WorldWideScience

Sample records for exercising human leg

  1. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  2. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans

    DEFF Research Database (Denmark)

    Calbet, J A L; Lundby, C; Sander, M

    2006-01-01

    During maximal whole body exercise VO2 peak is limited by O2 delivery. In turn, it is though that blood flow at near-maximal exercise must be restrained by the sympathetic nervous system to maintain mean arterial pressure. To determine whether enhancing vasodilation across the leg results in higher......) into the right femoral artery at a rate of 80 microg.kg body mass-1.min-1. During near-maximal exercise (92% of VO2 peak), the infusion of ATP increased leg vascular conductance (+43%, P...... O2 delivery and leg VO2 during near-maximal and maximal exercise in humans, seven men performed two maximal incremental exercise tests on the cycle ergometer. In random order, one test was performed with and one without (control exercise) infusion of ATP (8 mg in 1 ml of isotonic saline solution...

  3. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P

  4. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans

    National Research Council Canada - National Science Library

    Atsunori Kamiya; Daisaku Michikami; Tomoke Shiozawa; Satoshi Iwase

    2004-01-01

      Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied...

  5. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans

    National Research Council Canada - National Science Library

    Atsunori Kamiya; Daisaku Michikami; Tomoki Shiozawa; Satoshi Iwase; Junichiro Hayano; Toru Kawada; Kenji Sunagawa; Tadaaki Mano

    2004-01-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied...

  6. Effect of reduced hemoglobin concentration on leg oxygen uptake during maximal exercise in humans.

    Science.gov (United States)

    Schaffartzik, W; Barton, E D; Poole, D C; Tsukimoto, K; Hogan, M C; Bebout, D E; Wagner, P D

    1993-08-01

    Maximum oxygen uptake (VO2max) is affected by hemoglobin concentration ([Hb]). Whether this is simply due to altered convection of O2 into the muscle microcirculation or also to [Hb]-dependent diffusive transport of O2 out of the muscle capillary is unknown in humans. To examine this, seven healthy volunteers performed four maximal cycle exercise bouts at sea level immediately after 8 wk at altitude (3,801 m, barometric pressure 485 Torr), a sojourn designed to increase [Hb]. The first two bouts were at ambient [Hb] of 15.9 +/- 0.7 g/100 ml breathing 21 or 12% O2 in random order. [Hb] was then decreased to a prealtitude level of 13.8 +/- 0.6 g/100 ml by venesection and isovolemic replacement with 5% albumin in 0.9% saline, and the exercise bouts were repeated. At whole body VO2max, PO2, PCO2, pH, and O2 saturation were measured in radial arterial and femoral venous blood. Femoral venous thermodilution blood flow was determined for calculation of leg VO2. Mean muscle capillary PO2 and muscle diffusing capacity (DO2) were computed by Bohr integration between measured arterial and femoral venous PO2. Averaged over both fractional concentrations of inspired O2, leg VO2 at maximum decreased by 17.7 +/- 4.3% as [Hb] was lowered while leg O2 delivery decreased by 17.5 +/- 2.6% and DO2 decreased by 10.7 +/- 2.7% (all P < 0.05). The relative contributions of decreases in leg O2 delivery and DO2 to the decrease in VO2max were computed to be 64 and 36%, respectively. These findings suggest that [Hb] is an important determinant of O2 diffusion rates into working muscle in humans. Possible mechanisms include 1) dependence of DO2 on intracapillary red blood cell spacing, 2) changes in the total rate of dissociation of O2 from [Hb], and 3) increased red blood cell flow heterogeneity as [Hb] is reduced.

  7. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.

    Science.gov (United States)

    Poole, D C; Schaffartzik, W; Knight, D R; Derion, T; Kennedy, B; Guy, H J; Prediletto, R; Wagner, P D

    1991-10-01

    Rates of performing work that engender a sustained lactic acidosis evidence a slow component of pulmonary O2 uptake (VO2) kinetics. This slow component delays or obviates the attainment of a stable VO2 and elevates VO2 above that predicted from considerations of work rate. The mechanistic basis for this slow component is obscure. Competing hypotheses depend on its origin within either the exercising limbs or the rest of the body. To resolve this question, six healthy males performed light nonfatiguing [approximately 50% maximal O2 uptake (VO2max)] and severe fatiguing cycle ergometry, and simultaneous measurements were made of pulmonary VO2 and leg blood flow by thermodilution. Blood was sampled 1) from the femoral vein for O2 and CO2 pressures and O2 content, lactate, pH, epinephrine, norepinephrine, and potassium concentrations, and temperature and 2) from the radial artery for O2 and CO2 pressures, O2 content, lactate concentration, and pH. Two-leg VO2 was thus calculated as the product of 2 X blood flow and arteriovenous O2 difference. Blood pressure was measured in the radial artery and femoral vein. During light exercise, both pulmonary and leg VO2 remained stable from minute 3 to the end of exercise (26 min). In contrast, during severe exercise [295 +/- 10 (SE) W], pulmonary VO2 increased 19.8 +/- 2.4% (P less than 0.05) from minute 3 to fatigue (occurring on average at 20.8 min). Over the same period, leg VO2 increased by 24.2 +/- 5.2% (P less than 0.05). Increases of leg and pulmonary VO2 were highly correlated (r = 0.911), and augmented leg VO2 could account for 86% of the rise in pulmonary VO2.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1995-01-01

    There is virtually no published information on muscle fatigue, defined as a gradual decline in force-generating capacity, during conventional dynamic (D) leg exercise. To quantitate progression of fatigue, we developed 1) a model featuring integration of maximal voluntary static contraction (MVC.......05) for matched DKE work rates. To track fatigue, MVC (90 degrees knee angle) was performed every 2 min of DKE. After 4 min of DKE at work rates corresponding to (mean +/- SE) 66 +/- 2, 78 +/- 2, and 100% of peak DKE O2 uptake, MVC fell to 95 +/- 3, 90 +/- 5, and 65 +/- 7%* of MVC of rested muscle, respectively...... (*P muscle fatigue during D leg exercise provides a framework to study the effects of a variety...

  9. Haemodynamic responses to dehydration in the resting and exercising human leg.

    Science.gov (United States)

    Pearson, James; Kalsi, Kameljit K; Stöhr, Eric J; Low, David A; Barker, Horace; Ali, Leena; González-Alonso, José

    2013-06-01

    Dehydration and hyperthermia reduces leg blood flow (LBF), cardiac output ([Formula: see text]) and arterial pressure during whole-body exercise. It is unknown whether the reductions in blood flow are associated with dehydration-induced alterations in arterial blood oxygen content (C aO2) and O2-dependent signalling. This study investigated the impact of dehydration and concomitant alterations in C aO2 upon LBF and [Formula: see text]. Haemodynamics, arterial and femoral venous blood parameters and plasma [ATP] were measured at rest and during one-legged knee-extensor exercise in 7 males in four conditions: (1) control, (2) mild dehydration, (3) moderate dehydration, and (4) rehydration. Relative to control, C aO2 and LBF increased with dehydration at rest and during exercise (C aO2: from 199 ± 1 to 208 ± 2, and 202 ± 2 to 210 ± 2 ml L(-1) and LBF: from 0.38 ± 0.04 to 0.77 ± 0.09, and 1.64 ± 0.09 to 1.88 ± 0.1 L min(-1), respectively). Similarly, [Formula: see text] was unchanged or increased with dehydration at rest and during exercise, whereas arterial and leg perfusion pressures declined. Following rehydration, C aO2 declined (to 193 ± 2 mL L(-1)) but LBF remained elevated. Alterations in LBF were unrelated to C aO2 (r (2) = 0.13-0.27, P = 0.48-0.64) and plasma [ATP]. These findings suggest dehydration and concomitant alterations in C aO2 do not compromise LBF despite reductions in plasma [ATP]. While an additive or synergistic effect cannot be excluded, reductions in LBF during exercise with dehydration may not necessarily be associated with alterations in C aO2 and/or intravascular [ATP].

  10. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.(Author Abstract)

    National Research Council Canada - National Science Library

    Michikami, Daisaku; Mano, Tadaaki; Iwase, Satoshi; Shiozawa, Tomoki; Hayano, Junichiro; Sunagawa, Kenji; Kawada, Toru; Kamiya, Atsunori

    2004-01-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied...

  11. Standardized intermittent static exercise increases peritendinous blood flow in human leg

    DEFF Research Database (Denmark)

    Langberg, Henning; Bülow, J; Kjaer, M

    1999-01-01

    . The radioactive isotope xenon-133 was injected just ventrally to the Achilles tendon 5 cm proximal to the tendon's insertion on the calcaneous. The disappearance of 133Xe was used to determine blood flow during intermittent static exercise of the calf muscle (1.5 s exercise/1.5 s rest) for 30 min at a workload...

  12. Modeling the effect of tilting, passive leg exercise, and functional electrical stimulation on the human cardiovascular system.

    Science.gov (United States)

    Sarabadani Tafreshi, Amirehsan; Okle, Jan; Klamroth-Marganska, Verena; Riener, Robert

    2017-09-01

    Long periods of bed rest negatively affect the human body organs, notably the cardiovascular system. To avert these negative effects and promote functional recovery in patients dealing with prolonged bed rest, the goal is to mobilize them as early as possible while controlling and stabilizing their cardiovascular system. A robotic tilt table allows early mobilization by modulating body inclination, automated passive leg exercise, and the intensity of functional electrical stimulation applied to leg muscles (inputs). These inputs are used to control the cardiovascular variables heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) (outputs). To enhance the design of the closed-loop cardiovascular biofeedback controller, we investigated a subject-specific multi-input multi-output (MIMO) black-box model describing the relationship between the inputs and outputs. For identification of the linear part of the system, two popular linear model structures-the autoregressive model with exogenous input and the output error model-are examined and compared. The estimation algorithm is tested in simulation and then used in four study protocols with ten healthy participants to estimate transfer functions of HR, sBP and dBP to the inputs. The results show that only the HR transfer functions to inclination input can explain the variance in the data to a reasonable extent (on average 69.8%). As in the other input types, the responses are nonlinear; the models are either not reliable or explain only a negligible amount of the observed variance. Analysis of both, the nonlinearities and the occasionally occurring zero-crossings, is necessary before designing an appropriate MIMO controller for mobilization of bedridden patients.

  13. Standardized intermittent static exercise increases peritendinous blood flow in human leg

    DEFF Research Database (Denmark)

    Langberg, Henning; Bülow, J; Kjaer, M

    1999-01-01

    Alteration in tendinous and peritendinous blood flow during and after exercise is suggested to contribute to the development of Achilles tendon injury and inflammation. In the present study a method for evaluating the influence of standardized workload on peritendinous flow is presented. The radi......Alteration in tendinous and peritendinous blood flow during and after exercise is suggested to contribute to the development of Achilles tendon injury and inflammation. In the present study a method for evaluating the influence of standardized workload on peritendinous flow is presented...

  14. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP has been proposed to play multiple roles in local skeletal muscle blood flow regulation by inducing vasodilation and modulating sympathetic vasoconstrictor activity, but the mechanism remain unclear. Here we evaluated the effects of arterial ATP infusion and exercise on limb muscle interstitial...... local concentration. Key words: sympathetic nerve activity, vasodilation, endothelium, skeletal muscle....

  15. Circulatory response evoked by a 3 s bout of dynamic leg exercise in humans

    NARCIS (Netherlands)

    Wieling, W.; Harms, M. P.; ten Harkel, A. D.; van Lieshout, J. J.; Sprangers, R. L.

    1996-01-01

    1. The mechanisms underlying the pronounced transient fall in arterial blood pressure evoked by a 3 s bout of bicycle exercise were investigated in twenty healthy young adults and four patients with hypoadrenergic orthostatic hypotension. 2. In healthy subjects a 3 s bout of upright cycling induced

  16. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Nyberg, Michael; Thaning, Pia

    2009-01-01

    Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act...... in synergy to regulate skeletal muscle hyperemia by determining the following: (1) the effect of adenosine receptor blockade on skeletal muscle exercise hyperemia with and without simultaneous inhibition of prostaglandins (indomethacin; 0.8 to 1.8 mg/min) and NO (N(G)-mono-methyl-l-arginine; 29 to 52 mg....../min); (2) whether adenosine-induced vasodilation is mediated via formation of prostaglandins and/or NO; and (3) the femoral arterial and venous plasma adenosine concentrations during leg exercise with the microdialysis technique in a total of 24 healthy, male subjects. Inhibition of adenosine receptors...

  17. Dynamic phosphocreatine imaging with unlocalized pH assessment of the human lower leg muscle following exercise at 3T.

    Science.gov (United States)

    Khegai, Oleksandr; Madelin, Guillaume; Brown, Ryan; Parasoglou, Prodromos

    2017-05-30

    To develop a high temporal resolution imaging method that measures muscle-specific phosphocreatine (PCr) resynthesis time constant (τPCr ) and pH changes in muscles of the lower leg following exercise on a clinical 3T MRI scanner. We developed a frequency-selective 3D non-Cartesian FLORET sequence to measure PCr with 17-mm nominal isotropic resolution (28 mm actual resolution) and 6-s temporal resolution to capture dynamic metabolic muscle activity. The sequence was designed to additionally collect inorganic phosphate spectra for pH quantification, which were localized using sensitivity profiles of individual coil elements. Nineteen healthy volunteers were scanned while performing a plantar flexion exercise on an in-house developed ergometer. Data were acquired with a dual-tuned multichannel coil array that enabled phosphorus imaging and proton localization for muscle segmentation. After a 90-s plantar flexion exercise at 0.66 Hz with resistance set to 40% of the maximum voluntary contraction, τPCr was estimated at 22.9 ± 8.8 s (mean ± standard deviation) with statistical coefficient of determination r(2)  = 0.89 ± 0.05. The corresponding pH values after exercise were in the range of 6.9-7.1 in the gastrocnemius muscle. The developed technique allows measurement of muscle-specific PCr resynthesis kinetics and pH changes following exercise, with a temporal resolution and accuracy comparable to that of single voxel (31) P-MRS sequences. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate intensity exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Vigelsø, Andreas; Gram, Martin; Dybboe, Rie

    2016-01-01

    Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks' unilateral leg immobilization on substrate utilization across the legs during moderate intensity exercise in young (n = 17...... in older than in young men, and while young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity, protein content of adipose triglyceride lipase (ATGL), acetyl-CoA carboxylase 2, AMP......; 23 ± 1 years) and older (n = 15; 68 ± 1 years) men, while the contralateral leg served as control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20 ± 1 Watt (∼50% Wattmax ) for 45 min with catheters inserted in the brachial artery and both femoral...

  19. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate‐intensity exercise in human skeletal muscle

    Science.gov (United States)

    Gram, M.; Dybboe, R.; Kuhlman, A. B.; Prats, C.; Greenhaff, P. L.; Constantin‐Teodosiu, D.; Birk, J. B.; Wojtaszewski, J. F. P.; Dela, F.; Helge, J. W.

    2016-01-01

    Key points This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate‐intensity exercise.Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two‐legged dynamic knee‐extensor moderate‐intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise.Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise.Using a combined whole‐leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Abstract Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate‐intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two‐legged isolated knee‐extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net

  20. Why do arms extract less oxygen than legs during exercise?

    DEFF Research Database (Denmark)

    Calbet, J A L; Holmberg, H-C; Rosdahl, H

    2005-01-01

    % maximal O2 uptake (V(O2)max) and at V(O2)max with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise), and leg skiing (predominantly leg exercise). The percentage of O2 extraction was always higher for the legs than for the arms. At maximal...... exercise (diagonal stride), the corresponding mean values were 93 and 85% (n = 3; P extraction correlated with the P(O2) value that causes hemoglobin to be 50% saturated (P50: r = 0.93, P extraction was always higher......Hg, respectively. Because conditions for O2 off-loading from the hemoglobin are similar in leg and arm muscles, the observed differences in maximal arm and leg O2 extraction should be attributed to other factors, such as a higher heterogeneity in blood flow distribution, shorter mean transit time, smaller...

  1. Immediate effects of the trunk stabilizing exercise on static balance parameters in double-leg and one-leg stances

    OpenAIRE

    Kim, Jwa-jun; Park, Se-yeon

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the immediate effect of stabilizing exercise using the PNF technique on standing balance in one-leg and double-leg stances. [Subjects and Methods] The present study recruited 34 healthy participants from a local university. The Participants performed four balance tests (double-leg stance with and without vision, one-leg stance with and without vision), before and after exercise. The exercise consisted of exercises performed using PNF techniq...

  2. One-legged endurance training: leg blood flow and oxygen extraction during cycling exercise

    DEFF Research Database (Denmark)

    Rud, B; Foss, O; Krustrup, Peter

    2012-01-01

    Aim: As a consequence of enhanced local vascular conductance, perfusion of muscles increases with exercise intensity to suffice the oxygen demand. However, when maximal oxygen uptake (VO(2) max) and cardiac output are approached, the increase in conductance is blunted. Endurance training increases...... muscle metabolic capacity, but to what extent that affects the regulation of muscle vascular conductance during exercise is unknown. Methods: Seven weeks of one-legged endurance training was carried out by twelve subjects. Pulmonary VO(2) during cycling and one-legged cycling was tested before and after...... training, while VO(2) of the trained leg (TL) and control leg (CL) during cycling was determined after training. Results: VO(2) max for cycling was unaffected by training, although one-legged VO(2) max became 6.7 (2.3)% (mean ± SE) larger with TL than with CL. Also TL citrate synthase activity was higher...

  3. Blood temperature and perfusion to exercising and non-exercising human limbs

    DEFF Research Database (Denmark)

    González-Alonso, José; Calbet, José A. L.; Boushel, Robert

    2015-01-01

    - and metabolism-sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes.  Temperature-sensitive mechanisms may contribute to blood-flow regulation, but the influence of temperature on perfusion to exercising and non-exercising human...... limbs is not established. Blood temperature (TB), blood flow and oxygen uptake (V̇O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher...

  4. Immediate effects of the trunk stabilizing exercise on static balance parameters in double-leg and one-leg stances.

    Science.gov (United States)

    Kim, Jwa-Jun; Park, Se-Yeon

    2016-06-01

    [Purpose] The purpose of this study was to evaluate the immediate effect of stabilizing exercise using the PNF technique on standing balance in one-leg and double-leg stances. [Subjects and Methods] The present study recruited 34 healthy participants from a local university. The Participants performed four balance tests (double-leg stance with and without vision, one-leg stance with and without vision), before and after exercise. The exercise consisted of exercises performed using PNF techniques (stabilizing reversal and rhythmic stabilization), which were applied to facilitate trunk musculature. To examine balance ability, total displacement of the center of pressure was measured during balance tests. [Results] The total anterior-posterior center of pressure displacement was significantly reduced after applying rhythmic stabilization compared before exercise regardless of the balance test conditions. [Conclusion] The present results suggest that trunk stability exercise using rhythmic stabilization could effectively enhance balance ability under one-leg and double-leg conditions.

  5. Exercise Related Leg Pain (ERLP): a Review of The Literature

    OpenAIRE

    Reinking, Mark F.

    2007-01-01

    Exercise related leg pain (ERLP) is a regional pain syndrome described as pain between the knee and ankle which occurs with exercise. Indiscriminant use of terminology such as “shin splints” has resulted in ongoing confusion regarding the pathoanatomic entities associated with this pain syndrome. Each of the pathoanatomic entities – medial tibial stress syndrome, chronic exertional compartment syndrome, tibial and fibular stress fractures, tendinopathy, nerve entrapment, and vascular patholog...

  6. Leg and arm lactate and substrate kinetics during exercise

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Jensen-Urstad, M; Rosdahl, H

    2003-01-01

    To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed...... by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate...... release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate...

  7. THE EFFECTS OF SINGLE LEG HOP PROGRESSION AND DOUBLE LEGS HOP PROGRESSION EXERCISE TO INCREASE SPEED AND EXPLOSIVE POWER OF LEG MUSCLE

    Directory of Open Access Journals (Sweden)

    Nining W. Kusnanik

    2015-05-01

    Full Text Available The main purpose of this study was to determine the effect of single leg hop progression and double legs hop progression exercise to increase speed and explosive power of leg muscles. Plyometric is one of the training methods that can increase explosive power. There are many models of plyometric training including single leg hop progression and double leg hop progression. This research was experimental using match subject design techniques. The subjects of this study were 39 students who joined basketball school club. There were 3 groups in this study: Group 1 were 13 students who given sin¬gle leg hop progression exercise, Group 2 were 13 students who given double legs hop progression exercise, Group 3 were 13 students who given conventional exercise. The data was collected during pre test and post test by testing 30m speed running and vertical jump. The data was analyzed using Analysis of Varians (Anova. It was found that there were significantly increased on speed and explosive power of leg muscles of Group 1 and Group 2. It can be stated that single leg hop progression exercise was more effective than double leg hop progression exercise. The recent findings supported the hypothesis that single leg hop progression and double legs hop progression exercise can increase speed and explosive power of leg muscles. These finding were supported by some previous studies (Singh, et al, 2011; Shallaby, H.K., 2010. The single leg hop progression is more effective than double legs hop progression. This finding was consistent with some previous evidences (McCurdy, et al, 2005; Makaruk et al, 2011.

  8. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction

    OpenAIRE

    Morishima, Takuma; Restaino, Robert M.; Walsh, Lauren K.; Kanaley, Jill A.; Padilla, Jaume

    2017-01-01

    We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothel...

  9. Chronic Exercise-Induced Leg Pain in Active People.

    Science.gov (United States)

    Schon, L C; Baxter, D E; Clanton, T O; Sammarco, G J

    1992-01-01

    In brief "Shin splints" is a catchall term for any kind persistent exercise-related lower leg pain with no obvious cause. Such pain can originate from a number of conditions, such as medial tibial stress syndrome, stress fracture, compartment syndrome, vascular pathology, nerve entrapment, and others. A methodical work-up designed to detect problems in all anatomic structures from bone to skin will narrow the possibilities and lay the basis for appropriate treatment.

  10. Exercise Related Leg Pain (ERLP): a Review of The Literature.

    Science.gov (United States)

    Reinking, Mark F

    2007-08-01

    Exercise related leg pain (ERLP) is a regional pain syndrome described as pain between the knee and ankle which occurs with exercise. Indiscriminant use of terminology such as "shin splints" has resulted in ongoing confusion regarding the pathoanatomic entities associated with this pain syndrome. Each of the pathoanatomic entities - medial tibial stress syndrome, chronic exertional compartment syndrome, tibial and fibular stress fractures, tendinopathy, nerve entrapment, and vascular pathology - which manifest as ERLP are each described in terms of relevant anatomy, epidemiology, clinical presentation, associated pathomechanics, and intervention strategies. Evidence regarding risk factors for ERLP general and specific pathoanatomic entities are presented in the context of models of sports injury prevention.

  11. Postprandial triacylglycerol uptake in the legs is increased during exercise and post-exercise recovery

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Simonsen, L; Bülow, J

    2005-01-01

    exercising on a cycle ergometer for 60 min at 50% of the peak oxygen consumption commencing 60 min after the meal (M-->E) and then for another 240 min. Regional metabolism was measured by Fick's Principle in a leg and in the splanchnic tissue. The combination of food intake and exercise led to increased...

  12. Double-leg isometric exercise training in older men

    Directory of Open Access Journals (Sweden)

    Baross AW

    2013-01-01

    Full Text Available Anthony W Baross,1 Jonathan D Wiles,2 Ian L Swaine21Sport and Exercise Science, University of Northampton, Northampton, UK; 2Sport and Exercise Science, Canterbury Christ Church University, Canterbury, Kent, UKAbstract: Double-leg isometric training has been demonstrated to reduce resting blood pressure in young men when using electromyographic activity (EMG to regulate exercise intensity. This study assessed this training method in healthy older (45–60 years. men. Initially, 35 older men performed an incremental isometric exercise test to determine the linearity of the heart rate versus percentage peak EMG (%EMGpeak and systolic blood pressure versus %EMGpeak relationship. Thereafter, 20 participants were allocated to a training or control group. The training group performed three double-leg isometric sessions per week for 8 weeks, at 85% of peak heart rate. The training resulted in a significant reduction in resting systolic (11 ± 8 mmHg, P < 0.05 and mean arterial (5 ± 7 mmHg, P < 0.05 blood pressure. There was no significant change in resting systolic blood pressure for the control group or diastolic blood pressure in either group (all P > 0.05. These findings show that this training method, used previously in young men, is also effective in reducing resting systolic and mean arterial blood pressure in older men.Keywords: electromyography, resting blood pressure, heart rate

  13. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Milène Catoire

    Full Text Available Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  14. Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex

    Science.gov (United States)

    Dreyer, Hans C.; Fujita, Satoshi; Glynn, Erin L.; Drummond, Micah J.; Volpi, Elena; Rasmussen, Blake B.

    2010-01-01

    Aim Sex differences are evident in human skeletal muscle as the cross-sectional area of individual muscle fibres is greater in men as compared to women. We have recently shown that resistance exercise stimulates mTOR signalling and muscle protein synthesis in humans during early post-exercise recovery. Therefore, the aim of this study was to determine if sex influences the muscle protein synthesis response during recovery from resistance exercise. Methods Seventeen subjects, 9 male and 8 female, were studied in the fasted state before, during and for two hours following a bout of high-intensity leg resistance exercise. Mixed muscle protein fractional synthetic rate (FSR) was measured using stable isotope techniques and mTOR signalling was assessed by immunoblotting from repeated vastus lateralis muscle biopsy samples. Results Post-exercise muscle protein synthesis increased by 52% in the men and by 47% in the women (P0.05). Akt phosphorylation increased in both groups at 1 hr post-exercise (P0.05). Phosphorylation of mTOR and its downstream effector S6K1 increased significantly and similarly between groups during post-exercise recovery (P<0.05). eEF2 phosphorylation decreased at 1- and 2 hrs post-exercise (P<0.05) to a similar extent in both groups. Conclusion The contraction-induced increase in early post-exercise mTOR signalling and muscle protein synthesis is independent of sex and appears to not be playing a role in the sexual dimorphism of leg skeletal muscle in young men and women. PMID:20070283

  15. Exercise-related leg pain in female collegiate athletes: the influence of intrinsic and extrinsic factors.

    Science.gov (United States)

    Reinking, Mark F

    2006-09-01

    Exercise-related leg pain is a common complaint among athletes, but there is little evidence regarding risk factors for this condition in female collegiate athletes. To examine prospectively the effect of selected extrinsic and intrinsic factors on the development of exercise-related leg pain in female collegiate athletes. Cohort study; Level of evidence, 2. Subjects were 76 female collegiate athletes participating in fall season sports, including cross-country running, field hockey, soccer, and volleyball. Athletes were seen for a pre-season examination that included measures of height, weight, foot pronation, and calf muscle length as well as a questionnaire for disordered eating behaviors. Body mass index was calculated from height and weight (kg/m(2)). Those athletes who developed exercise-related leg pain during the season were seen for follow-up. All athletes who developed the condition and a matched group without such leg pain underwent bone mineral density and body composition testing. Statistical analyses of differences and relationships were conducted. Of the 76 athletes, 58 (76%) reported a history of exercise-related leg pain, and 20 (26%) reported occurrence of exercise-related leg pain during the season. A history of this condition was strongly associated with its occurrence during the season (odds ratio, 13.2). Exercise-related leg pain was most common among field hockey and cross-country athletes and least common among soccer players. There were no differences between athletes with and without such leg pain regarding age, muscle length, self-reported eating behaviors, body mass index, menstrual function, or bone mineral density. Athletes with exercise-related leg pain had significantly (P sport, and a history of this condition, that are associated with an increased risk of exercise-related leg pain.

  16. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.

    Science.gov (United States)

    Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume

    2017-06-01

    We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, Pexercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P>0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P>0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.

    Science.gov (United States)

    Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard

    2017-02-01

    Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.

  18. Anaerobic energy expenditure and mechanical efficiency during exhaustive leg press exercise

    DEFF Research Database (Denmark)

    Gorostiaga, Esteban M.; Navarro-Amézqueta, Ion; Cusso, Roser

    2010-01-01

    Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during ...

  19. Energy metabolism during repeated sets of leg press exercise leading to failure or not

    DEFF Research Database (Denmark)

    Gorostiaga, Esteban M; Navarro-Amézqueta, Ion; Calbet, José A L

    2012-01-01

    This investigation examined the influence of the number of repetitions per set on power output and muscle metabolism during leg press exercise. Six trained men (age 34 ± 6 yr) randomly performed either 5 sets of 10 repetitions (10REP), or 10 sets of 5 repetitions (5REP) of bilateral leg press exe...

  20. Trunk muscle activation during stabilization exercises with single and double leg support.

    Science.gov (United States)

    García-Vaquero, María Pilar; Moreside, Janice M; Brontons-Gil, Evaristo; Peco-González, Noelia; Vera-Garcia, Francisco J

    2012-06-01

    The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Impact of Running Exercise Duration on Leg Muscle Strength among the people Joining Indorunners Bandung Community

    Directory of Open Access Journals (Sweden)

    Agaprita Eunike Sirait

    2017-03-01

    Full Text Available Background: Indorunners Bandung is a community for runners that has a routine exercise schedule for running around the city of Bandung. Exercise, like running, if is conducted in an accurate duration may improve physical fitness. One of the aspects of physical fitness is leg muscles strength. Many people fail to fathom the importance of exercise duration, so, they fail to get the benefit. The aim of this study was to discover the impact of running exercise duration on leg muscles strength among the people joining Indorunners Bandung community. Methods: A comparative study was conducted to 41 people, 31 males and 10 females, of Indorunners Bandung community from September to November 2015. Each participant filled a questionnaire about his/her personal data, and then was grouped by his/her duration of exercise per week, which were 150 minutes/week, 150–299 minutes/week, and 300 minutes/week or more. The respondents were measured for their leg muscles strength. The data collected were analyzed using ANOVA test. Results: There was significant difference of lower extremities muscle strength both in men (p<0.001 and women (p=0.029. These results showed that there was a difference in leg muscles strength among the people joining Indorunners Bandung community with different exercise duration per week. Conclusions: There is a difference in leg muscles strength among the people joining Indorunners Bandung community with different exercise duration per week.

  2. Exercise testing of leg amputees and the result of prosthetic training.

    Science.gov (United States)

    van Alsté, J A; Cruts, H E; Huisman, K; de Vries, J

    1985-01-01

    Thirty-nine patients undergoing rehabilitation following leg amputation were examined to determine cardiac status, which included clinical examination and a graded exercise ECG test, using an arm ergometer. Results were compared to final walking ability. It was found that the cardiac status of these patients was generally poor and that the exercise ECG results did co-relate to walking ability.

  3. Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Rossman, Matthew J.; Trinity, Joel D.; Garten, Ryan S.; Ives, Stephen J.; Conklin, Jamie D.; Barrett-O'Keefe, Zachary; Witman, Melissa A. H.; Bledsoe, Amber D.; Morgan, David E.; Runnels, Sean; Reese, Van R.; Zhao, Jia; Amann, Markus; Wray, D. Walter

    2015-01-01

    The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population. PMID:26188020

  4. Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Rossman, Matthew J; Trinity, Joel D; Garten, Ryan S; Ives, Stephen J; Conklin, Jamie D; Barrett-O'Keefe, Zachary; Witman, Melissa A H; Bledsoe, Amber D; Morgan, David E; Runnels, Sean; Reese, Van R; Zhao, Jia; Amann, Markus; Wray, D Walter; Richardson, Russell S

    2015-09-01

    The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population. Copyright © 2015 the American Physiological Society.

  5. Effects of leg covering in humans on muscle activity and thermal responses in a cool environment.

    Science.gov (United States)

    Rissanen, S; Oksa, J; Rintamäki, H; Tokura, H

    1996-01-01

    Thermal responses and muscle performance in humans were studied during rest and exercise in a cool environment with different clothing distributions over the legs. Nine female subjects were exposed to 5 degrees C wearing shorts (SS), trousers with long legs (LL) or trousers with one long leg and one short leg (LS: LSc covered leg, LSu uncovered leg). The subjects also wore T-shirts and long-sleeved shirts. The subjects were seated for 60 min and after this they performed light stepping exercise for a further 60 min. Rectal temperature (T(re)) and skin temperature from seven (LL, SS) or nine sites (LS) were measured continuously. Surface electromyography (EMG) from three muscles (biceps femoris, gastrocnemius and tibialis anterior) were recorded during the exercise from six subjects. Integrated EMG (iEMG) and mean power frequency (MPF) were used to describe muscle activity. The T(re) was virtually unchanged during rest in every ensemble, whereas during exercise T(re) was significantly lower in SS than in LL. Mean skin temperature (T(sk)) decreased during rest in every ensemble, being significantly lower in SS than in LL. After the rest period local T(sk) of thigh and calf were significantly lower in SS than in LL and they were also lower in LSu than in LSc. At the beginning of the exercise the iEMG of the tibialis anterior muscle in SS and LL averaged 84 (SEM 7) and 64 (SEM 3) mu V (P muscle was significantly higher in LL 102 (SEM 5) Hz than in SS 90 (SEM 5) Hz (P muscle was also higher in LL 111 (SEM 5) Hz than in SS 100 (SEM 5) Hz (P muscle strain in comparison with wearing long trousers. Our results showing a unilateral increase in EMG activity during unilateral cooling suggest that the increase of strain is restricted to the uncovered part of the limb.

  6. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation.

    Science.gov (United States)

    Fritzen, Andreas M; Madsen, Agnete B; Kleinert, Maximilian; Treebak, Jonas T; Lundsgaard, Anne-Marie; Jensen, Thomas E; Richter, Erik A; Wojtaszewski, Jørgen; Kiens, Bente; Frøsig, Christian

    2016-02-01

    Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle. An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content. An acute bout of exercise regulates autophagy by a local contraction-induced mechanism. Exercise training increases the capacity for formation of autophagosomes in human muscle. AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy-inhibiting effect of insulin. Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exercise training and subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (Pexercise in human muscle. The decrease in LC3-II/LC3-I ratio did not correlate with activation of 5'AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5-aminoimidazole-4-carboxamide riboside (AICAR) in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (Pexercised and non-exercised leg in humans. This coincided with increased Ser-757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3-II/LC3-I ratio. In response to 3 weeks of one-legged exercise training, the LC3-II/LC3-I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes

  7. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  8. An investigation of skin perfusion in venous leg ulcer after exercise.

    Science.gov (United States)

    Mutlak, Omar; Aslam, Mohammed; Standfield, Nigel J

    2018-01-01

    A venous leg ulcer (VLU) has a major impact on the quality of life and functional ability of individuals, but no single treatment is yet effective. This study investigates the changes induced by dorsiflexion exercise on skin perfusion in VLU patients to achieve a better understanding of venous ulcer pathophysiology. Seventy-eight venous leg ulcer patients were randomised into four groups. The non-exercise groups included a control group (n = 18) and a compression therapy group (n = 20) and the exercise groups included an exercise-only group (n = 20) and a compression and exercise group (n = 20). The exercise groups were expected to perform exercise for three months. Measurements included transcutaneous oximetry (tcPO 2 ) and laser Doppler flowmetry (LDF). Skin perfusion measurements for all groups were taken twice: at the beginning and end of the three-month period. Initially, all participants showed a low level of tcPO 2 . The exercise groups showed a significant increase after three months of exercise (pvenous leg ulcer and this effect may play a role in understanding the pathophysiology of VLU.

  9. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency

    Science.gov (United States)

    Poole, D. C.; Gaesser, G. A.; Hogan, M. C.; Knight, D. R.; Wagner, P. D.

    1992-01-01

    Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.

  10. Chair rising exercise is more effective than one-leg standing exercise in improving dynamic body balance: a randomized controlled trial.

    Science.gov (United States)

    Yamashita, F; Iwamoto, J; Osugi, T; Yamazaki, M; Takakuwa, M

    2012-06-01

    A randomized controlled trial was conducted to compare the effect of a one-leg standing exercise and a chair-rising exercise on body balance in patients with locomotive disorders. Thirty ambulatory patients (mean age: 66.6 years) were randomly divided into two groups (n=15 in each group): a one-leg standing exercise group and a chair-rising exercise group. All the participants performed calisthenics of the major muscles, a tandem gait exercise, and a stepping exercise. The exercises were performed 3 days per week, and the study period was 5 months. Physical function was evaluated at baseline and at one-month intervals. No significant differences in the baseline characteristics were observed between the two groups. After the 5-month exercise program, the timed up and go, one-leg standing time, and tandem gait time improved significantly in the one-leg standing exercise group, while the walking time and chair-rising time in addition to above parameters improved significantly in the chair-rising exercise group. The improvements in the walking time, chair-rising time, and tandem gait time were significantly greater in the chair-rising exercise group than in the one-leg standing exercise group. The present study showed that the chair-rising exercise was more effective than the one-leg standing exercise for improving walking velocity and dynamic body balance.

  11. The perspectives of adults with venous leg ulcers on exercise: an exploratory study.

    Science.gov (United States)

    O'Brien, J; Finlayson, K; Kerr, G; Edwards, H

    2014-10-01

    Exercise has the potential to offer a range of health benefits in addition to improving healing outcomes for people with venous leg ulcers (VLUs). However, despite evidence-based recommendations, most of these individuals do not engage in regular exercise. The aim of this study was to gain an understanding of the perspectives of adults with VLUs, in relation to exercise. This was a qualitative design using semi-structured interviews and discussions. Ten participants with venous leg ulceration volunteered to participate. Recruitment was through a specialist wound clinic. Verbatim data were collected by an experienced moderator using a semi-structured guide. Data saturation was reached after three group discussions and two interviews. A random selection of transcripts was sent back to the participants for verification. Thematic content analysis was used to determine major themes and categories. Two transcripts were independently analysed, categories and themes independently developed, cross checked and found comparable. Remaining transcripts were analysed using the developed categories and codes. Regardless of their current exercise routine, participants reported exercising before venous leg ulceration and expressed an interest in either becoming active or maintaining an active lifestyle. Overall, four themes emerged from the findings: i) participant understanding of the relationship between chronic venous insufficiency and exercise patterns; ii) fear of harm impacts upon positive beliefs and attitudes to exercise; iii) perceived factors limit exercise; and iv) structured management facilitates exercise. The value of exercise in improving outcomes in VLUs lies in its capacity to promote venous return and reduce the risk of secondary conditions in this population. Despite motivation and interest in being exercise active, people with VLUs report many obstacles. Further exploration of mechanisms that assist this patient population and promote understanding about

  12. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    1. The present study tested the hypothesis that the level of xanthine oxidase is elevated in injured human skeletal muscle in association with inflammatory events. Seven male subjects performed five bouts of strenuous one-legged eccentric exercise. Muscle biopsies from both the exercised...... and the control leg, together with venous blood samples, were obtained prior to exercise and at 45 min, 24, 48 and 96 h after exercise. The time courses of xanthine oxidase immunoreactivity and indicators of muscle damage and inflammation were examined. 2. The number of xanthine oxidase structures observed...... by immunohistological methods in the exercised muscle was up to eightfold higher than control from day 1 to day 4 after exercise (P

  13. Interleukin-6 release is higher across arm than leg muscles during whole-body exercise

    DEFF Research Database (Denmark)

    Helge, Jørn W; Klein, Ditte K; Andersen, Thor Munch

    2011-01-01

    ± 7 and 47 ± 7 µmol min(-1) (kg lean limb mass)(-1)) were lower, glucose uptake similar (51 ± 12 and 41 ± 8 mmol min(-1) (kg lean limb mass)(-1)) and lactate release higher (82 ± 32 and -2 ± 12 µmol min(-1) (kg lean limb mass)(-1)) in arms than legs, respectively, during exercise (P ....05). No correlations were present between IL-6 release and exogenous substrate uptakes. Muscle glycogen was similar in arms and legs before exercise (388 ± 22 and 428 ± 25 mmol (kg dry weight)(-1)), but after exercise it was only significantly lower in the leg (219 ± 29 mmol (kg dry weight)(-1)). The novel finding......Exercising muscle releases interleukin-6 (IL-6), but the mechanisms controlling this process are poorly understood. This study was performed to test the hypothesis that the IL-6 release differs in arm and leg muscle during whole-body exercise, owing to differences in muscle metabolism. Sixteen...

  14. Effect of a 4-week period of unloaded leg cycling exercise on spasticity in multiple sclerosis.

    Science.gov (United States)

    Sosnoff, Jacob; Motl, Robert W; Snook, Erin M; Wynn, Daniel

    2009-01-01

    We conducted a small pilot study that examined the effect of a 4-week period of unloaded leg cycling on spasticity in individuals with multiple sclerosis (MS). The sample included 22 individuals with MS who were assigned using a quasi-experimental method into either exercise (n = 12) or control (n = 10) conditions. The exercise condition consisted of unloaded leg cycling for 30 minutes per session, 3 times per week, across a 4-week period. The control condition served as a control for passage of time and instrumentation effects. The H-reflex, modified Ashworth scale (MAS), and Multiple Sclerosis Spasticity Scale (MSSS-88) were collected before, 1-day after, and 1 and 4 weeks after the 4-week period. The 4-week period of unloaded leg cycling exercise was not associated with reductions in the H-reflex or MAS, whereas the exercise condition was associated with a reduction in MSSS-88 scores. This pattern of results suggests that chronic, unloaded leg cycling exercise is associated with improvements in spasticity from the participant's perspective, but neither improves nor worsens spasticity from electrophysiological and clinical perspectives.

  15. Exercise-induced leg pain: sifting through a broad differential.

    Science.gov (United States)

    Korkola, M; Amendola, A

    2001-06-01

    The causes of exertional leg pain are not always easily determined but are often linked to repetitive stress. Medial tibial stress syndrome or periostitis, tibial stress fractures, deep posterior compartment syndrome, exertional compartment syndrome, fascial hernias, peripheral neuropathy, and blood vessel entrapments have characteristic signs and symptoms. A complete history and exam coupled with wise use of adjunctive investigations will lead to the correct diagnosis and treatment.

  16. Leg oxygen uptake in the initial phase of intense exercise is slowed by a marked reduction in oxygen delivery

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Nyberg, Michael Permin; Mortensen, Stefan Peter

    2013-01-01

    The present study examined if a marked reduction in oxygen delivery, unlike findings with moderate intensity exercise, would slow leg oxygen uptake (VO2) kinetics during intense exercise (86±3% of incremental test peak power). Seven healthy males (26±1 years, mean±SEM) performed one-legged knee-e...

  17. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes?

    DEFF Research Database (Denmark)

    Larsen, Steen; Ara, I; Rabøl, R

    2009-01-01

    AIM/HYPOTHESIS: The aim of the study was to investigate mitochondrial function, fibre type distribution and substrate oxidation in arm and leg muscle during exercise in patients with type 2 diabetes and in obese and lean controls. METHODS: Indirect calorimetry was used to calculate fat...... and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O(2) flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes......, age- and BMI-matched obese controls, and age-matched lean controls. RESULTS: Fat oxidation was similar in the groups during either arm or leg exercise. During leg exercise at higher intensities, but not during arm exercise, carbohydrate oxidation was lower in patients with type 2 diabetes compared...

  18. Similar dynamic hyperinflation during arm and leg exercise at similar ventilation in chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Hannink, J.D.C.; Helvoort, H.A.C. van; Dekhuijzen, P.N.R.; Heijdra, Y.F.

    2011-01-01

    PURPOSE: Patients with chronic obstructive pulmonary disease (COPD) report more dyspnea during arm than during leg exercise. One of the major causes of dyspnea is dynamic hyperinflation (DH), which is caused by airflow limitation as well as increase in ventilation. The aims of our study were to

  19. Exercise promotes IL-6 release from legs in older men with minor response to unilateral immobilization

    DEFF Research Database (Denmark)

    Reihmane, Dace; Gram, Martin; Vigelsø Hansen, Andreas

    2016-01-01

    Physical inactivity is a major contributor to low-grade systemic inflammation. Most of the studies characterizing interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) release from exercising legs have been done in young, healthy men, but studies on inactivity in older people are lacking. The...

  20. Muscle activity during leg strengthening exercise using free weights and elastic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H

    2013-01-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG...

  1. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...... exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... cells (CD68(+) or CD16(+) cells) was not significantly increased in either of the legs 8 days after exercise and was unaffected by the NSAID. The main finding in the present study was that the NSAID infusion for 7.5 h during the exercise day suppressed the exercise-induced increase in the number...

  2. Leg blood flow is impaired during small muscle mass exercise in patients with COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2017-01-01

    -extensor exercise, and during arterial infusions of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively. Ten patients with moderate to severe COPD and eight age- and sex matched healthy controls were studied. During knee-extensor exercise (10 W), leg blood flow was lower in the patients compared...... the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response...

  3. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one...... increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 likely mediates the autophagy-inhibiting effect of insulin. This article is protected by copyright. All rights...

  4. Whole-body-vibration-induced increase in leg muscle activity during different squat exercises.

    Science.gov (United States)

    Roelants, Machteld; Verschueren, Sabine M P; Delecluse, Christophe; Levin, Oron; Stijnen, Valère

    2006-02-01

    This study analyzed leg muscle activity during whole-body vibration (WBV) training. Subjects performed standard unloaded isometric exercises on a vibrating platform (Power Plate): high squat (HS), low squat (LS), and 1-legged squat (OL). Muscle activity of the rectus femoris, vastus lateralis, vastus medialis, and gastrocnemius was recorded in 15 men (age 21.2 +/- 0.8 years) through use of surface electromyography (EMG). The exercises were performed in 2 conditions: with WBV and without (control [CO]) a vibratory stimulus of 35 Hz. Muscle activation during WBV was compared with CO and with muscle activation during isolated maximal voluntary contractions (MVCs). Whole-body vibration resulted in a significantly higher (p < 0.05) EMG root-mean-square compared with CO in all muscle groups and all exercises (between +39.9 +/- 17.5% and +360.6 +/- 57.5%). The increase in muscle activity caused by WBV was significantly higher (p < 0.05) in OL compared with HS and LS. In conclusion, WBV resulted in an increased activation of the leg muscles. During WBV, leg muscle activity varied between 12.6 and 82.4% of MVC values.

  5. Immediate Effects of Smoking on Cardiorespiratory Responses During Dynamic Exercise: Arm Versus Leg Ergometry

    Directory of Open Access Journals (Sweden)

    Chien-Liang eChen

    2015-12-01

    Full Text Available Purpose: This study compared the immediate effects of smoking on cardiorespiratory responses to dynamic arm and leg exercises. Methods: This randomized crossover study recruited 14 college students. Each participant underwent 2 sets of arm-cranking (AC and leg-cycling (LC exercise tests. The testing sequences of the control trial (participants refrained from smoking for 8 hours before testing and the experimental trial (participants smoked 2 cigarettes were randomly chosen. We observed immediate changes in pulmonary function and heart rate variability after smoking and before the exercise test. The participants then underwent graded exercise tests of their arms and legs, respectively, until reaching exhaustion. We compared the peak work achieved and the time to exhaustion during the exercise tests with various cardiorespiratory indices [i.e., heart rate, oxygen consumption (VO2, minute ventilation (VE]. The main effects of the time and the trial, as well as their interaction effects on outcome measures, were investigated using repeated measure ANOVA.Results: Five minutes after smoking, the participants exhibited reduced forced vital capacities and forced expiratory volumes in the first second (P < .05, in addition to elevated resting heart rates (P < .001. The high-frequency, low-frequency, and the total power of the heart rate variability were also reduced (P < .05 at rest. For the exercise test periods, smoking reduced the time to exhaustion (P = .005 and the ventilatory threshold (P < .05 in the LC tests, whereas there were no significant effects in the AC tests. A trend analysis revealed a significant (P < .001 trial-by-time interaction effect for heart rate, VO2, and VE during the graded exercise test. Lower VO2 and VE levels were exhibited in the exercise response of the smoking trial than in that of the control LC trials, whereas there was no discernable inter-trial difference in the AC trials. Moreover, the differences in heart rate

  6. Strength, body composition, and functional outcomes in the squat versus leg press exercises.

    Science.gov (United States)

    Rossi, Fabrício E; Schoenfeld, Brad J; Ocetnik, Skyler; Young, Jonathan; Vigotsky, Andrew; Contreras, Bret; Krieger, James W; Miller, Michael G; Cholewa, Jason

    2016-10-13

    The purpose of this study was to compare strength, body composition, and functional outcome measures following performance of the back squat, leg press, or a combination of the two exercises. Subjects were pair-matched based on initial strength levels and then randomly assigned to 1 of 3 groups: A squat-only group (SQ) that solely performed squats for the lower body; a leg press-only group (LP) that solely performed leg presses for the lower body, or; a combined squat and leg press group (SQ-LP) that performed both squats and leg presses for the lower body. All other RT variables were held constant. The study period lasted 10 weeks with subjects performing 2 lower body workouts per week comprising 6 sets per session at loads corresponding to 8-12 RM with 90 to 120 second rest intervals. Results showed that SQ had greater transfer to maximal squat strength compared to the leg press. Effect sizes favored SQ and SQ-LP versus LP with respect to countermovement jump while greater effect sizes for dynamic balance were noted for SQ-LP and LP compared to SQ, although no statistical differences were noted between conditions. These findings suggest that both free weights and machines can improve functional outcomes, and that the extent of transfer may be specific to the given task.

  7. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  8. Spinal manipulation and home exercise with advice for subacute and chronic back-related leg pain

    DEFF Research Database (Denmark)

    Bronfort, Gert; Hondras, Maria; Schulz, Craig A

    2014-01-01

    BACKGROUND: Back-related leg pain (BRLP) is often disabling and costly, and there is a paucity of research to guide its management. OBJECTIVE: To determine whether spinal manipulative therapy (SMT) plus home exercise and advice (HEA) compared with HEA alone reduces leg pain in the short and long...... of SMT plus HEA or HEA alone. MEASUREMENTS: The primary outcome was patient-rated BRLP at 12 and 52 weeks. Secondary outcomes were self-reported low back pain, disability, global improvement, satisfaction, medication use, and general health status at 12 and 52 weeks. Blinded objective tests were done...... at 12 weeks. RESULTS: Of the 192 enrolled patients, 191 (99%) provided follow-up data at 12 weeks and 179 (93%) at 52 weeks. For leg pain, SMT plus HEA had a clinically important advantage over HEA (difference, 10 percentage points [95% CI, 2 to 19]; P = 0.008) at 12 weeks but not at 52 weeks...

  9. Intramuscular deoxygenation during exercise in patients who have chronic anterior compartment syndrome of the leg

    Science.gov (United States)

    Mohler, L. R.; Styf, J. R.; Pedowitz, R. A.; Hargens, A. R.; Gershuni, D. H.

    1997-01-01

    Currently, the definitive diagnosis of chronic compartment syndrome is based on invasive measurements of intracompartmental pressure. We measured the intramuscular pressure and the relative oxygenation in the anterior compartment of the leg in eighteen patients who were suspected of having chronic compartment syndrome as well as in ten control subjects before, during, and after exercise. Chronic compartment syndrome was considered to be present if the intramuscular pressure was at least fifteen millimeters of mercury (2.00 kilopascals) before exercise, at least thirty millimeters of mercury (4.00 kilopascals) one minute after exercise, or at least twenty millimeters of mercury (2.67 kilopascals) five minutes after exercise. Changes in relative oxygenation were measured with use of the non-invasive method of near-infrared spectroscopy. In all patients and subjects, there was rapid relative deoxygenation after the initiation of exercise, the level of oxygenation remained relatively stable during continued exercise, and there was reoxygenation to a level that exceeded the pre-exercise resting level after the cessation of exercise. During exercise, maximum relative deoxygenation in the patients who had chronic compartment syndrome (mean relative deoxygenation [and standard error], -290 +/- 39 millivolts) was significantly greater than that in the patients who did not have chronic compartment syndrome (-190 +/- 10 millivolts) and that in the control subjects (-179 +/- 14 millivolts) (p compartment syndrome (184 +/- 54 seconds) than for the patients who did not have chronic compartment syndrome (39 +/- 19 seconds) and the control subjects (33 +/- 10 seconds) (p < 0.05 for both comparisons).

  10. Effects of leg massage on recovery from high intensity cycling exercise

    Science.gov (United States)

    Robertson, A; Watt, J; Galloway, S

    2004-01-01

    Background: The effect of massage on recovery from high intensity exercise is debatable. Many studies on massage suffer from methodological flaws such as poor standardisation of previous exercise, lack of dietary control, and inappropriate massage duration. Objective: To examine the effects of leg massage compared with passive recovery on lactate clearance, muscular power output, and fatigue characteristics after repeated high intensity cycling exercise, with the conditions before the intervention controlled and standardised. Methods: Nine male games players participated. They attended the laboratory on two occasions one week apart and at the same time of day. Dietary intake and activity were replicated for the two preceding days on each occasion. After baseline measurement of heart rate and blood lactate concentration, subjects performed a standardised warm up on the cycle ergometer. This was followed by six standardised 30 second high intensity exercise bouts, interspersed with 30 seconds of active recovery. After five minutes of active recovery and either 20 minutes of leg massage or supine passive rest, subjects performed a second standardised warm up and a 30 second Wingate test. Capillary blood samples were drawn at intervals, and heart rate, peak power, mean power, and fatigue index were recorded. Results: There were no significant differences in mean power during the initial high intensity exercise bouts (p = 0.92). No main effect of massage was observed on blood lactate concentration between trials (p = 0.82) or heart rate (p = 0.81). There was no difference in the maximum power (p = 0.75) or mean power (p = 0.66) in the subsequent Wingate test, but a significantly lower fatigue index was observed in the massage trial (p = 0.04; mean (SD) fatigue index 30.2 (4.1)% v 34.2 (3.3)%). Conclusions: No measurable physiological effects of leg massage compared with passive recovery were observed on recovery from high intensity exercise, but the subsequent effect on

  11. Modular MR-compatible lower leg exercise device for whole-body scanners

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Ghomi, Reza; Bredella, Miriam A.; Thomas, Bijoy J.; Torriani, Martin [Massachusetts General Hospital and Harvard Medical School, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Miller, Karen K. [Massachusetts General Hospital and Harvard Medical School, Neuroendocrine Unit, Boston, MA (United States)

    2011-10-15

    To develop a modular MR-compatible lower leg exercise device for muscle testing using a clinical 3 T MR scanner. An exercise device to provide isotonic resistance to plantar- or dorsiflexion was constructed from nonferrous materials and designed for easy setup and use in a clinical environment. Validation tests were performed during dynamic MR acquisitions. For this purpose, the device was tested on the posterior lower leg musculature of five subjects during 3 min of exercise at 30% of maximum voluntary plantarflexion during 31-phosphorus MR spectroscopy ({sup 31}P-MRS). Measures of muscle phosphocreatine (PCr), inorganic phosphate (Pi), and pH were obtained before, during, and after the exercise protocol. At the end of exercise regimen, muscle PCr showed a 28% decrease from resting levels (to 21.8 {+-} 3.9 from 30.4 {+-} 3.0 mM) and the average PCr recovery rate was 35.3 {+-} 8.3 s. Muscle Pi concentrations increased 123% (to 14.6 {+-} 4.7 from 6.5 {+-} 3.3 mM) and pH decreased 1.5% (to 7.06 {+-} 0.14 from 7.17 {+-} 0.07) from resting levels. The described MR-compatible lower leg exercise was an effective tool for data acquisition during dynamic MR acquisitions of the calf muscles. The modular design allows for adaptation to other whole-body MR scanners and incorporation of custom-built mechanical or electronic interfaces and can be used for any MR protocol requiring dynamic evaluation of calf muscles. (orig.)

  12. Leg blood flow is impaired during small muscle mass exercise in COPD patients

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2017-01-01

    with the controls (1.82±0.11 versus 2.36±0.14 L/min, respectively, P<0.05) which compromised leg oxygen delivery (372±26 versus 453±32 mLO2/min, respectively, P<0.05). At rest, plasma endothelin-1 (vasoconstrictor) was higher in the COPD patients (P<0.05) and also tended to be higher during exercise (p=0...

  13. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s(-1)) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO2) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t1/2) for oxygen uptake (V˙O2pulm), carbon dioxide output (V˙CO2pulm), and ventilation (V˙E). Significant differences of the t1/2 values were identified between 60 and 150deg∙s(-1). Significant differences in the t1/2 values were observed between V˙O2pulm and V˙CO2pulm and between V˙CO2pulm and V˙E. The time to attain the first avDO2-peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O2pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O2pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Anaerobic energy expenditure and mechanical efficiency during exhaustive leg press exercise.

    Science.gov (United States)

    Gorostiaga, Esteban M; Navarro-Amézqueta, Ion; Cusso, Roser; Hellsten, Ylva; Calbet, Jose A L; Guerrero, Mario; Granados, Cristina; González-Izal, Miriam; Ibáñez, Javier; Izquierdo, Mikel

    2010-10-19

    Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM) of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r = -0.76; Panaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4 ± 4.0 vs 14.2 ± 2.1 s). These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency.

  15. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise

    DEFF Research Database (Denmark)

    Crameri, Regina M; Langberg, Henning; Magnusson, Peter

    2004-01-01

    No studies to date have reported activation of satellite cells in vivo in human muscle after a single bout of high intensity exercise. In this investigation, eight individuals performed a single bout of high intensity exercise with one leg, the contralateral leg being the control. A significant...... increase in mononuclear cells staining for the neural cell adhesion molecule (N-CAM) and fetal antigen 1 (FA1) were observed within the exercised human vastus lateralis muscle on days 4 and 8 post exercise. In addition, a significant increase in the concentration of the FA1 protein was determined...

  16. [Athletes with exercise-related pain at the medial side of the lower leg].

    Science.gov (United States)

    Hartgens, F; Hoogeveen, A R; Brink, P R G

    2008-08-16

    Two patients were diagnosed with exercise-related pain at the medial side of the lower leg. The first patient, an 18-year-old woman who had expanded her athletic activities extensively, had developed pain at the inner side of the distal third portion of the left lower leg. She showed over-pronation of the ankle during running. A 3-phase bone scintigram revealed diffuse uptake of the tracer covering a large portion of the medial tibia margin. Based on this evidence, a diagnosis of periostalgia was made. She recovered after a period of relative calf massages and used insoles. The second patient was a 28-year-old male endurance runner who developed pain at the medial shin after intensifying his training regimen. The periods without pain during running became increasingly shorter, and the medial side of the lower leg became sore and tense. Intracompartmental pressure measurements indicated exercise-related posterior deep compartment syndrome of the calf. The patient recovered after fasciotomy. In athletes, exercise-related symptoms of the medial side of the lower leg can be usually attributed to the tibial periosteum or tendons of the deep calfmusculature, tibial stress reaction or fracture, or a compartment syndrome of the deep calf. Surgery is indicated for chronic compartment syndrome, but conservative therapy provides favourable outcomes in the other types of disorders. The optimal conservative therapeutic approach is unknown, but it is advisable to temporary reduce symptom-provoking athletic activity and modify any risk factors present. Ankle over-pronation during running is considered a very relevant intrinsic risk factor.

  17. Effects of leg strength and bicycle ergometry exercise on cardiovascular deconditioning after 30-day head-down bed rest

    Science.gov (United States)

    Wu, Bin; Liu, Yusheng; Sun, Hongyi; Zhao, Dongming; Wang, Yue; Wu, Ping; Ni, Chengzhi

    2010-10-01

    The purpose of this study is to determine if the intermittent leg muscular strength exercise and bicycle ergometry exercise could attenuate cardiovascular deconditioning induced by prolonged -6° head-down bed rest (HDBR). Fifteen male subjects were randomly allocated into group A ( n=5, 30 days HDBR without exercise), group B ( n=5, 30 days HDBR with leg muscular strength exercise) and group C ( n=5, 30 days HDBR with bicycle ergometry exercise). The orthostatic tolerance (OT) was determined by +75°/20 min head-up tilt (HUT) test and the submaximal exercise capacity was determined by bicycle ergometry before and after HDBR. The results were as follows: (1) Compared with that before HDBR, OT time decreased dramatically by 57.6% ( pexercise time decreased significantly by 17.7% ( p0.77) in group C. (3) compared with that before HDBR, the changes of heart rate (HR) and blood pressure were slightly improved in group B and C, while deteriorated in group A during orthostatic test and exercise test after HDBR. The results indicate that leg muscular strength exercise and bicycle ergometry exercise could partially attenuate the cardiovascular deconditioning induced by 30 d HDBR, and the latter exercise training could fully provide the protection for the loss of exercise capacity.

  18. Classifying Human Leg Motions with Uniaxial Piezoelectric Gyroscopes

    Directory of Open Access Journals (Sweden)

    Kerem Altun

    2009-10-01

    Full Text Available This paper provides a comparative study on the different techniques of classifying human leg motions that are performed using two low-cost uniaxial piezoelectric gyroscopes worn on the leg. A number of feature sets, extracted from the raw inertial sensor data in different ways, are used in the classification process. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM, a rule-based algorithm (RBA or decision tree, least-squares method (LSM, k-nearest neighbor algorithm (k-NN, dynamic time warping (DTW, support vector machines (SVM, and artificial neural networks (ANN. A performance comparison of these classification techniques is provided in terms of their correct differentiation rates, confusion matrices, computational cost, and training and storage requirements. Three different cross-validation techniques are employed to validate the classifiers. The results indicate that BDM, in general, results in the highest correct classification rate with relatively small computational cost.

  19. Energy metabolism during repeated sets of leg press exercise leading to failure or not.

    Directory of Open Access Journals (Sweden)

    Esteban M Gorostiaga

    Full Text Available This investigation examined the influence of the number of repetitions per set on power output and muscle metabolism during leg press exercise. Six trained men (age 34 ± 6 yr randomly performed either 5 sets of 10 repetitions (10REP, or 10 sets of 5 repetitions (5REP of bilateral leg press exercise, with the same initial load and rest intervals between sets. Muscle biopsies (vastus lateralis were taken before the first set, and after the first and the final sets. Compared with 5REP, 10REP resulted in a markedly greater decrease (P<0.05 of the power output, muscle PCr and ATP content, and markedly higher (P<0.05 levels of muscle lactate and IMP. Significant correlations (P<0.01 were observed between changes in muscle PCr and muscle lactate (R(2 = 0.46, between changes in muscle PCr and IMP (R(2 = 0.44 as well as between changes in power output and changes in muscle ATP (R(2 = 0.59 and lactate (R(2 = 0.64 levels. Reducing the number of repetitions per set by 50% causes a lower disruption to the energy balance in the muscle. The correlations suggest that the changes in PCr and muscle lactate mainly occur simultaneously during exercise, whereas IMP only accumulates when PCr levels are low. The decrease in ATP stores may contribute to fatigue.

  20. Passive Leg Raising Correlates with Future Exercise Capacity after Coronary Revascularization.

    Directory of Open Access Journals (Sweden)

    Shu-Chun Huang

    Full Text Available Hemodynamic properties affected by the passive leg raise test (PLRT reflect cardiac pumping efficiency. In the present study, we aimed to further explore whether PLRT predicts exercise intolerance/capacity following coronary revascularization. Following coronary bypass/percutaneous coronary intervention, 120 inpatients underwent a PLRT and a cardiopulmonary exercise test (CPET 2-12 days during post-surgery hospitalization and 3-5 weeks after hospital discharge. The PLRT included head-up, leg raise, and supine rest postures. The end point of the first CPET during admission was the supra-ventilatory anaerobic threshold, whereas that during the second CPET in the outpatient stage was maximal performance. Bio-reactance-based non-invasive cardiac output monitoring was employed during PLRT to measure real-time stroke volume and cardiac output. A correlation matrix showed that stroke volume during leg raise (SVLR during the first PLRT was positively correlated (R = 0.653 with the anaerobic threshold during the first CPET. When exercise intolerance was defined as an anaerobic threshold < 3 metabolic equivalents, SVLR / body weight had an area under curve value of 0.822, with sensitivity of 0.954, specificity of 0.593, and cut-off value of 1504·10-3mL/kg (positive predictive value 0.72; negative predictive value 0.92. Additionally, cardiac output during leg raise (COLR during the first PLRT was related to peak oxygen consumption during the second CPET (R = 0.678. When poor aerobic fitness was defined as peak oxygen consumption < 5 metabolic equivalents, COLR / body weight had an area under curve value of 0.814, with sensitivity of 0.781, specificity of 0.773, and a cut-off value of 68.3 mL/min/kg (positive predictive value 0.83; negative predictive value 0.71. Therefore, we conclude that PLRT during hospitalization has a good screening and predictive power for exercise intolerance/capacity in inpatients and early outpatients following coronary

  1. Prosthetic Leg Control in the Nullspace of Human Interaction.

    Science.gov (United States)

    Gregg, Robert D; Martin, Anne E

    2016-07-01

    Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.

  2. Anaerobic energy expenditure and mechanical efficiency during exhaustive leg press exercise.

    Directory of Open Access Journals (Sweden)

    Esteban M Gorostiaga

    Full Text Available Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r = -0.76; P<0.01 and lactate (r = -0.91; P<0.01, respectively, and were accompanied by parallel decreases (P<0.01-0.05 in muscle energy charge (0.6%, muscle ATP/ADP (8% and ATP/AMP (19% ratios, as well as by increases in ADP content (7%. The estimated average rate of ATP utilisation from anaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4 ± 4.0 vs 14.2 ± 2.1 s. These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency.

  3. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    Insulin resistance is a major health risk and although exercise clearly improves skeletal muscle insulin sensitivity, the mechanisms are unclear. Here we show that initiation of a euglycemic hyperinsulinemic clamp four hours after single-legged exercise in humans increased microvascular perfusion...

  4. Human investigations into the exercise pressor reflex

    DEFF Research Database (Denmark)

    Secher, Niels H; Amann, Markus

    2012-01-01

    . The importance of the exercise pressor reflex for tight cardiovascular regulation during dynamic exercise is supported by studies using pharmacological blockade of lower limb muscle afferent nerves. These experiments show attenuation of the increase in BP and cardiac output when exercise is performed......During exercise, neural input from skeletal muscles reflexly maintains or elevates blood pressure (BP) despite a maybe fivefold increase in vascular conductance. This exercise pressor reflex is illustrated by similar heart rate (HR) and BP responses to electrically induced and voluntary exercise...... of an increase in BP during exercise with paralysed legs manifests, although electrical stimulation of muscles enhances lactate release and reduces muscle glycogen. Thus, the exercise pressor reflex enhances sympathetic activity and maintains perfusion pressure by restraining abdominal blood flow, while brain...

  5. Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle

    National Research Council Canada - National Science Library

    J. Norrbom; E. K. Sällstedt; H. Fischer; C. J. Sundberg; H. Rundqvist; T. Gustafsson

    2011-01-01

    .... The subjects exercised one leg for 45 min with restricted blood flow (R-leg), followed by 45 min of exercise using the other leg at the same absolute workload but with normal blood flow (NR-leg...

  6. Alternative splice variant PGC-1 -b is strongly induced by exercise in human skeletal muscle

    National Research Council Canada - National Science Library

    Norrbom, J; Sallstedt, E. K; Fischer, H; Sundberg, C. J; Rundqvist, H; Gustafsson, T

    2011-01-01

    .... The subjects exercised one leg for 45 min with restricted blood flow (R-leg), followed by 45 min of exercise using the other leg at the same absolute workload but with normal blood flow (NR-leg...

  7. Aerobic Exercise Improves Signs of Restless Leg Syndrome in End Stage Renal Disease Patients Suffering Chronic Hemodialysis

    Directory of Open Access Journals (Sweden)

    Mojgan Mortazavi

    2013-01-01

    Full Text Available Background. Restless leg syndrome (RLS is one of the prevalent complaints of patients with end stage renal diseases suffering chronic hemodialysis. Although there are some known pharmacological managements for this syndrome, the adverse effect of drugs causes a limitation for using them. In this randomized clinical trial we aimed to find a nonpharmacological way to improve signs of restless leg syndrome and patients’ quality of life. Material and Methods. Twenty-six patients were included in the study and divided into 2 groups of control and exercise. The exercise group used aerobic exercise during their hemodialysis for 16 weeks. The quality of life and severity of restless leg syndrome were assessed at the first week of study and final week. Data were analyzed using SPSS software. Results. The difference of means of RLS signs at the first week of study and final week was in exercise group and in control group. There was not any statistical difference between control group and exercise group in quality of life at the first week of study and final week. Conclusions. We suggest using aerobic exercise for improving signs of restless leg syndrome, but no evidence was found for its efficacy on patient’s quality of life.

  8. Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance.

    Directory of Open Access Journals (Sweden)

    Benjamin Pageaux

    Full Text Available We recently developed a high intensity one leg dynamic exercise (OLDE protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60, 100 (MVC100 and 140 (MVC140 deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s, 20 s (P20 and 40 s (P40 post-exercise. Electromyographic (EMG signal was analyzed via the root mean square (RMS for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001. MVC60 and MVC100 recovered between P20 (P < 0.05 and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05. High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion.

  9. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Science.gov (United States)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred

  10. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise

    DEFF Research Database (Denmark)

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette

    2005-01-01

    in target proteins by gas chromatography-mass spectrometry. Patellar tendon and quadriceps biopsies were taken in exercised and rested legs at 6, 24, 42 or 48 and 72 h after exercise. The fractional synthetic rates of all proteins were elevated at 6 h and rose rapidly to peak at 24 h post exercise (tendon...... in human tendon and muscle. The similar time course of changes of protein synthetic rates in different cell types supports the idea of coordinated musculotendinous adaptation....

  11. Features interference EMG leg extensor muscles of skilled players in the context of the special exercises

    Directory of Open Access Journals (Sweden)

    Sirenko P.A.

    2013-06-01

    Full Text Available The article considers the problems of improvement of physical training of skilled players. The main instrumental method of the research is electromyography. The aim of the research is determination of the optimal angle of the provisions of legs on her hips for the appearance of a maximum of bioelectric activity of the muscles of the front panel hips in exercise unbending legs sitting on the mechanical simulator. In the course of research we have worked for electromyography 10 players of FC Metalist at the age of 19 – 30 years during the five-second of the submaximum contraction of these muscles as: musculus rectus femoris, musculus vastus medialis, musculus vastus lateralis. The results of the analysis of segments of electromyography allowed to make a conclusion, that we investigated the provisions of the angle of 140 degrees has the lowest preconditions for the appearance of muscle strength. We have obtained data testify to the fact that the angle of 90 degrees is the position of the greatest preconditions for the appearance of muscle strength.

  12. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Boushel, Robert; Langberg, Henning

    2011-01-01

    to mean GU in QF (=100%), GU was on average 73% in VL, 84% in rectus femoris, 115% in vastus medialis, and 142% in VI. Variable activation of hamstring muscles and muscles of the lower leg was also observed. These results show that GU of different muscles of quadriceps muscle group as well as between...

  13. Modeling trajectories of perceived leg exertion during maximal cycle ergometer exercise in children and adolescents.

    Science.gov (United States)

    Huebner, Marianne; Zhang, Zhen; Therneau, Terry; McGrath, Patrick; Pianosi, Paolo

    2014-01-09

    between ratings of perceived exertion and work capacity normalized across individuals. Models including a delay term, a linear component, or a power function can describe these individual trajectories of perceived leg exertion during incremental exercise to voluntary exhaustion.

  14. The effect of fatigue from exercise on human limb position sense.

    Science.gov (United States)

    Allen, Trevor J; Leung, Michael; Proske, Uwe

    2010-04-15

    We have previously shown, in a two-limb position-matching task in human subjects, that exercise of elbow flexors of one arm led the forearm to be perceived as more extended, while exercise of knee extensors of one leg led the lower leg to be perceived as more flexed. These findings led us to propose that exercise disturbs position sense because subjects perceive their exercised muscles as longer than they actually are. In order to obtain further support for this hypothesis, in the first experiment reported here, elbow extensors were exercised, with the prediction that the exercised arm would be perceived as more flexed after exercise. The experiment was carried out under three load conditions, with the exercised arm resting on a support, with it supporting its own weight and with it supporting a load of 10% of its voluntary contraction strength. For each condition, the forearm was perceived as more extended, not more flexed, after exercise. This result was confirmed in a second experiment on elbow flexors. Again, under all three conditions the exercised arm was perceived as more extended. To explore the distribution of the phenomenon, in a third experiment finger flexor muscles were exercised. This had no significant effect on position sense at the elbow. In a fourth experiment, position sense at the knee was measured after knee flexors of one leg were exercised and, as for knee extensors, it led subjects to perceive their exercised leg to be more flexed at the knee than it actually was. Putting all the observations together, it is concluded that while the influences responsible for the effects of exercise may have a peripheral origin, their effect on position sense occurs centrally, perhaps at the level of the sensorimotor cortex.

  15. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-fold; P trained leg. The present data demonstrate that exercise induces a dramatic transient increase in PGC-1a transcription and mRNA content in human skeletal muscle. Consistent with its role as a transcriptional coactivator...

  16. Central and peripheral hemodynamics in exercising humans

    DEFF Research Database (Denmark)

    Calbet, J A L; González-Alonso, J; Helge, J W

    2015-01-01

    oxygen demand were 22%, 12%, and 14% higher, respectively, during maximal AC than LP. Trunk VC was reduced to similar values at Wmax. At Wmax, muscle mass-normalized VC and fractional O2 extraction were lower in the arm than the leg muscles. However, this was compensated for during AC by raising...... perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise...... during incremental upright arm cranking (AC) and leg pedalling (LP) to exhaustion (Wmax) in nine males. Systemic VC, peak cardiac output (Qpeak) (indocyanine green) and stroke volume (SV) were 18%, 23%, and 20% lower during AC than LP. The mean BP, the rate-pressure product and the associated myocardial...

  17. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    Aim/hypothesis:The aim of this study was to investigate mitochondrial function, fibre-type distribution and substrate oxidation during exercise in arm and leg muscles in male postobese (PO), obese (O) and age- and body mass index (BMI)-matched control (C) subjects. The hypothesis of the study...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling......, and plasma leptin was higher in O than in PO and C.Conclusions:In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations...

  18. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping

    NARCIS (Netherlands)

    Bobbert, M.F.

    2011-01-01

    The purpose of this study was to understand how humans regulate their 'leg stiffness' in hopping, and to determine whether this regulation is intended to minimize energy expenditure. 'Leg stiffness' is the slope of the relationship between ground reaction force and displacement of the centre of mass

  19. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans

    DEFF Research Database (Denmark)

    Xu, G.; Hansen, J S; Zhao, Jian-xin

    2016-01-01

    BACKGROUND: Plasma acylcarnitine levels are elevated by physiological conditions such as fasting and exercise but also in states of insulin resistance and obesity. AIM: To elucidate the contribution of liver and skeletal muscle to plasma acylcarnitines in the fasting state and during exercise...... in humans. METHODS: In 2 independent studies, young healthy males were fasted overnight and performed an acute bout of exercise to investigate either acylcarnitines in skeletal muscle biopsies and arterial-to-venous plasma differences over the exercising and resting leg (n = 9) or the flux over the hepato......:1-carnitines were released from the exercising leg and simultaneously; C6, C8, C10, C10:1, C14, and C16:1 were taken up by the hepato-splanchnic. CONCLUSION: These data provide novel insight to the organo-specific release/uptake of acylcarnitines. The liver is a major contributor to systemic short chain...

  20. Comparison of cardiovascular adaptations to long-term arm and leg exercise in wheelchair athletes versus long-distance runners.

    Science.gov (United States)

    Price, D T; Davidoff, R; Balady, G J

    2000-04-15

    The effect of long-term arm exercise on cardiac morphology and function is unknown. To study these effects, highly trained wheelchair athletes were compared with long-distance runners and controls. In addition, the wheelchair athletes were compared with the long-distance runners to determine if long-term leg exercise confers a training effect during the performance of dynamic arm exercise. The study included 31 male subjects (mean age of 33+/-5 years), who comprised 3 groups matched for age and weight: wheelchair athletes (n = 9), long-distance runners (n = 12), and healthy controls (n = 10). All underwent echocardiography at rest and arm ergometry exercise testing with expiratory gas analysis. The peak work rate during arm exercise was highest among the wheelchair athletes, and was significantly higher in both groups of trained athletes compared with the control group (pRunners demonstrated a significantly lower submaximal heart rate response to arm exercise compared with wheelchair and control subjects. Wheelchair athletes had increased left ventricular (LV) volume and mass by echocardiography compared with controls, but not to the same degree as that of runners. Although chamber dimensions and wall thickness did not differ among the groups, the LV volume index tended to be largest in the runners. Doppler indexes of diastolic LV filling were similar between the trained and untrained subjects. These data demonstrate that both long-term arm and leg exercise yield increases in LV volume and mass compared with untrained control subjects, although to a lesser degree in arm-trained athletes. Runners demonstrated a transfer of training effect in the performance of dynamic arm exercise, as demonstrated by their ability to achieve a higher peak work rate than controls, and showed a lower heart rate response to submaximal exercise than the wheelchair athletes and control subjects.

  1. Isometric exercises reduce temporal summation of pressure pain in humans

    DEFF Research Database (Denmark)

    Vaegter, H B; Handberg, G; Graven-Nielsen, T

    2015-01-01

    BACKGROUND: Aerobic and isometric exercises are known to decrease pain sensitivity. The effect of different types of exercise on central mechanisms such as temporal summation of pain (TSP) is less clear. This study hypothesized that both aerobic and isometric exercises would increase pressure pain...... tolerance (PTT) and reduce TSP with greater effects after higher-intensity exercises. METHODS: One hundred thirty-six healthy subjects (18-65 years; 68 women) participated in two randomized crossover experiments with trials on two different days. PTT and TSP were assessed before and after bicycling...... and a non-exercise condition (experiment 1), and after low- and high-intensity bicycling and low- and high-intensity isometric arm and leg exercises with the dominant arm/leg (experiment 2). PTT and TSP were assessed before and after each exercise condition on the non-dominant arm and leg by computer...

  2. Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects.

    Science.gov (United States)

    Notarius, Catherine F; Millar, Philip J; Murai, Hisayoshi; Morris, Beverley L; Marzolini, Susan; Oh, Paul; Floras, John S

    2015-02-01

    People with diminished ventricular contraction who develop heart failure have higher sympathetic nerve firing rates at rest compared with healthy individuals of a similar age and this is associated with less exercise capacity. During handgrip exercise, sympathetic nerve activity to muscle is higher in patients with heart failure but the response to leg exercise is unknown because its recording requires stillness. We measured sympathetic activity from one leg while the other leg cycled at a moderate level and observed a decrease in nerve firing rate in healthy subjects but an increase in subjects with heart failure. Because these nerves release noradrenaline, which can restrict muscle blood flow, this observation helps explain the limited exercise capacity of patients with heart failure. Lower nerve traffic during exercise was associated with greater peak oxygen uptake, suggesting that if exercise training attenuated sympathetic outflow functional capacity in heart failure would improve. The reflex fibular muscle sympathetic nerve (MSNA) response to dynamic handgrip exercise is elicited at a lower threshold in heart failure with reduced ejection fraction (HFrEF). The present aim was to test the hypothesis that the contralateral MSNA response to mild to moderate dynamic one-legged exercise is augmented in HFrEF relative to age- and sex-matched controls. Heart rate (HR), blood pressure and MSNA were recorded in 16 patients with HFrEF (left ventricular ejection fraction = 31 ± 2%; age 62 ± 3 years, mean ± SE) and 13 healthy control subjects (56 ± 2 years) before and during 2 min of upright one-legged unloaded cycling followed by 2 min at 50% of peak oxygen uptake (V̇O2,peak). Resting HR and blood pressure were similar between groups whereas MSNA burst frequency was higher (50.0 ± 2.0 vs. 42.3 ± 2.7 bursts min(-1), P = 0.03) and V̇O2,peak lower (18.0 ± 2.0 vs. 32.6 ± 2.8 ml kg(-1) min(-1), P Exercise increased HR (P group difference (P = 0.1). MSNA burst

  3. A springy pendulum could describe the swing leg kinetics of human walking.

    Science.gov (United States)

    Song, Hyunggwi; Park, Heewon; Park, Sukyung

    2016-06-14

    The dynamics of human walking during various walking conditions could be qualitatively captured by the springy legged dynamics, which have been used as a theoretical framework for bipedal robotics applications. However, the spring-loaded inverted pendulum model describes the motion of the center of mass (CoM), which combines the torso, swing and stance legs together and does not explicitly inform us as to whether the inter-limb dynamics share the springy legged dynamics characteristics of the CoM. In this study, we examined whether the swing leg dynamics could also be represented by springy mechanics and whether the swing leg stiffness shows a dependence on gait speed, as has been observed in CoM mechanics during walking. The swing leg was modeled as a spring-loaded pendulum hinged at the hip joint, which is under forward motion. The model parameters of the loaded mass were adopted from body parameters and anthropometric tables, whereas the free model parameters for the rest length of the spring and its stiffness were estimated to best match the data for the swing leg joint forces. The joint forces of the swing leg were well represented by the springy pendulum model at various walking speeds with a regression coefficient of R(2)>0.8. The swing leg stiffness increased with walking speed and was correlated with the swing frequency, which is consistent with previous observations from CoM dynamics described using the compliant leg. These results suggest that the swing leg also shares the springy dynamics, and the compliant walking model could be extended to better present swing leg dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparisons of muscle oxygenation changes between arm and leg muscles during incremental rowing exercise with near-infrared spectroscopy

    Science.gov (United States)

    Zhang, Zhongxing; Wang, Bangde; Gong, Hui; Xu, Guodong; Nioka, Shoko; Chance, Britton

    2010-01-01

    Our purpose is to compare the changes in muscle oxygenation in the vastus lateralis (VL) and biceps brachii (BB) muscles simultaneously using near-infrared spectroscopy (NIRS) during incremental rowing exercise in eight rowers. Based on the BB and VL muscle oxygenation patterns, two points are used to characterize the muscle oxygenation kinetics in both the arm and the leg muscles. The first point is the breaking point (Bp), which refers to an accelerated fall in muscle oxygenation that correlates with the gas exchange threshold (GET). The second point is the leveling-off point (Lo), which suggests the upper limit of O2 extraction. The GET occurred at 63.3+/-2.4% of maximal oxygen uptake (V˙O2 max). The Bp appeared at 45.0+/-3.8% and 55.6+/-2.4% V˙O2 max in the BB and VL, respectively. The Lo appeared at 63.6+/-4.1% and 86.6+/-1.0% V˙O2 max in these two muscles, respectively. Both the Bp and the Lo occurred earlier in BB compared with VL. These results suggest that arm muscles have lower oxidative capacity than leg muscles during rowing exercise. The rowers with higher exercise performances showed heavier workloads, as evaluated by Bp and Lo. The monitoring of muscle oxygenation by NIRS in arm and leg muscles during rowing could be a useful guide for evaluation and training.

  5. Humanized animal exercise model for clinical implication.

    Science.gov (United States)

    Seo, Dae Yun; Lee, Sung Ryul; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2014-09-01

    Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.

  6. Cerebral blood flow during static exercise in humans

    DEFF Research Database (Denmark)

    Rogers, H B; Schroeder, T; Secher, N H

    1990-01-01

    resistance increased from 1.5 (1.0-2.2) to 2.4 (1.4-3.0) mmHg. 100 g.min.ml-1 (P less than 0.025) at 32% of MVC. There was no difference in CBF between the two hemispheres at rest or during exercise. In contrast to dynamic leg exercise, static leg exercise is not associated with an increase in global CBF......Cerebral blood flow (CBF) was determined in humans at rest and during four consecutive unilateral static contractions of the knee extensors. Each contraction was maintained for 3 min 15 s with the subjects in a semisupine position. The contractions corresponded to 8, 16, 24, and 32% of the maximal...... (102-146) mmHg, respectively (P less than 0.0005), during the contraction at 32% MVC. Arterial PCO2 and central venous pressure did not change. Corrected to the average resting PCO2, CBF during control was 55 (35-73) ml.100 g-1.min-1 and remained constant during contractions. Cerebral vascular...

  7. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    inhibition had no effect on capillary BF during exercise in either normoxia or hypoxia. Finally, one-leg exercise increased muscle BF heterogeneity both in the resting posterior hamstring part of the exercising leg and in the resting contralateral leg, whereas mean BF was unchanged. In conclusion...

  8. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Gudmundsson, Mikkel; Birk, Jesper Bratz

    2010-01-01

    to the contra-lateral leg (CON) the day before the experiment day. On the experimental days, plasma FFA was ensured normal or remained elevated by consuming breakfast rich (low FFA) or poor (high FFA) in carbohydrate, 2 hours before performing 20 min of two-legged knee extensor exercise. Vastus lateralis......Objective: Test the hypothesis that FFA and muscle glycogen modify exercise-induced regulation of PDH in human skeletal muscle through regulation of PDK4 expression. Research Design and Methods: On two occasions, healthy male subjects lowered (by exercise) muscle glycogen in one leg (LOW) relative...... biopsies were obtained before and after exercise. Results: PDK4 protein content was approximately 2.2 and approximately 1.5 fold higher in LOW than CON leg in high FFA and low FFA, respectively, and the PDK4 protein content in CON leg was approximately 2 fold higher in high FFA than in low FFA. In all...

  9. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans

    DEFF Research Database (Denmark)

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H

    2015-01-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response of the m......A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response...... of the muscle is relatively small compared with the onset of leg cycling, where a marked increase in muscle blood flow rapidly occurs as a consequence of multiple redundant mechanisms. We recorded blood pressure (BP; brachial artery), stroke volume (pulse contour analysis), cardiac output, and systemic vascular...

  10. Effects of exercise training on restless legs syndrome, depression, sleep quality and fatigue among hemodialysis patients: A systematic review and meta-analysis.

    Science.gov (United States)

    Song, Yuan-Yuan; Hu, Ru-Jun; Diao, Yong-Shu; Chen, Lin; Jiang, Xiao-Lian

    2017-12-13

    Hemodialysis patients experience a heavy symptom burden that leads to a decreased quality of life. Pharmacological treatment is effective but costly and has adverse effects. Exercise is a promising approach for symptom management, but the effect of exercise on restless legs syndrome, depression, sleep quality and fatigue in hemodialysis patients is still uncertain. This meta-analysis was conducted to identify whether exercise training is beneficial in the treatment of the symptoms of restless legs syndrome, depression, poor sleep quality, and fatigue in patients receiving hemodialysis. A systematic search of PubMed, Embase, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Cochrane Central Register of Controlled Trials (CENTRAL) and Web of Science was conducted to identify randomized controlled trials (RCTs) comparing exercise training with routine care on restless legs syndrome, depression, sleep quality and fatigue among hemodialysis patients. Quality assessment was conducted using the Cochrane risk of bias tool, and RevMan (5.3) was used to analyze the data. Fifteen RCTs met our inclusion criteria were included. The pooled effect size showed that exercise training was effective on restless legs syndrome (Psleep quality were not performed due to the sensitivity analysis results. Exercise training may help hemodialysis patients to reduce the severity of restless legs syndrome, depression, and fatigue. More high-quality RCTs with larger samples and comparative RCTs focused on different exercise regimens are needed. Copyright © 2017. Published by Elsevier Inc.

  11. Three non-ambulatory adults with multiple disabilities exercise foot-leg movements through microswitch-aided programs.

    Science.gov (United States)

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Alberti, Gloria; Oliva, Doretta; Campodonico, Francesca

    2013-09-01

    This study assessed the use of microswitch-aided programs to help three non-ambulatory adults with multiple disabilities exercise foot-leg responses. Those responses served to activate a largely neglected part of the participants' body, with possibly positive physical implications (e.g., for blood circulation, swelling, and muscle strength). Intervention focused on the left and right foot-leg response, separately. Eventually, sessions with one response were alternated with sessions with the other response. Responses were monitored via microswitches and followed by 8s of preferred stimulation (e.g., music and vibrotactile stimulation), which was automatically delivered. The results showed that all three participants had high levels of foot-leg responses during the intervention phases and a 3-week post-intervention check. The participants also displayed expressions of positive involvement during those study periods (i.e., engaged in behaviors, such as music-related head movements, smiles, or touching the vibratory devices) that could be interpreted as forms of interest/pleasure and happiness. These results are in line with previous findings in this area and can be taken as an important confirmation of the strength and dependability of the approach in motivating non-ambulatory persons with multiple disabilities to engage in foot-leg movements. The practical implications of these findings are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Application of a Web-Enabled Leg Training System for the Objective Monitoring and Quantitative Analysis of Exercise-Induced Fatigue.

    Science.gov (United States)

    Dedov, Vadim N; Dedova, Irina V

    2016-08-22

    Sustained cardiac rehabilitation is the key intervention in the prevention and treatment of many human diseases. However, implementation of exercise programs can be challenging because of early fatigability in patients with chronic diseases, overweight individuals, and aged people. Current methods of fatigability assessment are based on subjective self-reporting such as rating of perceived exertion or require specialized laboratory conditions and sophisticated equipment. A practical approach allowing objective measurement of exercise-induced fatigue would be useful for the optimization of sustained delivery of cardiac rehabilitation to improve patient outcomes. The objective of this study is to develop and validate an innovative approach, allowing for the objective assessment of exercise-induced fatigue using the Web-enabled leg rehabilitation system. MedExercise training devices were equipped with wireless temperature sensors in order to monitor their usage by temperature rise in the resistance unit (Δ t °). Since Δ t ° correlated with the intensity and duration of exercise, this parameter was used to characterize participants' leg work output (LWO). Personal smart devices such as laptop computers with wireless gateways and relevant software were used for monitoring of self-control training. Connection of smart devices to the Internet and cloud-based software allowed remote monitoring of LWO in participants training at home. Heart rates (HRs) were measured by fingertip pulse oximeters simultaneously with Δ t ° in 7 healthy volunteers. Exercise-induced fatigue manifested as the decline of LWO and/or rising HR, which could be observed in real-time. Conversely, training at the steady-state LWO and HR for the entire duration of exercise bout was considered as fatigue-free. The amounts of recommended daily physical activity were expressed as the individual Δ t ° values reached during 30-minute fatigue-free exercise of moderate intensity resulting in a mean of 8

  13. Insulin action in human thighs after one-legged immobilization

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Mizuno, M.

    1989-01-01

    Insulin action was assessed in thighs of five healthy young males who had one knee immobilized for 7 days by a splint. The splint was not worn in bed. Subjects also used crutches to prevent weight bearing of the immobilized leg. Immobilization decreased the activity of citrate synthase and 3-OH......-acyl-CoA-dehydrogenase in the vastus lateralis muscle by 9 and 14%, respectively, and thigh volume by 5%. After 7 days of immobilization, a two-step euglycemic hyperinsulinemic clamp procedure combined with arterial and bilateral femoral venous catheterization was performed. Insulin action on glucose uptake and tyrosine release...... was significantly higher in the immobilized than in the control thigh. Seven days of one-legged immobilization causes local decreased insulin action on thigh glucose uptake and net protein degradation....

  14. Effect of exercise and training on phospholemman phosphorylation in human skeletal muscle.

    Science.gov (United States)

    Benziane, Boubacar; Widegren, Ulrika; Pirkmajer, Sergej; Henriksson, Jan; Stepto, Nigel K; Chibalin, Alexander V

    2011-09-01

    Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na(+)-K(+)-ATPase (Na(+)-K(+) pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males (n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies were taken from vastus lateralis at 0 and 63 min (non-exercised leg) and 30 and 60 min (exercised leg). In a group of sedentary males (n = 9), we determined the effect of a 10-day intense aerobic cycle training on Na(+)-K(+)-ATPase subunit expression, PLM phosphorylation, and total PLM expression as well as PLM phosphorylation in response to acute exercise (1 h at ∼72% Vo(2peak)). Biopsies were taken at rest, immediately following, and 3 h after an acute exercise bout before and at the conclusion of the 10-day training study. PLM phosphorylation was increased both at Ser(63) and Ser(68) immediately after acute exercise (75%, P PLM phosphorylation at Ser(63) and Ser(68), nor was the total amount of PLM altered posttraining. The protein expressions of α(1)-, α(2)-,and β(1)-subunits of Na(+)-K(+)-ATPase were increased after training (113%, P PLM on Ser(63) and Ser(68), and data from one-legged cycling indicate that this effect of exercise on PLM phosphorylation is not due to systemic factors. Our results provide evidence that phosphorylation of PLM may play a role in the acute regulation of the Na(+)-K(+)-ATPase response to exercise.

  15. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping

    OpenAIRE

    Bobbert, Maarten F; Richard Casius, L. J.

    2011-01-01

    The purpose of this study was to understand how humans regulate their ‘leg stiffness’ in hopping, and to determine whether this regulation is intended to minimize energy expenditure. ‘Leg stiffness’ is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyogram...

  16. Automated Management of Exercise Intervention at the Point of Care: Application of a Web-Based Leg Training System.

    Science.gov (United States)

    Dedov, Vadim N; Dedova, Irina V

    2015-11-23

    Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants' heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with

  17. Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg

    DEFF Research Database (Denmark)

    Mortensen, S P; Nyberg, Michael; Winding, K

    2012-01-01

    Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis and exer......Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis.......05), whereas ATP-induced vasodilatation was lower in the sedentary elderly (P vascular conductance and VO2 was lower and leg lactate release higher in the sedentary elderly compared to the young (P ... elderly and young. Interstitial [ATP] during exercise and P2Y(2) receptor content were higher in the active elderly compared to the sedentary elderly (P vascular conductance in all groups, but only in the sedentary elderly during exercise (P

  18. Effects of the Indoor Horseback Riding Exercise on Electromyographic Activity and Balance in One-leg Standing.

    Science.gov (United States)

    Lee, Sangyong; Lee, Daehee; Park, Jungseo

    2014-09-01

    [Purpose] This study investigated the influence of the indoor horseback riding exercise on the electromyographic activity of the lower extremity and balance during one-leg standing. [Subjects] Twenty normal adults were divided into an indoor horseback riding exercise group (IHREG, n=10), which performed the indoor horseback riding exercise using equipment 3 times a week for 3 weeks, and a control group (CG, n=10), which performed no exercise. [Methods] For comparitive analysis, an electromyographic test was performed to measure the electromyographic activities of the rectus femoris (RF), adductor longus (AL), and gluteus medius and the Biodex Balance System was used to measure the anteroposterior stability index (APSI), mediolateral stability index, and overall stability index (OSI). [Results] The electromyographic activities of RF and AL significantly increased and the balance abilities of APSI and OSI decreased significantly in the IHREG compared to the CG. [Conclusion] We consider indoor horseback riding exercise is an effective intervention for increasing electromyographic activities of the RF and AL, and the balance abilities of APSI and OSI of normal adults.

  19. Effects of single-leg drop-landing exercise from different heights on skeletal adaptations in prepubertal girls: a randomized controlled study.

    Science.gov (United States)

    Wiebe, Peter N; Blimkie, Cameron J R; Farpour-Lambert, Nathalie; Briody, Julie; Marsh, Damian; Kemp, Allan; Cowell, Chris; Howman-Giles, Roberts

    2008-05-01

    Few studies have explored osteogenic potential of prepubertal populations. We conducted a 28-week school-based exercise trial of single-leg drop-landing exercise with 42 prepubertal girls (6 to 10 years) randomly assigned to control (C), low-drop (LD) or high-drop (HD) exercise groups. The latter two groups performed single-leg drop-landings (3 sessions/week-1 and 50 landings/session-1) from 14 cm(LD) and 28 cm(HD) using the nondominant leg. Osteogenic responses were assessed using Dual Energy X-ray Absorptiometry (DXA). Single-leg peak ground-reaction impact forces (PGRIF) in a subsample ranged from 2.5 to 4.4 x body-weight (BW). No differences (p > .05) were observed among groups at baseline for age, stature, lean tissue mass (LTM), leisure time physical activity, or average daily calcium intake. After adjusting for covariates of body mass, fat mass and LTM, no differences were found in bone mineral measures or site-specific bone mineral density (BMD) at the hip and lower leg among exercise or control groups. Combining data from both exercise groups failed to produce differences in bone properties when compared with the control group. No changes were apparent for between-leg differences from baseline to posttraining. In contrast to some reports, our findings suggest that strictly controlled unimodal, unidirectional single-leg drop-landing exercises involving low-moderate peak ground-reaction impact forces are not osteogenic in the developing prepubertal female skeleton.

  20. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD......) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former...

  1. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    at time points 0, 3 and 6 h in these individuals and in resting controls. Affymetrix microarray analysis of gene expression changes in skeletal muscle biopsies identified a small set of genes changed by IL-6 infusion. RT-PCR validation confirmed that S100A8 and S100A9 mRNA were up-regulated 3-fold...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  2. Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    DEFF Research Database (Denmark)

    Ingerslev, Bodil; Hansen, Jakob S; Hoffmann, Christoph

    2017-01-01

    . METHODS: We investigated the origin of exercise-induced ANGPTL4 in humans by measuring the arterial-to-venous difference over the leg and the hepato-splanchnic bed during an acute bout of exercise. Furthermore, the impact of the glucagon-to-insulin ratio on plasma ANGPTL4 was studied in healthy...... individuals. The regulation of ANGPTL4 was investigated in both hepatic and muscle cells. RESULTS: The hepato-splanchnic bed, but not the leg, contributed to exercise-induced plasma ANGPTL4. Further studies using hormone infusions revealed that the glucagon-to-insulin ratio is an important regulator of plasma......RNA levels in hepatic cells, which was prevented by inhibition of PKA. In humans, muscle ANGPTL4 mRNA increased during fasting, with only a marginal further induction by exercise. In human muscle cells, no inhibitory effect of AMPK activation could be demonstrated on ANGPTL4 expression. CONCLUSIONS: The data...

  3. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  4. Effects of a pre-workout supplement on hyperemia following leg extension resistance exercise to failure with different resistance loads.

    Science.gov (United States)

    Martin, Jeffrey S; Mumford, Petey W; Haun, Cody T; Luera, Micheal J; Muddle, Tyler W D; Colquhoun, Ryan J; Feeney, Mary P; Mackey, Cameron S; Roberson, Paul A; Young, Kaelin C; Pascoe, David D; DeFreitas, Jason M; Jenkins, Nathaniel D M; Roberts, Michael D

    2017-01-01

    We sought to determine if a pre-workout supplement (PWS), containing multiple ingredients thought to enhance blood flow, increases hyperemia associated with resistance training compared to placebo (PBO). Given the potential interaction with training loads/time-under-tension, we evaluated the hyperemic response at two different loads to failure. Thirty males participated in this double-blinded study. At visit 1, participants were randomly assigned to consume PWS (Reckless™) or PBO (maltodextrin and glycine) and performed four sets of leg extensions to failure at 30% or 80% of their 1-RM 45-min thereafter. 1-wk. later (visit 2), participants consumed the same supplement as before, but exercised at the alternate load. Heart rate (HR), blood pressure (BP), femoral artery blood flow, and plasma nitrate/nitrite (NOx) were assessed at baseline (BL), 45-min post-PWS/PBO consumption (PRE), and 5-min following the last set of leg extensions (POST). Vastus lateralis near infrared spectroscopy (NIRS) was employed during leg extension exercise. Repeated measures ANOVAs were performed with time, supplement, and load as independent variables and Bonferroni correction applied for multiple post-hoc comparisons. Data are reported as mean ± SD. With the 30% training load compared to 80%, significantly more repetitions were performed (p  0.05). NIRS derived minimum oxygenated hemoglobin (O2Hb) was lower in the 80% load condition compared to 30% for all rest intervals between sets of exercise (p < 0.0167). HR and BP did not vary as a function of supplement or load. Femoral artery blood flow at POST was higher independent of exercise load and treatment. However, a time*supplement*load interaction was observed revealing greater femoral artery blood flow with PWS compared to PBO at POST in the 80% (+56.8%; p = 0.006) but not 30% load condition (+12.7%; p = 0.476). Plasma NOx was ~3-fold higher with PWS compared to PBO at PRE and POST (p < 0.001). Compared to PBO, the PWS

  5. Effect of Ladder Drill Exercise on Speed, Surrounding, and Power Leg Muscle

    Directory of Open Access Journals (Sweden)

    Ketut Chandra Adinata Kusuma

    2017-10-01

    Full Text Available This study aimed at finding the effect of ladder drill training upon: (1 run speed, (2 agility, and (2 power of leg muscle. This study is an experimental research. This study utilized one group pre test-post test design. There were total people as the subject of this research. Data collection technique used 30-meter sprint test to measure run speed, Illinois agility test to measure agility, and vertical jump test to measure power of leg muscle. Data analysis technique which was used for normality test, homogeneity test/F-test, and T-test with significant level 5% by using SPSS 16.0.0. Based on the finding, there was effect of ladder drill training upon run speed with sig value=0.007, agility and power of leg muscle with sig value=0.000. Based on the data analysis, it could be concluded that there was significant effect of ladder drill training upon run speed, agility and power of leg muscle.

  6. The effect of 15 weeks of exercise on balance, leg strength, and reduction in falls in 40 women aged 65 to 89 years.

    Science.gov (United States)

    Ballard, Joyce E; McFarland, Carol; Wallace, Lorraine Silver; Holiday, David B; Roberson, Glenda

    2004-01-01

    Risk of falling increases as people age, and decreased leg strength and poor balance have been implicated as contributors. Our aims were to:1) assess the efficacy of a fall-prevention exercise program on balance and leg strength in women aged 65 to 89 years and 2) conduct a 1-year follow-up to determine the effect of exercise on fall rates. Forty women were classified by falling history and fear of falling and assigned to exercise and control groups using stratified randomization. We used the Berg Balance Scale, Get-up and Go, Functional Reach, and Wall-Sit Tests to evaluate changes in balance and leg strength before and after a supervised 15-week exercise program (31-hr sessions/week). We conducted 1-year follow-up telephone interviews and compared the number of falls reported by exercise and control groups.The study used a 2 x 2 (exercise/control by pretest/post-test) factorial design with the testing times being a repeated factor, so we used analysis of variance (ANOVA) to evaluate differences between the 2 groups across testing times. Power analysis computed a priori with STPLAN software (Version 4.2) showed that a sample size of 40 was necessary to determine statistical differences in balance and leg strength. Exercise subjects showed significant improvement on 5 of 14 items (5.2%, p score (6.8%, p < or = .05). Leg strength increased significantly (p < or = .05) on post-test as measured by the Wall-Sit Test. Control subjects reported 6 falls and exercise subjects no falls during the follow-up year, but this difference was not significant using Fischer's exact test (p=.106). The exercise program resulted in increased balance and leg strength, but did not result in a significant difference in falls during the follow-up period. Further research with a larger and possibly older sample is needed to more adequately investigate this question. Health care providers who work with older women should provide exercise programs in which balance and leg strength are

  7. Dynamic exercise in human pregnancy

    NARCIS (Netherlands)

    M.B. van Doorn (Marieke)

    1991-01-01

    textabstractThis thesis represents an effort to obtain a better understanding of the ability of pregnant women to perform aerobic exercise. It consists of four chapters. Chapter 2 describes a longitudinal study of maximal power and oxygen uptake in pregnant and postpartum women. Because only a

  8. "Coveting thy neighbour's legs": a qualitative study of exercisers' experiences of intrinsic and extrinsic goal pursuit.

    Science.gov (United States)

    Sebire, Simon J; Standage, Martyn; Gillison, Fiona B; Vansteenkiste, Maarten

    2013-06-01

    Goals are central to exercise motivation, although not all goals (e.g., health vs. appearance goals) are equally psychologically or behaviorally adaptive. Within goal content theory (Vansteenkiste, Niemiec, & Soenens, 2010), goals are adaptive to the extent to which they satisfy psychological needs for autonomy, competence, and relatedness. However, little is known about what exercisers pursuing different goals are feeling, doing, thinking, and paying attention to that may help to explain the association between goal contents and need satisfaction. Using semistructured interviews and interpretative phenomenological analysis, we explored experiences of exercise among 11 adult exercisers who reported pursuing either predominantly intrinsic or extrinsic goals. Four themes emerged: (a) observation of others and resulting emotions, (b) goal expectations and time perspective, (c) markers of progress and (d) reactions to (lack of) goal achievement. Intrinsic and extrinsic goal pursuers reported divergent experiences within these four domains. The findings illuminate potential mechanisms by which different goals may influence psychological and behavioral outcomes in the exercise context.

  9. Constant infusion transpulmonary thermodilution for the assessment of cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Calbet, J A L; Mortensen, Stefan; Munch, G D W

    2016-01-01

    To determine the accuracy and precision of constant infusion transpulmonary thermodilution cardiac output (CITT-Q) assessment during exercise in humans, using indocyanine green (ICG) dilution and bolus transpulmonary thermodilution (BTD) as reference methods, cardiac output (Q) was determined...... at rest and during incremental one- and two-legged pedaling on a cycle ergometer, and combined arm cranking with leg pedaling to exhaustion in 15 healthy men. Continuous infusions of iced saline in the femoral vein (n = 41) or simultaneously in the femoral and axillary (n = 66) veins with determination......: 6.1-11.1%). In conclusion, cardiac output can be precisely and accurately determined with constant infusion transpulmonary thermodilution in exercising humans....

  10. Nocturnal variations in subcutaneous blood flow rate in lower leg of normal human subjects

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Jørgensen, B

    1991-01-01

    Subcutaneous adipose tissue blood flow rate was measured in the lower leg of 22 normal human subjects over 12- to 20-h ambulatory conditions. The 133Xe washout technique, portable CdTe(Cl) detectors, and a portable data storage unit were used. The tracer depot was applied on the medial aspect...

  11. Norepinephrine spillover from skeletal muscle during exercise in humans

    DEFF Research Database (Denmark)

    Savard, G K; Richter, Erik; Strange, S

    1989-01-01

    -legged knee extension either alone or in combination with the knee extensors of the other leg and/or with the arms. The range of work intensities varied between 24 and 71% (mean) of subjects' maximal aerobic capacity (% VO2max). Leg blood flow, measured in the femoral vein by thermodilution, was determined...... in sympathetic nervous activity to skeletal muscle, either resting or working at a constant load, is not associated with any significant neurogenic vasoconstriction and reduction in flow or conductance through the muscle vascular bed, during whole body exercise demanding up to 71% VO2max....

  12. Recombinant human granulocyte-macrophage colony-stimulating factor as treatment for chronic leg ulcers.

    Science.gov (United States)

    Borbolla-Escoboza, J R; María-Aceves, R; López-Hernández, M A; Collados-Larumbe, M T

    1997-01-01

    To evaluate the safety and effectiveness of a single subcutaneous perilesional administration of 300 micrograms of recombinant human granulocyte-macrophage colony stimulating factor (rHGM-CSF) for the treatment of chronic leg ulcers. Prospective, descriptive evaluation in an outpatient group. The Centro Médico Nacional 20 de Noviembre, ISSSTE, Mexico City. 10 patients with chronic leg ulcers. Ulcer diameter and side effects. After 4 weeks observation, 8 of the 10 ulcers had healed; the other two had a mean diameter decrease of 21%. The only side effect was found in a 58 year old female who complained of moderate perilesional pain two days after having received treatment: it was successfully treated with paracetamol. We believe that a single perilesional subcutaneous administration of rhGM-CSF is safe and effective for the treatment of chronic leg ulcers.

  13. Biofidelity of TRL Legform Impactor and Injury Tolerance of the Human Leg in Lateral Impact.

    Science.gov (United States)

    Matsui, Y

    2001-11-01

    In nonfatal car-pedestrian accidents, lower extremities are the most commonly injured body parts. The test device used to evaluate the car-front aggressiveness regarding the risk of these injuries is a legform impactor. Injury-related factors causing AIS 2+ injury in the human lower leg when exposed to a lateral impact representing a pedestrian accident should be identified. One of the test devices commonly used to evaluate the risk is the legform impactor developed by the Transport Research Laboratory (TRL). However, information about the biofidelity of this impactor and leg injury tolerance curves is lacking. Thus, the objectives of this research are: 1) to determine possible injury-related factor(s) causing AIS 2+ injury in the human lower leg when exposed to a lateral impact simulating a pedestrian accident; 2) to evaluate the biofidelity of the current version of the TRL legform impactor; and 3) to propose injury reference value for estimation of the leg and knee joint injury risk by means of a legform impactor. To determine factors causing leg fracture and knee joint ligament injury, injury-related factors were statistically tested in the present study. In this estimation, we analyzed knee lateral force, knee bending moment, knee shear displacement (i.e., relative displacement between the leg and thigh at the knee joint level in a lateral direction), knee bending angle, leg acceleration, and the impact force as factors that could correlate with the occurrence of the leg injuries. Regarding tibia fracture, both the impact force and leg acceleration were found to be significant factors. For ligament injury, it was found that only the shearing displacement was indeed very likely to be a significant factor. The TRL legform impactor was evaluated by comparing its responses with the published experimental results obtained using postmortem human subjects (PMHSs). The evaluation was done under two conditions: impact point 84 mm below the knee joint center (shearing

  14. Comparison of the electromyographic activity, quadriceps: hamstring coactivation ratio and strength changes of dominant leg muscles in collegiate football and volleyball players during different forms of exercises

    OpenAIRE

    Tanzila Taj; Subhra Chatterjee (Nee Karmakar)

    2015-01-01

    The preliminary study was aimed to compare Electromyographic (EMG) activity, Quadriceps: Hamstring coactivation (Q: H) ratio and 1- Repetition maximum (RM) squat changes of dominant leg muscles in collegiate football and volleyball players during different forms of exercises. Surface EMG analysis was carried out in 24 university level trained male players, football (n=12) and volleyball (n=12) while performing the following exercises: unilateral bridges, lunges, lateral step up to a 20.32 cm ...

  15. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis

    Science.gov (United States)

    Chin, Lisa M. K.; Heigenhauser, George J. F.; Paterson, Donald H.

    2010-01-01

    The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (V̇o2p) and leg femoral conduit artery (“bulk”) blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) ∼40 mmHg] and sustained hyperventilation (Hypo; PetCO2 ∼20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). V̇o2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Δ[HHb])-, oxy (Δ[O2Hb])-, and total hemoglobin-myoglobin (Δ[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of V̇o2p, LBF, and Δ[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 V̇o2p (Hypo, 49 ± 26 s; Con, 28 ± 8 s) and LBF (Hypo, 46 ± 16 s; Con, 23 ± 6 s) were greater (P hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given ΔV̇o2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of V̇o2p (and muscle O2 utilization) kinetics. PMID:20339012

  16. Prevention and treatment of exercise related leg pain in young soldiers; a review of the literature and current practice in the Dutch Armed Forces.

    Science.gov (United States)

    Zimmermann, Wes O; Helmhout, P H; Beutler, A

    2017-04-01

    Overuse injuries of the leg are a common problem for young soldiers. This article reviews the literature concerning the prevention and treatment of exercise related leg pain in military settings and presents the latest developments in proposed mechanisms and treatments. Current practice and treatment protocols from the Dutch Armed Forces are reviewed, with an emphasis on the most prevalent conditions of medial tibial stress syndrome and chronic exertional compartment syndrome. The conclusion is that exercise related leg pain in the military is an occupational problem that deserves further study. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. A SYSTEMATIC REVIEW AND META-ANALYSIS COMPARING CARDIOPULMONARY EXERCISE TEST VALUES OBTAINED FROM THE ARM CYCLE AND THE LEG CYCLE RESPECTIVELY IN HEALTHY ADULTS

    DEFF Research Database (Denmark)

    Larsen, Rasmus Tolstrup; Christensen, Jan; Tang, Lars Hermann

    2016-01-01

    INTRODUCTION: The cardiopulmonary exercise test (CPET) assesses maximal oxygen uptake (VO2max) and is commonly performed on a leg cycle ergometer (LC). However, some individuals would rather perform the CPET on an arm cycle ergometer (AC). OBJECTIVE: The objectives of this study were to undertake...

  18. A Systematic Review and Meta-analysis Comparing Cardiopulmonary Exercise Test Values Obtained From the Arm Cycle and the Leg Cycle Respectively in Healthy Adults

    DEFF Research Database (Denmark)

    Larsen, Rasmus Tolstrup; Christensen, Jan; Tang, Lars Hermann

    2016-01-01

    INTRODUCTION: The cardiopulmonary exercise test (CPET) assesses maximal oxygen uptake (VO2max) and is commonly performed on a leg cycle ergometer (LC). However, some individuals would rather perform the CPET on an arm cycle ergometer (AC). OBJECTIVE: The objectives of this study were to undertake...

  19. A systematic review and meta-analysis comparing cardiopulmonary exercise test values obtained from the arm cycle and the leg cycle respectively in healthy adults

    DEFF Research Database (Denmark)

    Larsen, Rasmus Tolstrup; Christensen, Jan; Tang, Lars Hermann

    2016-01-01

    INTRODUCTION: The cardiopulmonary exercise test (CPET) assesses maximal oxygen uptake (VO2max) and is commonly performed on a leg cycle ergometer (LC). However, some individuals would rather perform the CPET on an arm cycle ergometer (AC). OBJECTIVE: The objectives of this study were to undertake...

  20. Ammonia uptake in inactive muscles during exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Kiens, Bente; Richter, Erik

    1996-01-01

    (part III). The arterial plasma NH3 concentration was 79.6 +/- 9.6 (SE) mumol/l at rest and 88.1 +/- 9.1, 98.1 +/- 8.1, and 210.2 +/- 7.5 mumol/l after 10 min of exercise in parts I, II, and III, respectively. The corresponding NH3 uptakes in the resting leg were 3.3 +/- 1.3 (rest), 7.8 +/- 1.5, 14......The present study examined NH3 (ammonia and ammonium) uptake in resting leg muscle. Six male subjects performed intermittent arm exercise at various intensities in two separate 32-min periods (part I and part II) and in one subsequent 20-min period in which one-legged exercise was also performed.......0 +/- 4.5, and 57.7 +/- 18.3 mumol/min. Throughout each exercise period a net uptake of NH3 was observed in the resting leg (P exercise. The muscle NH3 concentration of 195.1 +/- 15.0 mumol/kg wet wt at rest was largely...

  1. Muscle glycogen content and glucose uptake during exercise in humans: influence of prior exercise and dietary manipulation

    DEFF Research Database (Denmark)

    Steensberg, Adam; van Hall, Gerrit; Keller, Charlotte

    2002-01-01

    leg (EL) with the control leg (CL) prior to exercise in Series 1. In addition, muscle glycogen was decreased by the same magnitude when comparing LCHO with HCHO in Series 2. In Series 1, glucose uptake was 3-fold higher in the first 60 min of exercise, in the presence of unchanged pre-exercise GLUT4...... during exercise, 13 healthy men were studied during two series of experiments. Seven men completed 4 h of two-legged knee extensor exercise 16 h after reducing of muscle glycogen by completing 60 min of single-legged cycling (Series 1). A further six men completed 3 h of two-legged knee extensor exercise...... on two occasions: one after 60 min of two-legged cycling (16 h prior to the experimental trial) followed by a high carbohydrate diet (HCHO) and the other after the same exercise followed by a low carbohydrate diet (LCHO) (Series 2). Muscle glycogen was decreased by 40 % when comparing the pre-exercised...

  2. Probenecid Inhibits α-Adrenergic Receptor-Mediated Vasoconstriction in the Human Leg Vasculature.

    Science.gov (United States)

    Nyberg, Michael; Piil, Peter; Kiehn, Oliver T; Maagaard, Christian; Jørgensen, Tue S; Egelund, Jon; Isakson, Brant E; Nielsen, Morten S; Gliemann, Lasse; Hellsten, Ylva

    2018-01-01

    Coordination of vascular smooth muscle cell tone in resistance arteries plays an essential role in the regulation of peripheral resistance and overall blood pressure. Recent observations in animals have provided evidence for a coupling between adrenoceptors and Panx1 (pannexin-1) channels in the regulation of sympathetic nervous control of peripheral vascular resistance and blood pressure; however, evidence for a functional coupling in humans is lacking. We determined Panx1 expression and effects of treatment with the pharmacological Panx1 channel inhibitor probenecid on the vasoconstrictor response to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years). By use of immunolabeling and confocal microscopy, Panx1 channels were found to be expressed in vascular smooth muscle cells of arterioles in human leg skeletal muscle. Probenecid treatment increased ( P probenecid-induced increase in baseline leg vascular conductance, but did not alter the effect of probenecid on the vascular response to tyramine. No differences with probenecid treatment were detected in the forearm. These observations provide the first line of evidence in humans for a functional role of Panx1 channels in setting resting tone via α1-adrenoceptors and in the constrictive effect of noradrenaline via α2-adrenoceptors, thereby contributing to the regulation of peripheral vascular resistance and blood pressure in humans. © 2017 American Heart Association, Inc.

  3. Lactate fuels the human brain during exercise

    NARCIS (Netherlands)

    Quistorff, Bjorn; Secher, Niels H.; van Lieshout, Johannes J.

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up

  4. Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Frøsig, Christian; Pehmøller, Christian

    2009-01-01

    insulin stimulation. CONCLUSION/INTERPRETATION: We provide evidence for site-specific phosphorylation of TBC1D4 in human skeletal muscle in response to physiological hyperinsulinaemia. The data support the idea that TBC1D4 is a nexus for insulin- and exercise-responsive signals that may mediate increased...... exercised leg. TBC1D4 phosphorylation, assessed using the phospho-AKT (protein kinase B)substrate antibody and phospho- and site-specific antibodies targeting six phosphorylation sites on TBC1D4, increased at similar degrees to insulin stimulation in the previously exercised and rested legs (p ...AIMS/HYPOTHESIS: TBC1 domain family, member 4 (TBC1D4; also known as AS160) is a cellular signalling intermediate to glucose transport regulated by insulin-dependent and -independent mechanisms. Skeletal muscle insulin sensitivity is increased after acute exercise by an unknown mechanism that does...

  5. Physical exercise in Aging: Nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people

    Directory of Open Access Journals (Sweden)

    Sandra Zampieri

    2015-08-01

    Full Text Available Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling. Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients' quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP exercise or electrical stimulation (ES. Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (p<0.001, together with a significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005. A significant decrease of slow type fiber diameter was observed in both ES and LP trained subjects (p<0.001. Altogether these results demonstrate the effectiveness of physical exercise either voluntary (LP or passive (ES to improve the functional performances of aging muscles. Here ES

  6. Blood pressure and the contractility of a human leg muscle

    Science.gov (United States)

    Luu, Billy L; Fitzpatrick, Richard C

    2013-01-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K+ concentration. PMID:24018946

  7. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1996-01-01

    Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight.......3 vs. -11.9 N/min, respectively; P muscle excitation. Exhaustion, per se, was postulated to related more...

  8. Central and peripheral cardiovascular responses to electrically induced and voluntary leg exercise

    Science.gov (United States)

    Saltin, B.; Strange, S.; Bangsbo, J.; Kim, C. K.; Duvoisin, M.; Hargens, A.; Gollnick, P. D.

    1990-01-01

    With long missions in space countermeasures have to be used to secure safe operations in space and a safe return to Earth. Exercises of various forms have been used, but the question has arisen whether electrically induced contractions of muscle especially sensitive to weightlessness and crucial for man's performance would aid in maintaining their optimal function. The physiological responses both to short term and prolonged dynamic exercise performed either voluntarily or induced by electrical stimulation were considered. The local and systemic circulatory responses were similar for the voluntary and electrically induced contractions. The metabolic response was slightly more pronounced with electrical stimulation. This could be a reflection of not only slow twitch (type 1) but also fast twitch (type 2) fibers being recruited when the contractions were induced electrically. Intramuscular pressure recordings indicated that the dominant fraction of the muscle group was engaged regardless of mode of activation. Some 70 percent of the short term peak voluntary exercise capacity could be attained with electrical stimulation. Thus, electrically induced contractions of specific muscle groups should indeed be considered as an efficient countermeasure.

  9. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...... eccentric contractions with each leg with intramuscular infusion of the NSAID indomethacin or placebo. Biopsies were obtained from m. vastus lateralis before and after (5, 28 hrs and 8 days) the exercise bout from both legs (NSAID vs unblocked leg) and analysed for expression of the HSPs HSP70, HSP27 and a...

  10. Improvement in upper leg muscle strength underlies beneficial effects of exercise therapy in knee osteoarthritis: secondary analysis from a randomised controlled trial.

    Science.gov (United States)

    Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J

    2015-06-01

    Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  11. Reduced arterial diameter during static exercise in humans

    DEFF Research Database (Denmark)

    Olesen, H L; Mitchell, J H; Friedman, D B

    1995-01-01

    exertion was approximately 15 units after both types of exercise. The dorsalis pedis arterial diameter was 1.50 +/- 0.20 mm (mean and SE) and the radial AD 2.45 +/- 0.12 mm. During both types of contractions the luminal diameters decreased approximately 3.5% within the first 30 s (P ...In eight subjects luminal diameter of the resting limb radial and dorsalis pedis arteries was determined by high-resolution ultrasound (20 MHz). This measurement was followed during rest and during 2 min of static handgrip or of one-leg knee extension at 30% of maximal voluntary contraction...... of another limb. Static exercise increased heart rate and mean arterial pressure, which were largest during one-leg knee extension. After exercise heart rate and mean arterial pressure returned to the resting level. No changes were recorded in arterial carbon dioxide tension, and the rate of perceived...

  12. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Halberg, Nils; Hillig, Thore

    2005-01-01

    Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H......-CHO) or 2) a low-carbohydrate diet (L-CHO) before exercise to alter muscle glycogen content as well as to induce, respectively, low and high rates of fat oxidation. Leg fat oxidation was 122% higher during exercise in L-CHO than in H-CHO (P ...-activated protein kinase (a2-AMPK) was increased twice as much in L-CHO as in H-CHO (P exercise. However, acetyl-CoA carboxylase (ACC)ß Ser221 phosphorylation was increased to the same extent (6-fold) under the two conditions. The concentration of malonyl-CoA was reduced 13% by exercise in both...

  13. A randomised study of home-based electrical stimulation of the legs and conventional bicycle exercise training for patients with chronic heart failure.

    Science.gov (United States)

    Harris, Stuart; LeMaitre, John P; Mackenzie, Graham; Fox, Keith A A; Denvir, Martin A

    2003-05-01

    Recent guidelines recommend regular exercise in the management of patients with chronic heart failure (CHF). This study was designed to compare the safety and efficacy of conventional bicycle exercise and functional electrical stimulation (FES) of the legs as forms of home-based exercise training for patients with stable CHF. Forty-six patients (38 male) with stable NYHA Class II/III heart failure underwent a 6-week training programme using either a bicycle ergometer or electrical stimulation of the quadriceps and gastrocnemius muscles. In the bike group, significant increases were seen in 6-min walk (44.6m, 95% confidence interval (CI) 29.3-60.9 m), treadmill exercise time (110 s, 95% CI 72.2-148.0 s), maximum leg strength (5.32 kg, 95% CI 3.18-7.45 kg), and quadriceps fatigue index (0.08, 95% CI 0.04-0.12) following training. In the stimulator group, similar significant increases were seen following training for 6-min walk (40.6m, 95% CI 28.2-53.0m), treadmill exercise time (67 s, 95% CI 11.8-121.8s), maximum leg strength (5.35 kg, 95% CI 1.53-9.17 kg), and quadriceps fatigue index (0.10, 95% CI 0.04-0.17). Peak VO(2)did not change in either group following training, indicating a low-intensity regime. Quality of life scores improved following training when the bicycle and stimulator groups were considered together, but not when considered separately (-0.43, 95% CI -8.13 to -0.56). FES produces beneficial changes in muscle performance and exercise capacity in patients with CHF. Within this study, the benefits were similar to those observed following bicycle training. FES could be offered to patients with heart failure as an alternative to bicycle training as part of a home-based rehabilitation programme.

  14. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Schjerling, P.; Langberg, Henning

    2011-01-01

    models, and inhibit the exercise-induced satellite cell proliferation and protein synthesis in humans. However, the cellular mechanisms eliciting these responses remain unknown. Eight healthy male volunteers performed 200 maximal eccentric contractions with each leg. To block prostaglandin synthesis......Unaccustomed exercise leads to satellite cell proliferation and increased skeletal muscle protein turnover. Several growth factors and cytokines may be involved in the adaptive responses. Non-steroidal anti-inflammatory drugs (NSAIDs) negatively affect muscle regeneration and adaptation in animal...... locally in the skeletal muscle, indomethacin (NSAID) was infused for 7.5 h via microdialysis catheters into m. vastus lateralis of one leg. Protein synthesis was determined by the incorporation of 1,2-(13) C(2) leucine into muscle protein from 24 to 28 h post-exercise. Furthermore, mRNA expression...

  15. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in human...... muscle. Additionally, it remains to be determined what proportion of adenosine-induced flow elevation is specifically directed to muscle only. In the present study we measured thigh muscle capillary nutritive blood flow in nine healthy young men using positron emission tomography at rest and during...... femoral artery infusion of adenosine (1 mg * min(-1) * litre thigh volume(-1)), which has previously been shown to induce maximal whole thigh blood flow of ~8 L/min. This response was compared to the blood flow induced by moderate-high intensity one-leg dynamic knee extension exercise. Adenosine increased...

  16. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF......) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine...... and with theophylline (P Adenosine receptor blockade did not have any effect on mean bulk BF or BF heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  17. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    Directory of Open Access Journals (Sweden)

    Lingfeng Sang

    2014-01-01

    Full Text Available For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

  18. Probenecid inhibits α-adrenergic receptor-mediated vasoconstriction in the human leg vasculature

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Kiehn, Oliver Thistrup

    2018-01-01

    in the regulation of sympathetic nervous control of peripheral vascular resistance and blood pressure; however, evidence for a functional coupling in humans is lacking. We determined Panx1 expression and effects of treatment with the pharmacological Panx1 channel inhibitor probenecid on the vasoconstrictor response....... Probenecid treatment increased (P... of α1-adrenoceptors prevented the probenecid-induced increase in baseline leg vascular conductance, but did not alter the effect of probenecid on the vascular response to tyramine. No differences with probenecid treatment were detected in the forearm. These observations provide the first line...

  19. Effects of Shoes and a Prefabricated Medial Arch Support on Medial Gastrocnemius and Tibialis Anterior Activity while doing Leg Press Exercise in Normal Feet Athletes

    Directory of Open Access Journals (Sweden)

    Maryam Sheikhi

    2017-04-01

    Full Text Available Background: Nowadays, different types of exercise machines are being used in the field of athletic training, recreation, post-injury and post-operation rehabilitation. Leg press is a commonly-used one that retrains muscles and simulates natural functional activities. In this activity, feet are in contact with a footrest to exert muscular forces. In addition, the footrest inserts reactive forces to feet and from the feet load would transfer to structures that are more proximal. Any misalignment in foot structure may interfere its function. Objective: The aim of this study was to assess the effect of shoes and using a prefabricated medial arch support on the activity of Tibialis anterior and medial gastrocnemius muscles while doing leg press exercise in normal feet subjects. Method: 14 men with normal Medial Longitudinal Arch and normal Body Mass Index aged between 18-35 years old, with at least 6 months experience of doing leg press volunteered to participate in this study.  Medial gastrocnemius and Tibialis anterior activity were measured by surface electromyography while doing leg press with 70% of subjects 1 Repetition Maximum.  To increase accuracy, motion was divided into knee flexion and knee extension phases. Peak Amplitude, Time to Peak Amplitude and Root Mean Square variables were used for analysis. Wilcoxon nonparametric test was used to compare the results. Results: No statistically significant difference was found in the electromyographic parameters of Medial gastrocnemius nor Tibialis anterior in any phases of motion, except for an increase in Tibialis anterior time to peak amplitude in shod condition compared with barefoot in knee extension phase of motion (p-value=0.008 and Tibialis anterior RMS in knee flexion phase in orthotic condition compared to shod (p-value=0.03. Conclusion: It seems that in high loads shoes or medial arch supports cannot change electromyographic parameters in Medial gastrocnemius nor Tibialis anterior in

  20. Eccentric exercise decreases maximal insulin action in humans

    DEFF Research Database (Denmark)

    Asp, Svend; Daugaard, J R; Kristiansen, S

    1996-01-01

    ) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P 2 days after unaccustomed eccentric exercise, muscle and whole-body insulin action is impaired at maximal...... subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake...... over the eccentric thigh was marginally lower when compared with the control thigh, (11.9%, 64.6 +/- 10.3 vs. 73.3 +/- 10.2 mumol kg-1 min-1, P = 0.08), whereas no inter-thigh difference was observed at a submaximal insulin concentration. The glycogen concentration was lower in the eccentric thigh...

  1. Cortical spectral activity and connectivity during active and viewed arm and leg movement

    Directory of Open Access Journals (Sweden)

    Julia eKline

    2016-03-01

    Full Text Available Active and viewed limb movement activate many similar neural pathways, however, to date most comparison studies have focused on subjects making small, discrete movements of the hands and feet. The purpose of this study was to determine if high-density electroencephalography (EEG could detect differences in cortical activity and connectivity during active and viewed rhythmic arm and leg movements in humans. Our primary hypothesis was that we would detect similar but weaker electrocortical spectral fluctuations and effective connectivity fluctuations during viewed limb exercise compared to active limb exercise due to the similarities in neural recruitment. A secondary hypothesis was that we would record stronger cortical spectral fluctuations for arm exercise compared to leg exercise, because rhythmic arm exercise would be more dependent on supraspinal control than rhythmic leg exercise. We recorded EEG data while ten young healthy subjects exercised on a recumbent stepper with: 1 both arms and legs, 2 just legs, and 3 just arms. Subjects also viewed video playback of themselves or another individual performing the same exercises. We performed independent component analysis, dipole fitting, spectral analysis, and effective connectivity analysis on the data. Cortical areas comprising the premotor and supplementary motor cortex, the anterior cingulate, the posterior cingulate, and the parietal cortex exhibited significant spectral fluctuations during rhythmic limb exercise. These fluctuations tended to be greater for the arms exercise conditions than for the legs only exercise condition, which suggests that human rhythmic arm movements are under stronger cortical control than rhythmic leg movements. We did not find consistent spectral fluctuations in these areas during the viewed conditions, but effective connectivity fluctuated at harmonics of the exercise frequency during both active and viewed rhythmic limb exercise. The right premotor and

  2. Cortical Spectral Activity and Connectivity during Active and Viewed Arm and Leg Movement.

    Science.gov (United States)

    Kline, Julia E; Huang, Helen J; Snyder, Kristine L; Ferris, Daniel P

    2016-01-01

    Active and viewed limb movement activate many similar neural pathways, however, to date most comparison studies have focused on subjects making small, discrete movements of the hands and feet. The purpose of this study was to determine if high-density electroencephalography (EEG) could detect differences in cortical activity and connectivity during active and viewed rhythmic arm and leg movements in humans. Our primary hypothesis was that we would detect similar but weaker electrocortical spectral fluctuations and effective connectivity fluctuations during viewed limb exercise compared to active limb exercise due to the similarities in neural recruitment. A secondary hypothesis was that we would record stronger cortical spectral fluctuations for arm exercise compared to leg exercise, because rhythmic arm exercise would be more dependent on supraspinal control than rhythmic leg exercise. We recorded EEG data while ten young healthy subjects exercised on a recumbent stepper with: (1) both arms and legs, (2) just legs, and (3) just arms. Subjects also viewed video playback of themselves or another individual performing the same exercises. We performed independent component analysis, dipole fitting, spectral analysis, and effective connectivity analysis on the data. Cortical areas comprising the premotor and supplementary motor cortex, the anterior cingulate, the posterior cingulate, and the parietal cortex exhibited significant spectral fluctuations during rhythmic limb exercise. These fluctuations tended to be greater for the arms exercise conditions than for the legs only exercise condition, which suggests that human rhythmic arm movements are under stronger cortical control than rhythmic leg movements. We did not find consistent spectral fluctuations in these areas during the viewed conditions, but effective connectivity fluctuated at harmonics of the exercise frequency during both active and viewed rhythmic limb exercise. The right premotor and supplementary motor

  3. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities.

    Science.gov (United States)

    Geyer, Hartmut; Herr, Hugh

    2010-06-01

    While neuroscientists identify increasingly complex neural circuits that control animal and human gait, biomechanists find that locomotion requires little control if principles of legged mechanics are heeded that shape and exploit the dynamics of legged systems. Here, we show that muscle reflexes could be vital to link these two observations. We develop a model of human locomotion that is controlled by muscle reflexes which encode principles of legged mechanics. Equipped with this reflex control, we find this model to stabilize into a walking gait from its dynamic interplay with the ground, reproduce human walking dynamics and leg kinematics, tolerate ground disturbances, and adapt to slopes without parameter interventions. In addition, we find this model to predict some individual muscle activation patterns known from walking experiments. The results suggest not only that the interplay between mechanics and motor control is essential to human locomotion, but also that human motor output could for some muscles be dominated by neural circuits that encode principles of legged mechanics.

  4. Effects of concentric and eccentric control exercise on gross motor function and balance ability of paretic leg in children with spastic hemiplegia.

    Science.gov (United States)

    Park, Su-Ik; Kim, Mi-Sun; Choi, Jong-Duk

    2016-07-01

    [Purpose] This study examines the effect of concentric and eccentric control training of the paretic leg on balance and gross motor function in children with spastic hemiplegia. [Subjects and Methods] Thirty children with spastic hemiplegia were randomly divided into experimental and control groups. In the experimental group, 20 min of neurodevelopmental therapy and 20 min of concentric and eccentric control exercise were applied to the paretic leg. In the control group, 40 min of neurodevelopmental therapy was applied. The Pediatric Balance Scale test and standing and gait items of the Gross Motor Function Measure were evaluated before and after intervention. [Results] In the experimental group, Gross Motor Function Measure and Pediatric Balance Scale scores statistically significantly increased after the intervention. The control group showed no statistically significant difference in either score after the intervention. [Conclusion] Concentric and eccentric control exercise therapy in children with spastic hemiplegia can be effective in improving gross motor function and balance ability, and can be used to solve functional problems in a paretic leg.

  5. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    Plasma adenosine-5'-triphosphate (ATP) is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study...... investigated: 1) the role of nitric oxide (NO), prostaglandins and adenosine as mediators of ATP induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5-7 min of femoral intra.......05) and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP induced leg hyperemia or systemic variables. Real time PCR analysis of the mRNA content from the vastus lateralus muscle of 8...

  6. Interstitial pH in human skeletal muscle during and after dynamic graded exercise

    DEFF Research Database (Denmark)

    Street, D; Bangsbo, Jens; Juel, Carsten

    2001-01-01

    In this study a new method has been used to measure interstitial pH continuously in human muscle during graded exercise. Human subjects performed 5 min of one-legged knee-extensor exercise at power outputs of 30, 50 and 70 W. Muscle interstitial pH was measured continuously in microdialysis...... dialysate using the pH-sensitive fluorescent dye 2',7'-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF). The mean interstitial pH at rest was 7.38 ± 0.02. Interstitial pH gradually reduced during exercise in a nearly linear manner. The mean value (range) of the lowest interstitial pH at 30, 50...... and 70 W exercise was 7.27 (7.18-7.34), 7.16 (7.05-7.24) and 7.04 (6.93-7.12), respectively. The lowest pH was obtained 1 min after exercise, irrespectively of the workload, after which interstitial pH recovered in a nearly exponential manner. The mean half-time for recovery was 5.2 min (range 4...

  7. MRI and localized proton spectroscopy in human leg muscle at 7 Tesla using longitudinal traveling waves.

    Science.gov (United States)

    Webb, Andrew G; Collins, Christopher M; Versluis, Maarten J; Kan, Hermien E; Smith, Nadine B

    2010-02-01

    Using a small resonant loop to produce a longitudinal traveling wave on a human 7-T system allows MR to be performed over the entire volume of the human leg. We have used this capability to perform localized proton MR spectroscopy of the lipid composition of muscle in volunteers with a coil placed approximately 30 cm away from the region of interest. Spectra with a reasonable signal-to-noise ratio can be acquired in a clinically relevant data acquisition time of less than 5 min using the loop in transmit/receive mode, maintaining the full flexibility to acquire spectra from any part of the calf and/or thigh. If a local receive coil is used in combination with the remote transmit coil, then the signal-to-noise improves significantly, as expected.

  8. Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise.

    Science.gov (United States)

    Chin, Lisa M K; Heigenhauser, George J F; Paterson, Donald H; Kowalchuk, John M

    2013-12-01

    Pulmonary O2 uptake (V(O₂p)) and leg blood flow (LBF) kinetics were examined at the onset of moderate-intensity exercise, during hyperventilation with and without associated hypocapnic alkalosis. Seven male subjects (25 ± 6 years old; mean ± SD) performed alternate-leg knee-extension exercise from baseline to moderate-intensity exercise (80% of estimated lactate threshold) and completed four to six repetitions for each of the following three conditions: (i) control [CON; end-tidal partial pressure of CO2 (P(ET, CO₂)) ~40 mmHg], i.e. normal breathing with normal inspired CO2 (0.03%); (ii) hypocapnia (HYPO; P(ET, CO₂) ~20 mmHg), i.e. sustained hyperventilation with normal inspired CO2 (0.03%); and (iii) normocapnia (NORMO; P(ET, CO₂) ~40 mmHg), i.e. sustained hyperventilation with elevated inspired CO2 (~5%). The V(O₂p) was measured breath by breath using mass spectrometry and a volume turbine. Femoral artery mean blood velocity was measured by Doppler ultrasound, and LBF was calculated from femoral artery diameter and mean blood velocity. Phase 2 V(O₂p) kinetics (τV(O₂p)) was different (P hyperventilation manoeuvre itself (i.e. independent of induced hypocapnic alkalosis) may contribute to the slower V(O₂p) kinetics observed during HYPO.

  9. Effects of respiratory muscle unloading on leg muscle oxygenation and blood volume during high-intensity exercise in chronic heart failure.

    Science.gov (United States)

    Borghi-Silva, Audrey; Carrascosa, Cláudia; Oliveira, Cristino Carneiro; Barroco, Adriano C; Berton, Danilo C; Vilaça, Debora; Lira-Filho, Edgar B; Ribeiro, Dirceu; Nery, Luiz Eduardo; Neder, J Alberto

    2008-06-01

    Blood flow requirements of the respiratory muscles (RM) increase markedly during exercise in chronic heart failure (CHF). We reasoned that if the RM could subtract a fraction of the limited cardiac output (QT) from the peripheral muscles, RM unloading would improve locomotor muscle perfusion. Nine patients with CHF (left ventricle ejection fraction = 26 +/- 7%) undertook constant-work rate tests (70-80% peak) receiving proportional assisted ventilation (PAV) or sham ventilation. Relative changes (Delta%) in deoxy-hemoglobyn, oxi-Hb ([O2Hb]), tissue oxygenation index, and total Hb ([HbTOT], an index of local blood volume) in the vastus lateralis were measured by near infrared spectroscopy. In addition, QT was monitored by impedance cardiography and arterial O2 saturation by pulse oximetry (SpO2). There were significant improvements in exercise tolerance (Tlim) with PAV. Blood lactate, leg effort/Tlim and dyspnea/Tlim were lower with PAV compared with sham ventilation (P 0.05). Unloaded breathing, however, was related to enhanced leg muscle oxygenation and local blood volume compared with sham, i.e., higher Delta[O2Hb]% and Delta[HbTOT]%, respectively (P < 0.05). We conclude that RM unloading had beneficial effects on the oxygenation status and blood volume of the exercising muscles at similar systemic O2 delivery in patients with advanced CHF. These data suggest that blood flow was redistributed from respiratory to locomotor muscles during unloaded breathing.

  10. Optimized lower leg injury probability curves from postmortem human subject tests under axial impacts.

    Science.gov (United States)

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A; Szabo, Aniko

    2014-01-01

    Derive optimum injury probability curves to describe human tolerance of the lower leg using parametric survival analysis. The study reexamined lower leg postmortem human subjects (PMHS) data from a large group of specimens. Briefly, axial loading experiments were conducted by impacting the plantar surface of the foot. Both injury and noninjury tests were included in the testing process. They were identified by pre- and posttest radiographic images and detailed dissection following the impact test. Fractures included injuries to the calcaneus and distal tibia-fibula complex (including pylon), representing severities at the Abbreviated Injury Score (AIS) level 2+. For the statistical analysis, peak force was chosen as the main explanatory variable and the age was chosen as the covariable. Censoring statuses depended on experimental outcomes. Parameters from the parametric survival analysis were estimated using the maximum likelihood approach and the dfbetas statistic was used to identify overly influential samples. The best fit from the Weibull, log-normal, and log-logistic distributions was based on the Akaike information criterion. Plus and minus 95% confidence intervals were obtained for the optimum injury probability distribution. The relative sizes of the interval were determined at predetermined risk levels. Quality indices were described at each of the selected probability levels. The mean age, stature, and weight were 58.2±15.1 years, 1.74±0.08 m, and 74.9±13.8 kg, respectively. Excluding all overly influential tests resulted in the tightest confidence intervals. The Weibull distribution was the most optimum function compared to the other 2 distributions. A majority of quality indices were in the good category for this optimum distribution when results were extracted for 25-, 45- and 65-year-olds at 5, 25, and 50% risk levels age groups for lower leg fracture. For 25, 45, and 65 years, peak forces were 8.1, 6.5, and 5.1 kN at 5% risk; 9.6, 7.7, and 6.1 k

  11. Glucose production during exercise in humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    1999-01-01

    The present study compared the arteriohepatic venous (a-hv) balance technique and the tracer-dilution method for estimation of hepatic glucose production during both moderate and heavy exercise in humans. Eight healthy young men (aged 25 yr; range, 23-30 yr) performed semisupine cycling for 40 min...... at 50.4 +/- 1.5(SE)% maximal O(2) consumption, followed by 30 min at 69.0 +/- 2.2% maximal O(2) consumption. The splanchnic blood flow was estimated by continuous infusion of indocyanine green, and net splanchnic glucose output was calculated as the product of splanchnic blood flow and a-hv blood...... glucose concentration differences. Glucose appearance rate was determined by a primed, continuous infusion of [3-(3)H]glucose and was calculated by using formulas for a modified single compartment in non-steady state. Glucose production was similar whether determined by the a-hv balance technique...

  12. Effects of adrenaline on lactate, glucose, lipid and protein metabolism in the placebo controlled bilaterally perfused human leg.

    Science.gov (United States)

    Gjedsted, J; Buhl, M; Nielsen, S; Schmitz, O; Vestergaard, E T; Tønnesen, E; Møller, N

    2011-08-01

    Adrenaline has widespread metabolic actions, including stimulation of lipolysis and induction of insulin resistance and hyperlactatemia. Systemic adrenaline administration, however, generates a very complex hormonal and metabolic scenario. No studies employing regional, placebo controlled and adrenaline infusion exist. Our study was designed to test the hypothesis that local placebo controlled leg perfusion with adrenaline directly increases local lactate release, stimulates lipolysis, induces insulin resistance and leaves protein metabolism unaffected.   We studied seven healthy volunteers with bilateral femoral vein and artery catheters during 3-h basal and 3-h hyperinsulinemic (0.6 mU kg(-1) min(-1) ) euglycemic clamp conditions. One femoral artery was perfused with saline and the other with adrenaline (0.4 μg min m(-2) ). Lipid metabolism was quantified with [9,10-(3) H] palmitate and amino acid metabolism with (15) N-phenylalanine and lactate and glucose by raw arterio-venous differences.   Femoral vein plasma adrenaline increased ≈eightfold in the perfused leg with unaltered blood flows. Adrenaline perfusion significantly increased local leg lactate release from 0.01 to 0.25 mmol min(-1) per leg, palmitate release in the basal state 11.5-16.9 μmol min(-1) per leg and during the clamp 2.62-8.44 μmol min(-1) per leg. Glucose uptake decreased during the clamp from ≈180 to 30 μmol min(-1) per leg. Phenylalanine kinetics was not affected by adrenaline.   Adrenaline directly increases lactate release and lipolysis and inhibits insulin-stimulated glucose uptake in the perfused human leg. Adrenaline has no direct effects on peripheral amino acid metabolism. Adrenaline-induced lactate release from striated muscle may be an important mechanism underlying hyperlactatemia in the critically ill. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  13. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  14. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  15. Neural mechanisms influencing interlimb coordination during locomotion in humans: presynaptic modulation of forearm H-reflexes during leg cycling.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Nakajima

    Full Text Available Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in leg muscles and leg cycling modulates H-reflexes in forearm muscles. However, comparatively little is known about mechanisms subserving the effects from leg to arm. Using a conditioning-test (C-T stimulation paradigm, the purpose of this study was to test the hypothesis that changes in Ia PSI underlie the modulation of H-reflexes in forearm flexor muscles during leg cycling. Subjects performed leg cycling and static activation while H-reflexes were evoked in forearm flexor muscles. H-reflexes were conditioned with either electrical stimuli to the radial nerve (to increase Ia PSI; C-T interval  = 20 ms or to the superficial radial (SR nerve (to reduce Ia PSI; C-T interval  = 37-47 ms. While stationary, H-reflex amplitudes were significantly suppressed by radial nerve conditioning and facilitated by SR nerve conditioning. Leg cycling suppressed H-reflex amplitudes and the amount of this suppression was increased with radial nerve conditioning. SR conditioning stimulation removed the suppression of H-reflex amplitude resulting from leg cycling. Interestingly, these effects and interactions on H-reflex amplitudes were observed with subthreshold conditioning stimulus intensities (radial n., ∼0.6×MT; SR n., ∼ perceptual threshold that did not have clear post synaptic effects. That is, did not evoke reflexes in the surface EMG of forearm flexor muscles. We conclude that the interaction between leg cycling and somatosensory conditioning of forearm H-reflex amplitudes is mediated by modulation of Ia PSI pathways. Overall our results support a

  16. Folic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans.

    Science.gov (United States)

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Moralez, Gilbert; Kouda, Ken; Jaffery, Manall F; Cramer, Matthew N; Crandall, Craig G

    2017-09-01

    Skeletal muscle blood flow is attenuated in aged humans performing dynamic exercise, which is due, in part, to impaired local vasodilatory mechanisms. Recent evidence suggests that folic acid improves cutaneous vasodilation during localized and whole body heating through nitric oxide-dependent mechanisms. However, it is unclear whether folic acid improves vasodilation in other vascular beds during conditions of increased metabolism (i.e., exercise). The purpose of this study was to test the hypothesis that folic acid ingestion improves skeletal muscle blood flow in aged adults performing graded handgrip and plantar flexion exercise via increased vascular conductance. Nine healthy, aged adults (two men and seven women; age: 68 ± 5 yr) performed graded handgrip and plantar flexion exercise before (control), 2 h after (acute, 5 mg), and after 6 wk (chronic, 5 mg/day) folic acid ingestion. Forearm (brachial artery) and leg (superficial femoral artery) blood velocity and diameter were measured via Duplex ultrasonography and used to calculate blood flow. Acute and chronic folic acid ingestion increased serum folate (both P aged adults.NEW & NOTEWORTHY Our findings demonstrate that folic acid ingestion improves blood flow via enhanced vascular conductance in the exercising skeletal muscle of aged humans. These findings provide evidence for the therapeutic use of folic acid to improve skeletal muscle blood flow, and perhaps exercise and functional capacity, in human primary aging.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/folic-acid-and-exercise-hyperemia-in-aging/. Copyright © 2017 the American Physiological Society.

  17. Cross-cultural Adaptation and Validation of the Exercise-Induced Leg Pain Questionnaire for English- and Greek-Speaking Individuals.

    Science.gov (United States)

    Korakakis, Vasileios; Malliaropoulos, Nikos; Baliotis, Konstantinos; Papadopoulou, Sofia; Padhiar, Nat; Nauck, Tanja; Lohrer, Heinz

    2015-06-01

    Clinical measurement. To translate the German version of the Exercise-Induced Leg Pain Questionnaire (EILP-G) to Greek and English and evaluate the psychometric properties of the Greek version. The EILP-G was developed to evaluate the severity of symptoms and sports ability in individuals with exercise-induced leg pain (EILP). Translation of the questionnaire to other languages will provide a standard outcome measure across populations. The EILP-G questionnaire was cross-culturally adapted to Greek and English, according to established guidelines. The validity and reliability of the Greek version were assessed in 40 patients with EILP, 40 patients with other lower extremity injuries, 40 track-and-field athletes with no history of EILP, and 40 young adults without pathology. Participants completed the questionnaire at baseline and again after 7 to 10 days. The expert committee and the participants considered the questionnaire to have good face and content validity. Concurrent validity as assessed using the Schepsis score was almost perfect (rho = 0.947, PGreek version exhibited excellent test-retest reliability (intraclass correlation coefficient = 0.995 for the EILP group) and internal consistency (Cronbach α = .942 for the EILP group). Finally, no ceiling or floor effects were found, as none of the individuals with EILP scored the maximum or minimum possible values on the questionnaire. The Greek version, adapted from the original EILP-G, is a valid and reliable questionnaire, and its psychometric properties are comparable with the original version.

  18. The relationship between isotonic plantar flexor endurance, navicular drop, and exercise-related leg pain in a cohort of collegiate cross-country runners.

    Science.gov (United States)

    Bennett, Jason E; Reinking, Mark F; Rauh, Mitchell J

    2012-06-01

    The purpose of this study was to examine the relationships between isotonic ankle plantar flexor endurance (PFE), foot pronation as measured by navicular drop, and exercise-related leg pain (ERLP). Exercise-related leg pain is a common occurrence in competitive and recreational runners. The identification of factors contributing to the development of ERLP may help guide methods for the prevention and management of overuse injuries. Seventy-seven (44 males, 33 females) competitive runners from five collegiate cross-country (XC) teams consented to participate in the study. Isotonic ankle PFE and foot pronation were measured using the standing heel-rise and navicular drop (ND) tests, respectively. Demographic information, anthropometric measurements, and ERLP history were also recorded. Subjects were then prospectively tracked for occurrence of ERLP during the 2009 intercollegiate cross-country season. Multivariate logistic regression analysis was used to examine the relationships between isotonic ankle joint PFE and ND and the occurrence of ERLP. While no significant differences were identified for isotonic ankle PFE between groups of collegiate XC runners with and without ERLP, runners with a ND >10 mm were almost 7 times (OR=6.6, 95% CI=1.2-38.0) more likely to incur medial ERLP than runners with ND risk factor in the development of ERLP in this group of collegiate XC runners, those with a ND greater than 10 mm may be at greater odds of incurring medial ERLP. 2b.

  19. Maximal muscular vascular conductances during whole body upright exercise in humans

    DEFF Research Database (Denmark)

    Calbet, J A L; Jensen-Urstad, M; Van Hall, Gerrit

    2004-01-01

    That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular...... conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake...... 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2...

  20. Prevention: Exercise

    Medline Plus

    Full Text Available ... slow full movements. Repeat 10-15 times, to fatigue... Abdominal Exercise Lay on your back with both ... Return leg and extend other leg. Repeat to fatigue, about 10-15 repetitions at a slow and ...

  1. Exercise and vascular adaptation in asymptomatic humans

    NARCIS (Netherlands)

    Green, D.J.; Spence, A.; Halliwill, J.R.; Cable, N.T.; Thijssen, D.H.J.

    2011-01-01

    Beneficial effects of exercise training on the vasculature have been consistently reported in subjects with cardiovascular risk factors or disease, whereas studies in apparently healthy subjects have been less uniform. In this review, we examine evidence pertaining to the impact of exercise training

  2. Magnetic resonance imaging assessment of mechanical interactions between human lower leg muscles in vivo.

    Science.gov (United States)

    Yaman, Alper; Ozturk, Cengizhan; Huijing, Peter A; Yucesoy, Can A

    2013-09-01

    Evidence on epimuscular myofascial force transmission (EMFT) was shown for undissected muscle in situ. We hypothesize that global length changes of gastrocnemius muscle-tendon complex in vivo will cause sizable and heterogeneous local strains within all muscles of the human lower leg. Our goal is to test this hypothesis. A method was developed and validated using high-resolution 3D magnetic resonance image sets and Demons nonrigid registration algorithm for performing large deformation analyses. Calculation of strain tensors per voxel in human muscles in vivo allowed quantifying local heterogeneous tissue deformations and volume changes. After hip and knee movement (Δ knee angle ≈ 25 deg) but without any ankle movement, local lengthening within m. gastrocnemius was shown to occur simultaneously with local shortening (maximally by +34.2% and -32.6%, respectively) at different locations. Moreover, similar local strains occur also within other muscles, despite being kept at constant muscle-tendon complex length. This is shown for synergistic m. soleus and deep flexors, as well as for antagonistic anterior crural and peroneal muscle groups: minimum peak lengthening and shortening equaled 23.3% and 25.54%, respectively despite global isometric conditions. These findings confirm our hypothesis and show that in vivo, muscles are in principle not independent mechanically.

  3. Investigation of implantable signal transmission characteristics based on visible data of the human leg.

    Science.gov (United States)

    Gao, Yue-Ming; Ye, Yan-Ting; Lin, Shi; Vasić, Željka Lučev; Vai, Mang-I; Du, Min; Cifrek, Mario; Pun, Sio-Hang

    2017-07-04

    Signal transmission characteristics between implanted medical devices and external equipment has been a common key issue, as has the problem of supplying energy to the devices. It can be used to enable signal transmission from implanted devices that the human body's conductive properties. Using signal transmission by galvanic coupling is one of the most effective signal transmission methods. The signal transmission characteristics by galvanic coupling of implantable devices using a frequency range of 10 kHz to 1 MHz was analyzed in this article. A finite element (FEM) model and a phantom model established by visible human leg data were used to investigate the signal transmission characteristics of implant-to-surface, with implantable receiver electrodes at different locations. The results showed that the FEM model and the phantom model had similar implantable signal transmission characteristics, with an increase of frequency, signal attenuation basically remained unchanged. The gain in signal attenuation in the fixed attenuation values fluctuated no more than 5 dB and signal attenuation values rose as the channel length increased. Our results of signal transmission characteristics of surface-to-implant will provide a theoretical basis for implantable transceiver design, and for realization of a recharging method for implanted medical devices.

  4. Identification of human exercise-induced myokines using secretome analysis.

    NARCIS (Netherlands)

    Catoire, M.; Mensink, M.; Kalkhoven, E.; Schrauwen, P.; Kersten, S.

    2014-01-01

    Endurance exercise is associated with significant improvements in cardio-metabolic risk parameters. A role for myokines has been hypothesized, yet limited information is available about myokines induced by acute endurance exercise in humans. Therefore, the aim of the study was to identify novel

  5. Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; van der Vusse, G J; Söderlund, K

    1995-01-01

    observed between rest and exercise and between legs for the muscle concentrations of glutamine, alanine and the branched-chain amino acids. Muscle glutamate concentration decreased by 60-70% within the first 10 min of exercise. Glutamate consumption over 90 min quantitatively equalled ammonia production......1. The influence of pre-exercise muscle glycogen content on ammonia production, adenine nucleotide breakdown and amino acid metabolism was investigated during prolonged exercise in six subjects having one leg with a normal and one leg with a low muscle glycogen content. One-leg knee....... Most of the glutamate was consumed within the first 10 min of exercise, while ammonia production gradually increased during exercise. Therefore deamination of glutamate cannot be the main source of ammonia production during the later stage of exercise. 5. It is concluded that during prolonged one...

  6. Lipolysis in human adipose tissue during exercise

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik

    2002-01-01

    Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous...... exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue...

  7. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise

    DEFF Research Database (Denmark)

    Graham, T E; Turcotte, L P; Kiens, Bente

    1995-01-01

    We studied the responses of NH3 and amino acids (AA) to prolonged exercise (3 h) in trained (Tr; n = 6) and untrained (Utr; n = 6) men. Each subject exercised the knee extensor muscles of one leg at 60% of maximum capacity. Thigh blood flow and femoral arteriovenous differences (0, 30, 60, 120, 1...

  8. Resetting of the carotid arterial baroreflex during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Norton, K H; Boushel, Robert Christopher; Andersen, Line Strange

    1999-01-01

    Recent investigations have demonstrated that at the onset of low-to-moderate-intensity leg cycling exercise (L) the carotid baroreflex (CBR) was classically reset in direct relation to the intensity of exercise. On the basis of these data, we proposed that the CBR would also be classically reset ...

  9. The effect of acute exercise on collagen turnover in human tendons

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Pingel, Jessica; Boesen, Mikael

    2013-01-01

    Mechanical loading of human tendon stimulates collagen synthesis, but the relationship between acute loading responses and training status of the tendon is not clear. We tested the effect of prolonged load deprivation on the acute loading-induced collagen turnover in human tendons, by applying...... the same absolute load to a relative untrained Achilles tendon (2-week immobilization period prior to acute loading) and a habitually loaded contra-lateral Achilles tendon, respectively, within the same individuals. Eight untrained, healthy males had one lower limb totally immobilized for 2 weeks, whereas...... the contra-lateral leg was used habitually. Following the procedure both Achilles tendons and calf muscles were loaded with the same absolute load during a 1-h treadmill run. Tissue collagen turnover was measured by microdialysis performed post-immobilization but pre-exercise around both Achilles tendons...

  10. Human Research Program Advanced Exercise Concepts (AEC) Overview

    Science.gov (United States)

    Perusek, Gail; Lewandowski, Beth; Nall, Marsha; Norsk, Peter; Linnehan, Rick; Baumann, David

    2015-01-01

    Exercise countermeasures provide benefits that are crucial for successful human spaceflight, to mitigate the spaceflight physiological deconditioning which occurs during exposure to microgravity. The NASA Human Research Program (HRP) within the Human Exploration and Operations Mission Directorate (HEOMD) is managing next generation Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation to Technology Readiness Level (TRL) 7 (ground prototyping and flight demonstration) for all exploration mission profiles from Multi Purpose Crew Vehicle (MPCV) Exploration Missions (up to 21 day duration) to Mars Transit (up to 1000 day duration) missions. These validated and optimized exercise countermeasures systems will be provided to the ISS Program and MPCV Program for subsequent flight development and operations. The International Space Station (ISS) currently has three major pieces of operational exercise countermeasures hardware: the Advanced Resistive Exercise Device (ARED), the second-generation (T2) treadmill, and the cycle ergometer with vibration isolation system (CEVIS). This suite of exercise countermeasures hardware serves as a benchmark and is a vast improvement over previous generations of countermeasures hardware, providing both aerobic and resistive exercise for the crew. However, vehicle and resource constraints for future exploration missions beyond low Earth orbit will require that the exercise countermeasures hardware mass, volume, and power be minimized, while preserving the current ISS capabilities or even enhancing these exercise capabilities directed at mission specific physiological functional performance and medical standards requirements. Further, mission-specific considerations such as preservation of sensorimotor function, autonomous and adaptable operation, integration with medical data systems, rehabilitation, and in-flight monitoring and feedback are being developed for integration with the exercise

  11. Effect of exercise-induced enhancement of the leg-extensor muscle-tendon unit capacities on ambulatory mechanics and knee osteoarthritis markers in the elderly.

    Science.gov (United States)

    Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter

    2014-01-01

    Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly following a

  12. Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    DEFF Research Database (Denmark)

    Harms, Mark P M; Wieling, Wouter; Colier, Willy N J M

    2010-01-01

    Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between......-matched controls during leg crossing. In the patients, leg crossing increased MAP from 58 (42-79) to 72 (52-89) compared with 84 (70-95) to 90 (74-94) mmHg in the controls. MCA Vmean increased from 55 (38-77) to 63 (45-80) and from 56 (46-77) to 64 (46-80) cm/s respectively (P....12 (0.52-3.27)] in the patients compared with the controls [0.83 (-0.11 to 2.04) micromol/l]. In the control subjects, CO increased 11% (P

  13. Sympathetic Vasoconstrictor Responsiveness of the Leg Vasculature During Experimental Endotoxemia and Hypoxia in Humans

    DEFF Research Database (Denmark)

    Brassard, Patrice; Zaar, Morten; Thaning, Pia

    2016-01-01

    OBJECTIVE: Sympathetic vasoconstriction regulates peripheral circulation and controls blood pressure, but sepsis is associated with hypotension. We evaluated whether apparent loss of sympathetic vasoconstrictor responsiveness relates to distended smooth muscles or to endotoxemia and/or hypoxia...... was calculated during 1) adenosine infusion (vasodilator control), 2) hypoxia (FIO2 = 10%), 3) endotoxemia, and 4) endotoxemia + hypoxia. Leg sympathetic vasoconstrictor responsiveness (reduction in leg vascular conductance) was evaluated by femoral artery tyramine infusion. MEASUREMENTS AND MAIN RESULTS...

  14. The effects of squat exercises in postures for toilet use on blood flow velocity of the leg vein.

    Science.gov (United States)

    Eom, Jun Ho; Chung, Sin Ho; Shim, Jae Hun

    2014-09-01

    [Purpose] The purpose of this study was to identify the effects of squat exercises performed in toilet-using postures on the blood flow velocity of the lower extremities for the prevention of deep vein thrombosis. [Subjects] The subjects were 28 students who were attending B University in Cheonan. They were divided into a group of 14 subjects of sitting toilet users and a group of 14 subjects of squat toilet users. [Methods] The subjects performed squat exercises in different toilet-using postures and we investigated the changes in blood flow velocity. [Results] The variations in blood flow velocities before and after the exercises showed significant differences in both groups but the differences between the two groups were not significant. [Conclusion] Based on the results of this study, we consider squat exercises are effective at improving the variation in lower-extremity blood flow velocity when using a toilet.

  15. Biomechanics of Counterweighted One-Legged Cycling.

    Science.gov (United States)

    Elmer, Steven J; McDaniel, John; Martin, James C

    2016-02-01

    One-legged cycling has served as a valuable research tool and as a training and rehabilitation modality. Biomechanics of one-legged cycling are unnatural because the individual must actively lift the leg during flexion, which can be difficult to coordinate and cause premature fatigue. We compared ankle, knee, and hip biomechanics between two-legged, one-legged, and counterweighted (11.64 kg) one-legged cycling. Ten cyclists performed two-legged (240 W), one-legged (120 W), and counterweighted one-legged (120 W) cycling (80 rpm). Pedal forces and limb kinematics were recorded to determine work during extension and flexion. During counterweighted one-legged cycling relative ankle dorsiflexion, knee flexion, and hip flexion work were less than one-legged but greater than two-legged cycling (all P cycling were greater than one-legged but less than two-legged cycling (all P cycling reduced but did not eliminate differences in joint flexion and extension actions between one- and two-legged cycling. Even with these differences, counterweighted one-legged cycling seemed to have advantages over one-legged cycling. These results, along with previous work highlighting physiological characteristics and training adaptations to counterweighted one-legged cycling, demonstrate that this exercise is a viable alternative to one-legged cycling.

  16. A Systematic Review and Meta-analysis Comparing Cardiopulmonary Exercise Test Values Obtained From the Arm Cycle and the Leg Cycle Respectively in Healthy Adults

    DEFF Research Database (Denmark)

    Larsen, Rasmus Tolstrup; Christensen, Jan; Tang, Lars Hermann

    2016-01-01

    INTRODUCTION: The cardiopulmonary exercise test (CPET) assesses maximal oxygen uptake (VO2max) and is commonly performed on a leg cycle ergometer (LC). However, some individuals would rather perform the CPET on an arm cycle ergometer (AC). OBJECTIVE: The objectives of this study were to undertake...... a systematic review and meta-analysis of the difference in VO2max achieved by AC compared to LC in healthy adults and to explore factors that may be predictive of this difference. METHODS: MEDLINE, EMBASE, CINAHL, and PEDro were searched in April 2015. The differences in VO2max (ACLCdiff) were pooled across...... studies using random effects meta-analysis and three different methods were used to estimate the ratio between the values obtained from the tests (ACLCratio). RESULTS: This paper included 41 studies with a total of 581 participants. The mean ACLCdiff across studies was 12.5 ml/kg/min and 0.89 l...

  17. Neurohumoral responses during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Nielsen, Bodil; Blomstrand, Eva

    2003-01-01

    , and the metabolic precursor of serotonin, tryptophan, were evaluated in eight endurance-trained subjects during exercise randomized to be with or without hyperthermia. The core temperature stabilized at 37.9 +/- 0.1 degrees C (mean +/- SE) in the control trial, whereas it increased to 39.7 +/- 0.2 degrees C......This study examined neurohumoral alterations during prolonged exercise with and without hyperthermia. The cerebral oxygen-to-carbohydrate uptake ratio (O2/CHO = arteriovenous oxygen difference divided by arteriovenous glucose difference plus one-half lactate), the cerebral balances of dopamine...... in the hyperthermic trial, with a concomitant increase in perceived exertion (P exercise trials. Both the arterial and jugular venous dopamine levels...

  18. Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans

    DEFF Research Database (Denmark)

    Vægter, Henrik Bjarke; Handberg, Gitte; Graven-Nielsen, Thomas

    2014-01-01

    -65 years participated in this randomized repeated-measures crossover trial with data collection on two different days. CPM was assessed by two different cold pressor tests (hand,foot). EIH was assessed through two intensities of aerobic bicycling exercises and two intensities of isometric muscle...... contraction exercises (arm,leg). Pressure pain thresholds (PPTs) were recorded before, during, after, and 15 min after conditioning/exercise, at sites local and remote to the extremity used for cold pressor stimulation and exercise. PPTs increased at local as well as remote sites during both cold pressor...... compared with non-exercising body parts for all exercise conditions. High intensity exercise produced larger EIH response compared with low intensity exercise. The change in PPTs during cold pressor test and the change in PPTs after exercises were not correlated. The CPM response was not dominated by local...

  19. Impact of inactivity and exercise on the vasculature in humans.

    Science.gov (United States)

    Thijssen, Dick H J; Maiorana, Andrew J; O'Driscoll, Gerry; Cable, Nigel T; Hopman, Maria T E; Green, Daniel J

    2010-03-01

    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct "vascular deconditioning and conditioning" effects which likely modify cardiovascular risk.

  20. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...... in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise...... may represent a mechanism whereby contracting muscle fibres are protected against cellular stress and injury....

  1. Maximal heart rate does not limit cardiovascular capacity in healthy humans: insight from right atrial pacing during maximal exercise.

    Science.gov (United States)

    Munch, G D W; Svendsen, J H; Damsgaard, R; Secher, N H; González-Alonso, J; Mortensen, S P

    2014-01-15

    In humans, maximal aerobic power (VO2 max ) is associated with a plateau in cardiac output (Q), but the mechanisms regulating the interplay between maximal heart rate (HRmax) and stroke volume (SV) are unclear. To evaluate the effect of tachycardia and elevations in HRmax on cardiovascular function and capacity during maximal exercise in healthy humans, 12 young male cyclists performed incremental cycling and one-legged knee-extensor exercise (KEE) to exhaustion with and without right atrial pacing to increase HR. During control cycling, Q and leg blood flow increased up to 85% of maximal workload (WLmax) and remained unchanged until exhaustion. SV initially increased, plateaued and then decreased before exhaustion (P rate pressure product and RAP (P heart can be paced to a higher HR than observed during maximal exercise, suggesting that HRmax and myocardial work capacity do not limit VO2 max in healthy individuals. A limited left ventricular filling and possibly altered contractility reduce SV during atrial pacing, whereas a plateau in LVFP appears to restrict Q close to VO2 max .

  2. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance

    LENUS (Irish Health Repository)

    McCreesh, Karen

    2011-09-13

    Abstract Background Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans. Methods Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme. Results Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans. Conclusions A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section.

  3. Putative benefits of microalgal astaxanthin on exercise and human health

    Directory of Open Access Journals (Sweden)

    Marcelo P. Barros

    2011-04-01

    Full Text Available Astaxanthin (ASTA is a pinkish-orange carotenoid produced by microalgae, but also commonly found in shrimp, lobster and salmon, which accumulate ASTA from the aquatic food chain. Numerous studies have addressed the benefits of ASTA for human health, including the inhibition of LDL oxidation, UV-photoprotection and prophylaxis of bacterial stomach ulcers. ASTA is recognized as a powerful scavenger of reactive oxygen species (ROS, especially those involved in lipid peroxidation. Both aerobic and anaerobic exercise are closely related to overproduction of ROS in muscle tissue. Post-exercise inflammatory processes can even exacerbate the oxidative stress imposed by exercise. Thus, ASTA is suggested here as a putative nutritional alternative/coadjutant for antioxidant therapy to afford additional protection to muscle tissues against oxidative damage induced by exercise, as well as for an (overall integrative redox re-balance and general human health.

  4. Quantification of Human Movement for Assessment in Automated Exercise Coaching

    CERN Document Server

    Hagler, Stuart; Bajczy, Ruzena; Pavel, Misha

    2016-01-01

    Quantification of human movement is a challenge in many areas, ranging from physical therapy to robotics. We quantify of human movement for the purpose of providing automated exercise coaching in the home. We developed a model-based assessment and inference process that combines biomechanical constraints with movement assessment based on the Microsoft Kinect camera. To illustrate the approach, we quantify the performance of a simple squatting exercise using two model-based metrics that are related to strength and endurance, and provide an estimate of the strength and energy-expenditure of each exercise session. We look at data for 5 subjects, and show that for some subjects the metrics indicate a trend consistent with improved exercise performance.

  5. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  6. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans

    DEFF Research Database (Denmark)

    Mortensen, S.P.; Damsgaard, R.; Dawson, E.A.

    2008-01-01

    there is an extreme metabolic stimulus to vasodilate during supramaximal exercise remains unknown. To examine the regulatory limits of systemic and muscle perfusion in exercising humans, we measured systemic and leg haemodynamics, O(2) transport, and , and estimated non-locomotor tissue perfusion during constant load...... is restricted during maximal and supramaximal whole-body exercise in association with a plateau in Q and limb vascular conductance. These observations suggest that limits of cardiac function and muscle vasoconstriction underlie the inability of the circulatory system to meet the increasing metabolic demand......Perfusion to exercising skeletal muscle is regulated to match O(2) delivery to the O(2) demand, but this regulation might be compromised during or approaching maximal whole-body exercise as muscle blood flow for a given work rate is blunted. Whether muscle perfusion is restricted when...

  7. Activation of the insular cortex during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Williamson, James; Nobrega, A C; McColl, R

    1997-01-01

    1. The insular cortex has been implicated as a region of cortical cardiovascular control, yet its role during exercise remains undefined. The purpose of the present investigation was to determine whether the insular cortex was activated during volitional dynamic exercise and to evaluate further its...... alone. 5. These findings provide the first evidence of insular activation during dynamic exercise in humans, suggesting that the left insular cortex may serve as a site for cortical regulation of cardiac autonomic (parasympathetic) activity. Additionally, findings during passive cycling with electrical...

  8. Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans

    DEFF Research Database (Denmark)

    Langberg, Henning; Skovgaard, D; Karamouzis, M

    1999-01-01

    of glycerol, glucose, lactate, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) as well as to calculate tissue substrate balance in the peritendinous region of the human Achilles tendon. Recovery of 48-62 % (range) at rest and 70-77 % during exercise were obtained for glycerol, glucose and PGE2. 3. Six young...... healthy humans were studied at rest, during 30 min of intermittent static plantar flexion of the ankle at a workload corresponding to individual body weight, and during 60 min of recovery. Microdialysis was performed in both legs with simultaneous determination of blood flow by 133Xe washout in the same...... significant for TXB2(P static contractions, this indicates also that the output of these substances from the tissue increased during exercise. 5. This study indicates that both lipid and carbohydrate metabolism as well...

  9. Roles of sedentary aging and lifelong physical activity on exchange of glutathione across exercising human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Cabo, Helena

    2014-01-01

    system. Aging is associated with accumulation of oxidative damage to lipids, DNA and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across...... the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) form of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included...

  10. What do patients value about spinal manipulation and home exercise for back-related leg pain? A qualitative study within a controlled clinical trial.

    Science.gov (United States)

    Maiers, Michele; Hondras, Maria A; Salsbury, Stacie A; Bronfort, Gert; Evans, Roni

    2016-12-01

    Patient perceptions may influence the effectiveness and utilization of healthcare interventions, particularly for complex health conditions such as sciatica or back-related leg pain (BRLP). To explore BRLP patients' perceptions of spinal manipulative therapy (SMT) and home exercise with advice (HEA). Qualitative study in a controlled clinical trial. Semi-structured interviews conducted after 12 weeks of treatment asked participants about satisfaction with care and whether treatment was worthwhile. An interdisciplinary research team conducted content analysis using qualitative data analysis software to identify and summarize themes. Of 192 trial participants, 174 (91%) completed interviews (66% female, age 57.0 ± 11.5 years). Participants identified interactions with providers and staff, perceived treatment effects, and information as key contributors to both their satisfaction and the worthwhile nature of treatment. HEA was liked for its convenience and ability to foster an exercise habit. SMT was liked for specific aspects of the modality (e.g. manipulation, stretching) and provider competency. Most participants reported no dislikes for SMT or HEA, but some noted the dose/time commitment for SMT and discipline of HEA as least liked aspects of the interventions. The quality of patient-provider interactions, perceived treatment effects, and information sharing influenced BRLP patients' satisfaction with care. Qualitative research describing patients' preferences can facilitate translation of study findings into practice and allow clinicians to tailor treatments to facilitate compliance and satisfaction with care. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Exercise and Human Immunodeficiency Virus (HIV-1) Infection

    Science.gov (United States)

    Lawless, DeSales; Jackson, Catherine G. R.; Greenleaf, John E.

    1995-01-01

    The human immune system is highly efficient and remarkably protective when functioning properly. Similar to other physiological systems, it functions best when the body is maintained with a balanced diet, sufficient rest and a moderately stress-free lifestyle. It can be disrupted by inappropriate drug use and extreme emotion or exertion. The functioning of normal or compromised immune systems can be enhanced by properly prescribed moderate exercise conditioning regimens in healthy people, and in some human immunodeficiency virus (HIV-1)-infected patients but not in others who unable to complete an interval training program. Regular exercise conditioning in healthy people reduces cardiovascular risk factors, increases stamina, facilitates bodyweight control, and reduces stress by engendering positive feelings of well-being. Certain types of cancer may also be suppressed by appropriate exercise conditioning. Various exercise regimens are being evaluated as adjunct treatments for medicated patients with the HIV-1 syndrome. Limited anecdotal evidence from patients suggests that moderate exercise conditioning is per se responsible for their survival well beyond expectancy. HIV-1-infected patients respond positively, both physiologically and psychologically, to moderate exercise conditioning. However, the effectiveness of any exercise treatment programme depends on its mode, frequency, intensity and duration when prescribed o complement the pathological condition of the patient. The effectiveness of exercise conditioning regimens in patients with HIV-1 infection is reviewed in this article. In addition, we discuss mechanisms and pathways, involving the interplay of psychological and physiological factors, through which the suppressed immune system can be enhanced. The immune modulators discussed are endogenous opioids, cytokines, neurotransmitters and other hormones. Exercise conditioning treatment appears to be more effective when combined with other stress management

  12. Arterial bypass leg - slideshow

    Science.gov (United States)

    ... presentations/100155.htm Arterial bypass leg - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  13. Exercise

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Eivind Per

    2016-01-01

    We recently demonstrated that voluntary exercise leads to an influx of immune cells in tumors and a greater than 60% reduction in tumor incidence and growth across several mouse models. Improved immunological control of tumor progression may have important clinical implications in the prevention...... and treatment of cancer in humans....

  14. a-Adrenergic vasoconstrictor responsiveness is preserved in the heated human leg

    DEFF Research Database (Denmark)

    Keller, David M; Sander, Mikael; Stallknecht, Bente Merete

    2010-01-01

    This study tested the hypothesis that passive leg heating attenuates a-adrenergic vasoconstriction within that limb. Femoral blood flow (FBF, femoral artery ultrasound Doppler) and femoral vascular conductance (FVC, FBF/mean arterial blood pressure), as well as calf muscle blood flow (CalfBF, ¹³³...

  15. Shear stress mediates endothelial adaptations to exercise training in humans.

    Science.gov (United States)

    Tinken, Toni M; Thijssen, Dick H J; Hopkins, Nicola; Dawson, Ellen A; Cable, N Timothy; Green, Daniel J

    2010-02-01

    Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period of bilateral handgrip training. Shear stress responses were attenuated in one arm by cuff inflation to 60 mm Hg. Similar increases were observed in grip strength and forearm volume and girth in both limbs. Acute bouts of handgrip exercise increased shear rate (P<0.005) and flow-mediated dilation percentage (P<0.05) in the uncuffed limb, whereas no changes were evident in the cuffed arm. Handgrip training increased flow-mediated dilation percentage in the noncuffed limb at weeks 2, 4, and 6 (P<0.001), whereas no changes were observed in the cuffed arm. Brachial artery peak reactive hyperemia, an index of resistance artery remodeling, progressively increased with training in the noncuffed limb (P<0.001 and 0.004); no changes were evident in the cuffed arm. Neither acute nor chronic shear manipulation during exercise influenced endothelium-independent glyceryl trinitrate responses. These results demonstrate that exercise-induced changes in shear provide the principal physiological stimulus to adaptation in flow-mediated endothelial function and vascular remodeling in response to exercise training in healthy humans.

  16. Handgrip and general muscular strength and endurance during prolonged bedrest with isometric and isotonic leg exercise training

    Science.gov (United States)

    Greenleaf, J. E.; Starr, J. C.; Van Beaumont, W.; Convertino, V. A.

    1983-01-01

    Measurements of maximal grip strength and endurance at 40 percent max strength were obtained for 7 men 19-21 years of age, 1-2 days before and on the first recovery day during three 2-week bedrest (BR) periods, each separated by a 3-week ambulatory recovery period. The subjects performed isometric exercise (IME) for 1 hr/day, isotonic exercise (ITE) for 1 hr/day, and no exercise (NOE) in the three BR periods. It was found that the mean maximal grip strength was unchanged after all three BR periods. Mean grip endurance was found to be unchanged after IME and ITE training, but was significantly reduced after NOE. These results indicate that IME and ITE training during BR do not increase or decrease maximal grip strength, alghough they prevent loss of grip endurance, while the maximal strength of all other major muscle groups decreases in proportion to the length of BR to 70 days. The maximal strength reduction of the large muscle groups was found to be about twice that of the small muscle groups during BR. In addition, it is shown that changes in maximal strength after spaceflight, BR, or water immersion deconditioning cannot be predicted from changes in submaximal or maximal oxygen uptake values.

  17. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...

  18. Prevention: Exercise

    Medline Plus

    Full Text Available ... slow full movements. Repeat 10-15 times, to fatigue... Abdominal Exercise Lay on your back with both knees bent. ... Return leg and extend other leg. Repeat to fatigue, about 10-15 repetitions at a slow ... training is exercise done against something providing resistance. It can be ...

  19. Neurodynamic mobilization in a collegiate long jumper with exercise-induced lateral leg and ankle pain: A case report.

    Science.gov (United States)

    Cox, Terry; Sneed, Tom; Hamann, Herb

    2017-09-22

    Case Report. The purpose of this case report is to describe nerve mobilization in the treatment of lower extremity neuropathic pain in a female collegiate long jumper. A 21 year-old long jumper presented 7 months after onset of ankle and leg pain. She complained of "aching" pain over the lateral ankle, radiating proximally to just superior to the lateral knee. Neurodynamic testing of the sural and superficial branch of the fibular nerves was positive. Interventions/Outcomes: Persistent neuropathic pain which impeded sport participation in a collegiate athlete did not improve using traditional rehabilitation intervention, but did ameliorate as a result of an intervention which included self-administered, supervised nerve mobilization of the sural and superficial branch of fibular nerve. The patient improved in all outcome measures including the Lower Extremity Functional Scale (LEFS), Numerical Pain Rating Scale (NPRS), and the Global Rating of Change (GROC). In a female collegiate athlete with persistent neuropathic pain, initial improvements were achieved with traditional rehabilitation, but her pain continued. Considerable additional improvements were achieved following the addition of self-administered, supervised nerve mobilization. Neurodynamic testing should be performed on patients with possible peripheral nerve involvement and treatment commenced if positive.

  20. Immersion of distal arms and legs in warm water (AVA rewarming) effectively rewarms mildly hypothermic humans.

    Science.gov (United States)

    Vanggaard, L; Eyolfson, D; Xu, X; Weseen, G; Giesbrecht, G G

    1999-11-01

    Active rewarming of hypothermic victims for field use, and where transport to medical facilities is impossible, might be the only way to restore deep body temperature. In active rewarming in warm water, there has been a controversy concerning whether arms and legs should be immersed in the water or left out. Further, it has been suggested in the Royal Danish Navy treatment regime, that immersion of hands, forearms, feet, and lower legs alone might accomplish rapid rates of rewarming (AVA rewarming). On three occasions, six subjects (one female) were cooled in 8 degrees C water, to an esophageal temperature of 34.3+/-0.8 (+/-SD) degrees C. After cooling the subjects were warmed by shivering heat production alone, or by immersing the distal extremities (hands, forearms, feet and lower legs) in either 42 degrees C or 45 degrees C water. The post cooling afterdrop in esophageal temperature was decreased by both 42 degrees C and 45 degrees C water immersion (0.4+/-0.2 degrees C) compared with the shivering alone procedure (0.6+/-0.4 degrees C; p rise in deep body temperature shortened the period of shivering. During the extremity rewarming procedures the rectal temperature lagged considerably behind the esophageal and aural canal (via indwelling thermocouple) temperatures. Thus large gradients may still exist between body compartments even though the heart is warmed.

  1. Dermatomal Organization of SI Leg Representation in Humans: Revising the Somatosensory Homunculus.

    Science.gov (United States)

    Dietrich, Caroline; Blume, Kathrin R; Franz, Marcel; Huonker, Ralph; Carl, Maria; Preißler, Sandra; Hofmann, Gunther O; Miltner, Wolfgang H R; Weiss, Thomas

    2017-09-01

    Penfield and Rasmussen's homunculus is the valid map of the neural body representation of nearly each textbook of biology, physiology, and neuroscience. The somatosensory homunculus places the foot representation on the mesial surface of the postcentral gyrus followed by the representations of the lower leg and the thigh in superio-lateral direction. However, this strong homuncular organization contradicts the "dermatomal" organization of spinal nerves. We used somatosensory-evoked magnetic fields and source analysis to study the leg's neural representation in the primary somatosensory cortex (SI). We show that the representation of the back of the thigh is located inferior to the foot's representation in SI whereas the front of the thigh is located laterally to the foot's representation. This observation indicates that the localization of the leg in SI rather follows the dermatomal organization of spinal nerves than the typical map of neighboring body parts as depicted in Penfield and Rasmussen's illustration of the somatosensory homunculus. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Cardiovascular adaptations supporting human exercise-heat acclimation.

    Science.gov (United States)

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Peripheral vasodilatation determines cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Bada, A A; Svendsen, J H; Secher, N H

    2012-01-01

    In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral...

  4. Muscle ion transporters and antioxidative proteins have different adaptive potential in arm than in leg skeletal muscle with exercise training

    DEFF Research Database (Denmark)

    Mohr, Magni; Nielsen, Tobias Schmidt; Weihe, Pál

    2017-01-01

    premenopausal women aged 45 ± 6 years (mean ± SD) were randomized into a high-intensity intermittent swimming group (HIS, n = 21), a moderate-intensity swimming group (MOS, n = 21), a soccer group (SOC, n = 21), or a control group (CON, n = 20). Intervention groups completed three weekly training sessions......It was evaluated whether upper-body compared to lower-body musculature exhibits a different phenotype in relation to capacity for handling reactive oxygen species (ROS), H(+), La(-), Na(+), K(+) and also whether it differs in adaptive potential to exercise training. Eighty-three sedentary...... for 15 weeks, and pre- and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na(+)/K(+) pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P

  5. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP.

    Science.gov (United States)

    Dufour, Stéphane P; Patel, Rakesh P; Brandon, Angela; Teng, Xinjun; Pearson, James; Barker, Horace; Ali, Leena; Yuen, Ada H Y; Smolenski, Ryszard T; González-Alonso, José

    2010-12-01

    The erythrocyte is proposed to play a key role in the control of local tissue perfusion via three O(2)-dependent signaling mechanisms: 1) reduction of circulating nitrite to vasoactive NO, 2) S-nitrosohemoglobin (SNO-Hb)-dependent vasodilatation, and 3) release of the vasodilator and sympatholytic ATP; however, their relative roles in vivo remain unclear. Here we evaluated each mechanism to gain insight into their roles in the regulation of human skeletal muscle blood flow during hypoxia and hyperoxia at rest and during exercise. Arterial and femoral venous hemoglobin O(2) saturation (O(2)Hb), plasma and erythrocyte NO and ATP metabolites, and leg and systemic hemodynamics were measured in 10 healthy males exposed to graded hypoxia, normoxia, and graded hyperoxia both at rest and during submaximal one-legged knee-extensor exercise. At rest, leg blood flow and NO and ATP metabolites in plasma and erythrocytes remained unchanged despite large alterations in O(2)Hb. During exercise, however, leg and systemic perfusion and vascular conductance increased in direct proportion to decreases in arterial and venous O(2)Hb (r(2) = 0.86-0.98; P = 0.01), decreases in venous plasma nitrite (r(2) = 0.93; P < 0.01), increases in venous erythrocyte nitroso species (r(2) = 0.74; P < 0.05), and to a lesser extent increases in erythrocyte SNO (r(2) = 0.59; P = 0.07). No relationship was observed with plasma ATP (r(2) = 0.01; P = 0.99) or its degradation compounds. These in vivo data indicate that, during low-intensity exercise and hypoxic stress, but not hypoxic stress alone, plasma nitrite consumption and formation of erythrocyte nitroso species are associated with limb vasodilatation and increased blood flow in the human skeletal muscle vasculature.

  6. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP

    Science.gov (United States)

    Patel, Rakesh P.; Brandon, Angela; Teng, Xinjun; Pearson, James; Barker, Horace; Ali, Leena; Yuen, Ada H. Y.; Smolenski, Ryszard T.; González-Alonso, José

    2010-01-01

    The erythrocyte is proposed to play a key role in the control of local tissue perfusion via three O2-dependent signaling mechanisms: 1) reduction of circulating nitrite to vasoactive NO, 2) S-nitrosohemoglobin (SNO-Hb)-dependent vasodilatation, and 3) release of the vasodilator and sympatholytic ATP; however, their relative roles in vivo remain unclear. Here we evaluated each mechanism to gain insight into their roles in the regulation of human skeletal muscle blood flow during hypoxia and hyperoxia at rest and during exercise. Arterial and femoral venous hemoglobin O2 saturation (O2Hb), plasma and erythrocyte NO and ATP metabolites, and leg and systemic hemodynamics were measured in 10 healthy males exposed to graded hypoxia, normoxia, and graded hyperoxia both at rest and during submaximal one-legged knee-extensor exercise. At rest, leg blood flow and NO and ATP metabolites in plasma and erythrocytes remained unchanged despite large alterations in O2Hb. During exercise, however, leg and systemic perfusion and vascular conductance increased in direct proportion to decreases in arterial and venous O2Hb (r2 = 0.86–0.98; P = 0.01), decreases in venous plasma nitrite (r2 = 0.93; P erythrocyte nitroso species (r2 = 0.74; P erythrocyte SNO (r2 = 0.59; P = 0.07). No relationship was observed with plasma ATP (r2 = 0.01; P = 0.99) or its degradation compounds. These in vivo data indicate that, during low-intensity exercise and hypoxic stress, but not hypoxic stress alone, plasma nitrite consumption and formation of erythrocyte nitroso species are associated with limb vasodilatation and increased blood flow in the human skeletal muscle vasculature. PMID:20852046

  7. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference...

  8. Life-long endurance exercise in humans

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Couppé, C; Karlsen, A

    2013-01-01

    Human aging is associated with a loss of skeletal muscle and an increase in circulating inflammatory markers. It is unknown whether endurance training (Tr) can prevent these changes. Therefore we studied 15 old trained (O-Tr) healthy males and, for comparison, 12 old untrained (O-Un), 10 Young-Tr...

  9. Effect of spaceflight on the subcutaneous venoarteriolar reflex in the human lower leg

    DEFF Research Database (Denmark)

    Gabrielsen, Anders; Norsk, Peter

    2007-01-01

    by gravity, we tested the hypothesis that long-term weightlessness would attenuate it. The reduction in subcutaneous blood flow was measured by the (133)Xe washout technique just proximal to the ankle joint in dependent lower legs of eight supine astronauts, where the knee joint was passively bent by 90...... difference between the two reductions (P = 0.062). Therefore, our results show that the venoarteriolar reflex is not attenuated by weightlessness and therefore does not need the everyday stimulus of gravity to maintain efficiency....

  10. Comparative anatomical study of the leg's nerves of Cebus (barbed capuchins with baboons, chimpanzees and modern humans

    Directory of Open Access Journals (Sweden)

    Tainá de Abreu

    2012-12-01

    Full Text Available The anatomical comparative studies among the primates are important for the investigation of ethology, evolution, taxonomy, and comprehension of tools by hominoids. Especially the anatomical knowledge of Cebus contributes to conservation of the species, and to development of surgical procedures and clinical treatments of these animals, as they frequently are victims of automobile accidents. Recent anatomical studies came to a wrong conclusion regarding behavioral traits of Cebus, ascribed to few data available in previous literature. Therefore, to provide anatomical data and to support the other sciences related to anatomy, and to develop surgical and/or clinical procedures, we described the nerves of the legs of Cebus foccusing on their position and trajectory, as wll as innerved muscles, and compared these results with those of humans and other primates. Eight adult capuchin specimens were used for this study. The anatomical comparative study of the leg's nerves of Cebus demonstrated that, in general, structural organization of the nerves is similar among the four primates analyzed here (Cebus, chimpanzees, baboons and humans, which might be attributed to the fact that the all four primates have similar body structures. However, nerve trajectory and muscles innervation in Cebus was more similar to baboons.

  11. Human mRNA response to exercise and temperature.

    Science.gov (United States)

    Slivka, D R; Dumke, C L; Tucker, T J; Cuddy, J S; Ruby, B

    2012-02-01

    The purpose of this research was to determine the mRNA response to exercise in different environmental temperatures. 9 recreationally active males (27±1 years, 77.4±2.7  kg, 13.5±1.5% fat, 4.49±0.15  L · min (-1) VO2 max) completed 3 trials consisting of 1 h cycling exercise at 60% Wmax followed by a 3 h recovery in the cold (7°C), room temperature (20°C), and hot (33°C) environments. Muscle biopsies were obtained pre, post, and 3 h post exercise for the analysis of glycogen and mRNA. Expired gases were collected to calculate substrate use. PGC-1α increased to a greater degree in the cold trial than in the room temperature trial (p=0.036) and the hot trial (p=0.006). PGC1-α mRNA was also higher after the room temperature trial than the hot trial (p=0.050). UCP3 and MFN2 mRNA increased with exercise (pcold than exercise in the heat. However, VO2 was higher during recovery in the cold trial than in the room temperature and hot trials (p<0.05). This study presents evidence of PGC-1α temperature sensitivity in human skeletal muscle. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Localised cutaneous microvascular adaptation to exercise training in humans.

    Science.gov (United States)

    Atkinson, Ceri L; Carter, Howard H; Thijssen, Dick H J; Birk, Gurpreet K; Cable, N Timothy; Low, David A; Kerstens, Floortje; Meeuwis, Iris; Dawson, Ellen A; Green, Daniel J

    2018-02-07

    Exercise training induces adaptation in conduit and resistance arteries in humans, partly as a consequence of repeated elevation in blood flow and shear stress. The stimuli associated with intrinsic cutaneous microvascular adaptation to exercise training have been less comprehensively studied. We studied 14 subjects who completed 8-weeks cycle ergometer training, with partial cuff inflation on one forearm to unilaterally attenuate cutaneous blood flow responses during each exercise-training bout. Before and after training, bilateral forearm skin microvascular dilation was determined using cutaneous vascular conductance (CVC: skin flux/blood pressure) responses to gradual localised heater disk stimulation performed at rest (33, 40, 42 and 44 °C). Cycle exercise induced significant increases in forearm cutaneous flux and temperature, which were attenuated in the cuffed arm (2-way ANOVA interaction-effect; P < 0.01). We found that forearm CVC at 42 and 44 °C was significantly lower in the uncuffed arm following 8-weeks of cycle training (P < 0.01), whereas no changes were apparent in the contralateral cuffed arm (P = 0.77, interaction-effect P = 0.01). Lower limb exercise training in healthy young men leads to lower CVC-responses to a local heating stimulus, an adaptation mediated, at least partly, by a mechanism related to episodic increases in skin blood flow and/or skin temperature.

  13. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin......-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an approximately 20-fold increase (P ... blockade; 0.74 +/- 0.14 l/min, control), whereas splanchnic glucose production (at rest: 0.50 +/- 0.06, ACE blockade; 0.68 +/- 0.10 mmol/min, control) increased during moderate exercise (1.97 +/- 0.29, ACE blockade; 1.91 +/- 0.41 mmol/min, control). Refuting a major role of the RAS for these responses...

  14. Broken Leg

    Science.gov (United States)

    ... been weakened by a condition such as osteoporosis. Risk factors Stress fractures are often the result of repetitive ... the joint and poor bone alignment can cause osteoarthritis years later. If your leg starts to hurt ...

  15. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation During Head-up Tilt

    Directory of Open Access Journals (Sweden)

    Amirehsan Sarabadani Tafreshi

    2016-12-01

    Full Text Available Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE that can be enhanced with functional electrical stimulation (FES to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR, and systolic and diastolic blood pressures (sBP, dBP at different angles of verticalization in a healthy population. Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP and dBP were measured: (1 head-up tilt to 60° and 71° without PE; (2 PE at 20°, 40°, and 60° of head-up tilt; (3 PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4 PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. The models show that: (1 head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2 PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters. Neither adding (3 FES at constant intensity to PE nor (4 variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters.The effect of PE on the cardiovascular system during head-up tilt is strongly dependent on the verticalization

  16. Mesenteric, coeliac and splanchnic blood flow in humans during exercise

    DEFF Research Database (Denmark)

    Perko, M J; Nielsen, H B; Skak, C

    1998-01-01

    1. Exercise reduces splanchnic blood flow, but the mesenteric contribution to this response is uncertain. 2. In nineteen humans, superior mesenteric and coeliac artery flows were determined by duplex ultrasonography during fasting and postprandial submaximal cycling and compared with the splanchnic...... blood flow as assessed by the Indocyanine Green dye-elimination technique. 3. Cycling increased arterial pressure, heart rate and cardiac output, while it reduced total vascular resistance. These responses were not altered in the postprandial state. During fasting, cycling increased mesenteric, coeliac...... decreased by 51 and 31 % (0.49 +/- 0.07 and 0.96 +/- 0.28 l min-1). Splanchnic blood flow values assessed by duplex ultrasound and by dye-elimination techniques were correlated (r = 0.70; P exercise in humans, splanchnic resistance increases and blood flow is reduced following...

  17. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    Science.gov (United States)

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  18. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Gollnick, PD; Graham, T

    1990-01-01

    1. Eight subjects performed one-legged, dynamic, knee-extensor exercise, first at 10 W followed by 10 min rest, then at an intense, exhaustive exercise load (65 W) lasting 3.2 min. After 60 min recovery, exercise was performed for 8-10 min each at 20, 30, 40 and 50 W. Measurements of pulmonary...... before and immediately after the intense exercise, and at 3, 10 and 60 min into recovery. 2. Individual linear relations (r = 0.95-1.00) between the power outputs for submaximal exercise and oxygen uptakes (leg and pulmonary) were used to estimate the energy demand during intense exercise. Pulmonary......, respectively. 3. During the intense exercise, muscle [ATP] decreased by 30% and [CP] by 60% from resting concentrations of 6.2 and 22.4 mmol (kg wet wt)-1, respectively, and [IMP] increased to 1.1 mmol (kg wet wt)-1. Muscle [lactate] increased from 2 to 28.1 mmol (kg wet wt)-1, and the concomitant net lactate...

  19. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Keller, Charlotte; Steensberg, Adam

    2002-01-01

    Transcription of metabolic genes is transiently induced during recovery from exercise in skeletal muscle of humans. To determine whether pre-exercise muscle glycogen content influences the magnitude and/or duration of this adaptive response, six male subjects performed one-legged cycling exercise...... and UCP3 mRNA in response to exercise was also significantly higher in the low glycogen (11.4- and 3.5-fold, respectively) than in the control (5.0- and 1.7-fold, respectively) trial. These data indicate that low muscle glycogen content enhances the transcriptional activation of some metabolic genes...... to lower muscle glycogen content in one leg and then, the following day, completed 2.5 h low intensity two-legged cycling exercise. Nuclei and mRNA were isolated from biopsies obtained from the vastus lateralis muscle of the control and reduced glycogen (pre-exercise glycogen = 609 +/- 47 and 337 +/- 33...

  20. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function

    DEFF Research Database (Denmark)

    Gonzalez-Alonso, J.; Mortensen, S.P.; Jeppesen, Tina Dysgaard

    2008-01-01

    on cardiovascular function during exercise, we determined leg and systemic haemodynamic responses in healthy men during (1) incremental one-legged knee-extensor exercise, (2) step-wise femoral artery ATP infusion at rest, (3) passive exercise (n=10), (4)femoral vein or artery ATP infusion (n=6), and (5) cyclic...... oxygen delivery and (.)VO2 . Arterial ATP infusion resulted in similar increases in (.)Q , LBF, and systemic and leg oxygen delivery, but central venous pressure and muscle metabolism remained unchanged and MAP was reduced. In contrast,femoral vein ATP infusion did not alter LBF, (.)Q or MAP. Passive...... thigh compressions at rest and during passive and voluntary exercise (n=7). Incremental exercise resulted in progressive increases in leg blood flow (DeltaLBF 7.4 +/- 0.7 l min(-1)), cardiac output (Delta (.)Q 8.7 +/- 0.7 l min(-1)), mean arterial pressure (DeltaMAP 51 +/- 5 mmHg), and leg and systemic...

  1. Exercises

    Science.gov (United States)

    ... exercising. Count out loud as you do the exercises. View Chronic Obstructive Pulmonary Disease (COPD) Home Techniques to ... Intimacy Importance of Being Together Body Changes with Age Communicating with Your Partner Exercise and Sexual Activity Less Strenuous Positions for Sexual ...

  2. Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; Schjerling, Peter

    2014-01-01

    and interpret by individuals that are inexperienced with bioinformatics procedures. In a comparative study, we therefore; (1) investigated the human skeletal muscle transcriptome responses to differentiated exercise and non-exercise control intervention, and; (2) set out to develop a straightforward search tool......Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate...... direct comparison between essentially different modes of exercise and the ability to identify true exercise effect, necessitate implementation of independent non-exercise control subjects. Furthermore, muscle transcriptome data made available through previous exercise studies can be difficult to extract...

  3. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, R; Langberg, Henning; Green, Stefan Mathias

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise...... with a rise in leg vascular conductance and microvascular haemoglobin volume, despite elevated systemic vascular resistance. 4. The parallel rise in calf muscle and peritendinous blood flow and fall in O2 saturation during exercise indicate that blood flow is coupled to oxidative metabolism in both tissue...... by dye dilution, arterial pressure by an arterial catheter-transducer, and muscle and peritendinous O2 saturation by spatially resolved spectroscopy (SRS). 3. Calf blood flow rose 20-fold with exercise, reaching 44 +/- 7 ml (100 g)-1 min-1 (mean +/- s.e.m. ) at 9 W, while Achilles' peritendinous flow...

  4. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    DEFF Research Database (Denmark)

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid......, a subcutaneous abdominal vein and a femoral vein. Adipose tissue metabolism and skeletal muscle (leg) metabolism were measured using Fick's principle. The results show that the lipolytic rate in adipose tissue during exercise was the same in each experiment. Post-exercise, there was a very fast decrease...... adipose tissue during exercise is the same whether the relative workload is 40% or 60% of maximum. Post-exercise, there is a substantial lipid mobilization from adipose tissue and only a small fraction of this is taken up in the lower extremities. This leaves a substantial amount of NEFAs for either NEFA...

  5. The Effects of High Intensity Exercise on Overall Leg Strength of Non-Sickel-Cell-Trait and Sickle-Cell-Trait Individuals.

    Science.gov (United States)

    Williams, Hill, Jr.; Evans, Mel

    The purpose of this study was to determine if there was any significant difference in overall leg strength gains in individuals with sickle-cell-trait as compared to non-sickle-cell-trait individuals, as measured by the leg dynamometer. Twenty black male first-year college students were used in this study. The subjects were divided into a control…

  6. Pronounced effects of accute endurance exercise on gene expression in resting and exercising human skeletal muscle

    NARCIS (Netherlands)

    Catoire, M.; Mensink, M.R.; Boekschoten, M.V.; Hangelbroek, R.W.J.; Muller, M.R.; Schrauwen, P.; Kersten, A.H.

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated

  7. Similarities between exercise-induced hypoalgesia and conditioned pain modulation in humans.

    Science.gov (United States)

    Vaegter, Henrik Bjarke; Handberg, Gitte; Graven-Nielsen, Thomas

    2014-01-01

    Pain inhibitory mechanisms are often assessed by paradigms of exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM). In this study it was hypothesized that the spatial and temporal manifestations of EIH and CPM were comparable. The participants were 80 healthy subjects (40 females), between 18 and 65 years of age in this randomized, repeated-measures cross-over trial that involved data collection on 2 different days. CPM was assessed by 2 different cold pressor tests (hand and foot). EIH was assessed by 2 intensities of aerobic bicycling exercises and 2 intensities of isometric muscle contraction exercises (arm and leg). Pressure pain thresholds (PPTs) were recorded before, during, after, and 15 minutes after conditioning/exercise at sites local to and remote from the extremity used for cold pressor stimulation and exercise. PPTs increased at local as well as at remote sites during both cold pressor tests and after all of the exercise conditions except low-intensity bicycling. EIH after bicycling was higher in women than in men. CPM and the EIH responses after isometric exercises were comparable in men and women and were not affected by age. The EIH response was larger in the exercising body part compared with nonexercising body parts for all exercise conditions. High-intensity exercise produced greater EIH responses than did low-intensity exercise. The change in PPTs during cold pressor tests and the change in PPTs after exercises were not correlated. The CPM response was not dominated by local manifestations, and the effect was seen only during the stimulation, whereas exercise had larger local manifestations, and the effects were also found after exercise. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Gunnarsson, Thomas Gunnar Petursson; Hostrup, Morten

    2016-01-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs...... was matched): C - cycling at 171 ± 6 W for 60 min (control); A - cycling at 171 ± 6 W for 60 min, with addition of intermittent arm exercise (98 ± 4 W). DS - cycling at 171 ± 6 W interspersed by 30 sec sprints (513 ± 19 W) every 10 min (distributed sprints); and CS - cycling at 171 ± 6 W for 40 min followed...

  9. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    , and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P creatine kinase and myoglobin were all attenuated after the repeated...... not change at any specific time point post-exercise for either intervention. Our mRNA results suggest a regulation on the calpain-calpastatin expression response to muscle damaging eccentric exercise, but not concentric exercise. Although a repeated bout effect was demonstrated in terms of muscle function...

  10. Estimation of cerebral vascular tone during exercise; evaluation by critical closing pressure in humans

    DEFF Research Database (Denmark)

    Ogoh, Shigehiko; Brothers, R Matthew; Jeschke, Monica

    2010-01-01

    The aim of the present study was to calculate critical closing pressure (CCP) of the cerebral vasculature at rest and during exercise to estimate cerebral vascular tone. Five men and two women were seated upright for 15 min and then performed 15 min of right-legged knee extension exercise at 40, ......, P = 0.564) or adrenaline concentrations (right, P = 0.138; left, P = 0.108). We consider that an exercise-induced increase in cerebral vascular tone serves to protect the blood-brain barrier from the exercise-induced hypertension....... and the left MCA. In both arteries, the CCP increased (right MCA, +6.6 +/- 8.5 mmHg, P = 0.023; left MCA, +7.3 +/- 9.1 mmHg, P = 0.016) during 75% WL(max) without changes in resistance-area product, while femoral vascular resistance of the non-exercising leg decreased (from 0.32 +/- 0.07 to 0.18 +/- 0.05 mm......Hg min ml(1); P right and left MCA (P = 0.31). These findings suggest an increase in cerebral vascular tone in both the right and the left MCA from rest to exercise despite a decrease in vascular resistance of the systemic vasculature...

  11. Acute low-intensity cycling with blood-flow restriction has no effect on metabolic signaling in human skeletal muscle compared to traditional exercise.

    Science.gov (United States)

    Smiles, William J; Conceição, Miguel S; Telles, Guilherme D; Chacon-Mikahil, Mara P T; Cavaglieri, Cláudia R; Vechin, Felipe C; Libardi, Cleiton A; Hawley, John A; Camera, Donny M

    2017-02-01

    Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle. In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% VO2peak), or low-intensity cycling with BFR (15 min, 40% VO2peak). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout. END increased ULK1Ser757 phosphorylation above rest and BFR (~37 to 51%, P exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism (HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END (P < 0.001). A single bout of low-intensity cycling with BFR is insufficient to induce intracellular "stress" responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling.

  12. Cortical facilitation of cutaneous reflexes in leg muscles during human gait

    NARCIS (Netherlands)

    Pijnappels, M.; Van Wezel, B. M H; Colombo, Gery; Dietz, V.; Duysens, J.

    1998-01-01

    During human gait, cortical convergence on sural nerve reflex pathways was investigated by means of transcranial magnetic stimulation (TMS) of the cortex in five phases of the step cycle during human walking on a treadmill. Muscular responses to paired electrical and magnetic stimulation were

  13. Prevention: Exercise

    Medline Plus

    Full Text Available ... legs to touch the wall, keeping hips and knees bent. Use your hips to push your body ... Abdominal Exercise Lay on your back with both knees bent. Draw abdominal wall in. Maintaining abdominal wall ...

  14. What do patients value about spinal manipulation and home exercise for back-related leg pain? A qualitative study within a controlled clinical trial

    DEFF Research Database (Denmark)

    Maiers, M.; Hondras, M. A.; Salsbury, S. A.

    2016-01-01

    Background Patient perceptions may influence the effectiveness and utilization of healthcare interventions, particularly for complex health conditions such as sciatica or back-related leg pain (BRLP). Objectives To explore BRLP patients’ perceptions of spinal manipulative therapy (SMT) and home...

  15. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  16. Within-step modulation of leg muscles activity by afferent feedback in human walking

    DEFF Research Database (Denmark)

    Klint, Richard af; Nielsen, Jens Bo; Cole, Jonathan D.

    2008-01-01

    To maintain smooth and efficient gait the motor system must adjust for changes in the ground on a step-to-step basis. In the present study we investigated the role of sensory feedback as 19 able-bodied human subjects walked over a platform that mimicked an uneven supporting surface. Triceps surae...

  17. Startle stimuli exert opposite effects on human cortical and spinal motor system excitability in leg muscles

    DEFF Research Database (Denmark)

    Ilic, T V; Pötter-Nerger, M; Holler, I

    2011-01-01

    Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains...

  18. Glucocorticoids improve high-intensity exercise performance in humans

    DEFF Research Database (Denmark)

    Casuso, Rafael A; Melskens, Lars; Bruhn, Thomas

    2014-01-01

    It was investigated whether oral dexamethasone (DEX) administration improves exercise performance by reducing the initial rate of muscle fatigue development during dynamic exercise.......It was investigated whether oral dexamethasone (DEX) administration improves exercise performance by reducing the initial rate of muscle fatigue development during dynamic exercise....

  19. Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle

    DEFF Research Database (Denmark)

    Blomstrand, Eva; Krustrup, Peter; Søndergaard, Hans

    2011-01-01

    been shown to provide a quantitative measure of maximal oxidative metabolism, but it is not known whether the increase in this activity after a period of training reflects the elevation in peak oxygen consumption. Fourteen subjects performed one-legged knee extension exercise for 5-7 weeks, while...... the other leg remained untrained. Thereafter, the peak oxygen uptake by the quadriceps muscle was determined for both legs, and muscle biopsies were taken for assays of maximal enzyme activities (at 25°C). The peak oxygen uptake was 26% higher in the trained than in the untrained muscle (395 vs. 315 ml...

  20. Does a crouched leg posture enhance running stability and robustness?

    Science.gov (United States)

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height

  1. Expression of genes involved in fatty acid transport and insulin signaling is altered by physical inactivity and exercise training in human skeletal muscle.

    Science.gov (United States)

    Lammers, Gerwen; Poelkens, Fleur; van Duijnhoven, Noortje T L; Pardoel, Elisabeth M; Hoenderop, Joost G; Thijssen, Dick H J; Hopman, Maria T E

    2012-11-15

    Physical deconditioning is associated with the development of chronic diseases, including type 2 diabetes and cardiovascular disease. Exercise training effectively counteracts these developments, but the underlying mechanisms are largely unknown. To gain more insight into these mechanisms, muscular gene expression levels were assessed after physical deconditioning and after exercise training of the lower limbs in humans by use of gene expression microarrays. To exclude systemic effects, we used human models for local physical inactivity (3 wk of unilateral limb suspension) and for local exercise training (6 wk of functional electrical stimulation exercise of the extremely deconditioned legs of individuals with a spinal cord injury). The most interesting subset of genes, those downregulated after deconditioning as well as upregulated after exercise training, contained 18 genes related to both the "insulin action" and "adipocytokine signaling" pathway. Of these genes, the three with strongest up/downregulation were the muscular fatty acid-binding protein-3 (FABP3), the fatty acid oxidizing enzyme hydroxyacyl-CoA dehydrogenase (HADH), and the mitochondrial fatty acid transporter solute carrier 25 family member A20 (SLC25A20). The expression levels of these genes were confirmed using RT-qPCR. The results of the present study indicate an important role for a decreased transport and metabolism of fatty acids, which provides a link between physical activity levels and insulin signaling.

  2. Skeletal muscle glucose uptake during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Saltin, Bengt

    1988-01-01

    To study the role of muscle mass in glucoregulation, six subjects worked with the knee extensors of one leg on a specially constructed cycle ergometer. The knee extensors of one leg worked either alone or in combination with the knee extensors of the other leg and/or with the arms. Substrate usage...... was measured across both knee extensors by femoral arterial and venous catheterization and measurement of femoral venous blood flow. Glucose uptake by the working knee extensors was absolutely (by approximately 20%) or relatively decreased when arm cranking was added to knee extensions. The decrease in glucose...... uptake was not compensated for by increased uptake of free fatty acids but was accompanied by decreases in plasma insulin and increases in plasma epinephrine and norepinephrine. During work with large muscle masses, arterial lactate increased to approximately 6 mM, and net leg lactate release reverted...

  3. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Egelund, Jon; Mandrup Jensen, Camilla Maria

    2017-01-01

    the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (3.1 ± 0.5 [mean ± SEM] years after final menstrual period) women only separated by 4 (50 ± 0 versus 54 ± 1...... high intensity exercise training are more pronounced in recent post- compared to premenopausal women, possibly as an effect of enhanced ERRα signalling. Also, the hyperaemic response to acute exercise appears to be preserved in the early postmenopausal phase. This article is protected by copyright. All......Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women due to the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined...

  4. Re-evaluation of sarcolemma injury and muscle swelling in human skeletal muscles after eccentric exercise.

    Science.gov (United States)

    Yu, Ji-Guo; Liu, Jing-Xia; Carlsson, Lena; Thornell, Lars-Eric; Stål, Per S

    2013-01-01

    The results regarding the effects of unaccustomed eccentric exercise on muscle tissue are often conflicting and the aetiology of delayed onset muscle soreness (DOMS) induced by eccentric exercise is still unclear. This study aimed to re-evaluate the paradigm of muscular alterations with regard to muscle sarcolemma integrity and fibre swelling in human muscles after voluntary eccentric exercise leading to DOMS. Ten young males performed eccentric exercise by downstairs running. Biopsies from the soleus muscle were obtained from 6 non-exercising controls, 4 exercised subjects within 1 hour and 6 exercised subjects at 2-3 days and 7-8 days after the exercise. Muscle fibre sarcolemma integrity, infiltration of inflammatory cells and changes in fibre size and fibre phenotype composition as well as capillary supply were examined with specific antibodies using enzyme histochemistry and immunohistochemistry. Although all exercised subjects experienced DOMS which peaked between 1.5 to 2.5 days post exercise, no significant sarcolemma injury or inflammation was detected in any post exercise group. The results do not support the prevailing hypothesis that eccentric exercise causes an initial sarcolemma injury which leads to subsequent inflammation after eccentric exercise. The fibre size was 24% larger at 7-8 days than at 2-3 days post exercise (pmuscle is not directly associated with the symptom of DOMS.

  5. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller

    2014-01-01

    We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers......; TBC1D4: S588, S751), and that responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin stimulated leg, Akt phosphorylation on both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly......, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2β2γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2β2γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4...

  6. Molecular networks of human muscle adaptation to exercise and age.

    Directory of Open Access Journals (Sweden)

    Bethan E Phillips

    2013-03-01

    Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  7. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait

    DEFF Research Database (Denmark)

    Hvass Petersen, Tue; Kliim-Due, Mette; Farmer, Simon F.

    2010-01-01

    Corticospinal drive has been shown to contribute significantly to the control of walking in adult human subjects. It is unknown to what an extent functional change in this drive is important for maturation of gait in children. In adults, populations of motor units within a muscle show synchronized...... static ankle dorsiflexion. A significant correlation with age was also found in the 15-25 Hz frequency band (beta) during static foot dorsiflexion. Chi2 analysis of differences of coherence between different age groups of children (4-6, 7-9, 10-12, and 13-15 yrs of age) revealed a significant lower....... A significant age-related decrease in step-to-step variability of toe position during the swing phase of walking was observed. This reduction in the step-to-step variability of gait was correlated with increased gamma band coherence during walking. We argue that this may reflect an increased ability...

  8. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A suppressed during prolonged physical inactivity (sitting

    Directory of Open Access Journals (Sweden)

    Zderic Theodore W

    2012-10-01

    Full Text Available Abstract Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A, a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions

  9. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans.

    Science.gov (United States)

    Minassian, Karen; Hofstoetter, Ursula S

    2016-04-01

    Severe spinal cord injury is a devastating condition, tearing apart long white matter tracts and causing paralysis and disability of body functions below the lesion. But caudal to most injuries, the majority of neurons forming the distributed propriospinal system, the localized gray matter spinal interneuronal circuitry, and spinal motoneuron populations are spared. Epidural spinal cord stimulation can gain access to this neural circuitry. This review focuses on the capability of the human lumbar spinal cord to generate stereotyped motor output underlying standing and stepping, as well as full weight-bearing standing and rhythmic muscle activation during assisted treadmill stepping in paralyzed individuals in response to spinal cord stimulation. By enhancing the excitability state of the spinal circuitry, the stimulation can have an enabling effect upon otherwise "silent" translesional volitional motor control. Strategies for achieving functional movement in patients with severe injuries based on minimal translesional intentional control, task-specific proprioceptive feedback, and next-generation spinal cord stimulation systems will be reviewed. The role of spinal cord stimulation can go well beyond the immediate generation of motor output. With recently developed training paradigms, it can become a major rehabilitation approach in spinal cord injury for augmenting and steering trans- and sublesional plasticity for lasting therapeutic benefits. © 2016 John Wiley & Sons Ltd.

  10. Surface electromyogram power spectrum changes in human leg muscles following 4 weeks of simulated microgravity.

    Science.gov (United States)

    Portero, P; Vanhoutte, C; Goubel, F

    1996-01-01

    Surface electromyogram (EMG) spectrum changes in human tibialis anterior (TA) and gastrocnemius medialis (GM) muscles were studied to investigate the effect of 4-week bed rest (BR) on muscle fatigability. An exhausting isometric test at 50% of the maximal voluntary contraction was performed by 12 clinically healthy men before and after BR. During this test, mean power frequency (MPF) calculated from surface EMG decreased linearly for TA and GM. When changes in MPF were expressed in terms of rate of decrease a significant difference appeared between TA and GM. Furthermore, as a result of BR, the shift in MPF increased significantly for GM (6.1% vs 10.4%) whereas it was not significantly changed for TA (28.6% vs 20.95%). Alterations in maximal torque were also observed with a more pronounced decrease for plantar-flexor (20.5%) compared with dorsiflexor (15.1%) muscles. These results would seen: to indicate that simulated microgravity preferentially affects muscles having an antigravity function.

  11. Mesenteric, coeliac and splanchnic blood flow in humans during exercise

    DEFF Research Database (Denmark)

    Perko, M J; Nielsen, H B; Skak, C

    1998-01-01

    1. Exercise reduces splanchnic blood flow, but the mesenteric contribution to this response is uncertain. 2. In nineteen humans, superior mesenteric and coeliac artery flows were determined by duplex ultrasonography during fasting and postprandial submaximal cycling and compared with the splanchnic...... blood flow as assessed by the Indocyanine Green dye-elimination technique. 3. Cycling increased arterial pressure, heart rate and cardiac output, while it reduced total vascular resistance. These responses were not altered in the postprandial state. During fasting, cycling increased mesenteric, coeliac...... the coeliac circulation was not influenced. Postprandial cycling did not influence the mesenteric resistance significantly, but its blood flow decreased by 22 % (0.46 +/- 0.28 l min-1). Coeliac and splanchnic resistance increased by 150 and 63 %, respectively, and the corresponding regional blood flow...

  12. Lactate kinetics in human tissues at rest and during exercise

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2010-01-01

    Lactate production in skeletal muscle has now been studied for nearly two centuries and still its production and functional role at rest and during exercise is much debated. In the early days skeletal muscle was mainly seen as the site of lactate production during contraction and lactate production...... associated with a lack of muscle oxygenation and fatigue. Later it was recognized that skeletal muscle not only played an important role in lactate production but also in lactate clearance and this led to a renewed interest, not the least from the Copenhagen School in the 1930s, in the metabolic role...... of lactate in skeletal muscle. With the introduction of lactate isotopes muscle lactate kinetics and oxidation could be studied and a simultaneous lactate uptake and release was observed, not only in muscle but also in other tissues. Therefore, this review will discuss in vivo human: (1) skeletal muscle...

  13. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    SUMMARY Human skeletal muscle has a remarkable capability of adapting to a change in demands. The preservation of this adaptability relies partly on a pool of resident myogenic stem cells (satellite cells, SCs). Extrinsic factors such as mechanical load (e.g. resistance exercise) and dietary...... protein constitute key factors in regulation of human skeletal muscle mass; however, the influence of divergent resistance exercise contraction modes and protein supplementation on SC content, is not well described. The overall aim of the present thesis was to investigate whether eccentric versus...... concentric resistance training and ingestion of protein influence myocellular adaptations, with special emphasis on muscle stem cell adaptations, during both acute and prolonged resistance exercise in human skeletal muscle. Paper I. Whey protein supplementation accelerates satellite cell proliferation during...

  14. Dynamics and regulation of locomotion of a human swing leg as a double-pendulum considering self-impact joint constraint.

    Science.gov (United States)

    Bazargan-Lari, Y; Eghtesad, M; Khoogar, A; Mohammad-Zadeh, A

    2014-09-01

    Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion. The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modeling the swing leg as a SIDP. This paper also presents the control design for a SIDP by a nonlinear model-based control method. To achieve this goal, the available data of normal human gait will be taken as the desired trajectories of the hip and knee joints. The model is characterized by the constraint that occurs at the knee joint (the lower joint of the model) in both dynamic modeling and control design. Since the system dynamics is nonlinear, the MIMO Input-Output Feedback Linearization method will be employed for control purposes. The first constraint in forward impact simulation happens at 0.5 rad where the speed of the upper link is increased to 2.5 rad/sec. and the speed of the lower link is reduced to -5 rad/sec. The subsequent constraints occur rather moderately. In the case of both backward and forward constraints simulation, the backward impact occurs at -0.5 rad and the speeds of the upper and lower links increase to 2.2 and 1.5 rad/sec., respectively. The designed controller performed suitably well and regulated the system accurately.

  15. Metabolomics analysis of human sweat collected after moderate exercise.

    Science.gov (United States)

    Delgado-Povedano, M M; Calderón-Santiago, M; Luque de Castro, M D; Priego-Capote, F

    2018-01-15

    Sweat is a promising biofluid scarcely used in clinical analysis despite its non-invasive sampling. A more frequent clinical use of sweat requires to know its whole composition, especially concerning to non-polar compounds, and the development of analytical strategies for its characterization. The aim of the present study was to compare different sample preparation strategies to maximize the detection of metabolites in sweat from humans collected after practicing moderate exercise. Special emphasis was put on non-polar compounds as they have received scant attention in previous studies dealing with this biofluid. Sample preparation by liquid-liquid extraction (LLE) using extractants with different polarity index was compared to deproteination. Then, derivatization by methoxymation with subsequent silylation was compared to direct analysis of sweat extracts to check the influence of derivatization on the subsequent determination of volatile organic compounds (VOCs). 135 compounds were tentatively identified by combining spectral and retention time information after analysis by gas chromatography coupled to mass spectrometry in high resolution mode (GC-TOF/MS). Lipids, VOCs, benzenoids and other interesting metabolites such as alkaloids and ethanolamines were identified. Among the tested protocols, methyoxiamination plus silylation after LLE with dichloromethane was the best option to obtain a representative snapshot of sweat metabolome collected from different body parts after moderate exercise. Passive and active sweat pools from a cohort of volunteers (n = 6) were compared to detect compositional differences which can be explained by the sampling process and sweating induction. As most of the identified compounds are metabolites involved in key biochemical pathways, this study opens new opportunities to extend the applicability of human sweat as a source of metabolite biomarkers of pathologies or specific processes such as dehydration or nutritional unbalance

  16. Exercise training and impaired glucose tolerance in obese humans.

    Science.gov (United States)

    McNeilly, Andrea Margaret; McClean, Conor; Murphy, Marie; McEneny, Jane; Trinick, Tom; Burke, George; Duly, Ellie; McLaughlin, James; Davison, Gareth

    2012-01-01

    Individuals with impaired glucose tolerance (IGT) are at greater risk of developing diabetes than in normoglycaemia. The aim of this study was to examine the effects of 12-weeks exercise training in obese humans with IGT. Eleven participants (6 males and 5 females; 49±9 years; mean Body Mass Index (BMI) 32.4 kg · m(-2)), completed a 12-week brisk walking intervention (30 min per day, five days a week (d · wk(-1)), at 65% of age-predicted maximal heart rate (HR(max)). Anthropometric measurements, dietary intake, pulse wave velocity (PWV, to determine arterial stiffness) and blood pressure (BP) were examined at baseline and post intervention. Fasting blood glucose, glycosylated haemoglobin, insulin, blood lipids, indices of oxidative stress and inflammation (lipid hydroperoxides; superoxide dismutase; multimeric adiponectin concentration and high-sensitivity C-reactive protein) were also determined. Post intervention, PWV (9.08±1.27 m · s(-1) vs. 8.39±1.21 m · s(-1)), systolic BP (145.4±14.5 vs. 135.8±14.9 mmHg), triglycerides (1.52±0.53 mmol · L(-1) vs. 1.31±0.54 mmol · L(-1)), lipid hydroperoxides (1.20±0.47 μM · L(-1) vs. 0.79±0.32 μM · L(-1)) and anthropometric measures decreased significantly (P Moderate intensity exercise training improves upper limb vascular function in obese humans with IGT, possibly by improving triglyceride metabolism, which may subsequently reduce oxidative stress. These changes were independent of multimeric adiponectin modification and alterations in other blood biomarkers.

  17. Impact of inactivity and exercise on the vasculature in humans.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Maiorana, A.J.; O'Driscoll, G.; Cable, N.T.; Hopman, M.T.E.; Green, D.J.

    2010-01-01

    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function

  18. An Exercise Health Simulation Method Based on Integrated Human Thermophysiological Model

    Directory of Open Access Journals (Sweden)

    Nan Jia

    2017-01-01

    Full Text Available Research of healthy exercise has garnered a keen research for the past few years. It is known that participation in a regular exercise program can help improve various aspects of cardiovascular function and reduce the risk of suffering from illness. But some exercise accidents like dehydration, exertional heatstroke, and even sudden death need to be brought to attention. If these exercise accidents can be analyzed and predicted before they happened, it will be beneficial to alleviate or avoid disease or mortality. To achieve this objective, an exercise health simulation approach is proposed, in which an integrated human thermophysiological model consisting of human thermal regulation model and a nonlinear heart rate regulation model is reported. The human thermoregulatory mechanism as well as the heart rate response mechanism during exercise can be simulated. On the basis of the simulated physiological indicators, a fuzzy finite state machine is constructed to obtain the possible health transition sequence and predict the exercise health status. The experiment results show that our integrated exercise thermophysiological model can numerically simulate the thermal and physiological processes of the human body during exercise and the predicted exercise health transition sequence from finite state machine can be used in healthcare.

  19. Artificial gravity with ergometric exercise as a countermeasure against cardiovascular deconditioning during 4 days of head-down bed rest in humans.

    Science.gov (United States)

    Wang, Yong-Chun; Yang, Chang-Bin; Wu, Yan-Hong; Gao, Yuan; Lu, Dong-Yuan; Shi, Fei; Wei, Xiao-Ming; Sun, Xi-Qing

    2011-09-01

    We have shown previously that combined short-arm centrifuge and aerobic exercise training preserved several physiologically important cardiovascular functions in humans. We hypothesized that artificial gravity (AG) and exercise is effective to prevent changes of physical problems during head-down bed rest (HDBR). To test this hypothesis, 12 healthy male subjects had undergone 4 days of 6° HDBR. Six of them were exposed to AG of an alternating 2-min intervals of +1.0 and +2.0 Gz at foot level for 30 min twice per day with ergometric exercise of 40 W as a countermeasure during bed rest (CM group), while the remaining six served as untreated controls (no-CM group). Before and after 4 days of bed rest, leg venous hemodynamics was assessed by venous occlusion plethysmography and autonomic cardiovascular control estimated by power spectral analysis of blood pressure and heart rate. Further, orthostatic tolerance was evaluated by a 75° head-up tilt test and physical working capacity was surveyed by near maximal physical working capacity test before and after bed rest. The data showed that combined centrifuge and exercise applied twice daily for a total of 60 min during 4 days of HDBR prevented (a) a decrease in working capacity, (b) autonomic dysfunction (a decrease in the activity of parasympathetic cardiac innervation) and (c) an increase in leg venous flow resistance. The combination of a 30 min alternating of +1.0 and +2.0 Gz for twice per day of AG with 40 W ergometric exercise may offer a promising countermeasure to short duration simulated microgravity.

  20. Re-evaluation of sarcolemma injury and muscle swelling in human skeletal muscles after eccentric exercise.

    Directory of Open Access Journals (Sweden)

    Ji-Guo Yu

    Full Text Available The results regarding the effects of unaccustomed eccentric exercise on muscle tissue are often conflicting and the aetiology of delayed onset muscle soreness (DOMS induced by eccentric exercise is still unclear. This study aimed to re-evaluate the paradigm of muscular alterations with regard to muscle sarcolemma integrity and fibre swelling in human muscles after voluntary eccentric exercise leading to DOMS. Ten young males performed eccentric exercise by downstairs running. Biopsies from the soleus muscle were obtained from 6 non-exercising controls, 4 exercised subjects within 1 hour and 6 exercised subjects at 2-3 days and 7-8 days after the exercise. Muscle fibre sarcolemma integrity, infiltration of inflammatory cells and changes in fibre size and fibre phenotype composition as well as capillary supply were examined with specific antibodies using enzyme histochemistry and immunohistochemistry. Although all exercised subjects experienced DOMS which peaked between 1.5 to 2.5 days post exercise, no significant sarcolemma injury or inflammation was detected in any post exercise group. The results do not support the prevailing hypothesis that eccentric exercise causes an initial sarcolemma injury which leads to subsequent inflammation after eccentric exercise. The fibre size was 24% larger at 7-8 days than at 2-3 days post exercise (p<0.05. In contrast, the value of capillary number per fibre area tended to decrease from 2-3 days to 7-8 days post exercise (lower in 5 of the 6 subjects at 7-8 days than at 2-3 days; p<0.05. Thus, the increased fibre size at 7-8 days post exercise was interpreted to reflect fibre swelling. Because the fibre swelling did not appear at the time that DOMS peaked (between 1.5 to 2.5 days post exercise, we concluded that fibre swelling in the soleus muscle is not directly associated with the symptom of DOMS.

  1. Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans

    DEFF Research Database (Denmark)

    Jørgensen, L G; Perko, M; Hanel, B

    1992-01-01

    ," mechanoreceptors, and/or muscle "metaboreceptors" on cerebral perfusion. Ten healthy subjects performed two levels of dynamic exercise corresponding to a heart rate of 110 (range 89-134) and 148 (129-170) beats/min, respectively, and exhaustive one-legged static knee extension. Measurements were continued during 2......-2.5 min of muscle ischemia. MAP increased similarly during static [114 (102-133) mmHg] and heavy dynamic exercise [121 (104-136) mmHg] and increased during muscle ischemia after dynamic exercise. During heavy dynamic exercise, Vmean increased 24% (10-47%; P less than 0.01) over approximately 3 min despite...... constant arterial carbon dioxide tension. In contrast, static exercise with a higher rate of perceived exertion [18 (13-20) vs. 15 (12-18) units; P less than 0.01] was associated with no significant change in Vmean. Muscle ischemia after exercise was not associated with an elevation in Vmean, and it did...

  2. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on

  3. Exercise increases sphingoid base-1-phosphate levels in human blood and skeletal muscle in a time- and intensity-dependent manner

    DEFF Research Database (Denmark)

    Baranowski, Marcin; Błachnio-Zabielska, Agnieszka U; Charmas, Małgorzata

    2015-01-01

    PURPOSE: Sphingosine-1-phosphate (S1P) regulates cardiovascular function and plays an important role in muscle biology. We have previously reported that cycling exercise increased plasma S1P. Here, we investigated the effect of exercise duration and intensity on plasma and skeletal muscle S1P...... sphingosine was released from both working and resting leg at the highest workload (p ... increased availability of sphingosine released by skeletal muscle. In addition, exercise markedly affects S1P dynamics across the leg. We speculate that S1P may play an important role in adaptation of skeletal muscle to exercise....

  4. Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise

    DEFF Research Database (Denmark)

    Heinemeier, K M; Bjerrum, S S; Schjerling, P

    2013-01-01

    the patellar tendon and vastus lateralis muscle of each leg at 2 (n = 10), 6 (n = 11), or 26 h (n = 10) after exercise. Levels of messenger ribonucleic acid mRNA for collagens, noncollagenous matrix proteins, and growth factors were measured with real-time reverse transcription polymerase chain reaction...

  5. Human Investigations into the Arterial and Cardiopulmonary Baroreflexes during Exercise

    Science.gov (United States)

    Fadel, Paul J.; Raven, Peter B.

    2011-01-01

    After considerable debate and key experimental evidence, the importance of the arterial baroreflex in contributing to and maintaining the appropriate neural cardiovascular adjustments to exercise is now well accepted. Indeed, the arterial baroreflex resets during exercise in an intensity-dependent manner to continue to regulate blood pressure as effectively as at rest. Studies have indicated that the exercise resetting of the arterial baroreflex is mediated by both the feed-forward mechanism of central command and the feed-back mechanism associated with skeletal muscle afferents (the exercise pressor reflex). Another perhaps less appreciated neural mechanism involved in evoking and maintaining neural cardiovascular responses to exercise is the cardiopulmonary baroreflex. The limited information available regarding the cardiopulmonary baroreflex during exercise provides evidence for a role in mediating sympathetic nerve activity and blood pressure responses. In addition, recent investigations have demonstrated an interaction between cardiopulmonary baroreceptors and the arterial baroreflex during dynamic exercise, which contributes to the magnitude of exercise-induced increases in blood pressure as well as the resetting of the arterial baroreflex. Furthermore, neural inputs from the cardiopulmonary baroreceptors appear to play an important role in establishing the operating point of the arterial baroreflex. This symposium review will highlight recent studies in these important areas indicating that the interactions of four neural mechanisms (central command, the exercise pressor reflex, the arterial baroreflex and cardiopulmonary baroreflex) are integral in mediating the neural cardiovascular adjustments to exercise. PMID:22002871

  6. Substrate exchange in human limb muscle during exercise at reduced blood flow.

    Science.gov (United States)

    Lundgren, F; Bennegård, K; Elander, A; Lundholm, K; Scherstén, T; Bylund-Fellenius, A C

    1988-11-01

    The substrate exchange of the calf muscles during leg exercise was compared in patients with chronically reduced blood flow and in matched controls. The arteriovenous differences of glucose, lactate, pyruvate, free fatty acids, glycerol, acetoacetate, beta-OH-butyrate, oxygen, and carbon dioxide were analyzed at rest, at the end of two exercise periods at various work loads, and after 10 min of recovery. Calf blood flow was measured with an electrocardiogram-triggered, computerized, strain gauge, venous occlusion plethysmograph. The results indicate that there was increased extraction of oxygen and ketone bodies in patients with reduced blood flow during exercise, whereas the glucose extraction tended to be lower than in controls. The leg respiratory quotient was lower in the patients even at the point of claudicating pain, suggesting oxidation of endogenous fat. The simultaneously elevated lactate release can be explained by local hypoxia in some muscle fiber populations. The findings are discussed in relation to the enzymatic adaptations known to occur in the calf muscle tissue of these patients.

  7. Evidence of a broad histamine footprint on the human exercise transcriptome.

    Science.gov (United States)

    Romero, Steven A; Hocker, Austin D; Mangum, Joshua E; Luttrell, Meredith J; Turnbull, Douglas W; Struck, Adam J; Ely, Matthew R; Sieck, Dylan C; Dreyer, Hans C; Halliwill, John R

    2016-09-01

    Histamine is a primordial signalling molecule, capable of activating cells in an autocrine or paracrine fashion via specific cell surface receptors, in a variety of pathways that probably predate its more recent role in innate and adaptive immunity. Although histamine is normally associated with pathological conditions or allergic and anaphylactic reactions, it may contribute beneficially to the normal changes that occur within skeletal muscle during the recovery from exercise. We show that the human response to exercise includes an altered expression of thousands of protein-coding genes, and much of this response appears to be driven by histamine. Histamine may be an important molecular transducer contributing to many of the adaptations that accompany chronic exercise training. Histamine is a primordial signalling molecule, capable of activating cells in an autocrine or paracrine fashion via specific cell surface receptors. In humans, aerobic exercise is followed by a post-exercise activation of histamine H1 and H2 receptors localized to the previously exercised muscle. This could trigger a broad range of cellular adaptations in response to exercise. Thus, we exploited RNA sequencing to explore the effects of H1 and H2 receptor blockade on the exercise transcriptome in human skeletal muscle tissue harvested from the vastus lateralis. We found that exercise exerts a profound influence on the human transcriptome, causing the differential expression of more than 3000 protein-coding genes. The influence of histamine blockade post-exercise was notable for 795 genes that were differentially expressed between the control and blockade condition, which represents >25% of the number responding to exercise. The broad histamine footprint on the human exercise transcriptome crosses many cellular functions, including inflammation, vascular function, metabolism, and cellular maintenance. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Quantification of muscle oxygenation and flow of healthy volunteers during cuff occlusion of arm and leg flexor muscles and plantar flexion exercise

    Science.gov (United States)

    Durduran, Turgut; Yu, Guoqiang; Zhou, Chao; Lech, Gwen; Chance, Britton; Yodh, Arjun G.

    2003-07-01

    A hybrid instrument combining near infrared and diffuse correlation spectroscopies was used to measure muscle oxygenation and blood flow dynamics during cuff occlusion and ischemia. Measurements were done on six healthy subjects on their arm and leg flexor muscles. Hemodynamic response was characterized for blood oxygen saturation, total hemoglobin concenration and relative blood flow speed. The characterization allowed us to define the normal response range as well as showing the feasibility of using a hybrid instrument for dynamic measurements.

  9. The Lively Legs self-management programme increased physical activity and reduced wound days in leg ulcer patients: Results from a randomized controlled trial.

    NARCIS (Netherlands)

    Heinen, M.M.; Borm, G.F.; Vleuten, C.J.M. van der; Evers, A.W.M.; Oostendorp, R.A.B.; Achterberg, T. van

    2012-01-01

    OBJECTIVE: Investigating the effectiveness of the Lively Legs program for promoting adherence with ambulant compression therapy and physical exercise as well as effects on leg ulcer recurrence. DESIGN: A randomized controlled trial. SETTING: Eleven outpatient clinics for dermatology in the

  10. Evaluating the effectiveness of a self-management exercise intervention on wound healing, functional ability and health-related quality of life outcomes in adults with venous leg ulcers: a randomised controlled trial.

    Science.gov (United States)

    O'Brien, Jane; Finlayson, Kathleen; Kerr, Graham; Edwards, Helen

    2017-02-01

    Exercise that targets ankle joint mobility may lead to improvement in calf muscle pump function and subsequent healing. The objectives of this research were to assess the impact of an exercise intervention in addition to routine evidence-based care on the healing rates, functional ability and health-related quality of life for adults with venous leg ulcers (VLUs). This study included 63 patients with VLUs. Patients were randomised to receive either a 12-week exercise intervention with a telephone coaching component or usual care plus telephone calls at the same timepoints. The primary outcome evaluated the effectiveness of the intervention in relation to wound healing. The secondary outcomes evaluated physical activity, functional ability and health-related quality of life measures between groups at the end of the 12 weeks. A per protocol analysis complemented the effectiveness (intention-to-treat) analysis to highlight the importance of adherence to an exercise intervention. Intention-to-treat analyses for the primary outcome showed 77% of those in the intervention group healed by 12 weeks compared to 53% of those in the usual care group. Although this difference was not statistically significant due to a smaller than expected sample size, a 24% difference in healing rates could be considered clinically significant. The per protocol analysis for wound healing, however, showed that those in the intervention group who adhered to the exercise protocol 75% or more of the time were significantly more likely to heal and showed higher rates for wound healing than the control group (P = 0·01), that is, 95% of those who adhered in the intervention group healed in 12 weeks. The secondary outcomes of physical activity, functional ability and health-related quality of life were not significantly altered by the intervention. Among the secondary outcomes (physical activity, functional ability and health-related quality of life), intention-to-treat analyses did not support the

  11. Oxidation of urate in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Tullson, P. C.; Richter, Erik

    1997-01-01

    exercise (p 3 min after exercise (p 2.6 mumol.liter-1 at rest and by 5 min.......084 +/- 0.016 mumol.g-1 w.w. (p exercise and then rapidly increased during recovery to reach the resting level within 3 min after exercise. The concentration of allantoin in the muscle increased from a resting value of 0.03 +/- 0.007 to 0.10 +/- 0.014 mumol.g-1 w.w. immediately after......The purpose of the present study was to investigate whether high metabolic stress to skeletal muscle, induced by intensive exercise, would lead to an oxidation of urate to allantoin in the exercised muscle. Seven healthy male subjects performed short term (4.39 +/- 0.04 [+/-SE] min) exhaustive...

  12. The effect of exercise on the absorption of inhaled human insulin in healthy volunteers

    DEFF Research Database (Denmark)

    Petersen, Astrid Heide; Kohler, Gerd; Korsatko, Stefan

    2008-01-01

    What is already known about this subject * Exercise is known to affect absorption of other inhaled substances, but so far there are no reports on the effect of exercise on the absorption of inhaled insulin in humans. What this paper adds * This report is the first to investigate the effect...... of exercise on the absorption of inhaled insulin. * In this study in healthy volunteers we found that exercise early after dosing increased absorption (15-20%) of inhaled insulin over the first 2 h after start of exercise, with an approximately 30% increase in maximal insulin concentration, and unchanged...... overall absorption. Aims To investigate the effect of moderate exercise on the absorption of inhaled insulin. Methods A single-centre, randomized, open-label, three-period cross-over trial was carried out in 12 nonsmoking healthy subjects. A dose of 3.5 mg inhaled human insulin was administered via...

  13. Study in Parkinson disease of exercise (SPARX): translating high-intensity exercise from animals to humans.

    Science.gov (United States)

    Moore, Charity G; Schenkman, Margaret; Kohrt, Wendy M; Delitto, Anthony; Hall, Deborah A; Corcos, Daniel

    2013-09-01

    A burgeoning literature suggests that exercise has a therapeutic benefit in persons with Parkinson disease (PD) and in animal models of PD, especially when animals exercise at high intensity. If exercise is to be prescribed as "first-line" or "add-on" therapy in patients with PD, we must demonstrate its efficacy and dose-response effects through testing phases similar to those used in the testing of pharmacologic agents. The SPARX Trial is a multicenter, randomized, controlled, single-blinded, Phase II study that we designed to test the feasibility of using high-intensity exercise to modify symptoms of PD and to simultaneously test the nonfutility of achieving a prespecified change in patients' motor scores on the Unified Parkinson Disease Rating Scale (UPDRS). The trial began in May 2102 and is in the process of screening, enrolling, and randomly assigning 126 patients with early-stage PD to 1 of 3 groups: usual care (wait-listed controls), moderate-intensity exercise (4 days/week at 60%-65% maximal heart rate [HRmax]), or high-intensity exercise (4 days/week at 80%-85% HRmax). At 6-month follow-up, the trial is randomly reassigning usual care participants to a moderate-intensity or high-intensity exercise group for the remaining 6 months. The goals of the Phase II trial are to determine if participants can exercise at moderate and high intensities; to determine if either exercise yields benefits consistent with meaningful clinical change (nonfutility); and to document safety and attrition. The advantage of using a non-futility approach allows us to efficiently determine if moderate- or high-intensity exercise warrants further large-scale investigation in PD. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Exercise

    Science.gov (United States)

    ... it can lead to weakness of muscles, decreased bone density with an increased risk of fracture, and shallow, inefficient breathing. An exercise program needs to fit the capabilities and limitations ...

  15. Exercise Guidelines to Promote Cardiometabolic Health in Spinal Cord Injured Humans: Time to Raise the Intensity?

    Science.gov (United States)

    Nightingale, Tom E; Metcalfe, Richard S; Vollaard, Niels B; Bilzon, James L

    2017-08-01

    Spinal cord injury (SCI) is a life-changing event that, as a result of paralysis, negatively influences habitual levels of physical activity and hence cardiometabolic health. Performing regular structured exercise therefore appears extremely important in persons with SCI. However, exercise options are mainly limited to the upper body, which involves a smaller activated muscle mass compared with the mainly leg-based activities commonly performed by nondisabled individuals. Current exercise guidelines for SCI focus predominantly on relative short durations of moderate-intensity aerobic upper-body exercise, yet contemporary evidence suggests this is not sufficient to induce meaningful improvements in risk factors for the prevention of cardiometabolic disease in this population. As such, these guidelines and their physiological basis require reappraisal. In this special communication, we propose that high-intensity interval training (HIIT) may be a viable alternative exercise strategy to promote vigorous-intensity exercise and prevent cardiometabolic disease in persons with SCI. Supplementing the limited data from SCI cohorts with consistent findings from studies in nondisabled populations, we present strong evidence to suggest that HIIT is superior to moderate-intensity aerobic exercise for improving cardiorespiratory fitness, insulin sensitivity, and vascular function. The potential application and safety of HIIT in this population is also discussed. We conclude that increasing exercise intensity could offer a simple, readily available, time-efficient solution to improve cardiometabolic health in persons with SCI. We call for high-quality randomized controlled trials to examine the efficacy and safety of HIIT in this population. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Rapid spread of the invasive yellow-legged hornet in France: the role of human-mediated dispersal and the effects of control measures

    OpenAIRE

    Robinet, Christelle; Suppo, Christelle; Darrouzet, Eric

    2017-01-01

    1.The invasive yellow-legged hornet was first discovered in Europe, in south-western France, in 2004. It has since spread very rapidly and has caused significant mortality among honey bees and native entomofauna. It also poses a risk to humans because its sting provokes allergic reactions. The objectives of this study were the following: (i) to disentangle the roles played by human-mediated dispersal and self-mediated dispersal in the species’ rapid range expansion and (ii) to estimate the in...

  17. Human muscle net K(+) release during exercise is unaffected by elevated anaerobic metabolism, but reduced after prolonged acclimatization to 4,100 m.

    Science.gov (United States)

    Nordsborg, Nikolai B; Calbet, José A L; Sander, Mikael; van Hall, Gerrit; Juel, Carsten; Saltin, Bengt; Lundby, Carsten

    2010-07-01

    It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P exercise intensity, leg net K(+) release was less (P exercise relative to rest was less (P anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.

  18. Linking brains and brawn: exercise and the evolution of human neurobiology

    OpenAIRE

    Raichlen, David A.; Polk, John D.

    2013-01-01

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. Howe...

  19. Arm vs. Combined Leg and Arm Exercise: Blood Pressure Responses and Ratings of Perceived Exertion at the Same Indirectly Determined Heart Rate

    OpenAIRE

    Andrea Di Blasio; Andrea Sablone; Paola Civino; Emanuele D'Angelo; Sabina Gallina; Patrizio Ripari

    2009-01-01

    Pre-participation screening is very important for prescribing and practising exercise safely. The aim of this study was to investigate both ratings of perceived exertion (RPE) and blood pressure responses in two different types of exercises with matching duration and indirectly determined working heart rate (HR). Participants were 23 male students, who were generally healthy but sedentary. The time course of their RPE and blood pressure during a 50- minute work-out session on an arm crank erg...

  20. Venous leg ulcer patients: a review of the literature on lifestyle and pain-related interventions.

    NARCIS (Netherlands)

    Heinen, M.M.; Achterberg, T. van; Reimer, W.S. op; Kerkhof, P.C.M. van de; Laat, H.E.W. de

    2004-01-01

    BACKGROUND: Having a leg ulcer has a major impact on daily life. Lifestyle is mentioned in most leg ulcer guidelines but mostly without much emphasis on the subject. AIMS AND OBJECTIVES: Evidence for the effect of nutrition, leg elevation and exercise on the healing of leg ulcers was reconsidered.

  1. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    Science.gov (United States)

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  2. Effect of previous exhaustive exercise on metabolism and fatigue development during intense exercise in humans

    DEFF Research Database (Denmark)

    Iaia, F. M.; Perez-Gomez, J.; Nordsborg, Nikolai

    2010-01-01

    (HI; approximately 3 min) or low (LO; approximately 2 h) intensity. Compared with CON, performance during EX2 was reduced (P... during a repeated high-intensity exercise lasting 1/2-2 min.......The present study examined how metabolic response and work capacity are affected by previous exhaustive exercise. Seven subjects performed an exhaustive cycle exercise ( approximately 130%-max; EX2) after warm-up (CON) and 2 min after an exhaustive bout at a very high (VH; approximately 30 s), high...

  3. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  4. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response...... was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19...

  5. The effects of cardiovascular exercise on human memory

    DEFF Research Database (Denmark)

    Roig, Marc; Nordbrandt, Sasja; Geertsen, Svend Sparre

    2013-01-01

    We reviewed the evidence for the use of cardiovascular exercise to improve memory and explored potential mechanisms. Data from 29 and 21 studies including acute and long-term cardiovascular interventions were retrieved. Meta-analyses revealed that acute exercise had moderate (SMD=0.26; 95% CI=0.0...

  6. Cerebral oxygenation is reduced during hyperthermic exercise in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nybo, Lars; Volianitis, S.

    2010-01-01

    .4 degrees C). In contrast, when hyperthermia was provoked by dressing the subjects in watertight clothing during exercise (core temperature 39.5 +/- 0.2 degrees C), P(mito)O(2) declined by 4.8 +/- 3.8 mmHg (P ...Abstract Aim: Cerebral mitochondrial oxygen tension (P(mito)O(2)) is elevated during moderate exercise, while it is reduced when exercise becomes strenuous, reflecting an elevated cerebral metabolic rate for oxygen (CMRO(2)) combined with hyperventilation-induced attenuation of cerebral blood flow...... (CBF). Heat stress challenges exercise capacity as expressed by increased rating of perceived exertion (RPE). Methods: This study evaluated the effect of heat stress during exercise on P(mito)O(2) calculated based on a Kety-Schmidt-determined CBF and the arterial-to-jugular venous oxygen differences...

  7. Interleukin-6 release from the human brain during prolonged exercise

    DEFF Research Database (Denmark)

    Nybo, Lars; Nielsen, Bodil; Pedersen, Bente Klarlund

    2002-01-01

    Interleukin (IL)-6 is a pleiotropic cytokine, which has a variety of physiological roles including functions within the central nervous system. Circulating IL-6 increases markedly during exercise, partly due to the release of IL-6 from the contracting skeletal muscles, and exercise-induced IL-6 may...... be linked with central fatigue, which is enhanced by hyperthermia. Exercise-induced IL-6 may also stimulate hepatic glycogenolysis, which is important during prolonged and repeated exercise. Thus, in a randomised order and separated by 60 min of rest, eight young male subjects completed two 60 min exercise...... bouts: one bout with a normal (38 degrees C) and the other with an elevated (39.5 degrees C) core temperature. The cerebral IL-6 response was determined on the basis of internal jugular venous to arterial IL-6 differences and global cerebral blood flow. There was no net release or uptake of IL-6...

  8. Gluconeogenesis in humans with induced hyperlactatemia during low-intensity exercise

    NARCIS (Netherlands)

    Roef, MJ; de Meer, K; Kalhan, SC; Straver, H; Berger, R; Reijngoud, DJ

    We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O-2 uptake, seven subjects received, in random order, either a sodium lactate infusion (60 mumol.kg(-1).min(-1)) or an isomolar sodium

  9. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  10. Identification of the human exercise-induced myokines using secretome analysis

    NARCIS (Netherlands)

    Catoire, M.; Mensink, M.R.; Kalkhoven, E.; Schrauwen, P.; Kersten, A.H.

    2014-01-01

    Endurance exercise is associated with significant improvements in cardio-metabolic risk parameters. A role for myokines has been hypothesized, yet limited information is available about myokines induced by acute endurance exercise in humans. Therefore, the aim of the study was to identify novel

  11. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise.

    Science.gov (United States)

    Pourteymour, Shirin; Hjorth, Marit; Lee, Sindre; Holen, Torgeir; Langleite, Torgrim M; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Eckardt, Kristin

    2017-10-01

    Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Dynamics and Regulation of Locomotion of a Human Swing Leg as a DoublePendulum Considering Self-Impact Joint Constraint

    Directory of Open Access Journals (Sweden)

    Bazargan-Lari Y

    2014-09-01

    Full Text Available Background: Despite some successful dynamic simulation of self-impact double pendulum (SIDP-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion. Objective: The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modeling the swing leg as a SIDP. This paper also presents the control design for a SIDP by a nonlinear model-based control method. To achieve this goal, the available data of normal human gait will be taken as the desired trajectories of the hip and knee joints. Method: The model is characterized by the constraint that occurs at the knee joint (the lower joint of the model in both dynamic modeling and control design. Since the system dynamics is nonlinear, the MIMO Input-Output Feedback Linearization method will be employed for control purposes. Results: The first constraint in forward impact simulation happens at 0.5 rad where the speed of the upper link is increased to 2.5 rad/sec. and the speed of the lower link is reduced to -5 rad/sec. The subsequent constraints occur rather moderately. In the case of both backward and forward constraints simulation, the backward impact occurs at -0.5 rad and the speeds of the upper and lower links increase to 2.2 and 1.5 rad/sec., respectively. Conclusion: The designed controller performed suitably well and regulated the system accurately

  13. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.

    Science.gov (United States)

    Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy

    2014-11-01

    In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°.

  14. Brain serotonergic and dopaminergic modulators, perceptual responses and endurance exercise performance following caffeine co-ingested with a high fat meal in trained humans

    Directory of Open Access Journals (Sweden)

    Kilduff Liam P

    2010-05-01

    Full Text Available Abstract Background The present study examined putative modulators and indices of brain serotonergic and dopaminergic function, perceptual responses, and endurance exercise performance following caffeine co-ingested with a high fat meal. Methods Trained humans (n = 10 performed three constant-load cycling tests at 73% of maximal oxygen uptake (VO2max until exhaustion at 10°C remove space throughout. Prior to the first test, subjects consumed a 90% carbohydrate meal (Control trial and for the remaining two tests, a 90% fat meal with (FC trial and without (F trial caffeine. Results Time to exhaustion was not different between the F and FC trials (P > 0.05; [Control trial: 116(88-145 min; F trial: 122(96-144 min; FC trial: 127(107-176 min]. However, leg muscular discomfort during exercise was significantly lower on the FC relative to F trial (P P > 0.05 with the exception of plasma free-Trp:LNAA ratio which was higher at 90 min and at exhaustion during the FC trial (P Conclusions Neither brain 5-HT nor DA systems would appear to be implicated in the fatigue process when exercise is performed without significant thermoregulatory stress, thus indicating fatigue development during exercise in relatively cold temperatures to occur predominantly due to glycogen depletion.

  15. Exercise-Induced Muscle Damage and Running Economy in Humans

    Directory of Open Access Journals (Sweden)

    Cláudio de Oliveira Assumpção

    2013-01-01

    Full Text Available Running economy (RE, defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days, have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max. However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises seems to impair RE only for subsequent high-intensity exercise (~90% VO2max. Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect attenuates changes in indirect markers of muscle damage and blunts changes in RE.

  16. Exercise-Induced Muscle Damage and Running Economy in Humans

    Science.gov (United States)

    Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2013-01-01

    Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO2max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. PMID:23431253

  17. Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension

    Science.gov (United States)

    Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.

    2011-01-01

    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (<10 min) before and after exercise 8 fl oz of chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an

  18. Exercise-induced neuroplasticity in human Parkinson's disease: What is the evidence telling us?

    Science.gov (United States)

    Hirsch, Mark A; Iyer, Sanjay S; Sanjak, Mohammed

    2016-01-01

    While animal models of exercise and PD have pushed the field forward, few studies have addressed exercise-induced neuroplasticity in human PD. As a first step toward promoting greater international collaboration on exercise-induced neuroplasticity in human PD, we present data on 8 human PD studies (published between 2008 and 2015) with 144 adults with PD of varying disease severity (Hoehn and Yahr stage 1 to stage 3), using various experimental (e.g., randomized controlled trial) and quasi-experimental designs on the effects of cognitive and physical activity on brain structure or function in PD. We focus on plasticity mechanisms of intervention-induced increases in maximal corticomotor excitability, exercise-induced changes in voxel-based gray matter volume changes and increases in exercise-induced serum levels of brain derived neurotrophic factor (BDNF). Finally, we provide a future perspective for promoting international, collaborative research on exercise-induced neuroplasticity in human PD. An emerging body of evidence suggests exercise triggers several plasticity related events in the human PD brain including corticomotor excitation, increases and decreases in gray matter volume and changes in BDNF levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Combined speed endurance and endurance exercise amplify the exercise-induced PGC-1α and PDK4 mRNA response in trained human muscle

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Brandt, Nina; Pilegaard, Henriette

    2016-01-01

    The aim of this study was to investigate the mRNA response related to mitochondrial biogenesis, metabolism, angiogenesis, and myogenesis in trained human skeletal muscle to speed endurance exercise (S), endurance exercise (E), and speed endurance followed by endurance exercise (S + E). Seventeen...... trained male subjects (maximum oxygen uptake (VO2-max): 57.2 ± 3.7 (mean ± SD) mL·min(-1)·kg(-1)) performed S (6 × 30 sec all-out), E (60 min ~60% VO2-max), and S + E on a cycle ergometer on separate occasions. Muscle biopsies were obtained at rest and 1, 2, and 3 h after the speed endurance exercise (S...... that in trained subjects, speed endurance exercise provides a stimulus for muscle mitochondrial biogenesis, substrate regulation, and angiogenesis that is not evident with endurance exercise. These responses are reinforced when speed endurance exercise is followed by endurance exercise....

  20. Exercise-Induced Cardiac Remodeling: Lessons from Humans, Horses, and Dogs

    Directory of Open Access Journals (Sweden)

    Rob Shave

    2017-02-01

    Full Text Available Physical activity is dependent upon the cardiovascular system adequately delivering blood to meet the metabolic and thermoregulatory demands of exercise. Animals who regularly exercise therefore require a well-adapted heart to support this delivery. The purpose of this review is to examine cardiac structure, and the potential for exercise-induced cardiac remodeling, in animals that regularly engage in strenuous activity. Specifically, we draw upon the literature that has studied the “athlete’s heart” in humans, horses, and dogs, to enable the reader to compare and contrast cardiac remodeling in these three athletic species. The available literature provides compelling evidence for exercise-induced cardiac remodeling in all three species. However, more work is required to understand the influence of species/breed specific genetics and exercise-related hemodynamics, in order to fully understand the impact of exercise on cardiac structure.

  1. The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Ide, Kojiro; Cai, Yan

    2002-01-01

    to 3.7 +/- 0.2 in the first minutes of the recovery (P exercise did not change the uptake ratio significantly. Yet, in a second experiment, when submaximal exercise required a maximal effort due to partial neuromuscular blockade, the ratio decreased and remained low (4.9 +/- 0.2......During and after maximal exercise there is a 15-30 % decrease in the metabolic uptake ratio (O(2)/[glucose + 1/2 lactate]) and a net lactate uptake by the human brain. This study evaluated if this cerebral metabolic uptake ratio is influenced by the intent to exercise, and whether a change could......) in the early recovery (n = 10; P 2) when the brain is activated by exhaustive exercise, and that such metabolic changes are influenced by the will to exercise. We speculate that the uptake ratio...

  2. The behaviour of satellite cells in response to exercise: what have we learned from human studies?

    DEFF Research Database (Denmark)

    Kadi, Fawzi; Olsen, Steen Schytte

    2005-01-01

    Understanding the complex role played by satellite cells in the adaptive response to exercise in human skeletal muscle has just begun. The development of reliable markers for the identification of satellite cell status (quiescence/activation/proliferation) is an important step towards...... the understanding of satellite cell behaviour in exercised human muscles. It is hypothesised currently that exercise in humans can induce (1) the activation of satellite cells without proliferation, (2) proliferation and withdrawal from differentiation, (3) proliferation and differentiation to provide myonuclei...... and (4) proliferation and differentiation to generate new muscle fibres or to repair segmental fibre injuries. In humans, the satellite cell pool can increase as early as 4 days following a single bout of exercise and is maintained at higher level following several weeks of training. Cessation...

  3. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans.

    Science.gov (United States)

    Allen, Jacob M; Mailing, Lucy J; Niemiro, Grace M; Moore, Rachel; Cook, Mark D; White, Bryan A; Holscher, Hannah D; Woods, Jeffrey A

    2017-11-20

    Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of six weeks of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota in lean and obese adults with multiple-day dietary controls prior to outcome variable collection. Thirty-two lean (n=18 [9 female]) and obese (n=14 [11 female]), previously sedentary subjects participated in six weeks of supervised, endurance-based exercise training (3 days/wk) that progressed from 30 to 60 minutes/day and from moderate (60% of heart rate reserve [HRR]) to vigorous intensity (75% HRR). Subsequently, participants subsequently returned to a sedentary lifestyle activity for a six week washout period. Fecal samples were collected before and after six weeks of exercise, as well as after the sedentary washout period, with 3-day dietary controls in place prior to each collection. β-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short chain fatty acids (SCFAs) in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of SCFA production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased. These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.

  4. Impact of exercise training on arterial wall thickness in humans.

    Science.gov (United States)

    Thijssen, Dick H J; Cable, N Timothy; Green, Daniel J

    2012-04-01

    Thickening of the carotid artery wall has been adopted as a surrogate marker of pre-clinical atherosclerosis, which is strongly related to increased cardiovascular risk. The cardioprotective effects of exercise training, including direct effects on vascular function and lumen dimension, have been consistently reported in asymptomatic subjects and those with cardiovascular risk factors and diseases. In the present review, we summarize evidence pertaining to the impact of exercise and physical activity on arterial wall remodelling of the carotid artery and peripheral arteries in the upper and lower limbs. We consider the potential role of exercise intensity, duration and modality in the context of putative mechanisms involved in wall remodelling, including haemodynamic forces. Finally, we discuss the impact of exercise training in terms of primary prevention of wall thickening in healthy subjects and remodelling of arteries in subjects with existing cardiovascular disease and risk factors.

  5. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Dalsgaard, Mads K.; Steensberg, Adam

    2005-01-01

    exercise with glucose, and further to 16.1 ± 3.3 µM after the placebo trial (P 2 = 0.87; P 2 = 0.72; P 2 = 0.37; P...... blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise...... elicited an uptake of 3.7 ± 1.3 µmol min-1 (mean ± S.E.M.) in the placebo trial and 2.5 ± 1.0 µmol min-1 in the glucose trial (P 2 µM in all subjects, but it increased to 5.3 ± 1.1 µM following...

  6. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Science.gov (United States)

    Deane, Colleen S; Wilkinson, Daniel J; Phillips, Bethan E; Smith, Kenneth; Etheridge, Timothy; Atherton, Philip J

    2017-04-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1 ) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2 ) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. Copyright © 2017 the American Physiological Society.

  7. ARM VS. COMBINED LEG AND ARM EXERCISE: BLOOD PRESSURE RESPONSES AND RATINGS OF PERCEIVED EXERTION AT THE SAME INDIRECTLY DETERMINED HEART RATE

    Directory of Open Access Journals (Sweden)

    Andrea Di Blasio

    2009-09-01

    Full Text Available Pre-participation screening is very important for prescribing and practising exercise safely. The aim of this study was to investigate both ratings of perceived exertion (RPE and blood pressure responses in two different types of exercises with matching duration and indirectly determined working heart rate (HR. Participants were 23 male students, who were generally healthy but sedentary. The time course of their RPE and blood pressure during a 50- minute work-out session on an arm crank ergometer and a cross trainer were compared. RM-ANOVA showed both a higher RPE (p < 0.001 and diastolic blood pressure (DBP (p < 0.001 response to the arm exercise that were shown significantly correlated (r = 0.883; p = 0.008. Linear regression analysis (p = 0.001 confirmed the ability to predict the time course of DBP by knowing the RPE on the arm crank ergometer. Even if people use the recommended relative intensity, the HR method is not always safe for health without pre-participation screening because exercise characteristics can negatively influence physiological responses. The HR method could be substituted by the RPE method.

  8. Exercise, Amino Acids and Aging in the Control of Human Muscle Protein Synthesis

    Science.gov (United States)

    Walker, Dillon K.; Dickinson, Jared M.; Timmerman, Kyle L.; Drummond, Micah J.; Reidy, Paul T.; Fry, Christopher S.; Gundermann, David M.; Rasmussen, Blake B.

    2012-01-01

    In this review we discuss recent research in the field of human skeletal muscle protein metabolism characterizing the acute regulation of mammalian target of rapamycin complex (mTORC) 1 signaling and muscle protein synthesis (MPS) by exercise, amino acid nutrition and aging. Resistance exercise performed in the fasted state stimulates mixed MPS within 1 h post-exercise, which can remain elevated for 48 h. We demonstrate that the activation of mTORC1 signaling (and subsequently enhanced translation initiation) is required for the contraction-induced increase in MPS. In comparison, low-intensity blood flow restriction (BFR) exercise stimulates MPS and mTORC1 signaling to an extent similar to traditional, high-intensity resistance exercise. We also show that mTORC1 signaling is required for the essential amino acid (EAA) induced increase in MPS. Ingestion of EAAs (or protein) shortly following resistance exercise enhances MPS and mTORC1 signaling as compared to resistance exercise or EAAs alone. In older adults, the ability of skeletal muscle to respond to anabolic stimuli is impaired. For example, in response to an acute bout of resistance exercise, older adults are less able to activate mTORC1 or increase MPS during the first 24h of post-exercise recovery. However, BFR exercise can overcome this impairment. Aging is not associated with a reduced response to EAAs provided the EAA content is sufficient. Therefore, we propose that exercise combined with EAA should be effective not only in improving muscle repair and growth in response to training in athletes, but that strategies such as EAA combined with resistance exercise (or BFR exercise) may be very useful as a countermeasure for sarcopenia and other clinical conditions associated with muscle wasting. PMID:21606874

  9. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status.

    Directory of Open Access Journals (Sweden)

    Guan-Da Syu

    Full Text Available Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE usually impedes immunity, chronic moderate exercise (CME improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8 underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface along with redox-related parameters and mitochondria-related parameters. Our results showed that i the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation, and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii most effects of CME were unchanged after detraining; and iv CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H(2O(2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining.

  10. Contribution of β-adrenergic receptors to exercise-induced bronchodilatation in healthy humans.

    Science.gov (United States)

    Antonelli, Andrea; Torchio, Roberto; Bertolaccini, Luca; Terzi, Alberto; Rolfo, Fabrizio; Agostoni, Piergiuseppe; Gulotta, Carlo; Brusasco, Vito; Pellegrino, Riccardo

    2012-10-15

    Exercise in healthy subjects is usually associated with progressive bronchodilatation. Though the decrease in vagal tone is deemed to be the main underlying mechanism, activation of bronchial β(2)-receptors may constitute an additional cause. To examine the contribution of β(2)-adrenergic receptors to bronchodilatation during exercise in healthy humans, we studied 15 healthy male volunteers during maximum exercise test at control conditions and after a non-selective β-adrenergic blocker (carvedilol 12.5mg twice a day until heart rate decreased at least by 10beats/min) and inhaled β(2)-agonist (albuterol 400μg). Airway caliber was estimated from the partial flow at 40% of control forced vital capacity (V˙(part40)) and its changes during exercise from the slope of linear regression analysis of V˙(part40) values against the corresponding minute ventilation during maximal exercise until exhaustion. At control, V˙(part40) increased progressively and significantly with exercise. After albuterol, resting V˙(part40) was significantly larger than at control increased but did not further increase during exercise. After carvedilol, V˙(part40) was similar to control but its increase with exercise was significantly attenuated. These findings suggest that β(2)-adrenergic system plays a major role in exercise-induced bronchodilation in healthy subjects. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Exercise and training effects on ceramide metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Dobrzyn, Agnieszka; Saltin, Bengt

    2004-01-01

    In rat skeletal muscle prolonged exercise affects the content and composition of ceramides, but in human skeletal muscle no data are available on this compound. Our aim was to examine the content of ceramide- and sphingomyelin fatty acids and neutral, Mg(2+)-dependent sphingomyelinase activity...... in skeletal muscle in untrained and trained subjects before and after prolonged exercise. Healthy male subjects were recruited into an untrained (n = 8, VO2,max 3.8 +/- 0.2 1 min1) and a trained (n = 8, Vo2,max 5.1 +/- 0.1 1 min2) group. Before and after a 3-h exercise bout (58 +/- 1% VO2,max) a muscle biopsy......). In conclusion, we have reported, for the first time, the values for ceramide fatty acid content and neutral, Mg2(+)-dependent sphingomyelinase activity in human skeletal muscle. The results indicate that acute prolonged exercise affects ceramide metabolism in human skeletal muscle both in untrained...

  12. Effects of human menstrual cycle on thermoregulatory vasodilation during exercise.

    Science.gov (United States)

    Hirata, K; Nagasaka, T; Hirai, A; Hirashita, M; Takahata, T; Nunomura, T

    1986-01-01

    To investigate the effects of the menstrual cycle and of exercise intensity on the relationship between finger blood flow (FBF) and esophageal temperature (Tes), we studied four women, aged 20-32 years. Subjects exercised at 40% and 70% VO2max in the semi-supine posture at an ambient temperature of 20 degrees C. Resting Tes was higher during the luteal phase than the follicular phase (P less than 0.01). There were no significant differences between the two phases in FBF, oxygen consumption, carbon dioxide production, heart rate or minute ventilation at rest and during exercise, respectively. Each regression line of the FBF-Tes relationship consists of two distinct segments of FBF change to Tes (slope 1 and 2). FBF increased at a threshold Tes for vasodilation ([Tes 0]) and the rate of FBF rise became greater at ([Tes 0]) and the rate of FBF rise became greater at another Tes above this threshold ([Tes 0']). For both levels of exercise, [Tes 0] and [Tes 0'] were shifted upward during the luteal phase, but the slopes of the FBF-Tes relationship were almost the same in the two phases of the menstrual cycle. Increasing exercise intensity induced a significant decrease in slope 1 of the FBF-Tes relationship during the follicular (P less than 0.01) and the luteal phases (P less than 0.02), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Carbohydrate ingestion prior to exercise augments the exercise-induced activation of the pyruvate dehydrogenase complex in human skeletal muscle.

    Science.gov (United States)

    Tsintzas, K; Williams, C; Constantin-Teodosiu, D; Hultman, E; Boobis, L; Greenhaff, P

    2000-09-01

    This study examined the effect of pre-exercise carbohydrate (CHO) ingestion on pyruvate dehydrogenase complex (PDC) activation, acetyl group availability and substrate level phosphorylation (glycogenolysis and phosphocreatine (PCr) hydrolysis) in human skeletal muscle during the transition from rest to steady-state exercise. Seven male subjects performed two 10 min treadmill runs at 70 % maximum oxygen uptake (VO2,max), 1 week apart. Each subject ingested 8 ml (kg body mass (BM))-1 of either a placebo solution (CON trial) or a 5.5 % CHO solution (CHO trial) 10 min before each run. Muscle biopsy samples were obtained from the vastus lateralis at rest and immediately after each trial. Muscle PDC activity was higher at the end of exercise in the CHO trial compared with the CON trial (1.78+/-0.18 and 1.27+/-0.16 mmol min(-1) (kg wet matter (WM))(-1), respectively; P 0.05) and this was accompanied by lower acetylcarnitine (7.1+/-1.2 and 9.1+/-1.1 mmol kg(-1) (dry matter (DM))(-1) in CHO and CON, respectively; Ptransition from rest to steady-state exercise. However, those changes did not affect the contribution of substrate level phosphorylation to ATP resynthesis.

  14. Ammonia metabolism during intense dynamic exercise and recovery in humans

    DEFF Research Database (Denmark)

    Graham, T; Bangsbo, Jens; Gollnick, PD

    1990-01-01

     declined immediately on cessation of exercise. Recovery was complete in approximately 20 min. Arterial [NH3] increased less rapidly and reached itsmaximum 2-3 min into recovery. These data demonstrate that NH3 clearance is more sensitive to the cessation of exercise than is NH3 release from skeletal muscle. Muscle [NH......3] increased three to fourfold during exercise and represented 74 +/- 8% of the total net NH3 formation. Thus the change in muscle [NH3] alone underestimates the NH3 production. There was no evidence that the muscle-to-venous blood NH3 ratio shifts in accordance with the H+ data. Thus other factors...

  15. An analysis of human motion detection systems use during elder exercise routines.

    Science.gov (United States)

    Alexander, Gregory L; Havens, Timothy C; Rantz, Marilyn; Keller, James; Casanova Abbott, Carmen

    2010-03-01

    Human motion analysis provides motion pattern and body pose estimations. This study integrates computer-vision techniques and explores a markerless human motion analysis system. Using human-computer interaction (HCI) methods and goals, researchers use a computer interface to provide feedback about range of motion to users. A total of 35 adults aged 65 and older perform three exercises in a public gym while human motion capture methods are used. Following exercises, participants are shown processed human motion images captured during exercises on a customized interface. Standardized questionnaires are used to elicit responses from users during interactions with the interface. A matrix of HCI goals (effectiveness, efficiency, and user satisfaction) and emerging themes are used to describe interactions. Sixteen users state the interface would be useful, but not necessarily for safety purposes. Users want better image quality, when expectations are matched satisfaction increases, and unclear meaning of motion measures decreases satisfaction.

  16. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene...... methylation of PGC-1a, PDK4, and PPAR-d was markedly decreased in mouse soleus muscles 45 min after ex vivo contraction. In L6 myotubes, caffeine exposure induced gene hypomethylation in parallel with an increase in the respective mRNA content. Collectively, our results provide evidence that acute gene...

  17. Sex differences in drug addiction and response to exercise intervention: From human to animal studies.

    Science.gov (United States)

    Zhou, Yuehui; Zhao, Min; Zhou, Chenglin; Li, Rena

    2016-01-01

    Accumulated research supports the idea that exercise could be an option of potential prevention and treatment for drug addiction. During the past few years, there has been increased interest in investigating of sex differences in exercise and drug addiction. This demonstrates that sex-specific exercise intervention strategies may be important for preventing and treating drug addiction in men and women. However, little is known about how and why sex differences are found when doing exercise-induced interventions for drug addiction. In this review, we included both animal and human that pulled subjects from a varied age demographic, as well as neurobiological mechanisms that may highlight the sex-related differences in these potential to assess the impact of sex-specific roles in drug addiction and exercise therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise

    DEFF Research Database (Denmark)

    Green, Stefan Mathias; Langberg, Henning; Skovgaard, D

    2000-01-01

    Changes in the concentration of interstitial K+ surrounding skeletal muscle fibres ([K+]I) probably play some role in the regulation of cardiovascular adjustments to muscular activity, as well as in the aetiology of muscle pain and fatigue during high-intensity exercise. However, there is very...... little information on the response of [K+]I to exercise in human skeletal muscle. Five young healthy subjects performed plantar flexion exercise for four 5 min periods at increasing power outputs ( approximately 1-6 W) with 10 min intervening recovery periods, as well as for two 5 min periods......+. Calf muscle pain was assessed using a visual analogue scale. On average, [K+]I was 4.4 mmol l(-1) at rest and increased during minutes 3-5 of incremental exercise by approximately 1-7 mmol l(-1) as a positive function of power output. K+ release also increased as a function of exercise intensity...

  19. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF......-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade......, but not by beta1-adrenergic blockade. Furthermore, endurance training appears to lower the cerebral non-oxidative carbohydrate uptake and preserve cerebral oxygenation during submaximal exercise. This is possibly related to an attenuated catecholamine response. Finally, exercise promotes brain health as evidenced...

  20. Sex differences in drug addiction and response to exercise intervention: from human to animal studies

    Science.gov (United States)

    Zhou, Yuehui; Zhao, Min; Zhou, Chenglin; Li, Rena

    2015-01-01

    Accumulated research supports the idea that exercise could be an option of potential prevention and treatment for drug addiction. During the past few years, there has been increased interest in investigating of sex differences in exercise and drug addiction. This demonstrates that sex-specific exercise intervention strategies may be important for preventing and treating drug addiction in men and women. However, little is known about how and why sex differences are found when doing exercise-induced interventions for drug addiction. In this review, we included both animal and human that pulled subjects from a varied age demographic, as well as neurobiological mechanisms that may highlight the sex-related differences in these potential to assess the impact of sex-specific roles in drug addiction and exercise therapies. PMID:26182835

  1. Effect of Losartan on the Acute Response of Human Elderly Skeletal Muscle to Exercise

    DEFF Research Database (Denmark)

    Heisterberg, Mette Flindt; Andersen, Jesper L; Schjerling, Peter

    2017-01-01

    PURPOSE: To investigate the effect of blocking the angiotensin II type I receptor (AT1R) upon the response to acute heavy resistance exercise in elderly human skeletal muscle. The hypothesis was that AT1R blocking would result in a superior myogenic response accompanied by downregulation of TGF......-β and upregulation of IGF-1 signalling. METHODS: 28 healthy elderly men (+64 years) were randomized into two groups, consuming either AT1R blocker (Losartan, 100mg/day) or Placebo for 18 days prior to exercise. Participants performed one bout of heavy unilateral resistance exercise. Six muscle biopsies were obtained...... from the vastus lateralis muscles of each subject: two before exercise, and four after exercise (4.5 hours and 1, 4 and 7 days). Blood pressure and blood samples were collected at the same time points. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells...

  2. Maneuvers during legged locomotion

    Science.gov (United States)

    Jindrich, Devin L.; Qiao, Mu

    2009-06-01

    Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the

  3. Impact of exercise training on arterial wall thickness in humans.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Cable, N.T.; Green, D.J.

    2012-01-01

    Thickening of the carotid artery wall has been adopted as a surrogate marker of pre-clinical atherosclerosis, which is strongly related to increased cardiovascular risk. The cardioprotective effects of exercise training, including direct effects on vascular function and lumen dimension, have been

  4. Bicarbonate attenuates arterial desaturation during maximal exercise in humans

    DEFF Research Database (Denmark)

    Nielsen, Henning B; Bredmose, Per P; Strømstad, Morten

    2002-01-01

    in the difference between the end-tidal O2 pressure and arterial PO2 was similar in the two trials. Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated...

  5. Renal lactate elimination is maintained during moderate exercise in humans

    DEFF Research Database (Denmark)

    Volianitis, Stefanos; Dawson, Ellen A; Dalsgaard, Mads

    2012-01-01

    Reduced hepatic lactate elimination initiates blood lactate accumulation during incremental exercise. In this study, we wished to determine whether renal lactate elimination contributes to the initiation of blood lactate accumulation. The renal arterial-to-venous (a-v) lactate difference was dete...

  6. The carotid baroreflex is reset following prolonged exercise in humans

    DEFF Research Database (Denmark)

    Hart, E. C.; Rasmussen, P.; Secher, N. H.

    2010-01-01

    Alterations in the carotid baroreflex (CBR) control of arterial pressure may explain the reduction in arterial pressure and left ventricular (LV) function after prolonged exercise. We examined the CBR control of heart rate (HR) and mean arterial pressure (MAP), in addition to changes in LV functi...

  7. Does a crouched leg posture enhance running stability and robustness?

    OpenAIRE

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A.; Seyfarth, Andre

    2011-01-01

    Abstract Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spri...

  8. Cycle-Powered Short Radius (1.9 m) Centrifuge: Effect of Exercise Versus Passive Acceleration on Heart Rate in Humans

    Science.gov (United States)

    Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Mckenzie, M. A.; Looft-Wilson, R.; Hargens, A. R.

    1997-01-01

    In addition to extensive use of lower extremity physical exercise training as a countermeasure for the work capacity component of spaceflight deconditioning, some form of additional head-to-foot (+Gz) gravitational (orthostatic) stress may be required to further attenuate or prevent the signs and symptoms (nausea, vertigo, instability, fatigue) of the general reentry syndrome (GRS) that can reduce astronaut performance during landing. Orthostatic (head-to-foot) stress can be induced by standing, by lower body negative pressure, and by +Gz acceleration. One important question is whether acceleration training alone or with concurrent leg exercise would provide sufficient additive stimulation to attenuate the GRS. Use of a new human-powered centrifuge may be the answer. Thus, the purpose for this study was to compare heart rate (HR), i.e., a stress response during human-powered acceleration, in four men (35-62 yr) and two women (30-31 yr) during exercise acceleration versus passive acceleration (by an off-board operator) at 100% (maximal acceleration = A(max)), and at 25%, 50%, and 75% of A(max). Mean (+/-SE) A(max) was 43.7 +/- 1.3 rpm (+3.9 +/- 0.2Gz). Mean HR at exercise A(max) was 189 +/- 13 b/min (50-70 sec run time), and 142 +/- 22 b/min at passive A(max) (40-70 sec run time). Regression of mean HR on the various +Gz levels indicated explained variance (correlations squared) of r(exp 2) = 0.88 (exercise) and r(exp 2) = 0.96 (passive): exercise HR of 107 +/- 4 (25%) to 189 +/- 13 (100%) b/min were 43-50 b/min higher (p less than 0.05) than comparable passive HR of 64 +/- 2 to 142 +/- 22 b/min. Thus, exercise adds significant physiological stress during +Gz acceleration. Inflight use of this combined exercise and acceleration countermeasure may maintain work capacity as well as normalize acceleration and orthostatic tolerances which could attenuate or perhaps eliminate the GRS.

  9. Direct effects of locally administered lipopolysaccharide on glucose, lipid, and protein metabolism in the placebo-controlled, bilaterally infused human leg

    DEFF Research Database (Denmark)

    Buhl, Mads; Bosnjak, Ermina; Vendelbo, Mikkel H.

    2013-01-01

    discrimination between direct and indirect effects impossible. Objective: We sought to define the direct, placebo-controlled effects of LPS on insulin resistance and protein and lipid metabolism in the infused human leg without systemic interference from cytokines and stress hormones. Design......Context: Accumulating evidence suggests that chronic exposure to lipopolysaccharide (LPS, endotoxin) maycreate a constant low-grade inflammation, leading to insulin resistance and diabetes. All previous human studies assessing the metabolic actions of LPS have used systemic administration, making......: This was a randomized, placebo-controlled, single-blinded study. Participants and Intervention: We studied 8 healthy volunteers with bilateral femoral vein and artery catheters during a 3-hour basal and 3-hour hyperinsulinemic-euglycemic clamp period with bilateral muscle biopsies in each period during infusion...

  10. Microdialysis and the measurement of muscle interstitial K+ during rest and exercise in humans

    DEFF Research Database (Denmark)

    Green, Stefan Mathias; Bülow, J; Saltin, B

    1999-01-01

    The purpose of this study was to examine whether microdialysis and the internal reference thallium-201 ((201)Tl) could accurately measure muscle interstitial K+ (Ki+) before, during, and after exercise. The relative loss of (201)Tl and simultaneous relative recovery of K+ were measured in vitro...... medialis muscle of four humans during rest and static plantar flexion exercise. At rest, Ki+ was 3.9-4.3 mmol/l when the perfusate flow was 2 or 5 microl/min. During exercise, Ki+ increased from 6.9 +/- 0.4 to 7.5 +/- 0.3 mmol/l at low to high intensity and declined to 5.2 +/- 0.3 mmol/l after exercise....... These results suggest that large changes in Ki+ in human skeletal muscle can be accurately measured by using microdialysis and (201)Tl....

  11. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  12. Fasting and exercise differentially regulate BDNF mRNA expression in human skeletal muscle.

    Science.gov (United States)

    Walsh, Jeremy J; Edgett, Brittany A; Tschakovsky, Michael E; Gurd, Brendon J

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression was measured in human skeletal muscle following 3 intensities of exercise and a 48-h fast. No change in BDNF mRNA was observed following exercise, while fasting upregulated BDNF by ∼ 3.5-fold. These changes were dissociated from changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following exercise (+2- to 15-fold) and fasting (∼-25%). These results challenge our understanding of the response of BDNF to energetic stress and highlight the importance of future work in this area.

  13. Man vs. Machine: A Junior-level Laboratory Exercise Comparing Human and Instrumental Detection Limits

    Science.gov (United States)

    Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.

    2017-01-01

    The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…

  14. Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Charlotte; Keller, Pernille

    2003-01-01

    Interleukin-6 (IL-6) is produced by many different cell types. Human skeletal muscles produce and release high amounts of IL-6 during exercise; however, the cell source of origin in the muscle is not known. Therefore, we studied the protein expression of IL-6 by immunohistochemistry in human muscle...

  15. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1994-01-01

    The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P-MRS) and by surface electromyography (SEMG). Simultaneous 31P-MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human ...

  16. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Broholm, Christa; Mortensen, Ole Hartvig; Nielsen, Søren

    2008-01-01

    human skeletal myocytes. Treatment of myocytes with the Ca(2+) ionophore, ionomycin, for 6 h resulted in an increase in both LIF mRNA and LIF protein levels. This finding suggests that Ca(2+) may be involved in the regulation of LIF in endurance-exercised skeletal muscle. In conclusion, primary human...

  17. Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress.

    Science.gov (United States)

    Thijssen, Dick H J; Dawson, Ellen A; van den Munckhof, Inge C L; Tinken, Toni M; den Drijver, Evert; Hopkins, Nicola; Cable, N Timothy; Green, Daniel J

    2011-07-01

    Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflation around the forearm to 60 mmHg. Grip strength, forearm volume, and girth improved similarly between the limbs. Acute bouts of handgrip exercise increased shear rate (P < 0.005) in the noncuffed limb, whereas cuff inflation successfully decreased exercise-induced increases in shear. Brachial blood pressure responses similarly increased during exercise in both the cuffed and noncuffed limbs. Handgrip training had no effect on baseline brachial artery diameter, blood flow, or shear rate but significantly decreased brachial artery wall thickness after 6 and 8 wk (ANOVA, P < 0.001) and wall-to-lumen ratio after week 8 (ANOVA, P = 0.005). The magnitude of decrease in brachial artery wall thickness and wall-to-lumen ratio after exercise training was similar in the noncuffed and cuffed arms. These results suggest that exercise-induced changes in shear rate are not obligatory for arterial wall remodeling during a period of 8 wk of exercise training in healthy humans.

  18. Signaling proteins are represented in tissue fluid/lymph from soft tissues of normal human legs at concentrations different from serum.

    Science.gov (United States)

    Zaleska, Marzanna; Olszewski, Waldemar L; Durlik, Marek; Miller, Norman E

    2013-12-01

    The mobile intercellular fluid flowing to and in the lymphatics contains filtered plasma products and substances synthesized and excreted by tissue cells. Among them are signaling proteins such as cytokines, chemokines, enzymes, and growth factors. They act locally in autocrine and paracrine systems regulating cell metabolism, proliferation, and formation of the ground matrix. They play an immunoregulatory role in infections, wound healing, and tumor cell growth. In this study we measured the concentration of selected cytokines, chemokines, tissue enzymes, and growth factors in tissue fluid/lymph drained from normal human leg soft tissues. Legs exposed to infections and trauma often result in development of lymphedema. Lymph was drained from superficial calf lymphatics using microsurgical techniques. Our studies showed generally higher concentrations of cytokines, chemokines, enzymes, and growth factors in lymph than in serum. The total protein L/S ratio was 0.22, whereas that of various lymph signaling proteins ranged between 1 and 10. This indicates that in addition to proteins filtered from blood, local cells contribute to lymph concentration by own production, depending on the actual cell requirement. Moreover, there were major individual differences of lymph levels with simultaneous stable serum levels. This suggests existence of a local autonomous regulatory humoral mechanism in tissues, not reflected in serum.

  19. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle.

    Science.gov (United States)

    Porter, Craig; Reidy, Paul T; Bhattarai, Nisha; Sidossis, Labros S; Rasmussen, Blake B

    2015-09-01

    Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in numerous clinical settings. Endurance exercise has long been known to increase mitochondrial function in the skeletal muscle. Comparatively little is known regarding the effect of resistance exercise training (RET) on skeletal muscle mitochondrial respiratory function. The purpose of the current study was to determine the effect of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. Here, we studied the effect of a 12-wk RET program on skeletal muscle mitochondrial function in 11 young healthy men. Muscle biopsies were collected before and after the 12-wk training program, and mitochondrial respiratory capacity was determined in permeabilized myofibers by high-resolution respirometry. RET increased lean body mass and quadriceps muscle strength by 4% and 15%, respectively (P training (P function of skeletal muscle mitochondria.

  20. Skeletal muscle signaling and the heart rate and blood pressure response to exercise

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Svendsen, Jesper H; Ersbøll, Mads

    2013-01-01

    -extensor training and 2 weeks of deconditioning of the other leg (leg cast). Hemodynamics and muscle interstitial nucleotides were determined during exercise with the (1) deconditioned leg, (2) trained leg, and (3) trained leg with atrial pacing to the heart rate obtained with the deconditioned leg. Heart rate...

  1. Lower Leg Injury Reference Values and Risk Curves from Survival Analysis for Male and Female Dummies: Meta-analysis of Postmortem Human Subject Tests.

    Science.gov (United States)

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A; Banerjee, Anjishnu

    2015-01-01

    Derive lower leg injury risk functions using survival analysis and determine injury reference values (IRV) applicable to human mid-size male and small-size female anthropometries by conducting a meta-analysis of experimental data from different studies under axial impact loading to the foot-ankle-leg complex. Specimen-specific dynamic peak force, age, total body mass, and injury data were obtained from tests conducted by applying the external load to the dorsal surface of the foot of postmortem human subject (PMHS) foot-ankle-leg preparations. Calcaneus and/or tibia injuries, alone or in combination and with/without involvement of adjacent articular complexes, were included in the injury group. Injury and noninjury tests were included. Maximum axial loads recorded by a load cell attached to the proximal end of the preparation were used. Data were analyzed by treating force as the primary variable. Age was considered as the covariate. Data were censored based on the number of tests conducted on each specimen and whether it remained intact or sustained injury; that is, right, left, and interval censoring. The best fits from different distributions were based on the Akaike information criterion; mean and plus and minus 95% confidence intervals were obtained; and normalized confidence interval sizes (quality indices) were determined at 5, 10, 25, and 50% risk levels. The normalization was based on the mean curve. Using human-equivalent age as 45 years, data were normalized and risk curves were developed for the 50th and 5th percentile human size of the dummies. Out of the available 114 tests (76 fracture and 38 no injury) from 5 groups of experiments, survival analysis was carried out using 3 groups consisting of 62 tests (35 fracture and 27 no injury). Peak forces associated with 4 specific risk levels at 25, 45, and 65 years of age are given along with probability curves (mean and plus and minus 95% confidence intervals) for PMHS and normalized data applicable to

  2. Persistence of functional sympatholysis post-exercise in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Jackie eMoynes

    2013-06-01

    Full Text Available Blunting of sympathetic vasoconstriction in exercising muscle is well established. Whether it persists during the early post-exercise period is unknown. This study tested the hypothesis that it persists in human skeletal muscle during the first 10 minutes of recovery from exercise. Eight healthy young males (21.4 ±0.8 yrs, SE performed 7 minutes of forearm rhythmic isometric handgrip exercise at 15% below forearm critical power. In separate trials, a cold pressor test (CPT of 2 min duration was used to evoke forearm sympathetic vasoconstriction in each of Rest (R, Steady State Exercise (Ex, 2-4 min Post Exercise (PEearly, and 8-10 min Post Exercise (PElate. A 7 min control exercise trial with no CPT was also performed. Exercising forearm brachial artery blood flow, arterial blood pressure, cardiac output, heart rate, forearm deep venous catecholamine concentration and arterialized venous catecholamine concentration were obtained immediately prior to and following the CPT in each trial. CPT resulted in a significant increase in forearm venous plasma norepinephrine concentration in all trials (P=0.007, but no change in arterialized plasma norepinephrine (P=0.32. CPT did not change forearm venous plasma epinephrine (P=0.596 or arterialized plasma epinephrine concentration (P=0.15. As assessed by the %reduction in forearm vascular conductance (FVC the CPT evoked a robust vasoconstriction at rest that was severely blunted in exercise (R -39.9 ±4.6% vs. Ex 5.5 ±7.4%, P<0.001. This blunting of vasoconstriction persisted at PEearly (-12.3 ±10.1%, P=0.02 and PElate (-18.1 ±8.2%, P=0.03 post-exercise. In conclusion, functional sympatholysis remains evident in human skeletal muscle as much as 10 min after the end of a bout of forearm exercise. Persistence of functional sympatholysis may have important implications for blood pressure regulation in the face of a challenge to blood pressure following exercise.

  3. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes...... legs exercised at the same absolute workload. In the untrained leg, the exercise bout induced an increase (Palpha fold and HIF-2alpha fold mRNA at 6 h of recovery. In contrast, HIF-1alpha and HIF-2alpha mRNA levels were not altered at any time point in the trained leg. Obviously, HIF-1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  4. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers.

    Science.gov (United States)

    Langer, Astrid; Rogowski, Wolf

    2009-07-10

    Tissue engineering is an emerging field. Novel bioengineered skin substitutes and genetically derived growth factors offer innovative approaches to reduce the burden of diabetic foot and venous leg ulcers for both patients and health care systems. However, they frequently are very costly. Based on a systematic review of the literature, this study assesses the cost-effectiveness of these growth factors and tissue-engineered artificial skin for treating chronic wounds. On the basis of an extensive explorative search, an appropriate algorithm for a systematic database search was developed. The following databases were searched: BIOSIS Previews, CRD databases, Cochrane Library, EconLit, Embase, Medline, and Web of Science. Only completed and published trial- or model-based studies which contained a full economic evaluation of growth factors and bioengineered skin substitutes for the treatment of chronic wounds were included. Two reviewers independently undertook the assessment of study quality. The relevant studies were assessed by a modified version of the Consensus on Health Economic Criteria (CHEC) list and a published checklist for evaluating model-based economic evaluations. Eleven health economic evaluations were included. Three biotechnology products were identified for which topical growth factors or bioengineered skin substitutes for the treatment of chronic leg ulceration were economically assessed: (1) Apligraf, a bilayered living human skin equivalent indicated for the treatment of diabetic foot and venous leg ulcers (five studies); (2) Dermagraft, a human fibroblast-derived dermal substitute, which is indicated only for use in the treatment of full-thickness diabetic foot ulcers (one study); (3) REGRANEX Gel, a human platelet-derived growth factor for the treatment of deep neuropathic diabetic foot ulcers (five studies). The studies considered in this review were of varying and partly low methodological quality. They calculated that due to shorter

  5. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Langer Astrid

    2009-07-01

    Full Text Available Abstract Background Tissue engineering is an emerging field. Novel bioengineered skin substitutes and genetically derived growth factors offer innovative approaches to reduce the burden of diabetic foot and venous leg ulcers for both patients and health care systems. However, they frequently are very costly. Based on a systematic review of the literature, this study assesses the cost-effectiveness of these growth factors and tissue-engineered artificial skin for treating chronic wounds. Methods On the basis of an extensive explorative search, an appropriate algorithm for a systematic database search was developed. The following databases were searched: BIOSIS Previews, CRD databases, Cochrane Library, EconLit, Embase, Medline, and Web of Science. Only completed and published trial- or model-based studies which contained a full economic evaluation of growth factors and bioengineered skin substitutes for the treatment of chronic wounds were included. Two reviewers independently undertook the assessment of study quality. The relevant studies were assessed by a modified version of the Consensus on Health Economic Criteria (CHEC list and a published checklist for evaluating model-based economic evaluations. Results Eleven health economic evaluations were included. Three biotechnology products were identified for which topical growth factors or bioengineered skin substitutes for the treatment of chronic leg ulceration were economically assessed: (1 Apligraf®, a bilayered living human skin equivalent indicated for the treatment of diabetic foot and venous leg ulcers (five studies; (2 Dermagraft®, a human fibroblast-derived dermal substitute, which is indicated only for use in the treatment of full-thickness diabetic foot ulcers (one study; (3 REGRANEX® Gel, a human platelet-derived growth factor for the treatment of deep neuropathic diabetic foot ulcers (five studies. The studies considered in this review were of varying and partly low

  6. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans.

    Science.gov (United States)

    Morton, James P; Kayani, Anna C; McArdle, Anne; Drust, Barry

    2009-01-01

    Skeletal muscle adapts to the stress of contractile activity via changes in gene expression to yield an increased content of a family of highly conserved cytoprotective proteins known as heat shock proteins (HSPs). These proteins function to maintain homeostasis, facilitate repair from injury and provide protection against future insults. The study of the exercise-induced production of HSPs in skeletal muscle is important for the exercise scientist as it may provide a valuable insight into the molecular mechanisms by which regular exercise can provide increased protection against related and non-related stressors. As molecular chaperones, HSPs are also fundamental in facilitating the cellular remodelling processes inherent to the training response. Whilst the exercise-induced stress response of rodent skeletal muscle is relatively well characterized, data from humans are more infrequent and less insightful. Data indicate that acute endurance- and resistance-type exercise protocols increase the muscle content of ubiquitin, alphaB-crystallin, HSP27, HSP60, HSC70 and HSP70. Although increased HSP transcription occurs during exercise, immediately post-exercise or several hours following exercise, time-course studies using western blotting techniques have typically demonstrated a significant increase in protein content is only detectable within 1-2 days following the exercise stress. However, comparison amongst studies is complicated by variations in exercise protocol (mode, intensity, duration, damaging, non-damaging), muscle group examined, predominant HSP measured and, perhaps most importantly, differences in subject characteristics both within and between studies (training status, recent activity levels, nutritional status, age, sex, etc.). Following 'non-damaging' endurance-type activities (exercise that induces no overt structural and functional damage to the muscle), the stress response is thought to be mediated by redox signalling (transient and reversible

  7. Functional changes of human quadriceps muscle injured by eccentric exercise

    Directory of Open Access Journals (Sweden)

    F.V. Serrão

    2003-06-01

    Full Text Available The present study evaluated functional changes of quadriceps muscle after injury induced by eccentric exercise. Maximal isometric torque of quadriceps and the surface electromyography (root mean square, RMS, and median frequency, MDF of the vastus medialis oblique (VMO and vastus lateralis (VL muscles were examined before, immediately after and during the first 7 days after injury. Serum creatine kinase (CK levels and magnetic resonance imaging (MRI were used to identify muscle injury. The subject was used as her own control and percent refers to pre-injury data. Experiments were carried out with a sedentary 23-year-old female. Injury was induced by 4 bouts of 15 maximal isokinetic eccentric contractions (angular velocity of 5º/s; range of motion from 40º to 110º of knee flexion. The isometric torque of the quadriceps (knee at 90º flexion decreased 52% immediately after eccentric exercise and recovered on the 5th day. The highest reduction of RMS occurred on the 2nd day after injury in both VL (63% and VMO (66% and only VL recovered to the pre-injury level on the 7th day. Immediately after injury, the MDF decreased by 5 and 3% (VMO and VL, respectively and recovered one day later. Serum CK levels increased by 109% on the 2nd day and were still increased by 32% on the 7th day. MRI showed large areas of injury especially in the deep region of quadriceps. In conclusion, eccentric exercise decreased the isometric torque and electromyographic signals of quadriceps muscle, which were recovered in one week, despite the muscle regeneration signals.

  8. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis.

    Science.gov (United States)

    Paula, Flavia M M; Leite, Nayara C; Borck, Patricia C; Freitas-Dias, Ricardo; Cnop, Miriam; Chacon-Mikahil, Mara P T; Cavaglieri, Claudia R; Marchetti, Piero; Boschero, Antonio C; Zoppi, Claudio C; Eizirik, Decio L

    2017-11-13

    Prolonged exercise has positive metabolic effects in obese or diabetic individuals. These effects are usually ascribed to improvements in insulin sensitivity. We evaluated whether exercise also generates circulating signals that protect human and rodent β cells against endoplasmic reticulum (ER) stress and apoptosis. For this purpose, we obtained serum from humans or mice before and after an 8 wk training period. Exposure of human islets or mouse or rat β cells to human or rodent sera, respectively, obtained from trained individuals reduced cytokine (IL-1β+IFN-γ)- or chemical ER stressor-induced β-cell ER stress and apoptosis, at least in part via activation of the transcription factor STAT3. These findings indicate that exercise training improves human and rodent β-cell survival under diabetogenic conditions and support lifestyle interventions as a protective approach for both type 1 and 2 diabetes.-Paula, F. M. M., Leite, N. C., Borck, P. C., Freitas-Dias, R., Cnop, M., Chacon-Mikahil, M. P. T., Cavaglieri, C. R., Marchetti, P., Boschero, A. C., Zoppi, C. C., Eizirik, D. L. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis. © FASEB.

  9. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Møller, Kirsten; Volianitis, Stefanos

    2002-01-01

    ergometer. The gCBF and cerebral metabolic rates of oxygen, glucose, and lactate were determined with the Kety-Schmidt technique after 15 min of exercise when core temperature was similar across trials, and at the end of exercise, either when subjects remained normothermic (core temperature = 37.9 degrees C......The development of hyperthermia during prolonged exercise in humans is associated with various changes in the brain, but it is not known whether the cerebral metabolism or the global cerebral blood flow (gCBF) is affected. Eight endurance-trained subjects completed two exercise bouts on a cycle......; control) or when severe hyperthermia had developed (core temperature = 39.5 degrees C; hyperthermia). The gCBF was similar after 15 min in the two trials, and it remained stable throughout control. In contrast, during hyperthermia gCBF decreased by 18% and was therefore lower in hyperthermia compared...

  10. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression...... by elevated levels of plasma visfatin. Recombinant human IL-6 infusion to mimic the exercise-induced IL-6 response (n = 6) had no effect on visfatin mRNA expression in adipose tissue compared with the effect of placebo infusion (n = 6). The finding that exercise enhances subcutaneous adipose tissue visfatin mRNA...... in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4...

  11. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    Science.gov (United States)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  12. Effects of exercise and human contact on animal welfare in a dog shelter.

    Science.gov (United States)

    Menor-Campos, D J; Molleda-Carbonell, J M; López-Rodríguez, R

    2011-10-08

    The aim of the study is to investigate the reduction of stress in dogs in municipal shelters through easy-to-implement activities, ie, 25-minute sessions of exercise and human contact, that do not require a significant investment in terms of funding, staff or time. The results demonstrate that the dogs taking part in these sessions have lower salivary cortisol levels (F=121.42; Pbehaviour test (t(17)=4.27; P=0.001). It can therefore be affirmed that the exercise and human contact protocol proposed in the present study diminishes stress and improves the welfare of dogs housed in shelters.

  13. Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest

    Science.gov (United States)

    Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori

    2012-01-01

    Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is

  14. Single-leg squats can predict leg alignment in dancers performing ballet movements in "turnout".

    Science.gov (United States)

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve "turning out" or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in "turned out" postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat.

  15. Physical Rehabilitation for Disabled People with Insulin-independent Diabetes after Single Leg Amputation

    Directory of Open Access Journals (Sweden)

    Nataliya A. Pilosyan

    2012-11-01

    Full Text Available The article presents the program of physical rehabilitation for the disabled people with insulin-independent diabetes, who came through single leg amputation. The program includes phantom-impulsive gymnastics, exercises for the remaining leg, back and shoulders, for the improvement of stump functional state, equilibrium exercises and exercises for arms supporting function development. Set of therapeutic exercises involves exercise machine training. The application of the developed physical rehabilitation program at the stage of preparation for fitting the prosthesis and learning to walk on prosthetic leg has proved its efficiency according to test results, biomedical methods of research and increases the motor activity of 100% percent of patients.

  16. Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2010-01-01

    the review will address the available studies on low-intensity training performed separately with arm or legs or as whole-body training to evaluate if this leads to different adaptations in arm and leg muscle resulting in different substrate utilization patterns during separate arm or leg exercise...

  17. [Self-management programme for leg ulcer patients: increased physical activity and fewer wound days

    NARCIS (Netherlands)

    Heinen, M.M.; Borm, G.F.; Vleuten, C.J. van der; Evers, A.W.; Oostendorp, R.A.B.; Achterberg, T. van

    2012-01-01

    OBJECTIVE: To investigate the effectiveness of the Lively Legs programme on patient adherence to compression therapy, walking behaviour and leg exercising, as well as on leg ulcer recurrence. DESIGN: Randomized controlled trial (ClinicalTrials.gov identifier: NCT00184873). METHOD: A total of 184

  18. Enhanced procollagen processing in skeletal muscle after a single bout of eccentric loading in humans

    DEFF Research Database (Denmark)

    Crameri, Regina M; Langberg, Henning; Teisner, Børge

    2004-01-01

    young healthy male subjects performed a single bout of unaccustomed high intensity eccentric exercise on one leg, with the contralateral leg being the control. A significant increase in the muscle interstitial concentration of the N-terminal propeptide of procollagen type I (PINP) was observed (day 0: 1...... mechanical load and inflammation. This study shows that following a single bout of high intensity eccentric exercise there is an increase in procollagen processing within skeletal muscle in humans....

  19. Bridging animal and human models of exercise-induced brain plasticity

    Science.gov (United States)

    Voss, Michelle W.; Vivar, Carmen; Kramer, Arthur F.; van Praag, Henriette

    2015-01-01

    Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer’s disease (AD) in humans. PMID:24029446

  20. Blood flow in the peritendinous space of the human Achilles tendon during exercise

    DEFF Research Database (Denmark)

    Langberg, Henning; Bülow, J; Kjaer, M

    1998-01-01

    This study evaluated blood flow in the peritendinous space of the human Achilles tendon during rest and 40-min dynamical contraction of m. triceps surae. In 10 healthy volunteers 133Xe was injected in to the peritendinous space just ventrally to the Achilles tendon 2 and 5 cm proximal...... to the calcaneal insertion of the tendon, respectively. Blood flow 5 cm proximal to the Achilles tendon insertion was found to increase 4-fold from rest to exercise whereas the exercise induced increase in blood flow was less pronounced, only 2.5-fold, when measured 2 cm proximal to the Achilles tendon insertion....... Lymph drainage from the area was found to be negligible both during rest and exercise. We conclude that dynamical calf muscle contractions result in increased peritendinous blood flow at the Achilles tendon in humans....

  1. An Exercise in Molecular Epidemiology: Human Rhinovirus Prevalence and Genetics

    Science.gov (United States)

    Albright, Catherine J.; Hall, David J.

    2011-01-01

    Human rhinovirus (HRV) is one of the most common human respiratory pathogens and is responsible for the majority of upper respiratory illnesses. Recently, a phylogeny was constructed from all known American Type Culture Collection (ATCC) HRV sequences. From this study, three HRV classifications (HRVA, HRVB, and HRVC) were determined and techniques…

  2. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  3. Effect of dynamic exercise on human carotid-cardiac baroreflex latency

    Science.gov (United States)

    Potts, J. T.; Raven, P. B.

    1995-01-01

    We compared the beat-to-beat responses of heart rate (HR) after brief activation of carotid baroreceptors in resting humans with the responses obtained during mild-to-moderate levels of dynamic exercise [25 and 50% of peak O2 uptake (VO2peak)] to investigate the effect of exercise on baroreflex latency. Carotid baroreceptors were activated by a pressure pulse (5 s) of neck suction (NS, -80 Torr) and neck pressure (NP, +40 Torr) during held expiration. At rest the peak change in HR to NS/NP occurred during the first several heartbeats (1st-3rd beat), whereas during mild and moderate exercise peak HR responses occurred near the end of the NS/NP pulse (6th-8th beat). In contrast, time (s) to the peak change in HR was not different between rest and exercise (P > 0.05). Reflex tachycadia to NP progressively decreased during exercise (17 +/- 3, 10 +/- 1, and 4 +/- 1% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P tachycardia and a measure of HR variability (cardiac vagal tone index, r = 0.74, P < 0.0001). Reflex bradycardia to NS gradually increased during exercise (13 +/- 2, 17 +/- 2, and 18 +/- 2% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P = 0.10) and was negatively correlated with cardiac vagal tone (r = 0.42, P < 0.06).(ABSTRACT TRUNCATED AT 250 WORDS).

  4. THE EFFECT OF RESISTANCE AND ENDURANCE EXERCISE TRAINING ON MUSCLE PROTEOME EXPRESSION IN HUMAN SKELETAL MUSCLE

    Directory of Open Access Journals (Sweden)

    Chang Keun Kim

    2012-04-01

    Full Text Available To investigate the effect of resistance and endurance training on muscle proteome expression, samples of vastus lateralis from 10 physically active young men were analysed by 2-dimensional electrophoresis (2-DE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS. Differential patterns of protein expression were determined after 4 weeks of endurance or resistance exercise training. Following endurance exercise training, carbonic anhydrase III immunoglobulin heavy chain, myosin heavy chain 1, titin, chromosome 12, and fructose-1,6-bisphosphatase 2 were up-regulated while pyruvate kinase 3 isoform, ubiquitin carboxyl-terminal hydrolase, and phosphoglucomutase were down-regulated. After the 4 weeks of resistance exercise training, five proteins, apolipoprotein A-IV precursor, microtubule-actin cross linking factor 1, myosin light chain, growth hormone inducible transmembrane protein, and an unknown protein were up-regulated and pyruvate kinase 3 isoform, human albumin, and enolase 3 were down-regulated. We conclude that endurance and resistance exercise training differently alter the expression of individual muscle proteins, and that the response of muscle protein expression may be associated with specific myofibre adaptations to exercise training. Proteomic studies represent one of the developing techniques of metabolism which may substantially contribute to new insights into muscle and exercise physiology.

  5. EFFECT OF HEAT PRECONDITIONING BY MICROWAVE HYPERTHERMIA ON HUMAN SKELETAL MUSCLE AFTER ECCENTRIC EXERCISE

    Directory of Open Access Journals (Sweden)

    Norio Saga

    2008-03-01

    Full Text Available The purpose of this study was to clarify whether heat preconditioning results in less eccentric exercise-induced muscle damage and muscle soreness, and whether the repeated bout effect is enhanced by heat preconditioning prior to eccentric exercise. Nine untrained male volunteers aged 23 ± 3 years participated in this study. Heat preconditioning included treatment with a microwave hyperthermia unit (150 W, 20 min that was randomly applied to one of the subject's arms (MW; the other arm was used as a control (CON. One day after heat preconditioning, the subjects performed 24 maximal isokinetic eccentric contractions of the elbow flexors at 30°·s-1 (ECC1. One week after ECC1, the subjects repeated the procedure (ECC2. After each bout of exercise, maximal voluntary contraction (MVC, range of motion (ROM of the elbow joint, upper arm circumference, blood creatine kinase (CK activity and muscle soreness were measured. The subjects experienced both conditions at an interval of 3 weeks. MVC and ROM in the MW were significantly higher than those in the CON (p < 0.05 for ECC1; however, the heat preconditioning had no significant effect on upper arm circumference, blood CK activity, or muscle soreness following ECC1 and ECC2. Heat preconditioning may protect human skeletal muscle from eccentric exercise-induced muscle damage after a single bout of eccentric exercise but does not appear to promote the repeated bout effect after a second bout of eccentric exercise

  6. Linking brains and brawn: exercise and the evolution of human neurobiology.

    Science.gov (United States)

    Raichlen, David A; Polk, John D

    2013-01-07

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.

  7. Linking brains and brawn: exercise and the evolution of human neurobiology

    Science.gov (United States)

    Raichlen, David A.; Polk, John D.

    2013-01-01

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance. PMID:23173208

  8. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between ...

  9. AMPK and the biochemistry of exercise: implications for human health and disease

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, Neil B.

    2009-01-01

    AMPK (AMP-activated protein kinase) is a phylogenetically conserved fuel-sensing enzyme that is present in all mammalian cells. During exercise, it is activated in skeletal muscle in humans, and at least in rodents, also in adipose tissue, liver and perhaps other organs by events that increase th...

  10. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Kalsi, Kameljit K

    2017-01-01

    with exercise capacity, blood temperature (TB), oxygen uptake (V̇O2), brain perfusion (MCA Vmean), locomotor limb hemodynamics, and hematological parameters were assessed during incremental cycling exercise with elevated skin (mild hyperthermia; HYPmild), combined core and skin temperatures (moderate......Cardiovascular strain and hyperthermia are thought to be important factors limiting exercise capacity in heat-stressed humans, however, the contribution of elevations in skin (Tsk) versus whole body temperatures on exercise capacity has not been characterized. To ascertain their relationships...... hyperthermia; HYPmod), and under control conditions. Both hyperthermic conditions increased Tsk versus control (6.2 ± 0.2°C; P exercise, Tsk remained elevated in both hyperthermic...

  11. Advocating neuroimaging studies of transmitter release in human physical exercise challenges studies.

    Science.gov (United States)

    Boecker, Henning; Othman, Ahmed; Mueckter, Sarah; Scheef, Lukas; Pensel, Max; Daamen, Marcel; Jankowski, Jakob; Schild, Hh; Tölle, Tr; Schreckenberger, M

    2010-01-01

    This perspective attempts to outline the emerging role of positron emission tomography (PET) ligand activation studies in human exercise research. By focusing on the endorphinergic system and its acclaimed role for exercise-induced antinociception and mood enhancement, we like to emphasize the unique potential of ligand PET applied to human athletes for uncovering the neurochemistry of exercise-induced psychophysiological phenomena. Compared with conventional approaches, in particular quantification of plasma beta-endorphin levels under exercise challenges, which are reviewed in this article, studying opioidergic effects directly in the central nervous system (CNS) with PET and relating opioidergic binding changes to neuropsychological assessments, provides a more refined and promising experimental strategy. Although a vast literature dating back to the 1980s of the last century has been able to reproducibly demonstrate peripheral increases of beta-endorphin levels after various exercise challenges, so far, these studies have failed to establish robust links between peripheral beta-endorphin levels and centrally mediated behavioral effects, ie, modulation of mood and/or pain perception. As the quantitative relation between endorphins in the peripheral blood and the CNS remains unknown, the question arises, to what extent conventional blood-based methods can inform researchers about central neurotransmitter effects. As previous studies using receptor blocking approaches have also revealed equivocal results regarding exercise effects on pain and mood processing, it is expected that PET and other functional neuroimaging applications in athletes may in future help uncover some of the hitherto unknown links between neurotransmission and psychophysiological effects related to physical exercise.

  12. Exaggerated blood pressure response to dynamic exercise despite chronic refractory hypotension: results of a human case study.

    Science.gov (United States)

    Rogan, Alice; McGregor, Gordon; Weston, Charles; Krishnan, Nithya; Higgins, Robert; Zehnder, Daniel; Ting, Stephen M S

    2015-06-09

    Chronic refractory hypotension is a rare but significant mortality risk in renal failure patients. Such aberrant physiology usually deems patient unfit for renal transplant surgery. Exercise stimulates the mechano-chemoreceptors in the skeletal muscle thereby modulating the sympathetic effects on blood pressure regulation. The haemodynamic response to dynamic exercise in such patients has not been previously investigated. We present a case with severe chronic hypotension who underwent exercise testing before and after renal transplantation, with marked differences in blood pressure response to exercise. A 40-year old haemodialysis-dependent patient with a 2 year history of refractory hypotension (≤80/50 mmHg) was referred for living donor renal transplantation at our tertiary centre. Each dialysis session was often less than 2 h and 30 min due to symptomatic hypotension. As part of the cardiovascular assessment, she underwent haemodynamic evaluation with cardiopulmonary exercise testing. Blood pressure normalized during unloaded pedalling but was exaggerated at maximal workload whereby it rose from 82/50 mmHg to a peak of 201/120 mmHg. Transthoracic echocardiography, tonometric measure of central vascular compliance and myocardial perfusion scan were normal. She subsequently underwent an antibody-incompatible renal transplantation and was vasopressor reliant for 14 days during the post-operative period. Eight weeks following transplant, resting blood pressure was normal and a physiological exercise-haemodynamic response was observed during a repeat cardiopulmonary exercise testing. This case highlights the potential therapeutic role of unloaded leg cycling exercise during dialysis session to correct chronic hypotension, allowing patients to have greater tolerance to fluid shift. It also adds to existing evidence that sympathetic dysfunction is reversible with renal transplant. Furthermore chronic hypotension with preserved exercise-haemodynamic response

  13. Mechanical Design Of Prototype Exoskeleton Robotic System For Human Leg Movements And Implementation Of Gait Data With Neural Network

    National Research Council Canada - National Science Library

    Evren Meltem Toygar; Ahmet Özkurt; Zeki Kıral; Mehmet Çakmakçı; Binnur Gören Kıral; Yavuz Şenol; Taner Akkan; Yusuf Arman; Tolga Olcay; Necati Mutlu Dağhan; Murat Karagöz

    2012-01-01

    .... Exoskeleton system is modeled by using SolidWorks. At the same time, gait data is acquired on human body and sole is divided four parts after that reaction forces are gauged during the walking...

  14. Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans

    DEFF Research Database (Denmark)

    Langberg, Henning; Skovgaard, D; Petersen, L J

    1999-01-01

    .e.m. values) for both radioactively labelled substances. 3. PICP concentration decreased in both interstitial peritendinous tissue and arterial blood immediately after exercise, but rose 3-fold from basal 72 h after exercise in the peritendinous tissue (55 +/- 10 microg l-1, mean +/- s.e.m. (rest) to 165...... as determined with microdialysis and using dialysate fibre with a very high molecular mass cut-off. This suggests an adaptation to acute physical loading also in non-bone-related collagen in humans....

  15. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training

    DEFF Research Database (Denmark)

    Alsted, Thomas J; Schweiger, Martina; Nybo, Lars

    2009-01-01

    ) is not changed. Recently, adipose triglyceride lipase (ATGL) was identified as a TG-specific lipase in various rodent tissues. To investigate whether human skeletal muscle ATGL protein is regulated by endurance exercise training, 10 healthy young men completed 8 wk of supervised endurance exercise training...... altogether, indicating an enhanced basal activity of this lipase. No change was found in the expression of diacylglycerol acyl transferase 1 (DGAT1) after training. Inhibition of HSL with a monospecific, small molecule inhibitor (76-0079) and stimulation of ATGL with CGI-58 revealed that significant ATGL...

  16. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.

    Science.gov (United States)

    Bangsbo, J; Graham, T; Johansen, L; Saltin, B

    1994-10-01

    This study examined the effect of low-intensity exercise on lactate metabolism during the first 10 min of recovery from high-intensity exercise. Subjects exercised (61.0 +/- 5.4 W) one leg to exhaustion (approximately 3.5 min), and after 1 h of rest they performed the same exhaustive exercise with the other leg. For one leg the intense exercise was followed by rest [passive (P) leg], and for the other leg the exercise was followed by a 10-min period with low-intensity exercise at a work rate of 10 W [active (A) leg]. The muscle lactate concentration after the intense exercise was the same in the P and A legs, but after 10 min of recovery, the lactate concentration and the arterial blood lactate level were higher for the P leg than for the A leg (both P O2 consumption during 10 min of recovery was 440 and 750 ml for the P and A legs, respectively. The present data suggest that a lowered blood lactate level during active recovery is due to an elevated muscle lactate metabolism and is not caused by a transient higher release of lactate from the exercising muscles coupled with greater uptake in other tissues.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Jenny Lund

    Full Text Available Physical activity has preventive as well as therapeutic benefits for overweight subjects. In this study we aimed to examine effects of in vivo exercise on in vitro metabolic adaptations by studying energy metabolism in cultured myotubes isolated from biopsies taken before and after 12 weeks of extensive endurance and strength training, from healthy sedentary normal weight and overweight men.Healthy sedentary men, aged 40-62 years, with normal weight (body mass index (BMI < 25 kg/m2 or overweight (BMI ≥ 25 kg/m2 were included. Fatty acid and glucose metabolism were studied in myotubes using [14C]oleic acid and [14C]glucose, respectively. Gene and protein expressions, as well as DNA methylation were measured for selected genes.The 12-week training intervention improved endurance, strength and insulin sensitivity in vivo, and reduced the participants' body weight. Biopsy-derived cultured human myotubes after exercise showed increased total cellular oleic acid uptake (30%, oxidation (46% and lipid accumulation (34%, as well as increased fractional glucose oxidation (14% compared to cultures established prior to exercise. Most of these exercise-induced increases were significant in the overweight group, whereas the normal weight group showed no change in oleic acid or glucose metabolism.12 weeks of combined endurance and strength training promoted increased lipid and glucose metabolism in biopsy-derived cultured human myotubes, showing that training in vivo are able to induce changes in human myotubes that are discernible in vitro.

  18. Lyden-af-Leg

    DEFF Research Database (Denmark)

    Toft, Herdis

    Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform.......Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform....

  19. Dynamically Stable Legged Locomotion.

    Science.gov (United States)

    1983-01-27

    balanced itself in 31) using a tabular ctontrol sclwnme. With only thUiee actuated degrees it used a shuffling gait to balance that reminds one of Charlie ... Chaplin . * The present study explores the control of a physical one-legged hopping machine. The objective of using a machine with only one leg was to

  20. Peripheral artery disease - legs

    Science.gov (United States)

    ... the legs, feet, and toes Painful, non-bleeding sores on the feet or toes (most often black) that are slow ... block small arteries Coronary artery disease Impotence Open sores ... (gangrene) The affected leg or foot may need to be amputated

  1. Cerebral blood flow during submaximal and maximal dynamic exercise in humans

    DEFF Research Database (Denmark)

    Thomas, S N; Schroeder, T; Secher, N H

    1989-01-01

    Cerebral blood flow (CBF) in humans was measured at rest and during dynamic exercise on a cycle ergometer corresponding to 56% (range 27-85) of maximal O2 uptake (VO2max). Exercise bouts were performed by 16 male and female subjects, lasted 15 min each, and were carried out in a semisupine position....... CBF (133Xe clearance) was expressed as the initial slope index (ISI) and as the first compartment flow (F1). CBF at rest [ISI, 58 (range 45-73); F1, 76 (range 55-98) ml.100 g-1.min-1] increased during exercise [ISI to 79 (57-94) and F1 to 118 (75-164) ml.100 g-1.min-1, P less than 0.01]. CBF did...

  2. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    providing LC during recovery elicited a sustained/enhanced increase in activation of these genes through 8 to 24 hours of recovery. These findings provide evidence that factors associated with substrate availability and/or cellular metabolic recovery (eg, muscle glycogen restoration) influence......In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, 9...... male subjects (aged 22-27) completed 75 minutes of cycling exercise at 75% V¿o2max on 2 occasions, consuming either a high-carbohydrate (HC) or low-carbohydrate (LC) diet during the subsequent 24 hours of recovery. Nuclei were isolated and tissue frozen from vastus lateralis muscle biopsies obtained...

  3. Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans

    DEFF Research Database (Denmark)

    Laker, R C; Garde, C; Camera, D M

    2017-01-01

    High fat feeding impairs skeletal muscle metabolic flexibility and induces insulin resistance, whereas exercise training exerts positive effects on substrate handling and improves insulin sensitivity. To identify the genomic mechanisms by which exercise ameliorates some of the deleterious effects...... of high fat feeding, we investigated the transcriptional and epigenetic response of human skeletal muscle to 9 days of a high-fat diet (HFD) alone (Sed-HFD) or in combination with resistance exercise (Ex-HFD), using genome-wide profiling of gene expression and DNA methylation. HFD markedly induced...... association between DNA methylation and gene expression changes were PYGM, which was epigenetically regulated in both groups, and ANGPTL4, which was regulated only following Ex. In conclusion, while short-term Ex did not prevent a HFD-induced inflammatory response, it provoked a genomic response that may...

  4. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    as evidenced by pharmacological manipulation of adrenergic and cholinergic receptors. Cholinergic blockade by glycopyrrolate blocks the exercise-induced increase in the transcranial Doppler determined mean flow velocity (MCA Vmean). Conversely, alpha-adrenergic activation increases that expression of cerebral......This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip...

  5. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery

    DEFF Research Database (Denmark)

    Leick, Lotte; Plomgaard, Peter S.; Grønløkke, L.

    2010-01-01

    Exercise-induced adaptations in skeletal muscle oxidative enzymes are suggested to result from the cumulative effects of transient changes in gene expression after each single exercise session. However, for several oxidative enzymes, no changes in mRNA expression are detected up to 8 h after......-responsive oxidative enzymes is up-regulated in human skeletal muscle at 10-24 h of recovery, supporting that exercise-induced adaptations of these oxidative enzymes can be the result of the cumulative effects of transient changes in mRNA expression....... exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery...

  6. Modulation of postjunctional α-adrenergic vasoconstriction during exercise and exogenous ATP infusions in ageing humans

    Science.gov (United States)

    Kirby, Brett S; Crecelius, Anne R; Voyles, Wyatt F; Dinenno, Frank A

    2011-01-01

    Abstract The ability to modulate sympathetic α-adrenergic vasoconstriction in contracting muscle is impaired with age. In young adults, adenosine triphosphate (ATP) has been shown to blunt sympathetic vasoconstrictor responsiveness similar to exercise. Therefore, we tested the hypothesis that modulation of postjunctional α-adrenergic vasoconstriction to exogenous ATP is impaired in ageing humans. We measured forearm blood flow (FBF; Doppler ultrasound) and calculated vascular conductance (FVC) to intra-arterial infusions of phenylephrine (α1-agonist) and dexmedetomidine (α2-agonist) during rhythmic handgrip exercise (15% MVC), a control non-exercise vasodilator condition (adenosine), and ATP infusion in seven older (64 ± 3 years) and seven young (22 ± 1 years) healthy adults. Forearm hyperaemia was matched across all vasodilatating conditions. During adenosine, forearm vasoconstrictor responses to direct α1-stimulation were lower in older compared with young adults (ΔFVC =−25 ± 3%vs.−41 ± 5%; P different (−35 ± 6%vs.−44 ± 8%; NS). During exercise, α1-mediated vasoconstriction was significantly blunted compared with adenosine in both young (−9 ± 2%vs.−41 ± 5%) and older adults (−15 ± 2%vs.−25 ± 3%); however, the magnitude of sympatholysis was reduced in older adults (32 ± 13 vs. 74 ± 8%; P exercise was significantly blunted in both young (−15 ± 4%vs.−44 ± 8%) and older adults (−26 ± 3%vs.−35 ± 6%), however the magnitude of sympatholysis was reduced in older adults (19 ± 8%vs. 60 ± 10%; P age groups (∼85–90%). Our findings indicate that the ability to modulate postjunctional α-adrenergic vasoconstriction during exercise is impaired with age, whereas the sympatholytic effect of exogenous ATP is preserved. Thus, if impairments in vascular control during exercise in older adults involve vasoactive ATP, we speculate that circulating ATP is reduced with advancing age. PMID:21486772

  7. Effect of dietary glycemic index on substrate transporter gene expression in human skeletal muscle after exercise.

    Science.gov (United States)

    Cheng, I-S; Liao, S-F; Liu, K-L; Liu, H-Y; Wu, C-L; Huang, C-Y; Mallikarjuna, K; Smith, R W; Kuo, C-H

    2009-12-01

    Skeletal muscle plays important role in the regulation of whole-body metabolism. In skeletal muscle, uptakes of glucose and fatty acid from circulation are facilitated by transmembrane substrate transporters GLUT4 and FAT/CD36, respectively. The aim of this study was to determine the effect of dietary glycemic index (GI) on GLUT4 and FAT/CD36 gene expressions in human skeletal muscle after a single bout of exercise. Eight male subjects completed a 60-min cycling exercise at 75% maximal oxygen consumption (VO(2 max)), and were immediately fed an isocaloric meal containing either high-GI (HGI) or low-GI (LGI) diets, with similar proportions of carbohydrate, fat and protein in a crossover design. Muscle samples from deep vastus lateralis were taken by needle biopsy immediately after exercise and 3 h after exercise. After exercise, the HGI diet produced significantly greater glucose and insulin responses compared with the LGI diet, as indicated by the greater area under the curves. Both diets resulted in rapid reductions in plasma fatty acid and glycerol below fasting level. GLUT4 mRNA was downregulated by both HGI and LGI diets to a comparable extent, whereas GLUT4 protein levels were not changed during this short period. FAT/CD36 mRNA and protein levels were substantially decreased with the HGI diet below baseline, but not with the LGI diet. This study found a significant dietary GI effect on post-exercise FAT/CD36 gene expression in human skeletal muscle. This result implicates that the differences in dietary GI are sufficient to alter fat metabolism.

  8. Human skeletal muscle HSP70 response to physical training depends on exercise intensity.

    Science.gov (United States)

    Liu, Y; Lormes, W; Baur, C; Opitz-Gress, A; Altenburg, D; Lehmann, M; Steinacker, J M

    2000-07-01

    We have previously reported that HSP70 in human skeletal muscle could be induced by training. However, whether HSP70 induction is dependent upon exercise volume or exercise intensity remains unknown. The aim of the present study was to investigate the relationship between HSP70 and training intensity in rowers. Fourteen well-trained male rowers were divided into two groups (group A, n = 6; group B, n = 8). Group A performed higher intensity exercise during 1st phase, whereas group B performed higher intensity exercise during 2nd training phase. Training volume in 2nd phase increased in both groups. Both training intensity and volume were reduced in 3rd phase. Muscle samples were taken from m. vastus lateralis by fine needle biopsy before training, at the end of the 1st, 2nd and 3rd training phases. HSP70 was quantitatively determined using SDS-PAGE with silver stain. In group A, HSP70 increased significantly from 38 +/- 12 etag before training to 59 +/- 16 etag at the end of the lst training phase (loaded total protein 2.5microg), and decreased afterwards. In group B, HSP70 increase (from 36 +/- 11 etag to 50 +/- 13 etag) in the 1st phase was significantly smaller, there was a further increase of HSP70 in the 2nd phase (60 +/- 14 etag). At the end of the training, HSP70 decreased in both groups. Thus, HSP70 response to training seems to be dependent upon exercise intensity.

  9. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals

    DEFF Research Database (Denmark)

    Møller, Andreas Buch; Vendelbo, Mikkel Holm; Rahbek, Stine Klejs

    2013-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein......), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major...... other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect...

  10. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Glisezinski, I. de; Larrouy, D.; Bajzova, M.

    2009-01-01

    . Under placebo, propranolol infusion in the probe containing phentolamine reduced by about 45% exercise-induced glycerol release; this effect was fully suppressed under octreotide infusion while noradrenaline was still elevated and exercise-induced lipid mobilization maintained in both lean and obese...... specifically to SCAT and exercise only or if conclusions could be extended to all forms of lipolysis in humans Udgivelsesdato: 2009/7/1...

  11. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot ...

  12. Problems with Legs and Feet

    Science.gov (United States)

    ... Your Teeth Heart Murmurs Problems With Legs and Feet KidsHealth > For Kids > Problems With Legs and Feet Print A A A Where would you be without your legs and feet? They do a lot to get you where ...

  13. Repeated increases in blood flow, independent of exercise, enhance conduit artery vasodilator function in humans.

    Science.gov (United States)

    Naylor, Louise H; Carter, Howard; FitzSimons, Matthew G; Cable, N Timothy; Thijssen, Dick H J; Green, Daniel J

    2011-02-01

    This study aimed to determine the importance of repeated increases in blood flow to conduit artery adaptation, using an exercise-independent repeated episodic stimulus. Recent studies suggest that exercise training improves vasodilator function of conduit arteries via shear stress-mediated mechanisms. However, exercise is a complex stimulus that may induce shear-independent adaptations. Nine healthy men immersed their forearms in water at 42°C for three 30-min sessions/wk across 8 wk. During each session, a pneumatic pressure cuff was inflated around one forearm to unilaterally modulate heating-induced increases in shear. Forearm heating was associated with an increase in brachial artery blood flow (P<0.001) and shear rate (P<0.001) in the uncuffed forearm; this response was attenuated in the cuffed limb (P<0.005). Repeated episodic exposure to bilateral heating induced an increase in endothelium-dependent vasodilation in response to 5-min ischemic (P<0.05) and ischemic handgrip exercise (P<0.005) stimuli in the uncuffed forearm, whereas the 8-wk heating intervention did not influence dilation to either stimulus in the cuffed limb. Endothelium-independent glyceryl trinitrate responses were not altered in either limb. Repeated heating increases blood flow to levels that enhance endothelium-mediated vasodilator function in humans. These findings reinforce the importance of the direct impacts of shear stress on the vascular endothelium in humans.

  14. Exercise in vivo marks human myotubes in vitro: Training-induced increase in lipid metabolism

    Science.gov (United States)

    Lund, Jenny; Mudry, Jonathan M.; Langleite, Torgrim M.; Feng, Yuan Z.; Stensrud, Camilla; Brubak, Mari G.; Drevon, Christian A.; Birkeland, Kåre I.; Kolnes, Kristoffer J.; Johansen, Egil I.; Tangen, Daniel S.; Stadheim, Hans K.; Gulseth, Hanne L.; Krook, Anna; Kase, Eili T.; Jensen, Jørgen; Thoresen, G. Hege

    2017-01-01

    Background and aims Physical activity has preventive as well as therapeutic benefits for overweight subjects. In this study we aimed to examine effects of in vivo exercise on in vitro metabolic adaptations by studying energy metabolism in cultured myotubes isolated from biopsies taken before and after 12 weeks of extensive endurance and strength training, from healthy sedentary normal weight and overweight men. Methods Healthy sedentary men, aged 40–62 years, with normal weight (body mass index (BMI) exercise showed increased total cellular oleic acid uptake (30%), oxidation (46%) and lipid accumulation (34%), as well as increased fractional glucose oxidation (14%) compared to cultures established prior to exercise. Most of these exercise-induced increases were significant in the overweight group, whereas the normal weight group showed no change in oleic acid or glucose metabolism. Conclusions 12 weeks of combined endurance and strength training promoted increased lipid and glucose metabolism in biopsy-derived cultured human myotubes, showing that training in vivo are able to induce changes in human myotubes that are discernible in vitro. PMID:28403174

  15. Gelatinases and physical exercise: A systematic review of evidence from human studies.

    Science.gov (United States)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio

    2017-09-01

    Matrix metalloproteinases (MMPs), particularly gelatinase A (MMP-2) and gelatinase B (MMP-9), as well as their tissue inhibitors (TIMP-1 and TIMP-2), are involved in the development of skeletal muscle tissue, in the repair process after muscle injury and in the adaptive modifications induced by physical exercise in skeletal muscle. This paper aims at reviewing results from human studies that investigated the role of gelatinases and their inhibitors in skeletal muscle response to acute physical exercise or training. Electronic databases PubMed/MEDLINE, Scopus and Web of Science were searched for papers published between January 2000 and February 2017. The papers were eligible when reporting human studies in which MMP-2 and/or MMP-9 and/or the inhibitors TIMP-1/TIMP-2 were evaluated, in blood or muscular tissue, before and after acute physical exercise or before and after a period of structured physical training. We included studies on healthy subjects and patients with chronic metabolic diseases (obesity, diabetes mellitus, metabolic syndrome-MS) or asymptomatic coronary artery disease. We excluded studies on patients with neurological, rheumatologic or neoplastic diseases. Studies conducted on muscle biopsies showed an early stimulation of MMP-9 gene transcription as a result of acute exercise, whereas MMP-2 and TIMP transcription resulted from regular repetition of exercise over time. Studies on serum or plasma level of gelatinases and their inhibitors showed an early release of MMP-9 after acute exercise of sufficient intensity, while data on MMP-2 and TIMP were more contrasting. Most of the studies dealing with the effect of training indicated a trend toward reduction in blood gelatinase levels, once again more clear for MMP-9. This result was related to an anti-inflammatory effect of regular exercise and was more evident when training consisted of aerobic activities. This study has limitations: as the initial selection was done through titles and abstracts

  16. Muscle interstitial potassium kinetics during intense exhaustive exercise

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Mohr, Magni; Pedersen, Lasse Dannemann

    2003-01-01

    Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma...... was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 m......M at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P exhaustion (11.9 +/- 0.5 vs. 10.3 +/- 0.6 mM; P...

  17. Short-term acetaminophen consumption enhances the exercise-induced increase in Achilles peritendinous IL-6 in humans

    DEFF Research Database (Denmark)

    Gump, Brian S; McMullan, David R; Cauthon, David J

    2013-01-01

    Through an unknown mechanism the cyclooxygenase (COX) inhibitor acetaminophen (APAP) alters tendon mechanical properties in humans when consumed during exercise. Interleukin-6 (IL-6) is produced by tendon during exercise and is a potent stimulator of collagen synthesis. In non-tendon tissue, IL-6...

  18. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima

    2015-01-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high...

  19. Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta.

    Directory of Open Access Journals (Sweden)

    Robinson Ramírez-Vélez

    Full Text Available OBJECTIVE: To determine the effects of combined aerobic and resistance exercise training during the second half of pregnancy on endothelial NOS expression (eNOS, nitric oxide (NO production and oxygen metabolism in human placenta. METHODS: The study included 20 nulliparous in gestational week 16-20, attending prenatal care at three tertiary hospitals in Colombia who were randomly assigned into one of two groups: The exercise group (n = 10 took part in an exercise session three times a week for 12 weeks which consisted of: aerobic exercise at an intensity of 55-75% of their maximum heart rate for 60 min and 25 mins. Resistance exercise included 5 exercise groups circuit training (50 repetitions of each using barbells (1-3 kg/exercise and low-to-medium resistance bands. The control group (n = 10 undertook their usual physical activity. Mitochondrial and cytosol fractions were isolated from human placental tissue by differential centrifugation. A spectrophotometric assay was used to measure NO production in cytosolic samples from placental tissue and Western Blot technique to determine eNOS expression. Mitochondrial superoxide levels and hydrogen peroxide were measured to determine oxygen metabolism. RESULTS: Combined aerobic and resistance exercise training during pregnancy leads to a 2-fold increase in eNOS expression and 4-fold increase in NO production in placental cytosol (p = 0.05. Mitochondrial superoxide levels and hydrogen peroxide production rate were decreased by 8% and 37% respectively in the placental mitochondria of exercising women (p = 0.05. CONCLUSION: Regular exercise training during the second half of pregnancy increases eNOS expression and NO production and decreases reactive oxygen species generation in human placenta. Collectively, these data demonstrate that chronic exercise increases eNOS/NO production, presumably by increasing endothelial shear stress. This adaptation may contribute to the beneficial effects of exercise on

  20. Assessment of cardiac output with transpulmonary thermodilution during exercise in humans

    DEFF Research Database (Denmark)

    Calbet, José A L; Boushel, Robert

    2015-01-01

    and intrathoracic blood volume, as well as extravascular lung water (EVLW) in resting humans. It remains unknown if this technique is also accurate and reproducible during exercise. Sixteen healthy men underwent catheterization of the right femoral vein (for iced saline injection), an antecubital vein (ICG......, standard error of the estimate: 1.452 l/min, P limits of agreement -2.98 to 2.86 l/min), and TPTd-Q̇ and ICG-Q̇ increased linearly with oxygen uptake with similar intercepts and slopes. Both methods had mean coefficients of variation close to 5% for Q̇, global end...... into the femoral vein is an accurate and reproducible method to assess Q̇ during exercise in humans....

  1. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    OpenAIRE

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-01-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. H...

  2. The effects of regular physical exercise on the human body

    Directory of Open Access Journals (Sweden)

    Mavrić Fahrudin

    2014-01-01

    Full Text Available Regular physical activities should be an integral part of an active lifestyle and the proper use of one's time. Programs including such activities are more effectively being applied in the prevention and elimination of health problems, especially those that are the result of decreased movement, inadequate nutrition and excessive nervous tension. Numerous studies have revealed new information about the link between physical activity and quality of life. Each person would have to be involved in physical activity of moderate intensity most days for 30 to 60 minutes, because active people are more healthier and have higher endurance levels, have a positive attitude towards work and cope with everyday stress better. Activity helps you look better, makes you happier and more vital. Studies have clearly shown that physical activity affects health and reduces the risk of many diseases. An active life increases energy, vitality, helps change bad habits, improves health, and strengthens one's energy and desire for life. The aim of this study was to determine the effects of regular physical activity on the human body. The subject matter of this study is the collection and analysis of results which the authors of various studies have obtained. The reviewed literature was collected using a web browser, and consisted of research work available in the Kobson database, through Google Scholar and in journals available in the field of sports science. The method of treatment is descriptive because the studies involved a variety of training programs, people of different ages, and tests carried out by different measuring instruments, so there is no possibility of a comparison of the results by other means.

  3. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle

    DEFF Research Database (Denmark)

    Mortensen, Brynjulf; Hingst, Janne Rasmuss; Frederiksen, Nicklas

    2013-01-01

    Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling....... We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 hour of acute exercise performed at the same relative workload before and after 12 weeks of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status...

  4. Restless legs syndrome.

    Science.gov (United States)

    Venkateshiah, Saiprakash B; Ioachimescu, Octavian C

    2015-07-01

    Restless legs syndrome is a common sensorimotor disorder characterized by an urge to move, and associated with uncomfortable sensations in the legs (limbs). Restless legs syndrome can lead to sleep-onset or sleep-maintenance insomnia, and occasionally excessive daytime sleepiness, all leading to significant morbidity. Brain iron deficiency and dopaminergic neurotransmission abnormalities play a central role in the pathogenesis of this disorder, along with other nondopaminergic systems, although the exact mechanisms are still. Intensive care unit patients are especially vulnerable to have unmasking or exacerbation of restless legs syndrome because of sleep deprivation, circadian rhythm disturbance, immobilization, iron deficiency, and use of multiple medications that can antagonize dopamine. Published by Elsevier Inc.

  5. Leg CT scan

    Science.gov (United States)

    ... stopping.) A computer creates separate images of the body area, called slices. These images can be stored, viewed on a monitor, or printed on film. Three-dimensional (3D) models of the leg can ...

  6. Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans

    DEFF Research Database (Denmark)

    De Bock, K.; Richter, Erik; Russell, A.P.

    2005-01-01

    The effects were compared of exercise in the fasted state and exercise with a high rate of carbohydrate intake on intramyocellular triglyceride (IMTG) and glycogen content of human muscle. Using a randomized crossover study design, nine young healthy volunteers participated in two experimental...... sessions with an interval of 3 weeks. In each session subjects performed 2 h of constant-load bicycle exercise (~75% VO2,max), followed by 4 h of controlled recovery. On one occasion they exercised after an overnight fast (F), and on the other (CHO) they received carbohydrates before (~150 g) and during (1...... g (kg bw)-1 h-1) exercise. In both conditions, subjects ingested 5 g carbohydrates per kg body weight during recovery. Fibre type-specific relative IMTG content was determined by Oil red O staining in needle biopsies from m. vastus lateralis before, immediately after and 4 h after exercise. During F...

  7. 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jakob Nis; Mustard, Kirsty J.W.; Graham, Drew A.

    2002-01-01

    (3)) AMPK subunits and exercise-induced AMPK activity are influenced by exercise training status, muscle biopsies were obtained from seven endurance exercise-trained and seven sedentary young healthy men. The alpha(1)- and alpha(2)-AMPK mRNA contents in trained subjects were both 117 +/- 2...... trained human skeletal muscle has increased alpha(1)-AMPK protein levels and blunted AMPK activation during exercise.......5'-AMP-activated protein kinase (AMPK) has been proposed to be a pivotal factor in cellular responses to both acute exercise and exercise training. To investigate whether protein levels and gene expression of catalytic (alpha(1), alpha(2)) and regulatory (beta(1), beta(2), gamma(1), gamma(2), gamma...

  8. Robust and efficient walking with spring-like legs

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, J; Blum, Y; Seyfarth, A, E-mail: juergen.rummel@uni-jena.d, E-mail: andre.seyfarth@uni-jena.d [Lauflabor Locomotion Laboratory, University of Jena, Dornburger Strasse 23, 07743 Jena (Germany)

    2010-12-15

    The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k-tilde = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.

  9. Robust and efficient walking with spring-like legs.

    Science.gov (United States)

    Rummel, J; Blum, Y; Seyfarth, A

    2010-12-01

    The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.

  10. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    Science.gov (United States)

    Kristensen, Dorte E; Albers, Peter H; Prats, Clara; Baba, Otto; Birk, Jesper B; Wojtaszewski, Jørgen F P

    2015-01-01

    AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been demonstrated. We hypothesized that AMPK subunits are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of vastus lateralis muscle from healthy men before and after two exercise trials: (1) continuous cycling (CON) for 30 min at 69 ± 1% peak rate of O2 consumption () or (2) interval cycling (INT) for 30 min with 6 × 1.5 min high-intensity bouts peaking at 95 ± 2% . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (−71%) was found. α1, α2, β2 and γ1 AMPK expression was similar between fibre types. In type I vs. II fibres phosphoregulation after CON was similar (AMPKThr172, ACCSer221, TBC1D1Ser231 and GS2+2a) or lower (TBC1D4Ser704). Following INT, phosphoregulation in type I vs. II fibres was lower (AMPKThr172, TBC1D1Ser231, TBC1D4Ser704 and ACCSer221) or higher (GS2+2a). Exercise-induced glycogen degradation in type I vs. II fibres was similar (CON) or lower (INT). In conclusion, a differentiated response to exercise of metabolic signalling/effector proteins in human type I and II fibres was evident during interval exercise. This could be important for exercise type-specific adaptations, i.e. insulin sensitivity and mitochondrial density, and highlights the potential for new discoveries when investigating fibre type-specific signalling. PMID:25640469

  11. Advocating neuroimaging studies of transmitter release in human physical exercise challenges studies

    Directory of Open Access Journals (Sweden)

    Henning Boecker

    2010-09-01

    Full Text Available Henning Boecker1, Ahmed Othman1, Sarah Mueckter1, Lukas Scheef1, Max Pensel1, Marcel Daamen1, Jakob Jankowski1, HH Schild2, TR Tölle3, M Schreckenberger41FE Klinische Funktionelle Neurobildgebung, Radiologische Universitätsklinik, Friedrich-Wilhelms–Universität Bonn, Germany; 2Radiologische Universitätsklinik, Friedrich-Wilhelms-Universität Bonn, Germany; 3TUM Neurologische Klinik und Poliklinik im Neuro-Kopf-Zentrum, Klinikum rechts der Isar der Technischen Universität München, München, Germany; 4Klinik und Poliklinik für Nuklearmedizin am Mainzer Universitätsklinikum, Johannes Gutenberg-Universität, Mainz, GermanyAbstract: This perspective attempts to outline the emerging role of positron emission tomography (PET ligand activation studies in human exercise research. By focusing on the endorphinergic system and its acclaimed role for exercise-induced antinociception and mood enhancement, we like to emphasize the unique potential of ligand PET applied to human athletes for uncovering the neurochemistry of exercise-induced psychophysiological phenomena. Compared with conventional approaches, in particular quantification of plasma beta-endorphin levels under exercise challenges, which are reviewed in this article, studying opioidergic effects directly in the central nervous system (CNS with PET and relating opioidergic binding changes to neuropsychological assessments, provides a more refined and promising experimental strategy. Although a vast literature dating back to the 1980s of the last century has been able to reproducibly demonstrate peripheral increases of beta-endorphin levels after various exercise challenges, so far, these studies have failed to establish robust links between peripheral beta-endorphin levels and centrally mediated behavioral effects, ie, modulation of mood and/or pain perception. As the quantitative relation between endorphins in the peripheral blood and the CNS remains unknown, the question arises, to what

  12. In vivo ATP synthesis rates in single human muscles during high intensity exercise

    Science.gov (United States)

    Walter, Glenn; Vandenborne, Krista; Elliott, Mark; Leigh, John S

    1999-01-01

    In vivo ATP synthesis rates were measured in the human medial gastrocnemius muscle during high intensity exercise using localized 31P-magnetic resonance spectroscopy (31P-MRS). Six-second localized spectra were acquired during and following a 30 s maximal voluntary rate exercise using a magnetic resonance image-guided spectral localization technique. During 30 s maximal voluntary rate exercise, ATPase fluxes were predominantly met by anaerobic ATP sources. Maximal in vivo glycogenolytic rates of 207 ± 48 mM ATP min−1 were obtained within 15 s, decreasing to 72 ± 34 mM ATP min−1 by the end of 30 s. In contrast, aerobic ATP synthesis rates achieved 85 ± 2 % of their maximal capacity within 9 s and did not change throughout the exercise. The ratio of peak glycolytic ATP synthesis rate to maximal oxidative ATP synthesis was 2.9 ± 0.9. The non-Pi, non-CO2 buffer capacity was calculated to be 27.0 ± 6.2 slykes (millimoles acid added per unit change in pH). At the cessation of exercise, Pi, phosphomonoesters and CO2 were predicted to account for 17.2 ± 1.5, 5.57 ± 0.97 and 2.24 ± 0.34 slykes of the total buffer capacity. Over the approximately linear range of intracellular pH recovery following the post-exercise acidification, pHi recovered at a rate of 0.19 ± 0.03 pH units min−1. Proton transport capacity was determined to be 16.4 ± 4.1 mM (pH unit)−1 min−1 and corresponded to a maximal proton efflux rate of 15.3 ± 2.7 mM min−1. These data support the observation that glycogenolytic and glycolytic rates are elevated in vivo in the presence of elevated Pi levels. The data do not support the hypothesis that glycogenolysis follows Michealis-Menten kinetics with an apparent Km for [Pi]in vivo. In vivo -measured ATP utilization rates and the initial dependence on PCr and glycolysis were similar to those previously reported in in situ studies involving short duration, high intensity exercise. This experimental approach presents a non

  13. Foot forces during exercise on the International Space Station.

    Science.gov (United States)

    Genc, K O; Gopalakrishnan, R; Kuklis, M M; Maender, C C; Rice, A J; Bowersox, K D; Cavanagh, P R

    2010-11-16

    Long-duration exposure to microgravity has been shown to have detrimental effects on the human musculoskeletal system. To date, exercise countermeasures have been the primary approach to maintain bone and muscle mass and they have not been successful. Up until 2008, the three exercise countermeasure devices available on the International Space Station (ISS) were the treadmill with vibration isolation and stabilization (TVIS), the cycle ergometer with vibration isolation and stabilization (CEVIS), and the interim resistance exercise device (iRED). This article examines the available envelope of mechanical loads to the lower extremity that these exercise devices can generate based on direct in-shoe force measurements performed on the ISS. Four male crewmembers who flew on long-duration ISS missions participated in this study. In-shoe forces were recorded during activities designed to elicit maximum loads from the various exercise devices. Data from typical exercise sessions on Earth and on-orbit were also available for comparison. Maximum on-orbit single-leg loads from TVIS were 1.77 body weight (BW) while running at 8mph. The largest single-leg forces during resistance exercise were 0.72 BW during single-leg heel raises and 0.68 BW during double-leg squats. Forces during CEVIS exercise were small, approaching only 0.19 BW at 210W and 95RPM. We conclude that the three exercise devices studied were not able to elicit loads comparable to exercise on Earth, with the exception of CEVIS at its maximal setting. The decrements were, on average, 77% for walking, 75% for running, and 65% for squats when each device was at its maximum setting. Future developments must include an improved harness to apply higher gravity replacement loads during locomotor exercise and the provision of greater resistance exercise capability. The present data set provides a benchmark that will enable future researchers to judge whether or not the new generation of exercise countermeasures recently

  14. NO signaling in exercise training-induced anti-apoptotic effects in human neutrophils.

    Science.gov (United States)

    Su, Shu-Hui; Jen, Chauying J; Chen, Hsiun-ing

    2011-02-04

    Short-lived neutrophils play a predominant role in innate immunity, the effects of exercise training on neutrophil survival is unclear. In this study, we investigated the underlying mechanisms of training effects on human neutrophil apoptosis. Healthy male subjects were trained on a cycling ergometer for 8 weeks and followed by 4 weeks of detraining. Blood neutrophils were collected before exercise, after training, and after detraining. Comparing with pre-exercise specimens, neutrophils collected after training showed reduced apoptosis rate, which partially returned after detraining. Various intracellular proteins, including iNOS, Mcl-1, A1, Grp78, and IL-8, were upregulated by training, and they remained high after detraining. Upregulated iNOS was closely correlated with these anti-apoptotic molecules in neutrophils. Furthermore, the possible mechanism by which iNOS suppressed apoptosis was explored. Neutrophil apoptosis was accelerated by blocking and retarded by stimulating the endogenous iNOS activity. As an anti-apoptosis mediator of NO signaling, the Mcl-1 level dropped by depletion of the major NO downstream molecule cGMP and such loss of Mcl-1 was avoidable when supplying exogenous NO. Upon activation of NO-cGMP signaling, neutrophils held increased Mcl-1 expression and delayed apoptosis. Collectively, our results suggested that exercise training may retard neutrophil apoptosis by upregulating the iNOS-NO-cGMP-Mcl-1 pathway. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Common causes of lower leg pain an Athletes

    OpenAIRE

    Pešková, Lucie

    2011-01-01

    An exercise-induced leg pain resulting from chronic overloading is a common condition affecting physically active population. This bachelor thesis gives an overview of recent knowledge in differential diagnosis of a chronic lower leg pain. Theoretic aspects deal with three main conditions with the highest incidence, including stress fractures, medial tibial stress syndrome and chronic exertional compartment syndrome. Particular chapters describe the difference in the epidemiology, aetiology, ...

  16. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  17. Time pattern of exercise-induced changes in type I collagen turnover after prolonged endurance exercise in humans

    DEFF Research Database (Denmark)

    Langberg, Henning; Skovgaard, D; Asp, S

    2000-01-01

    after completion of a marathon run (42 km). Serum concentrations of creatine kinase (S-CK) were measured as an indicator of muscular breakdown in response to the exercise bout. After a transient decrease in collagen formation immediately after exercise (plasma PICP concentration: 176 +/- 17 microg...

  18. Robust Bipedal Walking with Variable Leg Stiffness

    NARCIS (Netherlands)

    Visser, L.C.; Stramigioli, Stefano; Carloni, Raffaella

    The bipedal spring-mass model embodies important characteristics of human walking, and therefore serves as an important starting point in studying human-like walking for robots. In this paper, we propose to extend the bipedal spring-mass model with variable leg stiffness and exploit the potential of

  19. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  20. Animal galloping and human hopping: an energetics and biomechanics laboratory exercise.

    Science.gov (United States)

    Lindstedt, Stan L; Mineo, Patrick M; Schaeffer, Paul J

    2013-12-01

    This laboratory exercise demonstrates fundamental principles of mammalian locomotion. It provides opportunities to interrogate aspects of locomotion from biomechanics to energetics to body size scaling. It has the added benefit of having results with robust signal to noise so that students will have success even if not "meticulous" in attention to detail. First, using respirometry, students measure the energetic cost of hopping at a "preferred" hop frequency. This is followed by hopping at an imposed frequency half of the preferred. By measuring the O2 uptake and work done with each hop, students calculate mechanical efficiency. Lessons learned from this laboratory include 1) that the metabolic cost per hop at half of the preferred frequency is nearly double the cost at the preferred frequency; 2) that when a person is forced to hop at half of their preferred frequency, the mechanical efficiency is nearly that predicted for muscle but is much higher at the preferred frequency; 3) that the preferred hop frequency is strongly body size dependent; and 4) that the hop frequency of a human is nearly identical to the galloping frequency predicted for a quadruped of our size. Together, these exercises demonstrate that humans store and recover elastic recoil potential energy when hopping but that energetic savings are highly frequency dependent. This stride frequency is dependent on body size such that frequency is likely chosen to maximize this function. Finally, by requiring students to make quantitative solutions using appropriate units and dimensions of the physical variables, these exercises sharpen analytic and quantitative skills.

  1. Exercise-induced changes in circulating levels of transforming growth factor-beta-1 in humans

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Kjaer, Michael

    2003-01-01

    eight healthy resting subjects. Plasma was sampled from each subject on five successive days according to a procedure designed to minimize activation of platelets, as platelet alpha-granules contain large amounts of transforming growth factor-beta-1. The mean plasma level was relatively low [1155 (30......Mechanical loading of cells induces the expression of transforming growth factor-beta-1, and acute exercise, which involves mechanical loading of several tissues, could thus increase its circulating level in humans. However, no consensus exists regarding the plasma concentration of this cytokine...... in resting subjects (reported values range from 500 to 18,300 pg ml(-1)) and also the extent of intra-individual variation is unknown. As a basis for detecting exercise-induced changes in transforming growth factor-beta-1, we measured its concentration, by enzyme-linked immunosorbent assay, in plasma from...

  2. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle.

    Science.gov (United States)

    Louis, Emily; Raue, Ulrika; Yang, Yifan; Jemiolo, Bozena; Trappe, Scott

    2007-11-01

    The aim of this study was to examine the time course induction of select proteolytic [muscle ring finger-1 (MuRF-1), atrogin-1, forkhead box 3A (FOXO3A), calpain-1, calpain-2], myostatin, and cytokine (IL -6, -8, -15, and TNF-alpha) mRNA after an acute bout of resistance (RE) or run (RUN) exercise. Six experienced RE (25 +/- 4 yr, 74 +/- 14 kg, 1.71 +/- 0.11 m) and RUN (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m) subjects had muscle biopsies from the vastus lateralis (RE) or gastrocnemius (RUN) before, immediately after, and 1, 2, 4, 8, 12, and 24 h postexercise. RE increased (P suppressed (3.6-fold; P suppression of myostatin. These data provide basic information for the timing of human muscle biopsy samples for gene expression studies involving exercise. Furthermore, this information suggests a greater induction of proteolytic genes following RUN compared with RE.

  3. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise

    DEFF Research Database (Denmark)

    Avnstorp, Magnus B; Rasmussen, Peter; Brassard, Patrice

    2015-01-01

    both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION: Challenging exercise in hypoxia for 30 min affected muscle......Avnstorp, Magnus B., Peter Rasmussen, Patrice Brassard, Thomas Seifert, Morten Overgaard, Peter Krustrup, Niels H. Secher, and Nikolai B. Nordsborg. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 16:000-000, 2015.-Background......: Intense physical activity increases the prevalence of acute mountain sickness (AMS) that can occur within 10 h after ascent to altitudes above 1500 m and is likely related to development of cerebral edema. This study evaluated whether disturbed cerebral water and ion homeostasis can be detected when...

  4. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans

    DEFF Research Database (Denmark)

    Huang, T; Larsen, K T; Ried-Larsen, M

    2014-01-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles...... met the inclusion criteria. Evidence from experimental studies suggested that peripheral BDNF concentrations were elevated by acute and chronic aerobic exercise. The majority of the studies suggested that strength training had no influence on peripheral BDNF. The results from most observational...... studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies....

  5. Numerical simulation of aerobic exercise as a countermeasure in human spaceflight

    Science.gov (United States)

    Perez-Poch, Antoni

    The objective of this work is to analyse the efficacy of long-term regular exercise on relevant cardiovascular parameters when the human body is also exposed to microgravity. Computer simulations are an important tool which may be used to predict and analyse these possible effects, and compare them with in-flight experiments. We based our study on a electrical-like computer model (NELME: Numerical Evaluation of Long-term Microgravity Effects) which was developed in our laboratory and validated with the available data, focusing on the cardiovascu-lar parameters affected by changes in gravity exposure. NELME is based on an electrical-like control system model of the physiological changes, that are known to take place when grav-ity changes are applied. The computer implementation has a modular architecture. Hence, different output parameters, potential effects, organs and countermeasures can be easily imple-mented and evaluated. We added to the previous cardiovascular system module a perturbation module to evaluate the effect of regular exercise on the output parameters previously studied. Therefore, we simulated a well-known countermeasure with different protocols of exercising, as a pattern of input electric-like perturbations on the basic module. Different scenarios have been numerically simulated for both men and women, in different patterns of microgravity, reduced gravity and time exposure. Also EVAs were simulated as perturbations to the system. Results show slight differences in gender, with more risk reduction for women than for men after following an aerobic exercise pattern during a simulated mission. Also, risk reduction of a cardiovascular malfunction is evaluated, with a ceiling effect found in all scenarios. A turning point in vascular resistance for a long-term exposure of microgravity below 0.4g has been found of particular interest. In conclusion, we show that computer simulations are a valuable tool to analyse different effects of long

  6. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Science.gov (United States)

    Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L; Huang, Chih-Yang; Kuo, Chia-Hua

    2015-01-01

    The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  7. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Directory of Open Access Journals (Sweden)

    Chien-Wen Hou

    Full Text Available The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05. Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05.Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  8. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J

    2008-01-01

    to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P enhanced (P RNA level fourfold above resting levels. VEGF mRNA and MMP-2 mRNA levels were...... unaffected. The results show that a session of passive leg movement, elevating blood flow and causing passive stretch, augments the interstitial concentrations of VEGF, the proliferative effect of interstitial fluid, and eNOS mRNA content in muscle tissue. We propose that enhanced blood flow and passive......The present study used passive limb movement as an experimental model to study the effect of increased blood flow and passive stretch, without enhanced metabolic demand, in young healthy male subjects. The model used was 90 min of passive movement of the leg leading to a 2.8-fold increase (P

  9. Approach to leg edema

    Directory of Open Access Journals (Sweden)

    Fulvio Pomero

    2017-09-01

    Full Text Available Edema is defined as a palpable swelling caused by an increase in interstitial fluid volume. Leg edema is a common problem with a wide range of possible causes and is the result of an imbalance in the filtration system between the capillary and interstitial spaces. Major causes of edema include venous obstruction, increased capillary permeability and increased plasma volume secondary to sodium and water retention. In both hospital and general practice, the patient with a swollen leg presents a common dilemma in diagnosis and treatment. The cause may be trivial or life-threatening and it is often difficult to determine the clinical pathway. The diagnosis can be narrowed by categorizing the edema according to its duration, distribution (unilateral or bilateral and accompanying symptoms. This work provides clinically oriented recommendations for the management of leg edema in adults.

  10. Leg 179 summary

    Digital Repository Service at National Institute of Oceanography (India)

    Pettigrew, T.J.; Casey, J.F.; Miller, D.J.; Araki, E.; Boissonnas, R.; Busby, R.; Einaudi, F.; Gerdom, M.; Guo, Z.P.; Hopkins, H.; Myers, G.; Rao, D.G.; Shibata, T.; Thy, P.

    Pettigrew, T.L., Casey, J.F., Miller, D.J., et al., 1999 Proceedings of the Ocean Drilling Program, Initial Reports Volume 179 1. LEG 179 SUMMARY 1 Shipboard Scientific Party 2 ABSTRACT Ocean Drilling Program (ODP) Leg 179 set out with two primary objectives... a hole, then simultaneously deepen that hole and stabilize its walls with casing. This system is an adaptation of pneu- matically driven drilling systems that have successfully drilled in envi- ronments not unlike those that present our greatest...

  11. Hemoglobinopathies and Leg Ulcers.

    Science.gov (United States)

    Alavi, Afsaneh; Kirsner, Robert S

    2015-09-01

    Major hemoglobinopathies, including sickle cell anemia, are becoming a global health issue. Leg ulcers are the most common cutaneous manifestation of sickle cell disease and an important contributor to morbidity burden in this population. Leg ulcers following sickling disorders are extremely painful, and hard to heal. The clinical evidence for the optimal management of these ulcers is limited. Treating the cause and the strategies to prevent sickling are the mainstay of treatment. The basic principles of wound bed preparation and compression therapy is beneficial in these patients. © The Author(s) 2015.

  12. Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants

    Directory of Open Access Journals (Sweden)

    Joanna L. Bowtell

    2018-02-01

    Full Text Available BackgroundCaffeine has been shown to enhance exercise performance and capacity. The mechanisms remain unclear but are suggested to relate to adenosine receptor antagonism, resulting in increased central motor drive, reduced perception of effort, and altered peripheral processes such as enhanced calcium handling and extracellular potassium regulation. Our aims were to investigate how caffeine (i affects knee extensor PCr kinetics and pH during repeated sets of single-leg knee extensor exercise to task failure and (ii modulates the interplay between central and peripheral neural processes. We hypothesized that the caffeine-induced extension of exercise capacity during repeated sets of exercise would occur despite greater disturbance of the muscle milieu due to enhanced peripheral and corticospinal excitatory output, central motor drive, and muscle contractility.MethodsNine healthy active young men performed five sets of intense single-leg knee extensor exercise to task failure on four separate occasions: for two visits (6 mg·kg−1 caffeine vs placebo, quadriceps 31P-magnetic resonance spectroscopy scans were performed to quantify phosphocreatine kinetics and pH, and for the remaining two visits (6 mg·kg−1 caffeine vs placebo, femoral nerve electrical and transcranial magnetic stimulation of the quadriceps cortical motor area were applied pre- and post exercise.ResultsThe total exercise time was 17.9 ± 6.0% longer in the caffeine (1,225 ± 86 s than in the placebo trial (1,049 ± 73 s, p = 0.016, and muscle phosphocreatine concentration and pH (p < 0.05 were significantly lower in the latter sets of exercise after caffeine ingestion. Voluntary activation (VA (peripheral, p = 0.007; but not supraspinal, p = 0.074, motor-evoked potential (MEP amplitude (p = 0.007, and contractility (contraction time, p = 0.009; and relaxation rate, p = 0.003 were significantly higher after caffeine consumption, but at

  13. Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise.

    Directory of Open Access Journals (Sweden)

    Nataša Nikolić

    Full Text Available Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes.Electrical pulse stimulation (EPS was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting.High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4 was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6, cytochrome C and carnitin palmitoyl transferase b (CPT1b also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI was increased in EPS-treated cells.Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent of human myotubes may be used to study effects of exercise.

  14. Mapping the central neurocircuitry that integrates the cardiovascular response to exercise in humans.

    Science.gov (United States)

    Basnayake, Shanika D; Green, Alexander L; Paterson, David J

    2012-01-01

    There are abundant animal data attempting to identify the neural circuitry involved in cardiovascular control. Translating this research into humans has been made possible using functional neurosurgery during which deep brain stimulating electrodes are implanted into various brain nuclei for the treatment of chronic pain and movement disorders. This not only allows stimulation of the human brain, but also presents the opportunity to record neural activity from various brain regions. This symposium review highlights key experiments from the past decade that have endeavoured to identify the neurocircuitry responsible for integrating the cardiovascular response to exercise in humans. Two areas of particular interest are highlighted: the periaqueductal grey and the subthalamic nucleus. Our studies have shown that the periaqueductal grey (particularly the dorsal column) is a key part of the neurocircuitry involved in mediating autonomic changes adapted to ongoing behaviours. Emerging evidence also suggests that the subthalamic nucleus is not only involved in the control of movement, but also in the mediation of cardiovascular responses. Although these sites are unlikely to be the 'command' areas themselves, we have demonstrated that the two nuclei have the properties of being key integrating sites between the feedback signals from exercising muscle and the feedforward signals from higher cortical centres.

  15. Human muscle net K+ release during exercise is unaffected by elevated anaerobic metabolism, but reduced after prolonged acclimatization to 4100 m

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Calbet, Jose A. L.; Sander, Mikael

    2010-01-01

    It was investigated if skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 weeks of acclimatization to 4100 m. The highest workload completed...... absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 weeks of acclimatization no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, neither at submaximal intensities nor at exhaustion (360+/-14 W vs. 313...... (Pdegree of acclimatization (at 260 W prior to acclimatization: -10.0+/-0.4 % in normoxia and -4.9+/-0.8 % in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization...

  16. Single-leg squats can predict leg alignment in dancers performing ballet movements in “turnout”

    Directory of Open Access Journals (Sweden)

    Hopper LS

    2016-11-01

    Full Text Available Luke S Hopper,1 Nahoko Sato,2 Andries L Weidemann1 1Western Australian Academy of Performing Arts, Edith Cowan University, Mt Lawley, WA, Australia; 2Department of Physical Therapy, Nagoya Gakuin University, Seto, Japan Abstract: The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve “turning out” or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in “turned out” postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat. Keywords: injury, motion capture, clinical assessment

  17. Single-leg squats can predict leg alignment in dancers performing ballet movements in “turnout”

    Science.gov (United States)

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve “turning out” or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in “turned out” postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat. PMID:27895518

  18. Relationship between body and leg VO2 during maximal cycle ergometry

    Science.gov (United States)

    Knight, D. R.; Poole, D. C.; Schaffartzik, W.; Guy, H. J.; Prediletto, R.; Hogan, M. C.; Wagner, P. D.

    1992-01-01

    It is not known whether the asymptotic behavior of whole body O2 consumption (VO2) at maximal work rates (WR) is explained by similar behavior of VO2 in the exercising legs. To resolve this question, simultaneous measurements of body and leg VO2 were made at submaximal and maximal levels of effort breathing normoxic and hypoxic gases in seven trained male cyclists (maximal VO2, 64.7 +/- 2.7 ml O2.min-1.kg-1), each of whom demonstrated a reproducible VO2-WR asymptote during fatiguing incremental cycle ergometry. Left leg blood flow was measured by constant-infusion thermodilution, and total leg VO2 was calculated as the product of twice leg flow and radial arterial-femoral venous O2 concentration difference. The VO2-WR relationships determined at submaximal WR's were extrapolated to maximal WR as a basis for assessing the body and leg VO2 responses. The differences between measured and extrapolated maximal VO2 were 235 +/- 45 (body) and 203 +/- 70 (leg) ml O2/min (not significantly different). Plateauing of leg VO2 was associated with, and explained by, plateauing of both leg blood flow and O2 extraction and hence of leg VO2. We conclude that the asymptotic behavior of whole body VO2 at maximal WRs is a direct reflection of the VO2 profile at the exercising legs.

  19. On the Biomimetic Design of Agile-Robot Legs

    Science.gov (United States)

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented. PMID:22247667

  20. Effects of 5-hydroxytryptamine on capillary and arteriovenous anastomotic blood flow in the human hand and forearm and in the pig hind leg

    NARCIS (Netherlands)

    Blauw, G.; Bom, A. H.; van Brummelen, P.; Camps, J.; Arndt, J. W.; Verdouw, P. D.; Chang, P. C.; van Zwieten, P. A.; Saxena, P. R.

    1991-01-01

    The effects of intraarterially infused serotonin (5-HT) on capillary and arteriovenous anastomotic (AVA) blood flow were investigated in the hand and forearm of 19 healthy volunteers, and in the hind leg of six anesthetized pigs using radioactive microspheres with a diameter of 15 microns. The

  1. Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high-intensity aerobic training

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Jensen, Lasse Gliemann; Thaning, Pia

    2012-01-01

    We examined the role of nitric oxide (NO) and prostanoids in the regulation of leg blood flow and systemic blood pressure before and after 8 weeks of aerobic high-intensity training in individuals with essential hypertension (n=10) and matched healthy control subjects (n=11). Hypertensive subjects...

  2. Fatigue-related adaptations in muscle coordination during a cyclic exercise in humans.

    Science.gov (United States)

    Turpin, Nicolas A; Guével, Arnaud; Durand, Sylvain; Hug, François

    2011-10-01

    Muscle fatigue is an exercise-induced reduction in the capability of a muscle to generate force. A possible strategy to counteract the effects of fatigue is to modify muscle coordination. We designed this study to quantify the effect of fatigue on muscle coordination during a cyclic exercise involving numerous muscles. Nine human subjects were tested during a constant-load rowing exercise (mean power output: 217.9±32.4 W) performed until task failure. The forces exerted at the handle and the foot-stretcher were measured continuously and were synchronized with surface electromyographic (EMG) signals measured in 23 muscles. In addition to a classical analysis of individual EMG data (EMG profile and EMG activity level), a non-negative matrix factorization algorithm was used to identify the muscle synergies at the start and the end of the test. Among the 23 muscles tested, 16 showed no change in their mean activity level across the rowing cycle, five (biceps femoris, gluteus maximus, semitendinosus, trapezius medius and vastus medialis) showed a significant increase and two (gastrocnemius lateralis and longissimus) showed a significant decrease. We found no change in the number of synergies during the fatiguing test, i.e. three synergies accounted for more than 90% of variance accounted for at the start (92.4±1.5%) and at the end (91.0±1.8%) of the exercise. Very slight modifications at the level of individual EMG profiles, synergy activation coefficients and muscle synergy vectors were observed. These results suggest that fatigue during a cyclic task preferentially induces an adaptation in muscle activity level rather than changes in the modular organization of the muscle coordination.

  3. Human thermoregulation and measurement of body temperature in exercise and clinical settings.

    Science.gov (United States)

    Lim, Chin Leong; Byrne, Chris; Lee, Jason Kw

    2008-04-01

    This review discusses human thermoregulation during exercise and the measurement of body temperature in clinical and exercise settings. The thermoregulatory mechanisms play important roles in maintaining physiological homeostasis during rest and physical exercise. Physical exertion poses a challenge to thermoregulation by causing a substantial increase in metabolic heat production. However, within a non-thermolytic range, the thermoregulatory mechanisms are capable of adapting to sustain physiological functions under these conditions. The central nervous system may also rely on hyperthermia to protect the body from "overheating." Hyperthermia may serve as a self-limiting signal that triggers central inhibition of exercise performance when a temperature threshold is achieved. Exposure to sub-lethal heat stress may also confer tolerance against higher doses of heat stress by inducing the production of heat shock proteins, which protect cells against the thermolytic effects of heat. Advances in body temperature measurement also contribute to research in thermoregulation. Current evidence supports the use of oral temperature measurement in the clinical setting, although it may not be as convenient as tympanic temperature measurement using the infrared temperature scanner. Rectal and oesophagus temperatures are widely accepted surrogate measurements of core temperature (Tc), but they cause discomfort and are less likely to be accepted by users. Gastrointestinal temperature measurement using the ingestible temperature sensor provides an acceptable level of accuracy as a surrogate measure of Tc without causing discomfort to the user. This form of Tc measurement also allows Tc to be measured continuously in the field and has gained wider acceptance in the last decade.

  4. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle

    DEFF Research Database (Denmark)

    Rasmussen, U.F.; Krustrup, Peter; Bangsbo, Jens

    2001-01-01

    Bicycle exercise; cytochromes; Fatigue; Lactate; Oxidative phosphorylation; Oxygen uptake; Quadriceps muscle; Respiration......Bicycle exercise; cytochromes; Fatigue; Lactate; Oxidative phosphorylation; Oxygen uptake; Quadriceps muscle; Respiration...

  5. The mangled lower leg

    NARCIS (Netherlands)

    Hoogendoorn, Jochem Maarten

    2002-01-01

    A surgeon faced with a patient presenting with an open tibial/fibular fracture in combination with severe damage of the surrounding soft tissues, has to make the difficult decision whether to attempt salvage or to perform an immediate amputation of the leg. Until late in the nineteenth century the

  6. The identification of gene pathways involved in vascular adaptations after physical deconditioning versus exercise training in humans

    NARCIS (Netherlands)

    Lammers, G.; van Duijnhoven, T.L.; Hoenderop, J.G.; Horstman, A.M.H.; de Haan, A.; Janssen, T.W.J.; de Graaf, M.; Pardoel, E.M.; Verwiel, E.T.P.; Thijssen, D.H.J.; Hopman, M.T.E.

    2013-01-01

    New Findings: • What is the central question of this study? The aim of this study is to identify genes that are involved in vascular adaptations after physical deconditioning and exercise training in humans. • What is the main finding and its importance? Using unique human in vivo models for local

  7. Exercise and NSAIDs

    DEFF Research Database (Denmark)

    Petersen, Susanne Germann; Miller, Ben F; Hansen, Mette

    2011-01-01

    The purpose of this study was to determine muscle and tendon protein fractional synthesis rates (FSR) at rest and after a one-legged kicking exercise in patients with knee osteoarthritis (OA) receiving either placebo or nonsteroidal anti-inflammatory drugs (NSAIDs).......The purpose of this study was to determine muscle and tendon protein fractional synthesis rates (FSR) at rest and after a one-legged kicking exercise in patients with knee osteoarthritis (OA) receiving either placebo or nonsteroidal anti-inflammatory drugs (NSAIDs)....

  8. The elite cross-country skier provides unique insights into human exercise physiology.

    Science.gov (United States)

    Holmberg, H-C

    2015-12-01

    Successful cross-country skiing, one of the most demanding of endurance sports, involves considerable physiological challenges posed by the combined upper- and lower-body effort of varying intensity and duration, on hilly terrain, often at moderate altitude and in a cold environment. Over the years, this unique sport has helped physiologists gain novel insights into the limits of human performance and regulatory capacity. There is a long-standing tradition of researchers in this field working together with coaches and athletes to improve training routines, monitor progress, and refine skiing techniques. This review summarizes research on elite cross-country skiers, with special emphasis on the studies initiated by Professor Bengt Saltin. He often employed exercise as a means to learn more about the human body, successfully engaging elite endurance athletes to improve our understanding of the demands, characteristics, and specific effects associated with different types of exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Morning and evening physical exercise differentially regulate the autonomic nervous system during nocturnal sleep in humans.

    Science.gov (United States)

    Yamanaka, Yujiro; Hashimoto, Satoko; Takasu, Nana N; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi

    2015-11-01

    Effects of daily physical exercise in the morning or in the evening were examined on circadian rhythms in plasma melatonin and core body temperature of healthy young males who stayed in an experimental facility for 7 days under dim light conditions (exercise with a bicycle ergometer at ZT3 or at ZT10 for four consecutive days, where zeitgeber time 0 (ZT0) was the time of wake-up. The rising phase of plasma melatonin rhythm was delayed by 1.1 h without exercise. Phase-delay shifts of a similar extent were detected by morning and evening exercise. But the falling phase shifted only after evening exercise by 1.0 h. The sleep PSG did not change after morning exercise, while Stage 1+2 sleep significantly decreased by 13.0% without exercise, and RE sleep decreased by 10.5% after evening exercise. The nocturnal decline of rectal temperature was attenuated by evening exercise, but not by morning exercise. HRV during sleep changed differentially. Very low frequency (VLF) waves increased without exercise. VLF, low frequency (LF), and high frequency (HF) waves increased after morning exercise, whereas HR increased after evening exercise. Morning exercise eventually enhanced the parasympathetic activity, as indicated by HRV, while evening exercise activated the sympathetic activity, as indicated by increase in heart rate in the following nocturnal sleep. These findings indicated differential effects of morning and evening exercise on the circadian melatonin rhythm, PSG, and HRV. Copyright © 2015 the American Physiological Society.

  10. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans

    Directory of Open Access Journals (Sweden)

    Sarah R. Jackman

    2017-06-01

    Full Text Available The ingestion of intact protein or essential amino acids (EAA stimulates mechanistic target of rapamycin complex-1 (mTORC1 signaling and muscle protein synthesis (MPS following resistance exercise. The purpose of this study was to investigate the response of myofibrillar-MPS to ingestion of branched-chain amino acids (BCAAs only (i.e., without concurrent ingestion of other EAA, intact protein, or other macronutrients following resistance exercise in humans. Ten young (20.1 ± 1.3 years, resistance-trained men completed two trials, ingesting either 5.6 g BCAA or a placebo (PLA drink immediately after resistance exercise. Myofibrillar-MPS was measured during exercise recovery with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre and 4 h-post drink ingestion. Blood samples were collected at time-points before and after drink ingestion. Western blotting was used to measure the phosphorylation status of mTORC1 signaling proteins in biopsies collected pre, 1-, and 4 h-post drink. The percentage increase from baseline in plasma leucine (300 ± 96%, isoleucine (300 ± 88%, and valine (144 ± 59% concentrations peaked 0.5 h-post drink in BCAA. A greater phosphorylation status of S6K1Thr389 (P = 0.017 and PRAS40 (P = 0.037 was observed in BCAA than PLA at 1 h-post drink ingestion. Myofibrillar-MPS was 22% higher (P = 0.012 in BCAA (0.110 ± 0.009%/h than PLA (0.090 ± 0.006%/h. Phenylalanine Ra was ~6% lower in BCAA (18.00 ± 4.31 μmol·kgBM−1 than PLA (21.75 ± 4.89 μmol·kgBM−1; P = 0.028 after drink ingestion. We conclude that ingesting BCAAs alone increases the post-exercise stimulation of myofibrillar-MPS and phosphorylation status mTORC1 signaling.

  11. The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Calbet, J A; Søndergaard, H

    2001-01-01

    1. One to five weeks of chronic exposure to hypoxia has been shown to reduce peak blood lactate concentration compared to acute exposure to hypoxia during exercise, the high altitude 'lactate paradox'. However, we hypothesize that a sufficiently long exposure to hypoxia would result in a blood......, in lowlanders acclimatized for 9 weeks to an altitude of 5260 m, the arterial lactate concentration was similar at 0 m acute hypoxia and 5260 m chronic hypoxia. The net lactate release from the active leg was higher at 5260 m chronic hypoxia compared to 0 m acute hypoxia, implying an enhanced lactate...... utilization with prolonged acclimatization to altitude. The present study clearly shows the absence of a lactate paradox in lowlanders sufficiently acclimatized to altitude....

  12. Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Gemmer, Carsten

    2007-01-01

    and exercise groups after 48 h (P human peritendinous tissue in response to prolonged mechanical loading with part of the increase due to trauma from the sampling......Microdialysis studies indicate that mechanical loading of human tendon during exercise elevates type I collagen production in tendon. However, the possibility that the insertion of microdialysis fibers per se may increase the local collagen production due to trauma has not been explored. Insulin......-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen] were measured by microdialysis in peritendinous tissue of the human Achilles tendon in an exercise group (performing a 36-km run, n = 6) and a control group (no intervention, n = 6). An increase in local PICP concentration was seen in both...

  13. Whole-body vibration dosage alters leg blood flow

    NARCIS (Netherlands)

    Lythgo, Noel; Eser, Prisca; de Groot, Patricia; Galea, Mary

    The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used

  14. Biomechanical analysis of the single-leg decline squat

    NARCIS (Netherlands)

    Zwerver, J.; Bredeweg, S. W.; Hof, A. L.

    Background: The single-leg squat on a 25 decline board has been described as a clinical assessment tool and as a rehabilitation exercise for patients with patellar tendinopathy. Several assumptions have been made about its working mechanism on patellar load and patellofemoral forces, but these are

  15. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise.

    Science.gov (United States)

    Koskinen, Satu O A; Kyröläinen, Heikki; Flink, Riina; Selänne, Harri P; Gagnon, Sheila S; Ahtiainen, Juha P; Nindl, Bradley C; Lehti, Maarit

    2017-11-01

    Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.

  16. Assessment of pelvis and upper leg injury risk in car-pedestrian collisions: comparison of accident statistics, impactor tests and a human body finite element model.

    Science.gov (United States)

    Snedeker, Jess G; Muser, Markus H; Walz, Felix H

    2003-10-01

    In this study, we first present a comparison between pelvis/upper leg injuries observed in real-world accidents as recorded in the database of the Medical University of Hanover, and the EEVC test results of corresponding cars as published by EuroNCAP. The fact that modern cars with rounded hood edges cause very few pelvis/upper leg injuries is discussed against the findings of the EEVC tests, where these cars do not perform significantly better than their older counterparts with sharper hood leading edges. This discrepancy could be due to the fact that the radius of the hood edge is not accounted for in the current version of the test protocol. In a second step, various impacts against several different simplified hood shapes were simulated using a detailed finite element model of a 50(th) percentile male pedestrian. The finite element model (THUMS) has been extensively validated against PMHS experiments in previous studies. The validated model affords detailed insight into pelvic and femoral deformations and loading patterns, and reveals, as expected, that the shape of the hood leading edge plays a critical role in the resulting biomechanical loading patterns. Based upon the results of this study, recommendations are offered for a more appropriate characterization of the hood shape with regard to pelvis/upper leg injury risk.

  17. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Quistorff, Bjørn; Danielsen, Else R

    2003-01-01

    During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio-venous differe......During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio......-venous differences (AV) for O(2), glucose (glc) and lactate (lac) were evaluated in nine healthy subjects at rest and during and after exercise to exhaustion. The cerebrospinal fluid (CSF) was drained through a lumbar puncture immediately after exercise, while control values were obtained from six other healthy...... young subjects. In a second experiment magnetic resonance spectroscopy ((1)H-MRS) was performed after exhaustive exercise to assess lactate levels in the brain (n = 5). Exercise increased the AV(O2) from 3.2 +/- 0.1 at rest to 3.5 +/- 0.2 mM (mean +/-s.e.m.; P

  18. The identification of genetic pathways involved in vascular adaptations after physical deconditioning versus exercise training in humans.

    Science.gov (United States)

    Lammers, Gerwen; van Duijnhoven, Noortje T L; Hoenderop, Joost G; Horstman, Astrid M; de Haan, Arnold; Janssen, Thomas W J; de Graaf, Mark J J; Pardoel, Elisabeth M; Verwiel, Eugène T P; Thijssen, Dick H J; Hopman, Maria T E

    2013-03-01

    Physical inactivity and exercise training result in opposite adaptations of vascular structure. However, the molecular mechanisms behind these adaptations are not completely understood. We used a unique study design to examine both vascular characteristics of the superficial femoral artery (using ultrasound) and gene expression levels (from a muscle biopsy) in human models for physical deconditioning and exercise training. Initially, we compared able-bodied control subjects (n = 6) with spinal cord-injured individuals (n = 8) to assess the effects of long-term deconditioning. Subsequently, able-bodied control subjects underwent short-term lower limb deconditioning using 3 weeks of unilateral limb suspension. Spinal cord-injured individuals were examined before and after 6 weeks of functional electrical stimulation exercise training. Baseline femoral artery diameter and hyperaemic flow were lower after short- and long-term deconditioning and higher after exercise training, whilst intima-media thickness/lumen ratio was increased with short- and long-term deconditioning and decreased with exercise training. Regarding gene expression levels of vasculature-related genes, we found that groups of genes including the vascular endothelial growth factor pathway, transforming growth factor β1 and extracellular matrix proteins were strongly associated with vascular adaptations in humans. This approach resulted in the identification of important genes that may be involved in vascular adaptations after physical deconditioning and exercise.

  19. ORTHOPEDIC LEG BRACE

    Science.gov (United States)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  20. Mineralization of human bone tissue under hypokinesia and physical exercise with calcium supplements

    Science.gov (United States)

    Zorbas, Yan G.; Verentsov, Grigori E.; Abratov, Nikolai I.

    It has been suggested that physical exercise and calcium supplements may be used to prevent demineralization of bone tissue under hypokinesia (diminished muscular activity). Thus, the aim of this study was to determine mineral content of bones of 12 physically healthy men aged 19-24 years under 90 days of hypokinesia and intensive physical exercise (PE) with calcium lactate (C) supplements. They were divided into experimental and control groups with 6 men in each. The experimental group of men were subjected to hypokinesia (HK) and intensive PE and took 650 mg C 6 times per day; the control group was placed under pure HK, i.e. without the use of any preventive measures. The mineral content of different bone tissues was measured with a densitometric X-ray method in milligrams of calcium per 1 mm 3 before and after exposure to HK. The level of bone density of the examined bone tissues decreased by 7-9% and 5-7% for the control and experimental groups of men, respectively. A statistical analysis revealed that the reduction of bone mineralization was significant with P bone density changes in the control and experimental groups of men failed to demonstrate significant differences. It was concluded that the level of mineralization of bone tissues decreased under hypokinesia and physical exercise with calcium supplements. Experimental studies of hypokinetic physiology are generally based on the assumption that diminished muscular activity (progressive reduction of number of steps per day) is detrimental to animal and human organisms, since the entire animal kingdom had been formed in an environment of high motor activity which left its imprint on the evolution, structure, function and behaviour of animals and men. The impossibility of the body tissues to retain optimum amounts of fluid and electrolytes is the dominant hypokinetic effect.

  1. Impact of age, sex and exercise on brachial and popliteal artery remodelling in humans.

    Science.gov (United States)

    Green, Daniel J; Swart, Anne; Exterkate, Anne; Naylor, Louise H; Black, Mark A; Cable, N Timothy; Thijssen, Dick H J

    2010-06-01

    To examine the impact of age, sex and exercise on wall thickness and remodelling in the popliteal and brachial arteries. We compared wall thickness, lumen diameter and wall:lumen ratios in the brachial and popliteal arteries of 15 young (Y, 25.4+/-0.8 yr; 7M 8W) and 16 older sedentary (OS, 58.8+/-1.1 yr; 8M 8W) subjects, with 12 of the OS group also studied following 12 and 24 weeks exercise training. Wall thickness and lumen diameter were higher in the popliteal than the brachial artery for both groups (P<0.05); wall:lumen ratio was similar between arteries. Comparison of the Y and OS groups revealed no impact on wall thickness, whereas diameter values were higher in OS subjects (P<0.05). Whilst there were no significant differences in wall thickness between men and women in the Y or OS groups, diameter was larger in men than in women for both arteries (P<0.05). After 24 weeks of training the wall thickness of both arteries decreased (P<0.01) and the wall:lumen ratio of the brachial (P<0.01) and the popliteal (P<0.05) decreased. The cross-sectional results suggest that ageing was associated with increased lumen diameter, although wall:lumen ratio remained unchanged. Wall:lumen ratio was higher in women than men, irrespective of subject age or the artery studied. This related primarily to differences in lumen diameter between the sexes, as wall thickness did not significantly differ between men and women. Our longitudinal data strongly suggest that exercise training is associated with beneficial effects on conduit artery wall thickness and wall:lumen ratio in both upper and lower limbs in humans. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Stable bipedal walking with a swing-leg protraction strategy.

    Science.gov (United States)

    Bhounsule, Pranav A; Zamani, Ali

    2017-01-25

    In bipedal locomotion, swing-leg protraction and retraction refer to the forward and backward motion, respectively, of the swing-leg before touchdown. Past studies have shown that swing-leg retraction strategy can lead to stable walking. We show that swing-leg protraction can also lead to stable walking. We use a simple 2D model of passive dynamic walking but with the addition of an actuator between the legs. We use the actuator to do full correction of the disturbance in a single step (a one-step dead-beat control). Specifically, for a given limit cycle we perturb the velocity at mid-stance. Then, we determine the foot placement strategy that allows the walker to return to the limit cycle in a single step. For a given limit cycle, we find that there is swing-leg protraction at shallow slopes and swing-leg retraction at steep slopes. As the limit cycle speed increases, the swing-leg protraction region increases. On close examination, we observe that the choice of swing-leg strategy is based on two opposing effects that determine the time from mid-stance to touchdown: the walker speed at mid-stance and the adjustment in the step length for one-step dead-beat control. When the walker speed dominates, the swing-leg retracts but when the step length dominates, the swing-leg protracts. This result suggests that swing-leg strategy for stable walking depends on the model parameters, the terrain, and the stability measure used for control. This novel finding has a clear implication in the development of controllers for robots, exoskeletons, and prosthetics and to understand stability in human gaits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies.

    Science.gov (United States)

    McMorris, Terry

    2016-10-15

    The catecholamines hypothesis for the acute exercise-cognition interaction in humans fails to adequately explain the interaction between peripherally circulating catecholamines and brain concentrations; how different exercise intensities×durations affect different cognitive tasks; and how brain catecholamines, glucocorticoids, BDNF and 5-hydroxytryptamine interact. A review of the animal literature was able to clarify many of the issues. Rodent studies showed that facilitation of cognition during short to moderate duration (SMD), moderate exercise could be accounted for by activation of the locus coeruleus via feedback from stretch reflexes, baroreceptors and, post-catecholamines threshold, β-adrenoceptors on the vagus nerve. SMD, moderate exercise facilitates all types of task by stimulation of the reticular system by norepinephrine (NE) but central executive tasks are further facilitated by activation of α2A-adrenoceptors and D1-dopaminergic receptors in the prefrontal cortex, which increases the signal to 'noise' ratio. During long-duration, moderate exercise and heavy exercise, brain concentrations of glucocorticoids and 5-hydroxytryptamine, the latter in moderate exercise only, also increase. This further increases catecholamines release. This results in increased activation of D1-receptors and α1-adrenoceptors, in the prefrontal cortex, which dampens all neural activity, thus inhibiting central executive performance. However, activation of β- and α1-adrenoceptors can positively affect signal detection in the sensory cortices, hence performance of perception/attention and autonomous tasks can be facilitated. Animal studies also show that during long-duration, moderate exercise and heavy exercise, NE activation of β-adrenoceptors releases cAMP, which modulates the signaling and trafficking of the BDNF receptor Trk B, which facilitates long-term potentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Unsupervised exercise in survivors of human papillomavirus related head and neck cancer: how many can go it alone?

    Science.gov (United States)

    Bauml, Joshua; Kim, Jiyoung; Zhang, Xiaochen; Aggarwal, Charu; Cohen, Roger B; Schmitz, Kathryn

    2017-08-01

    Patients with human papillomavirus (HPV)-related head and neck cancer (HNC) have a better prognosis relative to other types of HNC, making survivorship an emerging and critical issue. Exercise is a core component of survivorship care, but little is known about how many survivors of HPV-related HNC can safely be advised to start exercising on their own, as opposed to needing further evaluation or supervised exercise. We utilized guidelines to identify health issues that would indicate value of further evaluation prior to being safely prescribed unsupervised exercise. We performed a retrospective chart review of 150 patients with HPV-related HNC to assess health issues 6 months after completing definitive therapy. Patients with at least one health issue were deemed appropriate to receive further evaluation prior to prescription for unsupervised exercise. We utilized logistic regression to identify clinical and demographic factors associated with the need for further evaluation, likely performed by outpatient rehabilitation clinicians. In this cohort of patients, 39.3% could safely be prescribed unsupervised exercise 6 months after completing definitive therapy. On multivariable regression, older age, BMI >30, and receipt of radiation were associated with an increased likelihood for requiring further evaluation or supervised exercise. Over half of patients with HPV-related HNC would benefit from referral to physical therapy or an exercise professional for further evaluation to determine the most appropriate level of exercise supervision, based upon current guidelines. Development of such referral systems will be essential to enhance survivorship outcomes for patients who have completed treatment.

  5. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  6. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans

    Directory of Open Access Journals (Sweden)

    Jakob Schiøler Hansen

    2015-08-01

    Conclusions: Collectively, our data reveal that 1 in humans, the splanchnic bed contributes to the systemic FGF-21 levels during rest and exercise; 2 under normo-physiological conditions FGF-21 is not released from the leg; 3 a dynamic interaction of glucagon-to-insulin ratio regulates FGF-21 secretion in humans.

  7. A prognostic scoring system for arm exercise stress testing

    National Research Council Canada - National Science Library

    Xie, Yan; Xian, Hong; Chandiramani, Pooja; Bainter, Emily; Wan, Leping; Martin, 3rd, Wade H

    2016-01-01

    ...% for patients unable to perform leg exercise. Thus, our objective was to develop an arm exercise ECG stress test scoring system, analogous to the Duke Treadmill Score, for predicting outcome in these individuals...

  8. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    Science.gov (United States)

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  9. No inflammatory gene-expression response to acute exercise in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, Ulrich; Mikkelsen, Lone Ramer

    2013-01-01

    Although histology data favour the view of a degenerative nature of tendinopathy, indirect support for inflammatory reactions to loading in affected tendons exists. The purpose of the present study was to elucidate whether inflammatory signalling responses after acute mechanical loading were more....... All ultrasonographic outcomes were unchanged in response to acute exercise and not influenced by NSAID. The signalling for collagen and TGF-beta was upregulated after acute loading in tendinopathic tendon. In contrast to the hypothesis, inflammatory signalling was not exaggerated in tendinopathic...... pronounced in tendinopathic versus healthy regions of human tendon and if treatment with non-steroidal anti-inflammatory medications (NSAID's) reduces this response. Twenty-seven tendinopathy patients (>6 months) were randomly assigned to a placebo (n = 14) or NSAID (Ibumetin NYCOMED GmbH Plant Oranienburg...

  10. Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans

    DEFF Research Database (Denmark)

    Langberg, Henning; Skovgaard, D; Petersen, L J

    1999-01-01

    1. Physical activity is known to increase type I collagen synthesis measured as the concentration of biomarkers in plasma. By the use of microdialysis catheters with a very high molecular mass cut-off value (3000 kDa) we aimed to determine local type I collagen synthesis and degradation...... catheters were placed in the peritendinous space ventral to the Achilles' tendon under ultrasound guidance and perfused with a Ringer-acetate solution containing 3H-labelled human type IV collagen and [15-3H(N)]PGE2 for in vivo recovery determination. Relative recovery was 37-59 % (range of the s...... increased in blood during running, and returned to baseline in the recovery period, whereas interstitial PGE2 concentration was elevated in the early recovery phase. 4. The findings of the present study indicate that acute exercise induces increased formation of type I collagen in peritendinous tissue...

  11. Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines

    Directory of Open Access Journals (Sweden)

    S. Pourteymour

    2017-04-01

    Conclusion: We identified 17 new, exercise-responsive transcripts encoding secretory proteins. We further identified CSF1 as a novel myokine, which is secreted from cultured muscle cells and up-regulated in muscle and plasma after acute exercise.

  12. Leg size and muscle functions associated with leg compliance

    Science.gov (United States)

    Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul

    1988-01-01

    The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.

  13. Restless Legs Syndrome Among the Elderly

    Directory of Open Access Journals (Sweden)

    Pei-Hao Chen

    2009-12-01

    Full Text Available Restless legs syndrome is a sleep and movement disorder that affects 5–15% of the general population, with an increased prevalence among the elderly population. It not only affects quality of life but also increases risk of mortality among older adults. The diagnosis is based on clinical symptoms of the patient by four minimal essential criteria. Restless legs syndrome can be divided into primary or secondary causes. Examination should be performed to rule out potentially treatable illnesses, such as iron deficiency, renal failure or peripheral neuropathy, especially among elderly patients. The initial approach to restless legs syndrome should be nonpharmacologic management, such as good sleep hygiene, regular exercise, cognitive behavioral therapy and avoidance of certain aggravating drugs. An algorithm based on scientific evidence and expert opinion was developed for guidance of treatment. Combination or change of medication can be applied to resistant or difficult cases. Since elderly patients are prone to treatment-related side effects, the best strategy is to start medication cautiously and at the lowest recommended dosage.

  14. Changes in Transcriptional Output of Human Peripheral Blood Mononuclear Cells Following Resistance Exercise

    Science.gov (United States)

    2011-01-01

    influence of carbohydrate ingestion on the immune response following acute resistance exercise. Int J Sport Nutr Exerc Metab 11:149–161 Kraemer WJ, Clemson...1.79 or greater. Results Lactate and immune response A significant effect (P \\ 0.05) for time was observed for lactate . The resistance exercise induced a...RET bout was evidenced by the approximately sevenfold increase in blood lactate levels immediately following exercise. Resistance exercise of this

  15. Impact of age on critical closing pressure of the cerebral circulation during dynamic exercise in humans.

    Science.gov (United States)

    Ogoh, Shigehiko; Fisher, James P; Young, Colin N; Fadel, Paul J

    2011-04-01

    Limited information is available regarding cerebral vascular responses to dynamic exercise in older adults. We examined the influence of age on exercise-induced changes in the critical closing pressure (CCP) of the cerebral vasculature. Twelve young and twelve older subjects performed two bouts of steady-state cycling at low and moderate intensities (30 and 50% heart rate reserve). Mean arterial pressure (MAP), middle cerebral artery blood velocity (MCA V) and partial pressure of end-tidal carbon dioxide ( ) were measured. The CCP was estimated by linear extrapolation of pairs of systolic and diastolic blood pressure and MCA V waveforms. Exercise-induced increases in MAP were greater in older subjects (P exercise were similar between groups (P = 0.59). The CCP was elevated from rest during low- and moderate-intensity exercise in both groups (moderate exercise: young, +13 ± 2 mmHg and older, +22 ± 2 mmHg; P exercise intensities (moderate exercise: young, +43 ± 9% rest versus older, +153 ± 45% rest; P = 0.04). In contrast, cerebral vascular conductance index (MCA V(mean)/MAP; CVCi) was only decreased during moderate exercise in older subjects (P age-group differences were observed in at rest or during two intensities of exercise (P = 0.40). These data demonstrate that older subjects exhibit larger exercise-induced increases in CCP and decreases in CVCi. Thus, ageing is associated with greater increases in cerebral vascular tone during low- and moderate-intensity dynamic exercise.

  16. Impact of ischemic preconditioning on functional sympatholysis during handgrip exercise in humans.

    NARCIS (Netherlands)

    Horiuchi, M.; Endo, J.; Thijssen, D.H.J.

    2015-01-01

    Repeated bouts of ischemia followed by reperfusion, known as ischemic preconditioning (IPC), is found to improve exercise performance. As redistribution of blood from the inactive areas to active skeletal muscles during exercise (i.e., functional sympatholysis) is important for exercise performance,

  17. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans

    Science.gov (United States)

    Trangmar, Steven J; Chiesa, Scott T; Stock, Christopher G; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2014-01-01

    Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle cerebral artery velocity (MCA Vmean), arterial–venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38.3 ± 0.1 vs. 36.8 ± 0.1°C), impaired exercise capacity (269 ± 11 vs. 336 ± 14 W), and lowered ICA and MCA Vmean by 12–23% without compromising CCA blood flow. During euhydrated incremental exercise on a separate day, however, exercise capacity and ICA, MCA Vmean and CCA dynamics were preserved. The fast decline in cerebral perfusion with dehydration was accompanied by increased O2 extraction (P dehydration accelerated the decline in CBF by decreasing and enhancing vasoconstrictor activity. However, the circulatory strain on the human brain during maximal exercise does not compromise CMRO2 because of compensatory increases in O2 extraction. PMID:24835170

  18. Exercise Equipment: Neutral Buoyancy

    Science.gov (United States)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  19. Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    Directory of Open Access Journals (Sweden)

    Bodil Ingerslev

    2017-10-01

    Conclusions: The data suggest that exercise-induced ANGPTL4 is secreted from the liver and driven by a glucagon-cAMP-PKA pathway in humans. These findings link the liver, insulin/glucagon, and lipid metabolism together, which could implicate a role of ANGPTL4 in metabolic diseases.

  20. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue

    DEFF Research Database (Denmark)

    Heinemeier, Katja; Langberg, Henning; Olesen, Jens L

    2003-01-01

    Mechanical loading of tissue is known to influence local collagen synthesis, and microdialysis studies indicate that mechanical loading of human tendon during exercise elevates tendinous type I collagen production. Transforming growth factor-beta1 (TGF-beta1), a potent stimulator of type I collagen...