of an exhaled breath sampler for biological monitoring of organic solvents.

    Science.gov (United States)

    Periago, J F; Luna, A; Morente, A; Zambudio, A

    1992-04-01

    We designed a breath sampler based on a tube which collects the final portion of exhaled air. The passage of successive fractions through a layer of activated charcoal is controlled by a three-way valve. This system was validated in a controlled atmosphere of n-hexane and toluene at four concentrations between 12 and 110 mg m-3 and 12 and 115 mg m-3, respectively. Uptake volumes of 0.1, 0.2 and 0.31 were tested at relative humidities of 46% and 98%. There were no significant differences in the recoveries obtained under any of the conditions tested. We confirmed the reproducibility between successive samples in volunteers and exposed workers, and found no significant differences between the different sampling conditions studied. Our system enriches the sample in an adsorbent cartridge by collecting successive fractions of end-exhaled breath from one or more exhalations until the amount required by the analytical method has been accumulated. It is portable, economical and highly operative in the field.

  8. Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.

    Science.gov (United States)

    Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel

    2013-11-01

    Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  9. Measurement of radon exhalation rate in various building materials and soil samples

    Science.gov (United States)

    Bala, Pankaj; Kumar, Vinod; Mehra, Rohit

    2017-03-01

    Indoor radon is considered as one of the potential dangerous radioactive elements. Common building materials and soil are the major source of this radon gas in the indoor environment. In the present study, the measurement of radon exhalation rate in the soil and building material samples of Una and Hamirpur districts of Himachal Pradesh has been done with solid state alpha track detectors, LR-115 type-II plastic track detectors. The radon exhalation rate for the soil samples varies from 39.1 to 91.2 mBq kg-1 h-1 with a mean value 59.7 mBq kg-1 h-1. Also the radium concentration of the studied area is found and it varies from 30.6 to 51.9 Bq kg-1 with a mean value 41.6 Bq kg-1. The exhalation rate for the building material samples varies from 40.72 (sandstone) to 81.40 mBq kg-1 h-1 (granite) with a mean value of 59.94 mBq kg-1 h-1.

  10. Effects of bronchoconstriction, minute ventilation, and deep inspiration on the composition of exhaled breath condensate.

    Science.gov (United States)

    Debley, Jason S; Ohanian, Arpy S; Spiekerman, Charles F; Aitken, Moira L; Hallstrand, Teal S

    2011-01-01

    Exhaled breath condensate (EBC) is composed of droplets of airway surface liquid (ASL) diluted by water vapor. The goal of this study was to determine if the composition of EBC is affected by changes in airway caliber, minute ventilation, or forceful exhalation, factors that may differ among subjects with asthma in cross-sectional studies. In a group of subjects with asthma, we measured the effects of the following: (1) a series of three deep-inspiration and forceful-exhalation maneuvers; (2) a doubling of minute ventilation; and (3) acute bronchoconstriction induced by methacholine on EBC volume, dilution of ASL, and concentration of cysteinyl leukotrienes (CysLTs). With the exception of an increase in EBC volume with increased minute ventilation, there were no significant changes in the volume, dilution, or levels of CysLTs in EBC introduced by each of these factors. The CIs surrounding the differences introduced by each factor showed that the maximum systematic errors due to these factors were modest. These results indicate that changes in airway caliber, minute ventilation, or breathing pattern among subjects with asthma do not significantly alter the measurements of mediator concentrations in EBC.

  11. Evaluation of Bio-VOC Sampler for Analysis of Volatile Organic Compounds in Exhaled Breath.

    Science.gov (United States)

    Kwak, Jae; Fan, Maomian; Harshman, Sean W; Garrison, Catherine E; Dershem, Victoria L; Phillips, Jeffrey B; Grigsby, Claude C; Ott, Darrin K

    2014-09-29

    Monitoring volatile organic compounds (VOCs) from exhaled breath has been used to determine exposures of humans to chemicals. Prior to analysis of VOCs, breath samples are often collected with canisters or bags and concentrated. The Bio-VOC breath sampler, a commercial sampling device, has been recently introduced to the market with growing use. The main advantage for this sampler is to collect the last portion of exhaled breath, which is more likely to represent the air deep in the lungs. However, information about the Bio-VOC sampler is somewhat limited. Therefore, we have thoroughly evaluated the sampler here. We determined the volume of the breath air collected in the sampler was approximately 88 mL. When sampling was repeated multiple times, with the succeeding exhalations applied to a single sorbent tube, we observed linear relationships between the normalized peak intensity and the number of repeated collections with the sampler in many of the breath VOCs detected. No moisture effect was observed on the Tenax sorbent tubes used. However, due to the limitation in the collection volume, the use of the Bio-VOC sampler is recommended only for detection of VOCs present at high concentrations unless repeated collections of breath samples on the sampler are conducted.

  12. Radon exhalation study of manganese clay residue and usability in brick production.

    Science.gov (United States)

    Kovács, Tibor; Shahrokhi, Amin; Sas, Zoltán; Vigh, Tamás; Somlai, János

    2017-03-01

    The reuse of by-products and residue streams is an important topic due to environmental and financial aspects. Manganese clay is a residue of manganese ore processing and is generated in huge amounts. This residue may contain some radionuclides with elevated concentrations. In this study, the radon emanation features and the massic exhalation rate of the heat-treated manganese clay were determined with regard to brick production. From the manganese mud depository, 20 samples were collected and after homogenization radon exhalation characteristics were determined as a function of firing temperatures from 100 to 750 °C. The major naturally occurring radionuclides 40 K, 226 Ra and 232 Th concentrations were 607 ± 34, 52 ± 6 and 40 ± 5 Bq kg -1 , respectively, comparable with normal clay samples. Similar to our previous studies a strong correlation was found between the internal structure and the radon emanation. The radon emanation coefficient decreased by ∼96% from 0.23 at 100 °C to 0.01 at 750 °C. The massic radon exhalation rate of samples fired at 750 °C reduced by 3% compared to samples fired at 100 °C. In light of the results, reusing of manganese clay as a brick additive is possible without any constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Exhaled breath condensate sampling is not a new method for detection of respiratory viruses

    Directory of Open Access Journals (Sweden)

    Maes Piet

    2011-03-01

    Full Text Available Abstract Background Exhaled breath condensate (EBC sampling has been considered an inventive and novel method for the isolation of respiratory viruses. Methods In our study, 102 volunteers experiencing upper airway infection were recruited over the winter and early spring of 2008/2009 and the first half of the winter of 2009/2010. Ninety-nine EBCs were successfully obtained and screened for 14 commonly circulating respiratory viruses. To investigate the efficiency of virus isolation from EBC, a nasal swab was taken in parallel from a subset of volunteers. The combined use of the ECoVent device with the RTube™ allowed the registration of the exhaled volume and breathing frequency during collection. In this way, the number of exhaled viral particles per liter air or per minute can theoretically be estimated. Results Viral screening resulted in the detection of 4 different viruses in EBC and/or nasal swabs: Rhinovirus, Human Respiratory Syncytial Virus B, Influenza A and Influenza B. Rhinovirus was detected in 6 EBCs and 1 EBC was Influenza B positive. We report a viral detection rate of 7% for the EBCs, which is much lower than the detection rate of 46.8% observed using nasal swabs. Conclusion Although very promising, EBC collection using the RTube™ is not reliable for diagnosis of respiratory infections.

  14. Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Di Donato Michele

    2009-12-01

    Full Text Available Abstract Background High levels of exhaled carbon monoxide (eCO are a marker of airway or lung inflammation. We investigated whether hypo- or hyperventilation can affect measured values. Methods Ten healthy volunteers were trained to achieve sustained end-tidal CO2 (etCO2 concentrations of 30 (hyperventilation, 40 (normoventilation, and 50 mmHg (hypoventilation. As soon as target etCO2 values were achieved for 120 sec, exhaled breath was analyzed for eCO with a photoacoustic spectrometer. At etCO2 values of 30 and 40 mmHg exhaled breath was sampled both after a deep inspiration and after a normal one. All measurements were performed in two different environmental conditions: A ambient CO concentration = 0.8 ppm and B ambient CO concentration = 1.7 ppm. Results During normoventilation, eCO mean (standard deviation was 11.5 (0.8 ppm; it decreased to 10.3 (0.8 ppm during hyperventilation (p 2 changes (hyperventilation: 10% Vs 25% decrease; hypoventilation 3% Vs 25% increase. Taking a deep inspiration before breath sampling was associated with lower eCO values (p Conclusions eCO measurements should not be performed during marked acute hyperventilation, like that induced in this study, but the influence of less pronounced hyperventilation or of hypoventilation is probably negligible in clinical practice

  15. A new portable monitor for measuring odorous compounds in oral, exhaled and nasal air

    Directory of Open Access Journals (Sweden)

    Ekuni Daisuke

    2011-04-01

    Full Text Available Abstract Background The B/B Checker®, a new portable device for detecting odorous compounds in oral, exhaled, and nasal air, is now available. As a single unit, this device is capable of detecting several kinds of gases mixed with volatile sulfur compounds (VSC in addition to other odorous gasses. The purpose of the present study was to evaluate the effectiveness of the B/B Checker® for detecting the malodor level of oral, exhaled, and nasal air. Methods A total of 30 healthy, non-smoking volunteers (16 males and 14 females participated in this study. The malodor levels in oral, exhaled, and nasal air were measured using the B/B Checker® and by organoleptic test (OT scores. The VSCs in each air were also measured by gas chromatography (GC. Associations among B/B Checker® measurements, OT scores and VSC levels were analyzed using Spearman correlation coefficients. In order to determine the appropriate B/B Checker® level for screening subjects with malodor, sensitivity and specificity were calculated using OT scores as an identifier for diagnosing oral malodor. Results In oral and nasal air, the total VSC levels measured by GC significantly correlated to that measured by the B/B Checker®. Significant correlation was observed between the results of OT scores and the B/B Checker® measurements in oral (r = 0.892, p ® was set to 50.0 for oral air, the sensitivity and specificity were 1.00 and 0.90, respectively. On the other hand, the screening level of the B/B Checker® was set to 60.0 for exhaled air, the sensitivity and specificity were 0.82 and 1.00, respectively. Conclusion The B/B Checker® is useful for objective evaluation of malodor in oral, exhaled and nasal air and for screening subjects with halitosis. Trial registration ClinicalTrials.gov: NCT01139073

  16. Fate of aromatic solvents in animals. III Amounts of toluene exhaled from lungs, retained in the blood and excreted in the urine of rats injected with toluene.

    OpenAIRE

    神谷, 次郎

    1987-01-01

    Rats were injected with toluene intraperitoneally and the amounts of toluene exhaled were studied. The decrease in toluene in the blood paralleled the decrease in toluene in the exhaled air. The concentration of toluene in the blood attained a maximum after 60 min. and its half life was 180 min. The concentration of toluene in the exhaled air attained a maximum at 90 min, and its half life was 300 min. Twenty-five % of the toluene injected was exhaled and 31% was excreted in the urine. Fifty-...

  17. Differences in the Chemical Composition of the Particulate Phase of Inhaled and Exhaled Cigarette Mainstream Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available In this study, a comparison between the chemical composition of the particulate-phase of exhaled smoke and that of smoke generated with a smoking machine has been performed. For this purpose, eight human subjects smoked a common Lights (10.6 mg ‘tar’/cig commercial cigarette and the exhaled particulate-phase smoke from three cigarettes was collected on Cambridge pads for each smoker. The smoke collection from the human subjects was vacuum assisted. The cigarette butts from the smokers were collected and analyzed for nicotine. The machine smoking was performed with a Borgwaldt RM20 CSR smoking machine working under conditions recommended by the U.S. Federal Trade Commission (FTC. The nicotine levels for the cigarette butts from the smokers were used to normalize the level of exhaled smoke condensate to that of the FTC smoking conditions. The smoke condensates from exhaled smoke as well as that from the machine smoking were analyzed by a gas chromatographic technique with mass spectral peak identification. The retention efficiency for 160 compounds was calculated from the ratio of the compound peak areas in the exhaled smoke (normalized by the corresponding butt nicotine level vs. the areas of the corresponding peaks from the chromatogram of the smoke generated by the smoking machine. In the calculation of the results, it was assumed that the composition of mainstream smoke remains practically constant at different smoking regimes. All compounds found in the machine-generated smoke were also present in the exhaled smoke, but at different levels. About one third of the compounds were retained more than 66% by the smoker. Another third of the compounds were retained between 33% and 66%, and the rest of the compounds were retained very little from the mainstream particulate-phase of the cigarette smoke. The compounds retained more than 66% were in general compounds with lower molecular weight and with higher water solubility, which eluted first

  18. Non-invasive spatial visualization system of exhaled ethanol for real-time analysis of ALDH2 related alcohol metabolism.

    Science.gov (United States)

    Wang, Xin; Ando, Eri; Takahashi, Daishi; Arakawa, Takahiro; Kudo, Hiroyuki; Saito, Hirokazu; Mitsubayashi, Kohji

    2011-09-21

    A novel imaging system of ethanol in exhaled breath induced by acetaldehyde dehydrogenase (ALDH2)-related alcohol metabolism has been developed. The system provides an image of ethanol distribution as chemiluminescence (CL) on an enzyme-immobilized support. The spatiotemporal change of CL generated by ethanol in exhaled breath after oral administration of ethanol was detected by employing an electron multiplier CCD (EM-CCD) camera, illustrated and analyzed. Prior to measurement of standard gaseous ethanol and ethanol in exhaled breath, the system was optimized by investigating the enzyme-immobilized supports, concentration of substrate and pH condition of Tris-HCl buffer solution. The ethanol skin patch test, a simple method as an indicator of ALDH2, was performed on healthy volunteers. Breath samples of 5 volunteers with ALDH2 (+) and 5 volunteers with ALDH2 (-) were used for exhaled ethanol analysis. Concentration-time profiles of exhaled ethanol obtained from all volunteers were analyzed over a period of 120 min after oral administration of ethanol (0.4 g per kg body weight) in the form of beer which contains 5% of alcohol. The results obtained from the system showed that the peaks of exhaled ethanol concentrations appeared at 30 min, which was considered as a rapid ethanol absorption phase following first-order kinetics. Exhaled ethanol concentrations of volunteers with ALDH2 (+) were lower than volunteers with ALDH2 (-) and the digestion of ethanol in volunteers with ALDH2 (+) was faster than in volunteers with ALDH2 (-). The eliminations were analyzed to follow zero-order kinetics with a rate constant for each group.

  19. Chronic intestinal Mycobacteria infection: discrimination via VOC analysis in exhaled breath and headspace of feces using differential ion mobility spectrometry.

    Science.gov (United States)

    Purkhart, Roman; Köhler, Heike; Liebler-Tenorio, Elisabeth; Meyer, Michaela; Becher, Gunther; Kikowatz, Angela; Reinhold, Petra

    2011-06-01

    Differential ion mobility spectrometry (DMS) is a method to detect volatile organic compounds (VOC) in the ppt range. This study assessed whether VOC analysis using DMS could discriminate subjects with an experimentally induced chronic intestinal infection caused by Mycobacteria from non-infected controls. The animal model consisted of two groups of goats orally infected with two different doses of Mycobacterium avium subspecies paratuberculosis (MAP) and one group of non-infected healthy controls (each group: n = 6). Using DMS, exhaled breath and headspace of feces were analyzed on-line on an individual basis 9 months after inoculation of MAP. Data analysis included peak detection, cluster analysis, selection of discriminating VOC features (Mann-Whitney U test), and classification using a support-vector-machine. Taking the background of ambient air conditions into account, VOC analysis of exhaled breath as well as of feces revealed significant differences between chronically infected animals and non-infected controls. In both specimens, increasing as well as decreasing VOC features could be attributed to infection. Discrimination between infected and non-infected animals was sharper analyzing exhaled breath compared to headspace of feces. In exhaled breath, at least two VOC features were found to increase in a dose-dependent manner with increasing doses of MAP inoculated. Results of this study provide strong evidence that DMS analysis of exhaled breath has the potential to become a valuable tool for non-invasive assessment of VOC specifically related to certain diseases or infections.

  20. Farming environments and childhood atopy, wheeze, lung function, and exhaled nitric oxide.

    Science.gov (United States)

    Fuchs, Oliver; Genuneit, Jon; Latzin, Philipp; Büchele, Gisela; Horak, Elisabeth; Loss, Georg; Sozanska, Barbara; Weber, Juliane; Boznanski, Andrzej; Heederik, Dick; Braun-Fahrländer, Charlotte; Frey, Urs; von Mutius, Erika

    2012-08-01

    Previous studies have demonstrated that children raised on farms are protected from asthma and allergies. It is unknown whether the farming effect is solely mediated by atopy or also affects nonatopic wheeze phenotypes. We sought to study the farm effect on wheeze phenotypes and objective markers, such as lung function and exhaled nitric oxide, and their interrelation with atopy in children. The GABRIEL Advanced Studies are cross-sectional, multiphase, population-based surveys of the farm effect on asthma and allergic disease in children aged 6 to 12 years. Detailed data on wheeze, farming exposure, and IgE levels were collected from a random sample of 8023 children stratified for farm exposure. Of those, another random subsample of 858 children was invited for spirometry, including bronchodilator tests and exhaled nitric oxide measurements. We found effects of exposure to farming environments on the prevalence and degree of atopy, on the prevalence of transient wheeze (adjusted odds ratio, 0.78; 95% CI, 0.64-0.96), and on the prevalence of current wheeze among nonatopic subjects (adjusted odds ratio, 0.45; 95% CI, 0.32-0.63). There was no farm effect on lung function and exhaled nitric oxide levels in the general study population. Children living on farms are protected against wheeze independently of atopy. This farm effect is not attributable to improved airway size and lung mechanics. These findings imply as yet unknown protective mechanisms. They might include alterations of immune response and susceptibility to triggers of wheeze, such as viral infections. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Anodic alumina coating for extraction of volatile organic compounds in human exhaled breath vapor.

    Science.gov (United States)

    Zhang, GuoJuan; Zou, LiangYuan; Xu, Hui

    2015-01-01

    The objective of the study is to develop a facile and highly sensitive solid phase microextraction-gas chromatography/mass spectrometry method for the analysis of volatile organic compounds in human exhaled breath vapor. For the purpose, a highly ordered nanoporous anodic alumina coating was prepared by a two-step anodic oxidization method based on aluminum substrate. To have a good knowledge of the fiber, some features were characterized and the results indicate that the coating has several advantages, including excellent chemical and thermal stability, high mechanical strength, large surface area and good extraction performance. In addition, some parameters related to extraction efficiency were also studied. Under the optimal conditions, the coating was used to quantitatively extract volatile organic compounds. Good linearity and wide linear range were obtained with correlation coefficients (R(2)) ranging from 0.9933 to 0.9999. The detection limits of benzene homologues, aldehydes and ketones were between 0.7 and 3.4 ng L(-1). Relative standard deviations (n=5) ranged from 1.8 to 15.0%. Satisfied recovery (89-115%) was obtained at two spiked concentration levels. Finally, the developed method was successfully applied for the analysis of volatile organic compounds in human exhaled vapor samples of lung cancer patients and the controls, and the results were statistically analyzed with Independent-Sample T Test. The proposed method exhibits some outstanding merits, including convenience, non-invasion, low cost and sensitivity. It provides a potential tool for rapid detection of volatile organic compounds in human exhaled breath. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review

    Science.gov (United States)

    2012-01-01

    There is an increasing interest in the potential of exhaled biomarkers, such as volatile organic compounds (VOCs), to improve accurate diagnoses and management decisions in pulmonary diseases. The objective of this manuscript is to systematically review the current knowledge on exhaled VOCs with respect to their potential clinical use in asthma, lung cancer, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and respiratory tract infections. A systematic literature search was performed in PubMed, EMBASE, Cochrane database, and reference lists of retrieved studies. Controlled, clinical, English-language studies exploring the diagnostic and monitoring value of VOCs in asthma, COPD, CF, lung cancer and respiratory tract infections were included. Data on study design, setting, participant characteristics, VOCs techniques, and outcome measures were extracted. Seventy-three studies were included, counting in total 3,952 patients and 2,973 healthy controls. The collection and analysis of exhaled VOCs is non-invasive and could be easily applied in the broad range of patients, including subjects with severe disease and children. Various research groups demonstrated that VOCs profiles could accurately distinguish patients with a pulmonary disease from healthy controls. Pulmonary diseases seem to be characterized by a disease specific breath-print, as distinct profiles were found in patients with dissimilar diseases. The heterogeneity of studies challenged the inter-laboratory comparability. In conclusion, profiles of VOCs are potentially able to accurately diagnose various pulmonary diseases. Despite these promising findings, multiple challenges such as further standardization and validation of the diverse techniques need to be mastered before VOCs can be applied into clinical practice. PMID:23259710

  3. Radon-222 exhalation from Danish building materials: H + H Industri A/S results

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    1999-01-01

    rate measurements for 10 samples of Danish building materials are reported. Samples include ordinary concrete, lightweight aggregate concrete,autoclaved aerated concrete, bricks, and gypsum board. The maximum mass-specific exhalation rate is about 20 m Bq h"-"1 kg "-"1. Under consideration...... of the specific applications of the investigated building materials, the contribution to the indoor radon-222concentration in a single-family reference house is calculated. Numerical modelling is used to help extrapolate the laboratory measurements on small samples to full scale walls. Application of typical...

  4. Oral or nasal breathing? Real-time effects of switching sampling route onto exhaled VOC concentrations.

    Science.gov (United States)

    Sukul, Pritam; Oertel, Peter; Kamysek, Svend; Trefz, Phillip

    2017-03-21

    There is a need for standardisation in sampling and analysis of breath volatile organic compounds (VOCs) in order to minimise ubiquitous confounding effects. Physiological factors may mask concentration changes induced by pathophysiological effects. In humans, unconscious switching of oral and nasal breathing can occur during breath sampling, which may affect VOC patterns. Here, we investigated exhaled VOC concentrations in real-time while switching breathing routes. Breath from 15 healthy volunteers was analysed continuously by proton transfer reaction time-of-flight mass spectrometry during paced breathing (12 breaths min-1). Every two minutes breathing routes were switched (Setup-1: Oral → Nasal → Oral → Nasal; Setup-2: OralinNasalout → NasalinOralout → OralinNasalout → NasalinOralout). VOCs in inspiratory and alveolar air and respiratory and hemodynamic parameters were monitored quantitatively in parallel. Changing of the breathing routes and patterns immediately affected exhaled VOC concentrations. These changes were reproducible in both setups. In setup-1 cardiac output and acetone concentrations remained constant, while partial pressure of end-tidal CO2 (pET-CO2), isoprene and furan concentrations inversely mirrored tidal-volume and minute-ventilation. H2S (hydrogen-sulphide), C4H8S (allyl-methyl-sulphide), C3H8O (isopropanol) and C3H6O2 increased during oral exhalation. C4H10S increased during nasal exhalations. CH2O2 steadily decreased during the whole measurement. In setup-2 pET-CO2, C2H6S (dimethyl-sulphide), isopropanol, limonene and benzene concentrations decreased whereas, minute-ventilation, H2S and acetonitrile increased. Isoprene and furan remained unchanged. Breathing route and patterns induced VOC concentration changes depended on respiratory parameters, oral and nasal cavity exposure and physico-chemical characters of the compounds. Before using breath VOC concentrations as biomarkers it is essential that the breathing

  5. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.

    Science.gov (United States)

    Amann, Anton; Costello, Ben de Lacy; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Pleil, Joachim; Ratcliffe, Norman; Risby, Terence

    2014-09-01

    Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer

  6. Exhaled nitric oxide measure using multiple flows in clinically relevant subgroups of COPD

    DEFF Research Database (Denmark)

    Roberts, Nassim Bazeghi; Gerds, Thomas A; Budtz-Jørgensen, Esben

    2011-01-01

    Although there is widespread interest in fractional exhaled nitric oxide (FeNO) as a non-invasive, time and cost effective biomarker for assessing airway inflammation in chronic obstructive pulmonary disease (COPD), its usefulness is still controversial. We examined the FeNO levels in clinically...... (Caw). All patients had spirometry, assessment of symptoms with questionnaires and low-dose CT scan as well as assessment of weight and body composition. We examined the following subgroups of COPD: Patients with 1) Severe emphysema, 2) Chronic bronchitis, 3) Frequent exacerbations, 4) Loss of lean...

  7. The application of additional respiration resistance on exhale for increasing special endurance of highly qualified rowers

    Directory of Open Access Journals (Sweden)

    Grechuha S.V.

    2012-04-01

    Full Text Available The influence of experimental training programs with the application of additional respiration resistance of exhale on the efficiency of covering competitive distances in rowing and canoeing was considered. Thirteen highly qualified rowers participated in the research. The investigation was held in preparatory period and before contest mesocycle. The improvement of the uniform course of the boat was found in the preparatory period. The period of super-restoration of functional state of respiration muscles was found at the end of the effect. The improvement of the results was determined at the distances of 500 and 1000 m in the competitive period

  8. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  9. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....

  10. Influence of age and gender on the profile of exhaled volatile organic compounds analyzed by an electronic nose

    Directory of Open Access Journals (Sweden)

    Silvano Dragonieri

    2016-04-01

    Full Text Available We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose, resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively.Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose.

  11. Terahertz Chemical Analysis of Exhaled Human Breath - Broad Essay of Chemicals

    Science.gov (United States)

    Branco, Daniela R.; Fosnight, Alyssa M.; Thomas, Jessica R.; Medvedev, Ivan R.

    2013-06-01

    Approximately 3000 chemicals are thought to be present in human breath. Of these chemicals, many are considered typical of exhaled air. Yet, others can allude to different disease pathologies. The detection of chemicals in breath could have many practical purposes in medicine and provide a noninvasive means of diagnostics. We have previously reported on detection of ethanol, methanol, and acetone in exhaled human breath using a novel sub-millimeter/THz spectroscopic approach. This paper reports on our most recent study. A tentative list has been made of approximately 20 chemicals previously found in breath using other methods. Though many of these chemicals are only expressed in samples from donors with certain pathologies, at the time of this submission we are able to detect and quantitatively measure acetaldehyde and dimethyl sulfide in the breath of several healthy donors. Additional tentatively identified chemicals have been seen using this approach. This presentation will explain our experimental procedures and present our most recent results in THz breath analysis. Prospects, challenges and future plans will be outlined and discussed.

  12. Exhaled air analysis using wideband wave number tuning range infrared laser photoacoustic spectroscopy.

    Science.gov (United States)

    Kistenev, Yury V; Borisov, Alexey V; Kuzmin, Dmitry A; Penkova, Olga V; Kostyukova, Nadezhda Y; Karapuzikov, Alexey A

    2017-01-01

    The infrared laser photoacoustic spectroscopy (LPAS) and the pattern-recognition-based approach for noninvasive express diagnostics of pulmonary diseases on the basis of absorption spectra analysis of the patient’s exhaled air are presented. The study involved lung cancer patients ( N = 9 ), patients with chronic obstructive pulmonary disease ( N = 12 ), and a control group of healthy, nonsmoking volunteers ( N = 11 ). The analysis of the measured absorption spectra was based at first on reduction of the dimension of the feature space using principal component analysis; thereafter, the dichotomous classification was carried out using the support vector machine. The gas chromatography–mass spectrometry method (GC–MS) was used as the reference. The estimated mean value of the sensitivity of exhaled air sample analysis by the LPAS in dichotomous classification was not less than 90% and specificity was not less than 69%; the analogous results of analysis by GC–MS were 68% and 60%, respectively. Also, the approach to differential diagnostics based on the set of SVM classifiers usage is presented.

  13. Characterizations of particle size distribution of the droplets exhaled by sneeze.

    Science.gov (United States)

    Han, Z Y; Weng, W G; Huang, Q Y

    2013-11-06

    This work focuses on the size distribution of sneeze droplets exhaled immediately at mouth. Twenty healthy subjects participated in the experiment and 44 sneezes were measured by using a laser particle size analyser. Two types of distributions are observed: unimodal and bimodal. For each sneeze, the droplets exhaled at different time in the sneeze duration have the same distribution characteristics with good time stability. The volume-based size distributions of sneeze droplets can be represented by a lognormal distribution function, and the relationship between the distribution parameters and the physiological characteristics of the subjects are studied by using linear regression analysis. The geometric mean of the droplet size of all the subjects is 360.1 µm for unimodal distribution and 74.4 µm for bimodal distribution with geometric standard deviations of 1.5 and 1.7, respectively. For the two peaks of the bimodal distribution, the geometric mean (the geometric standard deviation) is 386.2 µm (1.8) for peak 1 and 72.0 µm (1.5) for peak 2. The influences of the measurement method, the limitations of the instrument, the evaporation effects of the droplets, the differences of biological dynamic mechanism and characteristics between sneeze and other respiratory activities are also discussed.

  14. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy.

    Science.gov (United States)

    Reyes-Reyes, Adonis; Horsten, Roland C; Urbach, H Paul; Bhattacharya, Nandini

    2015-01-06

    The acetone concentration exhaled in the breath of three type 1 diabetes patients (two minors and one adult) and one healthy volunteer is studied using a quantum cascade laser-based spectroscopic system. Using the acetone signature between 1150 and 1250 cm(-1) and a multiline fitting method, the concentration variations on the order of parts per billion by volume were measured. Blood glucose and ketone concentrations in blood measurements were performed simultaneously to study their relation with acetone in exhaled breath. We focus on personalized studies to better understand the role of acetone in diabetes. For each volunteer, we performed a series of measurements over a period of time, including overnight fastings of 11 ± 1 h and during ketosis-hyperglycemia events for the minors. Our results highlight the importance of performing personalized studies because the response of the minors to the presence of ketosis was consistent but unique for each individual. Also, our results emphasize the need for performing more studies with T1D minors, because the acetone concentration in the breath of the minors differs, with respect to those reported in the literature, which are based on adults.

  15. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast

    DEFF Research Database (Denmark)

    Bisgaard, H; Loland, L; Oj, J A

    1999-01-01

    -six asthmatic children 6 to 15 yr of age completed a double-blind crossover trial of 2 wk of treatment with 5 mg montelukast once daily versus placebo. FENO was measured during single-breath exhalation at a constant flow rate of 0.1 to 0.13 L/s against a resistance of 10 kPa/L/s. Eleven children were receiving......Nitric oxide in exhaled air (FENO) is increased in asthmatic children, probably reflecting aspects of airway inflammation. We have studied the effect of the leukotriene receptor antagonist (LTRA) montelukast on FENO with a view to elucidate potential anti-inflammatory properties of LTRAs. Twenty...... maintenance treatment with inhaled steroids during the study (mean daily dose, 273 microgram), whereas the other 15 used only inhaled beta(2)-agonists as required. The within-subject coefficient of variation of FENO over a 2-wk interval for the 26 children was 38%. FENO was significantly reduced by 20% after...

  17. Exhaled Nitric Oxide and Vascular Endothelial Growth Factor as Predictors of Cold Symptoms After Stress.

    Science.gov (United States)

    Ritz, Thomas; Trueba, Ana F; Vogel, Pia D; Auchus, Richard J; Rosenfield, David

    2017-11-18

    Prior research has demonstrated that psychosocial stress is associated with respiratory infections. Immunologic, endocrine, and cardiovascular predictors of such infections have been explored with varying success. We therefore sought to study the unexplored role of airway mucosal immunity factors, nitric oxide (NO) and vascular endothelial growth factor (VEGF). NO is secreted by airway epithelial cells as part of the first line of defense against bacteria, viruses, and fungi. VEGF is expressed by mast cells in respiratory infections and recruits immune cells to infected sites, but in excess lead to vulnerability of the airway epithelium. In this proof-of-concept study we measured exhaled NO, exhaled breath condensate (EBC) VEGF, salivary VEGF, and salivary cortisol in 36 students undergoing final academic examinations at three occasions: a low-stress baseline during the term, an early phase of finals, and a late phase of finals. Participants also reported on cold symptoms at these time points and approximately 5 and 10days after their last academic examination. Higher baseline NO was associated with fewer cold symptoms after stress, whereas higher baseline VEGF in EBC and saliva were associated with more cold symptoms after stress. Perceived stress at baseline as well as salivary VEGF and cortisol late in the finals also contributed to the prediction of later cold symptoms. Basal levels of NO and VEGF may inform about mucosal immunocompetence and add to preventative treatments against airway infections from periods of stress in daily life. Copyright © 2017. Published by Elsevier B.V.

  18. Radon exhalation rates and effective radium contents of the soil samples in Adapazarı, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kuş, Adem, E-mail: adem.kus@ogr.sakarya.edu.tr [Sakarya University, Physics Department, Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr; Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Sakarya University, Physics Department, Sakarya (Turkey); Sakarya University,Biyomed. Manyet.& Yarıiletken Malz. Araş. ve Uyg. Merkezi, Sakarya (Turkey)

    2016-03-25

    In this study effective radium content and radon exhalation rates in soil samples collected from Adapazarı district of Sakarya, Turkey have been measured using LR-115 type-II plastic track detectors by closed-can technique for the first time. The obtained effective radium contents are found to vary from 6.66 to 34.32 Bqkg{sup −1} with a mean value of 18.01 Bqkg{sup −1}. The radon exhalation rates measured in terms of mass and area of soil samples are found to vary from 50.35-259.41 mBqkg{sup −1}h{sup −1} with a mean value of 136.12 mBqkg{sup −1}h{sup −1} and 1035.18-5333.39 mBqm{sup −2}h{sup −1} with a mean value of mBqm{sup −2}h{sup −1}. All the measurements show that the values of radium content are under the safe limit recommended by Organization for Cooperation and Development.

  19. Quantitative detection of nitric oxide in exhaled human breath by extractive electrospray ionization mass spectrometry

    Science.gov (United States)

    Pan, Susu; Tian, Yong; Li, Ming; Zhao, Jiuyan; Zhu, Lanlan; Zhang, Wei; Gu, Haiwei; Wang, Haidong; Shi, Jianbo; Fang, Xiang; Li, Penghui; Chen, Huanwen

    2015-03-01

    Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (metabolism and clinical diagnosis.

  20. [Confrontation of knowledge on alcohol concentration in blood and in exhaled air].

    Science.gov (United States)

    Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef

    2015-01-01

    The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.

  1. Metabolomics pilot study to identify volatile organic compound markers of childhood asthma in exhaled breath.

    Science.gov (United States)

    Gahleitner, Florian; Guallar-Hoyas, Cristina; Beardsmore, Caroline S; Pandya, Hitesh C; Thomas, Cl Paul

    2013-09-01

    In-community non-invasive identification of asthma-specific volatile organic compounds (VOCs) in exhaled breath presents opportunities to characterize phenotypes, and monitor disease state and therapies. The feasibility of breath sampling with children and the preliminary identification of childhood asthma markers were studied. End-tidal exhaled breath was sampled (2.5 dm³) from 11 children with asthma and 12 healthy children with an adaptive breath sampler. VOCs were collected onto a Tenax®/Carbotrap hydrophobic adsorbent trap, and analyzed by GC-MS. Classification was by retention-index and mass spectra in a 'breath matrix' followed by multivariate analysis. A panel of eight candidate markers (1-(methylsulfanyl)propane, ethylbenzene, 1,4-dichlorobenzene, 4-isopropenyl-1-methylcyclohexene, 2-octenal, octadecyne, 1-isopropyl-3-methylbenzene and 1,7-dimethylnaphtalene) were found to differentiate between the asthmatic and healthy children in the test cohort with complete separation by 2D principal components analysis (2D PCA). Furthermore, the breath sampling protocol was found to be acceptable to children and young people. This method was found to be acceptable for children, and healthy and asthmatic individuals were distinguished on the basis of eight VOCs at elevated levels in the breath of asthmatic children.

  2. Exhaled breath condensate pH is influenced by respiratory droplet dilution.

    Science.gov (United States)

    Bikov, Andras; Galffy, Gabriella; Tamasi, Lilla; Lazar, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2012-12-01

    Several studies support that airway acid stress plays a role in the pathophysiology of asthma. Exhaled breath condensate pH (EBC pH) was suggested as a surrogate marker of airway acidification. The dilution of airway lining fluid (ALF) acids and bases by alveolar water may influence condensate pH, but it has not been studied yet. The aim of our study was to investigate the relationship between EBC pH and ALF dilution in EBC samples obtained from asthmatic and healthy subjects. EBC was collected from 55 asthmatic and 57 healthy subjects for pH and conductivity measurements. Fractional exhaled nitric oxide (FE(NO)) and lung function tests were also performed in asthmatic patients. EBC pH was determined after 10 min of argon deareation and the dilution was estimated by the measurement of conductivity in vacuum-treated samples. There was no difference either in EBC pH or dilution between the two groups. However, a significant relationship was found between EBC pH and dilution in both groups (p healthy groups, respectively). Our results suggest important methodological aspect indicating that EBC pH is affected by respiratory droplet dilution, and this effect should be taken into consideration when interpreting EBC pH data.

  3. Radon soil-gas concentration and exhalation from mine tailings dams in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ongori, J.; Lindsay, R. [University of the Western Cape, Department of Physics, Private Bag X17, Bellville 7535 (South Africa); Newman, R. [Stellenbosch University, Department of Physics, Private Bag X1 Matieland 7602 (South Africa); Maleka, P. [iThemba LABS, Department of Nuclear Physics, P. O. Box 722, Somerset West 7129 (South Africa)

    2014-07-01

    In Africa as well as in the world, South Africa plays an important role in the mining industry which dates back almost 120 years. Mining activities in South Africa mainly take place in Gauteng Province. Every year million of tons of rocks are taken from underground, milled and processed to extract gold. The uranium bearing tailings are disposed in dumpsites. These tailings dumps contain considerable amounts of radium ({sup 226}Ra) and have therefore been identified as large sources of radon ({sup 222}Rn). Radon is a noble gas formed by the decay of radium which in turn is derived from the radioactive decay of uranium ({sup 238}U). Radon release from these tailings dumps pose health concerns for the surrounding communities. Radon soil gas concentrations and exhalations from a non-operational mine dump (Kloof) which belongs to Carletonville Gold Field, Witwatersrand, South Africa have been investigated. The continuous radon monitor, the Durridge RAD7 was used to measure {sup 222}Rn soil gas concentration in the tailings dump at five different spots. The radon soil gas concentration levels were measured at depths starting from 30 cm below ground/air interface up to 110 cm at intervals of 20 cm. The concentrations recorded ranged from 26±1 to 472±23 kBq.m{sup -3}. Furthermore, thirty four soil samples were taken from the spots where radon soil gas measurements were measured for laboratory-based measurement using the low background Hyper Pure Germanium (HPGe) gamma-ray detector available at the Environmental Radioactivity Laboratory (ERL), iThemba LABS, Western Cape Province. The soil samples were collected in the depth range 0-30 cm. After analysis the weighted average activity concentrations in the soils samples were 308±7 Bq.kg{sup -1}, 255±5 Bq.kg{sup -1} and 18±1 Bq.kg{sup -1} for {sup 238}U, {sup 40}K and {sup 232}Th, respectively. A number of factors such as the radium activity concentration and its distribution in soil grains, soil grain size, soil porosity

  4. Study of the correlations between fractional exhaled nitric oxide in exhaled breath and atopic status, blood eosinophils, FCER2 mutation, and asthma control in Vietnamese children

    Directory of Open Access Journals (Sweden)

    Nguyen-Thi-Bich H

    2016-09-01

    Full Text Available Hanh Nguyen-Thi-Bich,1 Huong Duong-Thi-Ly,2 Vu Thi Thom,2 Nhung Pham-Thi-Hong,2 Long Doan Dinh,2 Huong Le-Thi-Minh,1 Timothy John Craig,3 Sy Duong-Quy3,4 1Department of Immunology, Allergology, and Rheumatology, National Hospital of Pediatrics, Hanoi, Vietnam; 2School of Medicine and Pharmacy, Vietnam National University Hanoi, Vietnam; 3Department of Medicine, Penn State University, Hershey, PA, USA; 4Department of Respiratory Diseases, Lam Dong Medical College, Dalat, Vietnam Introduction: Fractional exhaled nitric oxide (FENO is a biomarker of airway inflammation in asthma. The measurement of FENO is utilized to assist in the diagnosis and treatment of children with asthma, especially for those treated with inhaled corticosteroids. Objectives: The aims of this study were to evaluate the correlations between FENO and atopic status, blood eosinophil levels, FCER2 mutation, and asthma control in Vietnamese children. Subjects and methods: This was a prospective and descriptive study approved by the local Ethical Board. All children with uncontrolled asthma, seen in the National Hospital of Pediatrics (Hanoi, Vietnam, were included. Exhaled breath FENO, blood eosinophils, skin prick test, total IgE, asthma control test (ACT, and FCER2 gene polymorphism were performed at inclusion. They were followed up at 3 months to evaluate clinical status, FENO levels, and ACT. Results: Forty-two children with uncontrolled asthma with a mean age of 10±3 years (6–16 years were included. The male/female ratio was 2.5/1. The mean FENO levels were 26±25 ppb. FENO was significantly higher in patients with a positive skin prick test for respiratory allergens (P<0.05. FENO was significantly correlated with blood eosinophil levels (r=0.5217; P=0.0004. Five of the 32 subjects (15.6% had a mutation of FCER2 gene (rs28364072 SNP. In this group, the levels of FENO were highest (37±10 ppb; P<0.05. The levels of FENO were significantly decreased after 3 months of

  5. Using the Inflammacheck Device to Measure the Level of Exhaled Breath Condensate Hydrogen Peroxide in Patients With Asthma and Chronic Obstructive Pulmonary Disease (The EXHALE Pilot Study): Protocol for a Cross-Sectional Feasibility Study.

    Science.gov (United States)

    Neville, Daniel M; Fogg, Carole; Brown, Thomas P; Jones, Thomas L; Lanning, Eleanor; Bassett, Paul; Chauhan, Anoop J

    2018-01-30

    Asthma and Chronic Obstructive Pulmonary Disease (COPD) are common conditions that affect over 5 million people in the United Kingdom. These groups of patients suffer significantly from breathlessness and recurrent exacerbations that can be difficult to diagnose and go untreated. A common feature of COPD and asthma is airway inflammation that increases before and during exacerbations. Current methods of assessing airway inflammation can be invasive, difficult to perform, and are often inaccurate. In contrast, measurement of exhaled breath condensate (EBC) hydrogen peroxide (H 2 O 2 ) is performed during normal tidal breathing and is known to reflect the level of global inflammation in the airways. There is a need for novel tools to diagnose asthma and COPD earlier and to detect increased airway inflammation that precedes an exacerbation. The aim of this study was to explore the use of a new handheld device (called Inflammacheck) in measuring H 2 O 2 levels in EBC. We will study whether it can measure EBC H 2 O 2 levels consistently and whether it can be used to differentiate asthma and COPD from healthy controls. We will perform a cross-sectional, feasibility, pilot study of EBC H 2 O 2 levels, as measured by Inflammacheck, and other markers of disease severity and symptom control in patients with asthma and COPD and volunteers with no history of lung disease. Participants will be asked to provide an exhaled breath sample for measurement of their EBC H 2 O 2 using Inflammacheck. The result will be correlated with disease stage, spirometry, fractional exhaled nitric oxide (FeNO), and symptom control scores. This study's recruitment is ongoing; it is anticipated that the results will be available in 2018. The EXhaled Hydrogen peroxide As a marker of Lung diseasE (EXHALE) pilot study will provide an evaluation of a new method of measuring EBC H 2 O 2 . It will assess the device's consistency and ability to distinguish airway inflammation in asthma and COPD compared

  6. Study of Natural Radioactivity, Radon Exhalation Rate and Radiation Doses in Coal and Flyash Samples from Thermal Power Plants, India

    Science.gov (United States)

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B. K.; Sapra, B. K.; Kumar, Rajesh

    Coal is one of the most important source used for electrical power generation. Its combustion part known as fly ash is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products have significant amounts of radionuclide's including uranium, thorium which is the ultimate source of the radioactive gas radon and thoron respectively. Radiation hazard from airborne emissions of coal-fired power plants have been cited as possible causes of health in environmental. Assessment of the radiation exposure from coal burning is critically dependent on the concentration of radioactive elements in coal and in the fly ash. In the present study, samples of coal and flyash were collected from Rajghat Power Plant and Badarpur Thermal Power Plant, New Delhi, India. Radon exhalation is important parameter for the estimation of radiation risk from various materials. Solis State Nuclear Track Detector based sealed Can Technique (using LR-115 type II) has been used for measurement radon exhalation rate. Also accumulation chamber based Continuous Radon Monitor and Continuous Thoron Monitor have been used for radon masss exhalation and thoron surface exhalation rate respectively. Natural radioactivity has been measured using a low level NaI(Tl) detector based on gamma ray spectrometry.

  7. Use of exhaled breath condensate endpoints for examination of Body Mass Index as a susceptibility factor to diesel exhaust.

    Science.gov (United States)

    High and low Body Mass Index (BMI) is a risk factor for effects (e.g., premature mortality) induced by exposure to common air pollutants such as ozone and particulate matter. Diesel exhaust contributes to particulate matter levels. We examined lung responses using the exhaled bre...

  8. Prediction of asthma in symptomatic preschool children using exhaled nitric oxide, Rint and specific IgE

    NARCIS (Netherlands)

    Caudri, Daan; Wijga, Alet H.; Hoekstra, Maarten O.; Kerkhof, Marjan; Koppelman, Gerard H.; Brunekreef, Bert; Smit, Henriette A.; de Jongste, Johan C.

    Rationale For clinicians it remains very difficult to predict whether preschool children with symptoms suggestive of asthma will develop asthma in later childhood. Objective To investigate whether measurement of fraction of exhaled nitric oxide (FE(NO)), interrupter resistance (Rint) or specific

  9. Prediction of asthma in symptomatic preschool children using exhaled nitric oxide, Rint and specific IgE.

    NARCIS (Netherlands)

    Caudri, D.; Wijga, A.H.; Hoekstra, M.O.; Kerkhof, M. van de; Koppelman, G.H.; Brunekreef, B.; Smit, H.A.; Jongste, J.C. de

    2010-01-01

    RATIONALE: For clinicians it remains very difficult to predict whether preschool children with symptoms suggestive of asthma will develop asthma in later childhood. OBJECTIVE: To investigate whether measurement of fraction of exhaled nitric oxide (FE(NO)), interrupter resistance (Rint) or specific

  10. Metallic elements in exhaled breath condensate and serum of patients with exacerbation of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Corradi, Massimo; Acampa, Olga; Goldoni, Matteo; Andreoli, Roberta; Milton, Donald; Sama, Susan R; Rosiello, Richard; de Palma, Giuseppe; Apostoli, Pietro; Mutti, Antonio

    2009-01-01

    Biomarkers in exacerbated chronic obstructive pulmonary disease may be useful in aiding diagnosis, defining specific phenotypes of disease, monitoring the disease and evaluating the effects of drugs. The aim of this study was the characterization of metallic elements in exhaled breath condensate and serum as novel biomarkers of exposure and susceptibility in exacerbated chronic obstructive pulmonary disease using reference analytical techniques. C-Reactive protein and procalcitonin were assessed as previously validated diagnostic and prognostic biomarkers which have been associated with disease exacerbation, thus useful as a basis of comparison with metal levels. Exhaled breath condensate and serum were obtained in 28 patients at the beginning of an episode of disease exacerbation and when they recovered. Trace elements and toxic metals were measured by inductively coupled plasma-mass spectrometry. Serum biomarkers were measured by immunoassay. Exhaled manganese and magnesium levels were influenced by exacerbation of chronic obstructive pulmonary disease, an increase in their concentrations--respectively by 20 and 50%--being observed at exacerbation in comparison with values obtained at recovery; serum elemental composition was not modified by exacerbation; serum levels of C-reactive protein and procalcitonin at exacerbation were higher than values at recovery. In outpatients who experienced a mild-moderate chronic obstructive pulmonary disease exacerbation, manganese and magnesium levels in exhaled breath condensate are elevated at admission in comparison with values at recovery, whereas no other changes were observed in metallic elements at both the pulmonary and systemic level.

  11. Similar levels of nitric oxide in exhaled air in non-asthmatic rhinitis and asthma after bronchial allergen challenge

    NARCIS (Netherlands)

    Lopuhaä, C. E.; Koopmans, J. G.; Jansen, H. M.; van der Zee, J. S.

    2003-01-01

    Background: Nitric oxide in exhaled air (eNO) is elevated in allergic asthma compared with healthy subjects and has been proposed as a marker of bronchial inflammation. However, eNO is elevated to a lesser extent in allergic non-asthmatic rhinitis as well. Considering the distinctive clinical

  12. Comparison of exhaled breath condensate pH using two commercially available devices in healthy controls, asthma and COPD patients

    NARCIS (Netherlands)

    Koczulla, R.; Dragonieri, S.; Schot, R.; Bals, R.; Gauw, S.A.; Vogelmeier, C.; Rabe, K.F.; Sterk, P.J.; Hiemstra, P.S.

    2009-01-01

    ABSTRACT: BACKGROUND: Analysis of exhaled breath condensate (EBC) is a non-invasive method for studying the acidity (pH) of airway secretions in patients with inflammatory lung diseases. Aim: To assess the reproducibility of EBC pH for two commercially available devices (portable RTube and

  13. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran.

    Science.gov (United States)

    Bavarnegin, E; Fathabadi, N; Vahabi Moghaddam, M; Vasheghani Farahani, M; Moradi, M; Babakhni, A

    2013-03-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m(-2) h(-1). The (226)Ra, (232)Th and (40)K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of (226)Ra, (232)Th and (40)K content varied from below the minimum detection limit up to 86,400 Bq kg(-1), 187 Bq kg(-1) and 1350 Bq kg(-1), respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Analysis of Endogenous Alkanes and Aldehydes in the Exhaled Breath of Workers Exposed to Silica Containing Dust

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2015-03-01

    Full Text Available Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath of workers exposed to silica containing dusts. Methods: In this study, the exhaled breath of 20 workers exposed to silica containing dust (case group, 20 healthy non-smokers and 25 healthy smokers (control group were analyzed. The breath samples using 3-liter Tedlar bags were collected. The volatile organic compounds (VOCs were extracted with solid phase micro-extraction (SPME and analyzed using gas chromatography-mass spectrometry (GC- MS. Result: Totally, thirty nine VOCs were found in all breath samples (at least once. Aldehydes and alkanes such as acetaldehyde, hexanal, nonanal, decane, pentadecane, 2-methle propane, 3-methyle pentane and octane were detected in the exhaled breath subjects. Among the these compounds, mean peak area of acetaldehyde, hexanal, nonanal, decane and pentadecane were higher in the exhaled breath of an case group than control groups (Pvalue<0.05 . Conclusions : The use of exhaled breath analysis as well as new media in the occupational toxicology and exposure biomarker assessment studies. It seems that acetaldehyde, hexanal, nonanal, decane and pentadecane can be considered as useful breath biomarkers for exposure assessment of silica containing dust. However, additional studies are needed to confirm thes results.

  15. Δ(9)-Tetrahydrocannabinol concentrations in exhaled breath and physiological effects following cannabis intake - A pilot study using illicit cannabis.

    Science.gov (United States)

    Coucke, Line; Massarini, Enrico; Ostijn, Zachery; Beck, Olof; Verstraete, Alain G

    2016-09-01

    Δ(9)-Tetrahydrocannabinol (THC) can be measured in exhaled breath by using an aerosol particle collection device. The sampling procedure is simple, non-invasive and takes only 2-3min. In the present study we measured the amount of THC in exhaled breath of cannabis users at specific time intervals up to 3h after smoking one cannabis cigarette. The breath concentration-effect relationship was studied by measuring the pulse rate and the pupil diameter to assess physiological changes. THC and the main metabolite 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol were analyzed in exhaled breath by a liquid chromatography-tandem mass spectrometry method. Thirteen subjects (9 males and 4 females, aged 23-24years) participated. Five of those were using cannabis more frequently than monthly. THC was detected in most subjects already at baseline, concentrations increased following smoking and remained detectable for over 3h (mean THC concentration in breath at 3h: 1479pg/sample). Pulse rate (p=0.015) and pupil diameter (p=0.044) were significantly altered up to 30min after smoking. The detection window of cannabis in breath after smoking one cannabis cigarette in occasional and chronic smokers was at least 3h. Only THC was detected, and not the metabolite. The THC concentration in exhaled breath was related to the physiological changes that occur over time. Exhaled breath can be used to detect recent cannabis exposure. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. [Determining asthma treatment in children by monitoring fractional exhaled nitric oxide, sputum eosinophils and leukotriene B₄].

    Science.gov (United States)

    Vizmanos-Lamotte, G; Cruz, M J; Gómez-Ollés, S; Muñoz, X; de Mir Messa, I; Moreno-Galdó, A

    2015-01-01

    Sputum eosinophils and exhaled fractional nitric oxide (FENO) are markers of airway inflammation in asthma. Cytokines, cysteinyl-leukotrienes and leukotriene B4 (LTB4) are responsible for this inflammation. The aim of this study is to determine the usefulness of these markers in monitoring asthma treatment in children. FENO, sputum eosinophils, and LTB4 in induced sputum were performed in 10 children (9-15 years old). These determinations were repeated four months later, after the beginning or an increase in the treatment. FENO values tended to decrease (P=.15), pulmonary function tended to improve (P=.10), and sputum eosinophils decreased (P=.003) compared to the first determination. There were no differences in LTB4 concentrations (P=.88). Sputum eosinophils seem to be more precise than FENO in the monitoring of inflammation in asthmatic children. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  17. Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise Lotte N; Thomsen, Simon Francis

    2010-01-01

    Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM with rhini......Exposure to particulate matter (PM) outdoors can induce airway inflammation and exacerbation of asthma in adults. However, there is limited knowledge about the effects of exposure to indoor PM. The aim of this study was to investigate the association of exposure to indoor sources of PM...... with rhinitis symptoms, atopy and nitric oxide in exhaled air (FeNO) as a measure of airway inflammation....

  18. Cross Infection in a Hospital Ward and Deposition of Particles Exhaled from a Source Manikin

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Li, Yuguo; Buus, Morten

    2009-01-01

    The cross infection in a hospital ward is studied. Deposition of particles exhaled from a source manikin is investigated in a full-scale hospital ward ventilated by downward directed ventilation. Deposition on vertical surfaces close to the source shows distribution of particles directed upwards...... in the room. Deposition at the four beds shows that particles smaller than 10 μm disperse evenly in the ward, indicating that particles smaller than this size are airborne. The influence of top and bottom extraction openings on dispersion of particles is investigated. Results show that vertical distribution...... in the room is not affected by the position of the return openings. Deposition of particles at the four beds gives some indication of a less wide spread of particles with the use of ceiling-mounted return openings, and thereby a better protection of patients compared with bottom return openings....

  19. Fractional exhaled nitric oxide and multiple breath nitrogen washout in preschool healthy and asthmatic children

    DEFF Research Database (Denmark)

    Vilmann, Lea; Buchvald, Frederik; Green, Kent

    2017-01-01

    Introduction Objectively assessing pulmonary disease is challenging in preschool children with asthma. We evaluated the feasibility of measuring fractional exhaled nitrogen oxide (FeNO) and multiple breath nitrogen washout (N2MBW) in children. We compared their capacities for discriminating between...... children with asthma and healthy controls. Methods We measured FeNO and N2MBW-derived indices of lung clearance (LCI2.5) and conductive and acinar ventilation heterogeneity (Scond and Sacin) in 65 preschool children; 35 with physician-diagnosed asthma and 30 healthy. FeNO was measured with a portable.......023), but similar FeNO, LCI2.5 and Sacinvalues. Conclusion The feasibility of measuring FeNO was highly age-dependent and not applicable in children under age 4. N2MBW was feasible in the majority of preschool children. Scond, but not FeNO, could discriminate between children with asthma and healthy controls....

  20. Exhaled air temperature as a function of ambient temperature in flying and resting ducks.

    Science.gov (United States)

    Engel, Sophia; Klaassen, Raymond H G; Klaassen, Marcel; Biebach, Herbert

    2006-08-01

    Exhaled air temperature (T (exh)) has a paramount effect on respiratory water loss during flight. For migratory birds, low T (exh) potentially reduces water loss and increases flight range. However, only three studies provide empirical data on T (exh) during flight. The aim of this study was to record T (exh) of birds during rest and flight at a range of controlled ambient temperatures (T (amb)). One wigeon and two teal flew a total of 20 times in a wind tunnel at T (amb) ranging from 1 degrees to 24 degrees C. T (exh) during flight did not differ between the two species and was strongly correlated with T (amb) (T (exh)=1.036 T (amb) + 13.426; R2=0.58). In addition, body temperature had a weak positive effect on T (exh). At a given T (amb), T (exh )was about 5 degrees C. higher during flight than at rest.

  1. Exhaled and nasal nitric oxide in chronic rhinosinusitis patients with nasal polyps in primary care

    DEFF Research Database (Denmark)

    Frendø, M; Håkansson, K; Schwer, S

    2017-01-01

    BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disorder associated with lower airway disease. However, only few studies of CRSwNP from outside secondary/tertiary care centres have been published. We recently reported an asthma frequency of 44% and 65......% in primary and secondary care patients respectively. Therefore, we hypothesise that inflammation of the lower airways could be present in all CRSwNP patients, even without asthma. Here, we assessed the degree of lower and upper airway inflammation using exhaled and nasal nitric oxide (NO) in primary care...... CRSwNP patients with and without asthma. METHODS: Fifty-seven patients who met the EPOS criteria for CRSwNP were prospectively recruited from primary care ear, nose and throat clinics. Nasal endoscopy was performed by an ear, nose and throat specialist upon enrolment. Additionally, 30 healthy controls...

  2. Effect of Air Stability on the Dispersal of Exhaled Contaminant in Rooms

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter V.

    2013-01-01

    the manikin, indicating that the person who exhales the contaminant may not be polluted by himself as the protective effect of the thermal boundary layer around the body, especially in stable condition with two concentration zones and clean air drawn from the inlets. However, other persons facing......-sized thermal manikin is locked and stratified at certain heights at stable condition while it mixes well with the ambient air and is diluted quickly through upper openings when the air is relatively unstable. The concentration of contaminant simulated by tracer gas (N2O) is measured both around and 0.35m from...... the respiration some distance away may suffer higher contaminant exposure if the air in room is quite stable and contaminant from the mouth can penetrate a longer horizontal distance. In addition, the air stability slightly changes the velocity profiles, giving higher velocity decay and more turbulent mixing...

  3. Usefulness ofdetermining exhaled nitric oxide levels for theassessment ofasthma severity inchildren

    Directory of Open Access Journals (Sweden)

    Anna Mierzejewska

    2015-06-01

    Full Text Available Asthma is a common disease, occurring increasingly among both children and adults. It is defined as a chronic inflammatory disease, characterized by hyperresponsiveness and reversible bronchial obstruction. The diagnosis of asthma in children is currently based mainly on clinical and spirometric evaluation as well as on the assessment of response to anti-inflammatory treatment. Currently there are ongoing discussions on the choice of optimal diagnostic and staging methods. Therefore, the measurement of the levels of exhaled nitric oxide (FeNO is being seen as a viable option. The results of the measurement are obtained easily and non-invasively. High variability in the levels depending on both environmental factors and patient cooperation is a disadvantage of the test. The aim of this study was to determine the relationship between the levels of exhaled nitric oxide and the severity of asthma based on spirometric outcomes. A total of 141 children aged 5–17 years, including 35 patients diagnosed with asthma, among whom eight were in the stage of exacerbation, were qualified for the study. The control group consisted of 106 children admitted to the hospital for other reasons, with the exception of respiratory diseases. Spirometry and FeNO measurements were performed. No statistically significant differences were found between FeNO levels in patients with asthma or asthma exacerbations and the control group. The highest variation of FeNO levels was observed in the control group, indicating intersubject and factor variability of FeNO levels in exhaled gases. Although the utility of FeNO levels as an indicator of the severity of airway inflammation has been demonstrated in numerous studies, this study questions the usefulness of this parameter as a marker of asthma severity. This is probably due to the large intersubject variations in the concentration of exhaled NO, depending on patient

  4. Exhaled breath condensate pH as a biomarker of COPD severity in ex-smokers

    Directory of Open Access Journals (Sweden)

    Alchanatis Manos

    2011-05-01

    Full Text Available Abstract Endogenous airway acidification, as assessed by exhaled breath condensate (EBC pH, is present in patients with stable COPD. The aim of this study was to measure EBC pH levels in a large cohort of COPD patients and to evaluate associations with functional parameters according to their smoking status. EBC was collected from 161 patients with stable COPD and 112 controls (current and ex-smokers. EBC pH was measured after Argon deaeration and all subjects underwent pulmonary function testing. EBC pH was lower in COPD patients compared to controls [7.21 (7.02, 7.44 vs. 7.50 (7.40, 7.66; p Endogenous airway acidification is related to disease severity and to parameters expressing hyperinflation and air trapping in ex-smokers with COPD. The possible role of EBC pH in COPD needs to be further evaluated in longitudinal studies.

  5. Relationship between Methacholine Challenge Testing and exhaled nitric oxide in adult patients with suspected bronchial asthma.

    Science.gov (United States)

    Giovannini, M; Valli, M; Ribuffo, V; Melara, R; Cappiello, G; Businarolo, E; Andreani, A

    2014-05-01

    Usually, hyperresponsiveness to inhaled methacholine is considered closely associated with a diagnosis of bronchial asthma. Recently, it has been clearly pointed out that bronchial hyperreactivity (BHR) is not a constant feature of asthma and that this condition is not always related to airways inflammation. In the present study we evaluated 42 Patients (21 positive and 21 negative for bronchial hyperreactivity, BHR) with the aim to determine the effect of Methacholine Challenge Testing (MCT) on the levels of exhaled nitric oxide (NO). Higher FeNO levels were found before methacholine provocation in the group that eventually resulted positive to the challenge, while after the challenge in both groups FeNO decreased in similar way, with no statistical difference. These data confirm that MCT is a relevant test for asthma diagnosis, but it is not always related to the severity of bronchial inflammation, while FeNO levels in our study have limited clinical significance when evaluated out of asthma exacerbation.

  6. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Inflammatory Subtypes in Asthma are Related to Airway Hyperresponsiveness to Mannitol and Exhaled NO

    DEFF Research Database (Denmark)

    Porsbjerg, C.; Lund, T.K.; Pedersen, L.

    2009-01-01

    and markers of airway inflammation and hyperresponsiveness. In 62 adult non-smoking asthmatics, (18-65 yr) not taking inhaled steroids, sputum induction, bronchial challenge with mannitol and measurement of exhaled NO (eNO) were performed. Based on the eosinophil and neutrophil proportions in sputum, subjects...... with eosinophilic asthma of the mixed granulocytic type (47 ppb (33-112 ppb). Purely eosinophilic asthma was associated with higher levels of eNO (77 ppb (37-122 ppb)). Furthermore, a low degree of airway hyperresponsiveness to mannitol was observed in neutrophilic asthma (PD15: (Median (IQR) 512 mg (291-610 mg......))), whereas it was moderate in paucigranulocytic asthma (238 mg (77-467 mg)) and comparable to eosinophilic asthma of the mixed granulocytic subtype (186 mg (35-355 mg)). The highest degree of AHR to mannitol was observed in purely eosinophilic asthma (107 mg (68-245 mg)). In conclusion, further...

  8. Real-time measurement of inhaled and exhaled cigarette smoke: Implications for dose

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John, E-mail: conor_mcgrath@bat.co [British American Tobacco, Group R and D Centre, Southampton, SO15 8TL (United Kingdom)

    2009-02-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of 150 -- 250 nm count median diameter (CMD). Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, the average CMD of inhaled smoke was 160 nm while the average CMD of exhaled smoke was 239 nm with an average growth factor of 1.5.

  9. Eicosanoids in exhaled breath condensates in the assessment of childhood asthma.

    Science.gov (United States)

    Kiełbasa, Bogumila; Moeller, Alexander; Sanak, Marek; Hamacher, Joerg; Hutterli, Monika; Cmiel, Adam; Szczeklik, Andrew; Wildhaber, Johannes H

    2008-11-01

    The value of measurements of eicosanoids in exhaled breath condensate (EBC) for the evaluation of childhood asthma is still inconclusive most likely because of the limited value of the methods used. In this case-control study in 48 asthmatic and 20 healthy children, we aimed to characterize the baseline profile of the inflammatory mediators cysteinyl leukotrienes (cysLTs), 9(alpha)11(beta)PGF(2), PGE(2), PGF(2alpha), 8-isoprostane (8-iso-PGF(2alpha)) within EBC in asthmatic compared with healthy children using new methods. In addition, we investigated their relation to other inflammatory markers. The assessment included collection of EBC, measurement of fractional exhaled nitric oxide (FE(NO)) and evaluation of urinary excretion of leukotriene E(4.) cysLTs were measured directly in EBC by radioimmunoassay and prostanoids were measured using gas chromatography negative-ion chemical ionization mass spectrometry. Only cysLT levels were significantly higher in asthmatic compared with healthy children (p = 0.002). No significant differences in cysLTs were found between steroid naïve and patients receiving inhaled corticosteroids. In contrast, FE(NO) was significantly higher in steroid naïve compared with steroid-treated asthmatic and healthy children (p = 0.04 and 0.024, respectively). The diagnostic accuracy of cysLTs in EBC for asthma was 73.6% for the whole group and 78.2% for steroid-naïve asthmatic children. The accuracy to classify asthmatic for FE(NO) was poor (62.9%) for the whole group, but improved to 79.9% when only steroid-naïve asthmatic children were taken into consideration. cysLTs in EBC is an inflammatory marker which distinguishes asthmatics, as a whole group, from healthy children.

  10. Exhaled nitric oxide, nitrite/nitrate levels, allergy, rhinitis and asthma in the EGEA study.

    Science.gov (United States)

    Nadif, Rachel; Rava, Marta; Decoster, Brigitte; Huyvaert, Hélène; Le Moual, Nicole; Bousquet, Jean; Siroux, Valérie; Varraso, Raphaëlle; Pin, Isabelle; Zerimech, Farid; Matran, Régis

    2014-08-01

    Although interest in biomarkers in the nitrate-nitrite-NO pathway has recently increased, associations between nitrite (NO2(-)) and nitrate (NO3(-)), and asthma, allergic sensitisation and rhinitis remain unclear. The study aimed to evaluate the associations between NO2(-)/NO3(-) and exhaled fraction of nitric oxide (FeNO) levels with asthma, allergic sensitisation and rhinitis. Plasma and exhaled breath condensate (EBC) NO2(-)/NO3(-) and FeNO levels were measured in 523 adults of the French Epidemiological study on Genetics and Environment of Asthma. Allergic sensitisation was defined by a positive skin prick test for at least one aeroallergen. Subjects were classified as non-sensitised, sensitised and as having allergic rhinitis. Plasma NO2 (-)/NO3(-) level was unrelated to any disease phenotypes. EBC NO2(-)/NO3(-) level was unrelated to any asthma phenotypes. EBC NO2(-)/NO3(-) and FeNO levels were correlated in sensitised subjects only (r = 0.21 ± 0.10, p=0.01). EBC NO2(-)/NO3(-) and FeNO levels were higher in sensitised than in non-sensitised subjects (adjusted geometric mean (95% CI): 2.36 (1.96-2.84) versus 1.72 (1.38-2.14) μmol per mg proteins, p=0.008; and 18.3 (16.7-20.0) versus 14.8 (13.3-16.5) ppb, p=0.0006, respectively), with gradual relationships from sensitised subjects to those with allergic rhinitis (p<0.0001). Results suggest that EBC NO2(-)/NO3(-) and FeNO levels may be considered as biological markers of intensity of allergic sensitisation and rhinitis. ©ERS 2014.

  11. Feasibility of exhaled nitric oxide measurements at various flow rates in children with asthma.

    Science.gov (United States)

    Robroeks, Charlotte M H H T; van Vliet, Dillys; Hendriks, Han J E; Dompeling, Edward; Jöbsis, Quirijn

    2010-02-01

    Measurement of bronchial and alveolar exhaled nitric oxide (NO) levels could be of clinical importance for the treatment of asthma. To discriminate between alveolar and bronchial NO, measurements need to be assessed at various flow rates. To study the feasibility, linearity, and long-term repeatability of NO measurements at four different exhalation flow rates in children with asthma. Twenty-one children with moderate persistent asthma, aged 6-12 yrs, were included in the study. NO was measured according to the ATS/ERS guidelines, using the NIOX analyzer with flow restrictors of 30, 50, 100, and 200 ml/s. Duration of the measurements ranged from 6-10 s, depending on the flow rate. The tests were repeated 3 and 6 months after the first NO measurement. Feasibility of NO measurements at these four flow rates increased from 67% to 91% and 95% at the first, second and third visit, respectively. A significant learning effect was present. Age and lung function indices did not influence success or failure of the tests. At the first measurements occasions, no problems occurred during the NO analysis at a 100 ml/s flow rate. There was a 75-90% success rate when performing the test using flow rates of 30, 50, and 200 ml/s. However, repeating the tests resulted in a 100% success rate. Measurements were not successful if: (i) children ran out of air; (ii) NO concentration exceeded 200 ppb; (iii) the measured NO flow was unstable; and (iv) the NO plateau was not formed. This study showed good feasibility and linearity of NO measurements in asthmatic children of 6 yrs and over at flow rates between 50-200 ml/s. A significant learning effect was present. The long-term reproducibility of alveolar and bronchial NO values during 6 months was moderate. © 2010 The Authors. Journal compilation © 2010 Blackwell Munksgaard.

  12. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Basanta Maria

    2012-08-01

    Full Text Available Abstract Background Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD and clinically relevant disease phenotypes. Methods Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC analysis. Results Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup. Conclusion The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease.

  13. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  14. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules.

    Science.gov (United States)

    Nakhleh, Morad K; Amal, Haitham; Jeries, Raneen; Broza, Yoav Y; Aboud, Manal; Gharra, Alaa; Ivgi, Hodaya; Khatib, Salam; Badarneh, Shifaa; Har-Shai, Lior; Glass-Marmor, Lea; Lejbkowicz, Izabella; Miller, Ariel; Badarny, Samih; Winer, Raz; Finberg, John; Cohen-Kaminsky, Sylvia; Perros, Frédéric; Montani, David; Girerd, Barbara; Garcia, Gilles; Simonneau, Gérald; Nakhoul, Farid; Baram, Shira; Salim, Raed; Hakim, Marwan; Gruber, Maayan; Ronen, Ohad; Marshak, Tal; Doweck, Ilana; Nativ, Ofer; Bahouth, Zaher; Shi, Da-You; Zhang, Wei; Hua, Qing-Ling; Pan, Yue-Yin; Tao, Li; Liu, Hu; Karban, Amir; Koifman, Eduard; Rainis, Tova; Skapars, Roberts; Sivins, Armands; Ancans, Guntis; Liepniece-Karele, Inta; Kikuste, Ilze; Lasina, Ieva; Tolmanis, Ivars; Johnson, Douglas; Millstone, Stuart Z; Fulton, Jennifer; Wells, John W; Wilf, Larry H; Humbert, Marc; Leja, Marcis; Peled, Nir; Haick, Hossam

    2017-01-24

    We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e., gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development.

  15. Exhaled nitric oxide and urinary EPX levels in infants: a pilot study

    Directory of Open Access Journals (Sweden)

    Olin Anna-Carin

    2011-05-01

    Full Text Available Abstract Background Objective markers of early airway inflammation in infants are not established but are of great interest in a scientific setting. Exhaled nitric oxide (FeNO and urinary eosinophilic protein X (uEPX are a two such interesting markers. Objective To investigate the feasibility of measuring FeNO and uEPX in infants and their mothers and to determine if any relations between these two variables and environmental factors can be seen in a small sample size. This was conducted as a pilot study for the ongoing Swedish Environmental Longitudinal Mother and child Asthma and allergy study (SELMA. Methods Consecutive infants between two and six months old and their mothers at children's health care centres were invited, and 110 mother-infant pairs participated. FeNO and uEPX were analysed in both mothers and infants. FeNO was analyzed in the mothers online by the use of the handheld Niox Mino device and in the infants offline from exhaled air sampled during tidal breathing. A 33-question multiple-choice questionnaire that dealt with symptoms of allergic disease, heredity, and housing characteristics was used. Results FeNO levels were reduced in infants with a history of upper respiratory symptoms during the previous two weeks (p Conclusion The use of uEPX as a marker of early inflammation was not supported. FeNO levels in infants were associated to windowpane condensation. Measuring FeNO by the present method may be an interesting way of evaluating early airway inflammation. In a major population study, however, the method is difficult to use, for practical reasons.

  16. Effect of Inhaled β2-Agonist on Exhaled Nitric Oxide in Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Mostafa Amer

    Full Text Available The fractional exhaled nitric oxide measured at an expiratory flow of 50mL/s (FENO50 is a marker of airway inflammation, and high levels are associated with greater response to steroid treatment. In asthma, FENO50 increases with bronchodilation and decreases with bronchoconstriction, the latter potentially causing an underestimate of the degree of airway inflammation when asthma worsens. It is unknown whether the same effect occurs in chronic obstructive lung disease (COPD. Likewise, it is not known whether changes in airway calibre in COPD patients alter flow-independent parameters describing pulmonary nitric oxide exchange, such as the maximal flux of nitric oxide (NO from the proximal airway compartment (J'awNO and the distal airway/alveolar concentration of NO (CANO. We recruited 24 patients with COPD and performed FENO analysis at multiple expiratory flows before and after treatment with inhaled β2-agonist bronchodilator therapy. For the 21 patients analysed, FENO50 rose from 17.1 (1.4 ppb (geometric mean (geometric SD at baseline, to 19.3 (1.3 ppb after bronchodilator therapy, an increase of 2.2 ppb (95% CI, 0.7-3.6; P = 0.005. There were non-significant changes in flow-independent NO parameters. The change in FENO50 correlated positively with the change in J'awNO (rs = 0.67, P < 0.001; rs = 0.62, P = 0.002 before and after correction for axial back-diffusion respectively following bronchodilation. Inhaled bronchodilator therapy can increase exhaled nitric oxide measurements in COPD. The standardisation of inhaled bronchodilator therapy before FENO analysis in COPD patients should therefore be considered in both research and clinical settings.

  17. Exhaled breath malondialdehyde, spirometric results and dust exposure assessment in ceramics production workers.

    Science.gov (United States)

    Sakhvidi, Mohammad Javad Zare; Biabani Ardekani, Javad; Firoozichahak, Ali; Zavarreza, Javad; Hajaghazade, Mohammad; Mostaghaci, Mehrdad; Mehrparvar, Amirhooshang; Barkhordari, Abolfazl

    2015-01-01

    The study aimed at measuring exhaled breath malondialdehyde (EBC-MDA) in workers exposed to dust containing silica and at its comparison with the non-exposed control group. The cross sectional, case-control study (N = 50) was performed in a tile and ceramics production factory in Yazd, Iran. EBC-MDA was quantified in exhaled breath of the participants by a lab made breath sampler. Exposure intensity was measured according to the NIOSH 0600 method in selected homogeneous exposure groups. Additionally, spirometry test was conducted to investigate a correlation between EBC-MDA and spirometric findings in the exposed workers. There was no difference in the observed exposure intensities of silica containing dust in different units. However, "coating preparation" was the unit with the highest concentration of dust. Although, the level of EBC-MDA in the cases was slightly higher than in the controls, the difference was not statistically significant (U = 252, p = 0.464). A significant and positive correlation was found between dust exposure intensity in working units and the measured EBC-MDA of workers (r = 0.467, N = 25, p = 0.027). There were also no statistically significant differences among job categories in the exposed group for the values of FEV1% (F(3, 44) = 0.656, p = 0.584), FVC% (F(3, 44) = 1.417, p = 0.172), and FEV1/FVC% (F(3, 44) = 1.929, p = 0.139). The results showed a significant correlation between respirable dust exposure intensity and the level of EBC-MDA of the exposed subjects. However, our results did not show a significant correlation between lung function decreases and EBC-MDA. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion.

    Science.gov (United States)

    Španěl, Patrik; Dryahina, Kseniya; Vicherková, Petra; Smith, David

    2015-11-19

    Aspartame, methyl-L-α-aspartyl-L-phenylalaninate, is used worldwide as a sweetener in foods and drinks and is considered to be safe at an acceptable daily intake (ADI) of 40 mg per kg of body weight. This compound is completely hydrolyzed in the gastrointestinal tract to aspartic acid, phenylalanine and methanol, each being toxic at high levels. The objective of the present study was to quantify the volatile methanol component in the exhaled breath of ten healthy volunteers following the ingestion of a single ADI dose of aspartame. Direct on-line measurements of methanol concentration were made in the mouth and nose breath exhalations using selected ion flow tube mass spectrometry, SIFT-MS, several times before aspartame ingestion in order to establish individual pre-dose (baseline) levels and then during two hours post-ingestion to track their initial increase and subsequent decrease. The results show that breath methanol concentrations increased in all volunteers by 1082   ±   205 parts-per-billion by volume (ppbv) from their pre-ingestion values, which ranged from 193 to 436 ppbv to peak values ranging from 981-1622 ppbv, from which they slowly decreased. These observations agree quantitatively with a predicted increase of 1030 ppbv estimated using a one-compartment model of uniform dilution of the methanol generated from a known amount of aspartame throughout the total body water (including blood). In summary, an ADI dose of aspartame leads to a 3-6 fold increase of blood methanol concentration above the individual baseline values.

  19. Expanding analytical options in sports drug testing: Mass spectrometric detection of prohibited substances in exhaled breath.

    Science.gov (United States)

    Thevis, Mario; Krug, Oliver; Geyer, Hans; Schänzer, Wilhelm

    2017-08-15

    Continuously refining and advancing the strategies and methods employed in sports drug testing is critical for efficient doping controls. Besides improving and expanding the spectrum of target analytes, alternative test matrices have warranted in-depth evaluation as they commonly allow for minimal-/non-invasive and non-intrusive sample collection. In this study, the potential of exhaled breath (EB) as doping control specimen was assessed. EB collection devices employing a non-woven electret-based air filter unit were used to generate test specimens, simulating a potential future application in doping controls. A multi-analyte sports drug testing approach configured for a subset of 12 model compounds that represent specific classes of substances prohibited in sports (anabolic agents, hormone and metabolic modulators, stimulants, and beta-blockers) was established using unispray liquid chromatography/tandem mass spectrometry (LC/MS/MS) and applied to spiked and elimination study EB samples. The test method was characterized concerning specificity, assay imprecision, and limits of detection. The EB collection device allowed for retaining and extracting all selected model compounds from the EB aerosol. Following elution and concentration, LC/MS/MS analysis enabled detection limits between 5 and 100 pg/filter and imprecisions ranging from 3% to 20% for the 12 selected model compounds. By means of EB samples from patients and participants of administration studies, the elimination of relevant compounds and, thus, their traceability in EB for doping control purposes, was investigated. Besides stimulants such as methylhexaneamine and pseudoephedrine, also the anabolic-androgenic steroid dehydrochloromethyltestosterone, the metabolic modulator meldonium, and the beta-blocker bisoprolol was detected in exhaled breath. The EB aerosol has provided a promising proof-of-concept suggesting the expansion of this testing strategy as a complement to currently utilized sports drug

  20. Real time detection of exhaled human breath using quantum cascade laser based sensor technology

    Science.gov (United States)

    Tittel, Frank K.; Lewicki, Rafal; Dong, Lei; Liu, Kun; Risby, Terence H.; Solga, Steven; Schwartz, Tim

    2012-02-01

    The development and performance of a cw, TE-cooled DFB quantum cascade laser based sensor for quantitative measurements of ammonia (NH3) and nitric oxide (NO) concentrations present in exhaled breath will be reported. Human breath contains ~ 500 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring NH3 concentration levels in exhaled breath a fast, non-invasive diagnostic method for treatment of patients with liver and kidney disorders, is feasible. The NH3 concentration measurements were performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell. A Hamamatsu air-cooled high heat load (HHL) packaged CW DFB-QCL is operated at 17.5°C, targeting the optimum interference free NH3 absorption line at 967.35 cm-1 (λ~10.34 μm), with ~ 20 mW of optical power. The sensor architecture includes a reference cell, filled with a 2000 ppmv NH3 :N2 mixture at 130 Torr, which is used for absorption line-locking. A minimum detection limit (1σ) for the line locked NH3 sensor is ~ 6 ppbv (with a 1σ 1 sec time resolution of the control electronics). This NH3 sensor was installed in late 2010 and is being clinically tested at St. Luke's Hospital in Bethlehem, PA.

  1. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    Science.gov (United States)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  2. Influence of air pollution on exhaled carbon monoxide levels in smokers and non-smokers. A prospective cross-sectional study.

    Science.gov (United States)

    Maga, Mikołaj; Janik, Maciej K; Wachsmann, Agnieszka; Chrząstek-Janik, Olga; Koziej, Mateusz; Bajkowski, Mateusz; Maga, Paweł; Tyrak, Katarzyna; Wójcik, Krzysztof; Gregorczyk-Maga, Iwona; Niżankowski, Rafał

    2017-01-01

    The poor air quality and cigarette smoking are the most important reasons for increased carbon monoxide (CO) level in exhaled air. However, the influence of high air pollution concentration in big cities on the exhaled CO level has not been well studied yet. To evaluate the impact of smoking habit and air pollution in the place of living on the level of CO in exhaled air. Citizens from two large cities and one small town in Poland were asked to complete a survey disclosing their place of residence, education level, work status and smoking habits. Subsequently, the CO level in their exhaled air was measured. Air quality data, obtained from the Regional Inspectorates of Environmental Protection, revealed the differences in atmospheric CO concentration between locations. 1226 subjects were divided into 4 groups based on their declared smoking status and place of living. The average CO level in exhaled air was significantly higher in smokers than in non-smokers (p<0.0001) as well as in non-smokers from big cities than non-smokers from small ones (p<0.0001). Created model showed that non-smokers from big cities have odds ratio of 125.3 for exceeding CO cutoff level of 4ppm compared to non-smokers from small towns. The average CO level in exhaled air is significantly higher in smokers than non-smokers. Among non-smokers, the average exhaled CO level is significantly higher in big city than small town citizens. These results suggest that permanent exposure to an increased concentration of air pollution and cigarette smoking affect the level of exhaled CO. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Wearable Personal Exhaust Ventilation, WPEV: Improved Indoor Air Quality and Reduced Exposure to Air Exhaled from a Sick Doctor

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho D.; Barova, Maria; Melikov, Arsen K.

    2015-01-01

    air temperature was 22◦C. A breathing thermal manikin with a body size and shape similar to the body of an average Scandinavian woman was used to mimic a “sick” doctor. The manikin was equipped with artificial lungs with a realistic breathing cycle (2.5-sec inhalation, 2.5-sec exhalation, and 1-sec...... pause) and a tidal flow rate of 6 L/min. A second thermal manikin and heated dummy were used to resemble lying patients. Exhaled air by the doctor was mixed with tracer gas to mimic pathogens. The wearable personal exhaust unit was positioned frontally by the mouth of the doctor at three distances: 0...

  4. Indoor Airflow Patterns, Dispersion of Human Exhalation Flow and Risk of Airborne Cross-Infection between People in a Room

    DEFF Research Database (Denmark)

    Olmedo, Inés

    : relative position and separation distance between people, difference in height between them, level of activity, breathing function or process (breathing frequency, exhalation through the mouth or through the nose, coughing, sneezing) or air velocity and turbulence level in the micro-environment around...... the persons. This thesis analyzes some of these parameters in the influence of cross-infection risk between two people in a room, which are simulated by two breathing thermal manikins. One of the manikins is considered the source of contaminants, which is exhaling contaminated air through the mouth...... prevalent transmission routes. Airborne cross-infection of diseases is caused by the transmission of pathogens, such as viruses or bacteria, between people and across environments. When a person is breathing, talking, sneezing or coughing, small particles, which may carry biological contaminants, are spread...

  5. Indoor Airflow Patterns, Dispersion of Human Exhalation Flow and Risk of Airborne Cross-infection between People in a Room

    DEFF Research Database (Denmark)

    Olmedo, Inés

    : relative position and separation distance between people, difference in height between them, level of activity, breathing function or process (breathing frequency, exhalation through the mouth or through the nose, coughing, sneezing) or air velocity and turbulence level in the micro-environment around...... the persons. This thesis analyzes some of these parameters in the influence of cross-infection risk between two people in a room, which are simulated by two breathing thermal manikins. One of the manikins is considered the source of contaminants, which is exhaling contaminated air through the mouth...... prevalent transmission routes. Airborne cross-infection of diseases is caused by the transmission of pathogens, such as viruses or bacteria, between people and across environments. When a person is breathing, talking, sneezing or coughing, small particles, which may carry biological contaminants, are spread...

  6. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections

    DEFF Research Database (Denmark)

    Joensen, Odin; Paff, Tamara; Haarman, Eric G

    2014-01-01

    The current diagnostic work-up and monitoring of pulmonary infections may be perceived as invasive, is time consuming and expensive. In this explorative study, we investigated whether or not a non-invasive exhaled breath analysis using an electronic nose would discriminate between cystic fibrosis...... (CF) and primary ciliary dyskinesia (PCD) with or without various well characterized chronic pulmonary infections. We recruited 64 patients with CF and 21 with PCD based on known chronic infection status. 21 healthy volunteers served as controls. An electronic nose was employed to analyze exhaled......, this method significantly discriminates CF patients suffering from a chronic pulmonary P. aeruginosa (PA) infection from CF patients without a chronic pulmonary infection. Further studies are needed for verification and to investigate the role of electronic nose technology in the very early diagnostic workup...

  7. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    Science.gov (United States)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  8. Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph.

    Science.gov (United States)

    Tanda, Naoko; Hinokio, Yoshinori; Washio, Jumpei; Takahashi, Nobuhiro; Koseki, Takeyoshi

    2014-11-24

    Ketone bodies including acetone are disease biomarkers for diabetes that sometimes causes severe ketoacidosis. The present study was undertaken to clarify the significance of exhaled acetone and plasma ketone bodies at bedside in a clinical setting. The oral glucose tolerance test (OGTT) was performed in 10 healthy Japanese volunteers (five females and five males). Exhaled breath acetone and volatile sulfide compounds (VSCs) in mouth air were measured simultaneously with blood sampling during the OGTT using a portable gas chromatograph equipped with an In2O3 thick-film type gas sensor and a VSC monitor. Acetone, β-hydroxybutyrate (β-OHB) and acetoacetate (AcAc) in blood plasma as well as glucose and insulin were examined. Oral conditions were examined based on the Community Periodontal Index (CPI) by one dentist. In addition, the same type of analysis was applied to two uncontrolled type 2 diabetes mellitus patients hospitalized at Tohoku University Hospital. Exhaled acetone was measured at the same time as blood withdrawal in the morning before breakfast and at night before bed at the beginning, the middle, and the end of hospitalization. All volunteers showed normal OGTT patterns with no ketonuria and periodontitis; however, there were significant correlations between breath acetone and plasma β-ΟΗΒ and between breath acetone and plasma AcAc under fasting conditions. Breath acetone of the type 2 diabetes mellitus patients showed positive correlations with plasma glucose when the level of plasma glucose tended to decrease during hospitalization. In spite of a very limited number of cases, our results support the idea that exhaled breath acetone may be related to plasma β-OHB and AcAc, which reflect glucose metabolism in the body.

  9. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma.

    Science.gov (United States)

    Kumar, Sacheen; Huang, Juzheng; Abbassi-Ghadi, Nima; Mackenzie, Hugh A; Veselkov, Kirill A; Hoare, Jonathan M; Lovat, Laurence B; Španěl, Patrik; Smith, David; Hanna, George B

    2015-12-01

    The present study assessed whether exhaled breath analysis using Selected Ion Flow Tube Mass Spectrometry could distinguish esophageal and gastric adenocarcinoma from noncancer controls. The majority of patients with upper gastrointestinal cancer present with advanced disease, resulting in poor long-term survival rates. Novel methods are needed to diagnose potentially curable upper gastrointestinal malignancies. A Profile-3 Selected Ion Flow Tube Mass Spectrometry instrument was used for analysis of volatile organic compounds (VOCs) within exhaled breath samples. All study participants had undergone upper gastrointestinal endoscopy on the day of breath sampling. Receiver operating characteristic analysis and a diagnostic risk prediction model were used to assess the discriminatory accuracy of the identified VOCs. Exhaled breath samples were analyzed from 81 patients with esophageal (N = 48) or gastric adenocarcinoma (N = 33) and 129 controls including Barrett's metaplasia (N = 16), benign upper gastrointestinal diseases (N = 62), or a normal upper gastrointestinal tract (N = 51). Twelve VOCs-pentanoic acid, hexanoic acid, phenol, methyl phenol, ethyl phenol, butanal, pentanal, hexanal, heptanal, octanal, nonanal, and decanal-were present at significantly higher concentrations (P curve using these significant VOCs to discriminate esophageal and gastric adenocarcinoma from those with normal upper gastrointestinal tracts was 0.97 and 0.98, respectively. The area under the ROC curve for the model and validation subsets of the diagnostic prediction model was 0.92 ± 0.01 and 0.87 ± 0.03, respectively. Distinct exhaled breath VOC profiles can distinguish patients with esophageal and gastric adenocarcinoma from noncancer controls.

  10. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms

    DEFF Research Database (Denmark)

    Malinovschi, Andrei; Backer, Vibeke; Harving, Henrik

    2012-01-01

    The fraction of nitric oxide in exhaled air (FeNO) is used in asthma diagnosis and management. Smoking reduces FeNO and 20-35% of asthmatics are smoking. However no guidelines exist on the diagnostic value of FeNO in smokers. Therefore we assessed the value of FeNO to diagnose asthma...... in a population of subjects with asthma-like symptoms and different smoking habits....

  11. Recognition and importance of forced exhalation on the measurement of intraabdominal pressure: a subgroup analysis from a prospective cohort study on the incidence of abdominal compartment syndrome in medical patients.

    Science.gov (United States)

    Hongyan Liang; Daugherty, Elizabeth L; Taichman, Darren; Hansen-Flaschen, John; Fuchs, Barry D

    2008-01-01

    Intraabdominal pressure is measured conventionally at end-expiration; however, the significance of forced exhalation on this measurement has not been evaluated previously. Using data from a previous prospective cohort study of the incidence of intraabdominal hypertension and abdominal compartment syndrome in medical intensive care unit patients, the authors evaluated 65 strip-chart recordings obtained from 28 patients who had measurements of intraabdominal pressure and airway pressures taken simultaneously. Forced exhalation was identified by a rise in intraabdominal pressure during exhalation. Forced exhalation was observed in 4 patients; with a mean intraabdominal pressure increase of 14.3 +/- 1.3 mm Hg at end-exhalation, compared with a decrease of -2.5 +/- 1.2 mm Hg in 24 patients without forced exhalation and absolute pressures of 28.0 +/- 6.6 versus 13.8 +/- 3.9 mm Hg (P abdominal compartment syndrome.

  12. Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Marini, Sara, E-mail: s.marini@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (Italy); Buonanno, Giorgio [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (Italy); Queensland University of Technology, Brisbane (Australia); Stabile, Luca; Ficco, Giorgio [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino (Italy)

    2014-07-01

    The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 10{sup 9}, 5.1 ± 0.1 × 10{sup 9}, and 3.1 ± 0.6 × 10{sup 9} part. cm{sup −3} for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 10{sup 10}, 5.2 × 10{sup 10} and 2.3 × 10{sup 10} particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. - Highlights: • Electronic cigarettes (with and without nicotine) mainstream aerosols were analyzed; • Particle number

  13. Particulate Oxidative Burden as a Predictor of Exhaled Nitric Oxide in Children with Asthma.

    Science.gov (United States)

    Maikawa, Caitlin L; Weichenthal, Scott; Wheeler, Amanda J; Dobbin, Nina A; Smargiassi, Audrey; Evans, Greg; Liu, Ling; Goldberg, Mark S; Pollitt, Krystal J Godri

    2016-10-01

    Epidemiological studies have provided strong evidence that fine particulate matter (PM2.5; aerodynamic diameter ≤ 2.5 μm) can exacerbate asthmatic symptoms in children. Pro-oxidant components of PM2.5 are capable of directly generating reactive oxygen species. Oxidative burden is used to describe the capacity of PM2.5 to generate reactive oxygen species in the lung. In this study we investigated the association between airway inflammation in asthmatic children and oxidative burden of PM2.5 personal exposure. Daily PM2.5 personal exposure samples (n = 249) of 62 asthmatic school-aged children in Montreal were collected over 10 consecutive days. The oxidative burden of PM2.5 samples was determined in vitro as the depletion of low-molecular-weight antioxidants (ascorbate and glutathione) from a synthetic model of the fluid lining the respiratory tract. Airway inflammation was measured daily as fractional exhaled nitric oxide (FeNO). A positive association was identified between FeNO and glutathione-related oxidative burden exposure in the previous 24 hr (6.0% increase per interquartile range change in glutathione). Glutathione-related oxidative burden was further found to be positively associated with FeNO over 1-day lag and 2-day lag periods. Results further demonstrate that corticosteroid use may reduce the FeNO response to elevated glutathione-related oxidative burden exposure (no use, 15.8%; irregular use, 3.8%), whereas mold (22.1%), dust (10.6%), or fur (13.1%) allergies may increase FeNO in children with versus children without these allergies (11.5%). No association was found between PM2.5 mass or ascorbate-related oxidative burden and FeNO levels. Exposure to PM2.5 with elevated glutathione-related oxidative burden was associated with increased FeNO. Maikawa CL, Weichenthal S, Wheeler AJ, Dobbin NA, Smargiassi A, Evans G, Liu L, Goldberg MS, Godri Pollitt KJ. 2016. Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma

  14. Effect of allergen-specific immunotherapy with purified Alt a1 on AMP responsiveness, exhaled nitric oxide and exhaled breath condensate pH: a randomized double blind study

    Directory of Open Access Journals (Sweden)

    Prieto Luis

    2010-09-01

    Full Text Available Abstract Background Little information is available on the effect of allergen-specific immunotherapy on airway responsiveness and markers in exhaled air. The aims of this study were to assess the safety of immunotherapy with purified natural Alt a1 and its effect on airway responsiveness to direct and indirect bronchoconstrictor agents and markers in exhaled air. Methods This was a randomized double-blind trial. Subjects with allergic rhinitis with or without mild/moderate asthma sensitized to A alternata and who also had a positive skin prick test to Alt a1 were randomized to treatment with placebo (n = 18 or purified natural Alt a1 (n = 22 subcutaneously for 12 months. Bronchial responsiveness to adenosine 5'-monophosphate (AMP and methacholine, exhaled nitric oxide (ENO, exhaled breath condensate (EBC pH, and serum Alt a1-specific IgG4 antibodies were measured at baseline and after 6 and 12 months of treatment. Local and systemic adverse events were also registered. Results The mean (95% CI allergen-specific IgG4 value for the active treatment group increased from 0.07 μg/mL (0.03-0.11 at baseline to 1.21 μg/mL (0.69-1.73, P 4 value increased nonsignificantly from 0.09 μg/mL (0.06-0.12 at baseline to 0.13 μg/mL (0.07-0.18 at 6 months and to 0.11 μg/mL (0.07-0.15 at 12 months of treatment. Changes in the active treatment group were significantly higher than in the placebo group both at 6 months (P Conclusion Although allergen-specific immunotherapy with purified natural Alt a1 is well tolerated and induces an allergen-specific IgG4 response, treatment is not associated with changes in AMP or methacholine responsiveness or with significant improvements in markers of inflammation in exhaled air. These findings suggest dissociation between the immunotherapy-induced increase in IgG4 levels and its effect on airway responsiveness and inflammation.

  15. Levels of exhaled carbon monoxide measured during an intervention program predict 1-year smoking cessation: a retrospective observational cohort study.

    Science.gov (United States)

    Shie, Huei-Guan; Pan, Sheng-Wei; Yu, Wen-Kuang; Chen, Wei-Chih; Ho, Li-Ing; Ko, Hsin-Kuo

    2017-10-16

    Life-long smoking cessation is a critical public health objective, but it is difficult for numerous people. This study aimed to identify the independent predictors of 1-year abstinence in smokers motivated to quit and participating in an intervention program. This 6-year retrospective observational cohort study was conducted in smokers who participated in an intervention program. The exhaled carbon monoxide (CO) was sequentially measured on day 1, 8, 15, and 22 of the intervention program. The primary outcome measure was smoking status at 1 year of follow-up. A total of 162 participants were enrolled and divided into a successful quit group (n = 52) and unsuccessful quit group (n = 110). Using a multivariate logistic regression analysis, we reported that the intention to quit (adjusted odds ratio [AOR] = 1.475, 95% confidence interval [CI] = 1.169-1.862, P-value = 0.001), varenicline use (AOR = 3.199, 95% CI = 1.290-7.934, P -value = 0.012) and the exhaled CO level on day 8 (AOR = 0.937, 95% CI = 0.885-0.992, P-value = 0.025) independently predicted 1-year smoking cessation. Moreover, the level of exhaled CO smoking cessation (area under curve 0.761, sensitivity 88.2%, and specificity 57.8%, P-value intervention programs to achieve a higher rate of long-term smoking cessation. IDENTIFYING PREDICTORS OF SUCCESS: Researchers in Korea identify key predictors that pinpoint people most likely to quit smoking successfully during intervention programs. Millions are spent each year supporting people to quit smoking. However, successful quitters remain in the minority, with only 9-35 per cent of those in intervention programs abstaining for at least a year. Hsin-Kuo Ko at Taipei Veterans General Hospital and co-workers identified key independent indicators of successful abstinence in 162 smokers attending an intervention program. Alongside having a high intention to quit and using varenicline medication, a potential predictor

  16. Effects of Heat and Moisture Exchangers and Exhaled Humidity on Aerosol Deposition in a Simulated Ventilator-Dependent Adult Lung Model.

    Science.gov (United States)

    Ari, Arzu; Alwadeai, Khalid S; Fink, James B

    2017-05-01

    Many in vitro models report higher inhaled dose with dry versus heated humidity. Heat-and-moisture exchangers (HMEs) provide passive humidity in ventilator-dependent patients but act as a barrier to aerosol. The HMEs designed to allow aerosol delivery (HME-ADs) have not been well described. The purpose of this study is to determine the impact on aerosol deposition of HME-ADs with and without active exhaled humidity in a simulated ventilator-dependent adult model. We used an in vitro lung model consisting of an intubated teaching mannequin with an endotracheal tube of 8.0 mm inner diameter with bronchi directly attached to a collecting filter and passive rubber test lung to provide testing without active exhaled humidity. To simulate exhaled humidity, a Cascade humidifier (37°C and 100% relative humidity) was placed between the collecting filter and test lung, simulating body temperature and pressure saturated exhaled humidity at the bronchi. Albuterol sulfate (2.5 mg/3 mL) was administered with a mesh nebulizer (Aerogen Solo) placed in the inspiratory limb of the ventilator circuit at the Y-piece, with no HME in place (control) and with 3 HME-AD devices, including the CircuVent, Humid-Flo, and AirLife, with and without exhaled humidity. Drug was eluted from the collecting filter and analyzed with spectrophotometry. Student t tests and analysis of variance were used for data analysis ( P < .05). The percentage of drug dose delivered (mean ± SD) distal to the bronchi in the control experiments was greater than all of the HME-ADs without exhaled humidity 18 ± 0.7 and with active exhaled humidity 10.8 ± 0.2% ( P < .005). Without exhaled humidity, aerosol delivery with the CircuVent (12.6 ± 0.8), Humid-Flo (15.3 ± 0.8), and AirLife (12.0 ± 0.5) was less than control ( P < .001, P = .01 and P < .001, respectively). In contrast, with exhaled humidity, no difference was found between control and HME-ADs ( P = .89). Also, a greater variation between control and the 3

  17. Manganese in exhaled breath condensate: a new marker of exposure to welding fumes.

    Science.gov (United States)

    Hulo, Sébastien; Chérot-Kornobis, Nathalie; Howsam, Mike; Crucq, Sébastien; de Broucker, Virginie; Sobaszek, Annie; Edme, Jean-Louis

    2014-04-07

    To evaluate manganese in exhaled breath condensate (Mn-EBC) as an indicator of exposure to fumes from metal inert gas welding process. We collected EBC and urine from 17 welders and 16 unexposed control subjects after 5 days exposure. Concentrations of manganese (Mn), nickel (Ni), iron (Fe) and chromium (Cr) were measured in EBC and urine samples and correlated with cumulative exposure indices for the working week (CIW) and for the total welding years (WY), based on duration of welding activity and atmospheric metal measurements. Concentrations of Mn and Ni in EBC were significantly higher among welders than controls whereas this difference was not significant for Mn in urine. Levels of Mn and Ni in EBC were not correlated with their respective levels in urine. The linear regressions found significant positive coefficients between Mn-EBC, Ni-EBC, Ni-U and Cr-U concentrations and the cumulative exposure indices. Taking into account tobacco use, statistical analysis showed the same trends except for the relationship between Mn-U and CIW. This pilot study showed that Mn-EBC, as well as Ni-EBC, can serve as reliable indices of occupational exposure to welding fumes and provide complimentary toxicokinetic information to that provided by urine analyses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Analysis of aldehydes in human exhaled breath condensates by in-tube SPME-HPLC.

    Science.gov (United States)

    Wang, ShuLing; Hu, Sheng; Xu, Hui

    2015-11-05

    In this paper, polypyrrole/graphene (PPy/G) composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless steel (SS) tube. Based on the coating tube, a novel online in-tube solid-phase microextraction -high performance liquid chromatography (IT-SPME-HPLC) was developed and applied for the extraction of aldehydes in the human exhaled breath condensates (EBC). The hybrid PPy/G nanocomposite exhibits remarkable chemical and mechanical stability, high selectivity, and satisfactory extraction performance toward aldehyde compounds. Moreover, the proposed online IT-SPME-HPLC method possesses numerous superiorities, such as time and cost saving, process simplicity, high precision and sensitivity. Some parameters related to extraction efficiency were optimized systematically. Under the optimal conditions, the recoveries of the aldehyde compounds at three spiked concentration levels varied in the range of 85%-117%. Good linearity was obtained with excellent correlation coefficients (R(2)) being larger than 0.994. The relative standard deviations (n = 5) of the method ranged from 1.8% to 11.3% and the limits of detection were between 2.3 and 3.3 nmol L(-1). The successful application of the proposed method in human EBC indicated that it is a promising approach for the determination of trace aldehyde metabolites in complex EBC samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Serum but not exhaled breath condensate periostin level is increased in competitive athletes.

    Science.gov (United States)

    Kurowski, Marcin; Jurczyk, Janusz; Jarzębska, Marzanna; Wardzyńska, Aleksandra; Krysztofiak, Hubert; Kowalski, Marek L

    2018-01-08

    Periostin is a matricellular protein expressed by many tissues. Its release may be enhanced, among others, through mechanical stimulation of muscles and bones as well as by cytokines of allergic inflammation. Our aim was to assess periostin levels in serum and exhaled breath condensate (EBC) of professional athletes, asthmatics and healthy controls. We also sought to determine whether acute treadmill exercise influences serum and EBC periostin. Study groups included 9 competitive swimmers, 10 mild-to-moderate asthmatics and 7 healthy controls. Athletes were assessed twice (in- and off-training period) while asthmatics and controls in one time-point. Data on demographics, allergy symptoms and exercise load were acquired through Allergy Questionnaire for Athletes (AQUA) and International Physical Activity Questionnaire (IPAQ). Serum and EBC were collected before and after treadmill exercise challenge. Baseline serum periostin in swimmers during training period was significantly higher (5- to 7-fold) than in asthmatics (P = .01) and controls (P training as compared with off-training period (P load leading to stimulation, injury and regeneration of musculoskeletal tissues. Periostin may be considered marker of long-term exercise overload after confirmation in larger groups. © 2018 John Wiley & Sons Ltd.

  20. Does Ethnicity Influence Fractional Exhaled Nitric Oxide in Healthy Individuals?: A Systematic Review.

    Science.gov (United States)

    Blake, Tamara L; Chang, Anne B; Chatfield, Mark D; Petsky, Helen L; Rodwell, Leanne T; Brown, Michael G; Hill, Deb C; McElrea, Margaret S

    2017-07-01

    Fractional exhaled nitric oxide (Feno) is used clinically as a biomarker of eosinophilic airway inflammation. Awareness of the factors influencing Feno values is important for valid clinical interpretation. We undertook a systematic review of PubMed, Cochrane Library, Scopus, and Web of Science databases and reference lists of included articles to evaluate whether ethnicity influences Feno values, and to determine if this influence affects clinical interpretation according to current guidelines. We included all studies that performed online Feno measurements on at least 25 healthy, non-Caucasian individuals, and examined the effect of ethnicity on Feno. From 62 potential studies, 12 studies were included. One study recruited only children (age), six studies recruited children and/or adolescents, four studies recruited adults only, and a single study involved children, adolescents, and adults. In total, 16 different ethnic populations representing 11 ethnicities were studied. Ethnicity was considered a significant influencing factor in 10 of the included studies. We found the geometric mean Feno to be above the normal healthy range in two studies. We also identified five studies in which at least 5% of participants had Feno results above the age-specific inflammatory ranges. Ethnicity influences Feno values, and for some ethnic groups this influence likely affects clinical interpretation according to current guidelines. There is a need to establish healthy Feno reference ranges for specific ethnic groups to improve clinical application. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  1. Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide

    Science.gov (United States)

    Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong

    2016-07-01

    Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m-3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m-2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.

  2. Exhaled nitric oxide is associated with acute mountain sickness susceptibility during exposure to normobaric hypoxia.

    Science.gov (United States)

    Macinnis, M J; Carter, E A; Koehle, M S; Rupert, J L

    2012-01-15

    Nitric oxide is a gaseous signaling molecule that participates in a large variety of physiological functions and may have a role in the pathology of altitude illnesses, such as acute mountain sickness (AMS). The effect of normobaric hypoxia on the fraction of exhaled NO ( [Formula: see text] ) is a controversial area of high altitude physiology, with the effect varying widely across studies. We exposed 19 male subjects to normobaric hypoxia for 6h and measured [Formula: see text] and AMS (via Lake Louise Score) each hour. For data analysis, subjects were divided into AMS-positive and AMS-negative groups based on their Lake Louise Scores during exposure. Eighteen subjects completed the study, and the incidence of AMS was 50%. Mean [Formula: see text] was unchanged at hour 1 but was significantly elevated above baseline for the remainder of the normobaric hypoxia exposure (p<0.001). Subjects who developed AMS had a significantly lower mean [Formula: see text] at baseline compared to resistant subjects (p=0.013). Further investigations are warranted to confirm our results and to understand the physiological basis of this association. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Influence of atopy and asthma on exhaled nitric oxide in an unselected birth cohort study.

    Science.gov (United States)

    Scott, Martha; Raza, Abid; Karmaus, Wilfried; Mitchell, Frances; Grundy, Jane; Kurukulaaratchy, Ramesh J; Arshad, S Hasan; Roberts, Graham

    2010-03-01

    Asthma is considered to be associated with elevated levels of exhaled nitric oxide (FeNO). The nature of this relationship and how it is influenced by atopy are still not resolved. The Isle of Wight birth cohort (N=1456) was reassessed at 18 years of age. Participants able to attend the research centre were assessed by questionnaires, skin prick testing and FeNO in order to explore the interrelationship between asthma, atopy and FeNO. Atopy was significantly associated with higher levels of FeNO. However, the level of FeNO for non-atopic asthmatic participants was no different to the non-atopic no-asthma group. The highest levels of FeNO were seen in subjects with both atopy and asthma. In addition, FeNO was positively associated with increasing atopic burden as evidenced by increasing FeNO with increasing skin prick testing positivity, and with increasing severity of atopic asthma as evidenced by the number of attacks of wheezing. FeNO and current inhaled corticosteroid use were not significantly associated. FeNO behaves as a biomarker of atopy and the "allergic asthma" phenotype rather than asthma itself. This may explain why FeNO-guided asthma treatment outcomes have proved to be of limited success where atopic status has not been considered and accounted for.

  4. [Association of exhaled nitric oxide with asthma and atopy among children living in Santiago, Chile].

    Science.gov (United States)

    Vidal, Daniella; Yohannessen, Karla; Prieto, Laura; Ubilla, Carlos; Ruiz, Pablo A

    2013-06-01

    Chronic airway inflammation is a central process in asthma. Measurement of exhaled nitric oxide (eNO) is a non-invasive biomarker of eosinophilic airway inflammation. To measure eNO levels in a population of asthmatic and non-asthmatic children and to evaluate their relationship with asthma and atopy. We studied 143 asthmatic and non-asthmatic children aged 6 to 14 years attended a hospital and primary health service. Participants were tested for allergies and followed during the winter months of 2010 and 2011. They were visited regularly at their homes and eNO levels were measured on each visit using a handheld equipment. Mean eNO distribution were compared by the presence of asthma or atopy using t-test and regression models. No significant differences for mean eNO levels were detected, according to presence of asthma or atopy, by any of the statistical methods used. Regression models showed significant effects for age but not for sex. There were no differences in eNO levels in the studied children by the presence of asthma or atopy.

  5. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Directory of Open Access Journals (Sweden)

    Brüning Thomas

    2009-11-01

    Full Text Available Abstract Background The collection of exhaled breath condensate (EBC is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments. Methods EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB4, PGE2, 8-isoprostane and cys-LTs were determined. Results EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB4 and PGE2 or showed higher concentrations (8-isoprostane. However, NOx was detected only in EBC sampled by ECoScreen. Conclusion ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.

  6. Serial exhaled nitric oxide measurements in the assessment of laboratory animal allergy.

    Science.gov (United States)

    Hewitt, Richard S; Smith, Andrew D; Cowan, Jan O; Schofield, John C; Herbison, G Peter; Taylor, D Robin

    2008-03-01

    Laboratory animal allergy (LAA) may cause eosinophilic airway inflammation, for which exhaled nitric oxide (FE(NO)) measurements are sensitive and specific. Our objective was to assess whether serial FE(NO) measurements might detect exposure-related inflammation in laboratory animal workers. METHODS. Fifty laboratory animal workers participated. Measurements of FE(NO) and spirometry were obtained at baseline (Friday) and twice-daily following a weekend with no animal contact. Eleven of 50 subjects had work-related symptoms, and 2 of 11 had positive serology for LAA. Baseline FE(NO) was high (> 150 ppb) in the two seropositive subjects and increased progressively during the working week in one subject, confirming exposure-driven airway inflammation. In seronegative subjects, mean FE(NO) levels were 19.8 (standard deviation [SD], 20.1) and 21.7 (SD, 20.8) in the symptomatic and nonsymptomatic groups, respectively, with no significant changes in FE(NO) over time. Serial FE(NO) measurements may provide complementary information in the assessment of possible occupational sensitisation. The sensitivity and specificity of this approach to diagnosing occupational asthma requires further evaluation.

  7. Viral colonization in exhaled breath condensate of lung cancer patients: Possible role of EBV and CMV.

    Science.gov (United States)

    Carpagnano, Giovanna E; Lacedonia, Donato; Natalicchio, Maria Iole; Cotugno, Grazia; Zoppo, Luigi; Martinelli, Domenico; Antonetti, Raffaele; Foschino-Barbaro, Maria Pia

    2016-07-16

    Today, an increasing interest is being addressed to the viral etiology of lung tumors. As a consequence, research efforts are currently being directed to the identification of the new viruses involved in lung carcinogenesis toward which the screening programs could be directed. The aim of this study was to investigate the airways colonization by the Epstein-Barr virus (EBV) and Citomegalovirus (CMV) in patients affected by lung cancer using, as a respiratory non-invasive sample, the exhaled breath condensate (EBC). About 70 lung-cancer patients and 40 controls were enrolled. All subjects underwent bronchial brushing and EBC collection. EBV-DNA and CMV-DNA were evaluated in both samples by real-time PCR assay. They were able to detect EBV and CMV in the EBC. An increase of the EBV positivity in non-small cell lung cancer (NSCLC) patients compared with controls and of the CMV in advanced stages of lung cancer were observed. The association of the positivity of the cytology and the CMV test (in EBC or brushing) slightly increased the sensitivity of malignant diagnosis. EBV and CMV resulted detectable in the EBC. In consideration of the potential involvement of these viruses in lung cancer, which was confirmed in this study, future studies in this direction were supported. © 2016 John Wiley & Sons Ltd.

  8. A mini review of dolphin carbohydrate metabolism and suggestions for future research using exhaled air

    Directory of Open Access Journals (Sweden)

    Sam eRidgway

    2013-12-01

    Full Text Available In the 1960s, I explored some aspects of carbohydrate metabolism in healthy bottlenose dolphins (Tursiops truncatus. Their physiological picture resembled what had been described for hyperthyroid diabetics. Dolphins have elevated thyroid hormone turnover, and fasting dolphins maintain a relatively high level of plasma glucose. After dolphins ingest glucose, plasma levels remain high for many hours. Interestingly, plasma glucose must exceed 300 mg/dL (about twice as high as the human threshold before glucose appears in urine. Due to their diabetes-like states, trainability, and unique natural respiratory anatomy and physiology, dolphins may offer useful clues to metabolites in the breath that may be used to non-invasively monitor diabetes in humans. Dolphins take very rapid and deep breaths that are four or five times as deep as humans and other terrestrial mammals, making them ideal for physiological assessment using non-invasive exhaled air. Avenues for successfully identifying breath-based markers for metabolic disease and physiology in dolphins can be done with both modern technology and the evolutionarily advantageous canine nose. This review summarizes aspects of dolphin metabolism previously learned and offers new directions for diabetes research that may benefit both dolphin and human health.

  9. Predicting sputum eosinophilia in exacerbations of COPD using exhaled nitric oxide.

    Science.gov (United States)

    Soter, Szabolcs; Barta, Imre; Antus, Balazs

    2013-10-01

    Fractional exhaled nitric oxide (FENO) may be a pulmonary biomarker in chronic obstructive pulmonary disease (COPD). In this prospective study, the relationship between FENO and airway inflammation was assessed in COPD exacerbations. FENO and lung function were measured, and sputum was collected from 49 ex-smoking COPD patients, first at the time of hospital admission and again at discharge following treatment. There was a significant positive correlation between the percentage of sputum eosinophils and FENO concentrations, both at exacerbation (r = 0.593, p < 0.001) and discharge (r = 0.337, p = 0.044). The increase in forced expiratory volume in one second (FEV(1)) after treatment was greater in patients with sputum eosinophilia (ΔFEV(1) 0.35 ± 0.12 vs. 0.13 ± 0.04 L, p = 0.046), and FENO was a strong predictor of sputum eosinophilia (area under the receiver operating characteristic curve, 0.89). The optimum cut point was 19 parts per billion (sensitivity: 90 %; specificity: 74 %). Our data suggest that FENO is a good surrogate marker of eosinophilic inflammation in COPD patients with exacerbations.

  10. Analysis of exhaled breath condensate in a mixed population of psittacine birds.

    Science.gov (United States)

    Foldenauer, Ulrike; Simova-Curd, Stefka; Nitzl, Dagmar; Bogdanova, Anna; Zollinger, Eveline; Hatt, Jean-Michel

    2010-09-01

    Collection of exhaled breath condensate (EBC) and the measurement of inflammatory markers contained therein (eg, hydrogen peroxide [H2O2], leukotriene B4 [LTB4], and pH) have been reported to be noninvasive tools for the investigation of respiratory disease in various species. In this study, the EBC of clinically healthy psittacine birds (n = 15) and psittacine birds with respiratory tract disease (n = 19) was examined, and inflammatory markers contained in the EBC were analyzed and compared. Awake birds were placed in an acrylic container from which the outflow passed through a condensation system that collected the EBC. All samples were analyzed for pH, H2O2, and LTB4. The mean values for each of these components, as well as the mean volume of the total EBC, measured from the apparently healthy birds did not differ significantly from those measured in birds with signs of respiratory tract disease. However, LTB4 in the EBC of diseased birds was higher than that of the apparently healthy birds and showed a trend toward significance. The study demonstrated the establishment of a standardized method for collecting and analyzing EBC in psittacine birds and a measurement protocol for pH, H2O2, and LTB4.

  11. Obesity disproportionately impacts lung volumes, airflow and exhaled nitric oxide in children.

    Science.gov (United States)

    Yao, Tsung-Chieh; Tsai, Hui-Ju; Chang, Su-Wei; Chung, Ren-Hua; Hsu, Jing-Ya; Tsai, Ming-Han; Liao, Sui-Ling; Hua, Man-Chin; Lai, Shen-Hao; Chen, Li-Chen; Yeh, Kuo-Wei; Tseng, Yu-Lun; Lin, Wan-Chen; Chang, Su-Ching; Huang, Jing-Long

    2017-01-01

    The current literature focusing on the effect of obesity and overweight on lung function and fraction of exhaled nitric oxide (FeNO) in children, particularly among healthy children of non-European descent, remains controversial. Furthermore, whether the relationship of obesity and overweight with lung function and FeNO in children is modified by atopy is unclear. The objective of this study was to examine the effect of excess weight on lung function parameters and FeNO among Asian children, with a particular focus on exploring the potential effect modification by atopy. We investigated the effect of excess weight on lung function and FeNO in a population sample of 1,717 children aged 5 to 18 years and explored the potential modifying effect of atopy. There were positive associations of body mass index (BMI) z-score with forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), peak expiratory flow (PEF), and forced expiratory flow at 25-75% (FEF25-75) (all Pchildren from the general population, independent of atopic status. Excess weight inversely affects FeNO in atopic but not in non-atopic children.

  12. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: a feasibility study.

    Science.gov (United States)

    Gruber, M; Tisch, U; Jeries, R; Amal, H; Hakim, M; Ronen, O; Marshak, T; Zimmerman, D; Israel, O; Amiga, E; Doweck, I; Haick, H

    2014-08-12

    Squamous cell carcinoma of the head and neck (HNSCC) are wide-spread cancers that often lead to disfigurement and loss of important functions such as speech and ingestion. To date, HNSCC has no adequate method for early detection and screening. Exhaled breath samples were collected from 87 volunteers; 62 well-defined breath samples from 22 HNSCC patients (larynx and pharynx), 21 patients with benign tumours (larynx and pharynx) and 19 healthy controls were analysed in a dual approach: (i) chemical analysis using gas chromatography/mass spectrometry (GC-MS) and (ii) breath-print analysis using an array of nanomaterial-based sensors, combined with a statistical algorithm. Gas chromatography/mass spectrometry identified ethanol, 2-propenenitrile and undecane as potential markers for HNSCC and/or benign tumours of the head and neck. The sensor-array-based breath-prints could clearly distinguish HNSCC both from benign tumours and from healthy states. Within the HNSCC group, patients could be classified according to tumour site and stage. We have demonstrated the feasibility of a breath test for a specific, clinically interesting application: distinguishing HNSCC from tumour-free or benign tumour states, as well as for staging and locating HNSCC. The sensor array used here could form the basis for the development of an urgently needed non-invasive, cost-effective, fast and reliable point-of-care diagnostic/screening tool for HNSCC.

  13. Effect of Nanoparticles Exposure on Fractional Exhaled Nitric Oxide (FENO in Workers Exposed to Nanomaterials

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu

    2014-01-01

    Full Text Available Fractional exhaled nitric oxide (FENO measurement is a useful diagnostic test of airway inflammation. However, there have been few studies of FENO in workers exposed to nanomaterials. The purpose of this study was to examine the effect of nanoparticle (NP exposure on FENO and to assess whether the FENO is increased in workers exposed to nanomaterials (NM. In this study, both exposed workers and non-exposed controls were recruited from NM handling plants in Taiwan. A total of 437 subjects (exposed group = 241, non-exposed group = 196 completed the FENO and spirometric measurements from 2009–2011. The authors used a control-banding (CB matrix to categorize the risk level of each participant. In a multivariate linear regression analysis, this study found a significant association between risk level 2 of NP exposure and FENO. Furthermore, asthma, allergic rhinitis, peak expiratory flow rate (PEFR, and NF-κB were also significantly associated with FENO. When the multivariate logistic regression model was adjusted for confounders, nano-TiO2 in all of the NM exposed categories had a significantly increased risk in FENO > 35 ppb. This study found associations between the risk level of NP exposure and FENO (particularly noteworthy for Nano-TiO2. Monitoring FENO in the lung could open up a window into the role nitric oxide (NO may play in pathogenesis.

  14. Impact of bacterial colonization on exhaled inflammatory markers in wheezing preschool children.

    Science.gov (United States)

    van de Kant, Kim D G; Klaassen, Ester M M; van Aerde, Koen J; Damoiseaux, Jan; Bruggeman, Cathrien A; Stelma, Foekje F; Stobberingh, Ellen E; Muris, Jean W M; Jöbsis, Quirijn; van Schayck, Onno C P; Dompeling, Edward

    2012-12-01

    Wheeze is a common symptom in preschool children. The role of bacteria, regulatory T (T(reg)) cells and their association with airway inflammation in preschool wheeze is largely unknown. We evaluated inflammatory markers in exhaled breath condensate (EBC), bacterial colonization and circulating T(reg) cells in preschool children with and without recurrent wheeze. We recruited 252 children (aged two to four years) with (N = 202) and without (N = 50) recurrent wheeze. EBC was collected using an efficient closed glass condenser. Inflammatory markers in EBC (Interleukin(IL)-2, IL-4, IL-8, IL-10, IL-13) were assessed using multiplex immunoassay. Nasal and throat swabs were analysed for presence of Streptococcus pneumoniae, Haemophilus (para)influenzae and Staphylococcus aureus. Proportions of T(reg) cells (CD4(+)CD25(high)CD127(-)) were quantified by flow cytometry. Recurrent wheezing children had elevated EBC levels of IL-2, IL-4, IL-10 and IL-13 compared to non-wheezers (odds ratio (95% confidence interval): 1.67 (1.23-2.27): 1.58 (1.15-2.18): 1.47 (1.14-1.90): 1.55 (1.16-2.06), p preschool children. In the presence of wheeze, we found no evidence for bacterial induced airway inflammation.

  15. Metabolomics analysis of exhaled breath condensate for discrimination between lung cancer patients and risk factor individuals.

    Science.gov (United States)

    Peralbo-Molina, A; Calderón-Santiago, M; Priego-Capote, F; Jurado-Gámez, B; Luque de Castro, M D

    2016-02-11

    The search for new clinical tests aimed at diagnosing chronic respiratory diseases is a current research line motivated by the lack of efficient screening tools and the severity of some of these pathologies. Alternative biological samples can open the door to new screening tools. A promising biofluid that is rarely used for diagnostic purposes is exhaled breath condensate (EBC), the composition of which has been inadequately studied. In this research, untargeted analysis of EBC using gas chromatography time-of-flight mass spectrometry has been applied to a cohort of patients with lung cancer (n  =  48), risk factor individuals (active smokers and ex-smokers, n  =  130) and control healthy individuals (non-smokers without respiratory diseases, n  =  61). An identical protocol was applied to the two EBC fractions provided by the sampling device (upper and central airways and distal airway) from each individual, which allowed the compositional differences between the two EBC fractions to be detected. Tentative compounds that contribute to discrimination between the three groups were identified, and a relevant role for lipids such as monoacylglycerols and squalene was found. These results could support the ability of metabolomics to go inside the study of lung cancer.

  16. Conductivity in Exhaled Breath Condensate from Subjects with Emphysema and Type ZZ alpha-1-Antitrypsin Deficiency.

    Science.gov (United States)

    Stolk, Jan; Fumagalli, Marco; Viglio, Simona; Iadarola, Paolo

    2015-05-01

    The assessment of biomarkers in biological samples from the lung has long been employed. Upon cooling water vapor present in exhaled breath, variable amounts of droplets of condensate (EBC) containing volatile and non-volatile compounds may be easily and non-invasively obtained from patients of any age.Objective of the present study was to compare the level of EBC conductivity determined for cohorts of individuals with different inflammatory lung disorders with that of healthy never-smoking individuals.The conductivity in EBC of PiZZ-Alpha-1-antitrypsin deficiency patients with a diagnosis of emphysema (PiZZ-AATD) was 3 fold lower than in spouse controls (54.5 ± 11.6 vs 165.3 ± 10.7 μS/cm). Non-PiZZ emphysema patients had conductivity in EBC of 59.6 ± 5.8 μS/cm and patients with sarcoidosis without airflow obstruction had EBC conductivity of 178,8 ± 6,2 μS/cm, 
not significantly different (p = 0.5) from healthy controls. Conductivity in serial EBC samples from patients with PiZZ-AATD emphysema and healthy controls was stable in 6 different samples collected over a period of 14 months. We conclude that conductivity values in EBC can be used as a correction factor for dilution of non-volatile components in EBC.

  17. Fractional exhaled nitric oxide for the management of asthma in adults: a systematic review.

    Science.gov (United States)

    Essat, Munira; Harnan, Sue; Gomersall, Tim; Tappenden, Paul; Wong, Ruth; Pavord, Ian; Lawson, Rod; Everard, Mark L

    2016-03-01

    The aim of this review was to evaluate the clinical effectiveness of fractional exhaled nitric oxide (FeNO) measured in a clinical setting for the management of asthma in adults.13 electronic databases were searched and studies were selected against predefined inclusion criteria. Quality assessment was conducted using QUADAS-2. Class effect meta-analyses were performed.Six studies were included. Despite high levels of heterogeneity in multiple study characteristics, exploratory class effect meta-analyses were conducted. Four studies reported a wider definition of exacerbation rates (major or severe exacerbation) with a pooled rate ratio of 0.80 (95% CI 0.63-1.02). Two studies reported rates of severe exacerbations (requiring oral corticosteroid use) with a pooled rate ratio of 0.89 (95% CI 0.43-1.72). Inhaled corticosteroid use was reported by four studies, with a pooled standardised mean difference of -0.24 (95% CI -0.56-0.07). No statistically significant differences for health-related quality of life or asthma control were found.FeNO guided management showed no statistically significant benefit in terms of severe exacerbations or inhaled corticosteroid use, but showed a statistically significant reduction in exacerbations of any severity. However, further research is warranted to clearly define which management protocols (including cut-off points) offer best efficacy and which patient groups would benefit the most. Copyright ©ERS 2016.

  18. Magnesium and calcium in exhaled breath condensate of children with asthma and gastroesophageal reflux disease.

    Science.gov (United States)

    Dodig, Slavica; Vlasić, Zeljka; Cepelak, Ivana; Zrinski Topić, Renata; Turkalj, Mirjana; Nogalo, Boro

    2009-01-01

    Magnesium and calcium physiologic functions are closely related. Magnesium is primarily an intracellular cation, the action of which also involves maintenance of cellular ionic balance, while influencing calcium homeostasis by blocking calcium channels. The aim of this study was to compare the concentrations of magnesium and calcium in exhaled breath condensate (EBC) of children with asthma and gastroesophageal reflux disease (GERD). EBC was collected from 66 children aged 7-14 years (23 children with acute asthma, 17 children with GERD, and 26 healthy children). Determination of magnesium and calcium concentrations was preceded by optimization and validation for low concentrations. No difference was recorded for either magnesium or calcium concentration between study groups. However, the magnesium to calcium ratio was statistically significantly lower in both GERD and asthma children as compared with control group. Study results showed the magnesium to calcium ratio to be a statistically significantly better indicator of certain pathologic changes than absolute concentration of either ion. Copyright 2009 Wiley-Liss, Inc.

  19. Physiological variability in volatile organic compounds (VOCs) in exhaled breath and released from faeces due to nutrition and somatic growth in a standardized caprine animal model.

    Science.gov (United States)

    Fischer, Sina; Trefz, Phillip; Bergmann, Andreas; Steffens, Markus; Ziller, Mario; Miekisch, Wolfram; Schubert, Jochen S; Köhler, Heike; Reinhold, Petra

    2015-05-14

    Physiological effects may change volatile organic compound (VOC) concentrations and may therefore act as confounding factors in the definition of VOCs as disease biomarkers. To evaluate the extent of physiological background variability, this study assessed the effects of feed composition and somatic growth on VOC patterns in a standardized large animal model. Fifteen clinically healthy goats were followed during their first year of life. VOCs present in the headspace over faeces, exhaled breath and ambient air inside the stable were repeatedly assessed in parallel with the concentrations of glucose, protein, and albumin in venous blood. VOCs were collected and analysed using solid-phase or needle-trap microextraction and gas chromatograpy together with mass spectroscopy. The concentrations of VOCs in exhaled breath and above faeces varied significantly with increasing age of the animals. The largest variations in volatiles detected in the headspace over faeces occurred with the change from milk feeding to plant-based diet. VOCs above faeces and in exhaled breath correlated significantly with blood components. Among VOCs exhaled, the strongest correlations were found between exhaled nonanal concentrations and blood concentrations of glucose and albumin. Results stress the importance of a profound knowledge of the physiological backgrounds of VOC composition before defining reliable and accurate marker sets for diagnostic purposes.

  20. Gas chromatograph-surface acoustic wave for quick real-time assessment of blood/exhaled gas ratio of propofol in humans.

    Science.gov (United States)

    Chen, X; Zhang, X L; Liu, L; Chen, Y; Piao, M Y; Zhang, F J; Wu, W D; Zhong, Y B; Sun, K; Zou, Y C; Zhang, X; Wang, D; Wang, P; Yan, M

    2014-11-01

    Although pilot studies have reported that exhaled propofol concentrations can reflect intraoperative plasma propofol concentrations in an individual, the blood/exhaled partial pressure ratio RBE varies between patients, and the relevant factors have not yet been clearly addressed. No efficient method has been reported for the quick evaluation of RBE and its association with inter-individual variables. We proposed a novel method that uses a surface acoustic wave (SAW) sensor combined with a fast gas chromatograph (GC) to simultaneously detect propofol concentrations in blood and exhaled gas in 28 patients who were receiving propofol i.v. A two-compartment pharmacokinetic (PK) model was established to simulate propofol concentrations in exhaled gas and blood after a bolus injection. Simulated propofol concentrations for exhaled gas and blood were used in a linear regression model to evaluate RBE. The fast GC-SAW system showed reliability and efficiency for simultaneous quantitative determination of propofol in blood (correlation coefficient R(2)=0.994, Pgas (R(2)=0.991, Panalysis of blood propofol concentrations. The proposed method allows early determination of the coefficient RBE in individuals. Further studies are required to quantify the distribution of RBE in a larger cohort and assess the effect of other potential factors. ChiCTR-ONC-13003291. © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Development of a predictive methodology for identifying high radon exhalation potential areas; Mise au point d'une methodologie predictive des zones a fort potentiel d'exhalation du radon

    Energy Technology Data Exchange (ETDEWEB)

    Ielsch, G

    2001-07-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  2. Effect of drinking Arabian Qahwa on fractional exhaled nitric oxide levels in healthy nonsmoking Saudi adults

    Directory of Open Access Journals (Sweden)

    Syed Shahid Habib

    2012-01-01

    Full Text Available Objectives: Fractional exhaled nitric oxide (FENO is an emerging marker of inflammation in respiratory diseases. However, it is affected by a number of confounding factors. We aimed to study the effect of drinking Arabian Qahwa on FENO in non-smoking Saudi healthy adults. Methods: We recruited 12 nonsmoker healthy male adults aged 36.6 ± 2.7 (21-50 years. All subjects were free from acute respiratory infections or allergies and had normal ventilatory functions and serum IgE levels. At 8 am in the morning, their baseline values of FENO were recorded. They had not taken tea or coffee in the morning and had taken similar light breakfast. They were given three cups of Arabian Qahwa to drink and then after every 30 minutes, serial levels of FENO were recorded. Results: Average FENO levels at baseline were 28.73 ± 9.33 (mean ± SD parts per billion (ppb. The mean FENO levels started to decrease significantly after 30 minutes of drinking Arabian Qahwa (P=0.002. This decrease in FENO level was further observed till two hours after Qahwa drinking and then it started to increase in next 90 minutes but still was significantly lower than the baseline (P=0.002. The mean FENO level recorded after 4 hours was 27.22 ± 10.22 (P=0.039. Conclusions: FENO levels were significantly lowered by intake of Arabian Qahwa and this effect remains for about 4 hours. Therefore, history of recent Qahwa intake and abstinence is essential before performance of FENO and its interpretation.

  3. Exhaled nitric oxide is related to atopy, but not asthma in adolescents with bronchiolitis in infancy

    Science.gov (United States)

    2013-01-01

    Background The fraction of exhaled nitric oxide (FeNO) has been suggested as a non-invasive marker of eosinophilic inflammation in asthma, but lately rather as a biomarker of atopy than of asthma itself. Asthma after bronchiolitis is common up to early adolescence, but the inflammation and pathophysiology may differ from other phenotypes of childhood asthma. We aimed to assess if FeNO was different in children with former hospitalization for bronchiolitis and a control group, and to explore whether the role of FeNO as a marker of asthma, atopy or bronchial hyperresponsiveness (BHR) differed between these two groups of children. Methods The study included 108 of 131 children (82%) hospitalized for bronchiolitis in 1997–98, of whom 82 (76%) had tested positive for Respiratory syncytial virus, and 90 age matched controls. The follow-up took place in 2008–2009 at 11 years of age. The children answered an ISAAC questionnaire regarding respiratory symptoms and skin prick tests, spirometry, methacholine provocation test and measurement of FeNO were performed. Results Analysed by ANOVA, FeNO levels did not differ between the post-bronchiolitis and control groups (p = 0.214). By multivariate regression analyses, atopy, height (p bronchiolitis (p = 0.359), were associated with FeNO in the post-bronchiolitis and control groups. The associations for atopy and BHR were similar in the post-bronchiolitis and in the control group. Conclusion FeNO did not differ between 11 year old children hospitalized for bronchiolitis and a control group. FeNO was associated with atopy, but not with asthma in both groups. PMID:24237793

  4. Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics.

    Science.gov (United States)

    López-Sánchez, Laura M; Jurado-Gámez, Bernabé; Feu-Collado, Nuria; Valverde, Araceli; Cañas, Amanda; Fernández-Rueda, José L; Aranda, Enrique; Rodríguez-Ariza, Antonio

    2017-10-01

    We explored whether the proteomic analysis of exhaled breath condensate (EBC) may provide biomarkers for noninvasive screening for the early detection of lung cancer (LC). EBC was collected from 192 individuals [49 control (C), 49 risk factor-smoking (S), 46 chronic obstructive pulmonary disease (COPD) and 48 LC]. With the use of liquid chromatography and tandem mass spectrometry, 348 different proteins with a different pattern among the four groups were identified in EBC samples. Significantly more proteins were identified in the EBC from LC compared with other groups (C: 12.4 ± 1.3; S: 15.3 ± 1; COPD: 14 ± 1.6; LC: 24.2 ± 3.6; P = 0.0001). Furthermore, the average number of proteins identified per sample was significantly higher in LC patients, and receiver operating characteristic curve (ROC) analysis showed an area under the curve of 0.8, indicating diagnostic value. Proteins frequently detected in EBC, such as dermcidin and hornerin, along with others much less frequently detected, such as hemoglobin and histones, were identified. Cytokeratins (KRTs) were the most abundant proteins in EBC samples, and levels of KRT6A, KRT6B, and KRT6C isoforms were significantly higher in samples from LC patients (P = 0.0031, 0.0011, and 0.0009, respectively). Moreover, the amount of most KRTs in EBC samples from LC patients showed a significant positive correlation with tumor size. Finally, we used a random forest algorithm to generate a robust model using EBC protein data for the diagnosis of patients with LC where the area under the ROC curve obtained indicated a good classification (82%). Thus this study demonstrates that the proteomic analysis of EBC samples is an appropriated approach to develop biomarkers for the diagnosis of lung cancer. Copyright © 2017 the American Physiological Society.

  5. Adiposity, Fractional Exhaled Nitric Oxide, and Asthma in U.S. Children

    Science.gov (United States)

    Han, Yueh-Ying; Forno, Erick

    2014-01-01

    Rationale: Whether allergic airway inflammation mediates the association between overweight or obesity and childhood asthma is unknown. Objectives: To examine adiposity, asthma, and fractional exhaled nitric oxide (FeNO) in U.S. children. Methods: Cross-sectional study of indicators of adiposity or obesity, FeNO (a biomarker of eosinophilic airway inflammation), and asthma in 2,681 children aged 6–17 years in the 2007–2010 National Health and Nutrition Examination Survey. Adiposity measures included body mass index (BMI), percent body fat (PBF), and waist circumference (WC). Measurements and Main Results: BMI, PBF, and WC were associated with asthma among children with low FeNO (odds ratio, 1.54–1.68; P asthma, BMI, PBF, and WC were associated with higher FEV1 and FVC, and lower FEV1/FVC. Among children with asthma and a high FeNO, all adiposity indicators were associated with decreased FEV1/FVC (β = −1.5% to −1.7% per z score) but not with FEV1 or FVC. Higher BMI or PBF was associated with worse asthma severity or control in children with asthma and increased FeNO, but not in children with asthma and low FeNO. Similar results were obtained in a secondary multivariate analysis of overweight or obesity (defined as BMI ≥85th percentile) and asthma or indicators of asthma severity or control, stratified by FeNO level. Conclusions: Adiposity indicators are associated with asthma in children with low FeNO. Among children with asthma, adiposity indicators are associated with worse asthma severity or control in those with high FeNO. PMID:24922361

  6. Increase of exhaled nitric oxide in children exposed to low levels of ambient ozone.

    Science.gov (United States)

    Nickmilder, Marc; de Burbure, Claire; Carbonnelle, Sylviane; Sylviane, Carbonnelle; Dumont, Xavier; Xavier, Dumont; Bernard, Alfred; Alfred, Bernard; Derouane, Alain; Alain, Derouane

    2007-02-01

    Ozone (O3) is known to induce lung function impairment and airways inflammation during episodes of photochemical smog. The aim of the present study was to assess the inflammatory effect of ambient O3 in healthy children using nitric oxide in exhaled air (eNO) as a noninvasive test. The study was performed on 6 groups of children (n = 11-15), aged 6.5 to 15 yr, who attended summer camps in rural areas of the south of Belgium in 2002. Ambient O3 concentrations continuously monitored in the camps ranged from 48 to 221 microg/m3 (1-h maximal concentration). Children remained outdoors during the experimental days, doing various recreational activities but no sports. Lung function tests (forced expiratory volume in 1 s [FEV1] and forced vital capacity [FVC]) and eNO were measured twice in each child in the morning and in the evening. While lung function tests did not show any consistent pattern of decrease at these O3 levels, a highly significant increase in eNO was found in all subjects from an ambient 1-h O3 level of 167 microg/m3. A multivariate analysis did not reveal any influence of age, gender, height, weight, and body mass index (BMI) of the children. The threshold for this O3-induced increase in eNO estimated benchmark dose analysis was 135 microg/m3 for 1-h exposure and 110 microg/m3 for 8-h exposure. These observations suggest that ambient ozone produces early inflammatory changes in the airways of children at levels slightly below current air quality standards.

  7. Exhaled nitric oxide decreases in association with attendance at an asthma summer cAMP.

    Science.gov (United States)

    Kaminsky, David A; Rice, Ashlie A; Bissonette, Michael; Larose, Teresa; Phillips, Lisa; Cohen, Laura; Lahiri, Thomas; Frankowski, Barbara

    2008-06-01

    Attendance at a summer asthma camp has been associated with improved outcomes in children with asthma. We hypothesized that one mechanism involved in improved asthma outcomes is reduction in airway inflammation. To investigate this, we measured the fractional concentration of exhaled nitric oxide (FeNO), lung function (forced expiratory volume in 1 sec, FEV(1)) and asthma control (Juniper Asthma Control Questionnaire, ACQ) from children at the beginning and end of a 1-week asthma summer camp. We also obtained a symptoms-only ACQ at 1 and 6 months after the end of camp. We enrolled 10 girls, 17 boys, mean (+/- SD) age = 9.6 +/- 1.3 years. At baseline, FeNO (ppb), median (25-75 IQR) = 11.4 (7.2-21.3); ACQ = 0.86 (0.43-1.21); FEV(1) (%pred, mean +/- SD) = 87 +/- 10. At the end of camp, FeNO = 6.2 (4.4-8.4), a change of -45%, p camp, but there were no significant changes in lung function or asthma control. Since no child had a change in anti-inflammatory therapy during camp, these findings suggest that airway inflammation was reduced because of improved adherence to therapy and/or reduced exposure to pro-inflammatory stimuli in the home environment. The finding of reduced inflammation following attendance at an asthma summer camp should motivate the child, the parents and the clinician to focus their efforts on improving adherence to therapy and reducing exposures at home.

  8. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  9. The clinical role of fractional exhaled nitric oxide in asthma control.

    Science.gov (United States)

    Sato, Suguru; Saito, Junpei; Fukuhara, Atsuro; Uematsu, Manabu; Suzuki, Yasuhito; Togawa, Ryuichi; Sato, Yuki; Nikaido, Takefumi; Wang, Xintao; Tanino, Yoshinori; Munakata, Mitsuru

    2017-12-01

    The potential role and characteristics of fractional exhaled nitric oxide (FeNO) remain unclear in the treatment of asthma. To explore the clinical role of FeNO in asthmatic treatment. We evaluated whether the mean or change of FeNO levels in the treatment period is associated with other conventional control parameters and predicted some clinical outcomes of asthma. We retrospectively analyzed the mean and percentage change of FeNO levels in the first 5 measurements at our hospital. The study found a significantly strong correlation between FeNO level at diagnosis and the largest changes of FeNO values from diagnosis. No significant correlations were observed between FeNO levels and other parameters (Asthma Control Test [ACT] score or forced expiratory volume in one second [FEV1]) in mean and percentage change of values under treatment of asthma; however, significant positive correlations were found between ACT scores and FEV1. The mean FeNO level revealed a significant negative correlation with an annual change in FEV1 in individuals with asthma who were followed up for more than 2 years. Both the mean ACT score and percent predicted FEV1 revealed a significant negative correlation with occasional use of systemic corticosteroids. During conventional treatment of asthma, the largest changes of FeNO values from diagnosis were strongly correlated with FeNO levels at diagnosis. As for the unlikely conventional parameters, no significant associations were observed between FeNO levels and deterioration of asthma during the treatment periods. An elevated mean FeNO level may be a marker of decreased lung function in individuals with asthma. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Exhaled nitric oxide in a population-based study of Southern California Schoolchildren

    Directory of Open Access Journals (Sweden)

    Avol Edward L

    2009-04-01

    Full Text Available Abstract Background Determinants of exhaled nitric oxide (FeNO need to be understood better to maximize the value of FeNO measurement in clinical practice and research. Our aim was to identify significant predictors of FeNO in an initial cross-sectional survey of southern California schoolchildren, part of a larger longitudinal study of asthma incidence. Methods During one school year, we measured FeNO at 100 ml/sec flow, using a validated offline technique, in 2568 children of age 7–10 yr. We estimated online (50 ml/sec flow FeNO using a prediction equation from a separate smaller study with adjustment for offline measurement artifacts, and analyzed its relationship to clinical and demographic characteristics. Results FeNO was lognormally distributed with geometric means ranging from 11 ppb in children without atopy or asthma to 16 ppb in children with allergic asthma. Although effects of atopy and asthma were highly significant, ranges of FeNO for children with and without those conditions overlapped substantially. FeNO was significantly higher in subjects aged > 9, compared to younger subjects. Asian-American boys showed significantly higher FeNO than children of all other sex/ethnic groups; Hispanics and African-Americans of both sexes averaged slightly higher than non-Hispanic whites. Increasing height-for-age had no significant effect, but increasing weight-for-height was associated with decreasing FeNO. Conclusion FeNO measured offline is a useful biomarker for airway inflammation in large population-based studies. Further investigation of age, ethnicity, body-size, and genetic influences is needed, since they may contribute to substantial variation in FeNO.

  11. Exhaled nitric oxide is related to atopy, but not asthma in adolescents with bronchiolitis in infancy.

    Science.gov (United States)

    Mikalsen, Ingvild Bruun; Halvorsen, Thomas; Øymar, Knut

    2013-11-17

    The fraction of exhaled nitric oxide (FeNO) has been suggested as a non-invasive marker of eosinophilic inflammation in asthma, but lately rather as a biomarker of atopy than of asthma itself. Asthma after bronchiolitis is common up to early adolescence, but the inflammation and pathophysiology may differ from other phenotypes of childhood asthma. We aimed to assess if FeNO was different in children with former hospitalization for bronchiolitis and a control group, and to explore whether the role of FeNO as a marker of asthma, atopy or bronchial hyperresponsiveness (BHR) differed between these two groups of children. The study included 108 of 131 children (82%) hospitalized for bronchiolitis in 1997-98, of whom 82 (76%) had tested positive for Respiratory syncytial virus, and 90 age matched controls. The follow-up took place in 2008-2009 at 11 years of age. The children answered an ISAAC questionnaire regarding respiratory symptoms and skin prick tests, spirometry, methacholine provocation test and measurement of FeNO were performed. Analysed by ANOVA, FeNO levels did not differ between the post-bronchiolitis and control groups (p = 0.214). By multivariate regression analyses, atopy, height (p asthma (p = 0.805) or hospitalization for bronchiolitis (p = 0.359), were associated with FeNO in the post-bronchiolitis and control groups. The associations for atopy and BHR were similar in the post-bronchiolitis and in the control group. FeNO did not differ between 11 year old children hospitalized for bronchiolitis and a control group. FeNO was associated with atopy, but not with asthma in both groups.

  12. Exhaled nitric oxide atopy, and spirometry in asthma and rhinitis patients in India.

    Science.gov (United States)

    Kumar, Raj; Gupta, Nitesh

    2017-01-01

    Asthma is a chronic airway inflammatory disorder. Nitric oxide (NO) is non-invasively measured in exhaled breath (FeNO). The aim of the study was to investigate the anthropometric and physiologic factors that influence FeNO measurements. Also, to evaluate FeNO correlation with spirometry and inflammatory markers in asthma and rhinitis. The study was a prospective analysis of asthma (BA) and rhinitis (AR) in patients enrolled from outpatient clinics between 2011 and 2015. Healthy controls (HC) were enrolled from the community. All subjects underwent baseline spirometry with reversibility, FeNO measurements, skin prick tests, and blood sampling for absolute eosinophil counts and serum total IgE levels. Of 528 enrolled participants, 215 were BA, 248 were BA-AR and 65 were HC. The mean FeNO was higher in atopic versus nonatopic subjects (34.14 vs. 25.99; p atopy. In examining the diagnostic accuracy of FeNO for asthma, the AUC for FeNO value is 0.833 (95% confidence interval [CI], 0.717-0.901), with cut-off levels to screen for asthma being 19.45 at 71.2% sensitivity and 81.8% specificity (p asthma prediction with FeNO. The study highlights the importance of estimation of anthropometric parameters and dyspnea assessment in the evaluation of FeNO levels. Also, the presence of atopy may influence the results in the interpretation of FeNO readings. Moreover, the study have demonstrated that spirometry and FeNO have no significant correlation, which further lays emphasis on them as being different physiological parameters of asthma.  .

  13. Fraction of exhaled nitric oxide measurements in the diagnoses of asthma in elderly patients

    Directory of Open Access Journals (Sweden)

    Godinho Netto AC

    2016-05-01

    Full Text Available Antonio Carlos Maneira Godinho Netto,1,2 Túlio Gonçalves dos Reis,1,2 Cássia Franco Matheus,1,2 Beatriz Julião Vieira Aarestrup,3,4 Fernando Monteiro Aarestrup1,2,4 1School of Medical and Health Sciences – SUPREMA, 2Maternity Hospital Terezinha de Jesus, 3Morphology Department, Federal University of Juiz de Fora, Institute of Biological Sciences, 4Laboratory of Immunopathology and Experimental Pathology, Federal University of Juiz de Fora, Reproductive Biology Center (CBR, Juiz de Fora, Brazil Objective: To assess the value of fraction of exhaled nitric oxide (FeNO measurements in the diagnosis of asthma in elderly patients. Methods: The clinical symptoms of 202 elderly patients were assessed with the asthma module of the International Study of Asthma and Allergies in Childhood test, which had been modified for the elderly patients, and the diagnostic routine for chronic obstructive pulmonary disease (COPD, which was based on the Global initiative for chronic Obstructive Lung Disease criteria. Of the 202 patients assessed, 43 were subjected to pulmonary function evaluations (spirometry and FeNO measurements. Results: Of the 202 elderly patients, 34 had asthma (23 definite and eleven probable, 20 met COPD criteria, 13 presented with an overlap of asthma and COPD, and 135 did not fit the criteria for obstructive pulmonary disease. Among the 43 elderly patients who were subjected to FeNO measurements, ten showed altered results (23.2% and 33 had normal results (76.7%. The average value of FeNO in patients with definite and probable asthma undergoing this procedure was 29.2 parts per billion whereas that in nonasthmatic patients was 17.5 parts per billion (P=0.0002. Conclusion: We show a clear relationship between FeNO levels and asthma symptoms and previous asthma diagnoses in elderly patients. Keywords: asthma, chronic obstructive pulmonary disease, elderly patients, nitric oxide

  14. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry.

    Directory of Open Access Journals (Sweden)

    Hiroshi Handa

    Full Text Available Conventional methods for lung cancer detection including computed tomography (CT and bronchoscopy are expensive and invasive. Thus, there is still a need for an optimal lung cancer detection technique.The exhaled breath of 50 patients with lung cancer histologically proven by bronchoscopic biopsy samples (32 adenocarcinomas, 10 squamous cell carcinomas, 8 small cell carcinomas, were analyzed using ion mobility spectrometry (IMS and compared with 39 healthy volunteers. As a secondary assessment, we compared adenocarcinoma patients with and without epidermal growth factor receptor (EGFR mutation.A decision tree algorithm could separate patients with lung cancer including adenocarcinoma, squamous cell carcinoma and small cell carcinoma. One hundred-fifteen separated volatile organic compound (VOC peaks were analyzed. Peak-2 noted as n-Dodecane using the IMS database was able to separate values with a sensitivity of 70.0% and a specificity of 89.7%. Incorporating a decision tree algorithm starting with n-Dodecane, a sensitivity of 76% and specificity of 100% was achieved. Comparing VOC peaks between adenocarcinoma and healthy subjects, n-Dodecane was able to separate values with a sensitivity of 81.3% and a specificity of 89.7%. Fourteen patients positive for EGFR mutation displayed a significantly higher n-Dodecane than for the 14 patients negative for EGFR (p<0.01, with a sensitivity of 85.7% and a specificity of 78.6%.In this prospective study, VOC peak patterns using a decision tree algorithm were useful in the detection of lung cancer. Moreover, n-Dodecane analysis from adenocarcinoma patients might be useful to discriminate the EGFR mutation.

  15. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.

    Science.gov (United States)

    Ye, Ming; Chien, Po-Jen; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-11-15

    Several volatile organic compounds (VOCs) are released from human breath or skin. Like chemical substances in blood or urine, some of these vapors can provide valuable information regarding the state of the human body. A highly sensitive acetone biochemical gas sensor (bio-sniffer) was developed and used to measure exhaled breath acetone concentration, and assess lipid metabolism based on breath acetone analysis. A fiber-optic biochemical gas sensing system was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode with peak emission of 335 nm as an excitation light source. NADH is consumed by the enzymatic reaction of S-ADH, and the consumption is proportional to the concentration of acetone vapor. Phosphate buffer which contained NADH was circulated into the flow-cell to rinse products and the excessive substrates from the optode. The change of fluorescent emitted from NADH is analyzed by the PMT. Hence, fluorescence intensity decreased as the acetone concentration increased. The relationship between fluorescence intensity and acetone concentration was identified from 20 ppb to 5300 ppb. This interval included the concentration of acetone vapor in the breath of healthy people and those suffering from disorders of carbohydrate metabolism. Finally, the acetone bio-sniffer was used to measure breath acetone during an exercise stress test on an ergometer after a period of fasting. The concentration of acetone in breath was shown to significantly increase after exercise. This biosensor allows rapid, highly sensitive and selective measurement of lipid metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Trace metal exposure is associated with increased exhaled nitric oxide in asthmatic children.

    Science.gov (United States)

    Godri Pollitt, Krystal J; Maikawa, Caitlin L; Wheeler, Amanda J; Weichenthal, Scott; Dobbin, Nina A; Liu, Ling; Goldberg, Mark S

    2016-09-01

    Children with asthma experience increased susceptibility to airborne pollutants. Exposure to traffic and industrial activity have been positively associated with exacerbation of symptoms as well as emergency room visits and hospitalisations. The effect of trace metals contained in fine particulate matter (aerodynamic diameter 2.5 μm and lower, PM2.5) on acute health effects amongst asthmatic children has not been well investigated. The objective of this panel study in asthmatic children was to determine the association between personal daily exposure to ambient trace metals and airway inflammation, as measured by fractional exhaled nitric oxide (FeNO). Daily concentrations of trace metals contained on PM2.5 were determined from personal samples (n = 217) collected from 70 asthmatic school aged children in Montreal, Canada, over ten consecutive days. FeNO was measured daily using standard techniques. A positive association was found between FeNO and children's exposure to an indicator of vehicular non-tailpipe emissions (8.9 % increase for an increase in the interquartile range (IQR) in barium, 95 % confidence interval (CI): 2.8, 15.4) as well as exposure to an indicator of industrial emissions (7.6 % increase per IQR increase in vanadium, 95 % CI: 0.1, 15.8). Elevated FeNO was also suggested for other metals on the day after the exposure: 10.3 % increase per IQR increase in aluminium (95 % CI: 4.2, 16.6) and 7.5 % increase per IQR increase in iron (95 % CI: 1.5, 13.9) at a 1-day lag period. Exposures to ambient PM2.5 containing trace metals that are markers of traffic and industrial-derived emissions were associated in asthmatic children with an enhanced FeNO response.

  17. Comparison of two devices and two breathing patterns for exhaled breath condensate sampling.

    Science.gov (United States)

    Hüttmann, Eva-Maria; Greulich, Timm; Hattesohl, Akira; Schmid, Severin; Noeske, Sarah; Herr, Christian; John, Gerrit; Jörres, Rudolf A; Müller, Bernd; Vogelmeier, Claus; Koczulla, Andreas Rembert

    2011-01-01

    Analysis of exhaled breath condensate (EBC) is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC. EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device--once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC) was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV) were calculated. Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%. EBC pH and (to a lesser extent) EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies.

  18. Reference values of fractional excretion of exhaled nitric oxide among non-smokers and current smokers.

    Science.gov (United States)

    Torén, Kjell; Murgia, Nicola; Schiöler, Linus; Bake, Björn; Olin, Anna-Carin

    2017-08-25

    Fractional exhaled nitric oxide (FE NO ) is used to assess of airway inflammation; diagnose asthma and monitor adherence to advised therapy. Reliable and accurate reference values for FE NO are needed for both non-smoking and current smoking adults in the clinical setting. The present study was performed to establish reference adult FE NO values among never-smokers, former smokers and current smokers. FE NO was measured in 5265 subjects aged 25-75 years in a general-population study, using a chemiluminescence (Niox ™) analyser according to the guidelines of the American Thoracic Society and the European Respiratory Society. Atopy was based on the presence of immunoglobulin E (IgE) antibodies to common inhalant allergens (measured using Phadiatop® test). Spirometry without bronchodilation was performed and forced vital capacity (FVC), forced expired volume in 1 s (FEV 1 ) and the ratio of FEV 1 to FVC values were obtained. After excluding subjects with asthma, chronic bronchitis, spirometric airway obstruction and current cold, 3378 subjects remained. Equations for predictions of FE NO values were modelled using nonparametric regression models. FE NO levels were similar in never-smokers and former smokers, and these two groups were therefore merged into a group termed "non-smokers". Reference equations, including the 5th and 95th percentiles, were generated for female and male non-smokers, based on age, height and atopy. Regression models for current smokers were unstable. Hence, the proposed reference values for current smokers are based on the univariate distribution of FE NO and fixed cut-off limits. Reference values for FE NO among respiratory healthy non-smokers should be outlined stratified for gender using individual reference values. For current smokers separate cut-off limits are proposed.

  19. Adiposity, fractional exhaled nitric oxide, and asthma in U.S. children.

    Science.gov (United States)

    Han, Yueh-Ying; Forno, Erick; Celedón, Juan C

    2014-07-01

    Whether allergic airway inflammation mediates the association between overweight or obesity and childhood asthma is unknown. To examine adiposity, asthma, and fractional exhaled nitric oxide (FeNO) in U.S. children. Cross-sectional study of indicators of adiposity or obesity, FeNO (a biomarker of eosinophilic airway inflammation), and asthma in 2,681 children aged 6-17 years in the 2007-2010 National Health and Nutrition Examination Survey. Adiposity measures included body mass index (BMI), percent body fat (PBF), and waist circumference (WC). BMI, PBF, and WC were associated with asthma among children with low FeNO (odds ratio, 1.54-1.68; P BMI, PBF, and WC were associated with higher FEV1 and FVC, and lower FEV1/FVC. Among children with asthma and a high FeNO, all adiposity indicators were associated with decreased FEV1/FVC (β = -1.5% to -1.7% per z score) but not with FEV1 or FVC. Higher BMI or PBF was associated with worse asthma severity or control in children with asthma and increased FeNO, but not in children with asthma and low FeNO. Similar results were obtained in a secondary multivariate analysis of overweight or obesity (defined as BMI ≥85th percentile) and asthma or indicators of asthma severity or control, stratified by FeNO level. Adiposity indicators are associated with asthma in children with low FeNO. Among children with asthma, adiposity indicators are associated with worse asthma severity or control in those with high FeNO.

  20. Comparison of two devices and two breathing patterns for exhaled breath condensate sampling.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Hüttmann

    Full Text Available Analysis of exhaled breath condensate (EBC is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC.EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device--once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV were calculated.Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%.EBC pH and (to a lesser extent EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies.

  1. Exhaled nitric oxide collected with two different mouthpieces: a study in asthmatic patients

    Directory of Open Access Journals (Sweden)

    Leme A.S.

    2002-01-01

    Full Text Available Techniques for collecting exhaled nitric oxide (ENO recommend the use of antibacterial filters of 0.3 µm. The aim of the present study was to compare the measurements of ENO obtained with two different filtering devices. Air samples from 17 asthmatic and 17 non-asthmatic subjects were collected by a recommended off-line technique using two different mouthpieces: 1 the Sievers disposable tool (A under a breathing pressure of 18 cmH2O, and 2 a mouthpiece containing a HEPA filter (B under a breathing pressure of 12 cmH2O. The nitric oxide samples were collected into an impermeable reservoir bag. Values for ENO were compared using two-way repeated measures ANOVA followed by the Tukey test. Agreement was assessed by Bland-Altman analysis. ENO values obtained with mouthpieces A and B were comparable for asthmatic (mean ± SEM, 42.9 ± 6.9 vs 43.3 ± 6.6 ppb and non-asthmatic (13.3 ± 1.3 vs 13.7 ± 1.1 ppb subjects. There was a significant difference in ENO between asthmatics and non-asthmatics using either mouthpiece A (P<0.001 or B (P<0.001. There was a positive correlation between mouthpiece A and mouthpiece B for both groups. The Bland-Altman limits of agreement were considered to be acceptable. Mouthpiece B was less expensive than A, and these data show that it can be used without compromising the result. Our data confirm reports of higher ENO values in the presence of airway inflammation.

  2. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    Energy Technology Data Exchange (ETDEWEB)

    Goldoni, Matteo [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Caglieri, Andrea [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); Poli, Diana [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Vettori, Maria Vittoria [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Corradi, Massimo [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Apostoli, Pietro [Laboratory of Industrial Hygiene, Department of Experimental and Applied Medicine, University of Brescia (Italy); Mutti, Antonio [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy)]. E-mail: antonio.mutti@unipr.it

    2006-03-15

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)-DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)-DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI)

  3. Concordance between bronchial hyperresponsiveness, fractional exhaled nitric oxide, and asthma control in children.

    Science.gov (United States)

    Thomas, Biju; Chay, Oh Moh; Allen, John C; Chiang, Andrea Shu Xian; Pugalenthi, Arun; Goh, Anne; Wong, Petrina; Teo, Ai Huay; Tan, Soh Gin; Teoh, Oon Hoe

    2016-10-01

    Previous studies on association between level of asthma control, markers of airway inflammation and the degree of bronchial hyperresponsiveness (BHR) have yielded conflicting results. Our aim was to determine the presence and severity of BHR and the concordance between BHR, asthma control, and fractional exhaled nitric oxide (FeNO) in children with asthma on therapy. In this cross-sectional observational study, children (aged 6-18 years) with asthma on British Thoracic Society (BTS) treatment steps 2 or 3, underwent comprehensive assessment of their asthma control (clinical assessment, spirometry, asthma control test [ACT], Pediatric Asthma Quality of Life Questionnaire [PAQLQ]), measurement of FeNO and BHR (using mannitol dry powder bronchial challenge test [MCT], Aridol™, Pharmaxis, Australia). Fifty-seven children (63% male) were studied. Twenty-seven children were on BTS treatment step 2 and 30 were on step 3. Overall, 25 out of 57 (43.8%) children had positive MCT. Of note, 9 out of 27 (33.3%) children with clinically controlled asthma had positive MCT. Analyses of pair-wise agreement between MCT (positive or negative), FeNO (>25 or ≤25 ppb) and clinical assessment of asthma control (controlled or partially controlled/uncontrolled) showed poor agreement between these measures. A substantial proportion of children with asthma have persistent BHR despite good clinical control. The concordance between clinical assessment of asthma control, BHR and FeNO was observed to be poor. Our findings raise concerns in the context of emerging evidence for the role of bronchoconstriction in inducing epithelial stress that may drive airway remodeling in asthma. Pediatr Pulmonol. 2016;51:1004-1009. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E

    2016-12-22

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube(™) and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).

  5. A systematic review of fractional exhaled nitric oxide in the routine management of childhood asthma.

    Science.gov (United States)

    Gomersal, Tim; Harnan, Sue; Essat, Munira; Tappenden, Paul; Wong, Ruth; Lawson, Rod; Pavord, Ian; Everard, Mark Lloyd

    2016-03-01

    Fractional exhaled nitric oxide (FeNO) is a non-invasive biomarker of eosinophilic inflammation which may be used to guide the management of asthma in childhood. To synthesise the available evidence on the efficacy of FeNO-guided management of childhood asthma. Databases including MEDLINE and the Cochrane Library were searched, and randomised controlled trials (RCTs) comparing FeNO-guided management with any other monitoring strategy were included. Study quality was assessed using the Cochrane risk of bias tool for RCTs, and a number of outcomes were examined, including: exacerbations, medication use, quality of life, adverse events, and other markers of asthma control. Meta-analyses were planned if multiple studies with suitable heterogeneity were available. However, due to wide variations in study characteristics, meta-analysis was not possible. Seven RCTs were identified. There was some evidence that FeNO-guided monitoring results in improved asthma control during the first year of management, although few results attained statistical significance. The impact on severe exacerbations was unclear. Similarly, the impact on use of anti-asthmatic drugs was unclear, and appears to depend on the step up/down protocols, and the clinical characteristics of patients. The potential benefit of FeNO monitoring is equivocal. Trends toward reduced exacerbation and increased medication use were seen, but typically failed to reach statistical significance. There are a number of issues that complicate data interpretation, including differences in the likely severity of included cohorts and variations in treatment algorithms. Further work is needed to systematically explore the impact of these parameters. © 2016 Wiley Periodicals, Inc.

  6. Kinetics of Exhaled Carbon Monoxide After Water-pipe Smoking Indoors and Outdoors.

    Science.gov (United States)

    Juhasz, Agnes; Pap, Dalma; Barta, Imre; Drozdovszky, Orsolya; Egresi, Andrea; Antus, Balazs

    2017-05-01

    Despite accumulating evidence about its adverse health effects, water-pipe tobacco smoking has become very popular among youth. The aim of this study was to compare smoke exposure and the kinetics of exhaled carbon monoxide (eCO) between water-pipe and cigarette smokers under different conditions. Using a cross-over study design, changes in eCO and urinary cotinine levels were measured in a cohort of 32 healthy university students after sessions of water-pipe smoking indoors and outdoors. An indoor cigarette smoking session with equal amounts of tobacco was conducted for reference purposes. Both active and passive smokers participated in all sessions. In indoor sessions, we found that among active participants, eCO levels were approximately 7.5-fold higher in water-pipe users than cigarette smokers. eCO levels remained significantly elevated even 10 h after discontinuing water-pipe smoking. Notably, eCO levels in passive water-pipe smokers were in the same range as in active cigarette smokers. Compared with indoor sessions, eCO levels in active water-pipe users were reduced in outdoor environments. Nonetheless, levels were still higher in these subjects than those in active cigarette smokers measured in indoor sessions. Urinary cotinine levels were comparable in active water-pipe and cigarette smokers. Our results suggest that water-pipe smoking is associated with significantly higher toxicant exposure than cigarette smoking even in outdoor environments. Furthermore, even passive, indoor water-pipe smoke exposure may have significant health hazards compared with those of active cigarette smoking. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  7. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    Science.gov (United States)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  8. Comparison of fractional exhaled nitric oxide levels in chronic obstructive pulmonary disease, bronchial asthma and healthy subjects of Nepal.

    Science.gov (United States)

    Shrestha, Sanjeet Krishna; Shrestha, Sanjeev; Sharma, Lucky; Pant, Subash; Neopane, Arpana

    2017-09-13

    Fractional exhaled nitric oxide levels in exhaled breath can indicate ongoing eosinophilic airway inflammation, specifically in asthma. But its utility is being explored for central airway inflammations, including chronic obstructive pulmonary disease. Normal levels of fractional exhaled nitric oxide (FENO50) have been defined in different studies but not in Nepal. This study compares FENO50 levels in normal subjects, asthma and chronic obstructive pulmonary disease. Single breath estimation of FENO50 was measured by a handheld electrochemical sensor-based device in normal non-smoking adults (n = 106), clinically controlled asthma (n = 106) and stable chronic obstructive pulmonary disease (n = 106). The geometric mean for FENO50 was 14 parts per billion (ppb) with a median of 16 ppb, first quartile at 11 ppb and third quartile at 20 ppb in normal non-smoking adults. The values were 31 ppb (geometric mean), 34 ppb (median), 17 ppb (first quartile) and 79 ppb (third quartile) in clinically controlled asthma. Similarly the values were 10 ppb (geometric mean), 11 ppb (median), 6 ppb (first quartile) and 17 ppb (third quartile) in stable chronic obstructive airway disease. The log-transformed data showed significantly higher FENO50 levels in the asthma group compared with the normal (p chronic obstructive airway disease (p chronic obstructive airway disease groups (p = 0.08). FENO50 levels were higher in bronchial asthma (despite disease control) than in normal non-smoking adults and subjects with stable chronic obstructive pulmonary disease. Levels of FENO50 were similar between the chronic obstructive airway disease and normal groups.

  9. Aspirin provocation increases 8-iso-PGE2 in exhaled breath condensate of aspirin-hypersensitive asthmatics.

    Science.gov (United States)

    Mastalerz, Lucyna; Januszek, Rafał; Kaszuba, Marek; Wójcik, Krzysztof; Celejewska-Wójcik, Natalia; Gielicz, Anna; Plutecka, Hanna; Oleś, Krzysztof; Stręk, Paweł; Sanak, Marek

    2015-09-01

    Isoprostanes are bioactive compounds formed by non-enzymatic oxidation of polyunsaturated fatty acids, mostly arachidonic, and markers of free radical generation during inflammation. In aspirin exacerbated respiratory disease (AERD), asthmatic symptoms are precipitated by ingestion of non-steroid anti-inflammatory drugs capable for pharmacologic inhibition of cyclooxygenase-1 isoenzyme. We investigated whether aspirin-provoked bronchoconstriction is accompanied by changes of isoprostanes in exhaled breath condensate (EBC). EBC was collected from 28 AERD subjects and 25 aspirin-tolerant asthmatics before and after inhalatory aspirin challenge. Concentrations of 8-iso-PGF2α, 8-iso-PGE2, and prostaglandin E2 were measured using gas chromatography/mass spectrometry. Leukotriene E4 was measured by immunoassay in urine samples collected before and after the challenge. Before the challenge, exhaled 8-iso-PGF2α, 8-iso-PGE2, and PGE2 levels did not differ between the study groups. 8-iso-PGE2 level increased in AERD group only (p=0.014) as a result of the aspirin challenge. Urinary LTE4 was elevated in AERD, both in baseline and post-challenge samples. Post-challenge airways 8-iso-PGE2 correlated positively with urinary LTE4 level (p=0.046), whereas it correlated negatively with the provocative dose of aspirin (p=0.027). A significant increase of exhaled 8-iso-PGE2 after inhalatory challenge with aspirin was selective and not present for the other isoprostane measured. This is a novel finding in AERD, suggesting that inhibition of cyclooxygenase may elicit 8-iso-PGE2 production in a specific mechanism, contributing to bronchoconstriction and systemic overproduction of cysteinyl leukotrienes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Low levels of fractional exhaled nitric oxide and deep inhalation bronchoprotection are associated with mannitol non-responsiveness in asthma.

    Science.gov (United States)

    Davis, Beth E; Stewart, Sarah L; Martin, Alexandra L; Cockcroft, Donald W

    2014-06-01

    Airway hyperresponsiveness (AHR) to indirect agents like mannitol is thought to be dependent on concurrent airway inflammation as these stimuli exert their effects via the release of bronchoconstricting mediators from inflammatory cells. Airway inflammation correlates negatively with deep inhalation bronchoprotection against direct stimuli like methacholine. We hypothesised that deep inhalation bronchoprotection to methacholine would be absent and airway inflammation would be present in individuals with AHR to inhaled mannitol. Twenty asthmatic, otherwise healthy individuals, either gender, aged 18-65 years, with a Visit 1 (screening) methacholine two-minute tidal breathing PC20 of 16 mg/mL or less completed the study. Visits 2 and 3 consisted of either mannitol or deep inhalation methacholine challenge in random order, at least 24 h apart. All visits were completed within a period of two weeks. Eleven of the twenty participants had AHR to mannitol (PD15 ≤ 635 mg, the "responders") and nine did not (the "non-responders"). Responders did not bronchoprotect to methacholine via deep inhalation (doubling dose shift = 0.7; p = 0.13) and had high levels of exhaled nitric oxide (geometric mean 49 ppb; range 16-109 ppb). Conversely, significant deep inhalation bronchoprotection to methacholine occurred in the non-responder group (doubling dose shift = 1.6; p = 0.013). This group also had significantly lower levels of exhaled nitric oxide (geometric mean 23 ppb (range 16-45 ppb; p = 0.015). Deep inhalation bronchoprotection to methacholine and low levels of exhaled nitric oxide coincide with mannitol non-responsiveness in an asthmatic population. Clinical Trials Registration #NCT01642745 (clinicaltrials.gov). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Full-Scale Study of Exhaled Droplet Dispersion in the Microenvironment around one and two Persons

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Li, Yuguo; Khalegi, Farzad

    and airborne infection. A transition may take place from droplet-borne infection to airborne infection, because the exhaled droplets may evaporate in the air and droplets become droplet nuclei. Full-scale experiments on the movement of droplet nuclei (airborne infection) have been performed in a number...... of experiments using breathing thermal manikins and tracer gas for the simulation of microorganism-laden particles movement in indoor and outdoor environment. Full-scale experiments are conducted with droplet movement (droplet infection) using one or two thermal manikins. First the paper will discuss earlier...

  12. A study of the natural radioactivity and radon exhalation rate in some cements used in India and its radiological significance

    Directory of Open Access Journals (Sweden)

    Nisha Sharma

    2016-01-01

    Full Text Available The presence of natural radioactivity and radon exhalation from building materials contribute to the radiation dose received by human. So, it is essential to evaluate the activity levels of the primordial radionuclides (238U, 226Ra, 232Th and 40K present in the building materials for the assessment of natural radiation dose. Cement is one of the major component of the building materials and is used on a large scale. In the present study, the commercially available cement samples of fifteen different brands were used to study the radon exhalation rate and activity concentration of 238U, 226Ra, 232Th and 40K nuclides. The radon exhalation rate was measured using the can technique, while the concentration of radionuclides content was determined by using gamma ray spectroscopy. The radon exhalation rate from different brands of cements was found in the range from 1.56 to 13.1 mBqkg−1h−1 with a mean value of 5.27 mBqkg−1h−1. The specific activity of uranium was found in the range 45.3–218.9 Bqkg−1 with a mean value of 111.2 Bqkg−1; 226Ra from 20.3 to 60.1 Bqkg−1 with a mean value of 35.8 Bqkg−1; 232Th from 18.8 to 60.1 Bqkg−1 with a mean value of 33.2 Bqkg−1 and 40K varied from 160.9 to 248.1 Bqkg−1 with a mean value of 199.1 Bqkg−1. The radiological parameters – radium equivalent activity, absorbed dose rate, annual effective dose, external hazard index, internal hazard index, gamma activity index and alpha index were also evaluated to assess the potential radiological hazard associated with these cement samples. Correlation coefficients for the different radionuclides have been evaluated and studied.

  13. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems

    DEFF Research Database (Denmark)

    Qian, H.; Li, Y.; Nielsen, Peter V.

    2006-01-01

    hospital ward with three ventilation systems, i.e. mixing, downward and displacement ventilation. Two life-size breathing thermal manikins were used to simulate a source patient and a receiving patient. The exhalation jet from a bed-lying manikin was visualized using smoke. N2O was used as tracer gas......Effective ventilation in general hospital wards is important for controlling the airborne transmission of infectious respiratory diseases. Experiments have been carried out to increase our understanding of the interaction of the breathing flows of two individuals in a full-scale experimental...

  14. Inspiratory flow rates during hard work when breathing through different respirator inhalation and exhalation resistances.

    Science.gov (United States)

    Coyne, Karen; Caretti, David; Scott, William; Johnson, Arthur; Koh, Frank

    2006-09-01

    There has been a long-standing debate regarding the adequacy of airflow rates used in respirator certification testing and whether these test flow rates underestimate actual values. This study investigated breath by breath inspiratory peak flow rate, minute ventilation, and instantaneous flow rates of eight young, healthy volunteers walking on a treadmill at 80-85% of maximal aerobic capacity until exhaustion while wearing an air-purifying respirator with one of eight combinations of inhalation and exhalation resistance. An analysis of variance was performed to identify differences among the eight conditions. Scheffe's post hoc analysis indicated which means differed. The group of conditions with the highest average value for each parameter was identified and considered to represent a worst-case scenario. Data was reported for these conditions. A Gaussian distribution was fit to the data and the 99.9% probability levels determined. The 99.9% probability level for the peak and instantaneous flow rates were 374 L/min and 336 L/min, respectively. The minute ventilation distribution was not Gaussian. Less than 1% of the recorded minute ventilations exceeded 135 L/min. Instantaneous flow rates exceeded the National Institute for Occupational Safety and Health's respirator test standards of 64, 85, and 100 L/min constant flow 91%, 87%, and 82% of the time, respectively. The recorded minute ventilations exceeded the 40 L/min minute ventilation test standard (for tests with a sinusoidal flow pattern) 100% of the time. This study showed that young, healthy respirator wearers generated peak flow rates, minute ventilations, and instantaneous flow rates that consistently exceeded current test standards. Their flow rates should be higher than those of a respirator wearer performing occupational work and could be considered upper limits. Testing respirators and respirator cartridges using a sinusoidal breathing pattern with a minute ventilation of 135 L/min (peak flow rate

  15. Clinical applications of exhaled nitric oxide for the diagnosis and management of asthma: a consensus report.

    Science.gov (United States)

    Zitt, Myron

    2005-08-01

    Patients with asthma routinely exhibit elevated levels of fractionated exhaled nitric oxide (FE(NO)), and this observation has led to studies investigating FE(NO) as a potential marker of airway inflammation. FE(NO) has been shown to enhance the diagnosis of asthma, detect deterioration in control of patients with asthma, and monitor response to anti-inflammatory therapy. The aim of this work was to determine if FE(NO) measurement provides a noninvasive, well-tolerated, and standardized technique to monitor airway inflammation, and if it has the potential to complement standard asthma monitoring tools (eg, symptom diaries, control questionnaires, and pulmonary function testing) and to improve asthma control and patient outcomes. Thirteen experts in the diagnosis and treatment of asthma met to discuss the use of FE(NO) in the diagnosis and management of patients with asthma. Participants were selected by Aerocrine, a medical, technical company with headquarters in Stockholm, Sweden, in consultation with their medical education partner Cadent Medical Communications located in Irving, Texas, to represent a diversity of specialists, including both clinicians and investigators, in the fields of allergy, immunology, and pulmonology. All participants were nominally compensated for their time to attend this closed scientific roundtable discussion. The meeting was supported by an educational grant from Aerocrine. This report represents the overall consensus reached by the participants on the clinical applicability of this technique. Our understanding of asthma has expanded so that investigators are now focusing on inflammation in addition to airway obstruction and hyper-reactivity. Whereas patient history, symptoms, and pulmonary function testing can assist in diagnosing asthma, they are not direct measures of the extent of airway inflammation. Elevated FE(NO) levels have been shown to reflect airway inflammation and to occur together with other conventional markers used to

  16. Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    Directory of Open Access Journals (Sweden)

    Ameredes Bill T

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO and carbon monoxide (CO in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO and CO (ECO were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/- with and without allergic airway inflammation (AI induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC, and tin protoporphyrin (SnPP were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb and NOS-2-/- (16 ppb mice as compared to others (average: 5–8 ppb, whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm, and MKK3-/- (4–5 ppm mice, as compared to others (average: 2.5 ppm. As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are

  17. Exhaled Eicosanoids following Bronchial Aspirin Challenge in Asthma Patients with and without Aspirin Hypersensitivity: The Pilot Study

    Science.gov (United States)

    Mastalerz, L.; Sanak, M.; Kumik, J.; Gawlewicz-Mroczka, A.; Celejewska-Wójcik, N.; Ćmiel, A.; Szczeklik, A.

    2012-01-01

    Background. Special regulatory role of eicosanoids has been postulated in aspirin-induced asthma. Objective. To investigate effects of aspirin on exhaled breath condensate (EBC) levels of eicosanoids in patients with asthma. Methods. We determined EBC eicosanoid concentrations using gas chromatography/mass spectrometry (GC-MS) and high-performance liquid chromatography/mass spectrometry (HPLC-MS2) or both. Determinations were performed at baseline and following bronchial aspirin challenge, in two well-defined phenotypes of asthma: aspirin-sensitive and aspirin-tolerant patients. Results. Aspirin precipitated bronchial reactions in all aspirin-sensitive, but in none of aspirin-tolerant patients (ATAs). At baseline, eicosanoids profile did not differ between both asthma groups except for lipoxygenation products: 5- and 15-hydroxyeicosatetraenoic acid (5-, 15-HETE) which were higher in aspirin-induced asthma (AIA) than inaspirin-tolerant subjects. Following aspirin challenge the total levels of cysteinyl-leukotrienes (cys-LTs) remained unchanged in both groups. The dose of aspirin had an effect on magnitude of the response of the exhaled cys-LTs and prostanoids levels only in AIA subjects. Conclusion. The high baseline eicosanoid profiling of lipoxygenation products 5- and 15-HETE in EBC makes it possible to detect alterations in aspirin-sensitive asthma. Cysteinyl-leukotrienes, and eoxins levels in EBC after bronchial aspirin administration in stable asthma patients cannot be used as a reliable diagnostic index for aspirin hypersensitivity. PMID:22291720

  18. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    Science.gov (United States)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  19. Exhaled Eicosanoids following Bronchial Aspirin Challenge in Asthma Patients with and without Aspirin Hypersensitivity: The Pilot Study

    Directory of Open Access Journals (Sweden)

    L. Mastalerz

    2012-01-01

    Full Text Available Background. Special regulatory role of eicosanoids has been postulated in aspirin-induced asthma. Objective. To investigate effects of aspirin on exhaled breath condensate (EBC levels of eicosanoids in patients with asthma. Methods. We determined EBC eicosanoid concentrations using gas chromatography/mass spectrometry (GC-MS and high-performance liquid chromatography/mass spectrometry (HPLC-MS2 or both. Determinations were performed at baseline and following bronchial aspirin challenge, in two well-defined phenotypes of asthma: aspirin-sensitive and aspirin-tolerant patients. Results. Aspirin precipitated bronchial reactions in all aspirin-sensitive, but in none of aspirin-tolerant patients (ATAs. At baseline, eicosanoids profile did not differ between both asthma groups except for lipoxygenation products: 5- and 15-hydroxyeicosatetraenoic acid (5-, 15-HETE which were higher in aspirin-induced asthma (AIA than inaspirin-tolerant subjects. Following aspirin challenge the total levels of cysteinyl-leukotrienes (cys-LTs remained unchanged in both groups. The dose of aspirin had an effect on magnitude of the response of the exhaled cys-LTs and prostanoids levels only in AIA subjects. Conclusion. The high baseline eicosanoid profiling of lipoxygenation products 5- and 15-HETE in EBC makes it possible to detect alterations in aspirin-sensitive asthma. Cysteinyl-leukotrienes, and eoxins levels in EBC after bronchial aspirin administration in stable asthma patients cannot be used as a reliable diagnostic index for aspirin hypersensitivity.

  20. Impact of food intake on in vivo VOC concentrations in exhaled breath assessed in a caprine animal model.

    Science.gov (United States)

    Fischer, Sina; Bergmann, Andreas; Steffens, Markus; Trefz, Phillip; Ziller, Mario; Miekisch, Wolfram; Schubert, Jochen S; Köhler, Heike; Reinhold, Petra

    2015-12-15

    Physiological processes within the body may change emitted volatile organic compound (VOC) composition, and may therefore cause confounding biological background variability in breath gas analyses. To evaluate the effect of food intake on VOC concentration patterns in exhaled breath, this study assessed the variability of VOC concentrations due to food intake in a standardized caprine animal model. VOCs in (i) alveolar breath gas samples of nine clinically healthy goats and (ii) room air samples were collected and pre-concentrated before morning feeding and repeatedly after (+60 min, +150 min, +240 min) using needle trap microextraction (NTME). Analysis of VOCs was performed by gas chromatography and mass spectrometry (GC-MS). Only VOCs with significantly higher concentrations in breath gas samples compared to room air samples were taken into consideration. Six VOCs that belonged to the chemical classes of hydrocarbons and alcohols were identified presenting significantly different concentrations before and after feeding. Selected hydrocarbons showed a concentration pattern that was characterized by an initial increase 60 min after food intake, and a subsequent gradual decrease. Results emphasize consideration of physiological effects on exhaled VOC concentrations due to food intake with respect to standardized protocols of sample collection and critical evaluation of results.

  1. Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated and Mechanically-Ventilated Intensive Care Unit (ICU)-Patients.

    Science.gov (United States)

    van Oort, Pouline M P; de Bruin, Sanne; Weda, Hans; Knobel, Hugo H; Schultz, Marcus J; Bos, Lieuwe D; On Behalf Of The Mars Consortium

    2017-02-19

    The diagnosis of hospital-acquired pneumonia remains challenging. We hypothesized that analysis of volatile organic compounds (VOCs) in exhaled breath could be used to diagnose pneumonia or the presence of pathogens in the respiratory tract in intubated and mechanically-ventilated intensive care unit patients. In this prospective, single-centre, cross-sectional cohort study breath from mechanically ventilated patients was analysed using gas chromatography-mass spectrometry. Potentially relevant VOCs were selected with a p-value pneumonia compared to controls. In colonized patients, 52 VOCs were significantly different. Partial least square discriminant analysis classified patients with modest accuracy (AUROC: 0.73 (95% confidence interval (CI): 0.57-0.88) after leave-one-out cross-validation). For determining the colonization status of patients, the model had an AUROC of 0.69 (95% CI: 0.57-0.82) after leave-one-out cross-validation. To conclude, exhaled breath analysis can be used to discriminate pneumonia from controls with a modest to good accuracy. Furthermore breath profiling could be used to predict the presence and absence of pathogens in the respiratory tract. These findings need to be validated externally.

  2. Environmental Conditions Affect Exhalation of H3N2 Seasonal and Variant Influenza Viruses and Respiratory Droplet Transmission in Ferrets.

    Directory of Open Access Journals (Sweden)

    Kortney M Gustin

    Full Text Available The seasonality of influenza virus infections in temperate climates and the role of environmental conditions like temperature and humidity in the transmission of influenza virus through the air are not well understood. Using ferrets housed at four different environmental conditions, we evaluated the respiratory droplet transmission of two influenza viruses (a seasonal H3N2 virus and an H3N2 variant virus, the etiologic virus of a swine to human summertime infection and concurrently characterized the aerosol shedding profiles of infected animals. Comparisons were made among the different temperature and humidity conditions and between the two viruses to determine if the H3N2 variant virus exhibited enhanced capabilities that may have contributed to the infections occurring in the summer. We report here that although increased levels of H3N2 variant virus were found in ferret nasal wash and exhaled aerosol samples compared to the seasonal H3N2 virus, enhanced respiratory droplet transmission was not observed under any of the environmental settings. However, overall environmental conditions were shown to modulate the frequency of influenza virus transmission through the air. Transmission occurred most frequently at 23°C/30%RH, while the levels of infectious virus in aerosols exhaled by infected ferrets agree with these results. Improving our understanding of how environmental conditions affect influenza virus infectivity and transmission may reveal ways to better protect the public against influenza virus infections.

  3. Air pollution and increased levels of fractional exhaled nitric oxide in children with no history of airway damage.

    Science.gov (United States)

    Flamant-Hulin, Marion; Caillaud, Denis; Sacco, Paolo; Penard-Morand, Celine; Annesi-Maesano, Isabella

    2010-01-01

    Air pollution is associated with a wide range of adverse respiratory events. In order to study the mechanism associated with these effects, the relationships between fractional exhaled nitric oxide (FeNO), a potential marker of airway inflammation, and exposure to air pollution were examined in schoolchildren. FeNO was measured in 104 children (34 asthmatics and 70 non-asthmatics) drawn from the general population simultaneously with air pollution assessments (fine particles with an aerodiameter under 2.5 microm, nitrogen dioxide, acetaldehyde, and formaldehyde, with pumps and passive samplers) in schoolyards and classrooms. Asthmatics exhaled more FeNO than non-asthmatics. FeNO levels were significantly elevated in both asthmatic and non-asthmatic children exposed to high concentrations of formaldehyde, acetaldehyde, and PM(2.5). Differences between high versus low exposure in non-asthmatics resulted in an FeNO increase ranging from 45% for indoor acetaldehyde to 62% for indoor PM(2.5). Stronger associations were found in non-asthmatic children who were atopic, suggesting that atopic children may be more sensitive to air pollution than non-atopic children. Exposure to air pollution may lead to airway inflammation, as measured by FeNO, in schoolchildren. These associations occur even in children with no history of airway damage and seem to be enhanced in atopic subjects.

  4. Oxidative Stress Biomarkers in Exhaled Breath of Workers Exposed to Crystalline Silica Dust by SPME-GC-MS.

    Science.gov (United States)

    Jalali, Mahdi; Zare Sakhvidi, Mohammad Javad; Bahrami, Abdulrahman; Berijani, Nima; Mahjub, Hussein

    2016-01-01

    Silicosis is considered an oxidative stress related disease that can lead to the development of lung cancer. In this study, our purpose was to analysis of volatile organic compounds (VOCs) in the exhaled breath of workers exposed to silica containing dust and compare peak area of these compounds with silicosis patients and healthy volunteers (smokers and nonsmokers) groups. In this cross sectional case-control study, the exhaled breath of 69 subjects including workers exposed to silica (n=20), silicosis patient (n=4), healthy non-smoker (n=20) and healthy smoker (n=25) were analyzed. We collected breath samples using 3-liter Tedlar bags. The VOCs were extracted with solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Personal exposure intensity was measured according to NIOSH 7601 method. Respiratory parameters were measured using spirometry. Seventy percent and 100% of the exposures to crystalline silica dust exceeded from 8 h TWA ACGIH TLVs in case and positive control groups, respectively. A significant negative correlation was found between dust exposure intensity and FEV1/FVC when exposure and positive control groups were studied in a group (r2=-0.601, Psilica and silicosis patient compared to the healthy smoker and nonsmoker controls. In some cases the difference was significant (Psilica.

  5. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to isopropanol oxidation products and pthtalate esters in indoor air

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Famula, Basia; Sundell, Jan

    2005-01-01

    The use of Nitric Oxide (NO) concentration in exhaled and aspirated nasal air to assess human response to indoor air pollution was tested in a climate chamber exposure experiment. The concentration of NO was measured using a chemiluminescence NO analyser. Sixteen healthy female subjects were...

  6. Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants

    DEFF Research Database (Denmark)

    van der Valk, Ralf J P; Duijts, Liesbeth; Timpson, Nicolas J

    2014-01-01

    BACKGROUND: The fraction of exhaled nitric oxide (Feno) value is a biomarker of eosinophilic airway inflammation and is associated with childhood asthma. Identification of common genetic variants associated with childhood Feno values might help to define biological mechanisms related to specific ...

  7. Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants

    NARCIS (Netherlands)

    van der Valk, Ralf J. P.; Duijts, Liesbeth; Timpson, Nicolas J.; Salam, Muhammad T.; Standl, Marie; Curtin, John A.; Genuneit, Jon; Kerkhof, Marjan; Kreiner-Moller, Eskil; Caceres, Alejandro; Gref, Anna; Liang, Liming L.; Taal, H. Rob; Bouzigon, Emmanuelle; Demenais, Florence; Nadif, Rachel; Ober, Carole; Thompson, Emma E.; Estrada, Karol; Hofman, Albert; Uitterlinden, Andre G.; van Duijn, Cornelia; Rivadeneira, Fernando; Li, Xia; Eckel, Sandrah P.; Berhane, Kiros; Gauderman, W. James; Granell, Raquel; Evans, David M.; St Pourcain, Beate; McArdle, Wendy; Kemp, John P.; Smith, George Davey; Tiesler, Carla M. T.; Flexeder, Claudia; Simpson, Angela; Murray, Clare S.; Fuchs, Oliver; Postma, Dirkje S.; Bonnelykke, Klaus; Torrent, Maties; Andersson, Martin; Sleiman, Patrick; Hakonarson, Hakon; Cookson, William O.; Moffatt, Miriam F.; Paternoster, Lavinia; Melen, Erik; Sunyer, Jordi; Bisgaard, Hans; Koppelman, Gerard H.; Ege, Markus; Custovic, Adnan; Heinrich, Joachim; Gilliland, Frank D.; Henderson, Alexander J.; Jaddoe, Vincent W. V.; de Jongste, Johan C.

    Background: The fraction of exhaled nitric oxide (FENO) value is a biomarker of eosinophilic airway inflammation and is associated with childhood asthma. Identification of common genetic variants associated with childhood FENO values might help to define biological mechanisms related to specific

  8. Effect of Shisha (Waterpipe Smoking on Lung Functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi Young Adult Shisha Smokers

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2014-09-01

    Full Text Available Shisha (waterpipe smoking is becoming a more prevalent form of tobacco consumption, and is growing worldwide, particularly among the young generation in the Middle East. This cross-sectional study aimed to determine the effects of shisha smoking on lung functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi young adults. We recruited 146 apparently healthy male subjects (73 control and 73 shisha smokers. The exposed group consisted of male shisha smokers, with mean age 21.54 ± 0.41 (mean ± SEM range 17–33 years. The control group consisted of similar number (73 of non-smokers with mean age 21.36 ± 0.19 (mean ± SEM range 18–28 years. Between the groups we considered the factors like age, height, weight, gender, ethnicity and socioeconomic status to estimate the impact of shisha smoking on lung function and fractional exhaled nitric oxide. Lung function test was performed by using an Spirovit-SP-1 Electronic Spirometer. Fractional Exhaled Nitric Oxide (FeNO was measured by using Niox Mino. A significant decrease in lung function parameters FEV1, FEV1/FVC Ratio, FEF-25%, FEF-50%, FEF-75% and FEF-75–85% was found among shisha smokers relative to their control group. There was also a significant reduction in the Fractional Exhaled Nitric Oxide among Shisha smokers compared to control group.

  9. A NON-INVASIVE DIAGNOSIS OF INTESTINAL ISCHEMIA BY EXHALED BREATH ANALYSIS USING GAS CHROMATOGRAPHY AND MASS SPECTROMETRY-PRELIMINARY RESULTS

    Science.gov (United States)

    To explore the potential of exhaled breath analysis by Column Chromatography-Mass Spectrometry (GC-MS) as a non invasive and sensitive approach to evaluate mesenteric ischemia in pigs. Domestic pigs (n=3) were anesthetized with Guaifenesin/ Fentanyl/ Ketamine/ Xylazine...

  10. Trace Analysis in End-Exhaled Air Using Direct Solvent Extraction in Gas Sampling Tubes: Tetrachloroethene in Workers as an Example

    Science.gov (United States)

    Braunsdorf, Pia-Paulin

    2014-01-01

    Simple and cost-effective analytical methods are required to overcome the barriers preventing the use of exhaled air in routine occupational biological monitoring. Against this background, a new method is proposed that simplifies the automation and calibration of the analytical measurements. End-exhaled air is sampled using valveless gas sampling tubes made of glass. Gaseous analytes are transferred to a liquid phase using a microscale solvent extraction performed directly inside the gas sampling tubes. The liquid extracts are analysed using a gas chromatograph equipped, as usual, with a liquid autosampler, and liquid standards are used for calibration. For demonstration purposes, the method's concept was applied to the determination of tetrachloroethene in end-exhaled air, which is a biomarker for occupational tetrachloroethene exposure. The method's performance was investigated in the concentration range 2 to 20 μg tetrachloroethene/L, which corresponds to today's exposure levels. The calibration curve was linear, and the intra-assay repeatability and recovery rate were sufficient. Analysis of real samples from dry-cleaning workers occupationally exposed to tetrachloroethene and from nonexposed subjects demonstrated the method's utility. In the case of tetrachloroethene, the method can be deployed quickly, requires no previous experiences in gas analysis, provides sufficient analytical reliability, and addresses typical end-exhaled air concentrations from exposed workers. PMID:24772171

  11. Experimental Study of the Cross-infection Risk due to the Cross-flow of Exhaled Airflows and a Plane Jet with the Protected Occupied Zone Ventilation

    DEFF Research Database (Denmark)

    Cao, Guangyu; Nielsen, Peter Vilhelm; Xu, Chunwen

    2014-01-01

    The objective of this study is to determine how the cross infection risk can be minimized between two persons with a plane jet of the protected occupied zone ventilation (POV) system. The exhaled air of infected people can be one of the sources of infectious respiratory viruses and bacteria...

  12. A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of tobacco cigarette and electronic cigarette smokers.

    Science.gov (United States)

    Marco, Esther; Grimalt, Joan O

    2015-09-04

    A method for the rapid analysis of volatile organic compounds (VOCs) in smoke from tobacco and electronic cigarettes and in exhaled breath of users of these smoking systems has been developed. Both disposable and rechargeable e-cigarettes were considered. Smoke or breath were collected in Bio-VOCs. VOCs were then desorbed in Tenax cartridges which were subsequently analyzed by thermal desorption coupled to gas chromatography-mass spectrometry. The method provides consistent results when comparing the VOC compositions from cigarette smoke and the equivalent exhaled breath of the smokers. The differences in composition of these two sample types are useful to ascertain which compounds are retained in the respiratory system after tobacco cigarette or e-cigarette smoking. Strong differences were observed in the VOC composition of tobacco cigarette smoke and exhaled breath when comparing with those of e-cigarette smoking. The former involved transfers of a much larger burden of organic compounds into smokers, including benzene, toluene, naphthalene and other pollutants of general concern. e-Cigarettes led to strong absorptions of propylene glycol and glycerin in the users of these systems. Tobacco cigarettes were also those showing highest concentration differences between nicotine concentrations in smoke and exhaled breath. The results from disposable e-cigarettes were very similar to those from rechargeable e-cigarettes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood.

    Science.gov (United States)

    García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier

    2015-09-01

    During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the

  14. Phosgene- and chlorine-induced acute lung injury in rats: comparison of cardiopulmonary function and biomarkers in exhaled breath.

    Science.gov (United States)

    Luo, Sa; Trübel, Hubert; Wang, Chen; Pauluhn, Jürgen

    2014-12-04

    This study compares changes in cardiopulmonary function, selected endpoints in exhaled breath, blood, and bronchoalveolar lavage fluid (BAL) following a single, high-level 30-min nose-only exposure of rats to chlorine and phosgene gas. The time-course of lung injury was systematically examined up to 1-day post-exposure with the objective to identify early diagnostic biomarkers suitable to guide countermeasures to accidental exposures. Chlorine, due to its water solubility, penetrates the lung concentration-dependently whereas the poorly water-soluble phosgene reaches the alveolar region without any appreciable extent of airway injury. Cardiopulmonary endpoints were continually recorded by telemetry and barometric plethysmography for 20h. At several time points blood was collected to evaluate evidence of hemoconcentration, changes in hemostasis, and osteopontin. One day post-exposure, protein, osteopontin, and cytodifferentials were determined in BAL. Nitric oxide (eNO) and eCO2 were non-invasively examined in exhaled breath 5 and 24h post-exposure. Chlorine-exposed rats elaborated a reflexively-induced decreased respiratory rate and bradycardia whereas phosgene-exposed rats developed minimal changes in lung function but a similar magnitude of bradycardia. Despite similar initial changes in cardiac function, the phosgene-exposed rats showed different time-course changes of hemoconcentration and lung weights as compared to chlorine-exposed rats. eNO/eCO2 ratios were most affected in chlorine-exposed rats in the absence of any marked time-related changes. This outcome appears to demonstrate that nociceptive reflexes with changes in cardiopulmonary function resemble typical patterns of mixed airway-alveolar irritation in chlorine-exposed rats and alveolar irritation in phosgene-exposed rats. The degree and time-course of pulmonary injury was reflected best by eNO/eCO2 ratios, hemoconcentration, and protein in BAL. Increased fibrin in blood occurred only in chlorine

  15. Nitric oxide production in the exhaled air of patients with pulmonary tuberculosis in relation to HIV co-infection

    Directory of Open Access Journals (Sweden)

    Melese Endalkachew

    2008-10-01

    Full Text Available Abstract Background Nitric oxide (NO is essential for host defense in rodents, but the role of NO during tuberculosis (TB in man remains controversial. However, earlier observations that arginine supplementation facilitates anti-TB treatment, supports the hypothesis that NO is important in the host defense against TB. Local production of NO measured in fractional exhaled air (FeNO in TB patients with and without HIV co-infection has not been reported previously. Thus, our aim was to investigate levels of FeNO in relation to clinical symptoms and urinary NO metabolites (uNO. Methods In a cross sectional study, FeNO and uNO were measured and clinical symptoms, chest x-ray, together with serum levels of arginine, tumor necrosis factor alpha (TNF-alpha and interleukin 12 (IL-12 were evaluated in sputum smear positive TB patients (HIV+/TB, n = 36, HIV-/TB, n = 59, their household contacts (n = 17 and blood donors (n = 46 from Gondar University Hospital, Ethiopia. Results The proportion of HIV-/TB patients with an increased FeNO level (> 25 ppb was significantly higher as compared to HIV+/TB patients, but HIV+/TB patients had significantly higher uNO than HIV-/TB patients. HIV+ and HIV-/TB patients both had lower levels of FeNO compared to blood donors and household contacts. The highest levels of both uNO and FeNO were found in household contacts. Less advanced findings on chest x-ray, as well as higher sedimentation rate were observed in HIV+/TB patients as compared to HIV-/TB patients. However, no significant correlation was found between FeNO and uNO, chest x-ray grading, clinical symptoms, TNF-alpha, IL-12, arginine levels or sedimentation rate. Conclusion In both HIV negative and HIV co infected TB patients, low levels of exhaled NO compared to blood donors and household were observed. Future studies are needed to confirm whether low levels of exhaled NO could be a risk factor in acquiring TB and the relative importance of NO in human TB.

  16. Association Between Smoking Status, Preoperative Exhaled Carbon Monoxide Levels, and Postoperative Surgical Site Infection in Patients Undergoing Elective Surgery.

    Science.gov (United States)

    Nolan, Margaret B; Martin, David P; Thompson, Rodney; Schroeder, Darrell R; Hanson, Andrew C; Warner, David O

    2017-05-01

    Cigarette smoking is a risk factor for many perioperative complications, including surgical site infection (SSI). The duration of abstinence from smoking required to reduce this risk is unknown. To evaluate if abstinence from smoking on the day of surgery is associated with a decreased frequency of SSI in patients who smoke cigarettes and to confirm that smoking is significantly independently associated with SSI when adjustment is made for potentially relevant covariates, such as body mass index. In this observational, nested, matched case-control study, 2 analyses were performed at an academic referral center in the upper Midwest. Cases included all patients undergoing elective surgical procedures at Mayo Clinic, Rochester, Minnesota, between January 1, 2009, and July 31, 2014 (inclusive) who subsequently developed an SSI. Controls for both analyses were matched on age, sex, and type of surgery. Smoking status and preoperative exhaled carbon monoxide level, assessed by nurses in the preoperative holding area. Patients were classified as smoking on the day of surgery if they self-reported smoking or if their preoperative exhaled carbon monoxide level was 10 ppm or higher. Surgical site infection after a surgical procedure at Mayo Clinic, Rochester, as identified by routine clinical surveillance using National Healthcare Safety Network criteria. Of the 6919 patients in the first analysis, 3282 (47%) were men and 3637 (53%) were women; median age (interquartile range) for control and SSI cases was 60 (48-70). Of the 392 patients in the second analysis, 182 (46%) were men and 210 (54%) were women; median age (interquartile range) for controls was 53 (45-49) and for SSI cases was 51 (45-60). During the study period, approximately 2% of surgical patients developed SSI annually. Available for the first analysis (evaluating the influence of current smoking status) were 2452 SSI cases matched to 4467 controls. The odds ratio for smoking and SSI was 1.51 (95% CI, 1

  17. Fiber-optic bio-sniffer (biochemical gas sensor) using reverse reaction of alcohol dehydrogenase for exhaled acetaldehyde.

    Science.gov (United States)

    Iitani, Kenta; Chien, Po-Jen; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2018-01-30

    Volatile organic compounds (VOCs) in exhaled breath have a huge potential as indicators of diseases and metabolisms. Application of breath analysis for disease screening and metabolism assessment is expected since breath sample can be noninvasively collected and measured. In this research, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for gaseous acetaldehyde (AcH) was developed. In the AcH bio-sniffer, a reverse reaction of alcohol dehydrogenase (ADH) was employed for reducing AcH to ethanol and simultaneous consuming a coenzyme, reduced form of nicotinamide adenine dinucleotide (NADH). The concentration of AcH can be quantified by fluorescence detection of NADH that was consumed by reverse reaction of ADH. The AcH bio-sniffer was composed of an ultraviolet-light emitting diode (UV-LED) as an excitation light source, a photomultiplier tube (PMT) as a fluorescence detector and an optical fiber probe, and these three components were connected with a bifurcated optical fiber. A gas-sensing region of the fiber probe was developed with a flow-cell and an ADH-immobilized membrane. In the experiment, after optimization of the enzyme reaction conditions, the selectivity and dynamic range of the AcH bio-sniffer were investigated. The AcH bio-sniffer showed a short measurement time (within 2 min) and a broad dynamic range for determination of gaseous AcH, 0.02-10 ppm, which encompassed a typical AcH concentration in exhaled breath (1.2-6.0 ppm). Also, the AcH bio-sniffer exhibited a high selectivity to gaseous AcH based on the specificity of ADH. The sensor outputs were observed only from AcH-contained standard gaseous samples. Finally, the AcH bio-sniffer was applied to measure the concentration of AcH in exhaled breath from healthy subjects after ingestion of alcohol. As a result, a significant difference of AcH concentration between subjects with different aldehyde dehydrogenase type 2 (ALDH2) phenotype was observed. The AcH bio-sniffer can be

  18. Storage conditions for stability of offline measurement of fractional exhaled nitric oxide after collection for epidemiologic research

    Directory of Open Access Journals (Sweden)

    Yoda Yoshiko

    2012-11-01

    Full Text Available Abstract Background The measurement of fractional concentration of nitric oxide in exhaled air (FeNO is valuable for the assessment of airway inflammation. Offline measurement of FeNO has been used in some epidemiologic studies. However, the time course of the changes in FeNO after collection has not been fully clarified. In this study, the effects of storage conditions on the stability of FeNO measurement in exhaled air after collection for epidemiologic research were examined. Methods Exhaled air samples were collected from 48 healthy adults (mean age 43.4 ± 12.1 years in Mylar bags. FeNO levels in the bags were measured immediately after collection. The bags were then stored at 4°C or room temperature to measure FeNO levels repeatedly for up to 168 hours. Results In the bags stored at room temperature after collection, FeNO levels were stable for 9 hours, but increased starting at 24 hours. FeNO levels remained stable for a long time at 4°C, and they were 99.7% ± 7.7% and 101.3% ± 15.0% relative to the baseline values at 24 and 96 hours, respectively. When the samples were stored at 4°C, FeNO levels gradually decreased with time among the subjects with FeNO ≥ 51 ppb immediately after collection, although there were almost no changes among the other subjects. FeNO levels among current smokers increased even at 4°C, although the values among ex-smokers decreased gradually, and those among nonsmokers remained stable. The rate of increase was significantly higher among current smokers than among nonsmokers and ex-smokers from 9 hours after collection onwards. Conclusions Storage at 4°C could prolong the stability of FeNO levels after collection. This result suggests that valid measurements can be performed within several days if the samples are stored at 4°C. However, the time course of the changes in FeNO levels differed in relation to initial FeNO values and cigarette smoking.

  19. Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans?

    Science.gov (United States)

    Pontier, J-M; Buzzacott, P; Nastorg, J; Dinh-Xuan, A T; Lambrechts, K

    2014-05-30

    Previous studies have highlighted a decreased exhaled nitric oxide concentration (FE NO) in divers after hyperbaric exposure in a dry chamber or following a wet dive. The underlying mechanisms of this decrease remain however unknown. The aim of this study was to quantify the separate effects of submersion, hyperbaric hyperoxia exposure and decompression-induced bubble formation on FE NO after a wet dive. Healthy experienced divers (n=31) were assigned to either (i) a group making a scuba-air dive (Air dive), (ii) a group with a shallow oxygen dive protocol (Oxygen dive) or (iii) a group making a deep dive breathing a trimix gas mixture (deep-dive). Bubble signals were graded with the KISS score. Before and after each dive FE NO values were measured using a hand-held electrochemical analyzer. There was no change in post-dive values of FE NO values (expressed in ppb=parts per billion) in the Air dive group (15.1 ± 3.6 ppb vs. 14.3 ± 4.7 ppb, n=9, p=0.32). There was a significant decrease in post-dive values of FE NO in the Oxygen dive group (15.6 ± 6 ppb vs. 11.7 ± 4.7 ppb, n=9, p=0.009). There was an even more pronounced decrease in the deep dive group (16.4 ± 6.6 ppb vs. 9.4 ± 3.5 ppb, n=13, p0 (n=13) and percentage decrease in post-dive FE NO values (r=-0.53, p=0.03). Submersion and hyperbaric hyperoxia exposure cannot account entirely for these results suggesting the possibility that, in combination, one effect magnifies the other. A main finding of the present study is a significant relationship between reduction in exhaled NO concentration and dive-induced bubble formation. We postulate that exhaled NO concentration could be a useful index of decompression severity in healthy human divers. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Jinxiang [Central Michigan Univ., Mount Pleasant, MI (United States); Kim, JongWon [Central Michigan Univ., Mount Pleasant, MI (United States); Si, Xiuhua A. [California Baptist Univ., Riverside, CA (United States); Corley, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kabilan, Senthil [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shengyu [First Affliliated Hospital of Xi' an Medical Univ., Shaanxi (China)

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de- livery protocol.

  1. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-02-06

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure vari-ations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagran-gian tracking approach were used to model respiratory airflows and aerosol dynamics. Respira-tions of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de-livery protocol.

  2. Longitudinal assessment of high versus low levels of fractional exhaled nitric oxide among children with asthma and atopy.

    Science.gov (United States)

    Elmasri, Mary; Romero, Karina M; Gilman, Robert H; Hansel, Nadia N; Robinson, Colin L; Baumann, Lauren M; Cabrera, Lilia; Hamilton, Robert G; Checkley, William

    2014-04-01

    Fractional exhaled nitric oxide (FeNO) has emerged as an important biomarker in asthma. Increasing evidence points to atopy as a confounding factor in the interpretation of elevated FeNO. We conducted a longitudinal study to understand the clinical significance of FeNO as an inflammatory biomarker. We identified 19 children aged 13-15 years at baseline with a significant elevation in FeNO ≥ 80 parts per billion (ppb) and randomly selected a group of children of similar age with a moderate elevation (40-79 ppb) and normal-to-low FeNO (atopy and asthma status. An elevation of FeNO appears to indicate an atopic phenotype regardless of an asthma diagnosis, clinical symptoms, or corticosteroid use. An elevation of FeNO also is associated with a systemic elevation in inflammatory cytokines.

  3. Academic exam stress and depressive mood are associated with reductions in exhaled nitric oxide in healthy individuals.

    Science.gov (United States)

    Trueba, Ana F; Smith, Noelle B; Auchus, Richard J; Ritz, Thomas

    2013-04-01

    Nitric oxide (NO) has beneficial effects on cardiovascular and immune health. Stress and depression have been linked to a reduction in serum NO. In this study, we examined the effect of academic exam stress on the fraction of NO in exhaled air (FeNO) and spirometric lung function in 41 healthy college students. Participants completed assessments at mid-semester as well as in the early and late phase of an academic exam period. Negative affect, depressive mood, and salivary cortisol were elevated during exams, whereas FeNO and lung function decreased. Higher depressive mood was associated with lower FeNO, whereas higher negative affect was associated higher FeNO across time. These findings provide initial evidence that depression and prolonged stress can alter FeNO and lung function in healthy individuals, which could have adverse consequences for cardiovascular, airway, and immune health. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated and Mechanically-Ventilated Intensive Care Unit (ICU-Patients

    Directory of Open Access Journals (Sweden)

    Pouline M. P. van Oort

    2017-02-01

    Full Text Available The diagnosis of hospital-acquired pneumonia remains challenging. We hypothesized that analysis of volatile organic compounds (VOCs in exhaled breath could be used to diagnose pneumonia or the presence of pathogens in the respiratory tract in intubated and mechanically-ventilated intensive care unit patients. In this prospective, single-centre, cross-sectional cohort study breath from mechanically ventilated patients was analysed using gas chromatography-mass spectrometry. Potentially relevant VOCs were selected with a p-value < 0.05 and an area under the receiver operating characteristics curve (AUROC above 0.7. These VOCs were used for principal component analysis and partial least square discriminant analysis (PLS-DA. AUROC was used as a measure of accuracy. Ninety-three patients were included in the study. Twelve of 145 identified VOCs were significantly altered in patients with pneumonia compared to controls. In colonized patients, 52 VOCs were significantly different. Partial least square discriminant analysis classified patients with modest accuracy (AUROC: 0.73 (95% confidence interval (CI: 0.57–0.88 after leave-one-out cross-validation. For determining the colonization status of patients, the model had an AUROC of 0.69 (95% CI: 0.57–0.82 after leave-one-out cross-validation. To conclude, exhaled breath analysis can be used to discriminate pneumonia from controls with a modest to good accuracy. Furthermore breath profiling could be used to predict the presence and absence of pathogens in the respiratory tract. These findings need to be validated externally.

  5. Reduction in exhaled nitric oxide tracks improved patient inhaler compliance in difficult asthma-a case study.

    Science.gov (United States)

    Hunt, Eoin; Flynn, Deirdre; MacHale, Elaine; Costello, Richard W; Murphy, Desmond M

    2017-12-26

    Exhaled nitric oxide is believed be a useful surrogate for airways inflammation while non-adherence with therapy is known to be associated with worsening of asthma control. We present the case of a 49-year-old female with steroid-dependent asthma and an exacerbation rate of >20/year. She was enrolled in a 3-month-long prospective study using a validated diagnostic inhaler device that provided objective evidence of inhaler compliance. Fractional exhaled nitric oxide (FeNO), peak expiratory flow rates, asthma control questionnaires were measured throughout the study period. Peripheral eosinophil count was obtained prior to the study, during the study, and immediately afterwards. Improvement in compliance at the end of the study led to significant improvements in lung function peak expiratory flow rate (PEFR), and objective scores of asthma. There was an observed improvement in PEFR after 4 weeks, with an associated decrease in FeNO from 92 to 9 ppb that plateaued over the remainder of the study. Her eosinophil count was 0.79 × 10 9 /litre prior to starting in the study, 0.37 × 10 9 /litre after 2 months, and 0.1 × 10 9 /litre at the end of the study. We believe that this is the first case study to objectively prove that improvements in compliance can lead to dramatic reductions in the overall inflammatory airway response and in particular that improvements in patient compliance are mirrored by marked reduction in FeNO levels. These changes occurred in tandem with an observed clinical improvement in our patient.

  6. Investigation of the climatic extremes influence on the humane adaptive capacity by mass spectrometric analysis of exhaled breath condensate

    Science.gov (United States)

    Ryabokon, Anna; Larina, Irina; Kononikhin, Alexey; Starodubtceva, Nataliia; Popov, Igor; Nikolaev, Eugene; Varfolomeev, Sergey

    Global climate change, which causes abnormal fluctuations in temperature and rainfall, has adverse effects on human health. Particularly people suffer with cardiovascular and respiratory system disease. Our research was concentrated on the changes in the regulation and adaptation systems of human organism related to hyperthermia and polluted air influence. Healthy individuals with the age from 22 to 45 years were isolated during 30 days in the ground based experimental facility located at Institute of medico-biological problems RAS (Moscow, Russia). In the ground based facility artificially climatic conditions of August, 2010 in Moscow were created. Exhaled breath condensate was collected before and after isolation by R-Tube collector, freeze dried, treated by trypsin and analyzed by nanoflow LC-MS/MS with a 7-Tesla LTQ-FT Ultra mass spectrometer (Thermo Electron, Bremen, Germany). Database search was performed using Mascot Server 2.2 software (Matrix Science, London, UK). Investigation of exhaled breath condensate (EBC) collected from participants of the 30 days isolation with hyper thermic and polluted air climate conditions was performed. After isolation reduction of the protein number was observed. Loss endothelial C receptor precursor - the main physiological anticoagulant - correlate with the clinical data of physicians to increase the propensity to thrombosis. Also COP9 signalosome protein, positive regulator of ubiquitin was identified in all EBC samples before isolation and was not detected for more than a half of donors after isolation. This phenomena may be due to violation of ubiquitin protection system of the cells from harmful proteins. During isolation the air was cleared from microdisperse particles.

  7. Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children.

    Directory of Open Access Journals (Sweden)

    Agnieszka Smolinska

    Full Text Available Wheezing is one of the most common respiratory symptoms in preschool children under six years old. Currently, no tests are available that predict at early stage who will develop asthma and who will be a transient wheezer. Diagnostic tests of asthma are reliable in adults but the same tests are difficult to use in children, because they are invasive and require active cooperation of the patient. A non-invasive alternative is needed for children. Volatile Organic Compounds (VOCs excreted in breath could yield such non-invasive and patient-friendly diagnostic. The aim of this study was to identify VOCs in the breath of preschool children (inclusion at age 2-4 years that indicate preclinical asthma. For that purpose we analyzed the total array of exhaled VOCs with Gas Chromatography time of flight Mass Spectrometry of 252 children between 2 and 6 years of age. Breath samples were collected at multiple time points of each child. Each breath-o-gram contained between 300 and 500 VOCs; in total 3256 different compounds were identified across all samples. Using two multivariate methods, Random Forests and dissimilarity Partial Least Squares Discriminant Analysis, we were able to select a set of 17 VOCs which discriminated preschool asthmatic children from transient wheezing children. The correct prediction rate was equal to 80% in an independent test set. These VOCs are related to oxidative stress caused by inflammation in the lungs and consequently lipid peroxidation. In conclusion, we showed that VOCs in the exhaled breath predict the subsequent development of asthma which might guide early treatment.

  8. Diagnostic accuracy of exhaled nitric oxide in exercise-induced bronchospasm: Systematic review

    Directory of Open Access Journals (Sweden)

    L.A.S. Feitosa

    2012-07-01

    Full Text Available Introduction: The gold-standard method for the diagnosis of exercise-induced bronchospasm (EIB is an exercise test combined with spirometry. However, this test is expensive, time consuming and requires specialized equipment and trained personnel. Exhaled nitric oxide (eNO is a fast, easy, noninvasive method for the diagnosis of EIB. The aim of the present study was to assess the accuracy of the measurement of eNO for the diagnosis of EIB through a systematic review of the literature. Methods: A search was carried out in the PubMed, Lilacs, SciELO and SCOPUS databases by two independent researchers. Results: Fifty-six papers were found. Following the application of the eligibility criteria to the title, abstract and text, six papers remained for analysis. There was a significant heterogeneity in sex (X2 = 56.44, p = 0.000 and clinical spectrum (X2 = 504.00, p = 0.000 between studies. In children between 3.8 and 7.8 years old a cutoff point >28 ppb EIB can be ruled in and in children between 5 and 16 years old at a cutoff point 12. Four papers reported negative predictive values above 88%. Conclusion: The measurement of eNO seems to be effective for ruling in and ruling out EIB in some specific groups. Therefore, the meansurement of eNO levels could be an important tool to safely avoid the need for an exercise test when the result is negative, reducing the individual and economic impact of this disease. Resumo: Introdução: O método padrão de ouro para o diagnóstico de broncoespasmos induzidos por exercício (BIE é a prova de esforço combinada com a espirometria. Contudo, esta prova é dispendiosa, demorada e requer equipamento específico e pessoal especializado. O óxido nítrico exalado (eNO é um método rápido, simples e não invasivo para o diagnóstico de BIE. O objectivo do presente estudo foi o de aferir a acurácia do eNO para o diagnóstico do BIE através da revisão sistemática da literatura. Métodos: Foi efectuada

  9. Study of Rn-222 exhalation in phosphogypsum through the adsorption technique in activated coal; Estudo da exalacao de Rn-222 em fosfogesso por meio da tecnica de adsorcao em carvao ativado

    Energy Technology Data Exchange (ETDEWEB)

    Nisti, Marcelo Bessa; Campos, Marcia Pires de, E-mail: mbnisti@ipen.b, E-mail: mpcampos@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    The radon exhalation was estimated through the adsorption in activated carbon technique. Classified as TENORM, the radon exhalation determination on the phosphogypsum piles was performed through the adsorption ratio of radon in activated carbon, from the concentration of descendants of {sup 222}Rn, {sup 214}Pb and {sup 214}Bi obtained by gamma spectrometry. The results obtained in this work were compatibles with the values found in the literature

  10. STUDY OF RADON, THORON EXHALATION AND NATURAL RADIOACTIVITY IN COAL AND FLY ASH SAMPLES OF KOTA SUPER THERMAL POWER PLANT, RAJASTHAN, INDIA.

    Science.gov (United States)

    Singh, Lalit Mohan; Kumar, Mukesh; Sahoo, B K; Sapra, B K; Kumar, Rajesh

    2016-10-01

    Electricity generation in India is largely dependent on coal-based thermal power plants, and increasing demand of energy raised the coal consumption in the power plants. In recent years, study of natural radioactivity content and radon/thoron exhalation from combustion of coal and its by-products has given considerable attention as they have been recognised as one of the important technically enhanced naturally occurring radioactive materials. In the present study, radon, thoron exhalation rate and the radioactivity concentration of radionuclides in coal and fly ash samples collected from Kota Super Thermal Power Plant, Rajasthan, India have been measured and compared with data of natural soil samples. The results have been analysed and discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Exposure to exhaled air from a sick occupant in a two-bed hospital room with mixing ventilation: effect of distance from sick occupant and air change rate

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Georgiev, Emanuil

    2011-01-01

    an exposed patient lying in the second bed. The doctor stood 0.55 m or 1.1 m facing the sick patient. The breathing mode of the “sick patient” was: exhalation mouth/inhalation nose. Tracer gas (R-134a) was mixed with the exhaled air. Important finding of this study is that airflow distribution......Full-scale measurements were performed in a climate chamber set as a two-bed hospital room, ventilated at 3, 6 and 12 h-1. Air temperature was kept constant at 22 °C. Two breathing thermal manikins were used: a sick patient lying on one side in one bed and a doctor. A thermal dummy mimicked...

  12. Exposure to Exhaled Air from a Sick Occupant in a Two-Bed Hospital Room with Mixing Ventilation: Effect of Posture of Doctor and Air Change Rate

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Barova, Mariya

    2013-01-01

    Full-scale measurements were performed in a climate chamber set as a two-bed hospital room, ventilated at 3, 6 and 12 ACH with overhead mixing ventilation. Air temperature was kept constant at 22 °C. Two breathing thermal manikins were used to mimic a sick patient lying on one side in one...... of the beds and a doctor. A thermal dummy mimicked an exposed patient lying in the second bed. The doctor either stood up or sat in a chair 0.55 m facing the sick patient. The ‘sick patient’ was exhaling through the mouth and inhaling from the nose. Tracer gas (R 134A) was mixed with the exhaled air to mimic...

  13. Low forced expiratory flow rates and forceful exhalation as a cause for arterial gas embolism during submarine escape training: a case report.

    Science.gov (United States)

    Hartge, Francis J; Bennett, Thomas L

    2015-01-01

    A 26-year-old male U.S. Navy submariner suffered an arterial gas embolism during pressurized submarine escape training. Routine pretraining medical screening revealed no history of asthma, pneumothorax or recent respiratory infection. Pulmonary function testing and posterioranterior/lateral chest X-ray were normal. He forcefully exhaled at the start of his ascent and developed neurological abnormalities including lightheadedness with lower extremity weakness and paresthesias after surfacing. He fully recovered after a U.S. Navy Treatment Table 6. This case represents the first report of an arterial gas embolism since the U.S. Navy resumed pressurized submarine escape training utilizing the Submarine Escape and Immersion Equipment suit. We discuss possible contributing factors and propose that his AGE was caused by pulmonary barotrauma due to a combination of low forced expiratory flow rates and an overly forceful exhalation during his ascent.

  14. Validation of a geographic information system for the evaluation of the soil radon exhalation potential in South-Tyrol and Veneto, Italy.

    Science.gov (United States)

    Bertolo, A; Verdi, L

    2001-01-01

    The PERS (soil radon exhalation potential) project was promoted by ANPA (Italian Environmental Protection Agency) together with the Università Cattolica del Sacro Cuore of Rome: the aim was to produce a geographic information system allowing the discovery of regions with different radon exhalation potential starting from some territorial knowledge. Some environmental measurements were carried out within this project in selected areas in South-Tyrol and Veneto. The measurement of radon in springwater and groundwater as well as in soil gas plays a decisive role for the validation of the algorithm for computing the PERS. Along with technical aspects, a possible use of the PERS method by the Regional Environmental Protection Agencies and by other agencies is discussed with the scope of identifying radon prone areas, as stated in the Italian 'Decreto Legislativo' 26 May 2000, n. 241. Moreover the forecasting power of PERS regarding indoor radon concentration is analysed.

  15. Validation of a geographic information system for the evaluation of the soil radon exhalation potential in South-Tyrol and Veneto (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Bertolo, A.; Verdi, L

    2001-07-01

    The PERS (soil radon exhalation potential) project was promoted by ANPA (Italian Environmental Protection Agency) together with the Universita Cattolica del Sacro Cuore of Rome: the aim was to produce a geographic information system allowing the discovery of regions with different radon exhalation potential starting from some territorial knowledge. Some environmental measurements were carried out within this project in selected areas in South-Tyrol and Veneto. The measurement of radon in springwater and groundwater as well as in soil gas plays a decisive role for the validation of the algorithm for computing the PERS. Along with technical aspects, a possible use of the PERS method by the Regional Environmental Protection Agencies and by other agencies is discussed with the scope of identifying radon prone areas, as stated in the Italian 'Decreto Legislativo' 26 May 2000, n. 241. Moreover the forecasting power of PERS regarding indoor radon concentration is analysed. (author)

  16. Extensive radioactive characterization of a phosphogypsum stack in SW Spain: 226Ra, 238U, 210Po concentrations and 222Rn exhalation rate.

    Science.gov (United States)

    Abril, José-María; García-Tenorio, Rafael; Manjón, Guillermo

    2009-05-30

    Phosphogypsum (PG) is a by-product of the phosphate fertilizer industries that contains relatively high concentrations of uranium series radionuclides. The US-EPA regulates the agriculture use of PG, attending to its (226)Ra content and to the (222)Rn exhalation rate from inactive stacks. Measurements of (222)Rn exhalation rates in PG stacks typically show a large and still poorly understood spatial and temporal variability, and the published data are scarce. This work studies an inactive PG stack in SW Spain of about 0.5 km(2) from where PG can be extracted for agriculture uses, and an agriculture soil 75 km apart, being representative of the farms to be amended with PG. Activity concentrations of (226)Ra, (238)U and (210)Po have been measured in 30 PG samples (0-90 cm horizon) allowing for the construction of maps with spatial distributions in the PG stack and for the characterization of the associated PG inputs to agriculture soils. Averaged (226)Ra concentrations for the stack were 730+/-60 Bq kg(-1) (d.w.), over the US-EPA limit of 370 Bq kg(-1). (222)Rn exhalation rate has been measured by the charcoal canister method in 49 sampling points with 3 canisters per sampling point. Values in PG stack were under the US-EPA limit of 2600 Bq m(-2)h(-1), but they were one order of magnitude higher than those found in the agriculture soil. Variability in radon emissions has been studied at different spatial scales. Radon exhalation rates were correlated with (226)Ra concentrations and daily potential evapotranspiration (ETo). They increased with ETo in agriculture soils, but showed an opposite behaviour in the PG stack.

  17. Study of radon exhalation from phosphogypsum plates and blocks from different origins; Estudo da exalacao de radonio em placas e tijolos de fosfogesso de diferentes procedencias

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Lucas Jose Pereira da

    2011-07-01

    Phosphogypsum is a waste of the fertilizer industry that concentrates radionuclides. In this work, the {sup 222}Rn exhalation rate from phosphogypsum plates and blocks from different origins used at dwellings construction was studied. The {sup 222}Rn exhalation rate was determined through the accumulation chamber technique with solid state nuclear track detectors (SSNTD). The effective dose for an individual living in a residence built with phosphogypsum based materials was evaluated. It also was calculated the {sup 222}Rn exhalation rate through the UNSCEAR model, from the {sup 226}Ra concentration in the materials, in order to compare the experimental results. It was evaluated the contribution of building component (paint) to the reduction of {sup 222}Rn exhalation rate. The plates and blocks were manufactured with phosphogypsum from Bunge Fertilizantes, Ultrafertil and Fosfertil. Blocks manufactured with ordinary gypsum was also evaluated. The average results obtained were 0.19 {+-} 0.06 Bq m-2 h-1, 1.3 {+-} 0.3 Bq m{sup -2} h{sup -1} and 0.41 {+-} 0.07 Bq m{sup -2} h{sup -1} for plates manufactured with phosphogypsum from Bunge Fertilizer, Ultrafertil and Fosfertil, respectively. For the phosphogypsum blocks the values were 0.11 {+-} 0.01 Bq m{sup -2} h-1, 1.2 {+-} 0.6 Bq m{sup -2} h{sup -1}, 0.47 {+-} 0.15 Bq m{sup -2} h{sup -1}, for Bunge, Ultrafertil and Fosfertil. The blocks manufactured with ordinary gypsum presented average value of 0.18 {+-} 0.08 Bq m{sup -2} h'-{sup 1}. All phosphogypsum plates and blocks evaluated in this study presented effective dose for radon inhalation lower than the recommended value of 1mSv y{sup -1}, the annual effective dose limit for public exposure by International Commission on Radiological Protection. (author)

  18. Comparison of the Levels of Infectious Virus in Respirable Aerosols Exhaled by Ferrets Infected with Influenza Viruses Exhibiting Diverse Transmissibility Phenotypes

    Science.gov (United States)

    Gustin, Kortney M.; Katz, Jacqueline M.; Tumpey, Terrence M.

    2013-01-01

    Influenza viruses pose a major public health burden to communities around the world by causing respiratory infections that can be highly contagious and spread rapidly through the population. Despite extensive research on influenza viruses, the modes of transmission occurring most often among humans are not entirely clear. Contributing to this knowledge gap is the lack of an understanding of the levels of infectious virus present in respirable aerosols exhaled from infected hosts. Here, we used the ferret model to evaluate aerosol shedding patterns and measure the amount of infectious virus present in exhaled respirable aerosols. By comparing these parameters among a panel of human and avian influenza viruses exhibiting diverse respiratory droplet transmission efficiencies, we are able to report that ferrets infected by highly transmissible influenza viruses exhale a greater number of aerosol particles and more infectious virus within respirable aerosols than ferrets infected by influenza viruses that do not readily transmit. Our findings improve our understanding of the ferret transmission model and provide support for the potential for influenza virus aerosol transmission. PMID:23658443

  19. Diseño y evaluación de un equipo para obtener aire espirado condensado Design and evaluation of a device for collecting exhaled breath condensate

    Directory of Open Access Journals (Sweden)

    Oscar Florencio Araneda Valenzuela

    2009-01-01

    Full Text Available El análisis de muestras de aire espirado condensado ha cobrado gran relevancia en los últimos años como método no invasivo de estudio de la fisiología y las enfermedades de origen pulmonar. En el presente trabajo se describe un equipo para tomar muestras de aire espirado condensado de bajo costo, fácil de fabricar, de transportar al terreno y que permite tomar muestras en forma simultánea. La concentración de metabolitos relativos a procesos inflamatorios y al daño oxidativo (pH, peróxido de hidrógeno y nitrito de muestras de aire espirado condensado obtenido con este equipo son comparables a los reportados con otros previamente.In recent years, the analysis of exhaled breath condensate samples has been given great weight as a noninvasive methodology of studying physiology and lung diseases. The present study describes a device for measuring exhaled breath condensate that is affordable, easily constructed, portable and suitable for use in the field, as well as allowing the collection of simultaneous samples. The results obtained with this device in terms of the concentrations of pH, peroxide oxide and nitrite, metabolites related to inflammatory and oxidative damage, in exhaled breath condensate samples are comparable to those obtained with other devices previously described.

  20. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates.

    Science.gov (United States)

    Huang, Jing; Deng, Hongtao; Song, Dandan; Xu, Hui

    2015-06-09

    In the current study, we introduced a novel polystyrene/graphene (PS/G) composite nanofiber film for thin film microextraction (TFME) for the first time. The PS/G nanofiber film was fabricated on the surface of filter paper by a facile electrospinning method. The morphology and extraction performance of the resultant composite film were investigated systematically. The PS/G nanofiber film exhibited porous fibrous structure, large surface area and strong hydrophobicity. A new thin film microextraction-high performance liquid chromatography (TFME-HPLC) method was developed for the determination of six aldehydes in human exhaled breath condensates. The method showed high enrichment efficiency and fast analysis speed. Under the optimal conditions, the linear ranges of the analytes were in the range of 0.02-30 μmol L(-1) with correlation coefficients above 0.9938, and the recoveries were between 79.8% and 105.6% with the relative standard deviation values lower than 16.3% (n=5). The limits of quantification of six aldehydes ranged from 13.8 to 64.6 nmol L(-1). The established method was successfully applied for the quantification of aldehyde metabolites in exhaled breath condensates of lung cancer patients and healthy people. Taken together, the TFME-HPLC method provides a simple, rapid, sensitive, cost-effective, non-invasion approach for the analysis of linear aliphatic aldehydes in human exhaled breath condensates. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Preliminary assessment, by means of Radon exhalation rate measurements, of the bio-sustainability of microwave treatment to eliminate biodeteriogens infesting stone walls of monumental historical buildings.

    Science.gov (United States)

    Mancini, S.; Caliendo, E.; Guida, M.; Bisceglia, B.

    2017-10-01

    The main purpose of the work described in this paper has been to establish the protocol for a new non-disruptive technique of intervention, based on microwave treatment, for cleaning operations on monumental historical buildings, to eliminate biodeteriogens infesting stones. Non-destructive methods in the cleaning operations, should not only preserve the physical integrity, the chemical-mineralogical and structural identity of materials, but, when the exhalation of pollutant agents (like for example Radon gas) from building materials is considered, also, make the indoor air quality (IAQ) levels healthy. Therefore, one of the main steps of the protocol proposed in this paper is concerned with the assessment of the Radon exhalation rate in order to verify that microwave treatments do not increase the Radon naturally exhalated by building materials. In this paper, the preliminary results of the Radon measurements performed on two different type of tuff samples (grey tuff and yellow tuff), typical of the Italian traditional construction heritage, with the E-PERM passive technique at the Environmental Radioactivity Laboratory (Amb.Ra.), University of Salerno, Italy, ISO 9001:2008 certified, are summarized.

  2. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    Science.gov (United States)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  3. [Children and Adolescents with Asthma Differ in Lung Function Parameters and Exhaled NO from Children and Adolescents with Obesity].

    Science.gov (United States)

    Schmauck-Gómez, J S; Menrath, I; Kaiser, M M; Herz, A; Kopp, M V

    2016-07-01

    The prevalence of asthma and overweight/obesity in children and adolescents is continuously increasing over the last decades. It remains unclear if overweight/obesity raises the risk of developing asthma or if an uncontrolled asthma increases the risk of developing overweight/obesity by restricting physical activity. We aimed to elucidate, if children and adolescents with overweight/obesity differ from normal-weight asthmatics in lung functions parameters (FEV1, FEV1/VC, MEF50 and SRtot) and in exhaled nitric oxide (FeNO). Totally, n=142 children and adolescents aged 6-18 years were included in this study: group 1 comprised n=44 with overweight/obesity defined as a Body-Mass-Index (BMI)>90th percentile; group 2 n=44 with a doctors diagnosed bronchial asthma according to the GINA-guidelines, and group 3 with n=36 pulmonary healthy controls. N=18 children with both asthma and overweight/obesity were excluded from further analysis. We collected data about socio-demographic variables from a standardized questionnaire, bodyplethysmography (FEV1, FEV1/VC, MEF50 and SRtot) and FeNO. Normal-weight children and adolescents with asthma had significantly lower FEV1/VC (Tiffenau-Index 90,9±12,8) and MEF50 (84.0% predicted±27.6) than children with overweight/obesity (97,6±12,4 p=0.001 respectively 99.1±20.9 p=0.001) and healthy controls (98±13,5 p=0,003; 96.7±19.3 p=0.011). Normal weight asthmatics had a significantly higher FeNO (38.3 ppb) than children and adolescents with overweight/obesity (14.0 ppb p=0.014). Normal-weight children and adolescents with asthma differ significantly both in their lung function parameters as well as in their exhaled nitric oxide concentration from children and adolescents with overweight/obesity. For clinical practice it is important to note that children and adolescents with overweight/obesity have no signs of an obstructive airway diseases and are as resilient as healthy children and adolescents with regard to their lung function. The

  4. Characterization of airway inflammation in patients with COPD using fractional exhaled nitric oxide levels: a pilot study

    Directory of Open Access Journals (Sweden)

    Donohue JF

    2014-07-01

    Full Text Available James F Donohue,1 Nancy Herje,2 Glenn Crater,2 Kathleen Rickard2 1Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; 2Aerocrine, Inc., Morrisville, NC, USA Objective: To characterize fractional exhaled nitric oxide (FeNO levels that may be indicative of Th2-mediated airway inflammation in patients with chronic obstructive pulmonary disease (COPD. Methods: This single-visit, outpatient study was conducted in 200 patients aged 40 years and older with COPD. All patients underwent spirometry and FeNO testing. COPD severity was classified according to the Global initiative for chronic Obstructive Lung Disease (GOLD 2010 guidelines. Results: Patients who participated in the study had a mean age of 63.9±11.3 years and a mean smoking history of 46±29 pack years. Patients had a mean forced expiratory volume in 1 second % predicted of 53.9%±22.1%. The percentage of patients classified with COPD severity Stage I, II, III, and IV was 13%, 40%, 39%, and 8%, respectively. In addition, according to current procedural terminology codes, 32% of patients were classified as mixed COPD/asthma, 26% as COPD/emphysema, and 42% as all other codes. The mean FeNO level for all patients was 15.3±17.2 parts per billion (ppb. Overall, 89% of patients had a FeNO <25 ppb, 8% had a FeNO 25–50 ppb, and 3% had a FeNO >50 ppb. The percentages of patients with FeNO in the intermediate or high ranges of FeNO were greatest among patients with mixed COPD/asthma (intermediate, 11.5%; high, 6.6% compared with COPD/emphysema (intermediate, 8%; high, 0 and all other codes (intermediate, 6.3%; high, 1.3%. Conclusion: Increases in FeNO were identified in a subset of patients with COPD, particularly in those previously diagnosed with both COPD and asthma. Since FeNO is useful for identifying patients with airway inflammation who will have a beneficial response to treatment with an inhaled corticosteroid, these data may have important

  5. (226)Ra, (232)Th and (40)K contents and radon exhalation rate from materials used for construction and decoration in Cameroon.

    Science.gov (United States)

    Ngachin, M; Garavaglia, M; Giovani, C; Nourreddine, A; Kwato Njock, M G; Scruzzi, E; Lagos, L

    2008-09-01

    This work deals with the measurement of radioactivity and radon exhalation rate from building materials manufactured in Douala city from geological materials. Nine types of building material were surveyed for their natural radioactivity contents using high-resolution gamma-ray spectrometry. The activity concentrations for (226)Ra, (232)Th and (40)K varied from 11.5 to 49 Bq kg(-1), 16 to 37 Bq kg(-1) and 306 to 774 Bq kg(-1), respectively. The absorbed dose rate in the samples investigated at 1 m above ground level ranged from 28.5 to 66.6 nGy h(-1). External and internal hazard indices were also estimated as defined by the European Commission. The Ra equivalents of the materials studied ranged from 57.5 to 133 Bq kg(-1) and are much smaller than the recommended limit of 370 Bq kg(-1) for construction materials for dwellings. Polycarbonate nuclear track detectors (NTDs), type CR-39, were used for measuring the radon concentration from different materials. In fact, knowledge of the radon exhalation rate from building materials is important for understanding the individual contribution of each material to the total indoor radon exposure. Samples were hermetically closed in glass vessels and the radon growth was followed as a function of time. The radon exhalation rate was therefore derived from the experimental measurement of alpha-track densities. The radon exhalation varied from (5.77 +/- 0.06) x 10(-5) to (7.61 +/- 0.07) x 10(-5) Bq cm(-2) h(-1) in bricks, from (5.79 +/- 0.05) x 10(-5) to (11.6 +/- 0.12) x 10(-5) in tiles, and was (6.95 +/- 0.03) x 10(-5) Bq cm(-2) h(-1) in concrete. A correlation (correlation coefficient approximately 0.8) was found between radium concentration measured with a HPGe detector and the radon exhalation rate obtained using nuclear track detectors.

  6. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders.

    Science.gov (United States)

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Lehnert, Martin; Kendzia, Benjamin; Bernard, Sabine; Berresheim, Hans; Düser, Maria; Henry, Jana; Weiss, Tobias; Koch, Holger M; Pesch, Beate; Brüning, Thomas

    2012-01-01

    Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.

  7. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics

    Science.gov (United States)

    Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.

    2017-08-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.

  8. Exhaled nitric oxide levels are elevated in persons with tetraplegia and comparable to that in mild asthmatics.

    Science.gov (United States)

    Radulovic, Miroslav; Schilero, Gregory J; Wecht, Jill M; La Fountaine, Michael; Rosado-Rivera, Dwindally; Bauman, William A

    2010-06-01

    The role of airway inflammation in mediating airflow obstruction in persons with chronic traumatic tetraplegia is unknown. Measurement of the fraction of exhaled nitric oxide (FeNO) affords a validated noninvasive technique for gauging the airway inflammatory response in asthma, although it has never been assessed in persons with tetraplegia. This study was designed to determine the FeNO in individuals with chronic tetraplegia compared with that in patients with mild asthma and healthy able-bodied individuals. Nine subjects with chronic tetraplegia, seven subjects with mild asthma, and seven matched healthy able-bodied controls were included in this prospective, observational, pilot study. All subjects were nonsmokers and clinically stable at the time of study. Spirometry was performed on all participants at baseline. FENO was determined online by a commercially available closed circuit, chemiluminescence method, using a single-breath technique. Subjects with tetraplegia had significantly higher values of FeNO than controls (17.72 +/- 3.9 ppb vs. 10.37 +/- 4.9 ppb; P tetraplegia and those with asthma (17.72 +/- 3.9 ppb vs. 20.23 +/- 4.64 ppb, P tetraplegia have FeNO levels that are comparable to that seen in mild asthmatics and higher than that in healthy able-bodied controls. The clinical relevance of this observation has yet to be determined.

  9. Exhaled nitric oxide fraction as an add-on to ACQ-7 for not well controlled asthma detection.

    Science.gov (United States)

    Plaza, Vicente; Ramos-Barbón, David; Muñoz, Ana María; Fortuna, Ana María; Crespo, Astrid; Murio, Cristina; Palomino, Rosa

    2013-01-01

    The measurement of fractional nitric oxide concentration in exhaled breath (FeNO), a noninvasive indicator of airway inflammation, remains controversial as a tool to assess asthma control. Guidelines currently limit asthma control assessment to symptom and spirometry based appraisals such as the Asthma Control Questionnaire-7 (ACQ-7). We aimed at determining whether adding FeNO to ACQ-7 improves current asthma clinical control assessment, through enhanced detection of not well controlled asthma. Asthmatic subjects, classified as not well controlled as per ACQ-7 on regular clinical practice, were included in a prospective, multicenter fashion, and had their maintenance treatment adjusted on visit 1. On follow-up (visit 2) four weeks later, the subjects were reevaluated as controlled or not well controlled using ACQ-7 versus a combination of FeNO and ACQ-7. Out of 381 subjects enrolled, 225 (59.1%) had not well controlled asthma on visit 2 as determined by ACQ-7, and 264 (69.3%) as per combined FeNO and ACQ-7. The combination of FeNO to ACQ-7 increased by 14.8% the detection of not well controlled asthma following maintenance therapy adjustment. The addition of FeNO to ACQ-7 increased the detectability of not well controlled asthma upon adjustment of maintenance therapy. Adding a measure of airway inflammation to usual symptom and spirometry based scores increases the efficacy of current asthma clinical control assessment.

  10. Sensitivity of salivary hydrogen sulfide to psychological stress and its association with exhaled nitric oxide and affect.

    Science.gov (United States)

    Kroll, Juliet L; Werchan, Chelsey A; Reeves, Audrey G; Bruemmer, Kevin J; Lippert, Alexander R; Ritz, Thomas

    2017-10-01

    Hydrogen sulfide (H2S) is the third gasotransmitter recently discovered after nitric oxide (NO) and carbon monoxide. Both NO and H2S are involved in multiple physiological functions. Whereas NO has been shown to vary with psychological stress, the influence of stress on H2S and the relationship between H2S and NO are unknown. We therefore examined levels of salivary H2S and NO in response to a stressful final academic exam period. Measurements of stress, negative affect, and fraction of exhaled NO (FENO), were obtained from students (N=16) and saliva was collected at three time points: low-stress period in the semester, early exam period, and late exam period. Saliva was immediately analyzed for H2S with the fluorescent probe Sulfidefluor-4. H2S increased significantly during the early exam period and FENO decreased gradually towards the late exam period. H2S, FENO, negative affect, and stress ratings were positively associated with each other: as stress level and negative affect increased, values of H2S increased; in addition, as FENO levels decreased, H2S also decreased. Asthma status did not modify these associations. Sustained academic stress increases H2S and these changes are correlated with NO and the experience of stress and negative affect. These findings motivate research with larger samples to further explore the interaction and function of H2S and FENO during psychological stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Measurement of exhaled breath carbon monoxide in clinical practice: A study of levels in Central Pennsylvania community members.

    Science.gov (United States)

    Hrabovsky, Shari; Yingst, Jessica M; Veldheer, Susan; Hammett, Erin; Foulds, Jonathan

    2017-06-01

    Exhaled breath carbon monoxide (eBCO) reading is a useful tool for nurse practitioners to evaluate smoking status and other exposures to carbon monoxide (CO) to identify risk for cancer and chronic disease. This study aimed to measure one community's eBCO and identify potential environmental factors that may affect eBCO among nonsmokers. Data collected by convenience sampling at community health events included self-reported tobacco use and potential CO exposure. Means and frequency calculations describe the sample, two-sided t-tests determine differences in continuous variables, and chi-square tests determine differences in frequencies of CO levels between nontobacco users exposed to additional CO from their environment and nontobacco users who were not. As expected, smokers have significantly higher mean eBCO than nonsmokers (20.1 ppm vs. 4.4 ppm, p 6 ppm), although there were no environmental factors that explained a higher eBCO. Measuring eBCO provides an opportunity for the nurse practitioner to engage in a conversation about the impact of smoking and other environmental factors that contribute to eBCO and health. Keeping record of patients' smoking status and eBCO in their medical record is a valuable measure of the nurse practitioner's delivery of this care. ©2017 American Association of Nurse Practitioners.

  12. Effect of exposure to an Asian dust storm on fractional exhaled nitric oxide in adult asthma patients in Western Japan.

    Science.gov (United States)

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Shimizu, Eiji

    2015-01-01

    Epidemiological investigations indicate that an Asian dust storm (ADS) can aggravate respiratory disorders. However, the effects of ADS on airway inflammation remain unclear. The aim of this study was to investigate the association of exposure to ADS with airway inflammation. The subjects were 33 adult patients with asthma who measured daily peak flow expiratory (PEF) from March to May 2012. Fractional exhaled nitric oxide (FeNO) was measured before and after ADS. The FeNO values were 13.8±13.7 ppb before the ADS and 20.3±19.0 ppb after the ADS, with no significant difference. There was also no significant association of PEF with ADS exposure. However, the increase of FeNO after ADS exposure was proportional to the decrease of PEF (R=-0.78, P<0.0001). These results suggest that airway inflammation aggravated by ADS exposure may induce a decrease in pulmonary function in some adult patients with asthma.

  13. Exhaled Breath Condensate Detects Baseline Reductions in Chloride and Increases in Response to Albuterol in Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    Courtney M. Wheatley

    2013-01-01

    Full Text Available Impaired ion regulation and dehydration is the primary pathophysiology in cystic fibrosis (CF lung disease. A potential application of exhaled breath condensate (EBC collection is to assess airway surface liquid ionic composition at baseline and in response to pharmacological therapy in CF. Our aims were to determine if EBC could detect differences in ion regulation between CF and healthy and measure the effect of the albuterol on EBC ions in these populations. Baseline EBC Cl − , DLCO and SpO 2 were lower in CF (n = 16 compared to healthy participants (n = 16. EBC Cl − increased in CF subjects, while there was no change in DLCO or membrane conductance, but a decrease in pulmonary-capillary blood volume in both groups following albuterol. This resulted in an improvement in diffusion at the alveolar-capillary unit, and removal of the baseline difference in SpO 2 by 90-minutes in CF subjects. These results demonstrate that EBC detects differences in ion regulation between healthy and CF individuals, and that albuterol mediates increases in Cl − in CF, suggesting that the benefits of albuterol extend beyond simple bronchodilation.

  14. Exhaled nitric oxide and screening for occupational asthma in two at-risk sectors: bakery and hairdressing.

    Science.gov (United States)

    Florentin, A; Acouetey, D-S; Remen, T; Penven, E; Thaon, I; Zmirou-Navier, D; Paris, C

    2014-06-01

    Fractional exhaled nitric oxide (FENO) levels are increasingly being used in the diagnosis and management of asthma. However, this indicator has rarely been used to detect occupational asthma. To examine non-invasive methods to estimate airway inflammation. A nested case-control study was conducted among a retrospective cohort of young workers in the bakery, pastry-making and hairdressing industries. Subjects underwent a clinical examination during a medical visit. Blood samples were collected and FENO levels measured. Cases were subjects diagnosed as suffering from 'confirmed' or 'probable' occupational asthma. Of the 178 workers included in the study, 19 were cases. In univariate analysis, FENO was associated with case/control status, and height and smoking status. In a multiple linear regression model, case/control status (P 8.5 ppb and a positive clinical examination increases specificity without loss of sensitivity (to 80.5% and 79.0%, respectively). This study suggests that FENO measurements alone cannot be considered a useful screening test for occupational asthma. Further investigations are needed to investigate the use of combined FENO and questionnaire or repeated measures.

  15. Acute Response to Cigarette Smoking Assessed in Exhaled Breath Condensate in Patients with Chronic Obstructive Pulmonary Disease and Healthy Smokers.

    Science.gov (United States)

    Maskey-Warzęchowska, M; Nejman-Gryz, P; Osinka, K; Lis, P; Malesa, K; Górska, K; Krenke, R

    2017-01-01

    The effect of acute exposure to cigarette smoke (CS) on the respiratory system has been less extensively studied than the long term effects of smoking. The aim of the present study was to evaluate the acute response to CS in smokers suffering from chronic obstructive pulmonary disease (COPD) and in healthy smokers. Nineteen stable COPD patients and 19 young healthy smokers were enrolled. Tumor necrosis factor alpha (TNF-α), IL-1β, and malondialdehyde (MDA) were measured in exhaled breath condensate (EBC) before and 60 min after smoking a cigarette. When pre- and post-CS levels of the evaluated biomarkers were compared, no differences were found in either group. However, the post-CS MDA was significantly greater in healthy smokers than that in COPD patients; 20.41 vs. 16.81 nmol/L, p = 0.01, respectively. Post-CS TNF-α correlated inversely with FEV 1 /FVC in healthy smokers. We conclude that CS does not acutely increase the EBC concentration of the inflammatory markers either in COPD patients or healthy smokers. The short term CS-induced oxidative stress is higher in young smokers than in COPD patients, which what may indicate a higher susceptibility to CS content of the former.

  16. Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor

    Science.gov (United States)

    Lewicki, Rafał; Kosterev, Anatoliy A.; Thomazy, David M.; Risby, Terence H.; Solga, Steven; Schwartz, Timothy B.; Tittel, Frank K.

    2011-01-01

    A continuous wave, thermoelectrically cooled, distributed feedback quantum cascade laser (DFB-QCL) based sensor platform for the quantitative detection of ammonia (NH3) concentrations present in exhaled human breath is reported. The NH3 concentration measurements are performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is very well suited for real time breath analysis, due to the fast gas exchange inside a compact QEPAS gas cell. An air-cooled DFB-QCL was designed to target the interference-free NH3 absorption line located at 967.35 cm-1 (λ~10.34 μm). The laser is operated at 17.5 °C, emitting ~ 24 mW of optical power at the selected wavelength. A 1σ minimum detectable concentration of ammonia for the line-locked NH3 sensor is ~ 6 ppb with 1 sec time resolution. The NH3 sensor, packaged in a 12"x14"x10" housing, is currently installed at a medical breath research center in Bethlehem, PA and tested as an instrument for non-invasive verification of liver and kidney disorders based on human breath samples.

  17. Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations

    Science.gov (United States)

    Hinkley, T.K.; Le Cloarec, M.-F.; Lambert, G.

    1994-01-01

    volcanic plumes, and Cd and Tl are enriched relative to the others. Indium is much more abundant in the plume of the hotspot volcano Kilauea than in the Etna plume (probably non-hotspot in character). It may be a useful indicator of the tapping of deep mantle zones, or could aid in the interpretation of reports of Pt group metals in exhalations from hot spot volcanoes. Indium in old glacial ice strata could help assess magnitude and variability of exhalations from hotspot volcanoes in past time. Strong melt-vapor fractionation of the alkali and alkaline earth metals may only be observed in plumes during quiescent degassing of volcanoes; when large amounts of ash or spatter (undifferentiated lava) enter the plume, its alkali and alkaline earth metal composition may approach that of the melt. Ratios among the chalcophile metals may not be much changed by addition of ash, because their concentrations in melt are so small, and masses of them in any plume may remain dominated by transfer across the melt-vapor interface. Radon daughter nuclides give information about state of volcanic activity at time of sampling. The precisely known origins, ultratrace detectability, decay systematics, and wide variations in volatility of these species provide information about residence times, degassing and travel histories, and identities of melt bodies in volcanic systems. ?? 1994.

  18. Characterization of a portable method for the collection of exhaled breath condensate and subsequent analysis of metal content.

    Science.gov (United States)

    Fox, Julie R; Spannhake, Ernst W; Macri, Kristin K; Torrey, Christine M; Mihalic, Jana N; Eftim, Sorina E; Lees, Peter S J; Geyh, Alison S

    2013-04-01

    Using exhaled breath condensate (EBC) as a biological media for analysis of biomarkers of exposure may facilitate the understanding of inhalation exposures. In this study, we present method validation for the collection of EBC and analysis of metals in EBC. The collection method was designed for use in a small scale longitudinal study with the goal of improving reproducibility while maintaining economic feasibility. We incorporated the use of an Rtube with additional components as an assembly, and trained subjects to breathe into the apparatus. EBC was collected from 8 healthy adult subjects with no known elevated exposures to Mn, Cr, Ni, and Cd repeatedly (10 times) within 7 days and analyzed for these metals via ICP-MS. Method detection limits were obtained by mimicking the process of EBC collection with ultrapure water, and resulted in 46-62% of samples falling in a range less than the method detection limit. EBC metal concentrations were found to be statistically significantly associated (p < 0.05) with room temperature and relative humidity during collection, as well as with the gender of the subject. The geometric mean EBC metal concentrations in our unexposed subjects were 0.57 μg Mn per L, 0.25 μg Cr per L, 0.87 μg Ni per L, and 0.14 μg Cd per L. The overall standard deviation was greater than the mean estimate, and the major source in EBC metals concentrations was due to fluctuations in subjects' measurements over time rather than to the differences between separate subjects. These results suggest that measurement and control of EBC collection and analytical parameters are critical to the interpretation of EBC metals measurements. In particular, rigorous estimation of method detection limits of metals in EBC provides a more thorough evaluation of accuracy.

  19. Comparison of exhaled carbon monoxide levels among commuters and roadside vendors in an urban and a suburban population in Pakistan.

    Science.gov (United States)

    Sabzwari, Saniya R; Fatmi, Zafar

    2011-09-01

    Carbon monoxide (CO) is one of the six criteria air pollutants related to urbanization and has a wide range of health effects. The study measured and compared the exhaled CO levels among commuters and roadside vendors in potentially heavy and low traffic volume areas of Karachi, a megacity in Pakistan. Saddar town [areas of M. A. Jinnah Road (Tibet Center, Denso Hall) and Empress Market] was selected to represent an area of high traffic volume and the suburban town of Gadap (Gadap and Gulshan-e-Maymar) was selected to represent an area of no or low traffic volume. The study compared the CO exposure of commuters and roadside vendors in high and low traffic volume in Karachi. CO exposure was measured in expired air using the breath analyzer module of Bacharach Monoxor-II, USA. A total of 326 individuals (115 commuters and 211 stationary roadside vendors) from Saddar town (n = 193) and Gadap town (n = 133) were selected. In addition, CO levels in ambient air in the same areas, using portable CO analyzer (Bacharach, Monoxor-II, USA), were measured. The mean ambient CO level at Saddar town was 15.6 (SE ± 2.6) ppm compared to 3.3 (SE ± 0.3) ppm at Gadap town. The mean CO level in expired air was significantly higher among nonsmokers at Saddar town (12.8 ± 0.5 ppm) compared to the nonsmokers at Gadap town (7.8 ± 0.4 ppm). The mean CO level in expired air among smokers was twice that of nonsmokers (21.6 vs. 10.6 ppm). CO in expired air was greater among high traffic volume commuters and roadside stationary population in Karachi, Pakistan. The population in Karachi is exposed to high concentration of air pollutants. These pollutants need to be characterized for health effects and interventions needs to be developed.

  20. Plasma and exhaled breath condensate nitrite-nitrate level in relation to environmental exposures in adults in the EGEA study.

    Science.gov (United States)

    Rava, Marta; Varraso, Raphäelle; Decoster, Brigitte; Huyvaert, Hélène; Le Moual, Nicole; Jacquemin, Bénédicte; Künzli, Nino; Kauffmann, Francine; Zerimech, Farid; Matran, Régis; Nadif, Rachel

    2012-10-15

    This study evaluated the associations between biological markers in the nitrate-nitrite-NO pathway and four environmental exposures among subjects examined in the second survey (2003-2007) of the French Epidemiological study on Genetics and Environment of Asthma (EGEA). Total nitrite and nitrate (NO(2)(-) /NO(3)(-)) levels were measured both in plasma and in exhaled breath condensate (EBC) in 949 adults. Smoking, diet and exposure to chlorine products were assessed using standardized questionnaires. Exposure to air pollutants was estimated by using geostatistical models. All estimates were obtained with generalized estimating equations for linear regression models. Median levels of NO(2)(-)/NO(3)(-) were 36.3 μM (1st-3rd quartile: 25.7, 51.1) in plasma and 2.0 μmol/mg proteins (1st-3rd quartile 0.9, 3.9) in EBC. After adjustment for asthma, age, sex and menopausal status, plasma NO(2)(-)/NO(3)(-) level increased with leafy vegetable consumption (above versus below median=0.04 (95%CI: 0.001, 0.07)) and decreased in smokers (versus non/ex-smokers=-0.08 (95%CI: -0.11, -0.04). EBC NO(2)(-)/NO(3)(-) level decreased in smokers (-0.08 (95%CI: -0.16, -0.001)) and with exposure to ambient O(3) concentration (above versus below median=-0.10 (95%CI: -0.17, -0.03)). Cured meat, chlorine products, PM(10) and NO(2) concentrations were not associated with NO(2)(-)/NO(3)(-) levels. Results suggest that potential modifiable environmental and behavioral risk factors may modify NO(2)(-)/NO(3)(-) levels in plasma and EBC according to the route of exposure. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Use of Exhaled Nitric Oxide Measurement to Identify a Reactive, at-Risk Phenotype among Patients with Asthma

    Science.gov (United States)

    Dweik, Raed A.; Sorkness, Ronald L.; Wenzel, Sally; Hammel, Jeffrey; Curran-Everett, Douglas; Comhair, Suzy A. A.; Bleecker, Eugene; Busse, William; Calhoun, William J.; Castro, Mario; Chung, Kian Fan; Israel, Elliot; Jarjour, Nizar; Moore, Wendy; Peters, Stephen; Teague, Gerald; Gaston, Benjamin; Erzurum, Serpil C.

    2010-01-01

    Rationale: Exhaled nitric oxide (FeNO) is a biomarker of airway inflammation in mild to moderate asthma. However, whether FeNO levels are informative regarding airway inflammation in patients with severe asthma, who are refractory to conventional treatment, is unknown. Here, we hypothesized that classification of severe asthma based on airway inflammation as defined by FeNO levels would identify a more reactive, at-risk asthma phenotype. Methods: FeNO and major features of asthma, including airway inflammation, airflow limitation, hyperinflation, hyperresponsiveness, and atopy, were determined in 446 individuals with various degrees of asthma severity (175 severe, 271 nonsevere) and 49 healthy subjects enrolled in the Severe Asthma Research Program. Measurements and Main Results: FeNO levels were similar among patients with severe and nonsevere asthma. The proportion of individuals with high FeNO levels (>35 ppb) was the same (40%) among groups despite greater corticosteroid therapy in severe asthma. All patients with asthma and high FeNO had more airway reactivity (maximal reversal in response to bronchodilator administration and by methacholine challenge), more evidence of allergic airway inflammation (sputum eosinophils), more evidence of atopy (positive skin tests, higher serum IgE and blood eosinophils), and more hyperinflation, but decreased awareness of their symptoms. High FeNO identified those patients with severe asthma characterized by the greatest airflow obstruction and hyperinflation and most frequent use of emergency care. Conclusions: Grouping of asthma by FeNO provides an independent classification of asthma severity, and among patients with severe asthma identifies the most reactive and worrisome asthma phenotype. PMID:20133930

  2. Metabolic Signatures of Lung Cancer in Sputum and Exhaled Breath Condensate Detected by H Magnetic Resonance Spectroscopy: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2016-01-01

    Full Text Available Objectives Lung cancer is one of the most lethal cancers. Currently, there are no biomarkers for early detection, monitoring treatment response, and detecting recurrent lung cancer. We undertook this study to determine if 1 H magnetic resonance spectroscopy (MRS of sputum and exhaled breath condensate (EBC, as a noninvasive tool, can identify metabolic biomarkers of lung cancer. Materials and Methods Sputum and EBC samples were collected from 20 patients, comprising patients with pathologically confirmed non-small cell lung cancer ( n = 10 and patients with benign respiratory conditions ( n = 10. Both sputum and EBC samples were collected from 18 patients; 2 patients provided EBC samples only. 1 H MR spectra were obtained on a Bruker Avance 400 MHz nuclear magnetic resonance (NMR spectrometer. Sputum samples were further confirmed cytologically to distinguish between true sputum and saliva. Results In the EBC samples, median concentrations of propionate, ethanol, acetate, and acetone were higher in lung cancer patients compared to the patients with benign conditions. Median concentration of methanol was lower in lung cancer patients (0.028 mM than in patients with benign conditions (0.067 mM; P = 0.028. In the combined sputum and saliva and the cytologically confirmed sputum samples, median concentrations of N -acetyl sugars, glycoprotein, propionate, lysine, acetate, and formate were lower in the lung cancer patients than in patients with benign conditions. Glucose was found to be consistently absent in the combined sputum and saliva samples (88% as well as in the cytologically confirmed sputum samples (86% of lung cancer patients. Conclusion Absence of glucose in sputum and lower concentrations of methanol in EBC of lung cancer patients discerned by 1 H MRS may serve as metabolic biomarkers of lung cancer for early detection, monitoring treatment response, and detecting recurrence.

  3. Association of exhaled carbon monoxide with subclinical cardiovascular disease and their conjoint impact on the incidence of cardiovascular outcomes

    Science.gov (United States)

    Cheng, Susan; Enserro, Danielle; Xanthakis, Vanessa; Sullivan, Lisa M.; Murabito, Joanne M.; Benjamin, Emelia J.; Polak, Joseph F.; O'Donnell, Christopher J.; Wolf, Philip A.; O'Connor, George T.; Keaney, John F.; Vasan, Ramachandran S.

    2014-01-01

    Aims Whereas endogenous carbon monoxide (CO) is cytoprotective at physiologic levels, excess CO concentrations are associated with cardiometabolic risk and may represent an important marker of progression from subclinical to clinical cardiovascular disease (CVD). Methods and results In 1926 participants of the Framingham Offspring Study (aged 57 ± 10 years, 46% women), we investigated the relationship of exhaled CO, a surrogate of blood CO concentration, with both prevalent subclinical CVD and incident clinical CVD events. Presence of subclinical CVD was determined using a comprehensive panel of diagnostic tests used to assess cardiac and vascular structure and function. Individuals with the highest (>5 p.p.m.) compared with lowest (≤4 p.p.m.) CO exposure were more likely to have subclinical CVD [odds ratios (OR): 1.67, 95% CI: 1.32–2.12; P < 0.001]. During the follow-up period (mean 5 ± 3 years), 193 individuals developed overt CVD. Individuals with both high CO levels and any baseline subclinical CVD developed overt CVD at an almost four-fold higher rate compared with those with low CO levels and no subclinical disease (22.1 vs. 6.3%). Notably, elevated CO was associated with incident CVD in the presence [hazards ration (HR): 1.83, 95% CI: 1.08–3.11; P = 0.026] but not in the absence (HR: 0.80, 95% CI: 0.42–1.53; P = 0.51) of subclinical CVD (Pinteraction = 0.019). Similarly, subclinical CVD was associated with incident CVD in the presence of high but not low CO exposure. Conclusion Our findings in a community-based sample suggest that elevated CO is a marker of greater subclinical CVD burden and, furthermore, a potential key component in the progression from subclinical to clinical CVD. PMID:24574370

  4. [The value of fractionated exhaled nitric oxide in the diagnosis of asthma-chronic obstructive pulmonary disease overlap syndrome].

    Science.gov (United States)

    Deng, D D; Zhou, A Y; Shuang, Q C; Chen, P

    2017-02-12

    Objective: To explore the diagnostic value of fractionated exhaled nitric oxide (FeNO) measurement in patients with asthma-chronic obstructive pulmonary disease(COPD) overlap syndrome (ACOS). Methods: Eighty-one patients with ACOS, 76 patients with asthma, 82 patients with COPD and 39 healthy non-smoking subjects were recruited in the study. Naku Lun breath analyzer was used to measure the level of FeNO in the 4 groups. Pulmonary function was also measured. The ROC curve was used to differentiate ACOS from patients with COPD. The correlation between FeNO and lung function was analyzed with Pearson correlation analysis. Results: The levels of FeNO in asthmatic group, COPD group, ACOS group and healthy group were (102.3±8.2)×10(9,) (23.7±0.6)×10(9,) (50.2±3.2)×10(9,) and (18.5±7.1)×10(9) respectively. Among the former 3 groups, the differences of FeNO were statistically significant (P29×10(9) was the best cutoff point to differentiate ACOS from COPD; the sensitivity was 80%, specificity was 73%, positive predictive value was 75%, and negative predictive value and accuracy was 79% and 77%. There was no correlation between FeNO and FEV(1)% or FEV(1)/FVC in ACOS, COPD and asthma groups (r=0.12, 0.11, P>0.05; r=0.11, 0.03, P>0.05; r=0.06, 0.08, P>0.05). Conclusion: FeNO is a good marker to help clinicians differentiate ACOS from COPD. FeNO>29×10(9) was the best cutoff point for the identification of patients with ACOS from COPD.

  5. The simultaneous detection of trivalent & hexavalent chromium in exhaled breath condensate: A feasibility study comparing workers and controls.

    Science.gov (United States)

    Leese, Elizabeth; Morton, Jackie; Gardiner, Philip H E; Carolan, Vikki A

    2017-04-01

    The analytical method outlined in this feasibility study has been used to show that trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) can be detected and measured in exhaled breath condensate (EBC) samples. EBC samples and urine samples were collected from a cohort of 58 workers occupationally exposed to hexavalent chromium compounds and 22 unexposed volunteers (control group). Levels of Cr(III) and Cr(VI) were determined in EBC samples and total chromium levels were determined in urine samples. Pre and post working week samples for both EBC and urine were collected in tandem. Total chromium in urine samples was analysed by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of Cr(III) and Cr(VI) in EBC samples used a hyphenated micro liquid chromatography (μLC) system coupled to an ICP-MS. Separation was achieved using an anion exchange micro-sized column. The results showed that the occupationally exposed workers had significantly higher levels of Cr(III) and Cr(VI) in their EBC samples than the control group, as well as higher levels of total chromium in their urine samples. However, for the exposed workers no significant difference was found between pre and post working week EBC samples for either Cr(III) or Cr(VI). This study has established that Cr(III) and Cr(VI) can simultaneously be detected and measured in 'real' EBC samples and will help in understanding inhalation exposure. Crown Copyright © 2016. Published by Elsevier GmbH. All rights reserved.

  6. Comfort and exertion while using filtering facepiece respirators with exhalation valve and an active venting system among male military personnel.

    Science.gov (United States)

    Seng, Melvin; Wee, Liang En; Zhao, Xiahong; Cook, Alex R; Chia, Sin Eng; Lee, Vernon J

    2017-07-06

    This study aimed to determine if disposable filtering facepiece respirators (FFRs), with exhalation valve (EV) and a novel active venting system (AVS), provided greater perceived comfort and exertion when compared to standard N95 FFRs without these features among male military personnel performing prolonged essential outdoor duties. We used a randomised open-label controlled crossover study design to compare three FFR options: (a) standard FFR; (b) FFR with EV; and (c) FFR with EV+AVS. Male military personnel aged between 18 and 20 years completed a questionnaire at the beginning (baseline), after two hours of standardised non-strenuous outdoor duty and after 12 hours of duty divided into two-hour work-rest cycles. Participants rated the degree of discomfort, exertion and symptoms using a five-point Likert scale. The association between outcomes and the types of FFR was assessed using a multivariate ordered probit mixed-effects model. For a majority of the symptoms, study participants rated FFR with EV and FFR with EV+AVS with significantly better scores than standard FFR. Both FFR with EV and FFR with EV+AVS had significantly less discomfort (FFR with EV+AVS: 91.1%; FFR with EV: 57.6%) and exertion (FFR with EV+AVS: 83.5%; FFR with EV: 34.4%) than standard FFR. FFR with EV+AVS also had significantly better scores for exertion (53.4%) and comfort (39.4%) when compared to FFR with EV. Usage of FFR with EV+AVS resulted in significantly reduced symptoms, discomfort and exertion when compared to FFR with EV and standard FFR.

  7. Clinical trial on the efficacy of exhaled carbon monoxide measurement in smoking cessation in primary health care.

    Science.gov (United States)

    Ripoll, Joana; Girauta, Helena; Ramos, Maria; Medina-Bombardó, David; Pastor, Agnès; Alvarez-Ossorio, Cristina; Gorreto, Lucía; Esteva, Maria; García, Elena; Uréndez, Ana; Buades, Ana; Torres, Elena

    2012-07-04

    Smoking cessation is beneficial for our health at any point in life, both in healthy people and in people already suffering from a smoking-related disease. Any help to quit smoking can produce considerable benefits for Public Health. The purpose of the present study is to evaluate the efficacy of the CO-oximetry technique together with brief advice in smoking cessation, in terms of reduction of the number of cigarettes or in the variation of the motivation to quit smoking at month 12 compared with brief advice alone. Randomised, parallel, single-blind clinical trial in a primary health care setting in Majorca (Spain). Smokers in contemplation or pre-contemplation phase will be included in the study. Smokers in preparation phase, subjects with a terminal illness or whose health status does not allow them to understand the study or complete the informed consent, and pregnant or breastfeeding women. The subjects will be randomly assigned to the control group (CG) or the intervention group (IG). The CG will receive brief advice, and the IG will receive brief advice together with a measurement of exhaled CO. There will be follow-up evaluations at 6 and 12 months after inclusion. 471 subjects will be needed per group in order to detect a difference between groups ≥ 5%. sustained smoking cessation (at 6 and 12 months) confirmed by urine cotinine test. point smoking cessation at 6 and 12 months both confirmed by urine cotinine analysis and self-reported, reduction in cigarette consumption, and variation in phase of smoking cessation. CO-oximetry is an inexpensive, non-invasive, fast technique that requires little technical training; making it a technique for risk assessment in smokers that can be easily applied in primary care and, if proven effective, could serve as a reinforcement aid in smoking cessation intervention activities. Current Controlled Trials ISRCTN67499921.

  8. Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel.

    Science.gov (United States)

    Perrier, Frédéric; Richon, Patrick; Gautam, Umesh; Tiwari, Dilli Ram; Shrestha, Prithvi; Sapkota, Soma Nath

    2007-01-01

    The concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature. This interpretation is supported by temperature measurements in the atmosphere of the tunnel, a few meters away from the entrance. The temporal variations of the diurnal amplitude of this temperature indeed follow the ventilation rate deduced from the radon measurements. In the absence of significant ventilation (summer season), the radon exhalation flux at the rock surface into the tunnel atmosphere can be inferred; it exhibits a yearly variation with additional transient reductions associated with heavy rainfall, likely to be due to water infiltration. No effect of atmospheric pressure variations on the radon concentration is observed in this tunnel. This experiment illustrates how small differences in the location and geometry of a tunnel can lead to vastly different behaviours of the radon concentration versus time. This observation has consequences for the estimation of the dose rate and the practicability of radon monitoring for tectonic purposes in underground environments.

  9. [Application of pulmonary function and fractional exhaled nitric oxide tests in the standardized management of bronchial asthma in children].

    Science.gov (United States)

    Zhang, Hui-Qin; Zhang, Hui-Qin; Zhang, Jing-Jing; Liu, Yu-Dong; Deng, Yue-Lin; Luo, Jian-Feng; Niu, Huan-Hong; Sun, Xin

    2017-04-01

    To investigate the changes of pulmonary function and fractional exhaled nitric oxide (FeNO) in the standardized treatment of bronchial asthma in children. A total of 254 children who were newly diagnosed with acute exacerbation of bronchial asthma were selected as asthma group, and they were divided into two subgroups: asthma with concurrent rhinitis and asthma without concurrent rhinitis. All patients received the standardized management and treatment for one year. The pulmonary function parameters included forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), maximal mid-expiratory flow (MMEF), and mid-expiratory flow at 25%, 50%, and 75% of vital capacity (MEF25, MEF50, and MEF75). The FeNO levels were measured before treatment and at 3, 6, 9, and 12 months after treatment. Another 62 healthy children were selected as the control group, and the pulmonary function and FeNO levels were measured only once. During one year of standardized treatment, FEV1, PEF, MMEF, MEF25, MEF50, and MEF75 gradually increased, and FeNO levels gradually decreased (Pasthma group and the control group after one year of treatment (P>0.05). However, the asthma group had a significantly higher FeNO levels than the control group after one year of treatment (Pbronchial asthma in children, pulmonary function parameters gradually increase and FeNO levels gradually decrease. The recovery of large airway function occurs earlier than the recovery of small airway function. Furthermore, the effect of rhinitis on airway responsiveness should be noted.

  10. [Diagnostic values of fractional exhaled nitric oxide for typical bronchial asthma and cough variant asthma in children].

    Science.gov (United States)

    Wang, Tian-Yue; Shang, Yun-Xiao; Zhang, Han

    2015-08-01

    To study the diagnostic values of fractional exhaled nitric oxide (FeNO) for typical bronchial asthma and cough variant asthma in children, and to explore whether FeNO can be applied to differentiate typical bronchial asthma from cough variant asthma in children. A total of 150 children who were newly diagnosed with typical bronchial asthma between June 2012 and June 2014, as well as 120 children who were newly diagnosed with cough variant asthma during the same period, were selected as subjects. FeNO measurement, spirometry, and methacholine provocation test were performed for both groups. Meanwhile, 150 healthy children were selected as the control group, and their FeNO was measured. The diagnostic values of FeNO for typical bronchial asthma and cough variant asthma were analyzed using the receiver operating characteristic curve. The FeNO values in the typical bronchial asthma and cough variant asthma groups were significantly higher than in the control group (Pbronchial asthma group was significantly higher than in the cough variant asthma group (Pbronchial asthma group than in the cough variant asthma group (Pbronchial asthma, with a sensitivity of 83.3% and a specificity of 86.7%; the optimal cut-off value of FeNO was 15.5 ppb for the diagnosis of cough variant asthma, with a sensitivity of 67.5% and a specificity of 78.0%; the optimal cut-off value of FeNO was 28.5 ppb for the differentiation between typical bronchial asthma and cough variant asthma, with a sensitivity of 60.7% and a specificity of 82.5%. Measurenment of FeNO may be useful in the diagnosis and differential diagnosis of typical bronchial asthma and cough variant asthma.

  11. Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subjects with similar professional asbestos exposure

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, G. de; Longobardi, F.; Stallone, G.; Trizio, L.; Tutino, M. [University of Bari Aldo Moro, Department of Chemistry, Bari (Italy); Dragonieri, S. [University of Bari Aldo Moro, Department of Pulmonology, Bari (Italy); Musti, M. [University of Bari Aldo Moro, Department of Occupational Medicine, Bari (Italy)

    2010-12-15

    Malignant pleural mesothelioma (MPM) is an aggressive tumour whose main aetiology is the long-term exposure to asbestos fibres. The diagnostic procedure of MPM is difficult and often requires invasive approaches; therefore, it is clinically important to find accurate markers for MPM by new noninvasive methods that may facilitate the diagnostic process and identify patients at an earlier stage. In the present study, the exhaled breath of 13 patients with histology-established diagnosis of MPM, 13 subjects with long-term certified professional exposure to asbestos (EXP) and 13 healthy subjects without exposure to asbestos (healthy controls, HC) were analysed. An analytical procedure to determine volatile organic compounds by sampling of air on a bed of solid sorbent and thermal desorption GC-MS analysis was developed in order to identify the compounds capable of discriminating among the three groups. The application of univariate (ANOVA) and multivariate statistical treatments (PCA, DFA and CP-ANN) showed that cyclopentane and cyclohexane were the dominant variables able to discriminate among the three groups. In particular, it was found that cyclohexane is the only compound able to differentiate the MPM group from the other two; therefore, it can be a possible marker of MPM. Cyclopentane is the dominant compound in the discrimination between EXP and the other groups (MPM and HC); then, it can be considered a good indicator for long-term asbestos exposure. This result suggests the need to perform frequent and thorough investigations on people exposed to asbestos in order to constantly monitor their state of health or possibly to study the evolution of disease over time. (orig.)

  12. Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subjects with similar professional asbestos exposure.

    Science.gov (United States)

    de Gennaro, G; Dragonieri, S; Longobardi, F; Musti, M; Stallone, G; Trizio, L; Tutino, M

    2010-12-01

    Malignant pleural mesothelioma (MPM) is an aggressive tumour whose main aetiology is the long-term exposure to asbestos fibres. The diagnostic procedure of MPM is difficult and often requires invasive approaches; therefore, it is clinically important to find accurate markers for MPM by new noninvasive methods that may facilitate the diagnostic process and identify patients at an earlier stage. In the present study, the exhaled breath of 13 patients with histology-established diagnosis of MPM, 13 subjects with long-term certified professional exposure to asbestos (EXP) and 13 healthy subjects without exposure to asbestos (healthy controls, HC) were analysed. An analytical procedure to determine volatile organic compounds by sampling of air on a bed of solid sorbent and thermal desorption GC-MS analysis was developed in order to identify the compounds capable of discriminating among the three groups. The application of univariate (ANOVA) and multivariate statistical treatments (PCA, DFA and CP-ANN) showed that cyclopentane and cyclohexane were the dominant variables able to discriminate among the three groups. In particular, it was found that cyclohexane is the only compound able to differentiate the MPM group from the other two; therefore, it can be a possible marker of MPM. Cyclopentane is the dominant compound in the discrimination between EXP and the other groups (MPM and HC); then, it can be considered a good indicator for long-term asbestos exposure. This result suggests the need to perform frequent and thorough investigations on people exposed to asbestos in order to constantly monitor their state of health or possibly to study the evolution of disease over time.

  13. Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker.

    Science.gov (United States)

    Chien, Po-Jen; Suzuki, Takuma; Tsujii, Masato; Ye, Ming; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2017-05-15

    Exhaled breath analysis has attracted lots of researchers attention in the past decades due to its advantages such as its non-invasive property and the possibility of continuous monitoring. In addition, several volatile organic compounds in breath have been identified as biomarkers for some diseases. Particularly, studies have pointed out that concentration of isopropanol (IPA) in exhaled air might relate with certain illnesses such as liver disease, chronic obstructive pulmonary (COPD), and lung cancer. In this study, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for the breath IPA concentration determination was constructed and optimized. This bio-sniffer measures the concentration of IPA according to the fluorescence intensity of oxidized nicotinamide adenine dinucleotide (NADH), which was produced by an enzymatic reaction of secondary alcohol dehydrogenase (S-ADH). The NADH detection system employed an UV-LED as the excitation light, and a highly sensitive photomultiplier tube (PMT) as a fluorescence intensity detector. A gas-sensing region was developed using an optical fiber probe equipped with a flow-cell and enzyme immobilized membrane, and connected to the NADH measurement system. The calibration range of the IPA bio-sniffer was confirmed from 1ppb to 9060ppb that was comparable to other IPA analysis methods. The results of the analysis of breath IPA concentration in healthy subjects using the bio-sniffer showed a mean concentration of 16.0ppb, which was similar to other studies. These results have demonstrated that this highly sensitive and selective bio-sniffer could be used to measure the IPA in exhaled air, and it is expected to apply for breath IPA research and investigation of biomarkers for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Agreement Between Exhaled Breath Carbon Monoxide Threshold Levels and Self-Reported Cigarette Smoking in a Sample of Male Adolescents in Jordan

    OpenAIRE

    Nihaya Al-Sheyab; Kheirallah, Khalid A.; Thomson Mangnall, Linda J; Robyn Gallagher

    2015-01-01

    This study aimed to measure the percent agreement between Exhaled Breath Carbon Monoxide (eBCO) measure using a piCO+ smokerlyzer® and self-reported cigarette smoking status and to determine the optimal thresholds for definite identification of cigarette smokers of male school students in Jordan. A descriptive, cross sectional, study of a random sample of male adolescents in grades 7 and 8 from four public high schools in Irbid, completed an adaptation of a standardized Arabic-language tobacc...

  15. Exposure to Exhaled Air from a Sick Occupant in a Two-Bed Hospital Room with Mixing Ventilation: Effect of Posture of Doctor and Air Change Rate

    OpenAIRE

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Barova, Mariya

    2013-01-01

    Full-scale measurements were performed in a climate chamber set as a two-bed hospital room, ventilated at 3, 6 and 12 ACH with overhead mixing ventilation. Air temperature was kept constant at 22 °C. Two breathing thermal manikins were used to mimic a sick patient lying on one side in one of the beds and a doctor. A thermal dummy mimicked an exposed patient lying in the second bed. The doctor either stood up or sat in a chair 0.55 m facing the sick patient. The ‘sick patient’ was exhaling thr...

  16. Effects of air pollution on exhaled nitric oxide in children: results from the GINIplus and LISAplus studies.

    Science.gov (United States)

    Liu, Chuang; Flexeder, Claudia; Fuertes, Elaine; Cyrys, Josef; Bauer, Carl-Peter; Koletzko, Sibylle; Hoffmann, Barbara; von Berg, Andrea; Heinrich, Joachim

    2014-01-01

    Most previous studies which have investigated the short-term effects of air pollution on airway inflammation, assessed by an increase of exhaled nitric oxide (eNO), have been conducted among asthmatic children. Few studies have considered this potential association among non-asthmatics. Furthermore, although both short- and long-term effects of air pollution on eNO had been reported separately, studies which include both are scarce. We explored associations between 24h NO2 and PM10 (particles with aerodynamic diameters below 10μm) mass with eNO in 1985 children (192 asthmatics and 1793 non-asthmatics) aged 10 years and accounted for the long-term effects of air pollution by adjusting for annual averages of NO2, PM10 mass, PM2.5 mass (particles with aerodynamic diameters below 2.5μm) and PM2.5 absorbance, using data from two German birth cohorts in Munich and Wesel. In total, robust associations between 24h NO2 and eNO were observed in both single-pollutant (percentage change: 18.30%, 95% confidence interval: 11.63-25.37) and two-pollutant models (14.62%, 6.71-23.11). The association between 24h PM10 mass and eNO was only significant in the single-pollutant model (9.59%, 4.80-14.61). The same significant associations were also observed in non-asthmatic children, while they did not reach significant levels in asthmatic children. Associations between annual averages of ambient air pollution (NO2, PM10 mass, PM2.5 mass and PM2.5 absorbance) and eNO were consistently null. In conclusion, significantly positive associations were observed between short-term ambient air pollution and eNO. No long-term effects of air pollution on eNO were found in this study. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Exhaled carbon monoxide: a non-invasive biomarker of short-term exposure to outdoor air pollution.

    Science.gov (United States)

    Lawin, Herve; Ayi Fanou, Lucie; Hinson, Vikkey; Wanjiku, Jacqueline; Ukwaja, N Kingsley; Gordon, Stephen B; Fayomi, Benjamin; Balmes, John R; Houngbegnon, Parfait; Avokpaho, Euripide; Sanni, Ambaliou

    2017-04-17

    In urban settings of Africa with rapidly increasing population, traffic-related air pollution is a major contributor to outdoor air pollution (OAP). Although OAP has been identified as a leading cause of global morbidity and mortality, there is however, lack of a simple biomarker to assess levels of exposure to OAP in resource-poor settings. This study evaluated the role of exhaled carbon monoxide (exhCO) as a potential biomarker of exposure to ambient carbon monoxide (ambCO) from OAP. This was a descriptive study conducted among male commercial motorcycle riders in Cotonou - the economic capital of Benin. The participants' AmbCO was measured using a portable carbon monoxide (CO) data logger for 8 h during the period of their shift. ExhCO was measured just before and immediately after their shift (8-h) Participants were asked not to cook or to smoke during the day of the measurements. Linear regression analysis was used to assess the association between ambCO and exhCO for the last 2, 4 and 6 h of their shift. Of 170 participants who completed the study, their mean ± SD age was 42.2 ± 8.4 years, and their mean ± SD daily income was 7.3 ± 2.7$. Also, 95% of the participants' used solid fuels for cooking and only 2% had ever smoked. Average exhCO increased by 5.1 ppm at the end of the shift (p = 0.004). Post-shift exhCO was significantly associated to ambCO, this association was strongest for the last 2 h of OAP exposure before exhCO measurement (β = 0.34, p < 0.001). ExhCO level was associated with recent exposure to ambCO from OAP with measurable increase after 8 h of exposure. These findings suggest that ExhCO may be a potential biomarker of short-term exposure to OAP.

  18. Spirometry-Adjusted Fraction of Exhaled Nitric Oxide Allows Asthma Diagnosis in Children, Adolescents, and Young Adults.

    Science.gov (United States)

    Grzelewski, Tomasz; Stelmach, Włodzimierz; Stelmach, Rafał; Janas, Anna; Grzelewska, Aleksandra; Witkowski, Konrad; Makandjou-Ola, Eusebio; Majak, Paweł; Stelmach, Iwona

    2016-02-01

    Recently, it has been proved that fractional exhaled nitric oxide (FENO) results are in disagreement with other measurements of asthma control. The objective of this work is to present and validate new lung function/lung inflammation ratios. This is a retrospective, cross-sectional study in which we evaluated data from medical documentation of 1,529 pediatric and adolescent subjects and a small number (2% of the studied population) of young adults, who presented symptoms suggestive of asthma (age range 4-24 y). We are the first to analyze results obtained in this manner (before the introduction of controlled medication): FENO, spirometry, specific resistance of the airways, diagnosis of allergic diseases, and allergen sensitization (specific immunoglobulin E results). Cut-off points for the new indicators allowed us to diagnose asthma in the study participants: for FVC/FENO ratio, 0.17 L/ppb; for FEV1/FENO ratio, 0.15 L/ppb; for forced expiratory flow during the middle half of the FVC maneuver (FEF25-75%)/FENO ratio, 0.16 L/s/ppb; for FENO/FVC ratio, 11.00 ppb/L; for FENO/FEV1 ratio, 12.53 ppb/L; and for FENO/FEF25-75% ratio, 11.81 ppb/L/s. Only the ratios described above were closely correlated with the diagnosis of asthma and with one another. They significantly differed between subjects with asthma and healthy subjects as well as between females and males. Only FEF25-75%/FENO and FENO/FEF25-75% values were significant predictors of any sensitization in the studied subjects. We found higher sensitivity than specificity and higher positive predictive value than negative predictive value for FVC/FENO, FEV1/FENO, and FEF25-75%/FENO and found a mirror image for reverse parameters. However, the positive predictive values and negative predictive values were not clearly convincing with respect to diagnostic accuracy in the case of the new parameters proposed. We propose new lung function/lung inflammation ratios by which it may become possible to diagnose asthma in

  19. Clinical trial on the efficacy of exhaled carbon monoxide measurement in smoking cessation in primary health care

    Directory of Open Access Journals (Sweden)

    Ripoll Joana

    2012-07-01

    Full Text Available Abstract Background Smoking cessation is beneficial for our health at any point in life, both in healthy people and in people already suffering from a smoking-related disease. Any help to quit smoking can produce considerable benefits for Public Health. The purpose of the present study is to evaluate the efficacy of the CO-oximetry technique together with brief advice in smoking cessation, in terms of reduction of the number of cigarettes or in the variation of the motivation to quit smoking at month 12 compared with brief advice alone. Methods/Design Randomised, parallel, single-blind clinical trial in a primary health care setting in Majorca (Spain. Smokers in contemplation or pre-contemplation phase will be included in the study. Exclusion criteria: Smokers in preparation phase, subjects with a terminal illness or whose health status does not allow them to understand the study or complete the informed consent, and pregnant or breastfeeding women. The subjects will be randomly assigned to the control group (CG or the intervention group (IG. The CG will receive brief advice, and the IG will receive brief advice together with a measurement of exhaled CO. There will be follow-up evaluations at 6 and 12 months after inclusion. 471 subjects will be needed per group in order to detect a difference between groups ≥ 5%. Primary outcome: sustained smoking cessation (at 6 and 12 months confirmed by urine cotinine test. Secondary outcomes: point smoking cessation at 6 and 12 months both confirmed by urine cotinine analysis and self-reported, reduction in cigarette consumption, and variation in phase of smoking cessation. Discussion CO-oximetry is an inexpensive, non-invasive, fast technique that requires little technical training; making it a technique for risk assessment in smokers that can be easily applied in primary care and, if proven effective, could serve as a reinforcement aid in smoking cessation intervention activities. Trial

  20. Different patterns of exhaled nitric oxide response to β2-agonists in asthmatic patients according to the site of bronchodilation.

    Science.gov (United States)

    Michils, Alain; Malinovschi, Andrei; Haccuria, Amaryllis; Michiels, Sebastien; Van Muylem, Alain

    2016-03-01

    In asthmatic patients undergoing airway challenge, fraction of exhaled nitric oxide (FENO) levels decrease after bronchoconstriction. In contrast, model simulations have predicted both decreased and increased FENO levels after bronchodilation, depending on the site of airway obstruction relief. We sought to investigate whether β2-agonists might induce divergent effects on FENO values in asthmatic patients as a result of airway obstruction relief occurring at different lung depths. FENO, FEV1, and the slope of phase III of the single-breath washout test (S) of He (S(He)) and sulfur hexafluoride (S(SF6)) were measured in 68 asthmatic patients before and after salbutamol inhalation. S(He) and S(SF6) decreases reflected preacinar and intra-acinar obstruction relief, respectively. Changes (Δ) were expressed as a percentage from the baseline. No FENO change (|ΔFENO| ≤ 10%) was found in 16 patients (mean [SD]: 2.5% [5.2%]; ie, FENO= group); a ΔFENO value of greater than 10% was found in 23 patients (31.7% [20.3%]; ie, the FENO+ group); and a ΔFENO value of less than -10% was found in 29 patients (-31.5% [17.3%]; ie, the FENO- group). All groups had similar ΔFEV1 values. In the FENO= group neither S(He) nor S(SF6) changed, in the FENO+ group only S(He) decreased significantly (-21.8% [SD 28.5%], P = .03), and in the FENO- group both S(He) (-29.8% [24.0%], P response to β2-agonists: a decrease likely caused by relief of an intra-acinar airway obstruction that we propose reflects amplification of nitric oxide back-diffusion, an increase likely associated with a predominant dilation up to the preacinar airways, and FENO stability when obstruction relief involved predominantly the central airways. In combination, these results suggest a new role for FENO in identifying the site of airway obstruction in asthmatic patients. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  2. Effects of occupational exposure to poorly soluble forms of beryllium on biomarkers of pulmonary response in exhaled breath of workers in machining industries.

    Science.gov (United States)

    Radauceanu, Anca; Grzebyk, Michel; Edmé, Jean-Louis; Chérot-Kornobis, Nathalie; Rousset, Davy; Dziurla, Mathieu; De Broucker, Virginie; Hédelin, Guy; Sobaszek, Annie; Hulo, Sébastien

    2016-11-30

    To analyze the effects of occupational exposure to poorly soluble forms of beryllium (Be) on biomarkers of pulmonary inflammation using exhaled breath condensate (EBC) in workers employed in machining industries. Twenty machining operators were compared to 16 controls. The individual exposure to Be was assessed from the work history with several indices of exposure calculated on the basis of task-exposures matrices developed for each plant using historical air measurements. Clinical evaluation consisted in a medical questionnaire, measurements of biomarkers in EBC (tumor necrosis factor alpha (TNF-α), total nitrogen oxides (NOx)), measurement of the fraction of exhaled nitric oxide (FeNO) and resting spirometry. Adjusted multiple linear regressions were used to study the effect of the exposure to Be on inflammatory biomarkers. Levels of TNF-α and NOx in EBC were not statistically different between exposed and controls. We found a statistically significant relationship between levels of TNF-α in EBC and both index of cumulative exposure and duration of exposure to Be. No other statistically significant relationships were found between exposure to Be and pulmonary response. Our results suggest that machining-related exposure to Be is related to pulmonary inflammation involving TNF-α. These findings must be confirmed by larger studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Dose-dependent relationship between prenatal exposure to fine particulates and exhaled carbon monoxide in non-asthmatic children. A population-based birth cohort study

    Directory of Open Access Journals (Sweden)

    Wiesław A. Jędrychowski

    2013-02-01

    Full Text Available Objectives: The main goal of the study was to assess possible association between fetal exposure to fi ne particulate matter (PM2.5 and exhaled carbon monoxide (eCO measured in non-asthmatic children. Material and Methods: The subjects include 118 children taking part in an ongoing population-based birth cohort study in Kraków. Personal samplers of PM2.5 were used to measure fi ne particle mass in the fetal period and carbon monoxide (CO in exhaled breath from a single exhalation effort at the age of 7. In the statistical analysis of the effect of prenatal PM2.5 exposure on eCO, a set of potential confounders, such as environmental tobacco smoke (ETS, city residence area, sensitization to house dust allergens and the occurrence of respiratory symptoms monitored over the seven-year follow-up was considered. Results: The level of eCO did not correlate with the self-reported ETS exposure recorded over the follow-up, however, there was a positive signifi cant relationship with the prenatal PM2.5 exposure (non-parametric trend p = 0.042. The eCO mean level was higher in atopic children (geometric mean = 2.06 ppm, 95% CI: 1.58–2.66 ppm than in non-atopic ones (geometric mean = 1.57 ppm, 95% CI: 1.47–1.73 ppm and the difference was statistically signifi cant (p = 0.036. As for the respiratory symptoms, eCO values were associated positively only with the cough severity score recorded in the follow-up (nonparametric trend p = 0.057. In the nested multivariable linear regression model, only the effects of prenatal PM2.5 and cough severity recorded in the follow-up were related to eCO level. The prenatal PM2.5 exposure represented 5.1%, while children’s cough represented only 2.6% of the eCO variability. Conclusion: Our study suggests that elevated eCO in non-asthmatic children may result from oxidative stress experienced in the fetal period and that heme oxygenase (HO activity in body tissues may be programmed in the fetal period by the exposure to

  4. MO-FG-BRA-09: Towards an Optimal Breath-Holding Procedure for Radiotherapy: Differences in Organ Motion During Inhalation and Exhalation Breath-Holds

    Energy Technology Data Exchange (ETDEWEB)

    Lens, E; Gurney-Champion, O; Horst, A van der; Tekelenburg, D; Kesteren, Z van; Tienhoven, G van; Nederveen, A; Bel, A [Academic Medical Center, Amsterdam, Noord-Holland (Netherlands); Parkes, M [University of Birmingham, Birmingham, West Midlands (United Kingdom)

    2016-06-15

    Purpose: Breath-holding (BH) is often used to reduce organ motion during radiotherapy. The aim of this study was to determine the differences in pancreatic and diaphragmatic motion during BH between inhalation and exhalation BHs with variable lung volumes and to investigate whether motion increases/decreases during BH. Methods: Sixteen healthy volunteers were asked to perform four different 60-second BHs, from fully inflated to fully deflated lungs (i.e. lung volumes of: 100%, ∼70%, ∼30% and 0% of inspiratory capacity) three times (total of 192 BHs). During each BH, we obtained single-slice (coronal) magnetic-resonance scans with spatial resolution 0.93×0.93×8.0 mm3 and temporal resolution 0.6 s. We used 2-dimensional image correlation to obtain the motion of pancreatic head and diaphragm during BH. Motion magnitude in inferior-superior direction was obtained by determining the maximum displacement during BH. Results: Pancreatic and diaphragmatic drifts occurred during BH and were mostly in the superior direction. We observed significantly smaller pancreatic and diaphragmatic motion magnitudes in inferior-superior direction during exhalation BHs (BH{sub 30%} and BH{sub 0%}) compared to inhalation BHs (BH{sub 100%} and BH{sub 70%}). The mean motion magnitudes of the pancreatic head were 7.0, 6.5, 4.4 and 4.2 mm during BH{sub 100%}, BH{sub 70%}, BH{sub 30%} and BH{sub 0%}, respectively, and mean BH durations were 59.9, 59.1, 59.0 and 52.7 s. For the diaphragm, mean motion magnitudes were 9.8, 9.0, 5.6 and 4.3 mm, respectively. When considering 30-second BHs, as often used in the clinic, the motion was most pronounced during the first 10 s and excluding these from the analysis (yielding an effective BH period of 20 s) significantly reduced (P≤0.002) organ motion. Conclusion: Organ motion was significantly smaller during exhalation BHs compared to inhalation BHs. Also, motion was largest at the start of BH. Hence, waiting for 10 s may significantly decrease

  5. Asthma-COPD Overlap Syndrome (ACOS): Single disease entity or not? Could exhaled nitric oxide be a useful biomarker for the differentiation of ACOS, asthma and COPD?

    Science.gov (United States)

    Karampitsakos, Theodoros; Gourgoulianis, Konstantinos I

    2016-06-01

    Asthma and chronic obstructive pulmonary disease (COPD) represent two major public health problems. However, there is a significant proportion of patients with a mixed asthma-COPD phenotype. This condition is defined as asthma-COPD overlap syndrome (ACOS). Since there are no internationally accepted criteria for the diagnosis of that syndrome, its management remains difficult. Given the fact that patients with ACOS have an increased risk of exacerbation and hospitalization, there is a pressing need for a more targeted approach and better management. We propose that fractional exhaled nitric oxide (FeNO), a marker of eosinophilic inflammation, could help clinicians differentiate ACOS from asthma and COPD. We evaluate this hypothesis, using data derived from the existing literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Human inhalation exposures to toluene, ethylbenzene, and m-xylene and physiologically based pharmacokinetic modeling of exposure biomarkers in exhaled air, blood, and urine.

    Science.gov (United States)

    Marchand, Axelle; Aranda-Rodriguez, Rocio; Tardif, Robert; Nong, Andy; Haddad, Sami

    2015-04-01

    Urinary biomarkers of exposure are used widely in biomonitoring studies. The commonly used urinary biomarkers for the aromatic solvents toluene (T), ethylbenzene (E), and m-xylene (X) are o-cresol, mandelic acid, and m-methylhippuric acid. The toxicokinetics of these biomarkers following inhalation exposure have yet to be described by physiologically based pharmacokinetic (PBPK) modeling. Five male volunteers were exposed for 6 h in an inhalation chamber to 1/8 or 1/4 of the time-weighted average exposure value (TWAEV) for each solvent: toluene, ethylbenzene, and m-xylene were quantified in blood and exhaled air and their corresponding urine biomarkers were measured in urine. Published PBPK model for parent compounds was used and simulations were compared with experimental blood and exhaled air concentration data. If discrepancies existed, Vmax and Km were optimized. Urinary excretion was modeled using parameters found in literature assuming simply stoichiometric yields from parent compound metabolism and first-order urinary excretion rate. Alternative models were also tested for (1) the possibility that CYP1A2 is the only enzyme implicated in o-cresol and (2) a 2-step model for describing serial metabolic steps for mandelic acid. Models adapted in this study for urinary excretion will be further used to interpret urinary biomarker kinetic data from mixed exposures of these solvents. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Collecting exhaled breath condensate (EBC) with two condensers in series: a promising technique for studying the mechanisms of EBC formation, and the volatility of selected biomarkers.

    Science.gov (United States)

    Corradi, Massimo; Goldoni, Matteo; Caglieri, Andrea; Folesani, Giuseppina; Poli, Diana; Corti, Marina; Mutti, Antonio

    2008-03-01

    Exhaled breath condensate (EBC) consists mainly of water, but also contains semivolatile and nonvolatile compounds. The aim of this study was to develop a system in which two condensers are simultaneously used in series to clarify the mechanisms of EBC condensation. Two aliquots of EBC (EBC1 and EBC2) were collected from 20 asymptomatic smokers and 20 healthy young nonsmokers using a specifically designed device having two condensers in series in which total volume, hydrogen peroxide (H(2)O(2)), ammonium (NH(4)(+)), and conductivity before and after lyophilization were measured. Water, NH(4)(+) levels and conductivity before lyophilization were significantly lower in the EBC2 than in the EBC1 of smokers and nonsmokers; the contrary was true for H(2)O(2) levels. Almost all nonvolatile salts were collected in the first condenser, because more than 50% of postlyophilization conductivity was below the detection limit in EBC2. The recovery of volatile molecules and their derivatives (water and NH(4)(+)) was partial in the first condenser, but appreciable amounts of both were measured in the second; however, the condenser immediately in contact with exhaled air was more efficient in terms of water, NH(4)(+) and conductivity before lyophilization. On the contrary, nonvolatile ions (conductivity after lyophilization) were mainly collected in the first condenser. Finally, the behavior of H(2)O(2) cannot be explained on the basis of its chemical and physical properties, and the most probable explanation is that some was byproduced by a radical reaction in the gas phase or during the condensation process in water.

  8. Immediate effects of cigar smoking on respiratory mechanics and exhaled biomarkers; differences between young smokers with mild asthma and otherwise healthy young smokers.

    Science.gov (United States)

    Lappas, Andreas S; Konstantinidi, Efstathia M; Tzortzi, Anna S; Tzavara, Chara K; Behrakis, Panagiotis K

    2016-01-01

    We aimed to investigate the immediate respiratory effects of cigar smoking(CS), among young smokers with and without mild asthma. Forty-seven young smokers (18-31years old, 29 males, average pack-years = 3.6 ± 2.8) were enrolled. Twenty-two were mild asthmatics(MA-subgroup) and the remaining 25 were otherwise healthy smokers(HS-subgroup). Exhaled carbon monoxide(eCO), multi-frequency respiratory system impedance(Z), resistance(R), reactance(X), frequency-dependence of resistance(fdr = R5Hz - R20Hz), resonant frequency(fres), reactance area(AX) and exhaled nitric oxide(FENO) were measured at the aforementioned sequence, before and immediately after 30 min of CS, or equal session in the smoking area while using a sham cigar(control group). Chi-square, student's t-tests, mixed linear models and Pearson correlation tests were used for the statistical analysis; level of significance was defined as p < 0.05. Immediately after CS, Z5Hz, R5Hz, R10Hz, R20Hz and eCO increased significantly in both subgroups(MA and HS). A greater increase was found for R20 in HS-subgroup. Fdr, fres and AX increased in MA, while decreased in HS. On the contrary, X10 decreased in MA and increased in HS, while X20 showed a greater decrease in MA. Changes in fdr, fres and AX were significantly correlated in both subgroups. No significant FENO alterations were detected in both subgroups. CS has immediate effects on pulmonary function. Mild asthma predisposes to higher increase of peripheral resistance(increased fdr). In otherwise healthy smokers, central resistance(R20Hz) is more affected. FENO levels are not significantly affected by CS.

  9. Fractional exhaled nitric oxide levels in asthma–COPD overlap syndrome: analysis of the National Health and Nutrition Examination Survey, 2007–2012

    Directory of Open Access Journals (Sweden)

    Goto T

    2016-09-01

    Full Text Available Tadahiro Goto, Carlos A Camargo Jr, Kohei Hasegawa Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Purpose: Recent studies propose TH2-mediated inflammation in patients with asthma–chronic obstructive pulmonary disease (COPD overlap syndrome (ACOS. However, little is known about whether fractional exhaled nitric oxide (FeNO differs between patients with ACOS and those with COPD alone. To address this knowledge gap, a nationally representative sample was analyzed to determine the difference in FeNO levels between patients with ACOS and those with COPD alone in the US population.Patients and methods: This is a cross-sectional analysis of the National Health and Nutrition Examination Survey from 2007 through 2012. All subjects aged ≥40 years with COPD were identified. ACOS was defined as self-reported wheezing in past 12 months plus bronchodilator response (forced expiratory volume increase of >200 mL and >12% or self-reported physician diagnosis of asthma.Results: A total of 197 subjects with COPD were identified in the National Health and Nutrition Examination Survey. Of these, 23% met the criteria of ACOS. The FeNO level was higher in subjects with ACOS compared with those with COPD alone in both unadjusted (mean 21.2 ppb vs 13.0 ppb; difference, 8.2 [95% CI, 0.2 to 16.2]; P=0.045 and adjusted (difference, 8.2 [95% CI, 0.9 to 15.5]; P=0.03 analyses. Although there was no significant difference among current smokers, the FeNO level was significantly higher in non-current smokers with ACOS than non-smokers with COPD alone (mean 31.9 ppb vs 20.3 ppb; adjusted difference, 20.5 [95% CI, 4.4 to 36.6]; P=0.02. In a sensitivity analysis using an alternative definition of ACOS, the results did not change materially. The diagnostic value of FeNO to discriminate ACOS from COPD alone was not sufficient, with the area under the curve of 0.63 (95% CI, 0.54 to 0.72.Conclusion: By using nationally

  10. [The effect of short-term exposure to ambient NO(2) on lung function and fractional exhaled nitric oxide in 33 chronic obstructive pulmonary disease patients].

    Science.gov (United States)

    Shan, J; Ni, Y; Dong, W; Xu, J H; Pan, L; Li, H Y; Yang, X; Wu, S W; Chen, Y H; Deng, F R; Guo, X B

    2017-06-06

    Objectives: To investigate the effect of short-term exposure to ambient NO(2) has influence on lung function and fractional exhaled nitric oxide (FeNO) in chronic obstructive pulmonary disease (COPD) patients. Methods: A panel of doctor-diagnosed stable COPD patients ( n =33) were recruited and repeatedly measured for lung function and FeNO from December 2013 to October 2014. The patients who lived in Beijing for more than one year and aged between 60 and 85 years old were included in the study. We excluded patients with asthma, bronchial tensor, lung cancer and other respiratory disorders other than chronic obstructive pulmonary disease and occupational exposure and chest trauma surgery patients. Because the frequency of each subject visiting to the hospital was different, a total of 170 times of lung function measurements and 215 times of FeNO measurements were conducted. At the same time, the atmospheric NO(2) data of Beijing environmental monitoring station near the residence of each patient during the study period were collected from 1 day to 7 days lag before the measurement. Effects of short-term NO(2) exposure on lung function and FeNO in COPD patients were estimated by linear mixed-effects models. Results: The subjects' forced vital capacity (FVC), forced expiratory volume in one second (FEV(1)), peak expiratory flow (PEF), and exhaled NO of subjects were (3.26±0.83) L, (1.66±0.61) L, (4.13±1.77) L/s, and (48.99±14.30) μg/m(3), respectively. The concentration of NO(2) was (70.3±34.2) μg/m(3) and the interquartile range (IQR) was 39.0 μg/m(3). Short-term exposure to NO(2) resulted in a significant decrease in FVC among COPD patients' which was most obvious in 2 days lag. Every quartile range increased in NO(2) (39 μg/m(3), 2 day) would cause a 1.84% (95 %CI : -3.20%- -0.48%) reduction in FVC. The effects of exposure to higher concentration of NO(2) (≥58.0 μg/m(3)) on FVC estimate was -2.32% (95 %CI : -4.15%- -0.48%)( P =0.02). No significant

  11. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    Science.gov (United States)

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the

  12. Estimation of clinical parameters of chronic kidney disease by exhaled breath full-scan mass spectrometry data and iterative PCA with intensity screening algorithm.

    Science.gov (United States)

    Wang, Maggie Haitian; Yuk-Fai Lau, Steven; Chong, Ka Chun; Kwok, Chloe; Lai, Maria; Chung, Anthony Hy; Ho, Chung Shun; Szeto, Cheuk-Chun; Chung-Ying Zee, Benny

    2017-08-21

    Breath mass spectrometry is a useful tool for identifying important compounds associated with health. However, there have been few studies that have explored human exhaled breath by full-scan mass spectrometry as a non-invasive method for medical diagnosis, which may be attributed to the difficulties resulting from multicollinearity and small sample sizes relative to a large number of product ions. In this study, breath samples from 54 chronic kidney disease patients were analyzed by selected ion flow tube mass spectrometry in the full-scan mode. With the signal intensities of product ions, we developed a novel and robust algorithm, iterative PCA with intensity screening (IPS), to build linear models for estimating important clinical parameters of chronic kidney disease. It has been shown that IPS provided good estimations in cross-validated samples, and furthermore the identified product ions could have direct medical relevance to the disease. The study demonstrated the potential of quantitative breath analysis using mass spectrometry for medical diagnosis, and the importance of applying appropriate statistical tools to unveil the rich information in this type of data.

  13. Comparison of the Fractional Exhaled Nitric Oxide Levels in Adolescents at Three Schools Located Three Different Distances from a Large Steel Mill

    Directory of Open Access Journals (Sweden)

    Murat Acat

    2017-01-01

    Full Text Available Objectives. Exposure to ambient metals and air pollutants in urban environments has been associated with impaired lung health and inflammation in the lungs. Fractional exhaled nitric oxide (FeNO is a reliable marker of airway inflammation. In this study, we aimed to compare the FeNO levels of three schools that have different distances from iron and steel industry zone for assessing the effects of heavy metals and air pollution on their respiratory health. Methods. Pulmonary function test and FeNO measurements were evaluated in 387 adolescents in three schools which have different distance from plant. Results. FeNO levels were significantly higher in School I (n=142; 18.89±12.3 ppb and School II (n=131; 17.68±7.7 ppb than School III (n=114; 4.28±3.9 ppb. Increased FeNO concentration was related to the distance of iron and steel industry zone in young adults. Conclusion. The FeNO concentrations in school children were inversely proportional to the distance from the steel mill. There are needed some studies that can evaluate the safe distance and legislation must consider these findings.

  14. First report on the pharmacokinetics of tramadol and O-desmethyltramadol in exhaled breath compared to plasma and oral fluid after a single oral dose.

    Science.gov (United States)

    Meyer, Markus R; Rosenborg, Staffan; Stenberg, Marta; Beck, Olof

    2015-12-01

    Exhaled breath (EB) is a promising matrix for bioanalysis of non-volatiles and has been routinely implemented for drugs of abuse analysis. Nothing is known regarding the pharmacokinetics of therapeutics and their metabolites in EB. Therefore, we used tramadol as a model drug. Twelve volunteers received a single oral dose of tramadol and repeated sampling of EB, plasma, and oral fluid (OF) was done for 48 h using a particle filter device for EB and the Quantisal-device for OF. Samples were analyzed with LC-MS/MS and the pharmacokinetic correlations between matrices were investigated. The initial tramadol half-life in EB was shorter than in plasma but it reappeared in EB after 8-24 h. The ratio of O-desmethyltramadol to tramadol was considerably lower in EB and OF compared to plasma. This pilot study compared for the first time the pharmacokinetics of a therapeutic drug and active metabolite in different biomatrices including EB and demonstrated its potential for bioanalysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A novel statistical model for analyzing data of a systematic review generates optimal cutoff values for fractional exhaled nitric oxide for asthma diagnosis.

    Science.gov (United States)

    Schneider, Antonius; Linde, Klaus; Reitsma, Johannes B; Steinhauser, Susanne; Rücker, Gerta

    2017-12-01

    Measurement of fractional exhaled nitric oxide (FENO) might substitute bronchial provocation for diagnosing asthma. However, optimal FENO thresholds for diagnosing asthma remain unclear. We reanalyzed data collected for a systematic review investigating the diagnostic accuracy of FENO measurement to exploit all available thresholds under consideration of pretest probabilities using a newly developed statistical model. One hundred and fifty data sets for a total of 53 different cutoffs extracted from 26 studies with 4,518 participants were analyzed with the multiple thresholds model. This model allows identifying thresholds at which the test is likely to perform best. Diagnosing asthma might only be possible in a meaningful manner when the pretest probability of asthma is at least 30%. In that case, FENO > 50 ppb leads to a positive predictive value of 0.76 [95% confidence interval (CI): 0.29-0.96]. Excluding asthma might only be possible, when the pretest probability of asthma is 30% at maximum. Then, FENO asthma with FENO measurement. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Detection of ethylene gas in exhaled breath of people living in landfill using CO{sub 2} laser photoacoustic spectroscopy with multicomponent analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oktafiani, Fitri, E-mail: fitri.oktafiani@mail.ugm.ac.id; Stiyabudi, Rizky; Amin, Mochamad Nurul; Mitrayana [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta, 55281 Indonesia (Indonesia)

    2016-06-17

    The photoacoustic spectrometer (PAS) had been built and the performance had been determined. The research was based on the conversion of the absorbed middle infra red (IR) radiation by gas confined in a closed PAS cell into standing acoustic wave, which could be detected by a suitable electroacoustic transducer such as a microphone. The lowest detection limit for this setup was (57,1 ± 0,3) ppb and quality factor was (14,5 ± 0,6) for ethylene gas in 10P14 CO{sub 2} laser line. Then, this PAS was used to measure of ethylene gas concentration in breath sample of people living in near the Piyungan Bantul Yogyakarta landfill. The result from multicomponent analysis showed that PAS enable to measure the lowest concentration of volatile organic compound (VOC), such as ethylene, which occured on ambien air in Piyungan landfill. Variaty of distance area applied in this research. In the range of ±0,5 km from landfill, we obtained the concentration of ethylene gas concentration for human breath was (1,520 ± 0,002) ppm, while in the range of ±45 km, the ethylene gas concentration for human breath was (0,424 ± 0,002) ppm. Ethylene gas concentrations in exhaled gas decreased along with increasing distance variation of the landfill.

  17. Effect of continuous positive airway pressure and upper airway surgery on exhaled breath condensate and serum biomarkers in patients with sleep apnea.

    Science.gov (United States)

    Lloberes, Patricia; Sánchez-Vidaurre, Sara; Ferré, Àlex; Cruz, María Jesús; Lorente, Juan; Sampol, Gabriel; Morell, Ferran; Muñoz, Xavier

    2014-10-01

    Studies on inflammation biomarkers in serum and in exhaled breath condensate (EBC) in obstructive sleep apnea (OSA) have shown conflicting results. The objective of this study is to assess EBC and serum biomarkers in OSA patients at baseline and after continuous positive airway pressure (CPAP) or upper airway surgery (UAS). Nine OSA patients referred for UAS were matched for anthropometric characteristics and apnea-hypopnea index with 20 patients receiving CPAP. pH, nitrite (NO2(-)), nitrate and interleukin 6 in EBC and NO2(-), nitrate, leukotriene B4 and interleukin 6 in serum were determined. EBC and serum samples were collected at baseline and 3 months after CPAP or UAS. Patients' mean body mass index was 30 (range 24.9-40) kg/m(2). EBC biomarker levels at baseline were within normal range and did not differ significantly after CPAP or UAS. No significant changes were observed in the serum concentration of the biomarkers determined after CPAP but the serum concentration of NO2(-) increased significantly at 3 months after UAS (P=.0078). In mildly obese OSA patients, EBC biomarkers of inflammation or oxidative stress were normal at baseline and remained unchanged 3 months after UAS or CPAP. Although UAS was not effective in terms of reducing OSA severity, it was associated with an increase in serum NO2(-). Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  18. Accuracy of maximal expiratory flow-volume curve curvilinearity and fractional exhaled nitric oxide for detection of children with atopic asthma.

    Science.gov (United States)

    Park, Sang Hoo; Im, Min Ji; Eom, Sang-Yong; Hahn, Youn-Soo

    2017-09-01

    Airway pathology in children with atopic asthma can be reflected by the concave shape of the maximal expiratory flow-volume (MEFV) curve and high fractional exhaled nitric oxide (FeNO) values. We evaluated the capacity of the curvilinearity of the MEFV curve, FeNO, and their combination to distinguish subjects with atopic asthma from healthy individuals. FeNO and angle β, which characterizes the general configuration of the MEFV curve, were determined in 119 steroid-naïve individuals with atopic asthma aged 8 to 16 years, and in 92 age-matched healthy controls. Receiver operating characteristic (ROC) curve analyses were performed to determine the cutoff points of FeNO and angle β that provided the best combination of sensitivity and specificity for asthma detection. Asthmatic patients had a significantly smaller angle β and higher FeNO compared with healthy controls (both, Pcurve for the combination of angle β and FeNO improved to 0.91 (95% confidence interval [CI], 0.87-0.95) from 0.80 (95% CI, 0.75-0.86; Pcurve and FeNO is a useful tool to differentiate between children with and without atopic asthma.

  19. Agreement Between Exhaled Breath Carbon Monoxide Threshold Levels and Self-Reported Cigarette Smoking in a Sample of Male Adolescents in Jordan

    Directory of Open Access Journals (Sweden)

    Nihaya Al-Sheyab

    2015-01-01

    Full Text Available This study aimed to measure the percent agreement between Exhaled Breath Carbon Monoxide (eBCO measure using a piCO+ smokerlyzer® and self-reported cigarette smoking status and to determine the optimal thresholds for definite identification of cigarette smokers of male school students in Jordan. A descriptive, cross sectional, study of a random sample of male adolescents in grades 7 and 8 from four public high schools in Irbid, completed an adaptation of a standardized Arabic-language tobacco smoking questionnaire and an eBCO measure. Sensitivity and specificity of the eBCO were calculated against self-reported cigarette smoking. Participants (n = 439 had a mean age of 12.5 years (SD = 0.50 and 174 (39.9% reported being an ever smoker of whom 59 (33.9% reported being a recent (30-day smoker. The optimal eBCO cut-off point for recent smoking was 4.5 ppm with a sensitivity of 84.7% and specificity of 65.5%. Overall, eBCO can accurately identify recent smokers and distinguish them from non-smokers. The eBCO use enables healthcare professionals and researchers to assess efficacy of smoking cessation and prevention programs without necessarily relying on self-report. Further research is indicated to validate our findings and should be expanded to include females, detailed characteristics of cigarette and waterpipe smoking.

  20. Agreement between exhaled breath carbon monoxide threshold levels and self-reported cigarette smoking in a sample of male adolescents in Jordan.

    Science.gov (United States)

    Al-Sheyab, Nihaya; Kheirallah, Khalid A; Mangnall, Linda J Thomson; Gallagher, Robyn

    2015-01-15

    This study aimed to measure the percent agreement between Exhaled Breath Carbon Monoxide (eBCO) measure using a piCO+ smokerlyzer® and self-reported cigarette smoking status and to determine the optimal thresholds for definite identification of cigarette smokers of male school students in Jordan. A descriptive, cross sectional, study of a random sample of male adolescents in grades 7 and 8 from four public high schools in Irbid, completed an adaptation of a standardized Arabic-language tobacco smoking questionnaire and an eBCO measure. Sensitivity and specificity of the eBCO were calculated against self-reported cigarette smoking. Participants (n = 439) had a mean age of 12.5 years (SD = 0.50) and 174 (39.9%) reported being an ever smoker of whom 59 (33.9%) reported being a recent (30-day) smoker. The optimal eBCO cut-off point for recent smoking was 4.5 ppm with a sensitivity of 84.7% and specificity of 65.5%. Overall, eBCO can accurately identify recent smokers and distinguish them from non-smokers. The eBCO use enables healthcare professionals and researchers to assess efficacy of smoking cessation and prevention programs without necessarily relying on self-report. Further research is indicated to validate our findings and should be expanded to include females, detailed characteristics of cigarette and waterpipe smoking.

  1. Increased cys-leukotrienes in exhaled breath condensate and decrease of PNIF after intranasal allergen challenge support the recognition of allergic rhinitis in children.

    Science.gov (United States)

    Zagórska, Wioletta; Grzela, Katarzyna; Kulus, Marek; Sobczyński, Maciej; Grzela, Tomasz

    2013-08-01

    Exhaled breath condensate (EBC) contains various mediators of inflammation. Since their concentrations correlate with severity of inflammatory response, EBC assessment allows non-invasive detection of various respiratory tract diseases and enables monitoring of their progression or treatment effectiveness. In this study, authors evaluate the usefulness of cysteinyl leukotrienes (cysLT) measurement in EBC, as non-invasive diagnostic markers of allergic rhinitis in children. It has been found that the assessment of cysLT in EBC, when performed out of the natural allergen exposure, can discriminate between healthy and allergic rhinitis individuals, with sensitivity 87.8% and specificity 76.4%, at the threshold level 39.05 pg/ml. The change of peak nasal inspiratory flow (ΔPNIF), measured before and after intranasal allergen challenge allowed recognition of healthy/allergic rhinitis-suffering individuals with sensitivity 76.8% and specificity 78.6%, at the threshold level of -3.2 l/min. When ΔPNIF assessment was combined with the measurement of cysLT in EBC, the sensitivity of such diagnostic approach reached 100% and its specificity increased up to 84.6%. The proposed algorithm was found to sufficiently discriminate between allergic rhinitis-suffering and healthy children, however, its clinical usefulness especially in young children requires further studies.

  2. Exhaled carbon monoxide and its associations with smoking, indoor household air pollution and chronic respiratory diseases among 512,000 Chinese adults.

    Science.gov (United States)

    Zhang, Qiuli; Li, Liming; Smith, Margaret; Guo, Yu; Whitlock, Gary; Bian, Zheng; Kurmi, Om; Collins, Rory; Chen, Junshi; Lv, Silu; Pang, Zhigang; Chen, Chunxing; Chen, Naying; Xiong, Youping; Peto, Richard; Chen, Zhengming

    2013-10-01

    Exhaled carbon monoxide (COex) level is positively associated with tobacco smoking and exposure to smoke from biomass/coal burning. Relatively little is known about its determinants in China despite the population having a high prevalence of smoking and use of biomass/coal. The China Kadoorie Biobank includes 512,000 participants aged 30-79 years recruited from 10 diverse regions. We used linear regression and logistic regression methods to assess the associations of COex level with smoking, exposures to indoor household air pollution and prevalent chronic respiratory conditions among never smokers, both overall and by seasons, regions and smoking status. The overall COex level (ppm) was much higher in current smokers than in never smokers (men: 11.5 vs 3.7; women: 9.3 vs 3.2). Among current smokers, it was higher among those who smoked more and inhaled more deeply. Among never smokers, mean COex was positively associated with levels of exposures to passive smoking and to biomass/coal burning, especially in rural areas and during winter. The odds ratios (OR) and 95% confidence interval (CI) of air flow obstruction (FEV1/FVC ratioindoor household air pollution in combination with questionnaires.

  3. Association of symptom control with changes in lung function, bronchial hyperresponsiveness, and exhaled nitric oxide after inhaled corticosteroid treatment in children with asthma.

    Science.gov (United States)

    Park, Geun-Mi; Han, Hye Won; Kim, Jae Youn; Lee, Eun; Cho, Hyun-Ju; Yoon, Jisun; Hong, Soo-Jong; Yang, Song-I; Yang, Hyeon-Jong; Yu, Jinho

    2016-10-01

    A key therapeutic approach to asthma, which is characterized by chronic airway inflammation, is inhaled corticosteroid (ICS). This study evaluated the association of symptom control with changes in lung function, bronchial hyperresponsiveness (BHR), and exhaled nitric oxide (eNO) after ICS treatment in asthmatic children. A total of 33 children aged between 5 and 12 years with mild to moderate persistent asthma were treated with 160 μg ciclesonide per day for 3 months. At days 0 and 90, the following parameters were assessed: asthma symptom scores; lung function, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and forced expiratory flow at 25-75% of forced vital capacity (FEF25-75%); BHR to methacholine and adenosine 5-monophosphate (AMP); and eNO. Asthma symptom scores, lung function parameters, BHR to methacholine and AMP, and eNO levels at day 90 were significantly improved versus day 0 (all p asthma symptom control after ICS treatment. BHR to AMP may better reflect the relationship between improved airway inflammation due to ICS treatment and asthma symptoms. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  4. The fractional exhaled nitric oxide and serum high sensitivity C-reactive protein levels in cough variant asthma and typical bronchial asthma.

    Science.gov (United States)

    Shimoda, Terufumi; Obase, Yasushi; Kishikawa, Reiko; Iwanaga, Tomoaki; Miyatake, Akihiko; Kasayama, Soji

    2013-06-01

    Fractional exhaled nitric oxide (FeNO) is known to be a good marker of airway eosinophilic inflammation in bronchial asthma. Recently, serum high sensitivity C-reactive protein (hs-CRP) has been shown to be also useful to detect the airway inflammation. Newly diagnosed 90 cough variant asthma and 92 bronchial asthma patients were enrolled. FeNO, serum hs-CRP, pulmonary function tests, bronchial hyperresponsiveness, IgE and sputum eosinophils ratio were compared. Ninety healthy control subjects were set for FeNO and serum hs-CRP normal range reference. We have compared the clinical utilities of FeNO and serum hs-CRP to differentiate bronchial asthma and cough variant asthma. FeNO was significantly higher in bronchial asthma (92.6 ± 85.5ppb) than in cough variant asthma (35.6 ± 43.3; p bronchial asthma (723 ± 1162ng/ml) and cough variant asthma (558 ± 758) even if both were significantly higher than normal range (345 ± 401, p bronchial asthma from those with cough variant asthma, and healthy persons.

  5. BreathDx - molecular analysis of exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multicentre observational study.

    Science.gov (United States)

    van Oort, Pouline M P; Nijsen, Tamara; Weda, Hans; Knobel, Hugo; Dark, Paul; Felton, Timothy; Rattray, Nicholas J W; Lawal, Oluwasola; Ahmed, Waqar; Portsmouth, Craig; Sterk, Peter J; Schultz, Marcus J; Zakharkina, Tetyana; Artigas, Antonio; Povoa, Pedro; Martin-Loeches, Ignacio; Fowler, Stephen J; Bos, Lieuwe D J

    2017-01-03

    The diagnosis of ventilator-associated pneumonia (VAP) remains time-consuming and costly, the clinical tools lack specificity and a bedside test to exclude infection in suspected patients is unavailable. Breath contains hundreds to thousands of volatile organic compounds (VOCs) that result from host and microbial metabolism as well as the environment. The present study aims to use breath VOC analysis to develop a model that can discriminate between patients who have positive cultures and who have negative cultures with a high sensitivity. The Molecular Analysis of Exhaled Breath as Diagnostic Test for Ventilator-Associated Pneumonia (BreathDx) study is a multicentre observational study. Breath and bronchial lavage samples will be collected from 100 and 53 intubated and ventilated patients suspected of VAP. Breath will be analysed using Thermal Desorption - Gas Chromatography - Mass Spectrometry (TD-GC-MS). The primary endpoint is the accuracy of cross-validated prediction for positive respiratory cultures in patients that are suspected of VAP, with a sensitivity of at least 99% (high negative predictive value). To our knowledge, BreathDx is the first study powered to investigate whether molecular analysis of breath can be used to classify suspected VAP patients with and without positive microbiological cultures with 99% sensitivity. UKCRN ID number 19086, registered May 2015; as well as registration at www.trialregister.nl under the acronym 'BreathDx' with trial ID number NTR 6114 (retrospectively registered on 28 October 2016).

  6. Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography - Time of flight mass spectrometry and machine learning.

    Science.gov (United States)

    Beccaria, Marco; Mellors, Theodore R; Petion, Jacky S; Rees, Christiaan A; Nasir, Mavra; Systrom, Hannah K; Sairistil, Jean W; Jean-Juste, Marc-Antoine; Rivera, Vanessa; Lavoile, Kerline; Severe, Patrice; Pape, Jean W; Wright, Peter F; Hill, Jane E

    2018-02-01

    Tuberculosis (TB) remains a global public health malady that claims almost 1.8 million lives annually. Diagnosis of TB represents perhaps one of the most challenging aspects of tuberculosis control. Gold standards for diagnosis of active TB (culture and nucleic acid amplification) are sputum-dependent, however, in up to a third of TB cases, an adequate biological sputum sample is not readily available. The analysis of exhaled breath, as an alternative to sputum-dependent tests, has the potential to provide a simple, fast, and non-invasive, and ready-available diagnostic service that could positively change TB detection. Human breath has been evaluated in the setting of active tuberculosis using thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry methodology. From the entire spectrum of volatile metabolites in breath, three random forest machine learning models were applied leading to the generation of a panel of 46 breath features. The twenty-two common features within each random forest model used were selected as a set that could distinguish subjects with confirmed pulmonary M. tuberculosis infection and people with other pathologies than TB. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Exhaled nitric oxide in asthmatic and non-asthmatic children: influence of type of allergen sensitization and exposure to tobacco smoke.

    Science.gov (United States)

    Barreto, M; Villa, M P; Martella, S; Ronchetti, F; Darder, M T; Falasca, C; Pagani, J; Massa, F; Ronchetti, R

    2001-10-01

    Asthmatic bronchial inflammation is associated with increased nitric oxide concentrations in exhaled air (eNO). Recent data suggest that this effect arises from atopy. Our aim in this study was to find out whether atopy and sensitization to particular allergens influences eNO levels. A total of 213 subjects (41 asthmatics and 172 controls) (96 boys and 117 girls, 7.3-14 years of age) were studied. Parents completed a questionnaire that sought information on their children's respiratory symptoms and exposure to tobacco smoke. Subjects underwent skin-prick tests for the following common allergens: Dermatophagoides pteronyssinus (Dpt), cat fur, Aspergillus fumigatus, Alternaria tenuis, mixed grass, mixed tree pollen, Parietaria officinalis, egg, and cow's milk. eNO was collected in 1-l mylar bags (exhaled pressure 10 cmH2O, flow 58 ml/s) and analyzed by using chemiluminescence. Atopic and non-atopic children without a history of chronic respiratory symptoms had a similar geometric mean eNO (atopics, n = 28, 11.2 p.p.b.; non-atopics, n = 96, 10.0 p.p.b.; mean ratio 1.1, 95% confidence interval [CI]: 0.7-1.6). Conversely, atopic asthmatic subjects had significantly higher eNO values than non-atopic asthmatic subjects (atopics, n = 25, 24.8 p.p.b.; non-atopics, n = 16, 11.4 p.p.b.; mean ratio 2.2, 95% CI: 1.2-3.9, p= 0.000). In children with rhinitis alone (n = 15) and those with lower respiratory symptoms other than asthma (n = 33), eNO increased slightly, but not significantly, with atopy. eNO levels correlated significantly with Dpt wheal size (r = 0.51) as well with the wheal size for cat, mixed grass, and Parietaria officinalis (r = 0.30-0.29), and with the sum of all wheals (r = 0.47) (p= 0.000). Subjects sensitized only for Dpt (but not those subjects sensitized only for grass pollen or other allergens) showed significantly higher eNO levels than non-atopic subjects (16.4 p.p.b. vs. 10.2 p.p.b., mean ratio 1.6, 95% CI: 1.1-2.3, p= 0.002). In asthmatic subjects

  8. Exhaled Nitric Oxide in Acute Phase of Bronchiolitis and Its Relation with Episodes of Subsequent Wheezing in Children of Preschool Age.

    Science.gov (United States)

    Peña Zarza, Jose Antonio; Osona, Borja; Gil-Sanchez, Jose Antonio; Figuerola, Joan

    2012-06-01

    BACKGROUND: Fractional exhaled nitric oxide (FENO) levels are increased in children with asthma and in infants with recurrent wheezing, but the role of FENO in the acute phase of bronchiolitis is still not defined. OBJECTIVE: The aim of this study is to evaluate FENO values in the acute phase of bronchiolitis, compare them with healthy infants, and relate those values with the appearance of other wheezing episodes. METHODS: FENO values were determined in infants between 2 months and 2 years affected with RVS bronchiolitis by offline method. The FENO values collected in the acute phase were related with the respiratory clinical symptoms presented in the 2 years following the episode. RESULTS: A total of 30 patients were recruited: 15 in the bronchiolitis group and 15 in the control group. The average of the FENO values in the acute phase was 18.74 ppb (range 2-88) in the bronchiolitis group, and 8.75 ppb (range 2-24) in the control group. However, these results showed no significant statistical differences (p=0.176). Nevertheless, we found a positive correlation between the FENO values and the clinical score (Downes) of the bronchiolitis episode (p=0.023). In infants that presented other wheezing episodes in the 2 years after, the average of FENO in the acute phase of the first episode was 23.1 ppb (average of 10.25 ppb) versus 8.4 ppb (average 5.4 ppb) in the group of patients with no other episodes. The comparison of averages has no statistical significance. CONCLUSION: We found no differences in FENO between infants with bronchiolitis and healthy ones. The FENO values in the acute phase seems to be related to the severity of the disease but do not predict the appearance of wheezing episodes in the following 2 years.

  9. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study.

    Science.gov (United States)

    Poli, Diana; Carbognani, Paolo; Corradi, Massimo; Goldoni, Matteo; Acampa, Olga; Balbi, Bruno; Bianchi, Luca; Rusca, Michele; Mutti, Antonio

    2005-07-14

    Non-invasive diagnostic strategies aimed at identifying biomarkers of lung cancer are of great interest for early cancer detection. The aim of this study was to set up a new method for identifying and quantifying volatile organic compounds (VOCs) in exhaled air of patients with non-small cells lung cancer (NSCLC), by comparing the levels with those obtained from healthy smokers and non-smokers, and patients with chronic obstructive pulmonary disease. The VOC collection and analyses were repeated three weeks after the NSCLC patients underwent lung surgery. The subjects' breath was collected in a Teflon bulb that traps the last portion of single slow vital capacity. The 13 VOCs selected for this study were concentrated using a solid phase microextraction technique and subsequently analysed by means of gas cromatography/mass spectrometry. The levels of the selected VOCs ranged from 10(-12) M for styrene to 10(-9) M for isoprene. None of VOCs alone discriminated the study groups, and so it was not possible to identify one single chemical compound as a specific lung cancer biomarker. However, multinomial logistic regression analysis showed that VOC profile can correctly classify about 80% of cases. Only isoprene and decane levels significantly decreased after surgery. As the combination of the 13 VOCs allowed the correct classification of the cases into groups, together with conventional diagnostic approaches, VOC analysis could be used as a complementary test for the early diagnosis of lung cancer. Its possible use in the follow-up of operated patients cannot be recommended on the basis of the results of our short-term nested study.

  10. Fractional exhaled nitric oxide (FeNO) among office workers in an academic institution, Malaysia--associations with asthma, allergies and office environment.

    Science.gov (United States)

    Lim, Fang Lee; Hashim, Zailina; Md Said, Salmiah; Than, Leslie Thian Lung; Hashim, Jamal Hisham; Norbäck, Dan

    2016-01-01

    There are few studies on fractional exhaled nitric oxide (FeNO) and respiratory symptoms among adults in tropical areas. The aim was to study associations between FeNO and selected personal factors, respiratory symptoms, allergies, office characteristics and indoor office exposures among office workers (n = 460) from a university in Malaysia. Information on health was collected by a questionnaire, skin prick test and FeNO measurement. Temperature, relative air humidity, carbon monoxide and carbon dioxide were measured in the offices. Settled dust was vacuumed in the offices and analyzed for endotoxin, (1,3)-β-glucan and house dust mites allergens, namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Two-level linear mixed models and multiple logistic regression were used to analyze the associations. One-fourth (25.9%) of the office workers had elevated FeNO level (≥ 25 ppb) and 61.5% had HDM, cat, seafood or pollen allergy. Male gender (p < 0.001), current smoking (p = 0.037), height (p < 0.001) and atopy (p < 0.001) were associated with FeNO. The amount of vacuumed dust was associated with FeNO among atopic subjects (p = 0.009). Asthma and rhinitis symptoms were associated with FeNO (p < 0.05), especially among atopic subjects. In particular, a combination of atopy and elevated FeNO were associated with doctor-diagnosed asthma (p < 0.001), rhinitis (p < 0.001) and airway symptoms last 12 months (p < 0.001). Gender, smoking, height and atopy are important risk factors for elevated FeNO levels. A combination of allergy testing and FeNO measurement could be useful in respiratory illness epidemiology studies and patient investigations in tropical areas.

  11. Short-Term Intra-Subject Variation in Exhaled Volatile Organic Compounds (VOCs in COPD Patients and Healthy Controls and Its Effect on Disease Classification

    Directory of Open Access Journals (Sweden)

    Christopher Phillips

    2014-05-01

    Full Text Available Exhaled volatile organic compounds (VOCs are of interest for their potential to diagnose disease non-invasively. However, most breath VOC studies have analyzed single breath samples from an individual and assumed them to be wholly consistent representative of the person. This provided the motivation for an investigation of the variability of breath profiles when three breath samples are taken over a short time period (two minute intervals between samples for 118 stable patients with Chronic Obstructive Pulmonary Disease (COPD and 63 healthy controls and analyzed by gas chromatography and mass spectroscopy (GC/MS. The extent of the variation in VOC levels differed between COPD and healthy subjects and the patterns of variation differed for isoprene versus the bulk of other VOCs. In addition, machine learning approaches were applied to the breath data to establish whether these samples differed in their ability to discriminate COPD from healthy states and whether aggregation of multiple samples, into single data sets, could offer improved discrimination. The three breath samples gave similar classification accuracy to one another when evaluated separately (66.5% to 68.3% subjects classified correctly depending on the breath repetition used. Combining multiple breath samples into single data sets gave better discrimination (73.4% subjects classified correctly. Although accuracy is not sufficient for COPD diagnosis in a clinical setting, enhanced sampling and analysis may improve accuracy further. Variability in samples, and short-term effects of practice or exertion, need to be considered in any breath testing program to improve reliability and optimize discrimination.

  12. Management based on exhaled nitric oxide levels adjusted for atopy reduces asthma exacerbations in children: A dual centre randomized controlled trial.

    Science.gov (United States)

    Petsky, Helen L; Li, Albert M; Au, Chun T; Kynaston, Jennifer A; Turner, Catherine; Chang, Anne B

    2015-06-01

    While several randomized control trials (RCTs) have evaluated the use of fractional exhaled nitric oxide (FeNO) to improve asthma outcomes, none used FeNO cut-offs adjusted for atopy, a determinant of FeNO levels. In a dual center RCT, we assessed whether a treatment strategy based on FeNO levels, adjusted for atopy, reduces asthma exacerbations compared with the symptoms-based management (controls). Children with asthma from hospital clinics of two hospitals were randomly allocated to receive an a-priori determined treatment hierarchy based on symptoms or FeNO levels. There was a 2-week run-in period and they were then reviewed 10 times over 12-months. The primary outcome was the number of children with exacerbations over 12-months. Sixty-three children were randomized (FeNO = 31, controls = 32); 55 (86%) completed the study. Although we did achieve our planned sample size, significantly fewer children in the FeNO group (6 of 27) had an asthma exacerbation compared to controls (15 of 28), P = 0.021; number to treat for benefit = 4 (95% CI 3-24). There was no difference between groups for any secondary outcomes (quality of life, symptoms, FEV1 ). The final daily inhaled corticosteroids (ICS) dose was significantly (P = 0.037) higher in the FeNO group (median 400 µg, IQR 250-600) compared to the controls (200, IQR100-400). Taking atopy into account when using FeNO to tailor asthma medications is likely beneficial in reducing the number of children with severe exacerbations at the expense of increased ICS use. However, the strategy is unlikely beneficial for improving asthma control. A larger study is required to confirm or refute our findings. © 2014 Wiley Periodicals, Inc.

  13. Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath.

    Science.gov (United States)

    Koo, Won-Tae; Yu, Sunmoon; Choi, Seon-Jin; Jang, Ji-Soo; Cheong, Jun Young; Kim, Il-Doo

    2017-03-08

    The increase of surface area and the functionalization of catalyst are crucial to development of high-performance semiconductor metal oxide (SMO) based chemiresistive gas sensors. Herein, nanoscale catalyst loaded Co3O4 hollow nanocages (HNCs) by using metal-organic framework (MOF) templates have been developed as a new sensing platform. Nanoscale Pd nanoparticles (NPs) were easily loaded on the cavity of Co based zeolite imidazole framework (ZIF-67). The porous structure of ZIF-67 can restrict the size of Pd NPs (2-3 nm) and separate Pd NPs from each other. Subsequently, the calcination of Pd loaded ZIF-67 produced the catalytic PdO NPs functionalized Co3O4 HNCs (PdO-Co3O4 HNCs). The ultrasmall PdO NPs (3-4 nm) are well-distributed in the wall of Co3O4 HNCs, the unique structure of which can provide high surface area and high catalytic activity. As a result, the PdO-Co3O4 HNCs exhibited improved acetone sensing response (Rgas/Rair = 2.51-5 ppm) compared to PdO-Co3O4 powders (Rgas/Rair = 1.98), Co3O4 HNCs (Rgas/Rair = 1.96), and Co3O4 powders (Rgas/Rair = 1.45). In addition, the PdO-Co3O4 HNCs showed high acetone selectivity against other interfering gases. Moreover, the sensor array clearly distinguished simulated exhaled breath of diabetics from healthy people's breath. These results confirmed the novel synthesis of MOF templated nanoscale catalyst loaded SMO HNCs for high performance gas sensors.

  14. Impact of Exhaled Breath Acetone in the Prognosis of Patients with Heart Failure with Reduced Ejection Fraction (HFrEF. One Year of Clinical Follow-up.

    Directory of Open Access Journals (Sweden)

    Fabiana G Marcondes-Braga

    Full Text Available The identification of new biomarkers of heart failure (HF could help in its treatment. Previously, our group studied 89 patients with HF and showed that exhaled breath acetone (EBA is a new noninvasive biomarker of HF diagnosis. However, there is no data about the relevance of EBA as a biomarker of prognosis.To evaluate whether EBA could give prognostic information in patients with heart failure with reduced ejection fraction (HFrEF.After breath collection and analysis by gas chromatography-mass spectrometry and by spectrophotometry, the 89 patients referred before were followed by one year. Study physicians, blind to the results of cardiac biomarker testing, ascertained vital status of each study participant at 12 months.The composite endpoint death and heart transplantation (HT were observed in 35 patients (39.3%: 29 patients (32.6% died and 6 (6.7% were submitted to HT within 12 months after study enrollment. High levels of EBA (≥3.7μg/L, 50th percentile were associated with a progressively worse prognosis in 12-month follow-up (log-rank = 11.06, p = 0.001. Concentrations of EBA above 3.7μg/L increased the risk of death or HT in 3.26 times (HR = 3.26, 95%CI = 1.56-6.80, p = 0.002 within 12 months. In a multivariable cox regression model, the independent predictors of all-cause mortality were systolic blood pressure, respiratory rate and EBA levels.High EBA levels could be associated to poor prognosis in HFrEF patients.

  15. Impact of Exhaled Breath Acetone in the Prognosis of Patients with Heart Failure with Reduced Ejection Fraction (HFrEF). One Year of Clinical Follow-up

    Science.gov (United States)

    Saldiva, Paulo H. N.; Mangini, Sandrigo; Issa, Victor S.; Ayub-Ferreira, Silvia M.; Bocchi, Edimar A.

    2016-01-01

    Background The identification of new biomarkers of heart failure (HF) could help in its treatment. Previously, our group studied 89 patients with HF and showed that exhaled breath acetone (EBA) is a new noninvasive biomarker of HF diagnosis. However, there is no data about the relevance of EBA as a biomarker of prognosis. Objectives To evaluate whether EBA could give prognostic information in patients with heart failure with reduced ejection fraction (HFrEF). Methods After breath collection and analysis by gas chromatography-mass spectrometry and by spectrophotometry, the 89 patients referred before were followed by one year. Study physicians, blind to the results of cardiac biomarker testing, ascertained vital status of each study participant at 12 months. Results The composite endpoint death and heart transplantation (HT) were observed in 35 patients (39.3%): 29 patients (32.6%) died and 6 (6.7%) were submitted to HT within 12 months after study enrollment. High levels of EBA (≥3.7μg/L, 50th percentile) were associated with a progressively worse prognosis in 12-month follow-up (log-rank = 11.06, p = 0.001). Concentrations of EBA above 3.7μg/L increased the risk of death or HT in 3.26 times (HR = 3.26, 95%CI = 1.56–6.80, p = 0.002) within 12 months. In a multivariable cox regression model, the independent predictors of all-cause mortality were systolic blood pressure, respiratory rate and EBA levels. Conclusions High EBA levels could be associated to poor prognosis in HFrEF patients. PMID:28030609

  16. Decreased expression of indolamine 2,3-dioxygenase in childhood allergic asthma and its inverse correlation with fractional concentration of exhaled nitric oxide.

    Science.gov (United States)

    Hu, Ying; Chen, Zhiqiang; Jin, Ling; Wang, Mei; Liao, Wei

    2017-11-01

    The tryptophan metabolic pathway mediated by indolamine 2,3-dioxygenase (IDO), a tryptophan-degrading enzyme, plays an important role in controlling the development of allergic inflammation. The fractional concentration of exhaled nitric oxide (FeNO) is closely associated with the allergic state and is extensively used for the clinical evaluation of airway allergic inflammation. Clinical trials have rarely assessed the expression of IDO in childhood allergic asthma and its correlation with FeNO. To evaluate the IDO level in children with childhood allergic asthma and the relation between IDO levels and FeNO. Thirty children older than 5 years who were diagnosed the first time with allergic asthma were selected from the pediatric outpatient department. Another 30 healthy children were selected as controls. The subjects were evaluated by complete medical history, pulmonary function test results, skin prick test reaction, FeNO concentration test result, eosinophil count, and a disease severity score. Peripheral venous blood and induced sputum were obtained to measure the concentrations of IDO metabolites (ie, tryptophan and kynurenine). The IDO levels in the peripheral blood and induced sputum were significantly lower in patients with childhood allergic asthma than in children in the control group. The IDO level was negatively correlated with FeNO but was not significantly correlated with age, sex, blood eosinophil count, or disease severity scale. The expression of IDO was significantly lower in childhood allergic asthma, particularly in children with high FeNO levels. There was no significant relation between IDO levels and asthma severity. Chinese Clinical Trial Register (www.chictr.org.cn) Identifier: ChiCTR-COC-15006080. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. The effect of allergen-induced bronchoconstriction on concentration of 5-oxo-ETE in exhaled breath condensate of house dust mite-allergic patients.

    Science.gov (United States)

    Kowal, K; Gielicz, A; Sanak, M

    2017-10-01

    Arachidonic acid metabolites regulate several aspects of airway function including inflammation, muscle contraction and mucous secretion. The aim of this study was to evaluate concentration of selected 5-lipoxygenase- and cyclooxygenase-derived eicosanoids in exhaled breath condensate (EBC) during allergen-induced bronchoconstriction. The study was performed on 24 allergic rhinitis/asthma patients sensitized to a house dust mite (HDM) Dermatophagoides pteronyssinus (Dp) and 13 healthy controls (HCs). Bronchial challenge with Dp extract was performed only in the allergic patients. EBC samples were collected before (T0 ) and during Dp-induced bronchoconstriction (TEAR ). Eicosanoid concentration was measured using HPLC-tandem mass spectrometry. Significant bronchoconstriction after Dp challenge was demonstrated in 15 patients (Rs), while in 9 patients (NRs) no asthmatic response could be detected. At T0 the most abundant eicosanoids in EBC of HDM-allergic patients were LTB4 and 5-oxo-ETE, while in HCs EBC concentration of LTB4 was significantly greater than that of 5-oxo-ETE. Allergen challenge resulted in significant increase in EBC concentration of 5-oxo-ETE, LTD4 and 8-iso-PGE2 only in Rs. At TEAR , the relative change of 5-oxo-ETE concentration in EBC correlated with decrease of peripheral blood eosinophilia (R = -0.774; P = .0012). Moreover, the relative increase of 5-oxo-ETE in EBC at TEAR significantly correlated with the severity of the subsequent late asthmatic response (R = 0.683, P = .007). Our study demonstrates significant up-regulation of 5-oxo-ETE synthesis in HDM-allergic patients and indicates possible involvement of that mediator in the pathogenesis of allergic asthma. © 2017 John Wiley & Sons Ltd.

  18. Allergen exposure modifies the relation of sensitization to fraction of exhaled nitric oxide levels in children at risk for allergy and asthma.

    Science.gov (United States)

    Sordillo, Joanne E; Webb, Tara; Kwan, Doris; Kamel, Jimmy; Hoffman, Elaine; Milton, Donald K; Gold, Diane R

    2011-05-01

    Studies on airway inflammation, measured as fraction of exhaled nitric oxide (FENO), have focused on its relation to control of asthma, but the contribution of allergen exposure to the increase in FENO levels is unknown. We evaluated (1) whether FENO levels were increased in children with allergic sensitization or asthma; (2) whether specific allergen exposure increased FENO levels in sensitized, but not unsensitized, children; and (3) whether sedentary behavior increased FENO levels independent of allergen exposures. At age 12 years, in a birth cohort of children with a parental history of allergy or asthma, we measured bed dust allergen (dust mite, cat, and cockroach) by means of ELISA, specific allergic sensitization primarily based on specific IgE levels, and respiratory disease (current asthma, rhinitis, and wheeze) and hours of television viewing/video game playing by means of questionnaire. Children performed spirometric maneuvers before and after bronchodilator responses and had FENO levels measured by using electrochemical detection methods (NIOX MINO). FENO levels were increased in children with current asthma (32.2 ppb), wheeze (27.0 ppb), or rhinitis (23.2 ppb) compared with subjects without these respective symptoms/diagnoses (16.4-16.6 ppb, P dust mite) predicted higher FENO levels and explained one third of the variability in FENO levels. FENO levels were highest in children both sensitized and exposed to dust mite. Greater than 10 hours of weekday television viewing was associated with a 0.64-log increase in FENO levels after controlling for indoor allergen exposure, body mass index, and allergic sensitization. Allergen exposures and sedentary behavior (television viewing/video game playing) might increase airway inflammation, which was measured as the FENO. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study

    Science.gov (United States)

    Poli, Diana; Carbognani, Paolo; Corradi, Massimo; Goldoni, Matteo; Acampa, Olga; Balbi, Bruno; Bianchi, Luca; Rusca, Michele; Mutti, Antonio

    2005-01-01

    Background Non-invasive diagnostic strategies aimed at identifying biomarkers of lung cancer are of great interest for early cancer detection. The aim of this study was to set up a new method for identifying and quantifying volatile organic compounds (VOCs) in exhaled air of patients with non-small cells lung cancer (NSCLC), by comparing the levels with those obtained from healthy smokers and non-smokers, and patients with chronic obstructive pulmonary disease. The VOC collection and analyses were repeated three weeks after the NSCLC patients underwent lung surgery. Methods The subjects' breath was collected in a Teflon® bulb that traps the last portion of single slow vital capacity. The 13 VOCs selected for this study were concentrated using a solid phase microextraction technique and subsequently analysed by means of gas cromatography/mass spectrometry. Results The levels of the selected VOCs ranged from 10-12 M for styrene to 10-9 M for isoprene. None of VOCs alone discriminated the study groups, and so it was not possible to identify one single chemical compound as a specific lung cancer biomarker. However, multinomial logistic regression analysis showed that VOC profile can correctly classify about 80 % of cases. Only isoprene and decane levels significantly decreased after surgery. Conclusion As the combination of the 13 VOCs allowed the correct classification of the cases into groups, together with conventional diagnostic approaches, VOC analysis could be used as a complementary test for the early diagnosis of lung cancer. Its possible use in the follow-up of operated patients cannot be recommended on the basis of the results of our short-term nested study. PMID:16018807

  20. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study

    Directory of Open Access Journals (Sweden)

    Acampa Olga

    2005-07-01

    Full Text Available Abstract Background Non-invasive diagnostic strategies aimed at identifying biomarkers of lung cancer are of great interest for early cancer detection. The aim of this study was to set up a new method for identifying and quantifying volatile organic compounds (VOCs in exhaled air of patients with non-small cells lung cancer (NSCLC, by comparing the levels with those obtained from healthy smokers and non-smokers, and patients with chronic obstructive pulmonary disease. The VOC collection and analyses were repeated three weeks after the NSCLC patients underwent lung surgery. Methods The subjects' breath was collected in a Teflon® bulb that traps the last portion of single slow vital capacity. The 13 VOCs selected for this study were concentrated using a solid phase microextraction technique and subsequently analysed by means of gas cromatography/mass spectrometry. Results The levels of the selected VOCs ranged from 10-12 M for styrene to 10-9 M for isoprene. None of VOCs alone discriminated the study groups, and so it was not possible to identify one single chemical compound as a specific lung cancer biomarker. However, multinomial logistic regression analysis showed that VOC profile can correctly classify about 80 % of cases. Only isoprene and decane levels significantly decreased after surgery. Conclusion As the combination of the 13 VOCs allowed the correct classification of the cases into groups, together with conventional diagnostic approaches, VOC analysis could be used as a complementary test for the early diagnosis of lung cancer. Its possible use in the follow-up of operated patients cannot be recommended on the basis of the results of our short-term nested study.

  1. Metabolic Signatures of Lung Cancer in Sputum and Exhaled Breath Condensate Detected by 1H Magnetic Resonance Spectroscopy: A Feasibility Study.

    Science.gov (United States)

    Ahmed, Naseer; Bezabeh, Tedros; Ijare, Omkar B; Myers, Renelle; Alomran, Reem; Aliani, Michel; Nugent, Zoann; Banerji, Shantanu; Kim, Julian; Qing, Gefei; Bshouty, Zoheir

    2016-01-01

    Lung cancer is one of the most lethal cancers. Currently, there are no biomarkers for early detection, monitoring treatment response, and detecting recurrent lung cancer. We undertook this study to determine if 1H magnetic resonance spectroscopy (MRS) of sputum and exhaled breath condensate (EBC), as a noninvasive tool, can identify metabolic biomarkers of lung cancer. Sputum and EBC samples were collected from 20 patients, comprising patients with pathologically confirmed non-small cell lung cancer (n = 10) and patients with benign respiratory conditions (n = 10). Both sputum and EBC samples were collected from 18 patients; 2 patients provided EBC samples only. 1H MR spectra were obtained on a Bruker Avance 400 MHz nuclear magnetic resonance (NMR) spectrometer. Sputum samples were further confirmed cytologically to distinguish between true sputum and saliva. In the EBC samples, median concentrations of propionate, ethanol, acetate, and acetone were higher in lung cancer patients compared to the patients with benign conditions. Median concentration of methanol was lower in lung cancer patients (0.028 mM) than in patients with benign conditions (0.067 mM; P = 0.028). In the combined sputum and saliva and the cytologically confirmed sputum samples, median concentrations of N-acetyl sugars, glycoprotein, propionate, lysine, acetate, and formate were lower in the lung cancer patients than in patients with benign conditions. Glucose was found to be consistently absent in the combined sputum and saliva samples (88%) as well as in the cytologically confirmed sputum samples (86%) of lung cancer patients. Absence of glucose in sputum and lower concentrations of methanol in EBC of lung cancer patients discerned by 1H MRS may serve as metabolic biomarkers of lung cancer for early detection, monitoring treatment response, and detecting recurrence.

  2. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation

    Science.gov (United States)

    Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, Xudong

    2008-01-01

    The mineralogy and geochemistry of a superhigh-organic-sulfur (SHOS) coal of Late Permian age from the Yanshan Coalfield, Yunnan Province, southwestern China, have been studied using optical microscope, low-temperature ashing plus X-ray diffraction analysis, scanning electron microscope equipped with energy-dispersive X-ray spectrometer, a sequential chemical extraction procedure, and inductively coupled plasma mass spectrometry. The M9 Coal from the Yanshan Coalfield is a SHOS coal that has a total sulfur content of 10.12%-11.30% and an organic sulfur content of 8.77%-10.30%. The minerals in the coal consist mainly of high-temperature quartz, sanidine, albite, muscovite, illite, pyrite, and trace amounts of kaolinite, plagioclase, akermanite, rutile, and dawsonite. As compared with ordinary worldwide (bituminous coals and anthracite) and Chinese coals, the M9 Coal is remarkably enriched in B (268????g/g), F (841????g/g), V (567????g/g), Cr (329????g/g), Ni (73.9????g/g), Mo (204????g/g), and U (153????g/g). In addition, elements including Se (25.2????g/g), Zr (262????g/g), Nb (20.1????g/g), Cd (2.07????g/g), and Tl (2.03????g/g) are also enriched in the coal. Occurrence of high-temperature quartz, sanidine, muscovite, and illite in the M9 Coal is evidence that there is a volcanic ash component in the coal that was derived from acid volcanic ashes fallen into the swamp during peat accumulation. Occurrence of albite and dawsonite in the coal and strong enrichment of some elements, including F, S, V, Cr, Ni, Mo and U, are attributed to the influence by submarine exhalation which invaded along with seawater into the anoxic peat swamp. Abundances of lithophile elements, including rare earth elements, Nb, Y, Zr, and TiO2, indicate that the silicate minerals in the coal were derived from the northern Vietnam Upland to the south of the basin. ?? 2008 Elsevier B.V. All rights reserved.

  3. Effects of ventilator settings, nebulizer and exhalation port position on albuterol delivery during non-invasive ventilation: an in-vitro study.

    Science.gov (United States)

    Sutherasan, Yuda; Ball, Lorenzo; Raimondo, Pasquale; Caratto, Valentina; Sanguineti, Elisa; Costantino, Federico; Ferretti, Maurizio; Kacmarek, Robert M; Pelosi, Paolo

    2017-01-10

    Few studies have investigated the factors affecting aerosol delivery during non-invasive ventilation (NIV). Our aim was to investigate, using a bench-top model, the effect of different ventilator settings and positions of the exhalation port and nebulizer on the amount of albuterol delivered to a lung simulator. A lung model simulating spontaneous breathing was connected to a single-limb NIV ventilator, set in bi-level positive airway pressure (BIPAP) with inspiratory/expiratory pressures of 10/5, 15/10, 15/5, and 20/10 cmH2O, or continuous positive airway pressure (CPAP) of 5 and 10 cmH2O. Three delivery circuits were tested: a vented mask with the nebulizer directly connected to the mask, and an unvented mask with a leak port placed before and after the nebulizer. Albuterol was collected on a filter placed after the mask and then the delivered amount was measured with infrared spectrophotometry. Albuterol delivery during NIV varied between 6.7 ± 0.4% to 37.0 ± 4.3% of the nominal dose. The amount delivered in CPAP and BIPAP modes was similar (22.1 ± 10.1 vs. 24.0 ± 10.0%, p = 0.070). CPAP level did not affect delivery (p = 0.056); in BIPAP with 15/5 cmH2O pressure the delivery was higher compared to 10/5 cmH2O (p = 0.033) and 20/10 cmH2O (p = 0.014). Leak port position had a major effect on delivery in both CPAP and BIPAP, the best performances were obtained with the unvented mask, and the nebulizer placed between the leak port and the mask (p < 0.001). In this model, albuterol delivery was marginally affected by ventilatory settings in NIV, while position of the leak port had a major effect. Nebulizers should be placed between an unvented mask and the leak port in order to maximize aerosol delivery.

  4. Is It Possible to Predict Pulmonary Complications and Mortality in Hematopoietic Stem Cell Transplantation Recipients from Pre-Transplantation Exhaled Nitric Oxide Levels?

    Directory of Open Access Journals (Sweden)

    Nurdan Köktürk

    2016-03-01

    Full Text Available Objective: Chemo/radiotherapy-induced free oxygen radicals and reactive oxygen derivatives contribute to the development of early and late transplantation-related pulmonary and extra-pulmonary complications in hematopoietic stem cell transplantation (HSCT recipients. It has been proposed that an increase in fractional exhaled nitric oxide (FeNO level indicates oxidative stress and inflammation in the airways. The aim of this prospective study is to evaluate the pretransplantation FeNO levels in HSCT patients and to search for its role in predicting post-transplantation pulmonary complications and mortality. Materials and Methods: HSCT patients were included in the study prospectively between October 2009 and July 2011. Pre-transplantation FeNO levels were measured with a NIOX MINO® device prior to conditioning regimens. All patients were monitored prospectively for post-transplantation pulmonary complications with medical history, physical examination, chest X-ray, and pulmonary function tests. Results: A total of 56 patients (33 autologous, 23 allogeneic with mean age of 45±13 years were included in the study, among whom 40 (71% were male. Pre-transplantation FeNO level of the whole study group was found to be 24±13 (mean ± standard deviation parts per billion (ppb. The FeNO level in allogeneic HSCT recipients was 19±6 ppb while it was 27±15 ppb in autologous HSCT recipients (p=0.042. No significant correlation was found between the pre-transplantation chemotherapy and radiotherapy protocols and baseline FeNO levels (p>0.05. Posttransplantation pulmonary toxicity was identified in 12 (21% patients and no significant relationship was found between baseline FeNO levels and pulmonary toxicity. The survival rate of the whole study group for 1 year after transplantation was 70%. No significant relationship was identified between baseline FeNO values and survival (FeNO 19±7 ppb in patients who died and 26±15 ppb in the survivors; p=0

  5. Sick building syndrome (SBS) among office workers in a Malaysian university--Associations with atopy, fractional exhaled nitric oxide (FeNO) and the office environment.

    Science.gov (United States)

    Lim, Fang-Lee; Hashim, Zailina; Md Said, Salmiah; Than, Leslie Thian-Lung; Hashim, Jamal Hisham; Norbäck, Dan

    2015-12-01

    There are few studies on sick building syndrome (SBS) including clinical measurements for atopy and fractional exhaled nitric oxide (FeNO). Our aim was to study associations between SBS symptoms, selected personal factors, office characteristics and indoor office exposures among office workers from a university in Malaysia. Health data were collected by a questionnaire (n=695), skin prick test (SPT) (n=463) and FeNO test (n=460). Office settled dust was vacuumed and analyzed for endotoxin, (1,3)-β-glucan and house dust mites (HDM) allergens group 1 namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Office indoor temperature, relative air humidity (RH), carbon monoxide (CO) and carbon dioxide (CO2) were measured by a direct reading instrument. Associations were studied by two-levels multiple logistic regression with mutual adjustment and stratified analysis. The prevalence of weekly dermal, mucosal and general symptoms was 11.9%, 16.0% and 23.0% respectively. A combination of SPT positivity (allergy to HDM or cat) and high FeNO level (≥25 ppb) was associated with dermal (p=0.002), mucosal (p<0.001) and general symptoms (p=0.05). Der f1 level in dust was associated with dermal (p<0.001), mucosal (p<0.001) and general (p=0.02) symptoms. Among those with allergy to D. farinae, associations were found between Der f 1 levels in dust and dermal (p=0.003), mucosal (p=0.001) and general symptoms (p=0.007). Office-related symptoms were associated with Der f 1 levels in dust (p=0.02), low relative air humidity (p=0.04) and high office temperature (p=0.05). In conclusion, a combination of allergy to cat or HDM and high FeNO is a risk factor for SBS symptoms. Der f 1 allergen in dust can be a risk factor for SBS in the office environment, particularly among those sensitized to Der f 1 allergen. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Temperatura do ar exalado, um novo biomarcador no controle da asma: um estudo piloto Exhaled breath temperature, a new biomarker in asthma control: a pilot study

    Directory of Open Access Journals (Sweden)

    Raul Emrich Melo

    2010-12-01

    Full Text Available OBJETIVO: Avaliar se a temperatura do ar exalado (TAE, medida por um método não invasivo, é efetiva no monitoramento de pacientes com asma não controlada. MÉTODOS: Estudo piloto com nove pacientes (sete mulheres e dois homens; média de idade: 39 anos com diagnóstico de asma por pelo menos um ano e sem uso de tratamento de manutenção por pelo menos três meses antes do início do estudo. Na primeira visita, os pacientes foram submetidos à espirometria e à medida da TAE. Todos os pacientes foram orientados a iniciar tratamento com budesonida/formoterol (200/6 µg inalatório a cada 12 h por seis semanas. Além disso, os pacientes com asma grave (VEF1 OBJECTIVE: To evaluate whether the exhaled breath temperature (EBT, measured by a noninvasive method, is an effective means of monitoring patients with uncontrolled asthma. METHODS: A pilot study comprising nine patients (seven women and two men; mean age: 39 years diagnosed with asthma at least one year prior to the beginning of the study and not having been under maintenance therapy for the last three months. In the first visit, the patients underwent spirometry and measurement of EBT. The patients were then instructed to use inhaled budesonide/formoterol (200/6 µg every 12 h for six weeks. In addition, the patients with severe asthma (FEV1 < 60% of predicted were instructed to use oral prednisolone (40 mg/day for five days. After six weeks, the patients underwent the same tests. RESULTS: All of the patients reported an improvement in the symptoms of asthma, as confirmed by a statistically significant increase in FEV1 from the first to the second visit (mean, 56.1% vs. 88.7% of predicted; p < 0.05. Five patients used oral prednisolone for the first five days of the treatment period. Six patients used additional doses of inhaled budesonide/formoterol (mean duration, 2.5 weeks. The EBT decreased significantly from the first to the second visit (mean EBT: 35.1ºC vs. 34.1ºC; p < 0

  7. Investigating fractional exhaled nitric oxide (FeNO) in chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO): a scoping review protocol.

    Science.gov (United States)

    Mostafavi-Pour-Manshadi, Seyed-Mohammad-Yousof; Naderi, Nafiseh; Barrecheguren, Miriam; Dehghan, Abolfazl; Bourbeau, Jean

    2017-12-21

    During the last decade, many articles have been published, including reviews on fractional exhaled nitric oxide (FeNO) use and utility in clinical practice and for monitoring and identifying eosinophilic airway inflammation, especially in asthma, and evaluating corticosteroid responsiveness. However, the exact role of FeNO in patients with chronic obstructive pulmonary disease (COPD) and its ability to distinguish patients with COPD and those having concomitant asthma, that is, asthma-COPD overlap (ACO) is still unclear and needs to be defined. Due to the broad topics of FeNO in chronic airway disease, we undertook a scoping review. The present article describes the protocol of a scoping review of peer-reviewed published literature specific to FeNO in COPD/ACO over the last decade. We used Joanna Briggs Institute Reviewers' Manual scoping review methodology as well as Levac et al 's and Arksey et al 's framework as guides. We searched a variety of databases, including Medline, Embase, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, Web of Science, and BioSciences Information Service (BIOSIS) on 29 June 2016. Additional studies will be recognised by exploring the reference list of identified eligible studies. Screening of eligible studies will be independently performed by two reviewers and any disagreement will be solved by the third reviewer. We will analyse the gathered data from article bibliographies and abstracts. To investigate the body of published studies regarding the role of FeNO in patients with COPD and its usefulness in the clinical setting, a scoping review can be used as a modern and pioneer model, which does not need ethics approval. By this review, new insights for conducting new research specific to FeNO in COPD/ACO population will emerge. The results of this study will be reported in the scientific meetings and conferences, which aim to provide information to the clinicians, primary care providers and basic

  8. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children.

    Directory of Open Access Journals (Sweden)

    Muhammad T Salam

    Full Text Available Exhaled nitric oxide (FeNO, a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2 and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children.In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes around the subjects' homes were estimated using geographic information system (GIS methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level.The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively. In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI: 9.99 to 13.80 than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63 with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002. In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34. Similar interactive effects of this haplotype and local

  9. [Effects and significance of methacholine bronchial provocation tests and salbutamol bronchial dilation test on measurements of fractional exhaled nitric oxide in patients with asthma].

    Science.gov (United States)

    Liu, Jielu; Yu, Huapeng; Tan, Xiaomei; Wu, Shuhan; Zhang, Pan; Fang, Zekui; Wang, Cuilan; He, Xi

    2016-03-01

    To study the effects and significance of methacholine (Mch) bronchial provocation tests and salbutamol bronchial dilation test on measurements of fractional exhaled nitric oxide (FeNO) in patients with asthma. This was a prospective study conducted between November 2014 and August 2015. A total of 135 patients with asthma visiting the respiratory clinic of Zhujiang Hospital were enrolled. The patients received either Mch bronchial provocation test or salbutamol bronchial dilation test based on their FEV1/FVC values and cooperative degree. Mch bronchial provocation test was performed by using Astograph Jupiter-21 (Astograh group) or APS-Pro airway reaction testing apparatus (APS group), and salbutamol bronchial dilation test was performed by using Jaeger spirometer (Dilation group). We compared the differences between FeNO values measured before examinations (Pre-FeNO) and 5 min after completion of these examinations (Post-FeNO). The geometric mean of Pre-FeNO and Post-FeNO was 28.07 ppb and 24.08 ppb respectively in the Astograh group, with a significant decrease of the FeNO value after the examination (Z=-3.093, P=0.002). A significant difference between Pre-FeNO and Post-FeNO was found in patients who had positive provocation results in the Astograh group (Z=-2.787, P=0.005), but not in the patients with negative results (Z=-1.355, P=0.176). The geometric mean of FeNO in the APS group decreased significantly from 27.95 ppb to 23.15 ppb after the examination was completed (Z=-5.170, P=0.000); both in patients with positive saline or Mch provocation results and in patients with negative provocation results, the differences between Pre-FeNO and Post-FeNO in the APS group being significant (Z=-2.705, -3.709, -2.371, P=0.002, 0.000, 0.018). No difference of FeNO change(ΔFeNO) was observed between the 2 Mch bronchial provocation test groups (Ubronchial dilation test has minor effect on the measurement of FeNO, but Mch bronchial provocation tests can significantly

  10. Inducible Nitric Oxide Synthase Promoter Haplotypes and Residential Traffic-Related Air Pollution Jointly Influence Exhaled Nitric Oxide Level in Children.

    Science.gov (United States)

    Salam, Muhammad T; Lin, Pi-Chu; Eckel, Sandrah P; Gauderman, W James; Gilliland, Frank D

    2015-01-01

    Exhaled nitric oxide (FeNO), a biomarker of airway inflammation, predicts asthma risk in children. We previously found that the promoter haplotypes in inducible nitric oxide synthase (NOS2) and exposure to residential traffic independently influence FeNO level. Because NOS2 is inducible by environmental exposures such as traffic-related exposure, we tested the hypothesis that common NOS2 promoter haplotypes modulate the relationship between residential traffic-related exposure and FeNO level in children. In a cross-sectional population-based study, subjects (N = 2,457; 7-11 year-old) were Hispanic and non-Hispanic white children who participated in the Southern California Children's Health Study and had FeNO measurements. For residential traffic, lengths of local roads within circular buffers (50m, 100m and 200m radii around homes) around the subjects' homes were estimated using geographic information system (GIS) methods. We interrogated the two most common NOS2 promoter haplotypes that were found to affect FeNO level. The relationship between local road lengths within 100m and 200m circular buffers and FeNO level varied significantly by one of the NOS2 promoter haplotypes (P-values for interaction between road length and NOS2 promoter haplotype = 0.02 and 0.03, respectively). In children who had ≤250m of local road lengths within 100m buffer around their homes, those with two copies of the haplotype had significantly lower FeNO (adjusted geometric mean = 11.74ppb; 95% confidence intervals (CI): 9.99 to 13.80) than those with no copies (adjusted geometric mean = 15.28ppb; 95% CI: 14.04 to 16.63) with statistically significant trend of lower FeNO level with increasing number of haplotype copy (P-value for trend = 0.002). In contrast, among children who had >250m of local road lengths within 100m buffer, FeNO level did not significantly differ by the haplotype copy-number (P-value for trend = 0.34). Similar interactive effects of this haplotype and local road

  11. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Mokhtari, Fozieh; Shadjou, Nasrin; Eftekhari, Aziz; Mokhtarzadeh, Ahad; Jouyban-Gharamaleki, Vahid; Mahboob, Soltanali

    2017-06-01

    This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. Copyright © 2017. Published by Elsevier B.V.

  12. Contraption and Prediction of Exhalation Tight Brownstone in Exhalation Cistern

    OpenAIRE

    XhingZhiwang, -; Xuchao, -

    2012-01-01

    The reservoir connate water saturation is high and gas wells generally produce water which seriously affects the productivity of gas wells in Xujiahe tight sandstone gas reservoirs in Sichuan Basin. Take the sixth formation for example, there are 39 wells producing water unequally in the 42 commissioning wells, and the excessive water production leads to the production of the gas well declining rapidly. Studying of the mechanism of water production in tight sandstone gas reservoirs and predic...

  13. Gaia's breath - Global methane exhalations

    Science.gov (United States)

    Kvenvolden, K.A.; Rogers, B.W.

    2005-01-01

    Methane (CH4) is the most abundant organic compound in the Earth's atmosphere, where it acts as a greenhouse gas and thus has implications for global climate change. The current atmospheric CH4 budget, however, does not take into account geologically-sourced CH4 seepage. Geological sources of CH4 include natural macro- and micro-seeps, mud volcanoes, and other miscellaneous sources such as gas hydrates, magmatic volcanoes, geothermal regions, and mid-ocean ridges. Macro-seeps contribute ???25 Tg (teragrams) CH4/yr to the atmosphere, whereas, micro-seepage contributes perhaps 7 Tg CH4/yr. Mud volcanoes emit ???5 Tg CH4/yr, and miscellaneous sources emit ???8 Tg CH4/yr to the atmosphere. Thus, the total contribution to the atmosphere from geological sources is estimated to be 45 Tg CH4/yr, which is significant to the atmospheric organic carbon cycle and should be included in any global inventory of atmospheric CH4. We argue that the atmospheric CH4 global inventory of the Interplanetary Panel on Climate Change must be adjusted in order to incorporate geologically-sourced CH4 from naturally occurring seepage.

  14. Evaluation of color and radon exhalation rate in granite rocks between accelerated aging cycles; Avaliacao da cor e taxa de exalacao de radonio em rochas graniticas entre ciclos de envelhecimento acelerado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Diones Oliveira

    2016-07-01

    Data used for the assessment of the analyzes performed on three types of dimension stone (Juparana Bordeaux, Branco Nevasca and Golden Artico), in natural state and after several cycles of accelerated aging are presented, correlating them with the gas exhalation rate radon issued by the analyzed lithologies. In the samples were conducted permeability, porosity, colorimetry, image analysis, petrographic and exhalation rate of radon, accompanied by aging tests on climate simulation chamber which simulates change situations of materials by weathering agents, accelerating wear and tear samples. The measurements were performed on samples in natural state, with 50 and 100 cycles of aging acceleration, where each cycle corresponds to variations in temperature and humidity in climatic simulation chamber, with the addition of an internal atmosphere of SO{sub 2} with 25 concentration ppm. The results obtained during the tests were related to better analysis of the changes observed on the samples and the variation rate of exhalation radon emitted. The rocks have radon concentration values above the limits suggested by relevant international agencies (200-400 Bq/m³), with average values in the natural state, in 6149, 1619 and 866 Bq/m³ for Juparana Bordeaux, Branco Nevasca and Golden Arctic, respectively. The other aging cycles (50 and 100 cycles) showed an average increase of 0.8% for Juparana Bordeaux, 6.9% for White Blizzard and -23.87% for the Golden Arctic, with 50 cycles. From 50 to 100 cycles, there was reduction of 3.43% for Juparana Bordeaux and 22.15% for Branco Nevasca and an increase of 13.82% in the Golden Artico. The porosity results in the natural state obtained values an average of 0.696% for Juparana Bordeaux, 0.919% for Branco Nevasca and 0.830% for Golden Artico, and after 50 cycles of accelerated aging, obtained 0.621% to Juparana Bordeaux, 0.910% for Branco Nevasca and 0.840% for Golden Artico. The permeability of the samples showed values in the natural

  15. Measurement of exhaled nitric oxide concentration in asthma: a systematic review and economic evaluation of NIOX MINO, NIOX VERO and NObreath.

    Science.gov (United States)

    Harnan, Sue E; Tappenden, Paul; Essat, Munira; Gomersall, Tim; Minton, Jon; Wong, Ruth; Pavord, Ian; Everard, Mark; Lawson, Rod

    2015-10-01

    High fractions of exhaled nitric oxide (FeNO) in the breath of patients with symptoms of asthma are correlated with high levels of eosinophils and indicate that a patient is likely to respond to inhaled corticosteroids. This may have a role in the diagnosis and management of asthma. To assess the diagnostic accuracy, clinical effectiveness and cost-effectiveness of the hand-held electrochemical devices NIOX MINO(®) (Aerocrine, Solna, Sweden), NIOX VERO(®) (Aerocrine) and NObreath(®) (Bedfont Scientific, Maidstone, UK) for the diagnosis and management of asthma. Systematic searches were carried out between March 2013 and April 2013 from database inception. Databases searched included MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, Science Citation Index Expanded and Conference Proceedings Citation Index - Science. Trial registers such as ClinicalTrials.gov and the metaRegister of Controlled Trials were also searched in March 2013. All searches were updated in September 2013. A rapid review was conducted to assess the equivalence of hand-held and chemiluminescent FeNO monitors. Systematic reviews of diagnostic accuracy and management efficacy were conducted. A systematic review of economic analyses was also conducted and two de novo health economic models were developed. All three reviews were undertaken according to robust high-quality methodology. The rapid review (27 studies) found varying levels of agreement between monitors (Bland-Altman 95% limits of agreement up to ±10 parts per billion), with better agreement at lower FeNO values. Correlation was good (generally r > 0.9). The diagnostic accuracy review identified 22 studies in adults (all ages) and four in children. No studies used NObreath or NIOX VERO and seven used NIOX MINO. Estimates of diagnostic accuracy varied widely. FeNO used in combination with another test altered diagnostic accuracy only slightly. High levels of

  16. Measurement of exhaled nitric oxide concentration in asthma: a systematic review and economic evaluation of NIOX MINO, NIOX VERO and NObreath.

    Science.gov (United States)

    Harnan, Sue E; Tappenden, Paul; Essat, Munira; Gomersall, Tim; Minton, Jon; Wong, Ruth; Pavord, Ian; Everard, Mark; Lawson, Rod

    2015-01-01

    BACKGROUND High fractions of exhaled nitric oxide (FeNO) in the breath of patients with symptoms of asthma are correlated with high levels of eosinophils and indicate that a patient is likely to respond to inhaled corticosteroids. This may have a role in the diagnosis and management of asthma. OBJECTIVE To assess the diagnostic accuracy, clinical effectiveness and cost-effectiveness of the hand-held electrochemical devices NIOX MINO(®) (Aerocrine, Solna, Sweden), NIOX VERO(®) (Aerocrine) and NObreath(®) (Bedfont Scientific, Maidstone, UK) for the diagnosis and management of asthma. DATA SOURCES Systematic searches were carried out between March 2013 and April 2013 from database inception. Databases searched included MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, Science Citation Index Expanded and Conference Proceedings Citation Index - Science. Trial registers such as ClinicalTrials.gov and the metaRegister of Controlled Trials were also searched in March 2013. All searches were updated in September 2013. REVIEW METHODS A rapid review was conducted to assess the equivalence of hand-held and chemiluminescent FeNO monitors. Systematic reviews of diagnostic accuracy and management efficacy were conducted. A systematic review of economic analyses was also conducted and two de novo health economic models were developed. All three reviews were undertaken according to robust high-quality methodology. RESULTS The rapid review (27 studies) found varying levels of agreement between monitors (Bland-Altman 95% limits of agreement up to ±10 parts per billion), with better agreement at lower FeNO values. Correlation was good (generally r > 0.9). The diagnostic accuracy review identified 22 studies in adults (all ages) and four in children. No studies used NObreath or NIOX VERO and seven used NIOX MINO. Estimates of diagnostic accuracy varied widely. FeNO used in combination with another test altered

  17. Exhaled breath condensate collection for nitrite dosage: a safe and low cost adaptation Coleta do condensado do ar exalado pulmonar para a dosagem de nitrito: Uma adaptação segura e barata

    Directory of Open Access Journals (Sweden)

    Graziela Saraiva Reis

    2010-04-01

    Full Text Available PURPOSE: Standardization of a simple and low cost technique of exhaled breath condensate (EBC collection to measure nitrite. METHODS: Two devices were mounted in polystyrene boxes filled either with crushed ice/salt crystals or dry ice/crushed ice. Blood samples were stored at -70º C for posterior nitrite dosages by chemiluminescence and the Griess reaction. RESULTS: a The use of crushed ice/dry ice or salt revealed sufficient EBC room air collection, but was not efficient for patients under ventilation support; b the method using crushed ice/salt collected greater EBC volumes, but the nitrite concentrations were not proportional to the volume collected; c The EBC nitrite values were higher in the surgical group using both methods; d In the surgical group the nasal clip use diminished the EBC nitrite concentrations in both methods. CONCLUSIONS: The exhaled breath condensate (EBC methodology collection was efficient on room air breathing. Either cooling methods provided successful EBC collections showing that it is possible to diminish costs, and, amongst the two used methods, the one using crushed ice/salt crystals revealed better efficiency compared to the dry ice method.OBJETIVO: Padronizar técnica simples e barata de coleta do condensado do ar exalado pulmonar (CEP para medir nitrito. MÉTODOS: Dois dispositivos foram montados em caixas de isopor e preenchidos com gelo picado/sal grosso ou gelo picado/gelo seco. Amostras de sangue foram armazenadas a -70º C para dosagem de nitrito por quimiluminescência e pela reação de Griess. RESULTADOS: a a utilização de gelo picado/gelo seco ou sal foi eficiente para a coleta em respiração espontânea, mas ineficiente durante ventilação mecânica; b o método gelo picado/sal coletou volumes maiores, sem aumento proporcional do nitrito; c os valores do nitrito foram mais elevados no grupo cirúrgico utilizando os dois métodos; d no grupo cirúrgico com clipe nasal ocorreu diminuição do

  18. Tai-Chi-Chuan Exercise Improves Pulmonary Function and Decreases Exhaled Nitric Oxide Level in Both Asthmatic and Nonasthmatic Children and Improves Quality of Life in Children with Asthma

    Directory of Open Access Journals (Sweden)

    Hsin-Chia Lin

    2017-01-01

    Full Text Available Tai-Chi-Chuan (TCC is an exercise of low-to-moderate intensity which is suitable for asthmatic patients. The aim of our study is to investigate improvements of the lung function, airway inflammation, and quality of life of asthmatic children after TCC. Participants included sixty-one elementary school students and they were divided into asthmatic (n=29 and nonasthmatic (n=32 groups by the International Study of Asthma and Allergies in Childhood (ISAAC questionnaire. Among them, 20 asthmatic and 18 nonasthmatic children volunteered to participate in a 60-minute TCC exercise weekly for 12 weeks. Baseline and postintervention assessments included forced expiratory volume in one second (FEV1, forced vital capacity (FVC, peak expiratory flow rate (PEFR, fractional exhaled nitric oxide (FeNO level, and Standardised Pediatric Asthma Quality of Life Questionnaire (PAQLQ(S. After intervention, the level of FeNO decreased significantly; PEFR and the FEV1/FVC also improved significantly in both asthmatic group and nonasthmatic group after TCC. The asthmatic children also had improved quality of life after TCC. The results indicated that TCC could improve the pulmonary function and decrease airway inflammation in both children with mild asthma and those without asthma. It also improves quality of life in mild asthmatic children. Nevertheless, further studies are required to determine the effect of TCC on children with moderate-to-severe asthma.

  19. Respiratory symptoms and fractional exhaled nitric oxide (FeNO) among students in Penang, Malaysia in relation to signs of dampness at school and fungal DNA in school dust.

    Science.gov (United States)

    Norbäck, Dan; Hashim, Jamal Hisham; Hashim, Zailina; Cai, Gui-Hong; Sooria, Vinoshini; Ismail, Syazwan Aizat; Wieslander, Gunilla

    2017-01-15

    Few health studies exist on dampness and mould in schools in the tropics. We studied associations between fraction of exhaled nitric oxide (FeNO), respiratory symptoms and airway infections among students and dampness and fungal DNA in schools in Malaysia. A total of 368 randomly selected students from 32 classrooms in 8 secondary schools in Penang, Malaysia, participated (58% participation rate). Information on current respiratory symptoms and the home environment was collected by a standardised questionnaire. FeNO was measured by NIOX MINO (50ml/min). The classrooms were inspected and dust was collected by vacuuming on special filters and was analysed for five fungal DNA sequences by quantitative PCR. Linear mixed models and 3-level multiple logistic regression (school, classroom, student) were applied adjusting for demographic data and the home environment. Totally 10.3% reported doctor's diagnosed asthma, 15.1% current wheeze, 12.4% current asthma, 37.3% daytime breathlessness, 10.2% nocturnal breathlessness, 38.9% airway infections and 15.5% had pollen or furry pet allergy. The geometric mean of FeNO was 19.9ppb and 45% had elevated FeNO (>20ppb). Boys had higher levels of FeNO. Chinese had less daytime breathlessness than Malay (OR=0.30: pMalaysia can be risk factors for impaired respiratory health among the students. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nitrite exhaled breath condensate study in patients undergoing cardiopulmonary bypass cardiac surgery Estudo do nitrito do condensado do exalado pulmonar em pacientes submetidos à cirurgia cardíaca com CEC

    Directory of Open Access Journals (Sweden)

    Viviane dos Santos Augusto

    2011-03-01

    Full Text Available BACKGROUND: There is a relative lack of studies on postoperative changes in nitrite (NO2 - concentrations, a marker of injury, following cardiac surgery. In this context, investigations on how exhaled NO concentrations vary in the postoperative period of cardiac surgery will certainly contribute to new clinical findings. OBJECTIVE: The objective of this study was to compare the EBC NO levels in both the pre and postoperative (24 hours periods of cardiac surgery. METHODS: Twenty - eight individuals were divided into three groups: 1 control, 2 coronary artery bypass grafting, and 3 valve surgery. The nitrite (NO2 - levels were measured by chemiluminescence in blood samples and exhaled breath condensate (EBC. Data were analyzed by the Mann - Whitney and Wilcoxon tests. RESULTS: 1 Preoperatively, the EBC NO2 - levels from groups 2 and 3 patients were higher than control individuals; 2 The postoperative (24 hours NO2 - levels in the EBC from group 3 patients were lower compared with preoperative values; 3 The NO2 - levels in the plasma from group 2 patients were lower in the preoperative compared with the postoperative (24h values and; 4 Preoperatively, there was no difference between groups 2 and 3 in terms of plasma NO2 - concentrations. CONCLUSION: These data suggest that NO measurement in EBC is feasible in cardiac surgery patients.INTRODUÇÃO: Estudos mostrando alterações das concentrações de nitrito (NO2 - exalado, com biomarcador de lesão, são raros em pacientes submetidos à cirurgia cardíaca. Nesse contexto, o seu estudo no pré e pós - operatório de cirurgias cardíacas poderá contribuir para novos dados clínicos. OBJETIVO: O objetivo foi comparar os níveis de nitrito (NO2 - do condensado do exalado pulmonar (CEP no pré e pós - operatório de cirurgia cardíaca com circulação extracorpórea. MÉTODOS: Vinte e oito indivíduos foram alocados em três grupos: 1 controle, 2 revascularização do miocárdio e 3 corre

  1. Diagnostic accuracy of fractional exhaled nitric oxide measurement in predicting cough-variant asthma and eosinophilic bronchitis in adults with chronic cough: A systematic review and meta-analysis.

    Science.gov (United States)

    Song, Woo-Jung; Kim, Hyun Jung; Shim, Ji-Su; Won, Ha-Kyeong; Kang, Sung-Yoon; Sohn, Kyoung-Hee; Kim, Byung-Keun; Jo, Eun-Jung; Kim, Min-Hye; Kim, Sang-Heon; Park, Heung-Woo; Kim, Sun-Sin; Chang, Yoon-Seok; Morice, Alyn H; Lee, Byung-Jae; Cho, Sang-Heon

    2017-09-01

    Individual studies have suggested the utility of fractional exhaled nitric oxide (Feno) measurement in detecting cough-variant asthma (CVA) and eosinophilic bronchitis (EB) in patients with chronic cough. We sought to obtain summary estimates of diagnostic test accuracy of Feno measurement in predicting CVA, EB, or both in adults with chronic cough. Electronic databases were searched for studies published until January 2016, without language restriction. Cross-sectional studies that reported the diagnostic accuracy of Feno measurement for detecting CVA or EB were included. Risk of bias was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Random effects meta-analyses were performed to obtain summary estimates of the diagnostic accuracy of Feno measurement. A total of 15 studies involving 2187 adults with chronic cough were identified. Feno measurement had a moderate diagnostic accuracy in predicting CVA in patients with chronic cough, showing the summary area under the curve to be 0.87 (95% CI, 0.83-0.89). Specificity was higher and more consistent than sensitivity (0.85 [95% CI, 0.81-0.88] and 0.72 [95% CI, 0.61-0.81], respectively). However, in the nonasthmatic population with chronic cough, the diagnostic accuracy to predict EB was found to be relatively lower (summary area under the curve, 0.81 [95% CI, 0.77-0.84]), and specificity was inconsistent. The present meta-analyses indicated the diagnostic potential of Feno measurement as a rule-in test for detecting CVA in adult patients with chronic cough. However, Feno measurement may not be useful to predict EB in nonasthmatic subjects with chronic cough. These findings warrant further studies to validate the roles of Feno measurement in clinical practice of patients with chronic cough. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Determination of carbon monoxide in industrial exhalates

    Energy Technology Data Exchange (ETDEWEB)

    Lepsi, P.; Skalicka, B.

    1976-01-01

    The proposed method for the determination of carbon monoxide can replace infrared spectrometry and gas chromatography provided that discontinual measurements are concerned at the complete elimination of interfering components. The principle of this carbon monoxide determination is based on oxidation with the Schuetz agent. Carbon dioxide formed by oxidation is determined by titration or gravimetrically in accordance with the concentration of carbon monoxide in the original sample. Samples are pumped into rubber bags of at least 51 volume and analyzed within 4 hours after sampling. At a presumed concentration of CO in the range 0.05 to 1 percent vol., after oxidation with the Schuetz agent and after absorption in 0.05 N barium hydroxide, the concentration of CO was determined by titration with 0.05 N HCL. CO in a gas mixture for concentrations ranging from 1.0 to 15.0 percent vol. was determined gravimetrically after oxidation of CO to carbon dioxide.

  3. Exhaled nitric oxide and asthma in childhood

    NARCIS (Netherlands)

    R.J.P. van der Valk (Ralf)

    2013-01-01

    textabstractAsthma was first described in the medical literature of Greek antiquity. It is difficult to determine whether by referring to “asthma”, Hippocrates and his school (460-360 B.C.) meant an autonomous clinical entity or a symptom. The clinical presentation of asthma nowadays has probably

  4. Online trapping and enrichment ultra performance liquid chromatography-tandem mass spectrometry method for sensitive measurement of 'arginine-asymmetric dimethylarginine cycle' biomarkers in human exhaled breath condensate

    Energy Technology Data Exchange (ETDEWEB)

    Di Gangi, Iole Maria, E-mail: giordano@pediatria.unipd.it [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Pirillo, Paola [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Carraro, Silvia [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Gucciardi, Antonina; Naturale, Mauro [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Baraldi, Eugenio [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Giordano, Giuseppe [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy)

    2012-11-19

    Highlights: Black-Right-Pointing-Pointer Simultaneous quantification of 'arginine-ADMA cycle' metabolites developed in EBC. Black-Right-Pointing-Pointer EBC is a non-invasive matrix highly useful in patients with respiratory diseases. Black-Right-Pointing-Pointer Method, fast, precise and accurate, is suitable in the pediatric clinical studies. Black-Right-Pointing-Pointer Sensitivity is increased using on-line trapping and enrichment-UPLC-MS/MS method. Black-Right-Pointing-Pointer EBC measurements in asthmatic adolescents confirm that ADMA is increased in asthma. - Abstract: Background: Exhaled breath condensate (EBC) is a biofluid collected non invasively that, enabling the measurement of several biomarkers, has proven useful in the study of airway inflammatory diseases, including asthma, COPD and cystic fibrosis. To the best of our knowledge, there is no previous report of any analytical method to detect ADMA in EBC. Objectives: Aim of this work was to develop an online sample trapping and enrichment system, coupled with an UPLC-MS/MS method, for simultaneous quantification of seven metabolites related to 'Arginine-ADMA cycle', using the isotopic dilution. Methods: Butylated EBC samples were trapped in an online cartridge, washed before and after each injection with cleanup solution to remove matrix components and switched inline into the high pressure analytical column. Multiple reaction monitoring in positive mode was used for analyte quantification by tandem mass spectrometry. Results: Validation studies were performed in EBC to examine accuracy, precision and robustness of the method. For each compound, the calibration curves showed a coefficient of correlation (r{sup 2}) greater than 0.992. Accuracy (%Bias) was <3% except for NMMA and H-Arg (<20%), intra- and inter-assay precision (expressed as CV%) were within {+-}20% and recovery ranged from 97.1 to 102.8% for all analytes. Inter-day variability analysis on 20 EBC of adult subjects did

  5. Avaliação da concentração de monóxido de carbono no ar exalado em tabagistas com DPOC Evaluation of the exhaled carbon monoxide levels in smokers with COPD

    Directory of Open Access Journals (Sweden)

    Gustavo Chatkin

    2010-06-01

    Full Text Available OBJETIVO: Medir os níveis de monóxido de carbono no ar exalado (COex em tabagistas com e sem DPOC. MÉTODOS: Tabagistas frequentadores dos ambulatórios do Hospital São Lucas em Porto Alegre (RS entre setembro de 2007 e março de 2009 foram convidados a participar do estudo. Os participantes responderam a um questionário com características demográficas e epidemiológicas e realizaram espirometria, medição de cotinina urinária e de COex. Os participantes foram agrupados conforme a presença de DPOC. RESULTADOS: Foram incluídos 294 tabagistas, 174 (59,18% diagnosticados com DPOC. Todos os participantes apresentavam níveis de cotinina urinária > 50 ng/mL. Os fumantes com DPOC apresentaram medianas significativamente superiores as do grupo sem DPOC para as variáveis idade e maços-ano (p OBJECTIVE: To measure exhaled carbon monoxide (COex levels in smokers with and without COPD. METHODS: Smokers treated at outpatient clinics of São Lucas Hospital in the city of Porto Alegre, Brazil, between September of 2007 and March of 2009 were invited to participate in this study. The participants completed a questionnaire regarding demographic and epidemiologic characteristics and were submitted to spirometry, as well as to determination of COex and urinary cotinine levels. The participants were divided into two groups: those with COPD and those without COPD. RESULTS: The study involved 294 smokers, of whom 174 (59.18% had been diagnosed with COPD. All of the participants presented with urinary cotinine levels > 50 ng/mL. Smokers with COPD presented significantly higher median values for age and pack-years than did those without COPD (p < 0.001 and p = 0.026, respectively. No other statistically significant differences were found. When adjusted for gender, age at smoking onset, number of cigarettes/day and urinary cotinine level, the mean values of COex were higher, but not statistically so, in the COPD group than in the non-COPD group (17.8 ± 0

  6. Efeito de um programa de condicionamento físico aeróbio nos aspectos psicossociais, na qualidade de vida, nos sintomas e no óxido nítrico exalado de portadores de asma persistente moderada ou grave Effects of an aerobic physical training program on psychosocial characteristics, quality-of-life, symptoms and exhaled nitric oxide in individuals with moderate or severe persistent asthma

    Directory of Open Access Journals (Sweden)

    RC Gonçalves

    2008-04-01

    Full Text Available OBJETIVO: Avaliar o papel de um programa de condicionamento físico aeróbio nos aspectos psicossociais, qualidade de vida, sintomas e óxido nítrico exalado (NOe de adultos com asma persistente moderada ou grave. MATERIAIS E MÉTODOS: Vinte pacientes foram divididos aleatoriamente em Grupo Controle (GC, n= 10; programa de educação e exercícios respiratórios e Grupo Treinado (GT, n= 10; programa de educação e exercícios respiratórios mais condicionamento aeróbio, 70% potência máxima obtida. A intervenção aconteceu duas vezes por semana durante três meses. Antes e após, foram avaliados a capacidade aeróbia máxima, a função pulmonar, a dispnéia ao esforço, os níveis de ansiedade e depressão e a qualidade de vida. Mensalmente, eram avaliados o NOe em repouso e o número de dias livres de sintomas. RESULTADOS: Apenas o GT apresentou redução dos sintomas (GT 24,8 [IC95%= 23-27] versus GC 15,7 [IC95%= 9-21] dias livres de sintomas, pOBJECTIVE: To evaluate the role of an aerobic physical training program on psychosocial characteristics, quality of life, symptoms and exhaled nitric oxide of adults with moderate or severe persistent asthma. METHODS: Twenty patients were randomly assigned to a Control Group (CG, n= 10, education program and respiratory exercises and a Trained Group (TG, n= 10, education program and respiratory exercises plus aerobic training at 70% of the maximum power obtained. The intervention took place twice a week for three months. Maximum aerobic capacity, pulmonary function, effort dyspnea, anxiety levels, depression levels and quality of life were assessed before and after the treatment. Exhaled nitric oxide at rest and the number of days without asthma symptoms were evaluated every month. RESULTS: The TG presented increased numbers of symptom-free days (TG 24.8 days [95%CI= 23-27] versus CG 15.7 days [95%CI= 9-21]; p< 0.05, decreased exhaled nitric oxide levels (TG 25.8 ppb [95%CI= 15.3-44.0] versus CG

  7. Radon exhalation studies in building materials using solid-state ...

    Indian Academy of Sciences (India)

    Inhalation of 222Rn and its daughter products, especially 218Po and 214Po attached to aerosols present in ambient air, causes significant radiological hazard to human lungs. Radon appears mainly by diffusion processes from the point of origin, following a-decay of 226Ra in underground soil and building materials used.

  8. Exhaled Nitric Oxide Decreases during Academic Examination Stress in Asthma

    National Research Council Canada - National Science Library

    Ritz, Thomas; Trueba, Ana F; Liu, Jiayan; Auchus, Richard J; Rosenfield, David

    2015-01-01

    .... We sought to study changes in FeNO, lung function, and endogenous cortisol levels in students in a low-stress period during the academic term and in high-stress periods of up to 5 days during final exams...

  9. Breathomics from exhaled volatile organic compounds in pediatric asthma

    NARCIS (Netherlands)

    Neerincx, Anne H.; Vijverberg, Susanne J. H.; Bos, Lieuwe D. J.; Brinkman, Paul; van der Schee, Marc P.; de Vries, Rianne; Sterk, Peter J.; Maitland-van der Zee, Anke-Hilse

    2017-01-01

    Asthma is the most common chronic disease in children, and is characterized by airway inflammation, bronchial hyperresponsiveness, and airflow obstruction. Asthma diagnosis, phenotyping, and monitoring are still challenging with currently available methods, such as spirometry, FENO or sputum

  10. Alcohol Detection in Exhaled Air by NDIR Method

    Science.gov (United States)

    Fujitsuka, Norio; Yonemura, Masatoshi; Sakakibara, Kiyomi; Taguchi, Toshiyuki; Wakita, Toshihiro

    In recent years, the increase in traffic accidents associated with drunk driving has become a serious social issue. Therefore, there is a need for an in-vehicle system that can detect the fact that the driver is under the influence of alcohol. We thought a method for alcohol detection in the breath of the driver, based on a nondispersive infrared (NDIR) method, is suitable for this system. Since alcohol content in the driver's breath is significantly diluted at the sensor device, it is necessary that the sensor is highly sensitive to detect diluted alcohol. A quantum cascade laser was used to produce highly intense infrared light source. An infrared hollow fiber used in medical treatment was utilized as a gas absorption cell. Since the core of the fiber is hollow, gas is introduced for analyzer. The flexibility of the fiber allowed it to be looped so that 2 m fiber in length could be formed into a compact coil of 29 cm in diameter. It was clarified that the light intensity change of light output from the hollow fiber with ethanol density, and rarefied ethanol as small as 1 ppm in density was detected.

  11. Elevated exhaled nitric oxide in anaphylaxis with respiratory symptoms

    Directory of Open Access Journals (Sweden)

    Yoichi Nakamura

    2015-10-01

    Conclusions: Elevation of FeNO was related to respiratory symptoms observed in anaphylactic patients without asthma. Although the mechanism of increased FeNO level is unclear, its usefulness for diagnosis of anaphylaxis must be examined in prospective studies.

  12. The Clinical Use of Exhaled Nitric Oxide in Wheezing Children

    OpenAIRE

    Carreiro-Martins, P; Caires, I; Rosado-Pinto, J; Lopes Mata, P; Torres, S; Valente, J.; Borrego, C.; Neuparth, N.

    2008-01-01

    Encontram -se publicados múltiplos trabalhos sobre o papel das determinações do óxido nítrico no ar exalado (FENO) no âmbito do estudo da inflamação brônquica que nos permitem afirmar que se trata duma medição simples, não invasiva e de grande utilidade na avaliação do doente asmático.No decurso de um estudo prospectivo sobre o impacto da poluição do ar sobre a saúde da população na cidade de Viseu (Projecto Saud’AR), foram identificadas crianças com história clínica de sibilância, mediant...

  13. Avaliação do óxido nítrico exalado em pacientes submetidos à revascularização do miocárdio com circulação extracorpórea Evaluación del óxido nítrico exhalado en pacientes sometidos a la revascularización del miocardio con circulación extracorpórea Evaluation of exhaled nitric oxide in patients undergoing myocardial revascularization with cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Célio Gomes de Amorim

    2009-06-01

    anestesia. A continuación, se inició la anestesia por vía venosa con etomidato (0,3 mg.kg-1, sufentanil (0,3 µg.kg-1, pancuronio (0,08 mg.kg-1 y se mantiene con isoflurano (0,5 a 1,0 CAM y sufentanil (0,5 µg.kg-1.h-1. El volumen corriente fijado fue 8 mL.kg-1, con FiO2 de 0,6 excepto durante la CEC. Treinta minutos después de la inducción y treinta minutos después de la CEC, tres muestras secuenciales de aire exhalado fueron recogidas para análisis de NO, por quimioluminescencia. Los datos fueron analizados por medio del test t Student. RESULTADOS: El valor del NO del aire ambiente fue de 5,05 ± 3,37 ppmm. El NO exhalado se redujo después de la CEC, variando de 11,25 ± 5,65 ppmm para 8,37 ± 3,17 ppmm (p = 0,031. CONCLUSIONES: La reducción del NO exhalado pos-CEC, observada en este estudio, no permite confirmar el papel de esta molécula como marcador de lesión pulmonar. Sin embargo, los variados grados de colapso del parénquima pulmonar, el método de obtención de los datos, y los fármacos utilizados, entre otros, pueden haber contribuido para esa reducción.BACKGROUND AND OBJECTIVES: Cardiopulmonary bypass (CPB can cause pulmonary dysfunction. Inflammatory changes may affect the release of nitric oxide (NO. The objective of this study was to evaluate exhaled NO in patients undergoing myocardial revascularization (MR with CPB. METHODS: This is a prospective study with nine adult patients undergoing MR with CPB. Initially, air samples were collected to analyze the presence of NO in the system that feeds the anesthesia equipment. Intravenous anesthesia was then initiated with ethomidate (0.3 mg.kg-1, sufentanil (0.3 µg.kg-1, and pancuronium (0.08 mg.kg-1, and maintained with isoflurane (MAC from 0.5 to 1.0 and sufentanil (5 µg.kg-1.h-1. Tidal volume was fixed at 8 mL.kg-1 and FiO2 0.6, except during CPB. Thirty minutes after induction and 30 minutes after CPB, three sequential samples of exhaled air were collected for NO analysis by chemiluminescence. Data

  14. Developing an amperometric hydrogen peroxide sensor for an exhaled breath analysis system

    NARCIS (Netherlands)

    Wiedemair, Justyna; van Dorp, Henriëtte; Olthuis, Wouter; van den Berg, Albert

    In this work, we present a chip-integrated amperometric sensor targeted at the detection of hydrogen peroxide (H2O2) in the gaseous phase. Electrode chips are manufactured in a series of microfabrication steps and characterized electrochemically. Using such devices detection of H2O2 in an aqueous

  15. Fabrication of prototype for measuring the exhaled breath temperature (EBT) to support detection of asthma

    Science.gov (United States)

    Harnawan, A. A.; Mariati; Fahrudin, A.; Assegaf, A.

    2017-05-01

    Recently, EBT has been proven as the marker of airways inflammation like asthma and proposed as the non-invasive tool. Although EBT device has already been made but this device is rarely used for patients in Indonesia. The aim of this study is to develop a prototype which accurately measures EBT and is comfortably used by patients including children. This prototype was made using SHT11 as a sensor of EBT which is integrated on a thermal flask 0.5L. This flask filled up patient breath and the temperature of air breath was measured. The EBT of twelve healthy samples and seven samples with asthma was examined using this prototype, the measurement was done within three minutes for all of them. The test results of EBT on healthy samples obtained the median is 33.9°C within of 33.0°C - 34.7°C and EBT on asthma samples obtained median is 35.0°C within the range 34.9°C - 36.0°C.

  16. Integrating exhaled breath diagnostics by disease-sniffing dogs with instrumental laboratory analysis

    Science.gov (United States)

    Dogs have been studied for many years as a medical diagnostic tool to detect a pre-clinical disease state by sniffing emissions directly from a human or an in vitro biological sample. Some of the studies report high sensitivity and specificity in blinded case-control studies. How...

  17. Exhaled Breath Analysis for the Monitoring of Elderly COPD Patients Health-state

    Science.gov (United States)

    Pennazza, Giorgio; Scarlata, Simone; Santonico, Marco; Chiurco, Domenica; D'Amico, Arnaldo; Incalzi, Raffaele Antonelli

    2011-09-01

    This pilot study assesses how effectively a gas sensors array can follow the evolution of elderly patients with COPD, the most common chronic respiratory disease. In particular, reproducibility of breath analysis (calculated for each subject along three weekly measurements) resulted comparable to spirometry, except for a larger spread for breath analysis, whose patterns was significantly correlated with other heath status parameters (such as eosinophiles and Barthel index).

  18. Diagnostic utility of fractional exhaled nitric oxide in prolonged and chronic cough according to atopic status

    Directory of Open Access Journals (Sweden)

    Takamitsu Asano

    2017-04-01

    Conclusions: Although high FeNO levels suggested the existence of AC, lower FeNO levels had limited diagnostic significance. Atopic status affects the utility of FeNO levels in the differential diagnosis of prolonged and chronic cough.

  19. Reference Ranges for Exhaled Nitric Oxide Fraction in Healthy Japanese Adult Population

    Directory of Open Access Journals (Sweden)

    Kazuto Matsunaga

    2010-01-01

    Conclusions: The reference ranges for FEno in healthy Japanese adults were similar to those of Caucasians. It seems reasonable that the upper limit of FEno for healthy adults should be set at approximately 36.0 ppb irrespective of ethnic differences.

  20. Inhale, exhale, e-mail: tips for effectively handling e-mail.

    Science.gov (United States)

    Bridge, Jerry

    2010-01-01

    Today's world is all about speed and gathering information, superficial or otherwise. E-mail, computers and technological devices, all of which are designed to make us more productive and efficient, can use us up, spit us out, and leave us feeling inferior, ineffective, frustrated, and stressed out. Learn how to get control of your e-mail.

  1. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter

    OpenAIRE

    Fiore, Cara L.; Christopher J. Freeman; Kujawinski, Elizabeth B.

    2017-01-01

    Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM) from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM ...

  2. Apocynin decreases hydrogen peroxide and nirtate concentrations in exhaled breath in healthy subjects

    OpenAIRE

    Stefanska, J.; Sokolowska, M. (Milena); Sarniak, A.; Wlodarczyk, A.; Doniec, Z.; Nowak, D.; R. Pawliczak

    2010-01-01

    Abstract The imbalance between reactive oxygen species (ROS) synthesis and antioxidants might be involved in the pathogenesis of many inflammatory diseases. NADPH oxidase, an enzyme responsible for ROS production, may represent an attractive therapeutic target to inhibit for the treatment of these diseases. Apocynin is an inhibitor of activation of NADPH oxidase complex present in the inflammatory cells. In double blind, placebo controlled, cross-over study, w...

  3. Luminous phenomena and electromagnetic VHF wave emission originated from earthquake-related radon exhalation

    Science.gov (United States)

    Seki, A.; Tobo, I.; Omori, Y.; Muto, J.; Nagahama, H.

    2013-12-01

    Anomalous luminous phenomena and electromagnetic wave emission before or during earthquakes have been reported (e.g., the 1965 Matsushiro earthquake swarm). However, their mechanism is still unsolved, in spite of many models for these phenomena. Here, we propose a new model about luminous phenomena and electromagnetic wave emission during earthquake by focusing on atmospheric radon (Rn-222) and its daughter nuclides (Po-218 and Po-214). Rn-222, Po-218 and Po-214 are alpha emitters, and these alpha particles ionize atmospheric molecules. A light emission phenomenon, called 'the air luminescence', is caused by de-excitation of the ionized molecules of atmospheric nitrogen due to electron impact ionization from alpha particles. The de-excitation is from the second positive system of neutral nitrogen molecules and the first negative system of nitrogen molecule ion. Wavelengths of lights by these transitions include the visible light wavelength. So based on this mechanism, we proposed a new luminous phenomenon model before or during earthquake: 1. The concentration of atmospheric radon and its daughter nuclides increase anomalously before or during earthquakes, 2. Nitrogen molecules and their ions are excited by alpha particles emitted from Rn-222, Po-218 and Po-214, and air luminescence is generated by their de-excitation. Similarly, electromagnetic VHF wave emission can be explained by ionizing effect of radon and its daughter nuclides. Boyarchuk et al. (2005) proposed a model that electromagnetic VHF wave emission is originated when excited state of neutral clusters changes. Radon gas ionizes atmosphere and forms positively and negatively charged heavy particles. The process of ion hydration in ordinary air can be determined by the formation of complex chemically active structures of the various types of ion radicals. As a result of the association of such hydration radical ions, a neutral cluster, which is dipole quasi-molecules, is formed. A neutral cluster's rotation-rotation transition causes electromagnetic VHF wave emission. We also discuss a possibility of electromagnetic VHF wave emission from excitation of polyatomic molecules by alpha particles from Rn-222 and its daughter nuclides, similar to air luminescence by excitation of nitrogen molecule in the viewpoint of electromagnetic radiation in quantum theory.

  4. POTENTIALS OF RAMAN BASED SENSOR SYSTEM FOR AN ONLINE ANALYSIS OF HUMAN INHALE AND EXHALE

    Directory of Open Access Journals (Sweden)

    T. Seeger

    2015-11-01

    Full Text Available A gas sensor based on spontaneous Raman scattering is proposed for the compositional analysis of single breath events. A description of the sensor as well as of the calibration procedure, which also allows the quantification of condensable gases, is presented. Moreover, a comprehensive characterization of the system is carried out in order to determine the measurement uncertainty. Finally, the sensor is applied to consecutive breath events and allowed measurements with 250 ms time resolution. The Raman sensor is able to detect all the major gas components, i.e. N2, O2, CO2, and H2O at ambient pressure with a high temporal resolution. Concentration fluctuations within a single breath event could be resolved.

  5. Geologic Criteria for the Assessment of Sedimentary Exhalative (Sedex) Zn-Pb-Ag Deposits

    Science.gov (United States)

    Emsbo, Poul

    2009-01-01

    Sedex deposits account for more than 50 percent of the world's zinc and lead reserves and furnish more than 25 percent of the world's production of these two metals. This report draws on previous syntheses as well as on topical studies of deposits in sedex basins to determine the characteristics and processes that produced sedex deposits. This analysis also uses studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins and mass balance constraints to identify the hydrothermal processes that are required to produce sedex deposits. This report demonstrates how a genetic model can be translated into geologic criteria that can be used in the U.S. Geological Survey National Assessments for sedex zinc-lead-silver deposits to define permissive tracts, assess the relative prospectivity of permissive tracts, and map favorability within permissive tracts.

  6. Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide: a random-sample population study

    DEFF Research Database (Denmark)

    Sverrild, Asger; Porsbjerg, Celeste; Thomsen, Simon Francis

    2010-01-01

    Studies of selected patient groups have shown that airway hyperresponsiveness (AHR) to mannitol is more specific than methacholine for the diagnosis of asthma, as well as more closely associated with markers of airway inflammation in asthma....

  7. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Hermansen, Mette N; Nielsen, Kim G

    2005-01-01

    to a standardized submaximal exercise test on the treadmill were measured in 111 school children with asthma. EIB could be excluded with a probability of 90% in asthmatic children with FeNO levels ... reducing the need for exercise testing. OBJECTIVE: The aim of this study was to estimate the value of FeNO as a predictor of EIB in asthmatic children. METHODS: Stable outpatient asthmatic school children performed standard exercise challenge tests and measurement of FeNO. RESULTS: FeNO and response...

  8. Exhaled air temperature as a function of ambient temperature in flying and resting ducks

    NARCIS (Netherlands)

    Engel, S.; Klaassen, R.H.G.; Klaassen, M.R.J.; Biebach, H.

    2006-01-01

    The metabolic costs of flight at a natural range of speeds were investigated in Rose Coloured Starlings (Sturnus roseus, Linnaeus) using doubly labelled water. Eight birds flew repeatedly and unrestrained for bouts of 6 h at speeds from 9 to 14 m s-1 in a low-turbulence wind tunnel, corresponding to

  9. Fraction of Exhaled Nitric Oxide (FeNO Norms in Healthy Tunisian Adults

    Directory of Open Access Journals (Sweden)

    Sonia Rouatbi

    2014-01-01

    Full Text Available Aims. To establish FeNO norms for healthy Tunisian adults aged 18–60 years and to prospectively assess their reliability. Methods. This was a cross-sectional analytical study. A convenience sample of healthy Tunisian adults was recruited. Subjects responded to a medical questionnaire, and then FeNO levels were measured by an online method (Medisoft, Sorinnes (Dinant, Belgium. Clinical, anthropometric, and plethysmographic data were collected. All analyses were performed on natural logarithm values of FeNO. Results. 257 adults (145 males were retained. The proposed reference equation to predict FeNO value is lnFeNO (ppb = 3.47−0.56× height (m. After the predicted FeNO value for a given adult was computed, the upper limit of normal could be obtained by adding 0.60 ppb. The mean ± SD (minimum-maximum of FeNO (ppb for the total sample was 13.54±4.87 (5.00–26.00. For Tunisian and Arab adults of any age and height, any FeNO value greater than 26.00 ppb may be considered abnormal. Finally, in an additional group of adults prospectively assessed, we found no adult with a FeNO higher than 26.00 ppb. Conclusion. The present FeNO norms enrich the global repository of FeNO norms that the clinician can use to choose the most appropriate norms.

  10. Farming environments and childhood atopy, wheeze, lung function, and exhaled nitric oxide

    NARCIS (Netherlands)

    Fuchs, O.; Genuneit, J.; Latzin, P.; Büchele, G.; Horak, E.; Loss, G.; Sozanska, B.; Heederik, D.|info:eu-repo/dai/nl/072910542; Braun-Fahrländer, C.; Frey, U.; von Mutius, E.

    2012-01-01

    BACKGROUND: Previous studies have demonstrated that children raised on farms are protected from asthma and allergies. It is unknown whether the farming effect is solely mediated by atopy or also affects nonatopic wheeze phenotypes. OBJECTIVE: We sought to study the farm effect on wheeze phenotypes

  11. Increased exhalation of hydrogen peroxide in healthy subjects following cigarette consumption

    Directory of Open Access Journals (Sweden)

    Sandra Baltazar Guatura

    2000-07-01

    Full Text Available CONTEXT: Increased hydrogen peroxide has been described in the expired breath condensate (H2O2-E of several lung conditions, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease and asthma. This technique has been advocated as being a simple method for documenting airway inflammation. OBJECTIVE: To evaluate H2O2-E in healthy cigarette smokers, and to determine the acute effects of the consumption of one cigarette on H2O2-E levels. TYPE OF STUDY: Prospective, controlled trial. SETTING: A pulmonary function laboratory in a University Hospital. PARTICIPANTS: Two groups of healthy volunteers: individuals who had never smoked (NS; n=10; 4 men; age = 30.6 ± 6.2 years and current cigarette smokers (S; n=12; 7 men; age = 38.7 ± 9.8. None of the volunteers had respiratory symptoms and all showed normal spirometric tests. INTERVENTION: Expired air was collected from all volunteers through a face mask and a plastic collecting system leading into a flask with dry ice and pure ethanol. Samples from the group S were collected twice, before and half an hour after the combustion of one cigarette. MAIN MEASUREMENTS: Expired hydrogen peroxide using the Gallati and Pracht method. RESULTS: The S and NS groups showed comparable levels of H2O2-E at basal conditions [NS = 0.74 muM (DP 0.24 vs. S = 0.75 muM (DP 0.31]. The smokers showed a significant increase in H2O2-E levels half an hour after the consumption of only one cigarette [0.75 muM (DP 0.31 vs. 0.95 muM (DP 0.22]. CONCLUSION: The present results are consistent with the concept that smokers increase oxidative stress with elevated production of reactive oxygen species, contributing to the development of smoking-related disorders.

  12. Dispersion of Exhalation Pollutants in a Two-bed Hospital Ward with a Downward Ventilation System

    DEFF Research Database (Denmark)

    Qian, Hua; Nielsen, Peter V.; Hyldgård, Carl-Erik

    2006-01-01

    The Centers for Disease Control and Prevention has recommended the use of downward ventilation systems in isolation rooms to reduce the risk of cross-infection from airborne transmissible diseases. The expected airflow pattern of a downward ventilation design would supply cooler and slightly...... heavier clean air from a ceiling diffuser to push down contaminants, which would then be removed via outlets at floor level. A "laminar" (strictly speaking, unidirectional) flow is expected to be produced to avoid flow mixing and thus reduce cross-infection risk. Experiments were carried out in a full...... to investigate the airflow pattern and pollutant dispersion in the test ward. Based on both experimental and numerical results, the laminar airflow pattern was shown to be impossible to achieve due to turbulent flow mixing and flow entrainment into the supply air stream. The thermal plumes produced above people...

  13. Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide: a random-sample population study

    DEFF Research Database (Denmark)

    Sverrild, Asger; Porsbjerg, Celeste; Thomsen, Simon Francis

    2010-01-01

    Studies of selected patient groups have shown that airway hyperresponsiveness (AHR) to mannitol is more specific than methacholine for the diagnosis of asthma, as well as more closely associated with markers of airway inflammation in asthma.......Studies of selected patient groups have shown that airway hyperresponsiveness (AHR) to mannitol is more specific than methacholine for the diagnosis of asthma, as well as more closely associated with markers of airway inflammation in asthma....

  14. Human Exhaled Breath Condensate (EBC) Media: Implementation of Automated Quanterix SIMOA Immunochemistry Instrumentation

    Science.gov (United States)

    Immunochemistry is an important clinical tool for observing biological pathways leading to disease. Standard enzyme-linked immunosorbent assays (ELISA) for cytokines are typically labor intensive and lack sensitivity at sub pg/ml concentrations. Here we report on emerging tec...

  15. Daily home measurements of exhaled nitric oxide in asthmatic children during natural birch pollen exposure

    DEFF Research Database (Denmark)

    Vahlkvist, Signe; Sinding, Marianne; Skamstrup, Kirsten

    2006-01-01

    the feasibility, repeatability, accuracy, sensitivity, and biologic plausibility of new handheld equipment for FENO measurements. We studied day-to-day home measurements of FENO during the birch pollen season in children with allergy to birch pollen and a history of mild asthma and rhinoconjunctivitis during...... this season, as well as in nonatopic children. METHODS: Eleven children with mild asthma and allergy to birch pollen, performed daily home measurements of FENO for 6 weeks before and during the birch pollen season by using a handheld FENO monitor (NIOX MINO). Additionally, FENO (chemiluminescence equipment...... asthmatic symptoms and no change in PEFR or spirometry. Daily measurements of FENO (NIOX MINO) might allow early detection of disease deterioration, and future studies could address such a measure for dynamic treatment strategies. CLINICAL IMPLICATIONS: This simple handheld device expands the potential use...

  16. Validation of a Human Exhalation Flow Simulation in a Room with Vertical Ventilation

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de

    2012-01-01

    We protect ourselves from airborne cross-infection in our indoor environment by supplying fresh air to the room by natural or mechanical ventilation. The air is distributed in the room according to different principles as e.g. mixing ventilation, downward ventilation, displacement ventilation, et...

  17. Qualitative real-time schlieren and shadowgraph imaging of human exhaled airflows: an aid to aerosol infection control.

    Directory of Open Access Journals (Sweden)

    Julian W Tang

    Full Text Available Using a newly constructed airflow imaging system, airflow patterns were visualized that were associated with common, everyday respiratory activities (e.g. breathing, talking, laughing, whistling. The effectiveness of various interventions (e.g. putting hands and tissues across the mouth and nose to reduce the potential transmission of airborne infection, whilst coughing and sneezing, were also investigated. From the digital video footage recorded, it was seen that both coughing and sneezing are relatively poorly contained by commonly used configurations of single-handed shielding maneuvers. Only some but not all of the forward momentum of the cough and sneeze puffs are curtailed with various hand techniques, and the remaining momentum is disseminated in a large puff in the immediate vicinity of the cougher, which may still act as a nearby source of infection. The use of a tissue (in this case, 4-ply, opened and ready in the hand proved to be surprisingly effective, though the effectiveness of this depends on the tissue remaining intact and not ripping apart. Interestingly, the use of a novel 'coughcatcher' device appears to be relatively effective in containing coughs and sneezes. One aspect that became evident during the experimental procedures was that the effectiveness of all of these barrier interventions is very much dependent on the speed with which the user can put them into position to cover the mouth and nose effectively.From these qualitative schlieren and shadowgraph imaging experiments, it is clear that making some effort to contain one's cough or sneeze puffs is worthwhile. Obviously, there will be a large amount of variation between individuals in the exact hand or tissue (the most common methods configuration used for this and other practical factors may hinder such maneuvers in daily life, for example, when carrying shopping bags or managing young children.

  18. Breath analysis by optical fiber sensor for the determination of exhaled organic compounds with a view to diagnostics.

    Science.gov (United States)

    Silva, Lurdes I B; Freitas, Ana C; Rocha-Santos, Teresa A P; Pereira, M E; Duarte, Armando C

    2011-02-15

    Breath analysis constitutes a promising tool in clinical and analytical fields due to its high potential for non-invasive diagnostics of metabolic disorders and monitoring of disease status. An optical fiber (OF) sensor has been developed for determination of volatile organic compounds (ethane, pentane, heptane, octane, decane, benzene, toluene and styrene) in human breath for clinical diagnosis. The analytical system developed showed a high performance for breath analysis, inferred for the analytical signal intensity and stability, linear range, and detection limits ranging from 0.8 pmol L(-1), for heptane, and to 9.5 pmol L(-1), for decane. The OF sensor also showed advantageous features of near real-time response and low instrumentation costs, besides showing an analytical performance equivalent to the breath analysis by gas chromatography-mass spectrometry (GC-MS), used as the reference method. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. An integrative clinical database and diagnostics platform for biomarker identification and analysis in ion mobility spectra of human exhaled air

    DEFF Research Database (Denmark)

    Schneider, Till; Hauschild, Anne-Christin; Baumbach, Jörg Ingo

    2013-01-01

    to the platform’s functionality: automated data integration and integrity validation, versioning and roll-back strategy, data retrieval as well as semi-automatic data mining and machine learning capabilities. The platform will support MCC/IMS-based biomarker identification and validation. The software, schemata...... data integration and semi-automated data analysis, in particular with regard to the rapid data accumulation, emerging from the high-throughput nature of the MCC/IMS technology. Here, we present a comprehensive database application and analysis platform, which combines metabolic maps with heterogeneous...

  20. Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars

    Science.gov (United States)

    Etiope, Giuseppe; Ehlmann, Bethany L.; Schoell, Martin

    2013-06-01

    We evaluate, based on terrestrial analogs, the potential flux, origin and isotopic signature of methane (CH4) from serpentinized or serpentinizing rocks on Mars. The Tekirova ophiolites, in Turkey, have been shown to release, either via focused vents or through diffuse microseepage, substantial amounts of CH4 which could be produced via catalyzed abiotic methanation (Sabatier reaction) at low temperatures (methane production and fractures for release of gas to the atmosphere, similar to those on Earth. A simple, first-order estimation gas-advection model suggests that methane fluxes on the order of several mg m-2 d-1, similar to microseepage observed in terrestrial ophiolites, could occur in martian rocks. High temperature, hydrothermal conditions may not be necessary for abiotic CH4 synthesis on Mars: low temperature (methanation is possible in the presence of catalysts like ruthenium, rhodium or, more commonly, chromium minerals, which occur in terrestrial ophiolites as in martian mantle meteorites. The terrestrial analog environment of abiotic microseepage may thus explain production of methane on Mars in the ancient past or at present. The wide range of martian 12C/13C and D/H ratios and the potential secondary alteration of CH4 by abiotic oxidation, as observed on Earth, could result in large isotope variations of methane on Mars. CH4 isotopic composition alone may not allow definitive determination of biotic vs. abiotic gas origin. Using our terrestrial vs. martian analysis as guide to future Mars exploration we propose that direct methane and ethane gas detection and isotopic measurements on the ground over serpentinized/serpentinizing rocks should be considered in developing future strategies for unraveling the source and origin of methane on Mars.

  1. Exhaled hydrogen peroxide in chronic obstructive pulmonary disease : an analysis of its applicability as a non-invasive biomarker

    NARCIS (Netherlands)

    Beurden, Wendy Johanna Cornelia van

    2003-01-01

    Several non-invasive biomarkers have been used to investigate the pathophysiology, treatment and prognosis of COPD. However, for most markers there is no standardized procedure and few randomised studies have been performed with COPD patients. We have developed an efficient, sensitive and

  2. Predicting airway hyperreactivity to mannitol using exhaled nitric oxide in an unselected sample of adolescents and young adults

    DEFF Research Database (Denmark)

    Sverrild, A; Malinovschi, A; Porsbjerg, C

    2013-01-01

    the diagnostic accuracy of FeNO using absolute and normalized values to predict the presence of AHR to inhaled mannitol in an unselected population. Levels of FeNO and AHR to inhaled, dry-powder mannitol was measured in 180 unselected, steroid-naïve, non-smoking adolescents and young adults. The area under...... and specific tool for predicting the response to inhaled mannitol in an unselected sample of non-smoking, steroid-naïve subjects, and a low FeNO indicates that extra diagnostic work-up using inhaled mannitol will add very little extra information....

  3. Effects of age, gender, and environmental exposures on exhaled nitric oxide level in healthy 12 to 18 years Qatari children

    Directory of Open Access Journals (Sweden)

    Ibrahim Janahi

    2012-01-01

    Conclusions: Estimated FENO level with 95% CI in Qatari children, which is probably close to those in other Gulf countries, will be helpful clinically. The lower level of FENO with female gender, increasing age, and exposure to cats needs to be further studied to establish the association and to understand the underlying mechanisms.

  4. A possible way to assess tidal exhaled nitric oxide in neonates and infants treated with nasal continuous positive airway pressure

    DEFF Research Database (Denmark)

    Schmidt, Birgitte Johanne; Reim, Pauline Schibler; Pedersen, Ole Find

    2017-01-01

    to various acute and chronic respiratory diseases, such as respiratory distress syndrome and bronchopulmonary dysplasia (BPD). BPD involves a range of lung function abnormalities and increases the risk of re-hospitalisation (3). This article is protected by copyright. All rights reserved....

  5. Deep CO2 soil inhalation /