WorldWideScience

Sample records for exercise induced muscle

  1. ACUTE EXERCISE-INDUCED MUSCLE INJURY

    OpenAIRE

    Mckune, Andrew J; Stuart J Semple; Edith M Peters-Futre

    2012-01-01

    While much research has recently been focussing on the chronic effects of overtraining, the acute damaging effects of individual eccentric exercise bouts on muscle remain of interest and underlie long-term training effects. Systemic markers of muscle damage are limited in terms of sensitivity and reliability. A clearer insight into the extent of the damage and mechanisms involved are being obtained from ultrastructural, functional and molecular examination of the muscle. There are currently i...

  2. ACUTE EXERCISE-INDUCED MUSCLE INJURY

    Directory of Open Access Journals (Sweden)

    Andrew J McKune

    2012-03-01

    Full Text Available While much research has recently been focussing on the chronic effects of overtraining, the acute damaging effects of individual eccentric exercise bouts on muscle remain of interest and underlie long-term training effects. Systemic markers of muscle damage are limited in terms of sensitivity and reliability. A clearer insight into the extent of the damage and mechanisms involved are being obtained from ultrastructural, functional and molecular examination of the muscle. There are currently indications that while the initial muscle damage may appear to have negative consequences in the short term, intense eccentric exercise appears to initiate a remodelling process and promote favourable adaptation of muscle following training, which has applications for promoting health, rehabilitation and sports performance.

  3. Intense and exhaustive exercise induce oxidative stress in skeletal muscle

    Directory of Open Access Journals (Sweden)

    T Thirumalai

    2011-03-01

    Full Text Available Objective: To assess the oxidative stress and antioxidant defense system in the skeletal muscle of male albino rats subjected to strenuous exercise programme. Methods: Wistar strain albino rats were subjected to exhaustive swimming exercise programme daily for a period of five days. The thiobarbituric acid reactive substances (TBARS, conjugated dienes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase were measured in the gastrocnemius muscle of the exercised animals. Results: The elevated levels of TBARS and conjugated dienes indicated the oxidative stress in the gastrocemius muscle of the exercised animals. The depleted activity levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in the exercise animals indicated the increased oxidative stress and decreased antioxidative defense system in the muscle. Conclusions: The study suggests that prolonged strenuous exercise programme can induce oxidative stress and therefore an optimal level of exercise schedule should be advocated to obtain the maximum benefit of exercise programme.

  4. Exercise-induced muscle cramp. Proposed mechanisms and management.

    Science.gov (United States)

    Bentley, S

    1996-06-01

    Muscle cramp is a common, painful, physiological disturbance of skeletal muscle. Many athletes are regularly frustrated by exercise-induced muscle cramp yet the pathogenesis remains speculative with little scientific research on the subject. This has resulted in a perpetuation of myths as to the cause and treatment of it. There is a need for scientifically based protocols for the management of athletes who suffer exercise-related muscle cramp. This article reviews the literature and neurophysiology of muscle cramp occurring during exercise. Disturbances at various levels of the central and peripheral nervous system and skeletal muscle are likely to be involved in the mechanism of cramp and may explain the diverse range of conditions in which cramp occurs. The activity of the motor neuron is subject to a multitude of influences including peripheral receptor sensory input, spinal reflexes, inhibitory interneurons in the spinal cord, synaptic and neurotransmitter modulation and descending CNS input. The muscle spindle and golgi tendon organ proprioceptors are fundamental to the control of muscle length and tone and the maintenance of posture. Disturbance in the activity of these receptors may occur through faulty posture, shortened muscle length, intense exercise and exercise to fatigue, resulting in increased motor neuron activity and motor unit recruitment. The relaxation phase of muscle contraction is prolonged in a fatigued muscle, raising the likelihood of fused summation of action potentials if motor neuron activity delivers a sustained high firing frequency. Treatment of cramp is directed at reducing muscle spindle and motor neuron activity by reflex inhibition and afferent stimulation. There are no proven strategies for the prevention of exercise-induced muscle cramp but regular muscle stretching using post-isometric relaxation techniques, correction of muscle balance and posture, adequate conditioning for the activity, mental preparation for competition and

  5. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...... in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise...... may represent a mechanism whereby contracting muscle fibres are protected against cellular stress and injury....

  6. Exercise-induced phospho-proteins in skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A S; Hawley, J A; Zierath, J R

    2008-01-01

    Efforts to identify exercise-induced signaling events in skeletal muscle have been influenced by ground-breaking discoveries in the insulin action field. Initial discoveries demonstrating that exercise enhances insulin sensitivity raised the possibility that contraction directly modulates insulin...... receptor signaling events. Although the acute effects of exercise on glucose metabolism are clearly insulin-independent, the canonical insulin signaling cascade has been used as a framework by investigators in an attempt to resolve the mechanisms by which muscle contraction governs glucose metabolism....... This review focuses on recent advances in our understanding of exercise-induced signaling pathways governing glucose metabolism in skeletal muscle. Particular emphasis will be placed on the characterization of AS160, a novel Akt substrate that plays a role in the regulation of glucose transport....

  7. Exercise and obesity-induced insulin resistance in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Hyo-Bum Kwak

    2013-12-01

    Full Text Available The skeletal muscle in our body is a major site for bioenergetics and metabolism during exercise. Carbohydrates and fats are the primary nutrients that provide the necessary energy required to maintain cellular activities during exercise. The metabolic responses to exercise in glucose and lipid regulation depend on the intensity and duration of exercise. Because of the increasing prevalence of obesity, recent studies have focused on the cellular and molecular mechanisms of obesity-induced insulin resistance in skeletal muscle. Accumulation of intramyocellular lipid may lead to insulin resistance in skeletal muscle. In addition, lipid intermediates (e.g., fatty acyl-coenzyme A, diacylglycerol, and ceramide impair insulin signaling in skeletal muscle. Recently, emerging evidence linking obesity-induced insulin resistance to excessive lipid oxidation, mitochondrial overload, and mitochondrial oxidative stress have been provided with mitochondrial function. This review will provide a brief comprehensive summary on exercise and skeletal muscle metabolism, and discuss the potential mechanisms of obesity-induced insulin resistance in skeletal muscle.

  8. Exercise-Induced Muscle Damage and Running Economy in Humans

    Directory of Open Access Journals (Sweden)

    Cláudio de Oliveira Assumpção

    2013-01-01

    Full Text Available Running economy (RE, defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days, have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max. However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises seems to impair RE only for subsequent high-intensity exercise (~90% VO2max. Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect attenuates changes in indirect markers of muscle damage and blunts changes in RE.

  9. Exercise-Induced Muscle Damage and Running Economy in Humans

    Science.gov (United States)

    Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2013-01-01

    Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO2max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. PMID:23431253

  10. Exercise training and beta-alanine-induced muscle carnosine loading.

    Directory of Open Access Journals (Sweden)

    Tine eBex

    2015-05-01

    Full Text Available Purpose. Beta-alanine (BA supplementation has been shown to augment muscle carnosine concentration, thereby promoting high-intensity exercise performance. Trained muscles of athletes have a higher increase in carnosine concentration after BA supplementation compared to untrained muscles, but it remains to be determined whether this is due to an accumulation of acute exercise effects or to chronic adaptations from prior training. The aim of the present study was to investigate whether high-volume (HV and/or high-intensity (HI exercise can improve BA-induced carnosine loading in untrained subjects.Methods. All participants (n=28 were supplemented with 6.4 g/day of BA for 23 days. The subjects were allocated to a control group, HV or HI training group. During the BA supplementation period, the training groups performed 9 exercise sessions consisting of either 75–90 min continuous cycling at 35–45% Wmax (HV or 3 to 5 repeats of 30s cycling at 165% Wmax with 4 min recovery (HI. Carnosine content was measured in soleus and gastrocnemius medialis by proton magnetic resonance spectroscopy.Results. There was no difference in absolute increase in carnosine content between the groups in soleus and gastrocnemius muscle. For the average muscle carnosine content, a higher absolute increase was found in HV (+ 2.95 mM; P = 0.046 and HI (+ 3.26 mM; P = 0.028 group compared to the control group (+ 1.91 mM. However, there was no additional difference between the HV and HI training group.Conclusions. HV and HI exercise training showed no significant difference on BA-induced muscle carnosine loading in soleus and gastrocnemius muscle. It can be suggested that there can be a small cumulative effect of exercise on BA supplementation efficiency, although differences did not reach significance on individual muscle level.

  11. Regulation of PGC-1α and exercise training-induced metabolic adaptations in skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina

    -induced improvements in skeletal muscle metabolic capacity, but may contribute to the exercise training-induced maintenance of skeletal muscle mass. In addition, the results indicate an exercise intensity dependent regulation of autophagy in skeletal muscle and suggest that PGC-1 α regulates both acute and exercise...... and intracellular signalling in human skeletal muscle depend on adrenaline levels or metabolic stress. 2) PGC-1α mediated exercise and exercise training-induced adaptive metabolic responses in mouse skeletal muscle depend on exercise intensity. 3) β-adrenergic signalling contributes to exercise training......-induced metabolic adaptations in mouse skeletal muscle through PGC-1α . Paper I demonstrated that di erences in plasma adrenaline and muscle metabolic stress during exercise do not reinforce exercise-induced PGC-1 α mRNA response in human skeletal muscle. In addition, di erences in exercise-induced AMPK and p38...

  12. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion

    Science.gov (United States)

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-01-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141

  13. Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise.

    Science.gov (United States)

    Franz, Alexander; Behringer, Michael; Harmsen, Jan-Frieder; Mayer, Constantin; Krauspe, Rüdiger; Zilkens, Christoph; Schumann, Moritz

    2017-08-22

    Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion-injury (I/R-Injury) during surgery. Due to similarities between the pathophysiological formation of I/R-injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species and increased pro-inflammatory signaling, the purpose of the present study was to investigate whether IPC performed prior to eccentric exercise may also protect against EIMD. Nineteen healthy men were matched to an eccentric only (ECC) (n=9) or eccentric proceeded by IPC group (IPC+ECC) (n=10). The exercise protocol consisted of bilateral biceps curls (3x10 repetitions at 80% of the concentric 1RM). In IPC+ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mmHg) immediately prior to the exercise (3x5 minutes of occlusion, separated by 5 minutes of reperfusion). Creatine Kinase (CK), arm circumference, subjective pain (VAS score) and radial displacement (Tensiomyography, Dm) were assessed before IPC, pre-exercise, post-exercise, 20 minutes-, 2 hours-, 24 hours-, 48 hours- and 72 hours post-exercise. CK differed from baseline only in ECC at 48h (pIPC+ECC (between groups: 24h: p=0.004, 48h: pIPC+ECC (between groups: all pIPC+ECC (between-groups pIPC performed prior to a bout of eccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain, while maintaining the contractile properties of the muscle.

  14. The prevention and treatment of exercise-induced muscle damage.

    Science.gov (United States)

    Howatson, Glyn; van Someren, Ken A

    2008-01-01

    Exercise-induced muscle damage (EIMD) can be caused by novel or unaccustomed exercise and results in a temporary decrease in muscle force production, a rise in passive tension, increased muscle soreness and swelling, and an increase in intramuscular proteins in blood. Consequently, EIMD can have a profound effect on the ability to perform subsequent bouts of exercise and therefore adhere to an exercise training programme. A variety of interventions have been used prophylactically and/or therapeutically in an attempt to reduce the negative effects associated with EIMD. This article focuses on some of the most commonly used strategies, including nutritional and pharmacological strategies, electrical and manual therapies and exercise. Long-term supplementation with antioxidants or beta-hydroxy-beta-methylbutyrate appears to provide a prophylactic effect in reducing EIMD, as does the ingestion of protein before and following exercise. Although the administration of high-dose NSAIDs may reduce EIMD and muscle soreness, it also attenuates the adaptive processes and should therefore not be prescribed for long-term treatment of EIMD. Whilst there is some evidence that stretching and massage may reduce muscle soreness, there is little evidence indicating any performance benefits. Electrical therapies and cryotherapy offer limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of these and other interventions may account for the lack of consensus regarding their efficacy. Both as a cause and a consequence of this, there are very few evidence-based guidelines for the application of many of these interventions. Conversely, there is unequivocal evidence that prior bouts of eccentric exercise provide a protective effect against subsequent bouts of potentially damaging exercise. Further research is warranted to elucidate the most appropriate dose and frequency of interventions to attenuate EIMD and if these interventions attenuate the

  15. The effects of pre-exercise vibration stimulation on the exercise-induced muscle damage.

    Science.gov (United States)

    Kim, Ji-Yun; Kang, Da-Haeng; Lee, Joon-Hee; O, Se-Min; Jeon, Jae-Keun

    2017-01-01

    [Purpose] To investigate the effects of pre-induced muscle damage vibration stimulation on the pressure-pain threshold and muscle-fatigue-related metabolites of exercise-induced muscle damage. [Subjects and Methods] Thirty healthy, adult male subjects were randomly assigned to the pre-induced muscle damage vibration stimulation group, post-induced muscle damage vibration stimulation group, or control group (n=10 per group). To investigate the effects of pre-induced muscle damage vibration stimulation, changes in the pressure-pain threshold (lb), creatine kinase level (U/L), and lactate dehydrogenase level (U/L) were measured and analyzed at baseline and at 24 hours, 48 hours, and 72 hours after exercise. [Results] The pressure-pain thresholds and concentrations of creatine kinase and lactate dehydrogenase varied significantly in each group and during each measurement period. There were interactions between the measurement periods and groups, and results of the post-hoc test showed that the pre-induced muscle damage vibration stimulation group had the highest efficacy among the groups. [Conclusion] Pre-induced muscle damage vibration stimulation is more effective than post-induced muscle damage vibration stimulation for preventing muscle damage.

  16. Dietary strategies to recover from exercise-induced muscle damage.

    Science.gov (United States)

    Sousa, Mónica; Teixeira, Vítor H; Soares, José

    2014-03-01

    Exhaustive or unaccustomed intense exercise can cause exercise-induced muscle damage (EIMD) and its undesirable consequences may decrease the ability to exercise and to adhere to a training programme. This review briefly summarises the muscle damage process, focusing predominantly on oxidative stress and inflammation as contributing factors, and describes how nutrition may be positively used to recover from EIMD. The combined intake of carbohydrates and proteins and the use of antioxidants and/or anti-inflammatory nutrients within physiological ranges are interventions that may assist the recovery process. Although the works studying food instead of nutritional supplements are very scarce, their results seem to indicate that food might be a favourable option as a recovery strategy. To date, the only tested foods were milk, cherries, blueberries and pomegranate with promising results. Other potential solutions are foods rich in protein, carbohydrates, antioxidants and/or anti-inflammatory nutrients.

  17. Skeletal muscle volume following dehydration induced by exercise in heat.

    Science.gov (United States)

    Hackney, Kyle J; Cook, Summer B; Fairchild, Timothy J; Ploutz-Snyder, Lori L

    2012-09-04

    Intracellular skeletal muscle water is redistributed into the extracellular compartment during periods of dehydration, suggesting an associated decline in muscle volume. The purpose of this study was to evaluate skeletal muscle volume in active (knee extensors (KE)) and less active (biceps/triceps brachii, deltoid) musculature following dehydration induced by exercise in heat. Twelve participants (seven men, five women) cycled in the heat under two conditions: (1) dehydration (DHYD) resulting in 3% and 5% losses of estimated total body water (ETBW), which was assessed by changes in body mass, and (2) fluid replacement (FR) where 3% and 5% losses of ETBW were counteracted by intermittent (20 to 30 min) fluid ingestion via a carbohydrate-electrolyte beverage. During both conditions, serum osmolality and skeletal muscle volume (assessed by magnetic resonance imaging) were measured at baseline and at the 3% and 5% ETBW loss measurement points. In DHYD, serum osmolality increased at 3% (p = 0.005) and 5% (p FR decreased serum osmolality at the 5% loss of ETBW time point (p = 0.009). In DHYD, KE muscle volume declined from 1,464 ± 446 ml to 1,406 ± 425 ml (3.9%, p FR prevented the loss of KE muscle volume at 3% (1,430 ± 435 ml, p = 0.074) and 5% (1,431 ± 439 ml, p = 0.156) ETBW loss time points compared to baseline (1,445 ± 436 ml). Following exercise in the heat, the actively contracting muscles lost volume, while replacing lost fluids intermittently during exercise in heat prevented this decline. These results support the use of muscle volume as a marker of water loss.

  18. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy?

    Science.gov (United States)

    Schoenfeld, Brad J

    2012-05-01

    Exercise-induced muscle damage (EIMD) occurs primarily from the performance of unaccustomed exercise, and its severity is modulated by the type, intensity, and duration of training. Although concentric and isometric actions contribute to EIMD, the greatest damage to muscle tissue is seen with eccentric exercise, where muscles are forcibly lengthened. Damage can be specific to just a few macromolecules of tissue or result in large tears in the sarcolemma, basal lamina, and supportive connective tissue, and inducing injury to contractile elements and the cytoskeleton. Although EIMD can have detrimental short-term effects on markers of performance and pain, it has been hypothesized that the associated skeletal muscle inflammation and increased protein turnover are necessary for long-term hypertrophic adaptations. A theoretical basis for this belief has been proposed, whereby the structural changes associated with EIMD influence gene expression, resulting in a strengthening of the tissue and thus protection of the muscle against further injury. Other researchers, however, have questioned this hypothesis, noting that hypertrophy can occur in the relative absence of muscle damage. Therefore, the purpose of this article will be twofold: (a) to extensively review the literature and attempt to determine what, if any, role EIMD plays in promoting skeletal muscle hypertrophy and (b) to make applicable recommendations for resistance training program design.

  19. Exercise-induced muscle damage following dance and sprint-specific exercise in females.

    Science.gov (United States)

    Brown, Meghan A; Howatson, Glyn; Keane, Karen; Stevenson, Emma J

    2016-11-01

    There is a paucity of studies investigating exercise-induced muscle damage (EIMD) in females and only one in response to dance-type exercise. This study sought to firstly elucidate the physiological profile of EIMD following a dance-specific protocol, and second to compare the magnitude of damage to that experienced following a sport-specific protocol in physically active females. Twenty-nine female recreational dancers (19±1 years) were recruited. Participants completed either a dance-specific protocol (DPFT; N.=15) or sport-specific repeated sprint protocol (SSRS; N.=14). Muscle soreness, limb girths, creatine kinase (CK), countermovement jump height (CMJ), reactive strength index (RSI), maximal voluntary contraction (MVC) and 30 m sprint time were recorded pre, 0-, 24-, 48-, and 72 h post exercise. The DPFT induced muscle damage, with significant time effects for all variables except RSI. However the response was acute, and muscle function returned to near-baseline levels by 48 h. Although no group differences existed, there were significant interaction effects; notably in CMJ (P=0.038) where the decline at 0 h (-6.9%) was smaller and recovery was greater at 72 h (which exceeded pre-exercise levels by 3.7%) post DPFT compared to post SSRS. The results offer new information showing that dance-specific activity results in EIMD in females. In addition, the magnitude of damage was similar to repeated sprint exercise and demonstrated that, in this population, recovery from these strenuous activities takes several days. These data have important implications for understanding the consequences of dance activity and other strenuous exercise in females.

  20. Effect of exercise-induced muscle damage on muscle hardness evaluated by ultrasound real-time tissue elastography.

    Science.gov (United States)

    Yanagisawa, Osamu; Sakuma, Jun; Kawakami, Yasuo; Suzuki, Katsuhiko; Fukubayashi, Toru

    2015-01-01

    To assess the effect of exercise-induced muscle damage on muscle hardness and evaluate the relationship between muscle hardness and muscle damage indicators. Seven men (mean 25.3 years; 172.7 cm; 66.8 kg) performed the single-leg ankle plantar flexion exercise involving both concentric and eccentric contractions (10 sets of 40 repetitions). The hardness of the medial gastrocnemius (MG) was evaluated using ultrasound real-time tissue elastography before, from day 1 to 4, and day 7 after exercise. The strain ratio between the MG and a reference material was calculated. Simultaneously, we evaluated the magnetic resonance T2 value (an index of edema) of the triceps surae, the ankle dorsiflexion range of motion (ROM), and calf muscle soreness. Serum creatine kinase activity was assessed before, 2 and 4 h, and from day 1 to 4 after exercise. The MG showed lower strain ratio, indicating increased muscle hardness, on day 4 post-exercise (P muscle soreness among the post-exercise time points was similar. The decreased strain ratio did not correlate with the increased T2, the decreased joint ROM or muscle soreness. Muscle hardness increased after strenuous resistance exercise, but the change was not related with muscle edema, decreased joint ROM, or muscle soreness resulting from muscle damage.

  1. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Keller, Charlotte; Steensberg, Adam

    2002-01-01

    Transcription of metabolic genes is transiently induced during recovery from exercise in skeletal muscle of humans. To determine whether pre-exercise muscle glycogen content influences the magnitude and/or duration of this adaptive response, six male subjects performed one-legged cycling exercise...... and UCP3 mRNA in response to exercise was also significantly higher in the low glycogen (11.4- and 3.5-fold, respectively) than in the control (5.0- and 1.7-fold, respectively) trial. These data indicate that low muscle glycogen content enhances the transcriptional activation of some metabolic genes...... to lower muscle glycogen content in one leg and then, the following day, completed 2.5 h low intensity two-legged cycling exercise. Nuclei and mRNA were isolated from biopsies obtained from the vastus lateralis muscle of the control and reduced glycogen (pre-exercise glycogen = 609 +/- 47 and 337 +/- 33...

  2. Regulation of exercise-induced lipid metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Kiens, Bente

    2014-01-01

    Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid....../muscle contractions. This occurs independently of AMP-activated protein kinase, and data suggest that Ca(2+)-related signalling is responsible. The FAT/CD36 has an important role; long-chain fatty acid uptake is markedly decreased in FAT/CD36 knockout mice during contractions/exercise compared with wild-type control...... mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose...

  3. Nuclear receptors and myokines : mediators of exercise-induced skeletal muscle metabolism

    NARCIS (Netherlands)

    van Gogh, IJA

    2016-01-01

    Skeletal muscle is a crucial organ in mediating (exercise-induced) beneficial health effects. In this thesis we gained important knowledge on the molecular biology of the muscle. With our focus on the muscle, we investigated the crosstalk with other organs, the regulation of myokines and the role of

  4. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    Science.gov (United States)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  5. SHORT AND LONGER-TERM EFFECTS OF CREATINE SUPPLEMENTATION ON EXERCISE INDUCED MUSCLE DAMAGE

    Directory of Open Access Journals (Sweden)

    John Rosene

    2009-03-01

    Full Text Available The purpose of this investigation was to determine if creatine supplementation assisted with reducing the amount of exercise induced muscle damage and if creatine supplementation aided in recovery from exercise induced muscle damage. Two groups of subjects (group 1 = creatine; group 2 = placebo participated in an eccentric exercise protocol following 7 and 30 days of creatine or placebo supplementation (20 g.d-1 for 7 d followed by 6g.d-1 for 23 d = 30 d. Prior to the supplementation period, measurements were obtained for maximal dynamic strength, maximal isometric force, knee range of motion, muscle soreness, and serum levels of creatine kinase (CK and lactate dehydrogenase (LDH. Following 7 days of creatine supplementation, on day 8, subjects began consuming 6 g.d-1 of creatine for 23 days. Additionally on days 8 and 31, subjects performed an eccentric exercise protocol using the knee extensors to induce muscle damage. Indirect markers of muscle damage, including maximal isometric force, knee range of motion, muscle soreness, and serum levels of CK and LDH, were collected at 12, 24, and 48 hours following each exercise bout. The results indicated that acute bouts of creatine have no effect on indirect markers of muscle damage for the acute (7 days bout. However, maximal isometric force was greater for the creatine group versus placebo for the chronic (30 days bout. This suggests that the ergogenic effect of creatine following 30 days of supplementation may have a positive impact on exercise induced muscle damage

  6. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-fold; P trained leg. The present data demonstrate that exercise induces a dramatic transient increase in PGC-1a transcription and mRNA content in human skeletal muscle. Consistent with its role as a transcriptional coactivator...

  7. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle

    DEFF Research Database (Denmark)

    Mortensen, Brynjulf; Hingst, Janne Rasmuss; Frederiksen, Nicklas

    2013-01-01

    Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling....... We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 hour of acute exercise performed at the same relative workload before and after 12 weeks of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status...

  8. Effect of exercise-induced muscle damage on muscle hardness evaluated by ultrasound real-time tissue elastography

    OpenAIRE

    Yanagisawa, Osamu; Sakuma, Jun; Kawakami, Yasuo; Suzuki, Katsuhiko; Fukubayashi, Toru

    2015-01-01

    Purpose To assess the effect of exercise-induced muscle damage on muscle hardness and evaluate the relationship between muscle hardness and muscle damage indicators. Methods Seven men (mean 25.3?years; 172.7?cm; 66.8?kg) performed the single-leg ankle plantar flexion exercise involving both concentric and eccentric contractions (10 sets of 40 repetitions). The hardness of the medial gastrocnemius (MG) was evaluated using ultrasound real-time tissue elastography before, from day 1 to 4, and da...

  9. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Fentz, Joachim; Kjøbsted, Rasmus; Maag Kristensen, Caroline

    2015-01-01

    . Maximal running speed was lower in AMPKα mdKO than WT mice, but increased similarly in both genotypes with exercise training. Exercise training increased quadriceps protein content of ubiquinol-cytochrome-C reductase core protein 1 (UQCRC1), cytochrome C, hexokinase II, plasma membrane fatty acid binding......Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5'AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training......-induced increases in exercise capacity and expression of metabolic proteins as well as acute exercise-induced gene regulation would be compromised in AMPKα1 and -α2 muscle-specific double knockout (mdKO) mice. An acute bout of exercise increased skeletal muscle mRNA content of cytochrome C oxidase subunit I...

  10. Colostrum supplementation protects against exercise - induced oxidative stress in skeletal muscle in mice

    Directory of Open Access Journals (Sweden)

    Appukutty Mahenderan

    2012-11-01

    Full Text Available Abstract Background This study examined the effects of bovine colostrum on exerciseinduced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum and each group had three subgroups (day 0, 21 and 42. Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise.

  11. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans.

    Science.gov (United States)

    Morton, James P; Kayani, Anna C; McArdle, Anne; Drust, Barry

    2009-01-01

    Skeletal muscle adapts to the stress of contractile activity via changes in gene expression to yield an increased content of a family of highly conserved cytoprotective proteins known as heat shock proteins (HSPs). These proteins function to maintain homeostasis, facilitate repair from injury and provide protection against future insults. The study of the exercise-induced production of HSPs in skeletal muscle is important for the exercise scientist as it may provide a valuable insight into the molecular mechanisms by which regular exercise can provide increased protection against related and non-related stressors. As molecular chaperones, HSPs are also fundamental in facilitating the cellular remodelling processes inherent to the training response. Whilst the exercise-induced stress response of rodent skeletal muscle is relatively well characterized, data from humans are more infrequent and less insightful. Data indicate that acute endurance- and resistance-type exercise protocols increase the muscle content of ubiquitin, alphaB-crystallin, HSP27, HSP60, HSC70 and HSP70. Although increased HSP transcription occurs during exercise, immediately post-exercise or several hours following exercise, time-course studies using western blotting techniques have typically demonstrated a significant increase in protein content is only detectable within 1-2 days following the exercise stress. However, comparison amongst studies is complicated by variations in exercise protocol (mode, intensity, duration, damaging, non-damaging), muscle group examined, predominant HSP measured and, perhaps most importantly, differences in subject characteristics both within and between studies (training status, recent activity levels, nutritional status, age, sex, etc.). Following 'non-damaging' endurance-type activities (exercise that induces no overt structural and functional damage to the muscle), the stress response is thought to be mediated by redox signalling (transient and reversible

  12. The L-Z complexity of exercise-induced muscle fatigue based on acoustic myographye

    Science.gov (United States)

    Yijian, Min; Xinyuan, Liu; Tingting, Wang

    2014-01-01

    The mechanism of exercise fatigue was investigated during exercise using L-Z complexity of non-linear analysis. Muscle fatigue was induced in the sitting position by lifting the heel under a load. An acoustic myogram of the gastrocnemius was obtained until exhaustion. The different modes of the speed responses were calculated using the L-Z complexity method, which analyzes muscle fibers participation, while the exercise is in progress. The L-Z complexity decreased incrementally with decreases in muscle strength, reaching a minimum value when the muscle was exhausted. Our data indicate that the L-Z complexity method is easy to use and effective at revealing the dynamic characteristics and variations of exercise fatigue. This method could be used to monitor sports training.

  13. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage.

    Science.gov (United States)

    Aoi, Wataru; Naito, Yuji; Yoshikawa, Toshikazu

    2013-12-01

    Skeletal muscle is a major tissue that utilizes blood glucose. A single bout of exercise improves glucose uptake in skeletal muscle through insulin-dependent and insulin-independent signal transduction mechanisms. However, glucose utilization is decreased in muscle damage induced by acute, unaccustomed, or eccentric exercise. The decrease in glucose utilization is caused by decreased insulin-stimulated glucose uptake in damaged muscles with inhibition of the membrane translocation of glucose transporter 4 through phosphatidyl 3-kinase/Akt signaling. In addition to inflammatory cytokines, reactive oxygen species including 4-hydroxy-2-nonenal and peroxynitrate can induce degradation or inactivation of signaling proteins through posttranslational modification, thereby resulting in a disturbance in insulin signal transduction. In contrast, treatment with factors that attenuate oxidative stress in damaged muscle suppresses the impairment of insulin sensitivity. Muscle-damaging exercise may thus lead to decreased endurance capacity and muscle fatigue in exercise, and it may decrease the efficiency of exercise therapy for metabolic improvement. © 2013 Elsevier Inc. All rights reserved.

  14. NOX2 inhibition impairs early muscle gene expression induced by a single exercise bout

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Olguín

    2016-07-01

    Full Text Available Reactive oxygen species (ROS participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2 in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB. Moreover, exercise significantly increased NOX2 complex assembly (p47phox-gp91phox interaction demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD, glutathione peroxidase (GPx, citrate synthase (CS, mitochondrial transcription factor A (tfam and interleukin-6 (IL-6 in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p<0.001. These results were corroborated using gp91-dstat in an in-vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  15. Effects of Massage on Muscular Strength and Proprioception After Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Shin, Mal-Soon; Sung, Yun-Hee

    2015-08-01

    Exercise-induced muscle damage (EIMD), which is commonly associated with eccentric exercise, unaccustomed exercise, and resistance training, may lead to delayed onset muscle soreness, swelling, decreased muscle strength, and range of motion. Many researchers have evaluated various interventions to treat the signs and symptoms of EIMD. However, the effects of massage after EIMD are unclear. Here, we investigated the effect of massage on muscle strength and proprioception after EIMD. All subjects randomly were divided into an EIMD-treated control group (n = 10) and a massage-treated after EIMD experimental group (n = 11). Exercise-induced muscle damage was induced by repeated exercise. Massage treatment was provided by physiotherapist for 15 minutes. It consists of light stroking, milking, friction, and skin rolling. Lactate was evaluated by Lactate Pro analyzer in pre- and postexercise. Surface electromyography (muscle activity) and sonography (muscle thickness) were used to confirm the muscular characteristics. Proprioception was investigated by dual inclinometer. As a result, massage treatment on the gastrocnemius after EIMD increased activation of the medial gastrocnemius during contraction (p ≤ 0.05). In the lateral and medial gastrocnemius, the θs, which is the angle between muscle fibers and superficial aponeurosis, showed a significant change (p ≤ 0.05). However, there are no differences in the θd, which is the angle between muscle fibers and deep aponeurosis. We also found that proprioceptive acuity in the ankle joint was significantly greater in the massage-treated experimental group compared with that in the control group (p ≤ 0.05). These findings suggest that massage of the gastrocnemius after EIMD can improve muscle strength and proprioception by influencing the superficial layer of the gastrocnemius.

  16. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals

    DEFF Research Database (Denmark)

    Møller, Andreas Buch; Vendelbo, Mikkel Holm; Rahbek, Stine Klejs

    2013-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein......), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major...... other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect...

  17. The effect of sports specialization on musculus quadriceps function after exercise-induced muscle damage.

    Science.gov (United States)

    Skurvydas, Albertas; Brazaitis, Marius; Venckūnas, Tomas; Kamandulis, Sigitas; Stanislovaitis, Aleksas; Zuoza, Aurelijus

    2011-12-01

    The primary aim of the present study was to examine the effect of eccentric exercise-induced (100 submaximal eccentric contractions at an angular velocity of 60° s⁻¹, with 20-s rest intervals) muscle damage on peripheral and central fatigue of quadriceps muscle in well-trained long-distance runners, sprint runners, volleyball players, and untrained subjects. We found that (i) indirect symptoms of exercise-induced muscle damage (prolonged decrease in maximal voluntary contraction, isokinetic concentric torque, and electrically induced (20 Hz) torque) were most evident in untrained subjects, while there were no significant differences in changes of muscle soreness and plasma creatine kinase 48 h after eccentric exercise between athletes and untrained subjects; (ii) low-frequency fatigue was greater in untrained subjects and volleyball players than in sprint runners and long-distance runners; (iii) in all subjects, electrically induced (100 Hz) torque decreased significantly by about 20%, while central activation ratio decreased significantly by about 8% in untrained subjects and sprint runners, and by about 3%-5% in long-distance runners and volleyball players. Thus, trained subjects showed greater resistance to exercise-induced muscle damage for most markers, and long-distance runners had no advantage over sprint runners or volleyball players.

  18. Exercise-Induced Skeletal Muscle Remodeling and Metabolic Adaptation: Redox Signaling and Role of Autophagy

    Science.gov (United States)

    Giammarioli, Anna Maria; Chiandotto, Sergio; Spoletini, Ilaria

    2014-01-01

    Abstract Significance: Skeletal muscle is a highly plastic tissue. Exercise evokes signaling pathways that strongly modify myofiber metabolism and physiological and contractile properties of skeletal muscle. Regular physical activity is beneficial for health and is highly recommended for the prevention of several chronic conditions. In this review, we have focused our attention on the pathways that are known to mediate physical training-induced plasticity. Recent Advances: An important role for redox signaling has recently been proposed in exercise-mediated muscle remodeling and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) activation. Still more currently, autophagy has also been found to be involved in metabolic adaptation to exercise. Critical Issues: Both redox signaling and autophagy are processes with ambivalent effects; they can be detrimental and beneficial, depending on their delicate balance. As such, understanding their role in the chain of events induced by exercise and leading to skeletal muscle remodeling is a very complicated matter. Moreover, the study of the signaling induced by exercise is made even more difficult by the fact that exercise can be performed with several different modalities, with this having different repercussions on adaptation. Future Directions: Unraveling the complexity of the molecular signaling triggered by exercise on skeletal muscle is crucial in order to define the therapeutic potentiality of physical training and to identify new pharmacological compounds that are able to reproduce some beneficial effects of exercise. In evaluating the effect of new “exercise mimetics,” it will also be necessary to take into account the involvement of reactive oxygen species, reactive nitrogen species, and autophagy and their controversial effects. Antioxid. Redox Signal. 21, 154–176. PMID:24450966

  19. A Comparison of Exercise-Induced Muscle Damage Following Maximal Eccentric Contractions in Men and Boys.

    Science.gov (United States)

    Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2017-08-01

    Research regarding exercise-induced muscle-damage mainly focuses on adults. The present study examined exercise-induced muscle-damage responses in adults compared with children. Eleven healthy boys (10-12 y) and 15 healthy men (18-45 y) performed 5 sets of 15 maximal eccentric contractions of the knee extensors. Range of motion (ROM), delayed onset muscle soreness (DOMS) during squat and walking, and peak isometric, concentric and eccentric torque were assessed before, post, 24, 48, 72, and 96 hr postexercise. Creatine kinase (CK) activity was assessed before and 72 hr postexercise. Eccentric exercise resulted in DOMS during squat that persisted for up to 96h in men, and 48 hr in boys (p < .05), and DOMS during walking that persisted for up to 72 hr in men, and 48 hr in boys (p < .01). The ROM was lower in both age groups 48 hr postexercise (p < .001). Isometric (p < .001), concentric (p < .01) and eccentric (p < .01) force decreased post, and up to 48 hr postexercise in men. Except for a reduction in isometric force immediately after exercise, no other changes occurred in boys' isokinetic force. CK activity increased in men at 72 hr postexercise compared with pre exercise levels (p = .05). Our data provide further confirmation that children are less susceptible to exercise-induced muscle damage compared with adults.

  20. Vitamin D2 Supplementation Amplifies Eccentric Exercise-Induced Muscle Damage in NASCAR Pit Crew Athletes

    Directory of Open Access Journals (Sweden)

    David C. Nieman

    2013-12-01

    Full Text Available This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD, and delayed onset of muscle soreness (DOMS in National Association for Stock Car Auto Racing (NASCAR NASCAR pit crew athletes. Subjects were randomized to vitD2 (n = 13 and placebo (n = 15, and ingested supplements (double-blind for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test. Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OHD2 456% and decreased 25(OHD3 21% versus placebo (p < 0.001, p = 0.036, respectively, with no influence on muscle function test scores. The post-study eccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p = 0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, p < 0.001, with no differences for DOMS. In summary, 6-weeks vitD2 (3800 IU/day significantly increased 25(OHD2 and decreased 25(OHD3, had no effect on muscle function tests, and amplified muscle damage markers in NASCAR pit crew athletes following eccentric exercise.

  1. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle

    DEFF Research Database (Denmark)

    Skovbro, Mette; Boushel, Robert Christopher; Hansen, Christina Neigaard

    2011-01-01

    ) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P ... and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance....

  2. Topical cooling (icing) delays recovery from eccentric exercise-induced muscle damage.

    Science.gov (United States)

    Tseng, Ching-Yu; Lee, Jo-Ping; Tsai, Yung-Shen; Lee, Shin-Da; Kao, Chung-Lan; Liu, Te-Chih; Lai, Cheng- Hsiu; Harris, M Brennan; Kuo, Chia-Hua

    2013-05-01

    It is generally thought that topical cooling can interfere with blood perfusion and may have positive effects on recovery from a traumatic challenge. This study examined the influence of topical cooling on muscle damage markers and hemodynamic changes during recovery from eccentric exercise. Eleven male subjects (age 20.2 ± 0.3 years) performed 6 sets of elbow extension at 85% maximum voluntary load and randomly assigned to topical cooling or sham groups during recovery in a randomized crossover fashion. Cold packs were applied to exercised muscle for 15 minutes at 0, 3, 24, 48, and 72 hours after exercise. The exercise significantly elevated circulating creatine kinase-MB isoform (CK-MB) and myoglobin levels. Unexpectedly, greater elevations in circulating CK-MB and myoglobin above the control level were noted in the cooling trial during 48-72 hours of the post-exercise recovery period. Subjective fatigue feeling was greater at 72 hours after topical cooling compared with controls. Removal of the cold pack also led to a protracted rebound in muscle hemoglobin concentration compared with controls. Measures of interleukin (IL)-8, IL-10, IL-1β, and muscle strength during recovery were not influenced by cooling. A peak shift in IL-12p70 was noted during recovery with topical cooling. These data suggest that topical cooling, a commonly used clinical intervention, seems to not improve but rather delay recovery from eccentric exercise-induced muscle damage.

  3. Detection of titin fragments in urine in response to exercise-induced muscle damage.

    Directory of Open Access Journals (Sweden)

    Kazue Kanda

    Full Text Available Many studies have attempted to determine the associations between blood biomarkers and exercise-induced muscle damage. However, poor correlations between the changes in biomarker levels and the magnitude of muscle symptoms have been reported. Recent advances in proteomic tools offer a strategy for the comprehensive analysis of protein expression, which can be used to identify biomarkers. Here, we used a proteomic analysis to identify urinary proteins that appear in response to a calf-raise exercise, including repetitive eccentric muscle contractions, and found that a titin (also known as connectin N-terminal fragment molecule appears in the urine after eccentric exercise. We measured the titin fragment in urine samples from nine individuals before and after eccentric exercise using a newly-established enzyme-linked immunosorbent assay and found that the titin fragment excretion rate increased 96 h after the exercise (5.1 to 77.6 pg/min, p <0.01. The changes in the titin fragment excretion rate were correlated strongly with blood markers of muscle damage and with muscle symptoms. These findings suggest that the urinary titin fragment is potentially a noninvasive biomarker of muscle damage.

  4. Novel, high incidence exercise-induced muscle bleeding model in hemophilia B mice

    DEFF Research Database (Denmark)

    Tranholm, M.; Kristensen, Annemarie Thuri; Broberg, M. L.

    2015-01-01

    INTRODUCTION: Muscle hematomas are the second most common complication of hemophilia and insufficient treatment may result in serious and even life-threatening complications. Hemophilic dogs and rats do experience spontaneous muscle bleeding, but currently, no experimental animal model is available...... specifically investigating spontaneous muscle bleeds in a hemophilic setting. AIM: The objective of this study was to develop a model of spontaneous muscle bleeds in hemophilia B mice. We hypothesized that treadmill exercise would induce muscle bleeds in hemophilia B mice but not in normal non-hemophilic mice...... and that treatment with recombinant factor IX (rFIX) before treadmill exercise could prevent the occurrence of pathology. METHODS: A total of 203 mice (123 F9-KO and 80 C57BL/6NTac) were included in three separate studies: (i) the model implementation study investigating the bleeding pattern in hemophilia B mice...

  5. Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats

    Directory of Open Access Journals (Sweden)

    J. Voces

    2004-12-01

    Full Text Available Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg was administered orally for three months to male Wistar rats weighing 200 ± 50 g before exercise and to non-exercised rats (N = 8/group. The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05 after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05 by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.

  6. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy

    Directory of Open Access Journals (Sweden)

    H. Nicastro

    2011-11-01

    Full Text Available Abstract The reduction of skeletal muscle loss in pathological states, such as muscle disuse, has considerable effects in terms of rehabilitation and quality of life. Since there is no currently effective and safe treatment available for skeletal muscle atrophy, the search for new alternatives is necessary. Resistance exercise (RE seems to be an important tool in the treatment of disuse-induced skeletal muscle atrophy by promoting positive functional (strength and power and structural (hypertrophy and phenotypic changes adaptive responses. Human and animal studies using different types of resistance exercise (flywheel, vascular occlusion, dynamic, isometric, and eccentric have obtained results of great importance. However, since RE is a complex phenomenon, lack of strict control of its variables (volume, frequency, intensity, muscle action, rest intervals limits the interpretation of the impact of the manipulation on skeletal muscle remodeling and function under disuse. The aim of this review is to critically describe the functional and morphological role of resistance exercise in disuse-induced skeletal muscle atrophy with emphasis on the principles of training.

  7. Isokinetic eccentric exercise can induce skeletal muscle injury within the physiologic excursion of muscle-tendon unit: a rabbit model

    Directory of Open Access Journals (Sweden)

    Chen Pei-Yu

    2007-08-01

    Full Text Available Abstract Background and Purpose Intensive eccentric exercise can cause muscle damage. We simulated an animal model of isokinetic eccentric exercise by repetitively stretching stimulated triceps surae muscle-tendon units to determine if such exercise affects the mechanical properties of the unit within its physiologic excursion. Methods Biomechanical parameters of the muscle-tendon unit were monitored during isokinetic eccentric loading in 12 rabbits. In each animal, one limb (control group was stretched until failure. The other limb (study group was first subjected to isokinetic and eccentric cyclic loading at the rate of 10.0 cm/min to 112% (group I or 120% (group II of its initial length for 1 hour and then stretched to failure. Load-deformation curves and biomechanical parameters were compared between the study and control groups. Results When the muscle-tendon unit received eccentric cyclic loading to 112%, changes in all biomechanical parameters – except for the slope of the load-deformation curve – were not significant. In contrast, most parameters, including the slope of the load-deformation curve, peak load, deformation at peak load, total energy absorption, and energy absorption before peak load, significantly decreased after isokinetic eccentric cyclic loading to 120%. Conclusion We found a threshold for eccentrically induced injury of the rabbit triceps surae muscle at between 12% and 20% strain, which is within the physiologic excursion of the muscle-tendon units. Our study provided evidence that eccentric exercise may induce changes in the biomechanical properties of skeletal muscles, even within the physiologic range of the excursion of the muscle-tendon unit.

  8. Single dose of intra-muscular platelet rich plasma reverses the increase in plasma iron levels in exercise-induced muscle damage: A pilot study

    Directory of Open Access Journals (Sweden)

    Zekine Punduk

    2016-03-01

    Conclusion: Acute exhaustive exercise increased muscle damage markers, including plasma iron, IBC, and ferritin levels, indicating muscle damage induced by exercise. PRP administration improves inflammation by reversing the increase in the iron levels post-exercise without displaying any myotoxicity and may have a role to play in the recovery of exercise-induced muscle damage.

  9. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases

    DEFF Research Database (Denmark)

    Brandt, Claus; Pedersen, Bente K

    2010-01-01

    and exert their effects on signalling pathways involved in fat oxidation and glucose uptake. By mediating anti-inflammatory effects in the muscle itself, myokines may also counteract TNF-driven insulin resistance. In conclusion, exercise-induced myokines appear to be involved in mediating both systemic...

  10. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Wojtaszewski, Jørgen; Viollet, Benoit

    2005-01-01

    We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body a2- and a1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmi...

  11. Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial.

    Science.gov (United States)

    Delecroix, Barthélémy; Abaïdia, Abd Elbasset; Leduc, Cédric; Dawson, Brian; Dupont, Grégory

    2017-03-01

    The aim of this study was to analyze the effects of oral consumption of curcumin and piperine in combination on the recovery kinetics after exercise-induced muscle damage. Forty-eight hours before and following exercise-induced muscle damage, ten elite rugby players consumed curcumin and piperine (experimental condition) or placebo. A randomized cross-over design was performed. Concentric and isometric peak torque for the knee extensors, one leg 6 seconds sprint performance on a non-motorized treadmill, counter movement jump performance, blood creatine kinase concentration and muscle soreness were assessed immediately after exercise, then at 24h, 48h and 72h post-exercise. There were moderate to large effects of the exercise on the concentric peak torque for the knee extensors (Effect size (ES) = -1.12; Confidence interval at 90% (CI90%): -2.17 to -0.06), the one leg 6 seconds sprint performance (ES=-1.65; CI90% = -2.51to -0.80) and the counter movement jump performance (ES = -0.56; CI90% = -0.81 to -0.32) in the 48h following the exercise. There was also a large effect of the exercise on the creatine kinase level 72h after the exercise in the control group (ES = 3.61; CI90%: 0.24 to 6.98). This decrease in muscle function and this elevation in creatine kinase indicate that the exercise implemented was efficient to induce muscle damage. Twenty four hours post-exercise, the reduction (from baseline) in sprint mean power output was moderately lower in the experimental condition (-1.77 ± 7.25%; 1277 ± 153W) in comparison with the placebo condition (-13.6 ± 13.0%; 1130 ± 241W) (Effect Size = -1.12; Confidence Interval 90%=-1.86 to -0.86). However, no other effect was found between the two conditions. Curcumin and piperine supplementation before and after exercise can attenuate some, but not all, aspects of muscle damage.

  12. Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Barthélémy Delecroix, Abd Elbasset Abaïdia, Cédric Leduc, Brian Dawson, Grégory Dupont

    2017-03-01

    Full Text Available The aim of this study was to analyze the effects of oral consumption of curcumin and piperine in combination on the recovery kinetics after exercise-induced muscle damage. Forty-eight hours before and following exercise-induced muscle damage, ten elite rugby players consumed curcumin and piperine (experimental condition or placebo. A randomized cross-over design was performed. Concentric and isometric peak torque for the knee extensors, one leg 6 seconds sprint performance on a non-motorized treadmill, counter movement jump performance, blood creatine kinase concentration and muscle soreness were assessed immediately after exercise, then at 24h, 48h and 72h post-exercise. There were moderate to large effects of the exercise on the concentric peak torque for the knee extensors (Effect size (ES = -1.12; Confidence interval at 90% (CI90%: -2.17 to -0.06, the one leg 6 seconds sprint performance (ES=-1.65; CI90% = -2.51to -0.80 and the counter movement jump performance (ES = -0.56; CI90% = -0.81 to -0.32 in the 48h following the exercise. There was also a large effect of the exercise on the creatine kinase level 72h after the exercise in the control group (ES = 3.61; CI90%: 0.24 to 6.98. This decrease in muscle function and this elevation in creatine kinase indicate that the exercise implemented was efficient to induce muscle damage. Twenty four hours post-exercise, the reduction (from baseline in sprint mean power output was moderately lower in the experimental condition (-1.77 ± 7.25%; 1277 ± 153W in comparison with the placebo condition (-13.6 ± 13.0%; 1130 ± 241W (Effect Size = -1.12; Confidence Interval 90%=-1.86 to -0.86. However, no other effect was found between the two conditions. Curcumin and piperine supplementation before and after exercise can attenuate some, but not all, aspects of muscle damage.

  13. The Role of Exercise-Induced Myokines in Muscle Homeostasis and the Defense against Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Claus Brandt

    2010-01-01

    Full Text Available Chronic inflammation is involved in the pathogenesis of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. Regular exercise offers protection against type 2 diabetes, cardiovascular diseases, colon cancer, breast cancer, and dementia. Evidence suggests that the protective effect of exercise may to some extent be ascribed to the antiinflammatory effect of regular exercise. Here we suggest that exercise may exert its anti-inflammatory effect via a reduction in visceral fat mass and/or by induction of an anti-inflammatory environment with each bout of exercise. According to our theory, such effects may in part be mediated via muscle-derived peptides, so-called “myokines”. Contracting skeletal muscles release myokines with endocrine effects, mediating direct anti-inflammatory effects, and/or specific effects on visceral fat. Other myokines work locally within the muscle and exert their effects on signalling pathways involved in fat oxidation and glucose uptake. By mediating anti-inflammatory effects in the muscle itself, myokines may also counteract TNF-driven insulin resistance. In conclusion, exercise-induced myokines appear to be involved in mediating both systemic as well as local anti-inflammatory effects.

  14. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Glenn C Rowe

    Full Text Available Exercise confers numerous health benefits, many of which are thought to stem from exercise-induced mitochondrial biogenesis (EIMB in skeletal muscle. The transcriptional coactivator PGC-1α, a potent regulator of metabolism in numerous tissues, is widely believed to be required for EIMB. We show here that this is not the case. Mice engineered to lack PGC-1α specifically in skeletal muscle (Myo-PGC-1αKO mice retained intact EIMB. The exercise capacity of these mice was comparable to littermate controls. Induction of metabolic genes after 2 weeks of in-cage voluntary wheel running was intact. Electron microscopy revealed no gross abnormalities in mitochondria, and the mitochondrial biogenic response to endurance exercise was as robust in Myo-PGC-1αKO mice as in wildtype mice. The induction of enzymatic activity of the electron transport chain by exercise was likewise unperturbed in Myo-PGC-1αKO mice. These data demonstrate that PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle, in sharp contrast to the prevalent assumption in the field.

  15. Contribution of respiratory muscle blood flow to exercise-induced diaphragmatic fatigue in trained cyclists

    DEFF Research Database (Denmark)

    Vogiatzis, Ioannis; Athanasopoulos, Dimitris; Boushel, Robert Christopher

    2008-01-01

    We investigated whether the greater degree of exercise-induced diaphragmatic fatigue previously reported in highly trained athletes in hypoxia (compared with normoxia) could have a contribution from limited respiratory muscle blood flow. Seven trained cyclists completed three constant load 5 min...... normoxia and hypoxia, diaphragmatic fatigue is greater in hypoxia as intercostal muscle blood flow is not increased (compared with normoxia) to compensate for the reduction in PaO2, thus further compromising O(2) supply to the respiratory muscles....... exercise tests at inspired O(2) fractions (FIO2) of 0.13, 0.21 and 1.00 in balanced order. Work rates were selected to produce the same tidal volume, breathing frequency and respiratory muscle load at each FIO2 (63 +/- 1, 78 +/- 1 and 87 +/- 1% of normoxic maximal work rate, respectively). Intercostals...

  16. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: a mini review

    Directory of Open Access Journals (Sweden)

    Leonardo Coelho Rabello Lima

    2015-10-01

    Full Text Available Although beneficial in determined contexts, eccentric exercise-induced muscle damage (EIMD might be unwanted during training regimens, competitions and daily activities. There are a vast number of studies investigating strategies to attenuate EIMD response after damaging exercise bouts. Many of them consist of performing exercises that induce EIMD, consuming supplements or using equipment that are not accessible for most people. It appears that performing maximal isometric contractions (ISOs 2-4 days prior to damaging bouts promotes significant attenuation of EIMD symptoms that are not related to muscle function. It has been shown that the volume of ISOs, muscle length in which they are performed, and interval between them and the damaging bout influence the magnitude of this protection. Additionally, it appears that this protection is not long-lived, lasting no longer than 4 days. Although no particular mechanisms for these adaptations were identified, professionals should consider applying this non-damaging stimulus before submitting their patients to unaccustomed exercised. However, it seems not to be the best option for athletes or relatively trained individuals. Future studies should focus on establishing if ISOs protect other populations (i.e., trained individuals or muscle groups (i.e., knee extensors against EIMD, as well as investigate different mechanisms for ISO-induced protection.

  17. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle

    National Research Council Canada - National Science Library

    Zhen Yan; Mitsuharu Okutsu; Yasir N. Akhtar; Vitor A. Lira

    2011-01-01

    .... Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial...

  18. Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough?

    Science.gov (United States)

    Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz

    2015-09-01

    The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    Science.gov (United States)

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  20. A semiquantitative scoring tool to evaluate eccentric exercise-induced muscle damage in trained rats

    Directory of Open Access Journals (Sweden)

    D. Rizo-Roca

    2015-11-01

    Full Text Available Unaccustomed eccentric exercise is a well-documented cause of exercise-induced muscle damage. However, in trained subjects muscle injury involves only light or moderate tissue damage. Since trained rats are widely used as a model for skeletal muscle injury, here we propose a semiquantitative scoring tool to evaluate muscle damage in trained rats. Twenty male Sprague-Dawley rats were trained fortwo weeks following a two-week preconditioning period, and randomly divided into two groups: control rats (CTL; n=5 and rats with eccentric exercise-induced muscle damage (INJ; n=15. Injured rats were sacrificed at three time points: 1, 3 and 7 days post injury (n=5 each. Transverse sections from the right soleus were cut (10 µm and stained with haematoxylin-eosin. Samples were evaluated by two groups of observers (four researchers experienced in skeletal muscle histopathology and four inexperienced using the proposed tool, which consisted of six items organised in three domains: abnormal fibre morphology, necrotic/(redegenerating fibres (muscle fibre domain, endomysial and perimysial infiltration (inflammatory state domain and endomysium and perimysium distension (interstitial compartment domain. We observed the expected time course in the six evaluated items. Furthermore, agreement among observers was evaluated by measuring the Intraclass Correlation Coefficient (ICC. Within the experienced group, items from the muscle fibre and interstitial compartment domains showed good agreement and the two items from the infiltration compartment domain showed excellent agreement. in conclusion, the proposed tool allowed quick and correct evaluation of light to moderate muscle damage in trained rats with good agreement between observers.

  1. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males

    Directory of Open Access Journals (Sweden)

    Yanita McLeay

    2017-10-01

    daily for 72 h following eccentric exercise-induced muscle damage may help improve eccentric performance recovery of the biceps brachii.

  2. Voluntary exercise prevents cisplatin-induced muscle wasting during chemotherapy in mice.

    Directory of Open Access Journals (Sweden)

    Pernille Hojman

    Full Text Available Loss of muscle mass related to anti-cancer therapy is a major concern in cancer patients, being associated with important clinical endpoints including survival, treatment toxicity and patient-related outcomes. We investigated effects of voluntary exercise during cisplatin treatment on body weight, food intake as well as muscle mass, strength and signalling. Mice were treated weekly with 4 mg/kg cisplatin or saline for 6 weeks, and randomized to voluntary wheel running or not. Cisplatin treatment induced loss of body weight (29.8%, P < 0.001, lean body mass (20.6%, P = 0.001, as well as anorexia, impaired muscle strength (22.5% decrease, P < 0.001 and decreased glucose tolerance. In addition, cisplatin impaired Akt-signalling, induced genes related to protein degradation and inflammation, and reduced muscle glycogen content. Voluntary wheel running during treatment attenuated body weight loss by 50% (P < 0.001, maintained lean body mass (P < 0.001 and muscle strength (P < 0.001, reversed anorexia and impairments in Akt and protein degradation signalling. Cisplatin-induced muscular inflammation was not prevented by voluntary wheel running, nor was glucose tolerance improved. Exercise training may preserve muscle mass in cancer patients receiving cisplatin treatment, potentially improving physical capacity, quality of life and overall survival.

  3. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle.

    Directory of Open Access Journals (Sweden)

    Johann Edge

    Full Text Available Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% VO2speak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID or calcium carbonate (PLA the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α, citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P0.05; the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08. Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle.

  4. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males.

    Science.gov (United States)

    McLeay, Yanita; Stannard, Stephen; Barnes, Matthew

    2017-10-17

    Eccentric exercise is known to bring about microstructural damage to muscle, initiating an inflammatory cascade involving various reactive oxygen species. This, in turn, can significantly impair physical performance over subsequent days. Taurine, a powerful endogenous antioxidant, has previously been shown to have a beneficial effect on muscle damage markers and recovery when taken for a few days to several weeks prior to eccentric exercise. However, to date no studies have looked at the effects of supplementing over the days following eccentric exercise on performance recovery. Thus, this study aimed to determine whether supplementing with taurine over three days following eccentric exercise attenuated the rise in serum creatine kinase and improved performance recovery in males. In a blinded, randomized, crossover design, ten recreationally-fit male participants completed 60 eccentric contractions of the biceps brachii muscle at maximal effort. Following this, participants were supplemented with 0.1 g∙kg-1 body weight∙day-1 of either taurine or rice flour in capsules. Over the next three mornings participants underwent blood tests for the analysis of the muscle damage marker creatine kinase and carried out performance measures on the isokinetic dynamometer. They also continued to consume the capsules in the morning and evening. The entire protocol was repeated two weeks later on the alternate arm and supplement. Significant decreases were seen in all performance measures from pre- to 24-h post-eccentric exercise (p time × treatment effects were observed (all p > 0.05). Serum creatine kinase levels did not significantly differ over time for either treatments, nor between treatments (p > 0.05). These findings suggest that taurine supplementation taken twice daily for 72 h following eccentric exercise-induced muscle damage may help improve eccentric performance recovery of the biceps brachii.

  5. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy

    Directory of Open Access Journals (Sweden)

    Fanxing Zeng

    2017-12-01

    Full Text Available This study was designed to investigate the effects of exogenous androgen and resistance exercise on skeletal muscle hypertrophy and the role of the mammalian target of rapamycin (mTOR signalling during the process. A total of 24 male Sprague-Dawley rats were randomly assigned to sham operation and dihydrotestosterone (DHT implantation groups with subgroups subjected to sedentary conditions or resistance exercise (SHAM+SED, SHAM+EX, DHT+SED, and DHT+EX. The experimental procedure lasted for 10 days. The mRNA expression of androgen receptor (AR and insulin-like growth factor I (IGF-I, the expression of myosin heavy chain (MHC, as well as the phosphorylation statuses of AR, mTOR, p70 ribosomal S6 kinase (p70S6K, and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1 were determined in the white gastrocnemius muscle. The cross sectional area and wet mass of the muscle were also measured. The cross sectional area and MHC expression were significantly higher in SHAM+EX, DHT+SED, and DHT+EX than in SHAM+SED. There was no significant difference among groups in muscle mass. The mRNA expression of AR and IGF-I and the phosphorylation of mTOR, p70S6K, and 4EBP1 were significantly increased in DHT+SED and SHAM+EX and were significantly enhanced in DHT+EX compared with either DHT or exercise alone. These data show that DHT causes hypertrophy in skeletal muscle and that exercise has a synergistic effect on DHT-induced hypertrophy. Exercise enhances androgen-induced rapid anabolic action, which involves activation of the mTOR pathway.

  6. Exercise-induced AMPK activity in skeletal muscle

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Mortensen, Brynjulf; Pehmøller, Christian

    2013-01-01

    The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose...

  7. The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development.

    Science.gov (United States)

    Schoenfeld, Brad J

    2012-12-01

    Exercise-induced muscle damage (EIMD) is a common condition resulting from a bout of vigorous exercise, particularly if the individual is unaccustomed to performance of the given movement. Symptoms of EIMD include delayed-onset muscle soreness (DOMS) and a loss of physical function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely prescribed post-exercise to alleviate these symptoms and restore normal physical function. Of potential concern for those who use NSAIDs to treat EIMD is the possibility that they may impair the adaptive response to exercise. Specifically, there is emerging evidence that the action of cyclo-oxygenase (COX) enzymes, and COX-2 in particular, are important and even necessary to achieve maximal skeletal muscle hypertrophy in response to functional overload. Given that NSAIDs exert their actions by blocking COX and thus suppressing prostaglandin production, a theoretical rationale exists whereby these drugs may have detrimental effects on muscle regeneration and supercompensation. Therefore, the purpose of this article is to extensively review the literature and evaluate the effects of NSAIDs on muscle growth and development. Based on current evidence, there is little reason to believe that the occasional use of NSAIDs will negatively affect muscle growth, although the efficacy for their use in alleviating inflammatory symptoms remains questionable. Evidence on the hypertrophic effects of the chronic use of NSAIDs is less clear. In those who are untrained, it does not appear that regular NSAID use will impede growth in the short term, and at least one study indicates that it may in fact have a positive impact. Given their reported impairment of satellite cell activity, however, longer-term NSAID use may well be detrimental, particularly in those who possess greater growth potential.

  8. Exercise-induced liver chemokine CXCL-1 expression is linked to muscle-derived interleukin-6 expression

    DEFF Research Database (Denmark)

    Pedersen, Line; Pilegaard, Henriette; Hansen, Jakob

    2011-01-01

    interleukin-6 (IL-6) and muscle IL-6 mRNA. In contrast, exercise-induced regulation of liver CXCL-1 mRNA expression was completely blunted in IL-6 knockout mice. Based on these findings, we examined the possible existence of a muscle-to-liver axis by overexpressing IL-6 in muscles. This resulted in increases...

  9. Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females.

    Science.gov (United States)

    Brown, Meghan A; Stevenson, Emma J; Howatson, Glyn

    2017-11-06

    A number of different forms of protein and their analogues have been investigated for their efficacy in ameliorating exercise-induced muscle damage (EIMD) and recovery. Preliminary data regarding whey protein hydrolysate (WPH) supplementation are promising. However, its efficacy beyond acute eccentric/resistance exercise bouts or longer-term training programmes are limited and all investigations have been conducted in male or mixed-sex groups. This study sought to elucidate whether the benefits of WPH previously reported can be demonstrated in females following repeated-sprint exercise. Twenty physically active females were assigned to consume two doses of 70 ml WPH or isoenergetic carbohydrate (CHO) for 4 days post EIMD. Measures of muscle soreness, limb girth, flexibility, muscle function and creatine kinase were collected pre, immediately post, and 24, 48 and 72 h post-exercise. Time effects were observed for all variables (p recovery in the WPH group compared to CHO (p = 0.016). Reductions in creatine kinase were greater following WPH compared to CHO at 48 h post EIMD (p = 0.031). The findings suggest that four day supplementation of WPH is beneficial for reducing symptoms of EIMD and improving recovery of muscle function in physically active females.

  10. Effect of dehydroepiandrosterone administration on recovery from mix-type exercise training-induced muscle damage.

    Science.gov (United States)

    Liao, Yi-Hung; Liao, Kun-Fu; Kao, Chung-Lan; Chen, Chung-Yu; Huang, Chih-Yang; Chang, Wei-Hsiang; Ivy, John L; Bernard, Jeffrey R; Lee, Shin-Da; Kuo, Chia-Hua

    2013-01-01

    This study aimed to determine the role of DHEA-S in coping against the exercise training mixing aerobic and resistance components. During 5-day successive exercise training, 16 young male participants (19.2 ± 1.2 years) received either a placebo (flour capsule) or DHEA (100 mg/day) in a double-blinded and placebo-controlled design. Oral DHEA supplementation significantly increased circulating DHEA-S by 2.5-fold, but a protracted drop (~35 %) was observed from Day 3 during training. In the Placebo group, only a minimal DHEA-S reduction (~17 %) was observed. Changes in testosterone followed a similar pattern as DHEA-S. Muscle soreness was elevated significantly on Day 2 for both groups to a similar extent. Lower muscle soreness was observed in the DHEA-supplemented group on Day 3 and Day 6. In the Placebo group, training increased circulating creatine kinase (CK) levels by approximately ninefold, while only a threefold increase was observed in the DHEA-supplemented group. This mix-type exercise training improved glucose tolerance in both groups, while lowering the insulin response to the glucose challenge, but no difference between treatments was observed. Our results suggest that DHEA-S may play a role in protecting skeletal muscle from exercise training-induced muscle damage.

  11. Vitamin D2 supplementation amplifies eccentric exercise-induced muscle damage in NASCAR pit crew athletes.

    Science.gov (United States)

    Nieman, David C; Gillitt, Nicholas D; Shanely, R Andrew; Dew, Dustin; Meaney, Mary Pat; Luo, Beibei

    2013-12-20

    This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n=13) and placebo (n=15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (pNASCAR pit crew athletes following eccentric exercise.

  12. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    Science.gov (United States)

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  13. Effects of allopurinol on exercise-induced muscle damage: new therapeutic approaches?

    Science.gov (United States)

    Sanchis-Gomar, F; Pareja-Galeano, H; Perez-Quilis, C; Santos-Lozano, A; Fiuza-Luces, C; Garatachea, N; Lippi, G; Lucia, A

    2015-01-01

    Intensive muscular activity can trigger oxidative stress, and free radicals may hence be generated by working skeletal muscle. The role of the enzyme xanthine oxidase as a generating source of free radicals is well documented and therefore is involved in the skeletal muscle damage as well as in the potential transient cardiovascular damage induced by high-intensity physical exercise. Allopurinol is a purine hypoxanthine-based structural analog and a well-known inhibitor of xanthine oxidase. The administration of the xanthine oxidase inhibitor allopurinol may hence be regarded as promising, safe, and an economic strategy to decrease transient skeletal muscle damage (as well as heart damage, when occurring) in top-level athletes when administered before a competition or a particularly high-intensity training session. Although continuous administration of allopurinol in high-level athletes is not recommended due to its possible role in hampering training-induced adaptations, the drug might be useful in non-athletes. Exertional rhabdomyolysis is the most common form of rhabdomyolysis and affects individuals participating in a type of intense exercise to which they are not accustomed. This condition can cause exercise-related myoglobinuria, thus increasing the risk of acute renal failure and is also associated with sickle cell trait. In this manuscript, we have reviewed the recent evidence about the effects of allopurinol on exercise-induced muscle damage. More research is needed to determine whether allopurinol may be useful for preventing not only exertional rhabdomyolysis and acute renal damage but also skeletal muscle wasting in critical illness as well as in immobilized, bedridden, sarcopenic or cachectic patients.

  14. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery

    DEFF Research Database (Denmark)

    Leick, Lotte; Plomgaard, Peter S.; Grønløkke, L.

    2010-01-01

    Exercise-induced adaptations in skeletal muscle oxidative enzymes are suggested to result from the cumulative effects of transient changes in gene expression after each single exercise session. However, for several oxidative enzymes, no changes in mRNA expression are detected up to 8 h after......-responsive oxidative enzymes is up-regulated in human skeletal muscle at 10-24 h of recovery, supporting that exercise-induced adaptations of these oxidative enzymes can be the result of the cumulative effects of transient changes in mRNA expression....... exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery...

  15. Assessment of Muscle Pain Induced by Elbow-Flexor Eccentric Exercise.

    Science.gov (United States)

    Lau, Wing Yin; Blazevich, Anthony J; Newton, Michael J; Wu, Sam Shi Xuan; Nosaka, Kazunori

    2015-11-01

    Delayed-onset muscle soreness (DOMS) is a common muscle pain that many people experience and is often used as a model of acute muscle pain. Researchers have reported the effects of various interventions on DOMS, but different DOMS assessment protocols used in these studies make it difficult to compare the effects. To investigate DOMS characteristics after elbow-flexor eccentric exercise to establish a standardized DOMS assessment protocol. Descriptive laboratory study. Research laboratory. Ten healthy, untrained men (21-39 years). Participants performed 10 sets of 6 maximal isokinetic eccentric contractions of the elbow flexors. Indirect muscle-damage markers were maximal voluntary isometric contraction torque, range of motion, and serum creatine kinase activity. Muscle pain was assessed before exercise, immediately postexercise, and 1 to 5 days postexercise using (1) a visual analog scale (VAS), (2) a category ratio-10 scale (CR-10) when applying static pressure and palpation at different sites (3, 9, and 15 cm above the elbow crease), and (3) pressure-pain thresholds (PPTs) at 50 sites (pain mapping). Maximal voluntary isometric contraction and range of motion decreased and creatine kinase activity increased postexercise, indicating muscle damage. Palpation induced greater pain than static pressure, and longitudinal and transverse palpations induced greater pain than circular palpation (P muscles are assessed affects the pain level score. This finding suggests that pain level and pain threshold cannot be used interchangeably and that the central and distal regions of the biceps brachii should be included in DOMS assessment using the VAS, CR-10 scale, and PPT after elbow-flexor eccentric exercise.

  16. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage

    OpenAIRE

    McLeay, Yanita; Barnes, Matthew J; Mundel, Toby; Hurst, Suzanne M; Hurst, Roger D; Stannard, Stephen R

    2012-01-01

    Abstract Background Exercise-induced muscle damage (EIMD) is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on ...

  17. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism.

    Directory of Open Access Journals (Sweden)

    David Vaughan

    Full Text Available A silencer region (I-allele within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE, is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle.Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER, serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS, were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc.Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09. The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and -3%, respectively. Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon.The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in

  18. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism.

    Science.gov (United States)

    Vaughan, David; Brogioli, Michael; Maier, Thomas; White, Andy; Waldron, Sarah; Rittweger, Jörn; Toigo, Marco; Wettstein, Jessica; Laczko, Endre; Flück, Martin

    2016-01-01

    A silencer region (I-allele) within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE), is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle. Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER), serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS), were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc. Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09). The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and -3%, respectively). Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione) were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon. The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in working

  19. Type of Ground Surface during Plyometric Training Affects the Severity of Exercise-Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2016-03-01

    Full Text Available The purpose of this study was to compare the changes in the symptoms of exercise-induced muscle damage from a bout of plyometric exercise (PE; 10 × 10 vertical jumps performed in aquatic, sand and firm conditions. Twenty-four healthy college-aged men were randomly assigned to one of three groups: Aquatic (AG, n = 8, Sand (SG, n = 8 and Firm (FG, n = 8. The AG performed PE in an aquatic setting with a depth of ~130 cm. The SG performed PE on a dry sand surface at a depth of 20 cm, and the FG performed PE on a 10-cm-thick wooden surface. Plasma creatine kinase (CK activity, delayed onset muscle soreness (DOMS, knee range of motion (KROM, maximal isometric voluntary contraction (MIVC of the knee extensors, vertical jump (VJ and 10-m sprint were measured before and 24, 48 and 72 h after the PE. Compared to baseline values, FG showed significantly (p < 0.05 greater changes in CK, DOMS, and VJ at 24 until 48 h. The MIVC decreased significantly for the SG and FG at 24 until 48 h post-exercise in comparison to the pre-exercise values. There were no significant (p > 0.05 time or group by time interactions in KROM. In the 10-m sprint, all the treatment groups showed significant (p < 0.05 changes compared to pre-exercise values at 24 h, and there were no significant (p > 0.05 differences between groups. The results indicate that PE in an aquatic setting and on a sand surface induces less muscle damage than on a firm surface. Therefore, training in aquatic conditions and on sand may be beneficial for the improvement of performance, with a concurrently lower risk of muscle damage and soreness.

  20. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  1. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    Directory of Open Access Journals (Sweden)

    Mireia Rovira

    2017-12-01

    Full Text Available Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest

  2. Myosin Light Chain Kinase (MLCK Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    Directory of Open Access Journals (Sweden)

    Juan Del Coso

    Full Text Available Myosin light chain kinase (MLCK phosphorylates the regulatory light chain (RLC of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1% were CC homozygotes and 8 marathoners (11.9% were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30 and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21 and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29. However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03 and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05 than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  3. Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women.

    Science.gov (United States)

    Alway, Stephen E; McCrory, Jean L; Kearcher, Kalen; Vickers, Austen; Frear, Benjamin; Gilleland, Diana L; Bonner, Daniel E; Thomas, James M; Donley, David A; Lively, Mathew W; Mohamed, Junaith S

    2017-11-09

    Older men (n = 12) and women (n = 18) 65-80 years of age completed 12 weeks of exercise and took either a placebo or resveratrol (RSV) (500 mg/d) to test the hypothesis that RSV treatment combined with exercise would increase mitochondrial density, muscle fatigue resistance, and cardiovascular function more than exercise alone. Contrary to our hypothesis, aerobic and resistance exercise coupled with RSV treatment did not reduce cardiovascular risk further than exercise alone. However, exercise added to RSV treatment improved the indices of mitochondrial density, and muscle fatigue resistance more than placebo and exercise treatments. In addition, subjects that were treated with RSV had an increase in knee extensor muscle peak torque (8%), average peak torque (14%), and power (14%) after training, whereas exercise did not increase these parameters in the placebo-treated older subjects. Furthermore, exercise combined with RSV significantly improved mean fiber area and total myonuclei by 45.3% and 20%, respectively, in muscle fibers from the vastus lateralis of older subjects. Together, these data indicate a novel anabolic role of RSV in exercise-induced adaptations of older persons and this suggests that RSV combined with exercise might provide a better approach for reversing sarcopenia than exercise alone. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. ACTN3 genotype influences exercise-induced muscle damage during a marathon competition.

    Science.gov (United States)

    Del Coso, Juan; Valero, Marjorie; Salinero, Juan José; Lara, Beatriz; Díaz, Germán; Gallo-Salazar, César; Ruiz-Vicente, Diana; Areces, Francisco; Puente, Carlos; Carril, Juan Carlos; Cacabelos, Ramón

    2017-03-01

    Exercise-induced muscle damage has been identified as one of the main causes of the progressive decrease in running and muscular performance in marathoners. The aim of this investigation was to determine the influence of the ACTN3 genotype on exercise-induced muscle damage produced during a marathon. Seventy-one experienced runners competed in a marathon race. Before and after the race, a sample of venous blood was obtained and maximal voluntary leg muscle power was measured during a countermovement jump. In the blood samples, the ACTN3 genotype (R577X) and the changes in serum creatine kinase and myoglobin concentrations were measured. Data from RX heterozygotes and XX mutant homozygotes were grouped as X allele carriers and compared to RR homozygotes. At the end of the race, X allele carriers presented higher serum myoglobin (774 ± 852 vs 487 ± 367 U L -1 ; P = 0.02) and creatine kinase concentrations (508 ± 346 vs 359 ± 170 ng mL -1 ; P = 0.04) than RR homozygotes. Pre-to-post-race maximal voluntary leg muscle power reduction was more pronounced in X allele carriers than RR homozygotes (-34.4 ± 16.1 vs -27.3 ± 15.4%; P = 0.05). X allele carriers self-reported higher levels of lower limb muscle pain (7 ± 2 vs 6 ± 2 cm; P = 0.02) than RR homozygotes at the end of the race. In comparison to RR homozygotes, X allele carriers for the R577X polymorphism of the ACTN3 gene presented higher values for typical markers of exercise-induced muscle damage during a competitive marathon. Thus, the absence of a functional α-actinin-3 produced by the X allele might induce higher levels of muscle breakdown during prolonged running events.

  5. Muscle physiology changes induced by every other day feeding and endurance exercise in mice: effects on physical performance.

    Directory of Open Access Journals (Sweden)

    Elizabeth Rodríguez-Bies

    Full Text Available Every other day feeding (EOD and exercise induce changes in cell metabolism. The aim of the present work was to know if both EOD and exercise produce similar effects on physical capacity, studying their physiological, biochemical and metabolic effects on muscle. Male OF-1 mice were fed either ad libitum (AL or under EOD. After 18 weeks under EOD, animals were also trained by using a treadmill for another 6 weeks and then analyzed for physical activity. Both, EOD and endurance exercise increased the resistance of animals to extenuating activity and improved motor coordination. Among the groups that showed the highest performance, AL and EOD trained animals, ALT and EODT respectively, only the EODT group was able to increase glucose and triglycerides levels in plasma after extenuating exercise. No high effects on mitochondrial respiratory chain activities or protein levels neither on coenzyme Q levels were found in gastrocnemius muscle. However, exercise and EOD did increase β-oxidation activity in this muscle accompanied by increased CD36 levels in animals fed under EOD and by changes in shape and localization of mitochondria in muscle fibers. Furthermore, EOD and training decreased muscle damage after strenuous exercise. EOD also reduced the levels of lipid peroxidation in muscle. Our results indicate that EOD improves muscle performance and resistance by increasing lipid catabolism in muscle mitochondria at the same time that prevents lipid peroxidation and muscle damage.

  6. Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy.

    Science.gov (United States)

    Abaïdia, Abd-Elbasset; Lamblin, Julien; Delecroix, Barthélémy; Leduc, Cédric; McCall, Alan; Nédélec, Mathieu; Dawson, Brian; Baquet, Georges; Dupont, Grégory

    2017-03-01

    To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage. Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at -110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise. Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = -0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = -0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = -0.68; 90% CI = -1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = -0.62; 90% CI = -1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes. CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24-48 h postexercise.

  7. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF

    DEFF Research Database (Denmark)

    Høier, Birgitte; Hellsten, Ylva

    2014-01-01

    , these VEGF containing vesicles are redistributed towards the sarcolemma where the contents are secreted into the extracellular fluid. VEGF mRNA expression is increased primarily after exercise, which allows for a more rapid replenishment of VEGF stores lost through secretion during exercise. Future studies...... in the muscle interstitium, acts on VEGF receptors on the capillary endothelium and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity...

  8. Treadmill exercise induces neutrophil recruitment into muscle tissue in a reactive oxygen species-dependent manner. An intravital microscopy study.

    Science.gov (United States)

    Nunes-Silva, Albená; Bernardes, Priscila T T; Rezende, Bárbara M; Lopes, Fernando; Gomes, Elisa C; Marques, Pedro E; Lima, Paulo M A; Coimbra, Cândido C; Menezes, Gustavo B; Teixeira, Mauro M; Pinho, Vanessa

    2014-01-01

    Intense exercise is a physiological stress capable of inducing the interaction of neutrophils with muscle endothelial cells and their transmigration into tissue. Mechanisms driving this physiological inflammatory response are not known. Here, we investigate whether production of reactive oxygen species is relevant for neutrophil interaction with endothelial cells and recruitment into the quadriceps muscle in mice subjected to the treadmill fatiguing exercise protocol. Mice exercised until fatigue by running for 56.3±6.8 min on an electric treadmill. Skeletal muscle was evaluated by intravital microscopy at different time points after exercise, and then removed to assess local oxidative stress and histopathological analysis. We observed an increase in plasma lactate and creatine kinase (CK) concentrations after exercise. The numbers of monocytes, neutrophils, and lymphocytes in blood increased 12 and 24 hours after the exercise. Numbers of rolling and adherent leukocytes increased 3, 6, 12, and 24 hours post-exercise, as assessed by intravital microscopy. Using LysM-eGFP mice and confocal intravital microscopy technology, we show that the number of transmigrating neutrophils increased 12 hours post-exercise. Mutant gp91phox-/- (non-functional NADPH oxidase) mice and mice treated with apocynin showed diminished neutrophil recruitment. SOD treatment promoted further adhesion and transmigration of leukocytes 12 hours after the exercise. These findings confirm our hypothesis that treadmill exercise increases the recruitment of leukocytes to the postcapillary venules, and NADPH oxidase-induced ROS plays an important role in this process.

  9. Treadmill exercise induces neutrophil recruitment into muscle tissue in a reactive oxygen species-dependent manner. An intravital microscopy study.

    Directory of Open Access Journals (Sweden)

    Albená Nunes-Silva

    Full Text Available Intense exercise is a physiological stress capable of inducing the interaction of neutrophils with muscle endothelial cells and their transmigration into tissue. Mechanisms driving this physiological inflammatory response are not known. Here, we investigate whether production of reactive oxygen species is relevant for neutrophil interaction with endothelial cells and recruitment into the quadriceps muscle in mice subjected to the treadmill fatiguing exercise protocol. Mice exercised until fatigue by running for 56.3±6.8 min on an electric treadmill. Skeletal muscle was evaluated by intravital microscopy at different time points after exercise, and then removed to assess local oxidative stress and histopathological analysis. We observed an increase in plasma lactate and creatine kinase (CK concentrations after exercise. The numbers of monocytes, neutrophils, and lymphocytes in blood increased 12 and 24 hours after the exercise. Numbers of rolling and adherent leukocytes increased 3, 6, 12, and 24 hours post-exercise, as assessed by intravital microscopy. Using LysM-eGFP mice and confocal intravital microscopy technology, we show that the number of transmigrating neutrophils increased 12 hours post-exercise. Mutant gp91phox-/- (non-functional NADPH oxidase mice and mice treated with apocynin showed diminished neutrophil recruitment. SOD treatment promoted further adhesion and transmigration of leukocytes 12 hours after the exercise. These findings confirm our hypothesis that treadmill exercise increases the recruitment of leukocytes to the postcapillary venules, and NADPH oxidase-induced ROS plays an important role in this process.

  10. Carbohydrate-protein drinks do not enhance recovery from exercise-induced muscle injury.

    Science.gov (United States)

    Green, Michael S; Corona, Benjamin T; Doyle, J Andrew; Ingalls, Christopher P

    2008-02-01

    This study examined the effects of carbohydrate (CHO), carbohydrate-protein (CHO+PRO), or placebo (PLA) beverages on recovery from novel eccentric exercise. Female participants performed 30 min of downhill treadmill running (-12% grade, 8.0 mph), followed by consumption of a CHO, CHO+PRO, or PLA beverage immediately, 30, and 60 min after exercise. CHO and CHO+PRO groups (n=6 per group) consumed 1.2 g x kg body weight(-1) x hr(-1) CHO, with the CHO+PRO group consuming an additional 0.3 g x kg body weight(-1) x hr(-1) PRO. The PLA group (n=6) received an isovolumetric noncaloric beverage. Maximal isometric quadriceps strength (QUAD), lower extremity muscle soreness (SOR), and serum creatine kinase (CK) were assessed preinjury (PRE) and immediately and 1, 2, and 3 d postinjury to assess exercise-induced muscle injury and rate of recovery. There was no effect of treatment on recovery of QUAD (p= .21), SOR (p= .56), or CK (p= .59). In all groups, QUAD was reduced compared with PRE by 20.6%+/-1.5%, 17.2%+/-2.3%, and 11.3%+/-2.3% immediately, 1, and 2 d postinjury, respectively (pdrink.

  11. Muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Gavras, H

    1982-01-01

    The interaction of epinephrine and contractions on muscle metabolism was studied in the isolated perfused rat hindquarter. Subtetanic contractions (180/min) through 20 min elicited glycogenolysis and increased phosphorylase a activity. In the soleus, a slow-twitch red muscle, these effects were...... and not significant in the fast-twitch white fibers of the gastrocnemius muscle. However, during less frequent contractions (30/min) epinephrine increased glycogenolysis and phosphorylase a activity in fast-twitch muscle. The data suggest that epinephrine and muscle contractions exert a dual control of muscle...... glycogenolysis during exercise: contractions principally stimulate glycogenolysis early in exercise, and a direct effect of epinephrine on muscle is needed for continued glycogenolysis. In addition, epinephrine increased oxygen consumption and glucose uptake in both resting and electrically stimulated...

  12. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    François Bieuzen

    Full Text Available The aim of this systematic review was to examine the effect of Contrast Water Therapy (CWT on recovery following exercise induced muscle damage. Controlled trials were identified from computerized literature searching and citation tracking performed up to February 2013. Eighteen trials met the inclusion criteria; all had a high risk of bias. Pooled data from 13 studies showed that CWT resulted in significantly greater improvements in muscle soreness at the five follow-up time points (<6, 24, 48, 72 and 96 hours in comparison to passive recovery. Pooled data also showed that CWT significantly reduced muscle strength loss at each follow-up time (<6, 24, 48, 72 and 96 hours in comparison to passive recovery. Despite comparing CWT to a large number of other recovery interventions, including cold water immersion, warm water immersion, compression, active recovery and stretching, there was little evidence for a superior treatment intervention. The current evidence base shows that CWT is superior to using passive recovery or rest after exercise; the magnitudes of these effects may be most relevant to an elite sporting population. There seems to be little difference in recovery outcome between CWT and other popular recovery interventions.

  13. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage.

    Science.gov (United States)

    McLeay, Yanita; Barnes, Matthew J; Mundel, Toby; Hurst, Suzanne M; Hurst, Roger D; Stannard, Stephen R

    2012-07-11

    Exercise-induced muscle damage (EIMD) is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on EIMD after strenuous eccentric exercise. In a randomized cross-over design, 10 females consumed a blueberry smoothie or placebo of a similar antioxidant capacity 5 and 10 hours prior to and then immediately, 12 and 36 hours after EIMD induced by 300 strenuous eccentric contractions of the quadriceps. Absolute peak and average peak torque across the knee, during concentric, isometric, and eccentric actions were measured. Blood biomarkers of oxidative stress, antioxidant capacity, and inflammation were assessed at 12, 36 and 60 hours post exercise. Data were analyzed using a two-way ANOVA. A significant (p blueberry intervention group. A similar trend was observed for concentric and eccentric strength. An increase in oxidative stress and inflammatory biomarkers was also observed in both treatment groups following EIMD. Although a faster rate of decrease in oxidative stress was observed in the blueberry group, it was not significant (p blueberry smoothie prior to and after EIMD accelerates recovery of muscle peak isometric strength. This effect, although independent of the beverage's inherent antioxidant capacity, appears to involve an up-regulation of adaptive processes, i.e. endogenous antioxidant processes, activated by the combined actions of the eccentric exercise and blueberry consumption. These findings may benefit the sporting community who should consider dietary interventions that specifically target health and performance adaptation.

  14. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage

    Directory of Open Access Journals (Sweden)

    McLeay Yanita

    2012-07-01

    Full Text Available Abstract Background Exercise-induced muscle damage (EIMD is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on EIMD after strenuous eccentric exercise. Methods In a randomized cross-over design, 10 females consumed a blueberry smoothie or placebo of a similar antioxidant capacity 5 and 10 hours prior to and then immediately, 12 and 36 hours after EIMD induced by 300 strenuous eccentric contractions of the quadriceps. Absolute peak and average peak torque across the knee, during concentric, isometric, and eccentric actions were measured. Blood biomarkers of oxidative stress, antioxidant capacity, and inflammation were assessed at 12, 36 and 60 hours post exercise. Data were analyzed using a two-way ANOVA. Results A significant (p p = 0.047 interaction effect was seen for peak isometric tension suggesting a faster rate of recovery in the blueberry intervention group. A similar trend was observed for concentric and eccentric strength. An increase in oxidative stress and inflammatory biomarkers was also observed in both treatment groups following EIMD. Although a faster rate of decrease in oxidative stress was observed in the blueberry group, it was not significant (p  Conclusions This study demonstrates that the ingestion of a blueberry smoothie prior to and after EIMD accelerates recovery of muscle peak isometric strength. This effect, although independent of the beverage’s inherent antioxidant capacity, appears to involve an up-regulation of adaptive processes, i.e. endogenous antioxidant processes, activated by the combined actions of the eccentric exercise

  15. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after...... kinase phosphorylation, peroxisome proliferator activated receptor ¿ coactivator-1a and VEGF mRNA content in skeletal muscle before bed rest, but the responses were abolished after bed rest. Conclusion: The present findings indicate that only 7 days of physical inactivity reduce skeletal muscle metabolic...... capacity as well as abolish exercise-induced adaptive gene responses likely reflecting the interference with the ability of skeletal muscle to adapt to exercise....

  16. Pelvic floor muscle training exercises

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003975.htm Pelvic floor muscle training exercises To use the sharing features on this page, please enable JavaScript. Pelvic floor muscle training exercises are a series of exercises ...

  17. Polygenic Profile and Exercise-Induced Muscle Damage by a Competitive Half-Ironman.

    Science.gov (United States)

    Del Coso, Juan; Salinero, Juan J; Lara, Beatriz; Gallo-Salazar, César; Areces, Francisco; Herrero, David; Puente, Carlos

    2017-11-14

    Del Coso, J, Salinero, JJ, Lara, B, Gallo-Salazar, C, Areces, F, Herrero, D, and Puente, C. Polygenic profile and exercise-induced muscle damage by a competitive half-ironman. J Strength Cond Res XX(X): 000-000, 2017-To date, it is still unknown why some individuals develop higher levels of muscle damage than other individuals, despite participating in exercise with comparable levels of physical intensity. The aim of this investigation was to analyze 7 single-nucleotide polymorphisms (SNPs) that are candidates to explain individual variations in the level of muscle damage attained during a half-ironman competition. Using the model of Williams and Folland (2, 1, and 0 points for optimal, intermediate, and suboptimal genotype), we determined the total genotype score from the accumulated combination of 7 SNPs (ACE = 287bp Ins/Del; ACTN3 = p.R577X; creatine kinase, muscle type = NcoI; insulin-like growth factor 2 = C13790G; interleukin-6 = 174G>C; myosin light chain kinase = C37885A; and tumor necrosis factor-α = 308G>A) in 22 experienced triathletes. Before and after the race, a sample of venous blood was obtained to measure serum markers of muscle damage. Two groups of triathletes were established according to their postcompetition serum CK concentration: low CK responders (n = 10; 377 ± 86 U·L) vs. high CK responders (n = 12; 709 ± 136 U·L). At the end of the race, low CK responders had lower serum myoglobin concentrations (384 ± 243 vs. 597 ± 293 ng·ml, p = 0.04). Although the groups were similar in age, anthropometric characteristics, and training habits, total genotype score was higher in low CK responders than in high CK responders (7.7 ± 1.1 vs. 5.5 ± 1.1 point, p < 0.01). A favorable polygenic profile can contribute to reducing the level of muscle damage developed during endurance exercise.

  18. Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture.

    Science.gov (United States)

    Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto

    2014-12-01

    [Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively.

  19. Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangho; Kim, Minjung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Lim, Wonchung [Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 363-764 (Korea, Republic of); Kim, Taeyoung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Kang, Chounghun, E-mail: kangx119@umn.edu [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, MN 55455 (United States)

    2015-05-29

    Strenuous exercise is known to cause excessive ROS generation and inflammation. However, the mechanisms responsible for the regulation of mitochondrial integrity in the senescent muscle during high-intensity exercise (HE) are not well studied. Here, we show that HE suppresses up-regulation of mitochondrial function despite increase in mitochondrial copy number, following excessive ROS production, proinflammatory cytokines and NFκB activation. Moreover, HE in the old group resulted in the decreasing of both fusion (Mfn2) and fission (Drp1) proteins that may contribute to alteration of mitochondrial morphology. This study suggests that strenuous exercise does not reverse age-related mitochondrial damage and dysfunction by the increased ROS and inflammation. - Highlights: • Effect of exercise on mitochondrial function of aged skeletal muscles was studied. • Strenuous exercise triggered excessive ROS production and inflammatory cytokines. • Strenuous exercise suppressed mitochondrial function in senescent muscle.

  20. Effects of Exercise Induced Low Back Pain on Intrinsic Trunk Stiffness and Paraspinal Muscle Reflexes

    Science.gov (United States)

    Miller, Emily M.; Bazrgari, Babak; Nussbaum, Maury A.; Madigan, Michael L.

    2012-01-01

    The purpose of this study was to 1) compare trunk neuromuscular behavior between individuals with no history of low back pain (LBP) and individuals who experience exercise-induced LBP (eiLBP) when pain free, and 2) investigate changes in trunk neuromuscular behavior with eiLBP. Seventeen young adult males participated including eight reporting recurrent, acute eiLBP and nine control participants reporting no history of LBP. Intrinsic trunk stiffness and paraspinal muscle reflex delay were determined in both groups using sudden trunk flexion position perturbations 1-2 days following exercise when the eiLBP participants were experiencing an episode of LBP (termed post-exercise) and 4-5 days following exercise when eiLBP had subsided (termed post-recovery). Post-recovery, when the eiLBP group was experiencing minimal LBP, trunk stiffness was 26% higher in the eiLBP group compared to the control group (p=0.033) and reflex delay was not different (p=0.969) between groups. Trunk stiffness did not change (p=0.826) within the eiLBP group from post-exercise to post-recovery, but decreased 22% within the control group (p=0.002). Reflex delay decreased 11% within the eiLBP group from post-exercise to post-recovery (p=0.013), and increased 15% within the control group (p=0.006). Although the neuromuscular mechanisms associated with eiLBP and chronic LBP may differ, these results suggest that previously-reported differences in trunk neuromuscular behavior between individuals with chronic LBP and healthy controls reflect a combination of inherent differences in neuromuscular behavior between these individuals as well as changes in neuromuscular behavior elicited by pain. PMID:23182221

  1. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF.

    Science.gov (United States)

    Hoier, Birgitte; Hellsten, Ylva

    2014-05-01

    In skeletal muscle, growth of capillaries is an important adaptation to exercise training that secures adequate diffusion capacity for oxygen and nutrients even at high-intensity exercise when increases in muscle blood flow are profound. Mechanical forces present during muscle activity, such as shear stress and passive stretch, lead to cellular signaling, enhanced expression of angiogenic factors, and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is VEGF. During muscle contraction, VEGF increases in the muscle interstitium, acts on VEGF receptors on the capillary endothelium, and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity, these VEGF-containing vesicles are redistributed toward the sarcolemma where the contents are secreted into the extracellular fluid. VEGF mRNA expression is increased primarily after exercise, which allows for a more rapid replenishment of VEGF stores lost through secretion during exercise. Future studies should focus on elucidating mechanisms and regulation of VEGF secretion. © 2014 John Wiley & Sons Ltd.

  2. Detection and characterization of exercise induced muscle damage (EIMD) via thermography and image processing

    Science.gov (United States)

    Avdelidis, N. P.; Kappatos, V.; Georgoulas, G.; Karvelis, P.; Deli, C. K.; Theodorakeas, P.; Giakas, G.; Tsiokanos, A.; Koui, M.; Jamurtas, A. Z.

    2017-04-01

    Exercise induced muscle damage (EIMD), is usually experienced in i) humans who have been physically inactive for prolonged periods of time and then begin with sudden training trials and ii) athletes who train over their normal limits. EIMD is not so easy to be detected and quantified, by means of commonly measurement tools and methods. Thermography has been used successfully as a research detection tool in medicine for the last 6 decades but very limited work has been reported on EIMD area. The main purpose of this research is to assess and characterize EIMD, using thermography and image processing techniques. The first step towards that goal is to develop a reliable segmentation technique to isolate the region of interest (ROI). A semi-automatic image processing software was designed and regions of the left and right leg based on superpixels were segmented. The image is segmented into a number of regions and the user is able to intervene providing the regions which belong to each of the two legs. In order to validate the image processing software, an extensive experimental investigation was carried out, acquiring thermographic images of the rectus femoris muscle before, immediately post and 24, 48 and 72 hours after an acute bout of eccentric exercise (5 sets of 15 maximum repetitions), on males and females (20-30 year-old). Results indicate that the semi-automated approach provides an excellent bench-mark that can be used as a clinical reliable tool.

  3. Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles

    Directory of Open Access Journals (Sweden)

    Yu Szu-Hsien

    2012-05-01

    Full Text Available Abstract Background Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1 on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. Methods Forty weight-matched rats were evenly divided into control (N = 20 and Rg1 (N = 20 groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA muscles were surgically collected immediately after exercise along with non-exercise rats. Results Exhaustive exercise significantly (p Conclusions This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress.

  4. Voluntary Exercise Prevents Cisplatin-Induced Muscle Wasting during Chemotherapy in Mice

    DEFF Research Database (Denmark)

    Hojman, Pernille; Fjelbye, Jonas; Zerahn, Bo

    2014-01-01

    Loss of muscle mass related to anti-cancer therapy is a major concern in cancer patients, being associated with important clinical endpoints including survival, treatment toxicity and patient-related outcomes. We investigated effects of voluntary exercise during cisplatin treatment on body weight...... loss by 50% (P Exercise...... training may preserve muscle mass in cancer patients receiving cisplatin treatment, potentially improving physical capacity, quality of life and overall survival....

  5. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Gudmundsson, Mikkel; Birk, Jesper Bratz

    2010-01-01

    to the contra-lateral leg (CON) the day before the experiment day. On the experimental days, plasma FFA was ensured normal or remained elevated by consuming breakfast rich (low FFA) or poor (high FFA) in carbohydrate, 2 hours before performing 20 min of two-legged knee extensor exercise. Vastus lateralis......Objective: Test the hypothesis that FFA and muscle glycogen modify exercise-induced regulation of PDH in human skeletal muscle through regulation of PDK4 expression. Research Design and Methods: On two occasions, healthy male subjects lowered (by exercise) muscle glycogen in one leg (LOW) relative...... biopsies were obtained before and after exercise. Results: PDK4 protein content was approximately 2.2 and approximately 1.5 fold higher in LOW than CON leg in high FFA and low FFA, respectively, and the PDK4 protein content in CON leg was approximately 2 fold higher in high FFA than in low FFA. In all...

  6. Effects Of Whole Body Vibration On Vertical Jump Performance Following Exercise Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2014-01-01

    Full Text Available Enhancing vertical jump performance is critical for many sports. Following high intensity training, individuals often experience exercise induced muscle damage (EIMD. Many recovery modalities have been tested with conflicting results. The purpose of this investigation was to determine the effect of whole-body vibration (WBV on vertical jump performance following EIMD. 27 females volunteered for 7 sessions and were randomly assigned to a treatment or control group and administered each testing day. Vertical jump performance was assessed via vertical jump height (VJH, peak power output (PPO, rate of force development (RFD, relative ground reaction force (GRFz, and peak activation ratio of the vastus medialis (VM via electromyography (EMG before and after 3 days of EIMD via split squats. Two testing sets were collected each day, consisting of pre measures followed by WBV or control, and then post second measures. A 2x8 (group x time mixed factor analysis of variance (ANOVA was conducted for each variable. No significant interactions or group differences were found in any variable. Significant main effects for time were found in any variable, indicating performance declined following muscle damage. These results indicate that WBV does not aid in muscle recovery or vertical jump performance following EIMD.

  7. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium

    DEFF Research Database (Denmark)

    Street, D.; Nielsen, Jens Jung; Bangsbo, Jens

    2005-01-01

    Skeletal muscle releases potassium during activity. Interstitial potassium accumulation is important for muscle function and the development of fatigue resulting from exercise. In the present study we used sodium citrate ingestion as a tool to investigate the relationship between interstitial H+ ...

  8. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner

    DEFF Research Database (Denmark)

    Halling, Jens Frey; Jørgensen, Stine Ringholm; Olesen, Jesper

    2017-01-01

    Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effect...... evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner....

  9. Parkinson disease-induced upregulation of apoptotic mediators could be attenuated in the skeletal muscle following chronic exercise training.

    Science.gov (United States)

    Al-Jarrah, Muhammed D; Erekat, Nour S

    2017-01-01

    We have shown elevated levels of p53 and active caspase-3 in gastrocnemius skeletal muscle with Parkinson's disease (PD). The main aim of this study is to examine the impact of endurance exercise training on the expression of p53 and active caspase-3 in the skeletal muscle of mouse with induced Parkinsonism. Sedentary control (SC), sedentary Parkinson diseased (SPD), and exercised Parkinson diseased (EPD) groups were formed; each consisting of 10 randomly selected normal albino mice. Chronic Parkinson disease was induced in the SPD and EPD animals using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTP/p). The expression of p53 and active caspase-3 was investigated, using immunohistochemistry, in the gastrocnemius muscle in each animal group. Both p53 and active caspase-3 expression was significantly (p value exercise training. Our present data suggest that chronic exercise training reduced Parkinson disease-induced upregulation of p53 and active caspase-3 in gastrocnemius skeletal muscle. Thus, our study suggests that inhibiting p53 and/or active caspase-3 may be considered as a therapeutic approach to ameliorate PD skeletal muscle abnormalities.

  10. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Daniel Zeve

    Full Text Available Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  11. Combinatory effects of siRNA‐induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition

    Science.gov (United States)

    Mosler, Stephanie; Relizani, Karima; Mouisel, Etienne; Amthor, Helge; Diel, Patrick

    2014-01-01

    Abstract Inhibition of myostatin (Mstn) stimulates skeletal muscle growth, reduces body fat, and induces a number of metabolic changes. However, it remains unexplored how exercise training modulates the response to Mstn inhibition. The aim of this study was to investigate how siRNA‐mediated Mstn inhibition alone but also in combination with physical activity affects body composition and skeletal muscle homeostasis. Adult mice were treated with Mstn‐targeting siRNA and subjected to a treadmill‐based exercise protocol for 4 weeks. Effects on skeletal muscle and fat tissue, expression of genes, and serum concentration of proteins involved in myostatin signaling, skeletal muscle homeostasis, and lipid metabolism were investigated and compared with Mstn−/− mice. The combination of siRNA‐mediated Mstn knockdown and exercise induced skeletal muscle hypertrophy, which was associated with an upregulation of markers for satellite cell activity. SiRNA‐mediated Mstn knockdown decreased visceral fat and modulated lipid metabolism similar to effects observed in Mstn−/− mice. Myostatin did not regulate its own expression via an autoregulatory loop, however, Mstn knockdown resulted in a decrease in the serum concentrations of myostatin propeptide, leptin, and follistatin. The ratio of these three parameters was distinct between Mstn knockdown, exercise, and their combination. Taken together, siRNA‐mediated Mstn knockdown in combination with exercise stimulated skeletal muscle hypertrophy. Each intervention or their combination induced a specific set of adaptive responses in the skeletal muscle and fat metabolism which could be identified by marker proteins in serum. PMID:24760516

  12. Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control

    Directory of Open Access Journals (Sweden)

    Yaoshan Dun

    2017-01-01

    Full Text Available Mounting evidence has firmly established that increased exercise capacity (EC is associated with considerable improvements in the survival of patients with cardiovascular disease (CVD and that antistress capacity is a prognostic predictor of adverse cardiovascular events in patients with CVD. Previous studies have indicated that aerobic exercise (AE and supplementation with Rhodiola sacra (RS, a natural plant pharmaceutical, improve EC and enable resistance to stress; however, the underlying mechanism remains unclear. This study explored the ability of AE and RS, alone or combined, to improve EC and ameliorate exhaustive exercise- (EE- induced stress and elucidate the mechanism involved. We found that AE and RS significantly increased EC in mice and ameliorated EE-induced stress damage in skeletal and cardiac muscles (SCM; furthermore, a synergistic effect was detected for the first time. To our knowledge, the present work is the first to report that AE and RS activate mitophagy, mitochondrial dynamics, and biogenesis in SCM, both in the resting state and after EE. These data indicate that AE and RS synergistically improve EC in mice and protect SCM from EE-induced stress by enhancing mitochondrial quality control, including the activation of mitophagy, mitochondrial dynamics, and biogenesis, both at rest and after EE.

  13. Whole-body-vibration-induced increase in leg muscle activity during different squat exercises.

    Science.gov (United States)

    Roelants, Machteld; Verschueren, Sabine M P; Delecluse, Christophe; Levin, Oron; Stijnen, Valère

    2006-02-01

    This study analyzed leg muscle activity during whole-body vibration (WBV) training. Subjects performed standard unloaded isometric exercises on a vibrating platform (Power Plate): high squat (HS), low squat (LS), and 1-legged squat (OL). Muscle activity of the rectus femoris, vastus lateralis, vastus medialis, and gastrocnemius was recorded in 15 men (age 21.2 +/- 0.8 years) through use of surface electromyography (EMG). The exercises were performed in 2 conditions: with WBV and without (control [CO]) a vibratory stimulus of 35 Hz. Muscle activation during WBV was compared with CO and with muscle activation during isolated maximal voluntary contractions (MVCs). Whole-body vibration resulted in a significantly higher (p < 0.05) EMG root-mean-square compared with CO in all muscle groups and all exercises (between +39.9 +/- 17.5% and +360.6 +/- 57.5%). The increase in muscle activity caused by WBV was significantly higher (p < 0.05) in OL compared with HS and LS. In conclusion, WBV resulted in an increased activation of the leg muscles. During WBV, leg muscle activity varied between 12.6 and 82.4% of MVC values.

  14. Concentrically trained cyclists are not more susceptible to eccentric exercise-induced muscle damage than are stretch-shortening exercise-trained runners.

    Science.gov (United States)

    Snieckus, Audrius; Kamandulis, Sigitas; Venckūnas, Tomas; Brazaitis, Marius; Volungevičius, Gintautas; Skurvydas, Albertas

    2013-03-01

    Here, we test the hypothesis that continuous concentric exercise training renders skeletal muscles more susceptible to damage in response to eccentric exercise. Elite road cyclists (CYC; n = 10, training experience 8.1 ± 2.0 years, age 22.9 ± 3.7 years), long-distance runners (LDR; n = 10, 9.9 ± 2.3 years, 24.4 ± 2.5 years), and healthy untrained (UT) men (n = 10; 22.4 ± 1.7 years) performed 100 submaximal eccentric contractions at constant angular velocity of 60° s(-1). Concentric isokinetic peak torque, isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and immediately and 48 h after an eccentric exercise bout. Muscle soreness was assessed and plasma creatine kinase (CK) activity was measured at baseline and 48 h after exercise. Voluntary and electrically stimulated knee extension torque reduction were significantly greater (p < 0.05) in UT than in LDR and CYC. Immediately and 48 h after exercise, MVC decreased by 32 % and 20 % in UT, 20 % and 5 % in LDR, and 25 % and 6 % in CYC. Electrically induced 20 Hz torque decreased at the same times by 61 and 29 % in UT, 40 and 17 % in LDR, and 26 and 14 % in CYC. Muscle soreness and plasma CK activity 48 h after exercise did not differ significantly between athletes and UT subjects. In conclusion, even though elite endurance athletes are more resistant to eccentric exercise-induced muscle damage than are UT people, stretch-shortening exercise-trained LDR have no advantage over concentrically trained CYC.

  15. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Wojtaszewski, Jørgen F P; Johansen, Sune T.

    2008-01-01

    a single treadmill-running exercise bout. Soleus and white gastrocnemius (WG) were obtained immediately, 2 h, or 6 h after exercise. Another group of PGC-1alpha KO and WT mice performed 5-wk exercise training. Soleus, WG, and quadriceps were obtained approximately 37 h after the last training session......The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed....... Resting muscles of the PGC-1alpha KO mice had lower ( approximately 20%) cytochrome c (cyt c), cytochrome oxidase (COX) I, and aminolevulinate synthase (ALAS) 1 mRNA and protein levels than WT, but similar levels of AMP-activated protein kinase (AMPK) alpha1, AMPKalpha2, and hexokinase (HK) II compared...

  16. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes...... caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  17. Voluntary exercise prevents cisplatin-induced muscle wasting during chemotherapy in mice

    DEFF Research Database (Denmark)

    Hojman, Pernille; Fjelbye, Jonas; Zerahn, Bo

    2014-01-01

    Loss of muscle mass related to anti-cancer therapy is a major concern in cancer patients, being associated with important clinical endpoints including survival, treatment toxicity and patient-related outcomes. We investigated effects of voluntary exercise during cisplatin treatment on body weight......% (PExercise training may...... preserve muscle mass in cancer patients receiving cisplatin treatment, potentially improving physical capacity, quality of life and overall survival....

  18. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery

    Directory of Open Access Journals (Sweden)

    Ralf Jäger

    2016-07-01

    Full Text Available Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29 recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm were assigned to consume either 20 g of casein (PRO or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01, with PROBC showing a trend towards reduced muscle damage (p = 0.08. The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03, whereas PROBC maintained performance (+10.1 watts, +1.7%. Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage

  19. Carbohydrate ingestion prior to exercise augments the exercise-induced activation of the pyruvate dehydrogenase complex in human skeletal muscle.

    Science.gov (United States)

    Tsintzas, K; Williams, C; Constantin-Teodosiu, D; Hultman, E; Boobis, L; Greenhaff, P

    2000-09-01

    This study examined the effect of pre-exercise carbohydrate (CHO) ingestion on pyruvate dehydrogenase complex (PDC) activation, acetyl group availability and substrate level phosphorylation (glycogenolysis and phosphocreatine (PCr) hydrolysis) in human skeletal muscle during the transition from rest to steady-state exercise. Seven male subjects performed two 10 min treadmill runs at 70 % maximum oxygen uptake (VO2,max), 1 week apart. Each subject ingested 8 ml (kg body mass (BM))-1 of either a placebo solution (CON trial) or a 5.5 % CHO solution (CHO trial) 10 min before each run. Muscle biopsy samples were obtained from the vastus lateralis at rest and immediately after each trial. Muscle PDC activity was higher at the end of exercise in the CHO trial compared with the CON trial (1.78+/-0.18 and 1.27+/-0.16 mmol min(-1) (kg wet matter (WM))(-1), respectively; P 0.05) and this was accompanied by lower acetylcarnitine (7.1+/-1.2 and 9.1+/-1.1 mmol kg(-1) (dry matter (DM))(-1) in CHO and CON, respectively; Ptransition from rest to steady-state exercise. However, those changes did not affect the contribution of substrate level phosphorylation to ATP resynthesis.

  20. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth

    DEFF Research Database (Denmark)

    Hojman, Pernille; Dethlefsen, Christine; Brandt, Claus

    2011-01-01

    Regular physical activity protects against the development of breast and colon cancer, since it reduces the risk of developing these by 25-30%. During exercise, humoral factors are released from the working muscles for endocrinal signaling to other organs. We hypothesized that these myokines medi...

  1. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Broholm, Christa; Mortensen, Ole Hartvig; Nielsen, Søren

    2008-01-01

    human skeletal myocytes. Treatment of myocytes with the Ca(2+) ionophore, ionomycin, for 6 h resulted in an increase in both LIF mRNA and LIF protein levels. This finding suggests that Ca(2+) may be involved in the regulation of LIF in endurance-exercised skeletal muscle. In conclusion, primary human...

  2. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.

    Science.gov (United States)

    Cochran, Andrew J R; Percival, Michael E; Tricarico, Steven; Little, Jonathan P; Cermak, Naomi; Gillen, Jenna B; Tarnopolsky, Mark A; Gibala, Martin J

    2014-05-01

    High-intensity interval training (HIIT) performed in an 'all-out' manner (e.g. repeated Wingate tests) is a time-efficient strategy to induce skeletal muscle remodelling towards a more oxidative phenotype. A fundamental question that remains unclear, however, is whether the intermittent or 'pulsed' nature of the stimulus is critical to the adaptive response. In study 1, we examined whether the activation of signalling cascades linked to mitochondrial biogenesis was dependent on the manner in which an acute high-intensity exercise stimulus was applied. Subjects performed either four 30 s Wingate tests interspersed with 4 min of rest (INT) or a bout of continuous exercise (CONT) that was matched for total work (67 ± 7 kJ) and which required ∼4 min to complete as fast as possible. Both protocols elicited similar increases in markers of adenosine monophosphate-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase activation, as well as Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression (main effects for time, P ≤ 0.05). In study 2, we determined whether 6 weeks of the CONT protocol (3 days per week) would increase skeletal muscle mitochondrial content to a similar extent to what we have previously reported after 6 weeks of INT. Despite similar acute signalling responses to the CONT and INT protocols, training with CONT did not increase the maximal activity or protein content of a range of mitochondrial markers. However, peak oxygen uptake was higher after CONT training (from 45.7 ± 5.4 to 48.3 ± 6.5 ml kg(-1) min(-1); P < 0.05) and 250 kJ time trial performance was improved (from 26:32 ± 4:48 to 23:55 ± 4:16 min:s; P < 0.001) in our recreationally active participants. We conclude that the intermittent nature of the stimulus is important for maximizing skeletal muscle adaptations to low-volume, all-out HIIT. Despite the lack of skeletal muscle mitochondrial adaptations

  3. AQP4-dependent water transport plays a functional role in exercise-induced skeletal muscle adaptations.

    Directory of Open Access Journals (Sweden)

    Davide Basco

    Full Text Available In this study we assess the functional role of Aquaporin-4 (AQP4 in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10 and 30 (D30 days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise.

  4. Exercise-induced regulation of matrix metalloproteinases in the skeletal muscle of subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Bergdahl, Andreas; Schjerling, Peter

    2014-01-01

    is maintained in the skeletal muscle of patients with uncomplicated type 2 diabetes (T2DM). Subjects [12 T2DM, 9 healthy control subjects (CON)] underwent 8 weeks of physical training. Messenger RNA (mRNA) was measured at baseline, during and after 8 weeks of training. Protein was measured pre- and post......-training. At baseline, there were no effects of diabetes on MMP or TIMP mRNA or protein. mRNA and protein response to training was similar in both groups, except active MMP-2 protein was elevated post training in T2DM only. Our results indicate that exercise-induced stimulation of MMPs is preserved in skeletal muscle......Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMP) play a critical role during vascular remodelling, in both health and disease. Impaired MMP regulation is associated with many diabetes-related complications. This study examined whether exercise-induced regulation of MMPs...

  5. Exercise-Induced Abdominal Wall Muscle Injury Resulting in Rhabdomyolysis and Mimicking an Acute Abdomen.

    Science.gov (United States)

    Echague, Charlene G; Csokmay, John M

    2018-03-01

    Rhabdomyolysis is characterized by muscle necrosis and release of intracellular constituents, causing muscle pain, weakness, and myoglobinuria. This can be attributed to muscle injury after strenuous exercise. If the abdominal wall is involved, clinical presentation may resemble an acute abdomen. A 27-year-old woman, gravida 4 para 2, presented with swelling and pain of the mons pubis and abdominal pain after intense powerlifting 2 days prior. A computed tomography scan was performed, revealing abdominal wall inflammation. Although myoglobinuria was absent, there was high suspicion for rhabdomyolysis, which was confirmed by an elevated creatine kinase level. The patient improved after receiving intravenous fluids and abstaining from physical activity. Abdominal wall muscle injury resulting in rhabdomyolysis can imitate an acute abdomen in a healthy woman presenting with abdominal pain and swelling.

  6. Decreased eccentric exercise-induced macrophage infiltration in skeletal muscle after supplementation with a class of ginseng-derived steroids.

    Directory of Open Access Journals (Sweden)

    Szu-Hsien Yu

    Full Text Available Dammarane steroids (DS are a class of chemical compounds present in Panax ginseng. Here, we evaluated the effect of 10 weeks of DS supplementation on inflammatory modulation in the soleus muscle following eccentric exercise (EE-induced muscle damage (downhill running. Eighty rats were randomized into 4 groups of DS supplementation (saline, 20, 60, 120 mg/kg body weight. Inflammatory markers were measured at rest and again 1 h after EE. At rest, NFκB signaling, TNF-alpha and IL-6 mRNAs, 3-nitrotyrosine, glutathione peroxidase, and GCS (glutamylcysteine synthetase levels were significantly elevated in the skeletal muscle of DS-treated rats in a dose-dependent manner. Additionally, there were no detectable increases in the number of necrotic muscle fibers or CD68+ M1 macrophages. However, muscle strength, centronucleation, IL-10 mRNA expression, and the number of CD163+ M2 macrophages increased significantly over controls with DS treatment in rat soleus muscle. Under EE-challenged conditions, significant increases in muscle fiber necrosis, CD68+ M1 macrophage distribution, and 3-nitrotyrosine were absent in rats that received low and medium doses (20 and 60 mg/kg of DS treatment, suggesting that DS possess anti-inflammatory action protecting against a muscle-damaging challenge. However, this protective activity was diminished when a high dose of DS (120 mg/kg was administered, suggesting that DS possess hormetic properties. In conclusion, our study provides new evidence suggesting that DS is an ergogenic component of ginseng that potentiate inflammation at baseline but that produce anti-inflammatory effects on skeletal muscle following muscle-damaging exercise. Furthermore, high doses should be avoided in formulating ginseng-based products.

  7. Additional effects of taurine on the benefits of BCAA intake for the delayed-onset muscle soreness and muscle damage induced by high-intensity eccentric exercise.

    Science.gov (United States)

    Ra, Song-Gyu; Miyazaki, Teruo; Ishikura, Keisuke; Nagayama, Hisashi; Suzuki, Takafumi; Maeda, Seiji; Ito, Masaharu; Matsuzaki, Yasushi; Ohmori, Hajime

    2013-01-01

    Taurine (TAU) has a lot of the biological, physiological, and pharmocological functions including anti-inflammatory and anti-oxidative stress. Although previous studies have appreciated the effectiveness of branched-chain amino acids (BCAA) on the delayed-onset muscle soreness (DOMS), consistent finding has not still convinced. The aim of this study was to examine the additional effect of TAU with BCAA on the DOMS and muscle damages after eccentric exercise. Thirty-six untrained male volunteers were equally divided into four groups, and ingested a combination with 2.0 g TAU (or placebo) and 3.2 g BCAA (or placebo), thrice a day, 2 weeks prior to and 4 days after elbow flexion eccentric exercise. Following the period after eccentric exercise, the physiological and blood biochemical markers for DOMS and muscle damage showed improvement in the combination of TAU and BCAA supplementation rather than in the single or placebo supplementations. In conclusion, additional supplement of TAU with BCAA would be a useful way to attenuate DOMS and muscle damages induced by high-intensity exercise.

  8. Preconditioning by light-load eccentric exercise is equally effective as low-level laser therapy in attenuating exercise-induced muscle damage in collegiate men

    Directory of Open Access Journals (Sweden)

    Nausheen S

    2017-09-01

    Full Text Available Samar Nausheen,1 Jamal Ali Moiz,1 Shahid Raza,1 Mohammad Yakub Shareef,2 Shahnawaz Anwer,3,4 Ahmad H Alghadir3 1Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India; 2Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India; 3Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; 4Dr. D. Y. Patil College of Physiotherapy, Dr. D. Y. Patil Vidyapeeth, Pune, India Background/objective: Previous studies have already reported an independent effect of light-load eccentric exercise (10% eccentric exercise contraction [EEC] and low-level laser therapy (LLLT as a protective measure against more strenuous eccentric exercise. However, the difference between these two interventions is largely unknown. Therefore, the present study aimed to compare the preconditioning effect of 10% EEC vs. LLLT on subjective, physiological, and biochemical markers of muscle damage in elbow flexors in collegiate men.Methods: All 36 enrolled subjects were randomly assigned to either 10% EEC or LLLT group. Subjects in 10% EEC group performed 30 repetitions of an eccentric exercise with 10% maximal voluntary contraction strength 2 days prior to maximal eccentric exercise bout, whereas subjects in LLLT group were given LLLT. All the indirect markers of muscle damage were measured pre-exercise and at 24, 48, and 72 hours after the exercise-induced muscle damage protocol.Results: The muscle soreness was reduced in both groups (p = 0.024; however, soreness was attenuated more in LLLT group at 48 hours (33.5 vs. 42.7, p = 0.004. There was no significant difference between the effect of 10% EEC and LLLT groups on other markers of muscle damage like a maximum voluntary isometric contraction (p = 0.47, range of motion (p = 0.16, upper arm circumference (p = 0.70, creatine kinase (p = 0.42, and lactate dehydrogenase (p = 0.08. Within-group analysis showed both interventions provided

  9. Exercise-Induced Bronchoconstriction

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  10. Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish

    National Research Council Canada - National Science Library

    Palstra, A.P; Rovira, M; Rizo-Roca, D; Torrella, J.R; Spaink, H.P; Planas, J.V

    2014-01-01

    ... contractile activity potentiated somatic growth. Given that the underlying exercise-induced transcriptional mechanisms regulating muscle mass in vertebrates are not fully understood, here we investigated the cellular and molecular adaptive...

  11. The role of nutritional supplements in the prevention and treatment of resistance exercise-induced skeletal muscle injury.

    Science.gov (United States)

    Bloomer, Richard J

    2007-01-01

    The topic of exercise-induced skeletal muscle injury has received considerable attention in recent years. Likewise, strategies to minimise the injury resulting from heavy resistance exercise have been studied. Over the past 15 years, several investigations have been performed focused on the role of nutritional supplements to attenuate signs and symptoms of muscle injury. Of these, some have reported favourable results, while many others have reported no benefit of the selected nutrient. Despite these mixed findings, recommendations for the use of nutritional supplements for the purposes of attenuating muscle injury are rampant within the popular fitness media and athletic world, largely without scientific support. Those nutrients include the antioxidant vitamin C (ascorbic acid) and vitamin E (tocopherol), N-acetyl-cysteine, flavonoids, L-carnitine, astaxanthin, beta-hydroxy-beta-methylbutyrate, creatine monohydrate, essential fatty acids, branched-chain amino acids, bromelain, proteins and carbohydrates. A discussion of all published peer-reviewed articles in reference to these nutrients and their impact on resistance exercise-induced skeletal muscle injury is presented, in addition to a brief view into the potential mechanism of action for each nutrient.Based on the current state of knowledge, the following conclusions can be made with regard to nutritional supplements and their role in attenuating signs and symptoms of skeletal muscle injury occurring as a consequence of heavy resistance exercise: (i) there appears to be a potential role for certain supplements (vitamin C, vitamin E, flavonoids, and L-carnitine); (ii) these supplements cannot effectively eliminate muscle injury, only attenuate certain signs and symptoms; (iii) it is presently unclear what the optimal dosage of these nutrients is (whether used alone or in combination); (iv) it is unclear what the optimal pretreatment period is; and (v) the effectiveness is largely specific to non

  12. Exercise-induced skeletal muscle deoxygenation in O-supplemented COPD patients

    DEFF Research Database (Denmark)

    Vogiatzis, I; Athanasopoulos, D; Stratakos, G

    2009-01-01

    This study was designed to assess quadriceps oxygenation during symptom-limited and constant-load exercise in patients with chronic obstructive pulmonary disease (COPD) and healthy age-matched controls. Thirteen male COPD patients [FEV(1): 43 +/- 5% predicted (mean +/- SEM)] and seven healthy male...... hemoglobin to total hemoglobin and reflects the relative contributions of tissue O2 delivery and tissue O2 utilization. Oxygen was supplemented to all patients in order to maintain arterial O2 saturation normal (> 95%). The StO2 decreased during symptom-limited exercise, reaching the nadir at peak WR...... subjects (19.0 +/- 5.2 and 15.6 +/- 2.5 s, respectively). In O2-supplemented COPD patients, peripheral muscle oxygenation for a given work load is similar to that in healthy subjects, thus suggesting that skeletal muscle O2 consumption becomes normal for a given O2 delivery in COPD patients...

  13. EXERCISE-INDUCED SIGNAL TRANSDUCTION AND GENE REGULATION IN SKELETAL MUSCLE

    OpenAIRE

    Henning Wackerhage; Niall M. Woods

    2002-01-01

    Skeletal muscle adapts to various forms of exercise depending on the force, speed and duration characteristics of the contraction pattern. The stresses and signals associated with each contraction pattern are likely to specifically activate a network of signal transduction pathways that integrate this information. These pathways include the calcineurin, Calcium/calmodulin-dependent protein kinase (CaMK), mitogen-activated protein kinase (MAPK), protein kinase C (PKC), nuclear factor kappa B (...

  14. A prophylactic effect of proprioceptive neuromuscular facilitation (PNF) stretching on symptoms of muscle damage induced by eccentric exercise of the wrist extensors.

    Science.gov (United States)

    Khamwong, Peanchai; Pirunsan, Ubon; Paungmali, Aatit

    2011-10-01

    Stretching with proprioceptive neuromuscular facilitation (PNF) is frequently used before exercise. The prophylactic effect of PNF on symptoms of muscle damage induced by eccentric exercise of the wrist extensors was examined in this study. Twenty-eight healthy males were randomly divided into the PNF group (n = 14) and the control group (n = 14). PNF was used before eccentric exercise induction in the wrist extensors. All subjects were tested to examine muscle damage characteristics including sensory-motor functions at baseline, immediately, and from 1st to 8th days after the exercise-induced muscle damage (EIMD). The results demonstrated that the PNF group showed a lesser deficit in some sensory-motor functions (p PNF stretching application could be useful for attenuating the signs and symptoms of muscle damage after eccentric exercise. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Resistance Exercise Training-Induced Muscle Hypertrophy Was Associated with Reduction of Inflammatory Markers in Elderly Women

    Directory of Open Access Journals (Sweden)

    Kishiko Ogawa

    2010-01-01

    Full Text Available Aging is associated with low-grade inflammation. The benefits of regular exercise for the elderly are well established, whereas less is known about the impact of low-intensity resistance exercise on low-grade inflammation in the elderly. Twenty-one elderly women (mean age ± SD, 85.0 ± 4.5 years participated in 12 weeks of resistance exercise training. Muscle thickness and circulating levels of C-reactive protein (CRP, serum amyloid A (SAA, heat shock protein (HSP70, tumor necrosis factor (TNF-α, interleukin (IL-1, IL-6, monocyte chemotactic protein (MCP-1, insulin, insulin-like growth factor (IGF-I, and vascular endothelial growth factor (VEGF were measured before and after the exercise training. Training reduced the circulating levels of CRP, SAA (P<.05, HSP70, IGF-I, and insulin (P<.01. The training-induced reductions in CRP and TNF-α were significantly (P<.01, P<.05 associated with increased muscle thickness (r=−0.61, r=−0.54, respectively. None of the results were significant after applying a Bonferroni correction. Resistance training may assist in maintaining or improving muscle volume and reducing low-grade inflammation.

  16. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Milène Catoire

    Full Text Available Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  17. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle......, increases in the AMP and IMP levels may increase phosphorylase activity. The rate of muscle-glycogen breakdown during exercise depends on the pre-exercise glycogen concentration and is also influenced by hormones. Insulin may inhibit glycogen breakdown, whereas epinephrine enhances the rate of glycogen use...... in contracting muscle by increasing the phosphorylase a activity via increased cyclic AMP production. The availability of blood-borne substrates may also influence muscle glycogenolysis and, therefore, exercise performance....

  18. Eccentric resistance training intensity may affect the severity of exercise induced muscle damage.

    Science.gov (United States)

    Hasenoehrl, Timothy; Wessner, Barbara; Tschan, Harald; Vidotto, Claudia; Crevenna, Richard; Csapo, Robert

    2017-09-01

    The aim of the present study was to assess the role of eccentric exercise intensity in the development of and recovery from delayed onset muscle soreness (DOMS). Using a cross-over study design, 15 healthy, male college students were tested on two occasions. The training stimulus consisted of an exhaustive series of eccentric muscle contractions of the elbow flexors at either 100% (high intensity) or 50% (low intensity) of the individual concentric one-repetition maximum. Blood samples were taken at baseline as well as 24, 48, 72 and 96 hours postexercise, and analyzed for creatine kinase, myoglobin, interleukin-6 and prostaglandin-2. Additionally, upper arm circumference (CIRC) and DOMS-related sensation of pain (PAIN) were measured. Following high intensity training, CIRC was significantly greater (P=0.007). Further, creatine kinase, myoglobin and interleukin-6 tended to be higher, although the main effect of the factor "intensity" just failed to reach significance (creatine kinase: P=0.056, myoglobin: P=0.064, interleukin-6: P=0.091). No differences were found for prostaglandin-2 (P=0.783) and PAIN (P=0.147). When performed at greater intensity, fatiguing eccentric resistance exercise of the elbow flexors leads to greater muscle swelling and, potentially, increases in serum markers reflecting lesions in the muscle's cellular membrane.

  19. Piroxicam fails to reduce myocellular enzyme leakage and delayed onset muscle soreness induced by isokinetic eccentric exercise

    Directory of Open Access Journals (Sweden)

    J-L. Croisier

    1996-01-01

    Full Text Available To test the hypothesis that delayed onset muscular soreness (DOMS following intense eccentric muscle contraction could be due to increased production of prostaglandin E2 (PGE2, ten healthy male subjects were studied. Using a double-blind randomized crossover design, each subject performed two isokinetic tests separated by a period of at least 6 weeks: once with placebo, and once with piroxicam (Feldene®. They were given one capsule containing either placebo or piroxicam (20 mg per day for 6 days with initial doses given starting 3 days prior to isokinetic testing. Exercise consisted of eight stages of five maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases, on a Kin Trex device at 60°/s angular velocity. The subjective presence and intensity of DOMS were evaluated using a visual analogue scale immediately after, and 24 and 48 h after each test. The mean plasma concentration of PGE2 measured at rest and after exercise was significantly lower in the group treated with piroxicam (p < 0.05. However, statistical analysis (two-way ANOVA test revealed that exercise did not cause any significant change of mean plasma PGE2 over time in either of the two groups. Eccentric work was followed by severe muscle pain in extensor and flexor muscle groups. Maximal soreness was noted 48 h postexercise. Serum creatine kinase activity and the serum concentration of myoglobin increased significantly, and reached peak values 48 h after exercise in both experimental conditions (p < 0.001. By paired t-test, it appeared that there were no significant differences in the serum levels of these two markers of muscle damage between the two groups at any time point. We conclude that: (1 oral administration of piroxicam fails to reduce muscle damage and DOMS caused by strenuous eccentric exercise; and (2 the hypothetical role of increased PGE2 production in eccentric exercise-induced muscle damage, DOMS, and reduced

  20. The Effect of Water Temperature during Cold-Water Immersion on Recovery from Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Vieira, A; Siqueira, A F; Ferreira-Junior, J B; do Carmo, J; Durigan, J L Q; Blazevich, A; Bottaro, M

    2016-11-01

    This study investigated the effects of 5 and 15°C cold-water immersion on recovery from exercise resulting in exercise-induced muscle damage. 42 college-aged men performed 5×20 drop-jumps and were randomly allocated into one of 3 groups: (1) 5°C; (2) 15°C; or (3) control. After exercise, individuals from the cold-water immersion groups had their lower limbs immerged in iced water for 20 min. Isometric knee extensor torque, countermovement jump, muscle soreness, and creatine kinase were measured before, immediately after, 24, 48, 72, 96 and 168 h post-exercise. There was no between-group difference in isometric strength recovery (p=0.73). However, countermovement jump recovered quicker in cold-water immersion groups compared to control group (pcold-water immersion promote recovery of stretch-shortening cycle performance, but not influence the recovery of maximal contractile force. Immersion at warmer temperature may be more effective than colder temperatures promoting recovery from strenuous exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  2. Muscle glycogen synthesis before and after exercise.

    Science.gov (United States)

    Ivy, J L

    1991-01-01

    The importance of carbohydrates as a fuel source during endurance exercise has been known for 60 years. With the advent of the muscle biopsy needle in the 1960s, it was determined that the major source of carbohydrate during exercise was the muscle glycogen stores. It was demonstrated that the capacity to exercise at intensities between 65 to 75% VO2max was related to the pre-exercise level of muscle glycogen, i.e. the greater the muscle glycogen stores, the longer the exercise time to exhaustion. Because of the paramount importance of muscle glycogen during prolonged, intense exercise, a considerable amount of research has been conducted in an attempt to design the best regimen to elevate the muscle's glycogen stores prior to competition and to determine the most effective means of rapidly replenishing the muscle glycogen stores after exercise. The rate-limiting step in glycogen synthesis is the transfer of glucose from uridine diphosphate-glucose to an amylose chain. This reaction is catalysed by the enzyme glycogen synthase which can exist in a glucose-6-phosphate-dependent, inactive form (D-form) and a glucose-6-phosphate-independent, active form (I-form). The conversion of glycogen synthase from one form to the other is controlled by phosphorylation-dephosphorylation reactions. The muscle glycogen concentration can vary greatly depending on training status, exercise routines and diet. The pattern of muscle glycogen resynthesis following exercise-induced depletion is biphasic. Following the cessation of exercise and with adequate carbohydrate consumption, muscle glycogen is rapidly resynthesised to near pre-exercise levels within 24 hours. Muscle glycogen then increases very gradually to above-normal levels over the next few days. Contributing to the rapid phase of glycogen resynthesis is an increase in the percentage of glycogen synthase I, an increase in the muscle cell membrane permeability to glucose, and an increase in the muscle's sensitivity to insulin

  3. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    Science.gov (United States)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  4. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    DEFF Research Database (Denmark)

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim

    2009-01-01

    The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO) and litterm...

  5. Analysis of muscle fatigue induced by isometric vibration exercise at varying frequencies.

    Science.gov (United States)

    Mischi, M; Rabotti, C; Cardinale, M

    2012-01-01

    An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training device is used to perform vibration exercise at varying frequency and force, therefore enabling the analysis of the relationship between vibration frequency and muscle fatigue. Fatigue is estimated by maximum voluntary contraction measurement, as well as by EMG mean-frequency and conduction-velocity analysis. Seven volunteers performed five isometric contractions of the biceps brachii with a load consisting of a baseline of 80% of their maximum voluntary contraction (MVC), with no vibration and with a superimposed 20, 30, 40, and 50 Hz vibrational force of 40 N. Myoelectric and mechanical fatigue were estimated by EMG analysis and by assessment of the MVC decay, respectively. A dedicated motion artifact canceler, making use of accelerometry, is proposed to enable accurate EMG analysis. Use of this canceler leads to better interpolation of myoelectric fatigue trends and to better correlation between mechanical and myoelectric fatigue. In general, our results suggest vibration at 30 Hz to be the most fatiguing exercise. These results contribute to the analysis of vibration exercise and motivate further research aiming at improved training protocols.

  6. Exercise-induced transcription of the muscle glucose transporter (GLUT 4) gene.

    Science.gov (United States)

    MacLean, Paul S; Zheng, Donghai; Jones, Jared P; Olson, Ann Louise; Dohm, G Lynis

    2002-03-29

    We studied the effects of exercise on GLUT4 gene transcription in several lines of transgenic mice expressing the chloramphenicol acyltransferase (CAT) reporter gene, driven by various lengths of the human GLUT4 promoter (2400, 1600, 895, and 730 bp). In all transgenic lines examined, endogenous GLUT4 mRNA increased in response to exercise (19-90%, P < 0.05). Exercise increased CAT mRNA (51-83%, P < 0.05) in mice when the transgene was driven by at least 895 bp of the promoter but showed no effect in mice in which the transgene was driven by only 730 bp. These results suggest that the exercise-induced increase in the transcriptional activity of the human GLUT4 gene is mediated, at least in part, by element(s) within -895 bp of the promoter. These observations reveal a striking similarity to the time course and regional promoter requirements of AMPK-induced GLUT4 gene expression, providing further evidence that AMPK may be mediating the effects of exercise on GLUT4 expression. (c)2002 Elsevier Science (USA).

  7. EXERCISE-INDUCED SIGNAL TRANSDUCTION AND GENE REGULATION IN SKELETAL MUSCLE

    Directory of Open Access Journals (Sweden)

    Henning Wackerhage

    2002-12-01

    Full Text Available Skeletal muscle adapts to various forms of exercise depending on the force, speed and duration characteristics of the contraction pattern. The stresses and signals associated with each contraction pattern are likely to specifically activate a network of signal transduction pathways that integrate this information. These pathways include the calcineurin, Calcium/calmodulin-dependent protein kinase (CaMK, mitogen-activated protein kinase (MAPK, protein kinase C (PKC, nuclear factor kappa B (NF-B, AMP-dependent protein kinase (AMPK, insulin signalling and developmental pathways. Activated signal transduction pathways activate or increase the expression of transcription factors via various mechanisms. Skeletal muscle genes are usually regulated by combinatorial control exerted by several transcription factors and possibly other mechanisms. In addition, adaptations such as an increase in mitochondrial biogenesis or the activation of satellite cell proliferation involve distinct regulatory mechanisms

  8. Single Dose of Intra-Muscular Platlet Rich Plasma Reverses the Increase in Plasma Iron Levels in Exercise Induced Muscle Damage

    Science.gov (United States)

    Pündük, Zekine; Oral, Onur; Özkayın, Nadir; Rahman, Khalid

    2014-01-01

    Objectives: Autologous Platelet Rich Plasma (PRP) therapy, is considered to be a promising solution in accelerating the healing process of injured skeletal muscle tissue. In addition to the release of growth factors, PRP also promotes concentrated anti-inflammatory signals, including interleukins. However, the impact of the intramuscular administration of the PRP on hematologic and biochemical responses has not been fully elucidated in exercise induced muscle damage. Methods: Twelve healthy moderately active male volunteers, without previous experience with eccentric/concentric elbow flexors exercise, participated in this study. They were divided into two groups: control group (CONTROL, n=6) and platelet rich plasma administration group (PRP, n=6) group. To induce muscle damage, subjects in both groups performed concentric/eccentric contractions with load of (80 % 1RM) maximal voluntary contraction of the elbow flexors until point of exhaustion of the non-dominant arm. The non-dominant arms of the PRP group were treated with autologous PRP (Regen ACR-C, Regen Lab, Switzerland) post-24h exercise induced damage (DOMS). Subsequently, 4 ml PRP samples was injected using a 20-gauge needle into the region of the biceps brachii of the non-dominant arm under sterile aseptic conditions. Venous blood samples were collected pre-, and 4 days post-exercise, and analyzed for complete blood counts, serum ferritin, iron, iron binding capacity (IBC), creatinine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) as markers of muscle damage and inflammation. Results: We found that the baseline levels of iron, ferritin, IBC, CK, LDH, AST and ALT were similar in control and PRP groups. However, 24 h following exercise induced muscle damage a significant increase in these parameters was observed in both groups. Interestingly, PRP administration decreased plasma iron levels compared to the control group but this was only achieved on

  9. Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    Full Text Available BACKGROUND: While ryanodine receptor 1 (RyR1 critically contributes to skeletal muscle contraction abilities by mediating Ca²⁺ion oscillation between sarcoplasmatic and myofibrillar compartments, AMP-activated protein kinase (AMPK senses contraction-induced energetic stress by phosphorylation at Thr¹⁷². Phosphorylation of RyR1 at serine²⁸⁴³ (pRyR1Ser²⁸⁴³ results in leaky RyR1 channels and impaired Ca²⁺homeostasis. Because acute resistance exercise exerts decreased contraction performance in skeletal muscle, preceded by high rates of Ca²⁺-oscillation and energetic stress, intense myofiber contractions may induce increased RyR1 and AMPK phosphorylation. However, no data are available regarding the time-course and magnitude of early RyR1 and AMPK phosphorylation in human myofibers in response to acute resistance exercise. PURPOSE: Determine the effects and early time-course of resistance exercise on pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² in type I and II myofibers. METHODS: 7 male subjects (age 23±2 years, height: 185±7 cm, weight: 82±5 kg performed 3 sets of 8 repetitions of maximum eccentric knee extensions. Muscle biopsies were taken at rest, 15, 30 and 60 min post exercise. pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² levels were determined by western blot and semi-quantitative immunohistochemistry techniques. RESULTS: While total RyR1 and total AMPK levels remained unchanged, RyR1 was significantly more abundant in type II than type I myofibers. pRyR1Ser²⁸⁴³ increased 15 min and peaked 30 min (p<0.01 post exercise in both myofiber types. Type I fibers showed relatively higher increases in pRyR1Ser²⁸⁴³ levels than type II myofibers and remained elevated up to 60 min post resistance exercise (p<0.05. pAMPKThr¹⁷² also increased 15 to 30 min post exercise (p<0.01 in type I and II myofibers and in whole skeletal muscle. CONCLUSION: Resistance exercise induces acutely increased pRyR1Ser²⁸⁴³ and

  10. A mathematical model of the effects of resistance exercise-induced muscle hypertrophy on body composition.

    Science.gov (United States)

    Torres, Marcella; Trexler, Eric T; Smith-Ryan, Abbie E; Reynolds, Angela

    2018-02-01

    Current diet and exercise methods used to maintain or improve body composition often have poor long-term outcomes. We hypothesize that resistance exercise (RE) should aid in the maintenance of a healthy body composition by preserving lean mass (LM) and metabolic rate. We extended a previously developed energy balance model of human metabolism to include muscle hypertrophy in response to RE. We first fit model parameters to a hypothetical individual to simulate an RE program and then compared the effects of a hypocaloric diet only to the diet with either cardiovascular exercise (CE) or RE. We then simulated a cohort of individuals with different responses to RE by varying the parameters controlling it using Latin Hypercube Sampling (LHS). Finally, we fit the model to mean data from an elderly population on an RE program. The model is able to reproduce the time course of change in LM in response to RE and can be used to generate a simulated cohort for in silico clinical studies. Simulations suggest that the additional LM generated by RE may shift the body composition to a healthier state.

  11. Combined speed endurance and endurance exercise amplify the exercise-induced PGC-1α and PDK4 mRNA response in trained human muscle

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Brandt, Nina; Pilegaard, Henriette

    2016-01-01

    The aim of this study was to investigate the mRNA response related to mitochondrial biogenesis, metabolism, angiogenesis, and myogenesis in trained human skeletal muscle to speed endurance exercise (S), endurance exercise (E), and speed endurance followed by endurance exercise (S + E). Seventeen...... trained male subjects (maximum oxygen uptake (VO2-max): 57.2 ± 3.7 (mean ± SD) mL·min(-1)·kg(-1)) performed S (6 × 30 sec all-out), E (60 min ~60% VO2-max), and S + E on a cycle ergometer on separate occasions. Muscle biopsies were obtained at rest and 1, 2, and 3 h after the speed endurance exercise (S...... that in trained subjects, speed endurance exercise provides a stimulus for muscle mitochondrial biogenesis, substrate regulation, and angiogenesis that is not evident with endurance exercise. These responses are reinforced when speed endurance exercise is followed by endurance exercise....

  12. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available Muscle hypertrophy following resistance training (RT involves activation of myofibrillar protein synthesis (MPS to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE in untrained men (n = 23 and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m² underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (P<0.001 above rest 60-180 min post-exercise and 184±28% (P = 0.037 180-360 min post exercise. Quadriceps volume increased 7.9±1.6% (-1.9-24.7% (P<0.001 after training. There was no correlation between changes in quadriceps muscle volume and acute rates of MPS measured over 1-3 h (r = 0.02, 3-6 h (r = 0.16 or the aggregate 1-6 h post-exercise period (r = 0.10. Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05 with phosphorylation of 4E-BP1(Thr37/46 at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  13. Excessive eccentric exercise-induced overtraining model leads to endoplasmic reticulum stress in mice skeletal muscles.

    Science.gov (United States)

    Pereira, Bruno C; da Rocha, Alisson L; Pinto, Ana P; Pauli, José R; de Souza, Claudio T; Cintra, Dennys E; Ropelle, Eduardo R; de Freitas, Ellen C; Zagatto, Alessandro M; da Silva, Adelino S R

    2016-01-15

    The present study verified the responses of selected endoplasmic reticulum (ER) stress proteins (i.e., BiP, ATF-6, pIRE1, pPERK, and peIF2alpha) in mice skeletal muscles after three different running overtraining (OT) protocols with same external load (i.e., intensity vs. volume), but performed in downhill, uphill and without inclination. The rodents were randomly divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR) groups. The incremental load test and exhaustive test were used as performance parameters. Forty hours after the exhaustive test performed at the end of the OT protocols (i.e., at the end of week 8) and after a 2-week total recovery period (i.e., at the end of week 10), the extensor digitorum longus (EDL) and soleus muscles were removed and used for immunoblotting. For both skeletal muscle types, the OTR/down protocol increased the pIRE-1, pPERK and peIF2alpha, which were not normalized after the total recovery period. At the end of week 8, the other two OT protocols up-regulated the BiP, pPERK and peIF2alpha levels only for the soleus muscle. These ER stress proteins were not normalized after the total recovery period for the OTR/up group. The above findings suggest that the OTR/down protocol-induced skeletal muscle ER stress may be linked to a pathological condition in EDL and soleus muscles. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of Traumeel (Tr14 on Exercise-Induced Muscle Damage Response in Healthy Subjects: A Double-Blind RCT

    Directory of Open Access Journals (Sweden)

    Kerstin Muders

    2016-01-01

    Full Text Available The present double-blind, randomized, placebo-controlled clinical trial intended to test whether ingestion of a natural combination medicine (Tr14 tablets affects serum muscle damage and inflammatory immune response after downhill running. 96 male subjects received Tr14 tablets, which consist of 14 diluted biological and mineral components, or a placebo for 72 h after the exercise test, respectively. Changes in postexercise levels of various serum muscle damage and immunological markers were investigated. The area under the curve with respect to the increase (AUCi of perceived pain score and creatine kinase (CK were defined as primary outcome measures. While for CK the p value of the difference between the two groups is borderline, the pain score and muscle strength were not statistically significant. However, a trend towards lower levels of muscle damage (CK, p=0.05; LDH, p=0.06 in the Tr14 group was shown. Less pronounced lymphopenia (p=0.02, a trend towards a lower expression of CD69 count (p=0.07, and antigen-stimulated ICAM-1 (p=0.01 were found in the verum group. The Tr14 group showed a tendentially lower increase of neutrophils (p=0.10, BDNF (p=0.03, stem cell factor (p=0.09, and GM-CSF (p=0.09 to higher levels. The results of the current study indicate that Tr14 seems to limit exercise-induced muscle damage most likely via attenuation of both innate and adaptive immune responses. This study was registered with ClinicalTrials.gov (NCT01912469.

  15. Exercise in muscle pain disorders.

    Science.gov (United States)

    Thompson, Jeffrey M

    2012-11-01

    Muscle pain disorders range from local or regional (myofascial pain) to widespread (fibromyalgia). Many people with muscle pain have decreased fitness. Exercise intolerance is a common feature as well, and yet exercise plays an important role in the treatment of muscle pain disorders. Results of studies have shown repeatedly, via multiple modes and methods of delivery, that exercise is at least as effective as the best pharmacologic treatments. An understanding by clinicians and their patients of the unique benefits of a carefully crafted exercise program is one step in the successful management of these often frustrating muscle pain disorders. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Effect of BCAA supplement timing on exercise-induced muscle soreness and damage: a pilot placebo-controlled double-blind study.

    Science.gov (United States)

    Ra, Song-Gyu; Miyazaki, Teruo; Kojima, Ryo; Komine, Shoichi; Ishikura, Keisuke; Kawanaka, Kentaro; Honda, Akira; Matsuzaki, Yasushi; Ohmori, Hajime

    2017-09-22

    The aim of present study was to compare the effects of branched-chain amino acid (BCAA) supplementation taken before or after exercise on delayed onset muscle soreness (DOMS) and exercise-induced muscle damage (EIMD). Fifteen young men (aged 21.5 ± 0.4 years) were given either BCAA (9.6 g·day-1) or placebo before and after exercise (and for 3 days prior to and following the exercise day) in three independent groups: the Control group (placebo before and after exercise), the PRE group (BCAA before exercise and placebo after exercise), and the POST group (placebo before exercise and BCAA after exercise). Participants performed 30 repetitions of eccentric exercise with the non-dominant arm. DOMS, upper arm circumference (CIR), elbow range of motion (ROM), serum creatine kinase (CK), lactate dehydrogenase (LDH), and aldolase, BCAA, and Beta-hydroxy-Beta-methylbutyrate (3HMB) were measured immediately before and after the exercise and on the following 4 days. Serum BCAA and 3HMB concentrations increased significantly in the PRE group immediately after the exercise, recovering to baseline over the following days. In the days following the exercise day, DOMS, CIR, and ROM were significantly improved in the PRE group compared to the Control group, with weaker effects in the POST group. Serum activities of CK, LDH, and aldolase in the days following the exercise day were significantly suppressed in the PRE group compared to Control group. Present study confirmed that repeated BCAA supplementation before exercise had a more beneficial effect in attenuating DOMS and EIMD induced by eccentric exercise than repeated supplementation after exercise.

  17. The use of compression stockings during a marathon competition to reduce exercise-induced muscle damage: are they really useful?

    Science.gov (United States)

    Areces, Francisco; Salinero, Juan José; Abian-Vicen, Javier; González-Millán, Cristina; Ruiz-Vicente, Diana; Lara, Beatriz; Lledó, María; Del Coso, Juan

    2015-06-01

    Case-control study; ecological study. To examine the efficacy of wearing compression stockings to prevent muscle damage and to maintain running performance during a marathon competition. Exercise-induced muscle damage has been identified as one of the main causes of the progressive decrease in running and muscular performance found during marathon races. Thirty-four experienced runners were pair-matched for age, anthropometric data, and best race time in the marathon, and randomly assigned to a control group (n = 17) of runners who wore conventional socks or to a group of runners who wore foot-to-knee graduated compression stockings (n = 17). Before and after the race, a sample of venous blood was obtained, and jump height and leg muscle power were measured during a countermovement jump. Serum myoglobin and creatine kinase concentrations were determined as blood markers of muscle fiber damage. Total race time was not different between the control group and the compression stockings group (210 ± 23 and 214 ± 22 minutes, respectively; P = .58). Between the control group and the compression stockings group, postrace reductions in leg muscle power (-19.8% ± 17.7% versus -24.8% ± 18.4%, respectively; P = .37) and jump height (-25.3% ± 14.1% versus -32.5% . 20.4%, respectively; P = .27) were similar. At the end of the race, there were no differences between the control group and the compression stockings group in serum myoglobin (568 ± 347 ng·mL(-1) versus 573 ± 270 ng·mL(-1), respectively; P = .97) and creatine kinase concentration (390 ± 166 U·L(-1) versus 487 ± 227 U·L(-1), respectively; P = .16). The use of compression stockings did not improve running pace and did not prevent exercise-induced muscle damage during the marathon. Wearing compression stockings during long-distance running events is an ineffective strategy to avoid the deleterious effects of muscle damage on running performance. Therapy, level 2b.

  18. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  19. Exercising with blocked muscle glycogenolysis

    DEFF Research Database (Denmark)

    Nielsen, Tue L; Pinós, Tomàs; Brull, Astrid

    2018-01-01

    BACKGROUND: McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycoge...

  20. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study

    Directory of Open Access Journals (Sweden)

    Howatson Glyn

    2012-07-01

    Full Text Available Abstract Background It is well documented that exercise-induced muscle damage (EIMD decreases muscle function and causes soreness and discomfort. Branched-chain amino acid (BCAA supplementation has been shown to increase protein synthesis and decrease muscle protein breakdown, however, the effects of BCAAs on recovery from damaging resistance training are unclear. Therefore, the aim of this study was to examine the effects of a BCAA supplementation on markers of muscle damage elicited via a sport specific bout of damaging exercise in trained volunteers. Methods Twelve males (mean ± SD age, 23 ± 2 y; stature, 178.3 ± 3.6 cm and body mass, 79.6 ± 8.4 kg were randomly assigned to a supplement (n = 6 or placebo (n = 6 group. The damaging exercise consisted of 100 consecutive drop-jumps. Creatine kinase (CK, maximal voluntary contraction (MVC, muscle soreness (DOMS, vertical jump (VJ, thigh circumference (TC and calf circumference (CC were measured as markers of muscle damage. All variables were measured immediately before the damaging exercise and at 24, 48, 72 and 96 h post-exercise. Results A significant time effect was seen for all variables. There were significant group effects showing a reduction in CK efflux and muscle soreness in the BCAA group compared to the placebo (P Conclusion The present study has shown that BCAA administered before and following damaging resistance exercise reduces indices of muscle damage and accelerates recovery in resistance-trained males. It seems likely that BCAA provided greater bioavailablity of substrate to improve protein synthesis and thereby the extent of secondary muscle damage associated with strenuous resistance exercise. Clinical Trial Registration Number: NCT01529281.

  1. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.

    Science.gov (United States)

    Shill, Daniel D; Southern, W Michael; Willingham, T Bradley; Lansford, Kasey A; McCully, Kevin K; Jenkins, Nathan T

    2016-12-01

    Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+ , CD3+ /CD31+ , CD14+ /CD31+ , CD31+ , CD34+ /VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m-2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+ /CD31+ , CD62E

  2. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics

    NARCIS (Netherlands)

    Newcomer, S.C.; Thijssen, D.H.J.; Green, D.J.

    2011-01-01

    Physical activity, exercise training, and fitness are associated with decreased cardiovascular risk. In the context that a risk factor "gap" exists in the explanation for the beneficial effects of exercise on cardiovascular disease, it has recently been proposed that exercise generates hemodynamic

  3. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKα2-dependent manner.

    Science.gov (United States)

    Niu, Yanmei; Wang, Tianyi; Liu, Sujuan; Yuan, Hairui; Li, Huige; Fu, Li

    2017-09-01

    Abnormal glucose metabolism induces various metabolic disorders such as insulin resistance and type 2 diabetes. Regular exercise improved glucose uptake and enhanced glucose oxidation by increasing GLUT4 transcription in skeletal muscle. However, the regulatory mechanisms of GLUT4 transcription in response to exercise are poorly understood. AMPK is a sensor of exercise and upstream kinase of class II HDACs that act as transcriptional repressors. We used 6-week treadmill exercise or one single-bout exercise wild type or AMPKα2 -/- C57BL/6J mice to explore how HDACs regulate GLUT4 transcription and the underlying molecular mechanisms mediated by AMPK in the physiologic process of exercise. We demonstrate that regular physical exercise significantly enhanced GLUT4 transcription by inactivating HDAC4/5 in skeletal muscle by ChIP experiment. HDAC4 coordinately regulated with HDAC5 represses transcriptional activity of GLUT4 promoter in C2C12 myotubes by Luciferase assay. If either HDAC4 or HDAC5 is silenced via RNAi technology, the functional compensation by the other will occur. In addition, a single-bout of exercise decreased HDAC4/5 activity in skeletal muscle of wild type but not in AMPKα2 -/- mice, suggesting an AMPKα2-dependent manner. Those findings provide new insight into the mechanisms responsible for AMPKα2-dependent regulation of GLUT4 transcription after exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Efficacy of lower limb compression and combined treatment of manual massage and lower limb compression on symptoms of exercise-induced muscle damage in women.

    Science.gov (United States)

    Jakeman, John R; Byrne, Chris; Eston, Roger G

    2010-11-01

    Strategies to manage the symptoms of exercise-induced muscle damage (EIMD) are widespread, though are often based on anecdotal evidence. The aim of this study was to determine the efficacy of a combination of manual massage and compressive clothing and compressive clothing individually as recovery strategies after muscle damage. Thirty-two female volunteers completed 100 plyometric drop jumps and were randomly assigned to a passive recovery (n = 17), combined treatment (n = 7), or compression treatment group (n = 8). Indices of muscle damage (perceived soreness, creatine kinase activity, isokinetic muscle strength, squat jump, and countermovement jump performance) were assessed immediately before and after 1, 24, 48, 72, and 96 hours of plyometric exercise. The compression treatment group wore compressive tights for 12 hours after damage and the combined treatment group received a 30-minute massage immediately after damaging exercise and wore compression stockings for the following 11.5 hours. Plyometric exercise had a significant effect on all indices of muscle damage (p performance, and countermovement jump performance and reduced the level of perceived soreness in comparison with the passive recovery group (p sports massage to compression after muscle damage did not improve performance recovery, with recovery trends being similar in both treatment groups. The treatment combination of massage and compression significantly moderated perceived soreness at 48 and 72 hours after plyometric exercise (p massage with lower limb compression are effective recovery strategies following EIMD. Minimal performance differences between treatments were observed, although the combination treatment may be beneficial in controlling perceived soreness.

  5. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines...

  6. Single Dose of Intra-Muscular Platlet Rich Plasma Reverses the Increase in Plasma Iron Levels in Exercise Induced Muscle Damage

    OpenAIRE

    P?nd?k, Zekine; Onur ORAL; ?zkay?n, Nadir; Rahman, Khalid

    2014-01-01

    Objectives: Autologous Platelet Rich Plasma (PRP) therapy, is considered to be a promising solution in accelerating the healing process of injured skeletal muscle tissue. In addition to the release of growth factors, PRP also promotes concentrated anti-inflammatory signals, including interleukins. However, the impact of the intramuscular administration of the PRP on hematologic and biochemical responses has not been fully elucidated in exercise induced muscle damage. Methods: Twelve healthy m...

  7. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  8. AMPKα in Exercise-Induced Substrate Metabolism and Exercise Training-Induced Metabolic and Mitochondrial Adaptations

    DEFF Research Database (Denmark)

    Fentz, Joachim

    could also regulate muscle metabolism during exercise and long-term adaptations to exercise training. However, responses to exercise and exercise training are largely normal in AMPK KO/KD mice. At first hand this could mean that AMPK is not important to exercise/exercise training metabolic regulation......-regulated metabolism and exercise training-induced adaptations are abnormal. This could be due to a more complete ablation of AMPK function and perhaps related to the catalytic properires of the α-subunits. In study 1 we show that deletion of both AMPKα subunits in skeletal muscle of mice decreases exerciseinduced......-subunit. It is proposed to be involved in acute exercise-induced regulation of substrate metabolism as well as the adaptations in muscle protein expression that arise from repeated bouts of exercise, i.e. exercise training. Exercise regulates a plethora of signaling pathways in muscle which includes the activation...

  9. Muscle damage and inflammation during recovery from exercise.

    Science.gov (United States)

    Peake, Jonathan M; Neubauer, Oliver; Della Gatta, Paul A; Nosaka, Kazunori

    2017-03-01

    Unaccustomed exercise consisting of eccentric (i.e., lengthening) muscle contractions often results in muscle damage characterized by ultrastructural alterations in muscle tissue, clinical signs, and symptoms (e.g., reduced muscle strength and range of motion, increased muscle soreness and swelling, efflux of myocellular proteins). The time course of recovery following exercise-induced muscle damage depends on the extent of initial muscle damage, which in turn is influenced by the intensity and duration of exercise, joint angle/muscle length, and muscle groups used during exercise. The effects of these factors on muscle strength, soreness, and swelling are well characterized. By contrast, much less is known about how they affect intramuscular inflammation and molecular aspects of muscle adaptation/remodeling. Although inflammation has historically been viewed as detrimental for recovery from exercise, it is now generally accepted that inflammatory responses, if tightly regulated, are integral to muscle repair and regeneration. Animal studies have revealed that various cell types, including neutrophils, macrophages, mast cells, eosinophils, CD8 and T-regulatory lymphocytes, fibro-adipogenic progenitors, and pericytes help to facilitate muscle tissue regeneration. However, more research is required to determine whether these cells respond to exercise-induced muscle damage. A large body of research has investigated the efficacy of physicotherapeutic, pharmacological, and nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage, with mixed results. More research is needed to examine if/how these treatments influence inflammation and muscle remodeling during recovery from exercise. Copyright © 2017 the American Physiological Society.

  10. ROS and myokines promote muscle adaptation to exercise

    DEFF Research Database (Denmark)

    Scheele, Camilla; Nielsen, Søren; Pedersen, Bente K

    2009-01-01

    in skeletal muscle. In fact, it seems that exercise-induced ROS are able to stimulate cytokine production from skeletal muscle. Despite the initial view that ROS were potentially cell damaging, it now seems possible that these substances have important roles in the regulation of cell signaling. Muscle......Physical exercise induces a network of alterations in the transcriptome and proteome of the skeletal muscle, resulting in modifications of the muscle physiology. Intriguingly, exercise also transiently induces the production of both reactive oxygen species (ROS) and some inflammatory cytokines......-derived cytokines, so-called 'myokines', are distinguished from inflammation and instead possess important anti-inflammatory and metabolic properties. In this opinion piece, we suggest that both ROS and myokines are important players in muscle adaptation to exercise....

  11. Muscle α-adrenergic responsiveness during exercise and ATP-induced vasodilation in chronic obstructive pulmonary disease patients

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Ryrsø, Camilla Koch

    2017-01-01

    <0.05) at 20% WLmax in the COPD patients. Tyramine reduced LVC in both groups at 10 W exercise (COPD: -3 ±1; controls: -3±1 mL min-1mmHg-1 P<0.05, respectively) and 20% WLmax (COPD: -4±1; controls: -3±1 mL min-1mmHg-1 P<0.05, respectively) with no difference between groups. Incremental ATP...... infusions induced dose-dependent vasodilation with no difference between groups and also the vasoconstrictor response to Tyramine infused together with ATP was not different between groups (COPD: -0.03±0.01 versus controls: -0.04±0.01 L min-1 kg leg mass-1, P>0.05). Compared with age-matched healthy......Sympathetic vasoconstriction is blunted in exercising muscle (functional sympatholysis) but becomes attenuated with age. We tested the hypothesis that functional sympatholysis is further impaired in chronic obstructive pulmonary disease (COPD) patients. We determined leg blood flow (LBF...

  12. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners.

    Directory of Open Access Journals (Sweden)

    Christophe Hausswirth

    Full Text Available Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC, far infrared (FIR or passive (PAS modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post, post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being] were recorded before, immediately after (post, post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h, while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities.

  13. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Parise, Gianni; Bellamy, Leeann; Baker, Steven K; Smith, Kenneth; Atherton, Philip J; Phillips, Stuart M

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m²) underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (PHypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1(Thr37/46) at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  14. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Pehmøller, Christian; Birk, Jesper Bratz

    2010-01-01

    increasing 60 - 250% (Pprotein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus......TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all......-out cycle exercise lasting either 30 sec, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (~70 - 230%, Pprotein showed a similar pattern of regulation...

  15. Exercise induced effects on muscle function and range of motion in patients with hip osteoarthritis

    DEFF Research Database (Denmark)

    Bieler, Theresa; Siersma, Volkert; Magnusson, S Peter

    2017-01-01

    BACKGROUND AND PURPOSE: Patients with hip osteoarthritis have impairments in muscle function (muscle strength and power) and hip range of motion (ROM), and it is commonly believed that effective clinical management of osteoarthritis should address these impairments to reduce pain and disability. ...

  16. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases

    DEFF Research Database (Denmark)

    Brandt, Claus; Pedersen, Bente K

    2010-01-01

    Chronic inflammation is involved in the pathogenesis of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. Regular exercise offers protection against type 2 diabetes, cardiovascular diseases, colon cancer, breast cancer, and dementia. Evidence suggests that the protective...

  17. Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle

    DEFF Research Database (Denmark)

    Blomstrand, Eva; Krustrup, Peter; Søndergaard, Hans

    2011-01-01

    been shown to provide a quantitative measure of maximal oxidative metabolism, but it is not known whether the increase in this activity after a period of training reflects the elevation in peak oxygen consumption. Fourteen subjects performed one-legged knee extension exercise for 5-7 weeks, while...... the other leg remained untrained. Thereafter, the peak oxygen uptake by the quadriceps muscle was determined for both legs, and muscle biopsies were taken for assays of maximal enzyme activities (at 25°C). The peak oxygen uptake was 26% higher in the trained than in the untrained muscle (395 vs. 315 ml...

  18. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.

    Science.gov (United States)

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier

    2017-07-01

    Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.

  19. Re-evaluation of sarcolemma injury and muscle swelling in human skeletal muscles after eccentric exercise.

    Science.gov (United States)

    Yu, Ji-Guo; Liu, Jing-Xia; Carlsson, Lena; Thornell, Lars-Eric; Stål, Per S

    2013-01-01

    The results regarding the effects of unaccustomed eccentric exercise on muscle tissue are often conflicting and the aetiology of delayed onset muscle soreness (DOMS) induced by eccentric exercise is still unclear. This study aimed to re-evaluate the paradigm of muscular alterations with regard to muscle sarcolemma integrity and fibre swelling in human muscles after voluntary eccentric exercise leading to DOMS. Ten young males performed eccentric exercise by downstairs running. Biopsies from the soleus muscle were obtained from 6 non-exercising controls, 4 exercised subjects within 1 hour and 6 exercised subjects at 2-3 days and 7-8 days after the exercise. Muscle fibre sarcolemma integrity, infiltration of inflammatory cells and changes in fibre size and fibre phenotype composition as well as capillary supply were examined with specific antibodies using enzyme histochemistry and immunohistochemistry. Although all exercised subjects experienced DOMS which peaked between 1.5 to 2.5 days post exercise, no significant sarcolemma injury or inflammation was detected in any post exercise group. The results do not support the prevailing hypothesis that eccentric exercise causes an initial sarcolemma injury which leads to subsequent inflammation after eccentric exercise. The fibre size was 24% larger at 7-8 days than at 2-3 days post exercise (pmuscle is not directly associated with the symptom of DOMS.

  20. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette K; Kiilerich, Kristian

    2013-01-01

    The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 he...

  1. Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.

    Science.gov (United States)

    Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L

    2004-02-01

    The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

  2. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    Bradykinin is known to cause vasodilatation in resistance vessels and may, together with adenosine, be an important regulator of tissue blood flow during exercise. Whether tissue concentrations of bradykinin change with exercise in skeletal muscle and tendon-related connective tissue has not yet......, range 22-33 years). Interstitial bradykinin and adenosine concentrations were determined using an internal reference to determine relative recovery ([2,3,prolyl-3,4-(3)H(N)]-bradykinin and [2-(3)H]-adenosine). Bradykinin and adenosine recovery were closely related and in the range of 30......-50 %. The interstitial concentration of bradykinin rose in response to exercise both in skeletal muscle (from 23.1 +/- 4.9 nmol l(-1) to 110.5 +/- 37.9 nmol l(-1); P adenosine concentration...

  3. Transcriptomic and Proteomic Response of Skeletal Muscle to Swimming-Induced Exercise in Fish

    NARCIS (Netherlands)

    Planas, J.V.; Martin-Perez, M.; Magnoni, L.J.; Blasco, J.; Ibarz, A.; Fernandez-Borras, J.; Palstra, A.P.

    2013-01-01

    The “Omics” revolution has brought along the possibility to dissect complex physiological processes, such as exercise, at the gene (genomics), mRNA (transcriptomics), protein (proteomics), metabolite (metabolomics), and other levels with unprecedented detail. To date, a few studies in mammals,

  4. Isokinetic eccentric exercise as a model to induce and reproduce pathophysiological alterations related to delayed onset muscle soreness

    DEFF Research Database (Denmark)

    Lund, Henrik; Vestergaard-Poulsen, P; Kanstrup, I.L.

    1998-01-01

    parameters were measured bilaterally in 7 healthy subjects at day 0 as a control value. Then after a standardized bout of eccentric exercise the same parameters were measured daily for the following 7 d (test values). The measured parameters were: the ratio of phosphocreatine to inorganic phosphate (PCr/Pi......), the ratio of inorganic phosphate to adenosintriphosphate (Pi/ATP), the ratio of phosphocreatine to adenosintriphosphate (PCr/ATP) (all three ratios measured with 31P-nuclear magnetic resonance spectroscopy), dynamic muscle strength, plasma creatine kinase (CK), degree of pain and 'muscle' blood flow rate...... subjects experienced pain, reaching a maximum 48 h after eccentric exercise in both exp. I and II. A systematic effect over time for CK (increasing 278% resp. 308%), muscle strength (decreasing more than 10%), PCr/Pi (decreasing 31% resp. 43%) and Pi/ATP (increasing 55% resp. 99%) was found in both exp. I...

  5. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons.

    Science.gov (United States)

    Lambert, Charles P; Wright, Nicole R; Finck, Brian N; Villareal, Dennis T

    2008-08-01

    Many obese elderly persons have impaired physical function associated with an increased chronic inflammatory response. We evaluated 12 wk of exercise (aerobic and resistance) or 12 wk of weight loss (approximately 7% reduction) on skeletal muscle mRNAs for toll-like receptor-4 (TLR-4), mechanogrowth factor (MGF), TNF-alpha, and IL-6 in 16 obese (body mass index 38+/-2 kg/m2) older (69+/-1 yr) physically frail individuals. Vastus lateralis muscle biopsies were obtained at 0 and 12 wk and analyzed by real-time RT-PCR. Body composition was assessed by dual-energy x-ray absorptiometry. Body weight decreased (-7.5+/-1.2 kg, P=0.001) in the weight loss group but not in the exercise group (-0.3+/-0.8 kg, P=0.74). Fat-free mass (FFM) decreased (-2.9+/-0.6 kg, P=0.010) in the weight loss group and increased (1.6+/-0.6 kg, P=0.03) in the exercise group. Exercise resulted in a 37% decrease in TLR-4 mRNA (Pweight loss had no significant effect. Additionally, exercise led to a significant (50%) decrease in IL-6 and TNF-alpha mRNA (Pweight loss had no effect. Exercise increased MGF mRNA (approximately 2 fold, Pweight loss had no effect. In conclusion, exercise but not weight loss had a beneficial effect on markers of muscle inflammation and anabolism in frail obese elderly individuals.

  6. Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults.

    Science.gov (United States)

    Chomentowski, Peter; Dubé, John J; Amati, Francesca; Stefanovic-Racic, Maja; Zhu, Shanjian; Toledo, Frederico G S; Goodpaster, Bret H

    2009-05-01

    Aging is associated with a loss of muscle mass and increased body fat. The effects of diet-induced weight loss on muscle mass in older adults are not clear. This study examined the effects of diet-induced weight loss, alone and in combination with moderate aerobic exercise, on skeletal muscle mass in older adults. Twenty-nine overweight to obese (body mass index = 31.8 +/- 3.3 kg/m(2)) older (67.2 +/- 4.2 years) men (n = 13) and women (n = 16) completed a 4-month intervention consisting of diet-induced weight loss alone (WL; n = 11) or with exercise (WL/EX; n = 18). The WL intervention consisted of a low-fat, 500-1,000 kcal/d caloric restriction. The WL/EX intervention included the WL intervention with the addition of aerobic exercise, moderate-intensity walking, three to five times per week for 35-45 minutes per session. Whole-body dual-energy x-ray absorptiometry, thigh computed tomography (CT), and percutaneous muscle biopsy were performed to assess changes in skeletal muscle mass at the whole-body, regional, and cellular level, respectively. Mixed analysis of variance demonstrated that both groups had similar decreases in bodyweight (WL, -9.2% +/- 1.0%; WL/EX, -9.1% +/- 1.0%) and whole-body fat mass (WL, -16.5%, WL/EX, -20.7%). However, whole-body fat-free mass decreased significantly (p muscle cross-sectional area by CT decreased in both groups (WL, -5.2% +/- 1.1%; WL/EX, -3.0% +/- 1.0%) and was not statistically different between groups. Type I muscle fiber area decreased in WL (-19.2% +/- 7.9%, p = .01) but remained unchanged in WL/EX (3.4% +/- 7.5%). Similar patterns were observed in type II fibers (WL, -16.6% +/- 4.0%; WL/EX, -0.2% +/- 6.5%). Diet-induced weight loss significantly decreased muscle mass in older adults. However, the addition of moderate aerobic exercise to intentional weight loss attenuated the loss of muscle mass.

  7. Exercise induced regulation of muscular Na+,K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type

    DEFF Research Database (Denmark)

    Rasmussen, Martin Krøyer; Juel, Carsten; Nordsborg, Nikolai Baastrup

    2011-01-01

    It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week) of ei......) of either sprint (4 x 3 min sprint + 1 min rest) or endurance (20 min) running. Two hours after exercise on day 1, no change in protein expression was apparent in either training group or muscle, whereas sprint exercise increased the mRNA of Soleus a2 (4.9±0.8 fold; P......It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week...

  8. Exercise-induced asthma

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000036.htm Exercise-induced asthma To use the sharing features on this page, ... such as running, basketball, or soccer. Use Your Asthma Medicine Before you Exercise Take your short-acting, ...

  9. Exercise-induced muscle fatigue in the unaffected knee joint and its influence on postural control and lower limb kinematics in stroke patients.

    Science.gov (United States)

    Park, Sun Wook; Son, Sung Min; Lee, Na Kyung

    2017-05-01

    This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants) were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic) and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.

  10. Exercise-induced muscle fatigue in the unaffected knee joint and its influence on postural control and lower limb kinematics in stroke patients

    Directory of Open Access Journals (Sweden)

    Sun Wook Park

    2017-01-01

    Full Text Available This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.

  11. Exercise-induced attenuation of obesity, hyperinsulinemia, and skeletal muscle lipid peroxidation in the OLETF rat.

    Science.gov (United States)

    Morris, R Tyler; Laye, Matthew J; Lees, Simon J; Rector, R Scott; Thyfault, John P; Booth, Frank W

    2008-03-01

    The Otsuka Long-Evans Tokushima fatty (OLETF) rat is a model of hyperphagic obesity in which the animals retain the desire to run voluntarily. Running wheels were provided for 4-wk-old OLETF rats for 16 wk before they were killed 5 h (WL5), 53 h (WL53), or 173 h (WL173) after the wheels were locked. Sedentary (SED) OLETF rats that were not given access to running wheels served as age-matched cohorts. Epididymal fat pad mass, adipocyte volume, and adipocyte number were 58%, 39%, and 47% less, respectively, in WL5 than SED rats. Contrary to cessation of daily running in Fischer 344 x Brown Norway rats, epididymal fat did not increase during the first 173 h of running cessation in the OLETF runners. Serum insulin and glucose levels were 77% and 29% less, respectively, in WL5 than SED rats. Oil red O staining for intramyocellular lipid accumulation was not statistically different among groups. However, lipid peroxidation levels, as determined by total trans-4-hydroxy-2-nonenal (4-HNE) and 4-HNE normalized to oil red O, was higher in epitrochlearis muscles of SED than WL5, WL53, and WL173 rats. mRNA levels of glutathione S-transferase-alpha type 4, an enzyme involved in cellular defense against electrophilic compounds such as 4-HNE, were higher in epitrochlearis muscle of WL53 than WL173 and SED rats. In contrast, 4-HNE levels in omental fat were unaltered. Epitrochlearis muscle palmitate oxidation and relative transcript levels for peroxisome proliferator-activated receptor-delta and peroxisome proliferator-activated receptor-gamma coactivator type 1 were surprisingly not different between runners and SED rats. In summary, voluntary running was associated with lower levels of lipid peroxidation in skeletal muscle without significant changes in intramyocellular lipids or mitochondrial markers in OLETF rats at 20 wk of age. Therefore, even in a genetic animal model of extreme overeating, daily physical activity promotes improved health of skeletal muscle.

  12. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber...... from a Hill plot. K(m) for Na(+) was higher (lower affinity) in total membranes of glycolytic muscle (extensor digitorum longus and white vastus lateralis), when compared with oxidative muscle (red gastrocnemius and soleus). Treadmill running induced a significant decrease in K(m) for Na(+) in total...... membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three...

  13. Effects of photobiomodulation therapy (pulsed LASER 904 nm) on muscle oxygenation and performance in exercise-induced skeletal muscle fatigue in young women: a pilot study

    Science.gov (United States)

    Oliveira, Murilo X.; Toma, Renata L.; Jones, Brett J. L.; Cyprien, Thomas P.; Tier, Matthew R.; Wallace, Cameron A.; Renno, Ana C. M.; Sabapathy, Surendran; Laakso, E.-Liisa

    2017-02-01

    Photobiomodulation therapy (PBMt) has been used to increase muscle performance and improve recovery when applied before exercise. We aimed to evaluate the effects of PBMt using LASER on muscle oxygenation and performance. The study was a randomized, participant and assessor-blinded, within-subject crossover trial with placebo control to test the viability of the methods. Five physically active young women were randomly assigned to either placebo, or active PBMt (12 diode cluster probe; 904 nm; 60 mW; 250 Hz; 43.2 J per site, 129.6 J total) in contact over rectus femoris (RF) muscle of the dominant limb immediately before an isokinetic fatigue protocol. A one-week wash-out period preceded cross-over. Electromyography and isokinetic performance measures were evaluated. Absolute concentrations of deoxygenated haemoglobin and myoglobin (deoxy[Hb + Mb]) of the RF, an index of local microvascular fractional O2 extraction, was monitored continuously by near-infrared spectroscopy (NIRS). Total haemoglobin concentration as an indicator of microvascular haematocrit was calculated as the sum of the deoxy[Hb + Mb] and oxy[Hb + Mb] signals. PBMt pre-conditioning reduced time to peak torque when compared to placebo (P0.05). PBMt before exercise improves indicators of muscle performance, potentially by increasing local matching of bulk and microvascular O2 delivery relative to skeletal muscle O2 utilisation. Further work is required to understand the effect of PBMt on haemodynamic and metabolic characteristics of muscle.

  14. Role of exercise-induced calmodulin protein kinase (CAMK)II activation in the regulation of omega-6 fatty acids and lipid metabolism genes in rat skeletal muscle.

    Science.gov (United States)

    Joseph, J S; Ayeleso, A O; Mukwevho, E

    2017-09-22

    Activation of calmodulin dependent protein kinase (CaMK)II by exercise is beneficial in controlling membrane lipids associated with type 2 diabetes and obesity. Regulation of lipid metabolism is crucial in the improvement of type 2 diabetes and obesity associated symptoms. The role of CaMKII in membrane associated lipid metabolism was the focus of this study. Five to six weeks old male Wistar rats were used in this study. GC×GC-TOFMS technique was used to determine the levels of polyunsaturated fatty acids (linoleic acid, arachidonic acid and 11,14-eicosadienoic acid). Carnitine palmitoyltransferase (Cpt-1) and acetyl-CoA carboxylase (Acc-1) genes expression were assessed using quantitative real time PCR (qPCR). From the results, CaMKII activation by exercise increased the levels of arachidonic acid and 11, 14-eicosadienoic acid while a decrease in the level of linolenic acid was observed in the skeletal muscle. The results indicated that exercise-induced CaMKII activation increased CPT-1 expression and decreased ACC-1 expression in rat skeletal muscle. All the observed increases with activation of CaMKII by exercise were aborted when KN93, an inhibitor of CaMKII was injected in exercising rats. This study demonstrated that CaMKII activation by exercise regulated lipid metabolism. This study suggests that CaMKII can be a vital target of therapeutic approach in the management of diseases such as type 2 diabetes and obesity that have increased to epidemic proportions recently.

  15. Sesamin prevents decline in exercise capacity and impairment of skeletal muscle mitochondrial function in mice with high-fat diet-induced diabetes.

    Science.gov (United States)

    Takada, Shingo; Kinugawa, Shintaro; Matsushima, Shouji; Takemoto, Daisuke; Furihata, Takaaki; Mizushima, Wataru; Fukushima, Arata; Yokota, Takashi; Ono, Yoshiko; Shibata, Hiroshi; Okita, Koichi; Tsutsui, Hiroyuki

    2015-11-01

    What is the central question of this study? Our aim was to examine whether sesamin can prevent a decline in exercise capacity in high-fat diet-induced diabetic mice. Our hypothesis was that maintenance of mitochondrial function and attenuation of oxidative stress in the skeletal muscle would contribute to this result. What is the main finding and its importance? The new findings are that sesamin prevents the diabetes-induced decrease in exercise capacity and impairment of mitochondrial function through the inhibition of NAD(P)H oxidase-dependent oxidative stress in the skeletal muscle. Sesamin may be useful as a novel agent for the treatment of diabetes mellitus. We previously reported that exercise capacity and skeletal muscle mitochondrial function in diabetic mice were impaired, in association with the activation of NAD(P)H oxidase. It has been reported that sesamin inhibits NAD(P)H oxidase-induced superoxide production. Therefore, we examined whether the antioxidant sesamin could prevent a decline in exercise capacity in mice with high-fat diet (HFD)-induced diabetes. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated or not with sesamin (0.2%) to yield the following four groups: ND, ND+Sesamin, HFD and HFD+Sesamin (n = 10 each). After 8 weeks, body weight, fat weight, blood glucose, insulin, triglyceride, total cholesterol and fatty acid were significantly increased in HFD compared with ND mice. Sesamin prevented the increases in blood insulin and lipid levels in HFD-fed mice, but did not affect the plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in HFD mice, but almost completely recovered in HFD+Sesamin mice. Citrate synthase activity was significantly decreased in the skeletal muscle of HFD mice, and these decreases were also inhibited by sesamin. Superoxide anion and NAD(P)H oxidase activity were significantly increased in HFD mice compared with the ND mice and were ameliorated by sesamin. Sesamin

  16. Detection and characterization of exercise induced muscle damage (EIMD) via thermography and image processing

    DEFF Research Database (Denmark)

    Avdelidis, Nicolas; Kappatos, Vassilios; Georgoulas, George

    2017-01-01

    of commonly measurement tools and methods. Thermography has been used successfully as a research detection tool in medicine for the last 6 decades but very limited work has been reported on EIMD area. The main purpose of this research is to assess and characterize EIMD, using thermography and image processing...... techniques. The first step towards that goal is to develop a reliable segmentation technique to isolate the region of interest (ROI). A semi-automatic image processing software was designed and regions of the left and right leg based on superpixels were segmented. The image is segmented into a number...... of regions and the user is able to intervene providing the regions which belong to each of the two legs. In order to validate the image processing software, an extensive experimental investigation was carried out, acquiring thermographic images of the rectus femoris muscle before, immediately post and 24, 48...

  17. Re-evaluation of sarcolemma injury and muscle swelling in human skeletal muscles after eccentric exercise.

    Directory of Open Access Journals (Sweden)

    Ji-Guo Yu

    Full Text Available The results regarding the effects of unaccustomed eccentric exercise on muscle tissue are often conflicting and the aetiology of delayed onset muscle soreness (DOMS induced by eccentric exercise is still unclear. This study aimed to re-evaluate the paradigm of muscular alterations with regard to muscle sarcolemma integrity and fibre swelling in human muscles after voluntary eccentric exercise leading to DOMS. Ten young males performed eccentric exercise by downstairs running. Biopsies from the soleus muscle were obtained from 6 non-exercising controls, 4 exercised subjects within 1 hour and 6 exercised subjects at 2-3 days and 7-8 days after the exercise. Muscle fibre sarcolemma integrity, infiltration of inflammatory cells and changes in fibre size and fibre phenotype composition as well as capillary supply were examined with specific antibodies using enzyme histochemistry and immunohistochemistry. Although all exercised subjects experienced DOMS which peaked between 1.5 to 2.5 days post exercise, no significant sarcolemma injury or inflammation was detected in any post exercise group. The results do not support the prevailing hypothesis that eccentric exercise causes an initial sarcolemma injury which leads to subsequent inflammation after eccentric exercise. The fibre size was 24% larger at 7-8 days than at 2-3 days post exercise (p<0.05. In contrast, the value of capillary number per fibre area tended to decrease from 2-3 days to 7-8 days post exercise (lower in 5 of the 6 subjects at 7-8 days than at 2-3 days; p<0.05. Thus, the increased fibre size at 7-8 days post exercise was interpreted to reflect fibre swelling. Because the fibre swelling did not appear at the time that DOMS peaked (between 1.5 to 2.5 days post exercise, we concluded that fibre swelling in the soleus muscle is not directly associated with the symptom of DOMS.

  18. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-08-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing. However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  19. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-09-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing.  However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  20. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation.

    Science.gov (United States)

    Fritzen, Andreas M; Madsen, Agnete B; Kleinert, Maximilian; Treebak, Jonas T; Lundsgaard, Anne-Marie; Jensen, Thomas E; Richter, Erik A; Wojtaszewski, Jørgen; Kiens, Bente; Frøsig, Christian

    2016-02-01

    Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle. An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content. An acute bout of exercise regulates autophagy by a local contraction-induced mechanism. Exercise training increases the capacity for formation of autophagosomes in human muscle. AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy-inhibiting effect of insulin. Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exercise training and subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (Pexercise in human muscle. The decrease in LC3-II/LC3-I ratio did not correlate with activation of 5'AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5-aminoimidazole-4-carboxamide riboside (AICAR) in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (Pexercised and non-exercised leg in humans. This coincided with increased Ser-757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3-II/LC3-I ratio. In response to 3 weeks of one-legged exercise training, the LC3-II/LC3-I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes

  1. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  2. Effect of Resistance Exercise Training Associated with Skeletal Muscle Hypertrophy on Serum Pro-Inflammatory Cytokines in STZ-induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mahdieh Molanouri Shamsi

    2016-06-01

    Full Text Available Skeletal muscle atrophy is associated with type 1 diabetes. Effects of resistance exercise training associated with skeletal muscle hypertrophy on serum inflammatory cytokines was exactly not clarified. Protein levels of inflammatory cytokines IL-6, TNF-α, and interleukin-1beta (IL-1β in serum of healthy and streptozotocin (STZ- induced diabetic rats subjected to resistance exercise training were assessed in this study. Rats were divided into the control, training, control diabetic and diabetic training groups. Training groups performed the resistance training consisted of climbing a 1 m ladder with increasing weight added to the tail. Proteins levels of IL-6, TNF-α and IL-1β in serum were measured by the ELIZA method. The results of this study indicated that resistance training induced skeletal muscle hypertrophy in diabetic samples (P<0.05. Also, Resistance training decrease IL-6 protein levels in serum. Inflammatory cytokines could act as stress factors in diabetes. It seems that this kind of exercise training individually could not change cytokines levels in serum.

  3. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism.

    Science.gov (United States)

    Reidy, Paul T; Rasmussen, Blake B

    2016-02-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on

  4. Acute bout of exercise induced prolonged muscle glucose transporter-4 translocation and delayed counter-regulatory hormone response in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Koji Sato

    Full Text Available Previous studies have demonstrated that an acute bout of aerobic exercise induces a subsequent delayed onset of hypoglycemia among patients with type 1 diabetes. However, the mechanisms of exercise-induced hypoglycemia in type 1 diabetes are still unclear. Streptozotocin (STZ was injected to 6-week-old male Wistar rats, and three days after STZ injection, animals were randomly assigned into 2 groups: STZ with insulin only (STZ and STZ with insulin and exercise (STZ+EX. Normal Wistar rats with exercise were used as control (CON+EX. Insulin was intraperitoneally injected (0.5 U/kg to both STZ groups (-0.5 h, and a bout of aerobic exercise (15 m/min for 30 min was conducted at euglycemic conditions (0 h. Blood was collected at 0, 1, 3, and 5 h after exercise from the carotid artery. While the blood glucose level was stable during the post-exercise period (0-5 h in the STZ and CON+EX groups, it decreased significantly only in the STZ+EX group at 3 h. Plasma glucagon, adrenalin, and noradrenalin levels significantly increased at 1 h in the STZ group, whereas significant hormonal responses were observed at 5 h in the STZ+EX group. In skeletal muscle glucose metabolism-related pathway, the level of glucose transporter-4 (GLUT-4 translocation was significantly higher at 1 h in the CON and STZ groups. However, in the STZ+EX group, these activations were maintained by 5 h, indicating a sustained glucose metabolism in the STZ+EX group. A single bout of aerobic exercise induced a delayed onset of hypoglycemia in STZ-treated rats. A prolonged enhancement of GLUT-4 translocation and delayed counter-regulatory hormone responses may have contributed to the induction of hypoglycemia.

  5. Effect of exercise-induced enhancement of the leg-extensor muscle-tendon unit capacities on ambulatory mechanics and knee osteoarthritis markers in the elderly.

    Science.gov (United States)

    Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter

    2014-01-01

    Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly following a

  6. Can endurance exercise preconditioning prevention disuse muscle atrophy?

    Directory of Open Access Journals (Sweden)

    Michael P Wiggs

    2015-03-01

    Full Text Available Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity –induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase, the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.

  7. Oxidation of urate in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Tullson, P. C.; Richter, Erik

    1997-01-01

    exercise (p 3 min after exercise (p 2.6 mumol.liter-1 at rest and by 5 min.......084 +/- 0.016 mumol.g-1 w.w. (p exercise and then rapidly increased during recovery to reach the resting level within 3 min after exercise. The concentration of allantoin in the muscle increased from a resting value of 0.03 +/- 0.007 to 0.10 +/- 0.014 mumol.g-1 w.w. immediately after......The purpose of the present study was to investigate whether high metabolic stress to skeletal muscle, induced by intensive exercise, would lead to an oxidation of urate to allantoin in the exercised muscle. Seven healthy male subjects performed short term (4.39 +/- 0.04 [+/-SE] min) exhaustive...

  8. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Gunnarsson, Thomas Gunnar Petursson; Hostrup, Morten

    2016-01-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs...... was matched): C - cycling at 171 ± 6 W for 60 min (control); A - cycling at 171 ± 6 W for 60 min, with addition of intermittent arm exercise (98 ± 4 W). DS - cycling at 171 ± 6 W interspersed by 30 sec sprints (513 ± 19 W) every 10 min (distributed sprints); and CS - cycling at 171 ± 6 W for 40 min followed...

  9. Exercise, GLUT4, and skeletal muscle glucose uptake.

    Science.gov (United States)

    Richter, Erik A; Hargreaves, Mark

    2013-07-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.

  10. Exercise Training and Work Task Induced Metabolic and Stress-Related mRNA and Protein Responses in Myalgic Muscles

    Directory of Open Access Journals (Sweden)

    Gisela Sjøgaard

    2013-01-01

    Full Text Available The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 healthy controls. Those with myalgia performed ~7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In contrast, prolonged general fitness as well as specific strength training decreased mRNA content of heat shock protein while the capacity of carbohydrate oxidation was increased only after specific strength training.

  11. Exercise-Induced Asthma

    Science.gov (United States)

    ... January 2014 More on this topic for: Parents Kids Teens Can Kids and Teens With Asthma Play Sports? Asthma Center When to Go to the ER if Your Child Has Asthma Kids and Exercise Asthma Triggers Word! Exercise-Induced Asthma ...

  12. Exercise-Induced Asthma

    Science.gov (United States)

    ... Blood Institute. http://www.nhlbi.nih.gov/health-pro/resources/lung/naci/discover/action-plans.htm. Accessed Sept. 12, 2014. Mickleborough TD, et al. Exercise-induced asthma: Nutritional management. Current ...

  13. Core muscle activity during suspension exercises.

    Science.gov (United States)

    Mok, Nicola W; Yeung, Ella W; Cho, Jeran C; Hui, Samson C; Liu, Kimee C; Pang, Coleman H

    2015-03-01

    Suspension exercise has been advocated as an effective means to improve core stability among healthy individuals and those with musculoskeletal complaints. However, the activity of core muscles during suspension exercises has not been reported. In this study, we investigated the level of activation of core muscles during suspension exercises within young and healthy adults. The study was conducted in a controlled laboratory setting. Surface electromyographic (sEMG) activity of core muscles (rectus abdominis, external oblique, internal oblique/transversus abdominis, and superficial lumbar multifidus) during four suspension workouts (hip abduction in plank, hamstring curl, chest press, and 45° row) was investigated. Muscle activity during a 5-s hold period of the workouts was measured by sEMG and normalized to the individual's maximal voluntary isometric contraction (MVIC). Different levels of muscle activation were observed during the hip abduction in plank, hamstring curl, and chest press. Hip abduction in plank generated the highest activation of most abdominal muscles. The 45° row exercise generated the lowest muscle activation. Among the four workouts investigated, the hip abduction in plank with suspension was found to have the strongest potential strengthening effect on core muscles. Also, suspension training was found to generate relatively high levels of core muscle activation when compared with that among previous studies of core exercises on stable and unstable support surfaces. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Diet-induced weight loss and exercise alone and in combination enhance the expression of adiponectin receptors in adipose tissue and skeletal muscle, but only diet-induced weight loss enhanced circulating adiponectin

    DEFF Research Database (Denmark)

    Christiansen, Tore; Paulsen, Søren K; Bruun, Jens M

    2009-01-01

    by the intervention. Conclusion: Exercise alone and in combination with a diet-induced weight loss enhance the mRNA expression of adiponectin receptors in AT and in SM but only a pronounced hypocaloric-induced weight-loss increases circulating adiponectin in obese subjects.......Objective: The aim of the study was to investigate the effect of weight loss and exercise independently and in combination on circulating levels of adiponectin including low molecular weight, medium molecular weight, and high molecular weight adiponectin and expression of adiponectin...... and adiponectin receptors (AdipoR) in adipose tissue (AT) and skeletal muscle (SM). Design and Methods: Seventy-nine obese males and females were randomized into the following: 1) exercise only (12 wk of exercise without diet restriction); 2) hypocaloric diet [8 wk of very low energy diet (600 kcal/d) followed...

  15. The effect of eccentric exercise-induced delayed-onset muscle soreness on positioning sense and shooting percentage in wheelchair basketball players.

    Science.gov (United States)

    Serinken, Mehmet Akif; Gençoğlu, Celal; Kayatekin, Berkant Muammer

    2013-12-01

    Eccentric exercise is defined as a type of exercise in which the muscle produces power by extending. In contrast to isometric and concentric exercises, eccentric muscle activity is much more effective mechanically; however, it may expose the muscle to soreness. Delayed-Onset Muscle Soreness (DOMS) emerges a couple of hours after an eccentric activity, especially in individuals who are not used to this kind of exercise, and causes a temporary decrease in muscle performance, joint movement angle and muscle power, and also a temporary increase in the blood creatine kinase (CK) activity. This study investigates the effect of DOMS on the upper extremities motor performance by conducting an eccentric exercise load on the elbow flexor muscles. Cross sectional study. The study included 10 wheelchair basketball players. First, the participants underwent blood CK activity, positioning sense, muscle pain, shooting performance measurements tests at the base, and after 30 minutes and 24 and 48 hours. Then, one week later, the one-repetition-maximums of biceps curls were determined in order to define the intensity of the eccentric exercise. An eccentric exercise protocol which would cause DOMS was applied to all players. All tests were replaced with acute exhaustive eccentric exercise; the same tests were repeated in the same order after the exercise. Blood CK activity was measured by taking an earlobe capillary blood sample. The muscle pain level was measured by using a Visual Analogue Scale (VAS). Positioning sense loss was assessed via goniometer at 30º, 60° and 90° degrees horizontally. The study found a statistically significant increase in blood CK activity and positioning sense loss, and a decrease in the pressure-pain threshold, as well as the shooting percentages in the exercise group when compared with the control. These findings suggest that DOMS negatively affects the upper extremities motor performance of wheelchair basketball players at least 48 hours after

  16. The Effect of Eccentric Exercise-Induced Delayed-Onset Muscle Soreness on Positioning Sense and Shooting Percentage in Wheelchair Basketball Players

    Science.gov (United States)

    Serinken, Mehmet Akif; Gençoğlu, Celal; Kayatekin, Berkant Muammer

    2013-01-01

    Background: Eccentric exercise is defined as a type of exercise in which the muscle produces power by extending. In contrast to isometric and concentric exercises, eccentric muscle activity is much more effective mechanically; however, it may expose the muscle to soreness. Delayed-Onset Muscle Soreness (DOMS) emerges a couple of hours after an eccentric activity, especially in individuals who are not used to this kind of exercise, and causes a temporary decrease in muscle performance, joint movement angle and muscle power, and also a temporary increase in the blood creatine kinase (CK) activity. Aims: This study investigates the effect of DOMS on the upper extremities motor performance by conducting an eccentric exercise load on the elbow flexor muscles. Study design: Cross sectional study. Methods: The study included 10 wheelchair basketball players. First, the participants underwent blood CK activity, positioning sense, muscle pain, shooting performance measurements tests at the base, and after 30 minutes and 24 and 48 hours. Then, one week later, the one-repetition-maximums of biceps curls were determined in order to define the intensity of the eccentric exercise. An eccentric exercise protocol which would cause DOMS was applied to all players. All tests were replaced with acute exhaustive eccentric exercise; the same tests were repeated in the same order after the exercise. Blood CK activity was measured by taking an earlobe capillary blood sample. The muscle pain level was measured by using a Visual Analogue Scale (VAS). Positioning sense loss was assessed via goniometer at 30º, 60° and 90° degrees horizontally. Results: The study found a statistically significant increase in blood CK activity and positioning sense loss, and a decrease in the pressure-pain threshold, as well as the shooting percentages in the exercise group when compared with the control. Conclusion: These findings suggest that DOMS negatively affects the upper extremities motor performance

  17. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss

    Science.gov (United States)

    Weiss, Edward P.; Racette, Susan B.; Villareal, Dennis T.; Fontana, Luigi; Steger-May, Karen; Schechtman, Kenneth B.; Klein, Samuel; Ehsani, Ali A.; Holloszy, John O.

    2015-01-01

    Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (V̇O2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and V̇O2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5–29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill V̇O2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: −10.7 ± 1.4%, EX: −9.5 ± 1.5%) and lean mass (CR: −3.5 ± 0.7%, EX: −2.2 ± 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (−6.9 ± 0.8%) and composite knee flexion strength (−7.2 ± 3%) occurred in the CR group only. Absolute V̇O2 max decreased significantly in the CR group (−6.8 ± 2.3%), whereas the EX group had significant increases in both absolute (+15.5 ± 2.4%) and relative (+28.3 ± 3.0%) V̇O2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity. PMID:17095635

  18. Moderate exercise of rainbow trout induces only minor differences in fatty acid profile, texture, white muscle fibres and proximate chemical composition of fillets

    DEFF Research Database (Denmark)

    Rasmussen, Richard Skøtt; Heinrich, Maike Timm; Hyldig, Grethe

    2011-01-01

    g after nine weeks of experiment at 15.0 °C. The fatty acid composition in fillets differed only marginally between exercised fish (excF) and control fish (ctrlF) kept in standing water. ExcF fillets had a significantly lower content of fatty acids 16:0 (Pb0.05) and 18:1 (n−7) (Pb0.01) and a higher...... significantly among the two groups (Pb0.01). Moreover, moderate exercise induced small but significant changes in fibre circularity (excF: circ.=0.724; ctrlF:=0.720, Pb0.05) but neither muscle fibre diameter nor circularity was significantly related to fillet texture. Altogether, the results suggest...

  19. Core Muscle Activation in Suspension Training Exercises.

    Science.gov (United States)

    Cugliari, Giovanni; Boccia, Gennaro

    2017-02-01

    A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.

  20. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene...... methylation of PGC-1a, PDK4, and PPAR-d was markedly decreased in mouse soleus muscles 45 min after ex vivo contraction. In L6 myotubes, caffeine exposure induced gene hypomethylation in parallel with an increase in the respective mRNA content. Collectively, our results provide evidence that acute gene...

  1. Differing cytokine responses by ethnic groups to a bout of exercise-induced muscle damage: a preliminary report.

    Science.gov (United States)

    Starzak, Dorota E; Semple, Stuart J; Smith, Lucille L; McKune, Andrew J

    2016-06-01

    Strenuous exercise has been shown to alter immune and inflammatory responses potentially predisposing athletes to infection and injury. Ethnic disparities have been demonstrated in athletic performance and in the way individuals respond to exercise as well as in the predisposition towards certain diseases however, the information relating to immune and inflammatory responses to exercise between ethnic groups is still limited. The aim of this study was to investigate whether serum cytokine levels respond differently to eccentrically-biased exercise in African and Caucasian males. Seven black and 8 white males (18-22 years), active but untrained, participated in the study. Participants performed a 60-minute downhill run on a treadmill (gradient -13.5%) at a speed eliciting 75% of their VO2peak on a level grade. Venipunctures were performed before, immediately after and then at 3, 6, 9, 12, 24 hours, and 1, 2 and 3 weeks afterwards. The following serum cytokine concentrations were quantified using the Bio-Plex suspension array system: IL-4, IL-6, IL-10, IL-1ra, IL-12p70, IFNγ, IL-7, IL-8, MCP-1, MIP-1β, eotaxin, IP-10, IL-1β, TNFα, GM-CSF, G-CSF, FGF basic and VEGF. Significant differences between the two groups were evident from 6 hours postexercise onwards with the African runners maintaining significantly higher relative cytokine concentrations. IL-6 serum concentrations of the African runners, for example, ranged from 8% to 55.1% higher than that of the Caucasian runners from 6 hours to 2 weeks postexercise (Prunners indicating that ethnicity may play a role in exercise-induced immune and inflammatory responses.

  2. Integration core exercises elicit greater muscle activation than isolation exercises.

    Science.gov (United States)

    Gottschall, Jinger S; Mills, Jackie; Hastings, Bryce

    2013-03-01

    The American College of Sports Medicine and the United States Department of Health and Human Services advocate core training as a means to improve stability, reduce injury, and maintain mobility. There are countless exercises that target the primary core trunk muscles (abdominal and lumbar) with the aim of providing these benefits. However, it is unknown as to which exercises elicit the greatest activation thereby maximizing functional gains and peak performance. Thus, our purpose was to determine whether integration core exercises that require activation of the distal trunk muscles (deltoid and gluteal) elicit greater activation of primary trunk muscles in comparison with isolation core exercises that only require activation of the proximal trunk muscles. Twenty participants, 10 men and 10 women, completed 16 randomly assigned exercises (e.g., crunch, upper body extension, and hover variations). We measured muscle activity with surface electromyography of the anterior deltoid, rectus abdominus, external abdominal oblique, lumbar erector spinae, thoracic erector spinae, and gluteus maximus. Our results indicate that the activation of the abdominal and lumbar muscles was the greatest during the exercises that required deltoid and gluteal recruitment. In conclusion, when completing the core strength guidelines, an integrated routine that incorporates the activation of distal trunk musculature would be optimal in terms of maximizing strength, improving endurance, enhancing stability, reducing injury, and maintaining mobility.

  3. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  4. Exercise in muscle glycogen storage diseases

    DEFF Research Database (Denmark)

    Preisler, Nicolai Rasmus; Haller, Ronald G; Vissing, John

    2015-01-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase...... in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid...... oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular...

  5. MUSCLE ACTIVATION PATTERNS DURING SUSPENSION TRAINING EXERCISES.

    Science.gov (United States)

    Harris, Sean; Ruffin, Elise; Brewer, Wayne; Ortiz, Alexis

    2017-02-01

    Suspension training (ST) has been utilized over exercises performed on a stable surface to train multiple muscle groups simultaneously to increase muscle activation and joint stability. The purpose of this study was to determine whether ST augments muscle activation compared to similar exercises performed on a stable surface. Cross-sectional study. Twenty-five healthy adults (male: 16; women: 9; BMI: 23.50 ± 2.48 kg/m2) had 16 pre-amplified wireless surface EMG electrodes placed bilaterally on: the pectoralis major (PM), middle deltoid (MD), serratus anterior (SA), obliques (OB), rectus abdominis (RA), gluteus maximus (GM), erector spinae (ES), and middle trapezius/rhomboids (MT). Each participant performed reference isometric exercises (Sorensen test, push-up, sit-up, and inverted row) to establish a baseline muscle contraction. Muscle activation was assessed during the following exercises: ST bridge, ST push-up, ST inverted row, ST plank, floor bridge, floor push-up, floor row, and floor plank. The root mean square (RMS) of each side for every muscle was averaged for data analysis. Multivariate analyses of variance (MANOVA) for each exercise with post-hoc comparisons were performed to compare muscle activation between each ST exercise and its stable surface counterpart. MANOVAs for all exercise comparisons showed statistically significant greater muscle activation in at least one muscle group during the ST condition. Post-hoc analyses revealed a statistically significant increase in muscle activation for the following muscles during the plank: OB (p = 0.021); Push-up: PM (p = 0.002), RA (p<0.0001), OB (p = 0.019), MT (p<0.0001), and ES (p = 0.006); Row: MD (p = 0.016), RA (p = 0.059), and OB (p = 0.027); and Bridge: RA (p = 0.013) and ES (p<0.0001). Performing ST exercises increases muscle activation of selected muscles when compared to exercises performed on a stable surface. 1b.

  6. Muscle remodeling and the exercise physiology of fish.

    Science.gov (United States)

    McClelland, Grant B

    2012-07-01

    Fish muscle responds to aerobic exercise training and cold acclimation with a more aerobic muscle phenotype than mammalian muscle but through both conserved and distinct molecular events. Differences from mammals in exercise metabolism and diversity in protein isoforms suggest that the regulation of muscle fuel use is more complex in fish. This review considers fish as powerful models for exercise and muscle physiology.

  7. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity.

    Science.gov (United States)

    Kang, Chounghun; Lim, Wonchung

    2016-06-01

    Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function ("Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle" [1], "Effects of exercise on mitochondrial content and function in aging human skeletal muscle" [2]). However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mitochondrial function in aged mice, male C57BL/6 mice at age 24 months were randomly assigned to 3 groups: non-exercise (NE), low-intensity (LE) and high-intensity treadmill exercise group (HE). Mitochondrial complex activity and respiration were measured to evaluate mitochondrial function in mouse skeletal muscle. The data described here are related to the research article entitled "Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice" [3].

  8. The Effects of Pre-Exercise Ginger Supplementation on Muscle Damage and Delayed Onset Muscle Soreness.

    Science.gov (United States)

    Matsumura, Melissa D; Zavorsky, Gerald S; Smoliga, James M

    2015-06-01

    Ginger possesses analgesic and pharmacological properties mimicking non-steroidal antiinflammatory drugs. We aimed to determine if ginger supplementation is efficacious for attenuating muscle damage and delayed onset muscle soreness (DOMS) following high-intensity resistance exercise. Following a 5-day supplementation period of placebo or 4 g ginger (randomized groups), 20 non-weight trained participants performed a high-intensity elbow flexor eccentric exercise protocol to induce muscle damage. Markers associated with muscle damage and DOMS were repeatedly measured before supplementation and for 4 days following the exercise protocol. Repeated measures analysis of variance revealed one repetition maximum lift decreased significantly 24 h post-exercise in both groups (p ginger group (p = 0.002), and improved at 72 (p = 0.021) and 96 h (p = 0.044) only in the placebo group. Blood creatine kinase significantly increased for both groups (p = 0.015) but continued to increase only in the ginger group 72 (p = 0.006) and 96 h (p = 0.027) post-exercise. Visual analog scale of pain was significantly elevated following eccentric exercise (p ginger. In conclusion, 4 g of ginger supplementation may be used to accelerate recovery of muscle strength following intense exercise but does not influence indicators of muscle damage or DOMS. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Effects of Methylsulfonylmethane (MSM) on exercise-induced oxidative stress, muscle damage, and pain following a half-marathon: a double-blind, randomized, placebo-controlled trial.

    Science.gov (United States)

    Withee, Eric D; Tippens, Kimberly M; Dehen, Regina; Tibbitts, Deanne; Hanes, Douglas; Zwickey, Heather

    2017-01-01

    Oxidative stress and muscle damage occur during exhaustive bouts of exercise, and many runners report pain and soreness as major influences on changes or breaks in training regimens, creating a barrier to training persistence. Methylsulfonylmethane (MSM) is a sulfur-based nutritional supplement that is purported to have pain and inflammation-reducing effects. To investigate the effects of MSM in attenuating damage associated with physical exertion, this randomized, double-blind, placebo-controlled study evaluated the effects of MSM supplementation on exercise-induced pain, oxidative stress and muscle damage. Twenty-two healthy females (n = 17) and males (n = 5) (age 33.7 ± 6.9 yrs.) were recruited from the 2014 Portland Half-Marathon registrant pool. Participants were randomized to take either MSM (OptiMSM®) (n = 11), or a placebo (n = 11) at 3 g/day for 21 days prior to the race and for two days after (23 total). Participants provided blood samples for measurement of markers of oxidative stress, and completed VAS surveys for pain approximately one month prior to the race (T0), and at 15 min (T1), 90 min (T2), 1 Day (T3), and 2 days (T4) after race finish. The primary outcome measure 8-hydroxy-2-deoxyguanine (8-OHdG) measured oxidative stress. Secondary outcomes included malondialdehyde (MDA) for oxidative stress, creatine kinase (CK) and lactate dehydrogenase (LDH) as measures of muscle damage, and muscle (MP) and joint pain (JP) recorded using a 100 mm Visual Analogue Scale (VAS). Data were analyzed using repeated and multivariate ANOVAs, and simple contrasts compared post-race time points to baseline, presented as mean (SD) or mean change (95% CI) where appropriate. Running a half-marathon induced significant increases in all outcome measures (p  0.05) and T4 by -0.57 ng/mL (-1.27-0.13 CI, p > 0.05). MDA increased significantly at T1 by 7.3 μM (3.9-10.7 CI, p  10 mm) reductions in both muscle and joint pain. Participation in a half

  10. Signalling role of skeletal muscle during exercise

    NARCIS (Netherlands)

    Catoire, M.

    2014-01-01

    Abstract Upon  acute exercise skeletal muscle is immediately and heavily recruited, while other organs appear to play only a minor role during exercise. These other organs show significant changes and improvements in function, although they are not directly targeted by

  11. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon...... muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions....... Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose...

  12. Contraction induced changes in skeletal muscle Na+, K+ pump mRNA expression - importance of exercise intensity and Ca2+ mediated signalling

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Kusuhara, Keiko; Hellsten, Ylva

    2010-01-01

    pronounced after high- than after moderate- and low-intensity exercise 2) Both prolonged low and short-duration high intensity exercise increase alpha1 mRNA expression in untrained subjects 3) Ca(2+) (i) regulates alpha1 mRNA expression in oxidative muscles via CaMK and calcineurin signalling pathways....... and trained subjects. In trained subjects, intermittent exercise at approximately 70% of VO(2peak) resulted in a less (Plow intensity exercise increased (P...Abstract Aim: To investigate if exercise intensity and Ca(2+) signalling regulate Na(+), K(+) pump mRNA expression in skeletal muscle. Methods: The importance of exercise intensity was evaluated by having trained and untrained humans perform intense intermittent and prolonged exercise...

  13. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content

    DEFF Research Database (Denmark)

    Steensberg, A; Febbraio, M A; Osada, T

    2001-01-01

    1. Prolonged exercise results in a progressive decline in glycogen content and a concomitant increase in the release of the cytokine interleukin-6 (IL-6) from contracting muscle. This study tests the hypothesis that the exercise-induced IL-6 release from contracting muscle is linked...

  14. The Effect of Smoking on Muscle Adaptation to Exercise

    Science.gov (United States)

    2010-12-01

    process induced by exercise leads to increased muscle protein synthesis for remodeling and adaptation.(8, 11, 17, 18) One of the muscle proteins...that could contribute to impaired adaptation in smokers: protein synthesis and degradation (AKT pathway), regeneration, inflammation, and angiogenesis...Ibuprofen or aspirin ) or any aspirin -containing drugs such as Alka-Seltzer, Pepto-Bismol, or certain decongestants (i.e. Dristan) for the course of

  15. Oral quercetin supplementation hampers skeletal muscle adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Casuso, R A; Martínez-López, E J; Nordsborg, Nikolai Baastrup

    2014-01-01

    We aimed to test exercise-induced adaptations on skeletal muscle when quercetin is supplemented. Four groups of rats were tested: quercetin sedentary, quercetin exercised, placebo sedentary, and placebo exercised. Treadmill exercise training took place 5 days a week for 6 weeks. Quercetin groups ...

  16. Gastrodia elata Blume extract ameliorates exercise- induced fatigue

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... GEB extract ameliorates exercise-induced fatigue. Key words: Gastrodia elata Blume, exercise, fatigue. INTRODUCTION. Fatigue is a complex phenomenon that can be described as a time-dependent exercise-induced reduction in the maximal force generating capacity of a muscle (Gandevia,. 2001).

  17. Exercise induced rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Ružič Maja

    2009-01-01

    Full Text Available Introduction. Rhabdomyolysis is a potentially life threatening disease, characterized by the release of intracellular calcium from skeletal muscles and can result in acute renal failure. Case report. A nineteen year old boy was admitted to the Clinic for Infective Diseases of Clinical Center Novi Sad. The disease was developing gradually and the symptoms were dizziness, muscle pain and dark color of urine. Due to the pathological level of aminotransferase he was hospitalized on the fourth day of the disease beginning with a suspicious diagnosis of acute viral hepatitis. In the hospital course of the disease, a further elevation of serum aminotransferases, creatine kinase and lactate dehydrogenase were registered. Additional serological analyses were done to exclude other possible causes of acute liver lesion. In the neurological status prolonged decontraction of quadriceps muscle was detected and the electromyography was suspicious on neuromyositis. Conclusion. Excessive muscular activity with the strenuous exercise is the leading, but very frequently overlooked, cause of rhabdomyolysis in healthy people. Excessive physical exercise may lead to elevation of the serum activity of aminotransferases and to suspicion of hepatitis.

  18. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller

    2014-01-01

    We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers......; TBC1D4: S588, S751), and that responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin stimulated leg, Akt phosphorylation on both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly......, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2β2γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2β2γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4...

  19. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling

    DEFF Research Database (Denmark)

    Apró, William; Moberg, Marcus; Hamilton, D. Lee

    2015-01-01

    . This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were......Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling...

  20. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...

  1. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    DEFF Research Database (Denmark)

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercis...

  2. Pronounced effects of accute endurance exercise on gene expression in resting and exercising human skeletal muscle

    NARCIS (Netherlands)

    Catoire, M.; Mensink, M.R.; Boekschoten, M.V.; Hangelbroek, R.W.J.; Muller, M.R.; Schrauwen, P.; Kersten, A.H.

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated

  3. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6

    DEFF Research Database (Denmark)

    Steensberg, A; Van Hall, Gerrit; Osada, T

    2000-01-01

    1. Plasma interleukin (IL)-6 concentration is increased with exercise and it has been demonstrated that contracting muscles can produce IL-The question addressed in the present study was whether the IL-6 production by contracting skeletal muscle is of such a magnitude that it can account for the ...

  4. Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle

    National Research Council Canada - National Science Library

    J. Norrbom; E. K. Sällstedt; H. Fischer; C. J. Sundberg; H. Rundqvist; T. Gustafsson

    2011-01-01

    .... The subjects exercised one leg for 45 min with restricted blood flow (R-leg), followed by 45 min of exercise using the other leg at the same absolute workload but with normal blood flow (NR-leg...

  5. Alternative splice variant PGC-1 -b is strongly induced by exercise in human skeletal muscle

    National Research Council Canada - National Science Library

    Norrbom, J; Sallstedt, E. K; Fischer, H; Sundberg, C. J; Rundqvist, H; Gustafsson, T

    2011-01-01

    .... The subjects exercised one leg for 45 min with restricted blood flow (R-leg), followed by 45 min of exercise using the other leg at the same absolute workload but with normal blood flow (NR-leg...

  6. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men

    DEFF Research Database (Denmark)

    Hostrup, Morten; Kalsen, Anders; Onslev, Johan

    2015-01-01

    The study was a randomized placebo-controlled trial investigating mechanisms by which chronic β2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group (oral terbutaline 5 mg∙30...... output during 30-s of maximal cycling increased (P≤0.01) by 32±8 and 25±9 W, respectively, with the intervention in TER compared to PLA. Maximal oxygen consumption (V̇o2 max) and time to fatigue during incremental cycling did not change with the intervention. Lean body mass increased by 1.95±0.8 kg (P≤0...... and peak power during maximal cycling induced by chronic β2-adrenergic stimulation in humans....

  7. [Exercise-induced anaphylaxis].

    Science.gov (United States)

    Wylon, K; Hompes, S; Worm, M

    2013-02-01

    Exercise-induced anaphylaxis is a mast cell dependent reaction, which is induced by allergen exposure in combination with physical activity. Typically, the reaction occurs within 2 hours after allergen exposure followed by physical activity. Not only food allergens but all kinds of allergens including drugs can induce this form of anaphylaxis. The clinical symptoms of exercise-induced anaphylaxis are the same as in any other type of anaphylaxis. Thus not only the skin and mucosa but also other organ systems like the lungs, cardiovascular system and gastrointestinal tract can be affected. The diagnostic work up should cover a detailed clinical history including the assessment of symptoms and possible trigger factors including suspected allergens. Besides classical allergy diagnostics like skin prick tests and specific IgE determination, tryptase should be measured for the differential diagnosis to exclude mast cell dependent diseases. The diagnosis of exercise-induced anaphylaxis is made by the means of a double-blind placebo-controlled provocation test. Both, a sufficient amount of allergen and of physical activity must be achieved for a valid test. After the diagnosis is made, patients should be extensively counseled and provided with an emergency kit including an epinephrine auto injector.

  8. TRUNK MUSCLE ACTIVITIES DURING ABDOMINAL BRACING: COMPARISON AMONG MUSCLES AND EXERCISES

    Directory of Open Access Journals (Sweden)

    Sumiaki Maeo

    2013-09-01

    Full Text Available Abdominal bracing is often adopted in fitness and sports conditioning programs. However, there is little information on how muscular activities during the task differ among the muscle groups located in the trunk and from those during other trunk exercises. The present study aimed to quantify muscular activity levels during abdominal bracing with respect to muscle- and exercise-related differences. Ten healthy young adult men performed five static (abdominal bracing, abdominal hollowing, prone, side, and supine plank and five dynamic (V- sits, curl-ups, sit-ups, and back extensions on the floor and on a bench exercises. Surface electromyogram (EMG activities of the rectus abdominis (RA, external oblique (EO, internal oblique (IO, and erector spinae (ES muscles were recorded in each of the exercises. The EMG data were normalized to those obtained during maximal voluntary contraction of each muscle (% EMGmax. The % EMGmax value during abdominal bracing was significantly higher in IO (60% than in the other muscles (RA: 18%, EO: 27%, ES: 19%. The % EMGmax values for RA, EO, and ES were significantly lower in the abdominal bracing than in some of the other exercises such as V-sits and sit-ups for RA and EO and back extensions for ES muscle. However, the % EMGmax value for IO during the abdominal bracing was significantly higher than those in most of the other exercises including dynamic ones such as curl-ups and sit-ups. These results suggest that abdominal bracing is one of the most effective techniques for inducing a higher activation in deep abdominal muscles, such as IO muscle, even compared to dynamic exercises involving trunk flexion/extension movements

  9. Biomarkers of peripheral muscle fatigue during exercise

    Directory of Open Access Journals (Sweden)

    Finsterer Josef

    2012-11-01

    Full Text Available Abstract Background Biomarkers of peripheral muscle fatigue (BPMFs are used to offer insights into mechanisms of exhaustion during exercise in order to detect abnormal fatigue or to detect defective metabolic pathways. This review aims at describing recent advances and future perspectives concerning the most important biomarkers of muscle fatigue during exercise. Results BPMFs are classified according to the mechanism of fatigue related to adenosine-triphosphate-metabolism, acidosis, or oxidative-metabolism. Muscle fatigue is also related to an immunological response. impaired calcium handling, disturbances in bioenergetic pathways, and genetic responses. The immunological and genetic response may make the muscle susceptible to fatigue but may not directly cause muscle fatigue. Production of BPMFs is predominantly dependent on the type of exercise. BPMFs need to change as a function of the process being monitored, be stable without appreciable diurnal variations, correlate well with exercise intensity, and be present in detectable amounts in easily accessible biological fluids. The most well-known BPMFs are serum lactate and interleukin-6. The most widely applied clinical application is screening for defective oxidative metabolism in mitochondrial disorders by means of the lactate stress test. The clinical relevance of most other BPMFs, however, is under debate, since they often depend on age, gender, physical fitness, the energy supply during exercise, the type of exercise needed to produce the BPMF, and whether healthy or diseased subjects are investigated. Conclusions Though the role of BPMFs during fatigue is poorly understood, measuring BPMFs under specific, standardised conditions appears to be helpful for assessing biological states or processes during exercise and fatigue.

  10. Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; Schjerling, Peter

    2014-01-01

    and interpret by individuals that are inexperienced with bioinformatics procedures. In a comparative study, we therefore; (1) investigated the human skeletal muscle transcriptome responses to differentiated exercise and non-exercise control intervention, and; (2) set out to develop a straightforward search tool......Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate...... direct comparison between essentially different modes of exercise and the ability to identify true exercise effect, necessitate implementation of independent non-exercise control subjects. Furthermore, muscle transcriptome data made available through previous exercise studies can be difficult to extract...

  11. Noninvasive Evaluation of Trunk Muscle Recruitment after Trunk Exercises using Diffusion-weighted MR Imaging.

    Science.gov (United States)

    Yanagisawa, Osamu; Matsunaga, Naoto; Okubo, Yu; Kaneoka, Koji

    2015-01-01

    We evaluated trunk muscle recruitment in abdominal and back exercises with magnetic resonance (MR) diffusion-weighted imaging. Twelve men performed bent-knee sit-up, crunch, trunk lateral flexion, and trunk extension exercises. We obtained axial diffusion-weighted images of the trunk before and after each exercise using a 1.5-tesla MR system, calculated apparent diffusion coefficient (ADC) values from the right and left rectus abdominis, lateral abdominal, psoas major, quadratus lumborum, and intrinsic back muscles to evaluate the activity of these muscles during each exercise, and compared ADC values before and after exercise using a paired t-test. The ADCs of the rectus abdominis (right, +19.1%; left, +11.7%), lateral abdominal (right, +15.5%; left, +14.1%), and psoas major (right, +14.8%; left, +15.9%) muscles on both sides increased after the bent-knee sit-up (P muscles on both sides increased after the crunch exercise (P muscles (rectus abdominis, +12.3%; lateral abdominal muscles, +20.3%; quadratus lumborum, +17.1%; intrinsic back muscles, +12.0%; psoas major, +15.4%) (P muscles on both sides were elevated after trunk extension (right lateral abdominal muscles and left quadratus lumborum, P muscles, P muscles in abdominal and back exercises through exercise-induced activation in intramuscular water movement.

  12. Core Muscle Activation in Suspension Training Exercises

    OpenAIRE

    Cugliari, Giovanni; Boccia, Gennaro

    2017-01-01

    Abstract A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, ext...

  13. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Parker, Benjamin L; Fritzen, Andreas Mæchel

    2017-01-01

    Exercise increases glucose uptake into insulin-resistant muscle. Thus, elucidating the exercise signalling network in muscle may uncover new therapeutic targets. mTORC2, a regulator of insulin-controlled glucose uptake, has been reported to interact with Rac1, which plays a role in exercise......-induced glucose uptake in muscle. Therefore, we tested the hypothesis that mTORC2 activity is necessary for muscle glucose uptake during treadmill exercise. We used mice that specifically lack mTORC2 signalling in muscle, by deletion of the obligatory mTORC2 component, Rictor (Ric mKO). Running capacity...... potential exercise-dependent mTORC2 substrates, including contractile proteins, kinases, transcriptional regulators, actin cytoskeleton regulators and ion-transport proteins. Our study suggests that mTORC2 is a component of the exercise signalling network that regulates muscle glucose uptake and we provide...

  14. Exercising with a Muscle Disease

    Science.gov (United States)

    ... these muscle- controlling nerve cells. These cells, the theory goes, not only are com- promised by the ... trainer. “They’re better accustomed to people with disabilities and knowing their limits,” she says. “My trainer ...

  15. Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver

    Directory of Open Access Journals (Sweden)

    Damian Jozef Flis

    2016-01-01

    Full Text Available The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1 plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.

  16. Muscle reflex in heart failure: the role of exercise training.

    Science.gov (United States)

    Wang, Han-Jun; Zucker, Irving H; Wang, Wei

    2012-01-01

    Exercise evokes sympathetic activation and increases blood pressure and heart rate (HR). Two neural mechanisms that cause the exercise-induced increase in sympathetic discharge are central command and the exercise pressor reflex (EPR). The former suggests that a volitional signal emanating from central motor areas leads to increased sympathetic activation during exercise. The latter is a reflex originating in skeletal muscle which contributes significantly to the regulation of the cardiovascular and respiratory systems during exercise. The afferent arm of this reflex is composed of metabolically sensitive (predominantly group IV, C-fibers) and mechanically sensitive (predominately group III, A-delta fibers) afferent fibers. Activation of these receptors and their associated afferent fibers reflexively adjusts sympathetic and parasympathetic nerve activity during exercise. In heart failure, the sympathetic activation during exercise is exaggerated, which potentially increases cardiovascular risk and contributes to exercise intolerance during physical activity in chronic heart failure (CHF) patients. A therapeutic strategy for preventing or slowing the progression of the exaggerated EPR may be of benefit in CHF patients. Long-term exercise training (ExT), as a non-pharmacological treatment for CHF increases exercise capacity, reduces sympatho-excitation and improves cardiovascular function in CHF animals and patients. In this review, we will discuss the effects of ExT and the mechanisms that contribute to the exaggerated EPR in the CHF state.

  17. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity

    Directory of Open Access Journals (Sweden)

    Chounghun Kang

    2016-06-01

    Full Text Available Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function (“Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle” [1], “Effects of exercise on mitochondrial content and function in aging human skeletal muscle” [2]. However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mitochondrial function in aged mice, male C57BL/6 mice at age 24 months were randomly assigned to 3 groups: non-exercise (NE, low-intensity (LE and high-intensity treadmill exercise group (HE. Mitochondrial complex activity and respiration were measured to evaluate mitochondrial function in mouse skeletal muscle. The data described here are related to the research article entitled “Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice” [3].

  18. Muscle activation of different core exercises.

    Science.gov (United States)

    Oliver, Gretchen D; Dwelly, Priscilla M; Sarantis, Nicholas D; Helmer, Rachael A; Bonacci, Jeffery A

    2010-11-01

    Sport health care professionals are always trying to increase muscle activation while instructing exercises that are functional to the sport performance. However, the traditional core exercises are the ones typically performed. This study examined the muscle activation of the lumbopelvic hip complex during traditional core stability exercises and that of the sports performance movements using the CORE X. Fourteen healthy, college-age men (mean age 20.8 ± 3.9 years; mean height, 177.8 ± 10.9 cm; mean weight, 67.3 ± 9.9 kg) participated. Electromyographic (EMG) data were collected on the following muscles: dominant gluteus maximus, dominant gluteus medius, rectus abdomonis (bilateral), external oblique (bilateral), and multifidis (bilateral). Results revealed a significant difference between the 2 different exercise programs for all muscles investigated except the external obliques (p CORE X showed increased mean muscle activation for the dominant (57.8% maximum voluntary isometric contraction [MVIC]) and nondominant multifidus (56.4% MVIC) and the dominant gluteus maximus (48.3% MVIC) and medius (65.3% MVIC), whereas the traditional core exercises showed greater mean muscle activation for the dominant (45.1% MVIC) and nondominant rectus abdominis (47.4% MVIC) and external oblique (45.8% MVIC and 47.8% MVIC). The investigators were able to determine that while performing movements that mimicked more sports-related activities with the CORE X, there is a greater activation of the core musculature. Coaches, trainers, and athletic trainers should focus on training a core neutral while performing sports-specific movements that can be done with the CORE X.

  19. Strength training and aerobic exercise training for muscle disease.

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise

  20. Strength training and aerobic exercise training for muscle disease (Review)

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise

  1. Increased muscle glucose uptake after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ploug, Thorkil; Galbo, Henrik

    1985-01-01

    It has recently been shown that insulin sensitivity of skeletal muscle glucose uptake and glycogen synthesis is increased after a single exercise session. The present study was designed to determine whether insulin is necessary during exercise for development of these changes found after exercise....... Diabetic rats and controls ran on a treadmill and their isolated hindquarters were subsequently perfused at insulin concentrations of 0, 100, and 20,000 microU/ml. Exercise increased insulin sensitivity of glucose uptake and glycogen synthesis equally in diabetic and control rats, but insulin...... responsiveness of glucose uptake was noted only in controls. Analysis of intracellular glucose-6-phosphate, glucose, glycogen synthesis, and glucose transport suggested that the exercise effect on responsiveness might be due to enhancement of glucose disposal. After electrical stimulation of diabetic...

  2. Vascular recruitment in forearm muscles during exercise

    DEFF Research Database (Denmark)

    Palm, T; Nielsen, S L; Lassen, N A

    1983-01-01

    a more massive recruitment of exchange area during exercise (a factor 12) than suspected on the basis of ultrafiltration in animals made with the prolonged venous stasis technique (showing a factor 2-5). The estimated variability in exchange surface area indicates, that animal studies of muscle...

  3. Pelvic muscle exercises: when do they work?

    Science.gov (United States)

    Elia, G; Bergman, A

    1993-02-01

    To identify urodynamic indices that can predict the outcome of pelvic muscle exercises in women with genuine stress urinary incontinence. Thirty-six women with genuine stress urinary incontinence were evaluated during a 6-month period. Urodynamic studies were performed before and 3 months after completion of a program of Kegel pelvic muscle exercises. Subjective symptoms and objective loss of urine as well as pad count were used to evaluate the outcome of the exercise program. A receiver-operating characteristic curve was used to assess the prognostic value of the pressure transmission ratio between the abdomen and urethra. Twenty patients (56%) were cured or substantially improved 3 months after completing the pelvic muscle training, whereas 16 were unchanged. The urethral closure pressure significantly increased in the subjects cured or improved. After successful training, significant changes were noted in the pressure transmission ratio between the abdomen and urethra on cough. Six of seven subjects with mild incontinence responded favorably, whereas 13 of 15 with severe incontinence did not improve after the training. The pressure transmission ratio plotted on a receiver-operating characteristic curve was found to have optimal predictive value at the 80% level. Kegel pelvic muscle exercises give a better outcome in women with mild stress urinary incontinence and/or with a pressure transmission ratio between the abdomen and urethra of 80% or more.

  4. THE EFFECT OF RESISTANCE AND ENDURANCE EXERCISE TRAINING ON MUSCLE PROTEOME EXPRESSION IN HUMAN SKELETAL MUSCLE

    Directory of Open Access Journals (Sweden)

    Chang Keun Kim

    2012-04-01

    Full Text Available To investigate the effect of resistance and endurance training on muscle proteome expression, samples of vastus lateralis from 10 physically active young men were analysed by 2-dimensional electrophoresis (2-DE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS. Differential patterns of protein expression were determined after 4 weeks of endurance or resistance exercise training. Following endurance exercise training, carbonic anhydrase III immunoglobulin heavy chain, myosin heavy chain 1, titin, chromosome 12, and fructose-1,6-bisphosphatase 2 were up-regulated while pyruvate kinase 3 isoform, ubiquitin carboxyl-terminal hydrolase, and phosphoglucomutase were down-regulated. After the 4 weeks of resistance exercise training, five proteins, apolipoprotein A-IV precursor, microtubule-actin cross linking factor 1, myosin light chain, growth hormone inducible transmembrane protein, and an unknown protein were up-regulated and pyruvate kinase 3 isoform, human albumin, and enolase 3 were down-regulated. We conclude that endurance and resistance exercise training differently alter the expression of individual muscle proteins, and that the response of muscle protein expression may be associated with specific myofibre adaptations to exercise training. Proteomic studies represent one of the developing techniques of metabolism which may substantially contribute to new insights into muscle and exercise physiology.

  5. 18F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; El-Ali, Henrik

    2009-01-01

    PURPOSE: To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). METHODS: The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause...... rats were cut out and scanned separately (distance>or=1 cm). RESULTS: Muscle contractions increased glucose uptake approximately sevenfold in muscles (pglucose uptake in intact animals. GLUT1 and GLUT4 were expressed...... in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. CONCLUSION: PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1...

  6. Exercise-Induced Bronchoconstriction Quiz

    Science.gov (United States)

    ... use it again if I begin to have exercise-induced bronchoconstriction. True False True: Many people are concerned about the standard prescription: "2 puffs of albuterol before exercise and every ...

  7. Food related, exercise induced anaphylaxis.

    OpenAIRE

    Caffarelli, C.; TERZI V.; Perrone, F.; Cavagni, G.

    1996-01-01

    Four children under 12 years of age with food dependent, exercise induced anaphylaxis (EIAn) were investigated. These children and five controls performed exercise challenges when fasting and one hour after a meal without food suspected to predispose to the reaction. Patients then performed exercise tests after intake of each suspected food. Three out of 15 food-exercise combination challenges were positive, but no reactions were provoked after exercise without prior intake of suspected foods...

  8. The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study

    OpenAIRE

    Kwiecien, Susan; McHugh, Malachy; Howatson, Glyn

    2017-01-01

    Post-exercise cryotherapy treatments are typically short duration interventions. This study examined the efficacy of prolonged cooling using phase change material (PCM) on strength loss and pain after eccentric exercise. Eight adults performed 120 bilateral eccentric quadriceps contractions (90% MVC). Immediately afterwards, frozen PCM packs (15°C) were placed over the quadriceps, with room temperature PCM packs on the contralateral quadriceps. Skin temperature was recorded continually (6 h P...

  9. Influence of muscle strength and total work on exercise-induced plasma growth hormone isoforms in women.

    Science.gov (United States)

    Kraemer, W J; Rubin, M R; Häkkinen, K; Nindl, B C; Nindi, B C; Marx, J O; Volek, J S; French, D N; Gómez, A L; Sharman, M J; Scheett, T; Ratamess, N A; Miles, M P; Mastro, A; VanHeest, J; Maresh, C M; Welsch, J R; Hymer, W C; Haäkkinen, K; Mastro, A M; Van Heest, J L

    2003-09-01

    The purpose of this investigation was to determine the influence of physical strength and the ability to do more total work on human growth hormone (GH) variants to a heavy resistance exercise protocol in untrained women. From a distribution of 100 healthy, untrained women, the strongest 10 women (S) and the weakest 10 women (W) were compared for GH responses pre- and post an acute heavy resistance exercise test (AHRET, 6 sets of 10 RM squats, 2 minutes rest between sets). Blood samples were obtained pre-exercise and immediately post-exercise and subsequently analysed in total as well as fractionated by Sephacryl S-100R column chromatography into three molecular weight size classes: fraction A: > 60 kD, fraction B: 30-60 kD, fraction C: women, with the lower molecular weight variants seemingly less responsive to greater amounts of exercise in stronger women, thus suggesting differential regulation of GH molecular weight variants during resistance exercise due to pre-existing physical parameters.

  10. Core Exercises: Why You Should Strengthen Your Core Muscles

    Science.gov (United States)

    ... neglected. Still, it pays to get your core muscles — the muscles around your trunk and pelvis — in better shape. ... to find out why. Core exercises train the muscles in your pelvis, lower back, hips and abdomen ...

  11. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance

    Directory of Open Access Journals (Sweden)

    Sheila R. Costford

    2018-01-01

    Conclusions: Our studies have unveiled a fascinating interaction between elevated NAMPT activity in skeletal muscle and voluntary exercise that was manifest as a striking improvement in exercise endurance.

  12. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP has been proposed to play multiple roles in local skeletal muscle blood flow regulation by inducing vasodilation and modulating sympathetic vasoconstrictor activity, but the mechanism remain unclear. Here we evaluated the effects of arterial ATP infusion and exercise on limb muscle interstitial...... local concentration. Key words: sympathetic nerve activity, vasodilation, endothelium, skeletal muscle....

  13. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    Science.gov (United States)

    Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew

    2016-04-15

    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing

    Science.gov (United States)

    Strauss, Juliette A.; Shepherd, Sam O.; Keske, Michelle A.; Cocks, Matthew

    2015-01-01

    Abstract This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF‐A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age‐related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF‐B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. PMID:25627798

  15. Post-exercise muscle soreness after eccentric exercise: psychophysical effects and implications on mean arterial pressure.

    Science.gov (United States)

    Bajaj, P; Graven-Nielsen, T; Arendt-Nielsen, L

    2001-10-01

    The aim of the study was to examine the time course of changes in pressure pain threshold (PPT), visual analogue scale (VAS) pain and tenderness scores, McGill Pain Questionnaire (MPQ) descriptors, pain areas, skin temperature and mean arterial pressure (MAP) following intensive eccentric exercise. In 11 healthy male subjects, eccentric exercise of the first dorsal interosseous muscle (FDI) of the right hand with 114% maximum voluntary contraction weight (MVC) was used to induce post-exercise muscle soreness (PEMS) in the right hand, while the left hand served as a control. At 24 h to 48 h all the pain profiles indicated the presence of PEMS in the right hand when compared to before exercise (Pweb space of the hand did not change at any time. MAP was significantly reduced at 48 h. It is concluded that eccentric exercise of a small hand muscle is followed by PEMS and a reduced MAP after 48 h that may suggest a role of central mechanisms in the PEMS, thereby giving further insight into clinical aspects of muscle pain.

  16. {sup 18}F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    Energy Technology Data Exchange (ETDEWEB)

    Skovgaard, Dorthe [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); Kjaer, Michael [Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); El-Ali, Henrik [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Kjaer, Andreas [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Rigshospitalet, Department Clinical Physiology, Nuclear Medicine and PET, Center of Diagnostic Investigations, Copenhagen (Denmark)

    2009-05-15

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. {sup 18}F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance{>=}1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  17. Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect.

    Science.gov (United States)

    Murach, Kevin A; Bagley, James R

    2016-08-01

    Over the last 30+ years, it has become axiomatic that performing aerobic exercise within the same training program as resistance exercise (termed concurrent exercise training) interferes with the hypertrophic adaptations associated with resistance exercise training. However, a close examination of the literature reveals that the interference effect of concurrent exercise training on muscle growth in humans is not as compelling as previously thought. Moreover, recent studies show that, under certain conditions, concurrent exercise may augment resistance exercise-induced hypertrophy in healthy human skeletal muscle. The purpose of this article is to outline the contrary evidence for an acute and chronic interference effect of concurrent exercise on skeletal muscle growth in humans and provide practical literature-based recommendations for maximizing hypertrophy when training concurrently.

  18. The efficacy of cooling with phase change material for the treatment of exercise-induced muscle damage: pilot study.

    Science.gov (United States)

    Kwiecien, Susan Y; McHugh, Malachy P; Howatson, Glyn

    2018-02-01

    Post-exercise cryotherapy treatments are typically short duration interventions. This study examined the efficacy of prolonged cooling using phase change material (PCM) on strength loss and pain after eccentric exercise. Eight adults performed 120 bilateral eccentric quadriceps contractions (90% MVC). Immediately afterwards, frozen PCM packs (15°C) were placed over the quadriceps, with room temperature PCM packs on the contralateral quadriceps. Skin temperature was recorded continually (6 h PCM application). Isometric quadriceps strength and soreness were assessed before, 24, 48, 72 and 96 h post-exercise. The protocol was repeated 5 months later, with room temperature PCM applied to both legs. There were three treatments: legs treated with 15°C PCM packs (direct cooling), legs treated with room temperature PCM packs contralateral to the 15°C PCM packs (systemic cooling), and legs tested 5 months later both treated with room temperature PCM packs (control). Skin temperature was 9°C-10°C lower with direct cooling versus systemic cooling and control (P < 0.01). Strength loss and soreness were less (P < 0.05) with direct cooling versus systemic cooling and control (strength 101%, 94%, 93%, respectively; pain 1.0, 2.3, 2.7, respectively). Six hours of PCM cooling was well tolerated and reduced strength loss and pain after damaging exercise.

  19. Resistance Exercise Reduces Skeletal Muscle Cachexia and Improves Muscle Function in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Salaheddin Sharif

    2011-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic, systemic, autoimmune, inflammatory disease associated with cachexia (reduced muscle and increased fat. Although strength-training exercise has been used in persons with RA, it is not clear if it is effective for reducing cachexia. A 46-year-old woman was studied to determine: (i if resistance exercise could reverse cachexia by improving muscle mass, fiber cross-sectional area, and muscle function; and (2 if elevated apoptotic signaling was involved in cachexia with RA and could be reduced by resistance training. A needle biopsy was obtained from the vastus lateralis muscle of the RA subject before and after 16 weeks of resistance training. Knee extensor strength increased by 13.6% and fatigue decreased by 2.8% Muscle mass increased by 2.1%. Average muscle fiber cross-sectional area increased by 49.7%, and muscle nuclei increased slightly after strength training from 0.08 to 0.12 nuclei/μm2. In addition, there was a slight decrease (1.6% in the number of apoptotic muscle nuclei after resistance training. This case study suggests that resistance training may be a good tool for increasing the number of nuclei per fiber area, decreasing apoptotic nuclei, and inducing fiber hypertrophy in persons with RA, thereby slowing or reversing rheumatoid cachexia.

  20. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise.

    Science.gov (United States)

    Shimomura, Yoshiharu; Murakami, Taro; Nakai, Naoya; Nagasaki, Masaru; Harris, Robert A

    2004-06-01

    Branched-chain amino acids (BCAAs) are essential amino acids that can be oxidized in skeletal muscle. It is known that BCAA oxidation is promoted by exercise. The mechanism responsible for this phenomenon is attributed to activation of the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which catalyzes the second-step reaction of the BCAA catabolic pathway and is the rate-limiting enzyme in the pathway. This enzyme complex is regulated by a phosphorylation-dephosphorylation cycle. The BCKDH kinase is responsible for inactivation of the complex by phosphorylation, and the activity of the kinase is inversely correlated with the activity state of the BCKDH complex, which suggests that the kinase is the primary regulator of the complex. We found recently that administration of ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha) in rats caused activation of the hepatic BCKDH complex in association with a decrease in the kinase activity, which suggests that promotion of fatty acid oxidation upregulates the BCAA catabolism. Long-chain fatty acids are ligands for PPARalpha, and the fatty acid oxidation is promoted by several physiological conditions including exercise. These findings suggest that fatty acids may be one of the regulators of BCAA catabolism and that the BCAA requirement is increased by exercise. Furthermore, BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis; this suggests the possibility that BCAAs are a useful supplement in relation to exercise and sports.

  1. Enhanced muscle glucose metabolism after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N

    1984-01-01

    Studies in the rat suggest that after voluntary exercise there are two phases of glycogen repletion in skeletal muscle (preceding study). In phase I glucose utilization and glycogen synthesis are enhanced both in the presence and absence of insulin, whereas in phase II only the increase in the pr......Studies in the rat suggest that after voluntary exercise there are two phases of glycogen repletion in skeletal muscle (preceding study). In phase I glucose utilization and glycogen synthesis are enhanced both in the presence and absence of insulin, whereas in phase II only the increase...... in the presence of insulin is found. To determine whether these alterations and in particular those mediated by insulin are due to local or systemic factors, one hindlimb of an anesthetized rat was electrically stimulated, and both hindlimbs were perfused immediately thereafter. Glucose and glycogen metabolism...... in the stimulated leg closely mimicked that observed previously after voluntary exercise on a treadmill. With no insulin added to the perfusate, glucose incorporation into glycogen was markedly enhanced in muscles that were glycogen depleted as were the uptake of 2-deoxyglucose and 3-O-methylglucose. Likewise...

  2. Exercise-induced rib stress fractures: potential risk factors related to thoracic muscle co-contraction and movement pattern

    DEFF Research Database (Denmark)

    Vinther-Knudsen, Archibald; Kanstrup, I-L; Christiansen, E

    2006-01-01

    , and isokinetic muscle strength was measured in seven national team rowers with a history of RSF and seven matched controls (C). RSF displayed a higher velocity of the seat in the initial drive phase (RSF: 0.25+/-0.03, 0.25 (0.15-0.33) m/s vs C: 0.15+/-0.06, 0.18 (-0.11-0.29) m/s P=0.028) (Mean+/-SEM, median...

  3. PGC-1alpha in exercise- and exercise training-induced metabolic adaptations

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm

    The aim of the present thesis was to investigate the hypotheses that 1) bed rest reduces metabolic and angiogenic proteins and changes microRNA (miRNA) content as well as alters exercise-induced mRNA responses in human skeletal muscle, 2) Peroxisome proliferator-activated receptor-γ coactivator...... (PGC)-1α is required for exercise-, exercise training- and fasting-induced mRNA and protein responses, respectively, of metabolic, angiogenic and gluconeogenic proteins in liver and adipose tissue in mice, 3) PGC-1α is required for both exercise training and resveratrol mediated prevention of age....... Furthermore the physical inactivity abolished the exercise-induced mRNA response of PGC-1α and vascular endothelial growth factor (VEGF) in skeletal muscle that was present before bed rest. This indicates that just 7 days of physical inactivity reduces the metabolic capacity of human skeletal muscle...

  4. Nutritional interventions to promote post-exercise muscle protein synthesis.

    Science.gov (United States)

    Koopman, René; Saris, Wim H M; Wagenmakers, Anton J M; van Loon, Luc J C

    2007-01-01

    Resistance exercise is a powerful stimulus to augment muscle protein anabolism, as it can improve the balance between muscle protein synthesis and breakdown. However, the intake of food during post-exercise recovery is necessary for hypertrophy to occur. Therefore, athletes need to ingest protein following exercise to attain a positive protein balance and maximise their skeletal muscle adaptive response. The interaction between exercise and nutrition is not only important for athletes, but is also of important clinical relevance in the elderly. Exercise interventions combined with specific nutritional modulation provide an effective strategy to counteract or reduce the loss of skeletal muscle mass with aging.

  5. Migration- and exercise-induced changes to flight muscle size in migratory birds and association with IGF1 and myostatin mRNA expression.

    Science.gov (United States)

    Price, Edwin R; Bauchinger, Ulf; Zajac, Daria M; Cerasale, David J; McFarlan, Jay T; Gerson, Alexander R; McWilliams, Scott R; Guglielmo, Christopher G

    2011-09-01

    Seasonal adjustments to muscle size in migratory birds may result from preparatory physiological changes or responses to changed workloads. The mechanisms controlling these changes in size are poorly understood. We investigated some potential mediators of flight muscle size (myostatin and insulin-like growth factor, IGF1) in pectoralis muscles of wild wintering or migrating white-throated sparrows (Zonotrichia albicollis), captive white-throated sparrows that were photoperiod manipulated to be in a `wintering' or `migratory' (Zugunruhe) state, and captive European starlings (Sturnus vulgaris) that were either exercised for 2 weeks in a wind tunnel or untrained. Flight muscle size increased in photo-stimulated `migrants' and in exercised starlings. Acute exercise but not long-term training caused increased expression of IGF1, but neither caused a change in expression of myostatin or its metalloprotease activator TLL1. Photo-stimulated `migrant' sparrows demonstrated increased expression of both myostatin and IGF1, but wild sparrows exhibited no significant seasonal changes in expression of either myostatin or IGF1. Additionally, in both study species we describe several splice variants of myostatin that are shared with distantly related bird species. We demonstrate that their expression patterns are not different from those of the typical myostatin, suggesting that they have no functional importance and may be mistakes of the splicing machinery. We conclude that IGF1 is likely to be an important mediator of muscle phenotypic flexibility during acute exercise and during endogenous, seasonal preparation for migration. The role of myostatin is less clear, but its paradoxical increase in photo-stimulated `migrants' may indicate a role in seasonal adjustments of protein turnover.

  6. Core muscle activation during dynamic upper limb exercises in women.

    Science.gov (United States)

    Tarnanen, Sami P; Siekkinen, Kirsti M; Häkkinen, Arja H; Mälkiä, Esko A; Kautiainen, Hannu J; Ylinen, Jari J

    2012-12-01

    Although several everyday functions and sporting activities demand controlled use of the abdominal and back muscles while working with the upper limbs, the activity of core muscles during dynamic upper limb exercises in the standing position has not been studied extensively. The purpose of this cross-sectional study was to examine abdominal and back muscle activity during dynamic upper limb exercises while standing and to evaluate whether dynamic exercises are appropriate for strengthening muscles. The activation of the rectus abdominis, obliquus externus abdominis, longissimus, and multifidus muscles during dynamic bilateral or unilateral shoulder exercises with or without fixation of the pelvis was measured in 20 healthy women using surface electromyography. Trunk muscle activation during isometric maximum contraction was used as a comparative reference. With bilateral shoulder extension and unilateral shoulder horizontal adduction, abdominal muscle activity was >60% of activity during reference exercises. With unilateral shoulder horizontal abduction and shoulder extension exercises, back muscle activity was >60% of the activity level reference exercise. Muscle activation levels were 35-64% lower during shoulder horizontal adduction and abduction without fixation compared with exercises with fixation. The results indicate that upper limb exercises performed in the standing position are effective for activating core muscles. Bilateral and unilateral shoulder extension and unilateral shoulder horizontal abduction and adduction with the pelvis fixed elicited the greatest activity of the core muscles.

  7. Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats.

    Science.gov (United States)

    Molanouri Shamsi, M; Mahdavi, M; Quinn, L S; Gharakhanlou, R; Isanegad, A

    2016-09-01

    Impairment of adipose tissue and skeletal muscles accrued following type 1 diabetes is associated with protein misfolding and loss of adipose mass and skeletal muscle atrophy. Resistance training can maintain muscle mass by changing both inflammatory cytokines and stress factors in adipose tissue and skeletal muscle. The purpose of this study was to determine the effects of a 5-week ladder climbing resistance training program on the expression of Hsp70 and inflammatory cytokines in adipose tissue and fast-twitch flexor hallucis longus (FHL) and slow-twitch soleus muscles in healthy and streptozotocin-induced diabetic rats. Induction of diabetes reduced body mass, while resistance training preserved FHL muscle weight in diabetic rats without any changes in body mass. Diabetes increased Hsp70 protein content in skeletal muscles, adipose tissue, and serum. Hsp70 protein levels were decreased in normal and diabetic rats by resistance training in the FHL, but not soleus muscle. Furthermore, resistance training decreased inflammatory cytokines in FHL skeletal muscle. On the other hand, Hsp70 and inflammatory cytokine protein levels were increased by training in adipose tissue. Also, significant positive correlations between inflammatory cytokines in adipose tissue and skeletal muscles with Hsp70 protein levels were observed. In conclusion, we found that in diabetic rats, resistance training decreased inflammatory cytokines and Hsp70 protein levels in fast skeletal muscle, increased adipose tissue inflammatory cytokines and Hsp70, and preserved FHL muscle mass. These results suggest that resistance training can maintain skeletal muscle mass in diabetes by changing inflammatory cytokines and stress factors such as Hsp70 in skeletal muscle and adipose tissue.

  8. The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women

    Directory of Open Access Journals (Sweden)

    T Williams

    2015-09-01

    Full Text Available This study assessed the influence of estrogen (E 2 on muscle damage biomarkers [skeletal muscle - creatine kinase (CK; cardiac muscle - CK-MB] responses to prolonged aerobic exercise. Eumenorrheic women (n=10 who were physically active completed two 60-minute treadmill running sessions at ~60-65% maximal intensity during low E 2 (midfollicular menstrual phase and high E 2 (midluteal menstrual phase hormonal conditions. Blood samples were collected prior to exercise (following supine rest, immediately post-, 30 min post-, and 24 hours post-exercise to determine changes in muscle biomarkers. Resting blood samples confirmed appropriate E 2 hormonal levels Total CK concentrations increased following exercise and at 24 hours post-exercise were higher in the midfollicular low E 2 phase (p<0.001. However, CK-MB concentrations were unaffected by E 2 level or exercise (p=0.442 resulting in the ratio of CK-MB to total CK being consistently low in subject responses (i.e., indicative of skeletal muscle damage. Elevated E 2 levels reduce the CK responses of skeletal muscle, but had no effect on CK-MB responses following prolonged aerobic exercise. These findings support earlier work showing elevated E 2 is protective of skeletal muscle from exercise-induced damage associated with prolonged aerobic exercise.

  9. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    Science.gov (United States)

    Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.

  10. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Nina Brandt

    Full Text Available The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO and littermate wildtype (WT mice performed a single treadmill running bout at either low intensity (LI for 40 min or moderate intensity (MI for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT for 40 min or at moderate intensity (MIT for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner.

  11. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Dethlefsen, Maja Munk; Bangsbo, Jens

    2017-01-01

    LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute......The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low...... and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner....

  12. Functional changes of human quadriceps muscle injured by eccentric exercise

    Directory of Open Access Journals (Sweden)

    F.V. Serrão

    2003-06-01

    Full Text Available The present study evaluated functional changes of quadriceps muscle after injury induced by eccentric exercise. Maximal isometric torque of quadriceps and the surface electromyography (root mean square, RMS, and median frequency, MDF of the vastus medialis oblique (VMO and vastus lateralis (VL muscles were examined before, immediately after and during the first 7 days after injury. Serum creatine kinase (CK levels and magnetic resonance imaging (MRI were used to identify muscle injury. The subject was used as her own control and percent refers to pre-injury data. Experiments were carried out with a sedentary 23-year-old female. Injury was induced by 4 bouts of 15 maximal isokinetic eccentric contractions (angular velocity of 5º/s; range of motion from 40º to 110º of knee flexion. The isometric torque of the quadriceps (knee at 90º flexion decreased 52% immediately after eccentric exercise and recovered on the 5th day. The highest reduction of RMS occurred on the 2nd day after injury in both VL (63% and VMO (66% and only VL recovered to the pre-injury level on the 7th day. Immediately after injury, the MDF decreased by 5 and 3% (VMO and VL, respectively and recovered one day later. Serum CK levels increased by 109% on the 2nd day and were still increased by 32% on the 7th day. MRI showed large areas of injury especially in the deep region of quadriceps. In conclusion, eccentric exercise decreased the isometric torque and electromyographic signals of quadriceps muscle, which were recovered in one week, despite the muscle regeneration signals.

  13. Muscle interstitial potassium kinetics during intense exhaustive exercise

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Mohr, Magni; Pedersen, Lasse Dannemann

    2003-01-01

    Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma...... was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 m......M at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P exhaustion (11.9 +/- 0.5 vs. 10.3 +/- 0.6 mM; P...

  14. Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle.

    Science.gov (United States)

    Boppart, Marni D; Volker, Sonja E; Alexander, Nicole; Burkin, Dean J; Kaufman, Stephen J

    2008-11-01

    The alpha7beta1 integrin is increased in skeletal muscle in response to injury-producing exercise, and transgenic overexpression of this integrin in mice protects against exercise-induced muscle damage. The present study investigates whether the increase in the alpha7beta1 integrin observed in wild-type mice in response to exercise is due to transcriptional regulation and examines whether mobilization of the integrin at the myotendinous junction (MTJ) is a key determinant in its protection against damage. A single bout of downhill running exercise selectively increased transcription of the alpha7 integrin gene in 5-wk-old wild-type mice 3 h postexercise, and an increased alpha7 chain was detected in muscle sarcolemma adjacent to tendinous tissue immediately following exercise. The alpha7B, but not alpha7A isoform, was found concentrated and colocalized with tenascin-C in muscle fibers lining the MTJ. To further validate the importance of the integrin in the protection against muscle damage following exercise, muscle injury was quantified in alpha7(-/-) mice. Muscle damage was extensive in alpha7(-/-) mice in response to both a single and repeated bouts of exercise and was largely restricted to areas of high MTJ concentration and high mechanical force near the Achilles tendon. These results suggest that exercise-induced muscle injury selectively increases transcription of the alpha7 integrin gene and promotes a rapid change in the alpha7beta integrin at the MTJ. These combined molecular and cellular alterations are likely responsible for integrin-mediated attenuation of exercise-induced muscle damage.

  15. EFFECTS OF MASSAGE UNDER HYPOXIC CONDITIONS ON EXERCISE-INDUCED MUSCLE DAMAGE AND PHYSICAL STRAIN INDICES IN PROFESSIONAL SOCCER PLAYERS

    Directory of Open Access Journals (Sweden)

    Hannes Gatterer

    2013-04-01

    Full Text Available Reports based on experiences from masseurs and players, mostly without any scientific background, suggest that the combination of a classical regeneration method (i.e. massage with exposure to hypoxia may enhance regeneration in soccer. The aim of this study was to evaluate whether this specific combination could affect blood parameters related to muscle damage and physical strain after a soccer game. Approximately 15 hours after two separate championship games, 10 professional male outfield players of the first Austrian division were exposed to normobaric hypoxia (FiO2 13.5% ~ 4000m or normoxia for 1 hour (30 minutes rest followed by 30 min massage (cross-over design. Creatine kinase (CK, urea and uric acid (UA were measured 4 days before the first game, and 15 and 63 hours after the two games. Match play increased CK values independently of the intervention. No effect of the massage in combination with hypoxia was seen. A trend was found between ∆ UA ([UA] 48 hours after exposure minus [UA] before exposure in response to hypoxia and SaO2 measured in hypoxia (r=0.612, p=0.06. Results show that massage under hypoxic conditions had no additional positive effect on the measured parameters compared to massage alone. Solely the trend of a relationship for ∆ UA and SaO2 might indicate that redox alterations are a potential consequence of hypoxic exposure.

  16. β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+–K+-ATPase Vmax in trained men

    Science.gov (United States)

    Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-01-01

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P fatigue. After sprints, MVC declined (P fatigue, but declined (P fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. PMID:25344552

  17. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes...... legs exercised at the same absolute workload. In the untrained leg, the exercise bout induced an increase (Palpha fold and HIF-2alpha fold mRNA at 6 h of recovery. In contrast, HIF-1alpha and HIF-2alpha mRNA levels were not altered at any time point in the trained leg. Obviously, HIF-1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  18. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  19. PGC-1alpha in exercise- and exercise training-induced metabolic adaptations

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm

    (PGC)-1α is required for exercise-, exercise training- and fasting-induced mRNA and protein responses, respectively, of metabolic, angiogenic and gluconeogenic proteins in liver and adipose tissue in mice, 3) PGC-1α is required for both exercise training and resveratrol mediated prevention of age...... and interferes with the exercise-induced adaptive response in human skeletal muscle. Study II demonstrates that mouse liver glucose-6-phosphatase (G6Pase) mRNA content increased in recovery from acute exercise in both wildtype (WT) and PGC-1α knockout (KO) mice, while phosphoenolpyruvate carboxykinase (PEPCK......) and pyruvate carboxylase mRNA content did not change in either genotype. Exercise training increased PEPCK protein content in both WT and PGC-1α KO mice. In addition, the mRNA and protein content of cytochrome (Cyt) c and cytochrome c oxidase (COX) subunit I increased in response to acute exercise and exercise...

  20. Effect of pelvic floor muscle exercises on pulmonary function

    Science.gov (United States)

    Han, DongWook; Ha, Misook

    2015-01-01

    [Purpose] This study aimed to determine the correlation between pelvic floor muscle strength and pulmonary function. In particular, we examined whether pelvic floor muscle exercises can improve pulmonary function. [Subjects] Thirty female college students aged 19–21 with no history of nervous or musculoskeletal system injury were randomly divided into experimental and control groups. [Methods] For the pulmonary function test, spirometry items included forced vital capacity and maximal voluntary ventilation. Pelvic floor muscle exercises consisted of Kegel exercises performed three times daily for 4 weeks. [Results] Kegel exercises performed in the experimental group significantly improved forced vital capacity, forced expiratory volume in 1 second, PER, FEF 25–75%, IC, and maximum voluntary ventilation compared to no improvement in the control group. [Conclusion] Kegel exercises significantly improved pulmonary function. When abdominal pressure increased, pelvic floor muscles performed contraction at the same time. Therefore, we recommend that the use of pelvic floor muscle exercises be considered for improving pulmonary function. PMID:26644681

  1. Maximum expiration activates the abdominal muscles during side bridge exercise.

    Science.gov (United States)

    Ishida, Hiroshi; Watanabe, Susumu

    2014-01-01

    Recent studies have indicated that maximum expiration could be a useful way of performing challenging exercises that include coactivation of the deep and superficial abdominal muscles. However, little is known about the effect of maximum expiration on the activity of the abdominal muscles during lumbar stabilizing exercise. The purpose of our study was to quantify changes in the activities of the abdominal muscles during side bridge exercise in combination with maximum expiration. Experimental laboratory study. The activities of the rectus abdominis (RA), external oblique (EO), and internal oblique (IO) muscles were measured using electromyography in 12 healthy men performing 3 tasks: holding the breath after maximum expiration in the prone position, holding the breath after resting expiration during side bridge exercise, and holding the breath after maximum expiration during side bridge exercise. Significant increases in the activities of the abdominal muscles (RA, EO, and IO) occurred with maximum expiration when compared with resting expiration during side bridge exercise (P core training.

  2. Effect of pelvic floor muscle exercises on pulmonary function.

    Science.gov (United States)

    Han, DongWook; Ha, Misook

    2015-10-01

    [Purpose] This study aimed to determine the correlation between pelvic floor muscle strength and pulmonary function. In particular, we examined whether pelvic floor muscle exercises can improve pulmonary function. [Subjects] Thirty female college students aged 19-21 with no history of nervous or musculoskeletal system injury were randomly divided into experimental and control groups. [Methods] For the pulmonary function test, spirometry items included forced vital capacity and maximal voluntary ventilation. Pelvic floor muscle exercises consisted of Kegel exercises performed three times daily for 4 weeks. [Results] Kegel exercises performed in the experimental group significantly improved forced vital capacity, forced expiratory volume in 1 second, PER, FEF 25-75%, IC, and maximum voluntary ventilation compared to no improvement in the control group. [Conclusion] Kegel exercises significantly improved pulmonary function. When abdominal pressure increased, pelvic floor muscles performed contraction at the same time. Therefore, we recommend that the use of pelvic floor muscle exercises be considered for improving pulmonary function.

  3. Altered postural sway following fatiguing foot muscle exercises.

    Directory of Open Access Journals (Sweden)

    Keiji Koyama

    Full Text Available This study investigated the acute effects of fatiguing foot muscle exercises on the maximum muscle strength of the foot and postural control ability. Eighteen healthy young individuals performed fatiguing foot muscle strength exercises, and their toe flexor and ankle plantar flexor strength and postural control ability were measured before and after the exercises. Postural control ability was evaluated using the path of the center of pressure (COP during three balance tasks: double-leg standing with eyes open; double-leg standing with eyes closed; and single-leg standing with eyes open. After the exercises, the muscle strength of both the toe and ankle plantar flexor significantly decreased. Under all of the conditions, most COP variables did not significantly differ before and after the exercises; however, the total length and mean velocity in the single-leg standing with eyes open significantly decreased after the exercises. Postural sway velocities in the anteroposterior direction of double-leg standing with eyes closed and in both anteroposterior and mediolateral directions of single-leg standing with eyes open significantly decreased after the exercises. The associations between relative changes in muscle strength after the exercise and relative changes in COP variables after the exercise were not found. These results indicate that postural control while standing could be maintained even though foot muscle strength is decreased after fatiguing foot muscle exercises.

  4. Altered postural sway following fatiguing foot muscle exercises.

    Science.gov (United States)

    Koyama, Keiji; Yamauchi, Junichiro

    2017-01-01

    This study investigated the acute effects of fatiguing foot muscle exercises on the maximum muscle strength of the foot and postural control ability. Eighteen healthy young individuals performed fatiguing foot muscle strength exercises, and their toe flexor and ankle plantar flexor strength and postural control ability were measured before and after the exercises. Postural control ability was evaluated using the path of the center of pressure (COP) during three balance tasks: double-leg standing with eyes open; double-leg standing with eyes closed; and single-leg standing with eyes open. After the exercises, the muscle strength of both the toe and ankle plantar flexor significantly decreased. Under all of the conditions, most COP variables did not significantly differ before and after the exercises; however, the total length and mean velocity in the single-leg standing with eyes open significantly decreased after the exercises. Postural sway velocities in the anteroposterior direction of double-leg standing with eyes closed and in both anteroposterior and mediolateral directions of single-leg standing with eyes open significantly decreased after the exercises. The associations between relative changes in muscle strength after the exercise and relative changes in COP variables after the exercise were not found. These results indicate that postural control while standing could be maintained even though foot muscle strength is decreased after fatiguing foot muscle exercises.

  5. Loss of skeletal muscle HIF-1alpha results in altered exercise endurance.

    Directory of Open Access Journals (Sweden)

    Steven D Mason

    2004-10-01

    Full Text Available The physiological flux of oxygen is extreme in exercising skeletal muscle. Hypoxia is thus a critical parameter in muscle function, influencing production of ATP, utilization of energy-producing substrates, and manufacture of exhaustion-inducing metabolites. Glycolysis is the central source of anaerobic energy in animals, and this metabolic pathway is regulated under low-oxygen conditions by the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha. To determine the role of HIF-1alpha in regulating skeletal muscle function, we tissue-specifically deleted the gene encoding the factor in skeletal muscle. Significant exercise-induced changes in expression of genes are decreased or absent in the skeletal-muscle HIF-1alpha knockout mice (HIF-1alpha KOs; changes in activities of glycolytic enzymes are seen as well. There is an increase in activity of rate-limiting enzymes of the mitochondria in the muscles of HIF-1alpha KOs, indicating that the citric acid cycle and increased fatty acid oxidation may be compensating for decreased flow through the glycolytic pathway. This is corroborated by a finding of no significant decreases in muscle ATP, but significantly decreased amounts of lactate in the serum of exercising HIF-1alpha KOs. This metabolic shift away from glycolysis and toward oxidation has the consequence of increasing exercise times in the HIF-1alpha KOs. However, repeated exercise trials give rise to extensive muscle damage in HIF-1alpha KOs, ultimately resulting in greatly reduced exercise times relative to wild-type animals. The muscle damage seen is similar to that detected in humans in diseases caused by deficiencies in skeletal muscle glycogenolysis and glycolysis. Thus, these results demonstrate an important role for the HIF-1 pathway in the metabolic control of muscle function.

  6. Exercise, Amino Acids and Aging in the Control of Human Muscle Protein Synthesis

    Science.gov (United States)

    Walker, Dillon K.; Dickinson, Jared M.; Timmerman, Kyle L.; Drummond, Micah J.; Reidy, Paul T.; Fry, Christopher S.; Gundermann, David M.; Rasmussen, Blake B.

    2012-01-01

    In this review we discuss recent research in the field of human skeletal muscle protein metabolism characterizing the acute regulation of mammalian target of rapamycin complex (mTORC) 1 signaling and muscle protein synthesis (MPS) by exercise, amino acid nutrition and aging. Resistance exercise performed in the fasted state stimulates mixed MPS within 1 h post-exercise, which can remain elevated for 48 h. We demonstrate that the activation of mTORC1 signaling (and subsequently enhanced translation initiation) is required for the contraction-induced increase in MPS. In comparison, low-intensity blood flow restriction (BFR) exercise stimulates MPS and mTORC1 signaling to an extent similar to traditional, high-intensity resistance exercise. We also show that mTORC1 signaling is required for the essential amino acid (EAA) induced increase in MPS. Ingestion of EAAs (or protein) shortly following resistance exercise enhances MPS and mTORC1 signaling as compared to resistance exercise or EAAs alone. In older adults, the ability of skeletal muscle to respond to anabolic stimuli is impaired. For example, in response to an acute bout of resistance exercise, older adults are less able to activate mTORC1 or increase MPS during the first 24h of post-exercise recovery. However, BFR exercise can overcome this impairment. Aging is not associated with a reduced response to EAAs provided the EAA content is sufficient. Therefore, we propose that exercise combined with EAA should be effective not only in improving muscle repair and growth in response to training in athletes, but that strategies such as EAA combined with resistance exercise (or BFR exercise) may be very useful as a countermeasure for sarcopenia and other clinical conditions associated with muscle wasting. PMID:21606874

  7. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in human...... muscle. Additionally, it remains to be determined what proportion of adenosine-induced flow elevation is specifically directed to muscle only. In the present study we measured thigh muscle capillary nutritive blood flow in nine healthy young men using positron emission tomography at rest and during...... femoral artery infusion of adenosine (1 mg * min(-1) * litre thigh volume(-1)), which has previously been shown to induce maximal whole thigh blood flow of ~8 L/min. This response was compared to the blood flow induced by moderate-high intensity one-leg dynamic knee extension exercise. Adenosine increased...

  8. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle.

    Science.gov (United States)

    Saleem, Ayesha; Hood, David A

    2013-07-15

    The major tumour suppressor protein p53 plays an important role in maintaining mitochondrial content and function in skeletal muscle. p53 has been shown to reside in the mitochondria complexed with mitochondrial DNA (mtDNA); however, the physiological repercussions of mitochondrial p53 remain unknown. We endeavoured to elucidate whether an acute bout of endurance exercise could mediate an increase in mitochondrial p53 levels. C57Bl6 mice (n = 6 per group) were randomly assigned to sedentary, acute exercise (AE, 15 m min(-1) for 90 min) or acute exercise + 3 h recovery (AER) groups. Exercise concomitantly increased the mRNA content of nuclear-encoded (PGC-1α, Tfam, NRF-1, COX-IV, citrate synthase) and mtDNA-encoded (COX-I) genes in the AE group, and further by ∼5-fold in the AER group. Nuclear p53 protein levels were reduced in the AE and AER groups, while in contrast, the abundance of p53 was drastically enhanced by ∼2.4-fold and ∼3.9-fold in subsarcolemmal and intermyofibrillar mitochondria, respectively, in the AER conditions. Within the mitochondria, the interaction of p53 with mtDNA at the D-loop and with Tfam was elevated by ∼4.6-fold and ∼3.6-fold, respectively, in the AER group. In the absence of p53, the enhanced COX-I mRNA content observed with AE and AER was abrogated. This study is the first to indicate that endurance exercise can signal to localize p53 to the mitochondria where it may serve to positively modulate the activity of the mitochondrial transcription factor Tfam. Our findings help us understand the mechanisms underlying the effects of exercise as a therapeutic intervention designed to trigger the pro-metabolic functions of p53.

  9. Electromyographic examination of selected muscle activation during isometric core exercises.

    Science.gov (United States)

    Oliver, Gretchen D; Stone, Audrey J; Plummer, Hillary

    2010-11-01

    The purpose of the current study was to quantitatively examine the muscle activations of 3 common isometric core exercises (abdominal bridge, single-leg abdominal bridge, and superman) along with a newly introduced isometric exercise (flying squirrel) and determine if muscle activations differed among the exercises. The design was a comparison study. An athletic training classroom laboratory was where all data collections occurred. Thirty healthy collegiate graduate students (age, 23.4 ± 1.4 year; height, 171.3 ± 10.3 cm; mass, 73.3 ± 16.2 kg), regardless of sex, consented to participate. The independent variable was the muscle selected. The main outcome measures or dependent variables were the muscle activation reported as percent of maximum voluntary isometric contraction during each exercise. Results revealed that the multifidi produced the greatest muscle activity in all exercises, and the single-leg abdominal bridge exercise produced greater muscle activation than the general abdominal bridge exercise (P exercises may be a part of a core stability program. In addition, these findings may be incorporated into an isometric core exercise program to supplement a currently implemented isometric core exercise program.

  10. Skeletal muscle substrate metabolism during exercise: methodological considerations

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; González-Alonso, J; Sacchetti, M

    1999-01-01

    The aim of the present article is to evaluate critically the various methods employed in studies designed to quantify precisely skeletal muscle substrate utilization during exercise. In general, the pattern of substrate utilization during exercise can be described well from O2 uptake measurements...... substrates. There are several methodological concerns to be aware of when studying the metabolic response to exercise in human subjects. These concerns include: (1) the muscle mass involved in the exercise is largely unknown (bicycle or treadmill). Moreover, whether the muscle sample obtained from a limb...

  11. Psychosocial Influences on Exercise-Induced Hypoalgesia.

    Science.gov (United States)

    Brellenthin, Angelique G; Crombie, Kevin M; Cook, Dane B; Sehgal, Nalini; Koltyn, Kelli F

    2017-03-01

    The purpose of this study was to examine psychosocial influences on exercise-induced hypoalgesia (EIH). Randomized controlled trial. Clinical research unit in a hospital. Fifty-eight healthy men and women (mean age = 21 ± 3 years) participated in this study. Participants were first asked to complete a series of baseline demographic and psychological questionnaires including the Pain Catastrophizing Scale, the Fear of Pain Questionnaire, and the Family Environment Scale. Following this, they were familiarized with both temporal summation of heat pain and pressure pain testing protocols. During their next session, participants completed the Profile of Mood States, rated the intensity of heat pulses, and indicated their pressure pain thresholds and ratings before and after three minutes of submaximal, isometric exercise. Situational catastrophizing was assessed at the end of the experimental session. Results indicated that experimental pain sensitivity was significantly reduced after exercise ( P   0.05). Positive family environments predicted attenuated pain sensitivity and greater EIH, whereas negative and chronic pain-present family environments predicted worse pain and EIH outcomes. Situational catastrophizing and negative mood state also predicted worse pain and EIH outcomes and were additionally associated with increased ratings of perceived exertion and muscle pain during exercise. This study provides preliminary evidence that psychosocial variables, such as the family environment and mood states, can affect both pain sensitivity and the ability to modulate pain through exercise-induced hypoalgesia.

  12. Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex

    Science.gov (United States)

    Dreyer, Hans C.; Fujita, Satoshi; Glynn, Erin L.; Drummond, Micah J.; Volpi, Elena; Rasmussen, Blake B.

    2010-01-01

    Aim Sex differences are evident in human skeletal muscle as the cross-sectional area of individual muscle fibres is greater in men as compared to women. We have recently shown that resistance exercise stimulates mTOR signalling and muscle protein synthesis in humans during early post-exercise recovery. Therefore, the aim of this study was to determine if sex influences the muscle protein synthesis response during recovery from resistance exercise. Methods Seventeen subjects, 9 male and 8 female, were studied in the fasted state before, during and for two hours following a bout of high-intensity leg resistance exercise. Mixed muscle protein fractional synthetic rate (FSR) was measured using stable isotope techniques and mTOR signalling was assessed by immunoblotting from repeated vastus lateralis muscle biopsy samples. Results Post-exercise muscle protein synthesis increased by 52% in the men and by 47% in the women (P0.05). Akt phosphorylation increased in both groups at 1 hr post-exercise (P0.05). Phosphorylation of mTOR and its downstream effector S6K1 increased significantly and similarly between groups during post-exercise recovery (P<0.05). eEF2 phosphorylation decreased at 1- and 2 hrs post-exercise (P<0.05) to a similar extent in both groups. Conclusion The contraction-induced increase in early post-exercise mTOR signalling and muscle protein synthesis is independent of sex and appears to not be playing a role in the sexual dimorphism of leg skeletal muscle in young men and women. PMID:20070283

  13. Estimated Muscle Loads During Squat Exercise in Microgravity Conditions

    Science.gov (United States)

    Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.

    2012-01-01

    Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.

  14. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    1. The present study tested the hypothesis that the level of xanthine oxidase is elevated in injured human skeletal muscle in association with inflammatory events. Seven male subjects performed five bouts of strenuous one-legged eccentric exercise. Muscle biopsies from both the exercised...... and the control leg, together with venous blood samples, were obtained prior to exercise and at 45 min, 24, 48 and 96 h after exercise. The time courses of xanthine oxidase immunoreactivity and indicators of muscle damage and inflammation were examined. 2. The number of xanthine oxidase structures observed...... by immunohistological methods in the exercised muscle was up to eightfold higher than control from day 1 to day 4 after exercise (P

  15. Age affects exercise-induced improvements in heart rate response to exercise.

    Science.gov (United States)

    Ciolac, E G; Roberts, C K; da Silva, J M Rodrigues; Guimarães, G V

    2014-05-01

    The aim of the present study was to analyze the effects of age on cardiorespiratory fitness (CRF), muscle strength and heart rate (HR) response to exercise adaptation in women in response to a long-term twice-weekly combined aerobic and resistance exercise program. 85 sedentary women, divided into young (YG; n=22, 30.3 ± 6.2 years), early middle-aged (EMG; n=28, 44.1 ± 2.5 years), late middle-aged (LMG; n=20, 56.7 ± 3.5 years) and older (OG; n=15, 71.4 ± 6.9 years) groups, had their CRF, muscle strength (1-repetition maximum test) and HR response to exercise (graded exercise test) measured before and after 12 months of combined exercise training. Exercise training improved CRF and muscle strength in all age groups (Pdifferences were observed between groups. Exercise training also improved resting HR and recovery HR in YG and EMG (Pgroup. Combined aerobic and resistance training at a frequency of 2 days/week improves CRF and muscle strength throughout the lifespan. However, exercise-induced improvements in the HR recovery response to exercise may be impaired in late middle-aged and older women. © Georg Thieme Verlag KG Stuttgart · New York.

  16. EMG-normalised kinase activation during exercise is higher in human gastrocnemius compared to soleus muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Leutert, Robin; Rasmussen, Søren T

    2012-01-01

    In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related...... activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46-59% and 26-38% higher (p...

  17. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle

    DEFF Research Database (Denmark)

    Rasmussen, U.F.; Krustrup, Peter; Bangsbo, Jens

    2001-01-01

    Bicycle exercise; cytochromes; Fatigue; Lactate; Oxidative phosphorylation; Oxygen uptake; Quadriceps muscle; Respiration......Bicycle exercise; cytochromes; Fatigue; Lactate; Oxidative phosphorylation; Oxygen uptake; Quadriceps muscle; Respiration...

  18. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one...... increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 likely mediates the autophagy-inhibiting effect of insulin. This article is protected by copyright. All rights...

  19. AMP-activated protein kinase is required for exercise-induced peroxisome proliferator-activated receptor γ co-activator 1α translocation to subsarcolemmal mitochondria in skeletal muscle

    Science.gov (United States)

    Smith, Brennan K; Mukai, Kazutaka; Lally, James S; Maher, Amy C; Gurd, Brendon J; Heigenhauser, George J F; Spriet, Lawrence L; Holloway, Graham P

    2013-01-01

    In skeletal muscle, mitochondria exist as two subcellular populations known as subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS mitochondria preferentially respond to exercise training, suggesting divergent transcriptional control of the mitochondrial genomes. The transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam) have been implicated in the direct regulation of the mitochondrial genome in mice, although SS and IMF differences may exist, and the potential signalling events regulating the mitochondrial content of these proteins have not been elucidated. Therefore, we examined the potential for PGC-1α and Tfam to translocate to SS and IMF mitochondria in human subjects, and performed experiments in rodents to identify signalling mechanisms regulating these translocation events. Acute exercise in humans and rats increased PGC-1α content in SS but not IMF mitochondria. Acute exposure to 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside in rats recapitulated the exercise effect of increased PGC-1α protein within SS mitochondria only, suggesting that AMP-activated protein kinase (AMPK) signalling is involved. In addition, rendering AMPK inactive (AMPK kinase dead mice) prevented exercise-induced PGC-1α translocation to SS mitochondria, further suggesting that AMPK plays an integral role in these translocation events. In contrast to the conserved PGC-1α translocation to SS mitochondria across species (humans, rats and mice), acute exercise only increased mitochondrial Tfam in rats. Nevertheless, in rat resting muscle PGC-1α and Tfam co-immunoprecipate with α-tubulin, suggesting a common cytosolic localization. These data suggest that exercise causes translocation of PGC-1α preferentially to SS mitochondria in an AMPK-dependent manner. PMID:23297307

  20. Augmentation of deglutitive thyrohyoid muscle shortening by the Shaker Exercise.

    Science.gov (United States)

    Mepani, Rachel; Antonik, Stephen; Massey, Benson; Kern, Mark; Logemann, Jerilyn; Pauloski, Barbara; Rademaker, Alfred; Easterling, Caryn; Shaker, Reza

    2009-03-01

    Earlier studies of the effect of 6 weeks of the Shaker Exercise have shown significant increase in UES opening and anterior excursion of larynx and hyoid during swallowing in patients with upper esophageal sphincter (UES) dysfunction, resulting in elimination of aspiration and resumption of oral intake. This effect is attributed to strengthening of the suprahyoid muscles, as evidenced by comparison of electromyographic changes in muscle fatigue before and after completion of the exercise regime. The effect of this exercise on thyrohyoid muscle shortening is unknown. Therefore the aim of this study was to determine the effect of the exercise on thyrohyoid muscle shortening. We studied 11 dysphagic patients with UES dysfunction. Six were randomized to traditional swallowing therapy and five to the Shaker Exercise. Videofluoroscopy was used to measure deglutitive thyrohyoid shortening before and after completion of assigned therapy regimen. Maximum thyrohyoid muscle shortening occurred at close temporal proximity to the time of maximal thyroid cartilage excursion. The percent change in thyrohyoid distance from initiation of deglutition to maximal anterior/superior hyoid excursion showed no statistically significant difference between the two groups prior to either therapy (p = 0.54). In contrast, after completion of therapy, the percent change in thyrohyoid distance in the Shaker Exercise group was significantly greater compared to the traditional therapy (p = 0.034). The Shaker Exercise augments the thyrohyoid muscle shortening in addition to strengthening the suprahyoid muscles. The combination of increased thyrohyoid shortening and suprahyoid strengthening contributes to the Shaker Exercise outcome of deglutitive UES opening augmentation.

  1. EFFECT OF HEAT PRECONDITIONING BY MICROWAVE HYPERTHERMIA ON HUMAN SKELETAL MUSCLE AFTER ECCENTRIC EXERCISE

    Directory of Open Access Journals (Sweden)

    Norio Saga

    2008-03-01

    Full Text Available The purpose of this study was to clarify whether heat preconditioning results in less eccentric exercise-induced muscle damage and muscle soreness, and whether the repeated bout effect is enhanced by heat preconditioning prior to eccentric exercise. Nine untrained male volunteers aged 23 ± 3 years participated in this study. Heat preconditioning included treatment with a microwave hyperthermia unit (150 W, 20 min that was randomly applied to one of the subject's arms (MW; the other arm was used as a control (CON. One day after heat preconditioning, the subjects performed 24 maximal isokinetic eccentric contractions of the elbow flexors at 30°·s-1 (ECC1. One week after ECC1, the subjects repeated the procedure (ECC2. After each bout of exercise, maximal voluntary contraction (MVC, range of motion (ROM of the elbow joint, upper arm circumference, blood creatine kinase (CK activity and muscle soreness were measured. The subjects experienced both conditions at an interval of 3 weeks. MVC and ROM in the MW were significantly higher than those in the CON (p < 0.05 for ECC1; however, the heat preconditioning had no significant effect on upper arm circumference, blood CK activity, or muscle soreness following ECC1 and ECC2. Heat preconditioning may protect human skeletal muscle from eccentric exercise-induced muscle damage after a single bout of eccentric exercise but does not appear to promote the repeated bout effect after a second bout of eccentric exercise

  2. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery.

    Science.gov (United States)

    Leal Junior, Ernesto Cesar Pinto; Lopes-Martins, Rodrigo Alvaro Brandão; Frigo, Lucio; De Marchi, Thiago; Rossi, Rafael Paolo; de Godoi, Vanessa; Tomazoni, Shaiane Silva; Silva, Daniela Perin; Basso, Maira; Filho, Pedro Lotti; de Valls Corsetti, Francisco; Iversen, Vegard V; Bjordal, Jan Magnus

    2010-08-01

    Randomized crossover double-blinded placebo-controlled trial. To investigate if low-level laser therapy (LLLT) can affect biceps muscle performance, fatigue development, and biochemical markers of postexercise recovery. Cell and animal studies have suggested that LLLT can reduce oxidative stress and inflammatory responses in muscle tissue. But it remains uncertain whether these findings can translate into humans in sport and exercise situations. Nine healthy male volleyball players participated in the study. They received either active LLLT (cluster probe with 5 laser diodes; lambda = 810 nm; 200 mW power output; 30 seconds of irradiation, applied in 2 locations over the biceps of the nondominant arm; 60 J of total energy) or placebo LLLT using an identical cluster probe. The intervention or placebo were applied 3 minutes before the performance of exercise. All subjects performed voluntary elbow flexion repetitions with a workload of 75% of their maximal voluntary contraction force until exhaustion. Active LLLT increased the number of repetitions by 14.5% (mean +/- SD, 39.6 +/- 4.3 versus 34.6 +/- 5.6; P = .037) and the elapsed time before exhaustion by 8.0% (P = .034), when compared to the placebo treatment. The biochemical markers also indicated that recovery may be positively affected by LLLT, as indicated by postexercise blood lactate levels (Pendurance for repeated elbow flexion against resistance and decreased postexercise levels of blood lactate, creatine kinase, and C-reactiveprotein. Performance enhancement, level 1b.

  3. Exercise training-induced improvement in skeletal muscle PGC-1α-mediated fat metabolism is independent of dietary glycemic index.

    Science.gov (United States)

    Mulya, Anny; Haus, Jacob M; Solomon, Thomas P J; Kelly, Karen R; Malin, Steven K; Rocco, Michael; Barkoukis, Hope; Kirwan, John P

    2017-04-01

    This study hypothesized that a low-glycemic diet combined with exercise would increase expression of nuclear regulators of fat transport and oxidation in insulin-resistant skeletal muscle. Nineteen subjects (64 ± 1 y; 34 ± 1 kg/m2 ) were randomized to receive isocaloric high-glycemic-index (HiGIX; 80 ± 0.6 units, n = 10) or low-glycemic-index (LoGIX; 40 ± 0.3 units, n = 9) diets combined with supervised exercise (1 h/d, 5 d/wk at ∼85% HRmax ) for 12 weeks. Insulin sensitivity was determined by hyperinsulinemic-euglycemic clamp. Skeletal muscle biopsies were obtained before and after the intervention to assess fasting gene and protein expression. Weight loss was similar for both groups (9.5 ± 1.3 kg). Likewise, improvements in insulin sensitivity (P glycemic index of the diets. © 2017 The Obesity Society.

  4. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...... exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... cells (CD68(+) or CD16(+) cells) was not significantly increased in either of the legs 8 days after exercise and was unaffected by the NSAID. The main finding in the present study was that the NSAID infusion for 7.5 h during the exercise day suppressed the exercise-induced increase in the number...

  5. Air to muscle O2 delivery during exercise at altitude

    DEFF Research Database (Denmark)

    Calbet, J.A.; Lundby, C.

    2009-01-01

    and LBF achieve values similar to normoxia. Although the Po2 gradient driving O2 diffusion into the muscles is reduced in hypoxia, similar levels of muscle O2 diffusion are observed during small-mass exercise in chronic hypoxia and in normoxia, indicating that humans have a functional reserve in muscle O2...

  6. Bruxism: Is There an Indication for Muscle-Stretching Exercises?

    NARCIS (Netherlands)

    Gouw, S.; Wijer, A. de; Creugers, N.H.J.; Kalaykova, S.I.

    2017-01-01

    Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism.

  7. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF......) muscles during exercise, measured using positron emission tomography. In six healthy young women, BF was measured at rest and then during three incremental low and moderate intermittent isometric one-legged knee-extension exercise intensities without and with theophylline-induced nonselective adenosine...... and with theophylline (P Adenosine receptor blockade did not have any effect on mean bulk BF or BF heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  8. Exercise & NSAID: Effect on muscle protein synthesis in knee osteoarthritis patients?

    DEFF Research Database (Denmark)

    Petersen, S.G.; Miller, Ben F; Hansen, M

    2011-01-01

    the exercise-induced response of muscle contractile protein FSR. However, we cannot exclude that a minor inhibition of muscle sarcoplasmic proteins may have been present with NSAID treatment. This study suggests that muscle hypertrophy after long-term training is not influenced by NSAIDs.......PURPOSE:The purpose of this study was to determine muscle and tendon protein fractional synthesis rates (FSR) at rest and after a one-legged kicking exercise in patients with knee osteoarthritis (OA) receiving either placebo or nonsteroidal anti-inflammatory drugs (NSAIDs).METHODS:Twenty patients...... the contralateral leg remained rested. Twenty-four hours after exercise, we determined circulating concentrations of inflammatory parameters and measured FSR of myofibrillar and sarcoplasmic protein fractions of vastus lateralis muscle and patellar tendon collagen protein by the direct incorporation method using...

  9. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study.

    Science.gov (United States)

    Yanagisawa, O; Niitsu, M; Kurihara, T; Fukubayashi, T

    2011-09-01

    To assess the feasibility of ultrasound real-time tissue elastography (RTE) for measuring exercise-induced changes in muscle hardness and to compare the findings of RTE with those of a tissue hardness meter for semi-quantitative assessment of the hardness of exercised muscles. Nine male participants performed an arm-curl exercise. RTE measurements were performed by manually applying repetitive compression with the transducer on the scan position before exercise, immediately after exercise, and at 30 min after exercise; strain ratios between muscle and a reference material (hydrogel) were calculated (muscle strain/material strain). A tissue hardness meter was also used to evaluate muscle hardness. The intraclass correlation coefficients (ICCs) for the three repeated measurements at each measurement time were calculated to evaluate the intra-observer reproducibility of each technique. Immediately after exercise, the strain ratio and the value obtained using the tissue hardness meter significantly decreased (from 1.65 to 1.35) and increased (from 51.8 to 54.3), respectively. Both parameters returned to their pre-exercise value 30 min after exercise. The ICCs of the RTE (and the ICCs of the muscle hardness meter) were 0.971 (0.816) before exercise, 0.939 (0.776) immediately after exercise, and 0.959 (0.882) at 30 min after exercise. Similar to the muscle hardness meter, RTE revealed the exercise-induced changes of muscle hardness semi-quantitatively. The intra-observer reproducibility of RTE was very high at each measurement time. These findings suggest that RTE is a clinically useful technique for assessing hardness of specific exercised muscles. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. Skeletal muscle mitochondria: a major player in exercise, health and disease.

    Science.gov (United States)

    Russell, Aaron P; Foletta, Victoria C; Snow, Rod J; Wadley, Glenn D

    2014-04-01

    Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research. Copyright © 2013 Elsevier B

  11. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  12. Effects of age and exercise training on coronary microvascular smooth muscle phenotype and function.

    Science.gov (United States)

    Muller-Delp, Judy M; Hotta, Kazuki; Chen, Bei; Behnke, Bradley Jon; Maraj, Joshua J; Delp, Michael D; Lucero, Tiffani R; Bramy, Jeremy A; Alarcon, David B; Morgan, Hannah E; Cowan, Morgan R; Haynes, Anthony D

    2017-10-12

    Coronary microvascular function and blood flow responses during acute exercise are impaired in the aged heart, but can be restored by exercise training. Coronary microvascular resistance is directly dependent on vascular smooth muscle function in coronary resistance arterioles; therefore, we hypothesized that age impairs contractile function and alters the phenotype of vascular smooth muscle in coronary arterioles. We further hypothesized that exercise training restores contractile function and reverses age-induced phenotypic alterations of arteriolar smooth muscle. Young and old Fischer 344 rats underwent 10 weeks of treadmill exercise training or remained sedentary. At the end of training or cage-confinement, contractile responses, vascular smooth muscle proliferation, and expression of contractile proteins were assessed in isolated coronary arterioles. Both receptor- and non-receptor-mediated contractile function were impaired in coronary arterioles from aged rats. Vascular smooth muscle shifted from a differentiated, contractile phenotype to a secretory phenotype with associated proliferation of smooth muscle in the arteriolar wall. Expression of smooth muscle myosin heavy chain 1 (SM1) was decreased in arterioles from aged rats; whereas expression of phospho-histone H3 and of the synthetic protein, ribosomal protein S6 (rpS6), were increased. Exercise training improved contractile responses, reduced smooth muscle proliferation and expression of rpS6, and increased expression of SM1 in arterioles from old rats. Thus, age-induced contractile dysfunction of coronary arterioles and emergence of a secretory smooth muscle phenotype may contribute to impaired coronary blood flow responses, but arteriolar contractile responsiveness and a younger smooth muscle phenotype can be restored with late-life exercise training. Copyright © 2017, Journal of Applied Physiology.

  13. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...... in any kind of resistance exercise underwent a heavy resistance exercise protocol that stimulated the vastus lateralis muscle and biopsies were obtained from this muscle pre-exercise as well as 6, 24 and 48 h post-exercise. IL-15 mRNA levels were twofold higher in the triceps (type 2 fibre dominance......The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...

  14. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  15. Exercise and amino acid anabolic cell signaling and the regulation of skeletal muscle mass.

    Science.gov (United States)

    Pasiakos, Stefan M

    2012-07-01

    A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein kinase cell signaling cascades. As novel molecular regulators of muscle integrity continue to be explored, a contemporary analysis of the literature is required to understand the metabolic mechanisms by which contractile forces and amino acids affect cellular process that contribute to long-term adaptations and preservation of muscle mass. This article reviews the literature related to how exercise and amino acid availability affect cellular regulators of skeletal muscle mass, especially highlighting recent investigations that have identified mechanisms by which contractile forces and amino acids modulate muscle health. Furthermore, this review will explore integrated exercise and nutrition strategies that promote the maintenance of muscle health by optimizing exercise, and amino acid-induced cell signaling in aging adults susceptible to muscle loss.

  16. Eccentric exercise prior to hindlimb unloading attenuated reloading muscle damage in rats.

    Science.gov (United States)

    Prisby, Rhonda D; Nelson, Arnold G; Latsch, Elizabeth

    2004-11-01

    Antigravity muscles that are reloaded subsequent to hindlimb unloading (HU) are prone to injury. Similarities exist between muscle damage elicited from HU and subsequent reloading and damage induced by eccentric exercise (EE). Conditioning bouts of EE reduce muscle damage following a repeat bout of EE. Since damage to reloaded skeletal muscle is comparable to damage observed after EE, the mechanisms of damage are presumably similar. Therefore, EE prior to HU may attenuate reloading muscle damage. This study evaluated the effects of prior EE on rat soleus muscles (SOL) subsequent to 7 d of HU and 16-19 h of reloading. Sprague Dawley rats were randomly assigned to the following groups: eccentric exercise + hindlimb unloading + reloading (EEHUR; n = 9); hindlimb unloading + reloading (HUR; n = 10); eccentric exercise (EE; n = 12), or control (CON; n = 12). The exercise protocol was performed 5 d x wk(-1) for 2 wks followed by HU and reloading. Fiber areas were lower in both suspended groups vs. the EE and CON groups. There was no difference in percent interstitial area among groups. However, percent myofibrillar damage was higher in the HUR group vs. all other groups. Further, glucose-6-phospate dehydrogenase activity, an indicator of muscle damage, was higher in the HUR group compared with the EE and CON groups. These results provide some evidence that prior EE reduced muscle damage subsequent to HU and reloading. Therefore, EE may prove effective in minimizing recovery time in individuals suffering from muscle damage following periods of bed rest and spaceflight.

  17. Exercise and Amino Acid Anabolic Cell Signaling and the Regulation of Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Stefan M. Pasiakos

    2012-07-01

    Full Text Available A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein kinase cell signaling cascades. As novel molecular regulators of muscle integrity continue to be explored, a contemporary analysis of the literature is required to understand the metabolic mechanisms by which contractile forces and amino acids affect cellular process that contribute to long-term adaptations and preservation of muscle mass. This article reviews the literature related to how exercise and amino acid availability affect cellular regulators of skeletal muscle mass, especially highlighting recent investigations that have identified mechanisms by which contractile forces and amino acids modulate muscle health. Furthermore, this review will explore integrated exercise and nutrition strategies that promote the maintenance of muscle health by optimizing exercise, and amino acid-induced cell signaling in aging adults susceptible to muscle loss.

  18. Skeletal muscle metabolism during prolonged exercise in Pompe disease

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Laforêt, Pascal; Madsen, Karen Lindhardt

    2017-01-01

    of exercise, it is important in Pompe disease to acquire more information about muscle substrate use during exercise. METHODS: Seven adults with Pompe disease were matched to a healthy control group (1:1). We determined (1) peak oxidative capacity (VO2peak) and (2) carbohydrate and fatty acid metabolism...... = 0.318) and mean difference 0.016 µmol/kg/min (CI: 1.287 to -1.255, P = 0.710), respectively). CONCLUSION: Reflecting muscle weakness and wasting, Pompe disease is associated with markedly reduced maximal exercise capacity. However, glycogenolysis is not impaired in exercise. Unlike in other...... metabolic myopathies, skeletal muscle substrate use during exercise is normal in Pompe disease rendering exercise less complicated for e.g. medical or recreational purposes....

  19. Exercise and PGC-1 alpha-Independent Synchronization of Type I Muscle Metabolism and Vasculature by ERR gamma

    NARCIS (Netherlands)

    Narkar, Vihang A.; Fan, Weiwei; Downes, Michael; Yu, Ruth T.; Jonker, Johan W.; Alaynick, William A.; Banayo, Ester; Karunasiri, Malith S.; Lorca, Sabina; Evans, Ronald M.

    2011-01-01

    How type I skeletal muscle inherently maintains high oxidative and vascular capacity in the absence of exercise is unclear. We show that nuclear receptor ERR gamma is highly expressed in type I muscle and, when transgenically expressed in anaerobic type II muscles (ERRGO mice), dually induces

  20. Does high muscle temperature accentuate skeletal muscle injury from eccentric exercise?

    Science.gov (United States)

    Castellani, John W; Zambraski, Edward J; Sawka, Michael N; Urso, Maria L

    2016-05-01

    Hyperthermia is suspected of accentuating skeletal muscle injury from novel exercise, but this has not been well studied. This study examined if high muscle temperatures alters skeletal muscle injury induced by eccentric exercise (ECC). Eight volunteers (age, 22.5 ± 4.1 year; height, 169.5 ± 10.8 cm; body mass, 76.2 ± 12.6 kg), serving as their own control, and who were not heat acclimatized, completed two elbow flexor ECC trials; in one trial the biceps were heated >40°C (HEAT) and in the other trial there was no heating (NON). HEAT was applied with shortwave diathermy (100 W) for 15 min immediately before the first ECC bout and for 2 min in between each bout. Individuals were followed for 10 days after each ECC session, with a 6-week washout period between arms. The maximal voluntary isometric contraction decreased by 41 ± 17% and 46 ± 20% in the NON and HEAT trials, respectively. Bicep circumference increased by 0.07 ± 0.08 mm (4%, P = 0.04) and relaxed range of motion decreased by 11.5 ± 8.2° (30%, P 40°C muscle temperature does not alter skeletal muscle injury or functional impairments induced by novel ECC. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Effects of one resistance exercise session on vascular smooth muscle of hypertensive rats.

    Science.gov (United States)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim Dos Santos; Oliveira Carvalho, Vitor; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-08-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  2. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice.

    Science.gov (United States)

    Sylow, Lykke; Nielsen, Ida L; Kleinert, Maximilian; Møller, Lisbeth L V; Ploug, Thorkil; Schjerling, Peter; Bilan, Philip J; Klip, Amira; Jensen, Thomas E; Richter, Erik A

    2016-09-01

    Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin-stimulated glucose uptake, although its role in exercise-stimulated glucose uptake is unknown. We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise. We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise. Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signalling mechanisms vital for glucose uptake during exercise are not yet fully understood, although the GTPase Rac1 is a candidate molecule. The present study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise-induced uptake of radiolabelled 2-deoxyglucose at 65% of maximum running capacity was blocked in soleus muscle and decreased by 80% and 60% in gastrocnemius and tibialis anterior muscles, respectively, in muscle-specific inducible Rac1 knockout (mKO) mice compared to wild-type littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 mKO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle

    Science.gov (United States)

    Pugh, Jamie K; Faulkner, Steve H; Jackson, Andrew P; King, James A; Nimmo, Myra A

    2015-01-01

    Concurrent training involving resistance and endurance exercise may augment the benefits of single-mode training for the purpose of improving health. However, muscle adaptations, associated with resistance exercise, may be blunted by a subsequent bout of endurance exercise, via molecular interference. High-intensity interval training (HIIT), generating similar adaptations to endurance exercise, may offer an alternative exercise mode to traditional endurance exercise. This study examined the influence of an acute HIIT session on the molecular responses following resistance exercise in untrained skeletal muscle. Ten male participants performed resistance exercise (4 × 8 leg extensions, 70% 1RM, (RE)) or RE followed by HIIT (10 × 1 min at 90% HRmax, (RE+HIIT)). Muscle biopsies were collected from the vastus lateralis before, 2 and 6 h post-RE to determine intramuscular protein phosphorylation and mRNA responses. Phosphorylation of Akt (Ser473) decreased at 6 h in both trials (P HIIT (P HIIT with PGC-1α and PGC-1α-ex1b remaining elevated at 6 h, whereas RE-induced increases at 2 and 6 h for PGC-1α-ex1b only (P HIIT versus RE at 2 and 6 h (P HIIT may be an alternative to endurance exercise when performed after resistance exercise in the same training session to optimize adaptations. PMID:25902785

  4. Exercise training reverses skeletal muscle atrophy in an experimental model of VCP disease.

    Science.gov (United States)

    Nalbandian, Angèle; Nguyen, Christopher; Katheria, Veeral; Llewellyn, Katrina J; Badadani, Mallikarjun; Caiozzo, Vincent; Kimonis, Virginia E

    2013-01-01

    The therapeutic effects of exercise resistance and endurance training in the alleviation of muscle hypertrophy/atrophy should be considered in the management of patients with advanced neuromuscular diseases. Patients with progressive neuromuscular diseases often experience muscle weakness, which negatively impact independence and quality of life levels. Mutations in the valosin containing protein (VCP) gene lead to Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) and more recently affect 2% of amyotrophic lateral sclerosis (ALS)-diagnosed cases. The present investigation was undertaken to examine the effects of uphill and downhill exercise training on muscle histopathology and the autophagy cascade in an experimental VCP mouse model carrying the R155H mutation. Progressive uphill exercise in VCP(R155H/+) mice revealed significant improvement in muscle strength and performance by grip strength and Rotarod analyses when compared to the sedentary mice. In contrast, mice exercised to run downhill did not show any significant improvement. Histologically, the uphill exercised VCP(R155H/+) mice displayed an improvement in muscle atrophy, and decreased expression levels of ubiquitin, P62/SQSTM1, LC3I/II, and TDP-43 autophagy markers, suggesting an alleviation of disease-induced myopathy phenotypes. There was also an improvement in the Paget-like phenotype. Collectively, our data highlights that uphill exercise training in VCP(R155H/+) mice did not have any detrimental value to the function of muscle, and may offer effective therapeutic options for patients with VCP-associated diseases.

  5. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    Science.gov (United States)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  6. Adolescents and Exercise Induced Asthma

    Science.gov (United States)

    Hansen, Pamela; Bickanse, Shanna; Bogenreif, Mike; VanSickle, Kyle

    2008-01-01

    This article defines asthma and exercise induced asthma, and provides information on the triggers, signs, and symptoms of an attack. It also gives treatments for these conditions, along with prevention guidelines on how to handle an attack in the classroom or on the practice field. (Contains 2 tables and 1 figure.)

  7. Systematic review of core muscle activity during physical fitness exercises.

    Science.gov (United States)

    Martuscello, Jason M; Nuzzo, James L; Ashley, Candi D; Campbell, Bill I; Orriola, John J; Mayer, John M

    2013-06-01

    A consensus has not been reached among strength and conditioning specialists regarding what physical fitness exercises are most effective to stimulate activity of the core muscles. Thus, the purpose of this article was to systematically review the literature on the electromyographic (EMG) activity of 3 core muscles (lumbar multifidus, transverse abdominis, quadratus lumborum) during physical fitness exercises in healthy adults. CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, PubMed, SPORTdiscus, and Web of Science databases were searched for relevant articles using a search strategy designed by the investigators. Seventeen studies enrolling 252 participants met the review's inclusion/exclusion criteria. Physical fitness exercises were partitioned into 5 major types: traditional core, core stability, ball/device, free weight, and noncore free weight. Strength of evidence was assessed and summarized for comparisons among exercise types. The major findings of this review with moderate levels of evidence indicate that lumbar multifidus EMG activity is greater during free weight exercises compared with ball/device exercises and is similar during core stability and ball/device exercises. Transverse abdominis EMG activity is similar during core stability and ball/device exercises. No studies were uncovered for quadratus lumborum EMG activity during physical fitness exercises. The available evidence suggests that strength and conditioning specialists should focus on implementing multijoint free weight exercises, rather than core-specific exercises, to adequately train the core muscles in their athletes and clients.

  8. Stair descending exercise using a novel automatic escalator: effects on muscle performance and health-related parameters.

    Science.gov (United States)

    Paschalis, Vassilis; Theodorou, Anastasios A; Panayiotou, George; Kyparos, Antonios; Patikas, Dimitrios; Grivas, Gerasimos V; Nikolaidis, Michalis G; Vrabas, Ioannis S

    2013-01-01

    A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status.

  9. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle.

    Science.gov (United States)

    Porter, Craig; Reidy, Paul T; Bhattarai, Nisha; Sidossis, Labros S; Rasmussen, Blake B

    2015-09-01

    Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in numerous clinical settings. Endurance exercise has long been known to increase mitochondrial function in the skeletal muscle. Comparatively little is known regarding the effect of resistance exercise training (RET) on skeletal muscle mitochondrial respiratory function. The purpose of the current study was to determine the effect of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. Here, we studied the effect of a 12-wk RET program on skeletal muscle mitochondrial function in 11 young healthy men. Muscle biopsies were collected before and after the 12-wk training program, and mitochondrial respiratory capacity was determined in permeabilized myofibers by high-resolution respirometry. RET increased lean body mass and quadriceps muscle strength by 4% and 15%, respectively (P training (P function of skeletal muscle mitochondria.

  10. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  11. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Madsen, K.; Kiens, Bente

    1996-01-01

    1. The aim of this study was to examine the effect of muscle pH on muscle metabolism and development of fatigue during intense exercise. 2. Seven subjects performed intense exhaustive leg exercise on two occasions: with and without preceding intense intermittent arm exercise leading to high...... (kg wet weight)-1 min-1). The rate of muscle glycogen breakdown was the same in C and HL (8.1 +/- 1.2 vs. 8.2 +/- 1.0 mmol (kg wet weight)-1 min-1). 5. The present data suggest that elevated muscle acidity does not reduce muscle glycogenolysis/glycolysis and is not the only cause of fatigue during...... intense exercise in man. Instead, accumulation of potassium in muscle interstitium may be an important factor in the development of fatigue....

  12. Proteome Profiles of Longissimus and Biceps femoris Porcine Muscles Related to Exercise and Resting

    NARCIS (Netherlands)

    Pas, te M.F.W.; Keuning, E.; Wiel, van de D.F.M.; Young, J.F.; Oksbjerg, N.; Kruijt, L.

    2011-01-01

    Exercise affects muscle metabolism and composition in the untrained muscles. The proteome of muscle tissue will be affected by exercise and resting. This is of economic importance for pork quality where transportation relates to exercise of untrained muscles. Rest reverses exercise effects. The

  13. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls.

    Science.gov (United States)

    Weihrauch, Martin; Handschin, Christoph

    2018-01-01

    Exercise exerts significant effects on the prevention and treatment of many diseases. However, even though some of the key regulators of training adaptation in skeletal muscle have been identified, this biological program is still poorly understood. Accordingly, exercise-based pharmacological interventions for many muscle wasting diseases and also for pathologies that are triggered by a sedentary lifestyle remain scarce. The most efficacious compounds that induce muscle hypertrophy or endurance are hampered by severe side effects and are classified as doping. In contrast, dietary supplements with a higher safety margin exert milder outcomes. In recent years, the design of pharmacological agents that activate the training program, so-called "exercise mimetics", has been proposed, although the feasibility of such an approach is highly debated. In this review, the most recent insights into key regulatory factors and therapeutic approaches aimed at leveraging exercise adaptations are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Efflux of Creatine Kinase from Isolated Soleus Muscle Depends on Age, Sex and Type of Exercise in Mice

    Directory of Open Access Journals (Sweden)

    Juozas Baltusnikas, Tomas Venckunas, Audrius Kilikevicius, Andrej Fokin, Aivaras Ratkevicius

    2015-06-01

    Full Text Available Elevated plasma creatine kinase (CK activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL of adult (7.5-month old female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05 after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h−1, respectively, but smaller (p < 0.05 than for young females after the same type of exercise (1069 ± 341 mU·h−1. Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h−1, respectively, p < 0.001. Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice.

  15. Differential effects of exercise training on skeletal muscle SERCA gene expression.

    Science.gov (United States)

    Kubo, Hajime; Libonati, Joseph R; Kendrick, Zebulon V; Paolone, Albert; Gaughan, Johm P; Houser, Steven R

    2003-01-01

    Exercise training induces significant changes in the performance of skeletal muscle. To determine whether changes in the gene expression of rat hind-limb muscle sarcoplasmic reticulum Ca2+ -ATPase isoforms (SERCA1a and SERCA2a) in response to either moderate- or high-intensity exercise training underlie the functional remodeling. SERCA1a and SERCA2a isoform mRNA expression was determined in predominantly fast-twitch, gastrocnemius muscle and predominantly slow-twitch, soleus muscle with northern analysis. SERCA mRNA was normalized by the 18S rRNA measured in the same sample. Significant increases in the gastrocnemius SERCA2a mRNA expression were observed after both moderate- and high-intensity training. No significant change in SERCA1a expression was found under any conditions. These results indicate that both moderate and high intensity exercise increase the relative SERCA2a expression in the gastrocnemius.

  16. Supplementation Strategies to Reduce Muscle Damage and Improve Recovery Following Exercise in Females: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jessica L. Köhne

    2016-11-01

    Full Text Available Exercise-induced muscle damage (EIMD caused by unaccustomed or strenuous exercise can result in reduced muscle force, increased muscle soreness, increased intramuscular proteins in the blood, and reduced performance. Pre- and post-exercise optimal nutritional intake is important to assist with muscle-damage repair and reconditioning to allow for an accelerated recovery. The increased demand for training and competing on consecutive days has led to a variety of intervention strategies being used to reduce the negative effects of EIMD. Nutritional intervention strategies are largely tested on male participants, and few report on sex-related differences relating to the effects of the interventions employed. This review focuses on nutritional intervention strategies employed to negate the effects of EIMD, focussing solely on females.

  17. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Science.gov (United States)

    Deane, Colleen S; Wilkinson, Daniel J; Phillips, Bethan E; Smith, Kenneth; Etheridge, Timothy; Atherton, Philip J

    2017-04-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1 ) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2 ) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. Copyright © 2017 the American Physiological Society.

  18. Perceived loading and muscle activity during hip strengthening exercises

    DEFF Research Database (Denmark)

    Brandt, Mikkel; Jakobsen, Markus Due; Thorborg, Kristian

    2013-01-01

    OBJECTIVE: Decreased hip muscle strength is frequently reported in patients with hip injury or pathology. Furthermore, soccer players suffering from groin injury show decreased strength of hip muscles. Estimating 10-repetition maximum can be time-consuming and difficult, thus, using the Borg...... category rating 10 scale (Borg CR10 scale) can be a useful tool for estimating the intensity of exercise. The aims of this study were 1) to investigate the feasibility of the use of the Borg CR10 scale for rating strength training intensity of the hip abductor and hip adductor muscles, and 2) to compare...... hip muscle activity during hip abduction and hip adduction exercises using elastic resistance and isotonic machines, using electromyography (EMG). METHODS: EMG activity was recorded from 11 muscles at the hip, thigh and trunk during hip adduction and hip abduction exercises in 16 untrained women...

  19. Wnt and β-Catenin Signaling and Skeletal Muscle Myogenesis in Response to Muscle Damage and Resistance Exercise and Training

    Directory of Open Access Journals (Sweden)

    Dan Newmire

    2015-10-01

    Full Text Available The factors that regulate skeletal muscle hypertrophy in human adults in response to resistance training (RT has largely focused on endogenous endocrine responses. However, the endocrine response to RT as having an obligatory role in muscle hypertrophy has come under scrutiny, as other mechanisms and pathways seem to also be involved in up-regulating muscle protein synthesis (MPS. Skeletal muscle myogenesis is a multifactorial process of tissue growth and repair in response to resistance training is regulated by many factors.  As a result, satellite cell-fused myogenesis is a possible factor in skeletal muscle regeneration and hypertrophy in response to RT.  The Wnt family ligands interact with various receptors and activate different downstream signaling pathways and have been classified as either canonical (β-catenin dependent or non-canonical (β-catenin independent.  Wnt is secreted from numerous tissues in a paracrine fashion. The Wnt/β-catenin signaling pathway is a highly-regulated and intricate pathway that is essential to skeletal muscle myogenesis.  The canonical Wnt/β-catenin pathway may influence satellite cells to myogenic commitment, differentiation, and fusion into muscle fibers in response to injury or trauma, self-renewal, and normal basal turnover.  The current literature has shown that, in response mechanical overload from acute resistance exercise and chronic resistance training, that the Wnt/β-catenin signaling pathway is stimulated which may actuate the process of muscle repair and hypertrophy in response to exercise-induced muscle damage. The purpose of this review is to elaborate on the Wnt/β-catenin signaling  pathway, the current literature investigating the relationship of the Wnt/β-catenin pathway and its effects on myogenesis is response to muscle damage and resistance exercise and training.      Keywords: skeletal muscle, hypertrophy, myogenesis, cell signaling, protein synthesis, resistance

  20. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Universidade Federal de Sergipe, Universidade de São Paulo (Brazil)

    2015-08-15

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N{sup G}-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  1. Fatigue-related adaptations in muscle coordination during a cyclic exercise in humans.

    Science.gov (United States)

    Turpin, Nicolas A; Guével, Arnaud; Durand, Sylvain; Hug, François

    2011-10-01

    Muscle fatigue is an exercise-induced reduction in the capability of a muscle to generate force. A possible strategy to counteract the effects of fatigue is to modify muscle coordination. We designed this study to quantify the effect of fatigue on muscle coordination during a cyclic exercise involving numerous muscles. Nine human subjects were tested during a constant-load rowing exercise (mean power output: 217.9±32.4 W) performed until task failure. The forces exerted at the handle and the foot-stretcher were measured continuously and were synchronized with surface electromyographic (EMG) signals measured in 23 muscles. In addition to a classical analysis of individual EMG data (EMG profile and EMG activity level), a non-negative matrix factorization algorithm was used to identify the muscle synergies at the start and the end of the test. Among the 23 muscles tested, 16 showed no change in their mean activity level across the rowing cycle, five (biceps femoris, gluteus maximus, semitendinosus, trapezius medius and vastus medialis) showed a significant increase and two (gastrocnemius lateralis and longissimus) showed a significant decrease. We found no change in the number of synergies during the fatiguing test, i.e. three synergies accounted for more than 90% of variance accounted for at the start (92.4±1.5%) and at the end (91.0±1.8%) of the exercise. Very slight modifications at the level of individual EMG profiles, synergy activation coefficients and muscle synergy vectors were observed. These results suggest that fatigue during a cyclic task preferentially induces an adaptation in muscle activity level rather than changes in the modular organization of the muscle coordination.

  2. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Justin D Crane

    Full Text Available Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  3. Stress urinary incontinence: effect of pelvic muscle exercise

    NARCIS (Netherlands)

    Ferguson, K. L.; McKey, P. L.; Bishop, K. R.; Kloen, P.; Verheul, J. B.; Dougherty, M. C.

    1990-01-01

    Twenty women with stress urinary incontinence diagnosed by urodynamic testing participated in a 6-week pelvic muscle exercise program. The aim of the study was to evaluate the effectiveness of the exercise program, with or without an intravaginal balloon, on urinary leakage as determined by a

  4. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  5. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    Directory of Open Access Journals (Sweden)

    O. A. Sánchez

    2009-01-01

    Full Text Available Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one of five experimental groups (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin. Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks. Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin.

  6. Proteomic responses of skeletal and cardiac muscle to exercise

    Science.gov (United States)

    Burniston, Jatin G.; Hoffman, Eric P.

    2016-01-01

    Summary Regular exercise is effective in the prevention of chronic diseases and confers a lower risk of death in individuals displaying risk factors such as hypertension and dyslipidaemia. Thus, knowledge of the molecular responses to exercise provides a valuable contrast for interpreting investigations of disease and can highlight novel therapeutic targets. While exercise is an everyday experience and can be conceptualized in simple terms, exercise is a complex physiological phenomena and investigation of exercise responses requires sophisticated analytical techniques and careful standardization of the exercise stimulus. Proteomic investigation of exercise is in its infancy but the ability to link changes in function with comprehensive changes in protein expression and post-translational modification holds great promise for advancing physiology. This review highlights recent pioneering work investigating the effects of exercise in skeletal and cardiac muscle that has uncovered novel mechanisms underling the benefits of physical activity. PMID:21679117

  7. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    discuss the influence of reactive oxygen species produced within the muscle as well as muscle glycogen and TAK1 in regulating AMPK during exercise. Currently, during intensive contraction, activation of alpha2-AMPK seems mainly to rely on AMP accumulating from ATP-hydrolysis whereas calcium signaling may...

  8. The effect of whole body vibration exercise on muscle activation ...

    African Journals Online (AJOL)

    The effect of whole body vibration exercise (WBV) on muscle activation has recently been a topic for discussion amongst some researchers. Researchers are divided on the safety and effectiveness of WBV. The aim of this study was to investigate the effect of WBV on muscle activation. Healthy university students (N = 11; ...

  9. Strength training and aerobic exercise training for muscle disease

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2013-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004. OBJECTIVES: To examine the safety and

  10. Enhanced muscle glucose metabolism after exercise in the rat

    DEFF Research Database (Denmark)

    Garetto, L P; Richter, Erik; Goodman, M N

    1984-01-01

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle gl...

  11. Strength training and aerobic exercise training for muscle disease (Review)

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2013-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004. OBJECTIVES: To examine the safety and

  12. Transmission of muscle force to fascia during exercise.

    Science.gov (United States)

    Findley, Thomas; Chaudhry, Hans; Dhar, Sunil

    2015-01-01

    As the muscle contracts, fibers get thicker, forcing the fascial tubular layers surrounding the muscle (endomysium, perimysium and epimysium) to expand in diameter and hence to shorten in length. We develop a mathematical model to determine the fraction of force generated by extremity muscles during contraction that is transmitted to the surrounding tubes of fascia. Theory of elasticity is used to determine the modulus of elasticity, radial strain and the radial stress transmitted to the fascia. Starting with published data on dimensions of muscle and muscle force, we find radial stress is 50% of longitudinal stress in the soleus, medial gastrocnemius, and elbow flexor and extensor muscles. Substantial stress is transmitted to fascia during muscular exercise, which has implications for exercise therapies if they are designed for fascial as well as muscular stress. This adds additional perspective to myofascial force transmission research. Published by Elsevier Ltd.

  13. Astragalus membranaceus Improves Exercise Performance and Ameliorates Exercise-Induced Fatigue in Trained Mice

    Directory of Open Access Journals (Sweden)

    Tzu-Shao Yeh

    2014-03-01

    Full Text Available Astragalus membranaceus (AM is a popular “Qi-tonifying” herb with a long history of use as a Traditional Chinese Medicine with multiple biological functions. However, evidence for the effects of AM on exercise performance and physical fatigue is limited. We evaluated the potential beneficial effects of AM on ergogenic and anti-fatigue functions following physiological challenge. Male ICR strain mice were randomly assigned to four groups (n = 10 per group for treatment: (1 sedentary control and vehicle treatment (vehicle control; (2 exercise training with vehicle treatment (exercise control; and (3 exercise training with AM treatment at 0.615 g/kg/day (Ex-AM1 or (4 3.075 g/kg/day (Ex-AM5. Both the vehicle and AM were orally administered for 6 weeks. Exercise performance and anti-fatigue function were evaluated by forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, and creatine kinase after 15-min swimming exercise. Exercise training combined with AM supplementation increased endurance exercise capacity and increased hepatic and muscle glycogen content. AM reduced exercise-induced accumulation of the byproducts blood lactate and ammonia with acute exercise challenge. Moreover, we found no deleterious effects from AM treatment. Therefore, AM supplementation improved exercise performance and had anti-fatigue effects in mice. It may be an effective ergogenic aid in exercise training.

  14. Effect of elastic-band exercise on muscle damage and inflammatory responses in Taekwondo athletes

    Directory of Open Access Journals (Sweden)

    Keivan Gadruni

    2015-08-01

    Full Text Available INTRODUCTION: Elastic bands offer variable elastic resistance (ER throughout a range of motion and their incorporation with exercise movements has been used for variable strength training and rehabilitation purposes. Objective: Investigate the effect of acute bout of progressive elastic-band exercise on muscle damage and inflammatory response in Taekwondo athletes (TKD compared with untrained ones.METHODS: Fourteen (TKD, n = 7 and untrained, n = 7 men performed 3 sets of progressive resistance elastic exercise. Blood samples were taken pre-exercise and also immediately and 24h post exercise. Delayed onset muscle soreness (DOMS, creatine kinase (CK and lactate dehydrogenase (LDH activity, total leukocyte counts, interleukin-6 and C-reactive protein (CRP were analyzed.RESULTS: Only DOMS increased in untrained group, but elevation of DOMS was observed in both groups (TKD and untrained at 24h after exercise (p<0.05. CK and LDH activity increased in both groups significantly. Also TKD group only showed CK increasing 24h post exercise (p<0.05. Total circulating leukocyte counts increased immediately in post exercise experiments and decreased in 24h ones in both groups (p<0.05. Serum IL-6 immediately increased in both groups and 24h post exercises but there was no significant difference between immediate and 24h post exercise experiments in TKD group. Furthermore, CRP just increased 24h after exercise in both groups (p<0.05.CONCLUSION: Progressive resistance elastic exercise induced muscle damage and inflammation in TKD athletes, but also had smaller changes in comparison with untrained group and other forms of exercise.

  15. A sport-physiological perspective on bird migration : Evidence for flight-induced muscle damage

    NARCIS (Netherlands)

    Guglielmo, C; Piersma, T; Williams, TD; Williams, Tony D.

    Exercise-induced muscle damage is a well-described consequence of strenuous exercise, but its potential importance in the evolution of animal activity patterns is unknown. We used plasma creatine kinase (CK) activity as an indicator of muscle damage to investigate whether the high intensity,

  16. Hyperinsulinaemia, hyperaminoacidaemia and post‐exercise muscle anabolism: the search for the optimal recovery drink

    OpenAIRE

    Manninen, A H

    2006-01-01

    Dietary supplements and other ergogenic aids are popular among athletes. Recent studies have shown that nutritional mixtures containing protein hydrolysates, added leucine, and high‐glycaemic carbohydrates greatly augment insulin secretion compared with high‐glycaemic carbohydrates only. When post‐exercise hyperinsulinaemia is supported by hyperaminoacidaemia induced by protein hydrolysate and leucine ingestion, net protein deposition in muscle should occur. Thus, consumption of post‐exercise...

  17. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies

    Science.gov (United States)

    Vissing, J.; Vissing, S. F.; MacLean, D. A.; Saltin, B.; Quistorff, B.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    Muscle acidosis has been implicated as a major determinant of reflex sympathetic activation during exercise. To test this hypothesis we studied sympathetic exercise responses in metabolic myopathies in which muscle acidosis is impaired or augmented during exercise. As an index of reflex sympathetic activation to muscle, microneurographic measurements of muscle sympathetic nerve activity (MSNA) were obtained from the peroneal nerve. MSNA was measured during static handgrip exercise at 30% of maximal voluntary contraction force to exhaustion in patients in whom exercise-induced muscle acidosis is absent (seven myophosphorylase deficient patients; MD [McArdle's disease], and one patient with muscle phosphofructokinase deficiency [PFKD]), augmented (one patient with mitochondrial myopathy [MM]), or normal (five healthy controls). Muscle pH was monitored by 31P-magnetic resonance spectroscopy during handgrip exercise in the five control subjects, four MD patients, and the MM and PFKD patients. With handgrip to exhaustion, the increase in MSNA over baseline (bursts per minute [bpm] and total activity [%]) was not impaired in patients with MD (17+/-2 bpm, 124+/-42%) or PFKD (65 bpm, 307%), and was not enhanced in the MM patient (24 bpm, 131%) compared with controls (17+/-4 bpm, 115+/-17%). Post-handgrip ischemia studied in one McArdle patient, caused sustained elevation of MSNA above basal suggesting a chemoreflex activation of MSNA. Handgrip exercise elicited an enhanced drop in muscle pH of 0.51 U in the MM patient compared with the decrease in controls of 0.13+/-0.02 U. In contrast, muscle pH increased with exercise in MD by 0.12+/-0.05 U and in PFKD by 0.01 U. In conclusion, patients with glycogenolytic, glycolytic, and oxidative phosphorylation defects show normal muscle sympathetic nerve responses to static exercise. These findings indicate that muscle acidosis is not a prerequisite for sympathetic activation in exercise.

  18. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise.

    Science.gov (United States)

    Eddens, Lee; Browne, Sarah; Stevenson, Emma J; Sanderson, Brad; van Someren, Ken; Howatson, Glyn

    2017-07-01

    This study investigated the effect of protein supplementation on recovery following muscle-damaging exercise, which was induced with a concurrent exercise design. Twenty-four well-trained male cyclists were randomised to 3 independent groups receiving 20 g protein hydrolysate, iso-caloric carbohydrate, or low-calorific placebo supplementation, per serve. Supplement serves were provided twice daily, from the onset of the muscle-damaging exercise, for a total of 4 days and in addition to a controlled diet (6 g·kg-1·day-1 carbohydrate, 1.2 g·kg-1·day-1 protein, remainder from fat). Following the concurrent exercise session at time-point 0 h, comprising a simulated high-intensity road cycling trial and 100 drop-jumps, recovery of outcome measures was assessed at 24, 48, and 72 h. The concurrent exercise protocol was deemed to have caused exercise-induced muscle damage (EIMD), owing to time effects (p 0.05) were observed for any of the outcome measures. The present results indicate that protein supplementation does not attenuate any of the indirect indices of EIMD imposed by concurrent exercise, when employing great rigour around the provision of a quality habitual diet and the provision of appropriate supplemental controls.

  19. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  20. Enhancing facial aesthetics with muscle retraining exercises-a review.

    Science.gov (United States)

    D'souza, Raina; Kini, Ashwini; D'souza, Henston; Shetty, Nitin; Shetty, Omkar

    2014-08-01

    Facial attractiveness plays a key role in social interaction. 'Smile' is not only a single category of facial behaviour, but also the emotion of frank joy which is expressed on the face by the combined contraction of the muscles involved. When a patient visits the dental clinic for aesthetic reasons, the dentist considers not only the chief complaint but also the overall harmony of the face. This article describes muscle retraining exercises to achieve control over facial movements and improve facial appearance which may be considered following any type of dental rehabilitation. Muscle conditioning, training and strengthening through daily exercises will help to counter balance the aging effects.

  1. Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise.

    Directory of Open Access Journals (Sweden)

    Hsuan-Ying Chen

    Full Text Available Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p. 30 min before treadmill exercise (20 m/min for 60 min. Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (P<0.05 in the Mg group. Lactate levels in the muscle, blood, and brain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (P<0.05 than those in the control group during exercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise.

  2. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats.

    Directory of Open Access Journals (Sweden)

    Yulia N Lomonosova

    Full Text Available Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS substrate supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C, downhill running with (RA or without (R L-Arg supplementation and downhill running with L-NAME supplementation (RN. Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively, reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively, and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively. In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.

  3. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals

    Directory of Open Access Journals (Sweden)

    Cribb Paul J

    2009-06-01

    Full Text Available Abstract Background Eccentric exercise-induced damage leads to reductions in muscle force, increased soreness, and impaired muscle function. Creatine monohydrate's (Cr ergogenic potential is well established; however few studies have directly examined the effects of Cr supplementation on recovery after damage. We examined the effects of Cr supplementation on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Fourteen untrained male participants (22.1 ± 2.3 yrs, 173 ± 7.7 cm, 76.2 ± 9.3 kg were randomly separated into 2 supplement groups: i Cr and carbohydrate (Cr-CHO; n = 7; or ii carbohydrate (CHO; n = 7. Participants consumed their supplement for a period of 5 days prior to, and 14 days following a resistance exercise session. Participants performed 4 sets of 10 eccentric-only repetitions at 120% of their maximum concentric 1-RM on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase (CK and lactate dehydrogenase (LDH activity were assessed as relevant blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results The Cr-supplemented group had significantly greater isokinetic (10% higher and isometric (21% higher knee extension strength during recovery from exercise-induced muscle damage. Furthermore, plasma CK activity was significantly lower (by an average of 84% after 48 hrs (P Conclusion The major finding of this investigation was a significant improvement in the rate of recovery of knee extensor muscle function after Cr supplementation following injury.

  4. Exercise capacity, muscle strength and fatigue in sarcoidosis.

    Science.gov (United States)

    Marcellis, R G J; Lenssen, A F; Elfferich, M D P; De Vries, J; Kassim, S; Foerster, K; Drent, M

    2011-09-01

    The aim of this case-control study was to investigate the prevalence of exercise intolerance, muscle weakness and fatigue in sarcoidosis patients. Additionally, we evaluated whether fatigue can be explained by exercise capacity, muscle strength or other clinical characteristics (lung function tests, radiographic stages, prednisone usage and inflammatory markers). 124 sarcoidosis patients (80 males) referred to the Maastricht University Medical Centre (Maastricht, the Netherlands) were included (mean age 46.6±10.2 yrs). Patients performed a 6-min walk test (6MWT) and handgrip force (HGF), elbow flexor muscle strength (EFMS), quadriceps peak torque (QPT) and hamstring peak torque (HPT) tests. Maximal inspiratory pressure (P(I,max)) was recorded. All patients completed the Fatigue Assessment Scale (FAS) questionnaire. The 6MWT was reduced in 45% of the population, while HGF, EFMS, QPT and HPT muscle strength were reduced in 15, 12, 27 and 18%, respectively. P(I,max) was reduced in 43% of the population. The majority of the patients (81%) reported fatigue (FAS ≥22). Patients with reduced peripheral muscle strength of the upper and/or lower extremities were more fatigued and demonstrated impaired lung functions, fat-free mass, P(I,max), 6MWT and quality of life. Fatigue was neither predicted by exercise capacity, nor by muscle strength. Besides fatigue, exercise intolerance and muscle weakness are frequent problems in sarcoidosis. We therefore recommend physical tests in the multidisciplinary management of sarcoidosis patients, even in nonfatigued patients.

  5. Core muscle activation during Swiss ball and traditional abdominal exercises.

    Science.gov (United States)

    Escamilla, Rafael F; Lewis, Clare; Bell, Duncan; Bramblet, Gwen; Daffron, Jason; Lambert, Steve; Pecson, Amanda; Imamura, Rodney; Paulos, Lonnie; Andrews, James R

    2010-05-01

    Controlled laboratory study using a repeated-measures, counterbalanced design. To test the ability of 8 Swiss ball exercises (roll-out, pike, knee-up, skier, hip extension right, hip extension left, decline push-up, and sitting march right) and 2 traditional abdominal exercises (crunch and bent-knee sit-up) on activating core (lumbopelvic hip complex) musculature. Numerous Swiss ball abdominal exercises are employed for core muscle strengthening during training and rehabilitation, but there are minimal data to substantiate the ability of these exercises to recruit core muscles. It is also unknown how core muscle recruitment in many of these Swiss ball exercises compares to core muscle recruitment in traditional abdominal exercises such as the crunch and bent-knee sit-up. A convenience sample of 18 subjects performed 5 repetitions for each exercise. Electromyographic (EMG) data were recorded on the right side for upper and lower rectus abdominis, external and internal oblique, latissimus dorsi, lumbar paraspinals, and rectus femoris, and then normalized using maximum voluntary isometric contractions (MVICs). EMG signals during the roll-out and pike exercises for the upper rectus abdominis (63% and 46% MVIC, respectively), lower rectus abdominis (53% and 55% MVIC, respectively), external oblique (46% and 84% MVIC, respectively), and internal oblique (46% and 56% MVIC, respectively) were significantly greater compared to most other exercises, where EMG signals ranged between 7% to 53% MVIC for the upper rectus abdominis, 7% to 44% MVIC for the lower rectus abdominis, 14% to 73% MVIC for the external oblique, and 16% to 47% MVIC for the internal oblique. The lowest EMG signals were consistently found in the sitting march right exercise. Latissimus dorsi EMG signals were greatest in the pike, knee-up, skier, hip extension right and left, and decline push-up (17%-25% MVIC), and least with the sitting march right, crunch, and bent-knee sit-up exercises (7%-8% MVIC

  6. Proteomic responses of skeletal and cardiac muscle to exercise.

    Science.gov (United States)

    Burniston, Jatin G; Hoffman, Eric P

    2011-06-01

    Regular exercise is effective in the prevention of chronic diseases and confers a lower risk of death in individuals displaying risk factors such as hypertension and dyslipidemia. Thus, knowledge of the molecular responses to exercise provides a valuable contrast for interpreting investigations of disease and can highlight novel therapeutic targets. While exercise is an everyday experience and can be conceptualized in simple terms, it is also a complex physiological phenomenon and investigation of exercise responses requires sophisticated analytical techniques and careful standardization of the exercise stimulus. Proteomic investigation of exercise is in its infancy but the ability to link changes in function with comprehensive changes in protein expression and post-translational modification holds great promise for advancing physiology. This article highlights recent pioneering work investigating the effects of exercise in skeletal and cardiac muscle that has uncovered novel mechanisms underlying the benefits of physical activity.

  7. Validation of a New NIRS Method for Measuring Muscle Oxygenation During Rhythmic Handgrip Exercise

    Science.gov (United States)

    Hagan, R. Donald; Soller, Babs R.; Soyemi, Olusola; Landry, Michelle; Shear, Michael; Wu, Jacqueline

    2006-01-01

    Near infrared spectroscopy (NIRS) is commonly used to measure muscle oxygenation during exercise and recovery. Current NIRS algorithms do not account for variation in water content and optical pathlength during exercise. The current effort attempts to validate a newly developed NIRS algorithm during rhythmic handgrip exercise and recovery. Six female subjects, aver age 28 +/- 6 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space. A NIRS sensor with 30 mm source-detector separation was placed on the flexor digitorum profundus. Subjects performed two 5-min bouts of rhythmic handgrip exercise (2 s contraction/1 s relaxation) at 15% and 30% of maximal voluntary contraction. Venous blood was sampled before each bout, during the last minute of exercise, and after 5 minutes of recovery. Venous oxygen saturation (SvO2) was measured with a I-stat CG-4+ cartridge. Spectra were collected between 700-900 nm. A modified Beer's Law formula was used to calculate the absolute concentration of oxyhemoglobin (HbO2), deoxyhemoglobin (Hb) and water, as well as effective pathlength for each spectrum. Muscle oxygen saturation (SmO2) was calculated from the HbO2 and Hb results. The correlation between SvO2 and SmO2 was determined. Optical pathlength and water varied significantly during each exercise bout, with pathlength increasing approximately 20% and water increasing about 2%. R2 between blood and muscle SO2 was found to be 0.74, the figure shows the relationship over SvO2 values between 22% and 82%. The NIRS measurement was, on average, 6% lower than the blood measurement. It was concluded that pathlength changes during exercise because muscle contraction causes variation in optical scattering. Water concentration also changes, but only slightly. A new NIRS algorithm which accounts for exercise-induced variation in water and pathlength provided an accurate assessment of muscle oxygen saturation before, during and after

  8. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  9. Muscle Volume Increases Following 16 Weeks of Resistive Exercise Training with the Advanced Resistive Exercise Device (ARED) and Free Weights

    Science.gov (United States)

    Nash, R. E.; Loehr, J. A.; Lee, S. M. C.; English, K. L.; Evans, H.; Smith, S. A.; Hagan, R. D.

    2009-01-01

    Space flight-induced muscle atrophy, particularly in the postural and locomotorymuscles, may impair task performance during long-duration space missions and planetary exploration. High intensity free weight (FW) resistive exercise training has been shown to prevent atrophy during bed rest, a space flight analog. NASA developed the Advanced Resistive Exercise Device (ARED) to simulate the characteristics of FW exercise (i.e. constant mass, inertial force) and to be used as a countermeasure during International Space Station (ISS) missions. PURPOSE: To compare the efficacy of ARED and FW training to induce hypertrophy in specific muscle groups in ambulatory subjects prior to deploying ARED on the ISS. METHODS: Twenty untrained subjects were assigned to either the ARED (8 males, 3 females) or FW (6 males, 3 females) group and participated in a periodizedtraining protocol consisting of squat (SQ), heel raise (HR), and deadlift(DL) exercises 3 d wk-1 for 16 wks. SQ, HR, and DL muscle strength (1RM) was measured before, after 8 wks, and after 16 wks of training to prescribe exercise and measure strength changes. Muscle volume of the vastigroup (V), hamstring group (H), hip adductor group (ADD), medial gastrocnemius(MG), lateral gastrocnemius(LG), and deep posterior muscles including soleus(DP) was measured using MRI pre-and post-training. Consecutive cross-sectional images (8 mm slices with a 2 mm gap) were analyzed and summed. Anatomical references insured that the same muscle sections were analyzed pre-and post-training. Two-way repeated measures ANOVAs (pvolume between training devices. RESULTS: SQ, HR, and DL 1RM increased in both FW (SQ: 49+/-6%, HR: 12+/-2%, DL: 23+/-4%) and ARED (SQ: 31+/-4%, HR: 18+/-2%, DL: 23+/-3%) groups. Both groups increased muscle volume in the V (FW: 13+/-2%, ARED: 10+/-2%), H (FW: 3+/-1%, ARED: 3+/-1 %), ADD (FW: 15=/-2%, ARED: 10+/-1%), LG (FW: 7+/-2%, ARED: 4+/-1%), MG (FW: 7+/-2%, ARED: 5+/-2%), and DP (FW: 2+/-1%; ARED: 2+/-1%) after

  10. Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport.

    Science.gov (United States)

    Cleland, P J; Appleby, G J; Rattigan, S; Clark, M G

    1989-10-25

    Contraction-induced translocation of protein kinase C (Richter E.A., Cleland, P.J.F., Rattigan, S., and Clark, M.G. (1987) FEBS Lett. 217, 232-236) implies a role for this enzyme in muscle contraction or the associated metabolic adjustments. In the present study, this role is further examined particularly in relation to changes in glucose transport. Electrical stimulation of the sciatic nerve of the anesthetized rat in vivo led to a time-dependent translocation of protein kinase C and a 2-fold increase in the concentrations of both diacylglycerol and phosphatidic acid. Maximum values for the latter were reached at 2 min and preceded the maximum translocation of protein kinase C (10 min). Stimulation of muscles in vitro increased the rate of glucose transport, but this required 20 min to reach maximum. There was no reversal of translocation or decrease in the concentrations of diacylglycerol and phosphatidic acid even after 30 min of rest following a 5-min period of stimulation in vivo. Translocation was not influenced by variations in applied load at maximal fiber recruitment but was dependent on the frequency of nontetanic stimuli, reaching a maximum at 4 Hz. The relationship between protein kinase C and glucose transport was also explored by varying the number of tetanic stimuli. Whereas only one train of stimuli (200 ms, 100 Hz) was required for maximal effects on protein kinase C, diacylglycerol, and phosphatidic acid, more than 35 trains of stimuli were required to activate glucose transport. It is concluded that the production of diacylglycerol and the translocation of protein kinase C may be causally related. However, if the translocated protein kinase C is involved in the activation of glucose transport during muscle contractions, an accumulated exposure to Ca2+, resulting from multiple contractions, would appear to be necessary.

  11. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    providing LC during recovery elicited a sustained/enhanced increase in activation of these genes through 8 to 24 hours of recovery. These findings provide evidence that factors associated with substrate availability and/or cellular metabolic recovery (eg, muscle glycogen restoration) influence......In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, 9...... male subjects (aged 22-27) completed 75 minutes of cycling exercise at 75% V¿o2max on 2 occasions, consuming either a high-carbohydrate (HC) or low-carbohydrate (LC) diet during the subsequent 24 hours of recovery. Nuclei were isolated and tissue frozen from vastus lateralis muscle biopsies obtained...

  12. Regular Exercisers Have Stronger Pelvic Floor Muscles than Non-Regular Exercisers at Midpregnancy.

    Science.gov (United States)

    Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor

    2017-12-26

    Today, all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 min of aerobic activity on most days of the week, in addition to perform strength training of the major muscle groups 2-3 days per week, and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. To compare vaginal resting pressure, pelvic floor muscle strength and endurance in regular exercisers (exercise ≥ 30 minutes ≥ 3 times per week) and non-exercisers at mid-pregnancy. Furthermore, to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (± 1.4) including 218 nulliparous pregnant women, mean age 28.6 years (range 19-40) and pre-pregnancy body mass index 23.9 kg/m 2 (SD 4.0). Vaginal resting pressure, pelvic floor muscle strength and pelvic floor muscle endurance were measured by a high precision pressure transducer connected to a vaginal balloon. International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using Independent Sample T-test. Linear regression analysis was conducted to adjust for pre-pregnancy body mass index, age, smoking during pregnancy and regular pelvic floor muscle training during pregnancy. P-value was set to ≤ 0.05. Regular exercisers had statistically significant stronger ( mean 6.4 cm H 2 O (95% CI: 1.7, 11.2)) and more enduring ( mean 39.9 cm H 2 Osec (95% CI: 42.2, 75.7)) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor muscle strength and not regular general exercise was associated with urinary continence (adjusted B: -6.4 (95% CI: -11.5, -1.4)). Regular

  13. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity

    OpenAIRE

    Kang, Chounghun; Lim, Wonchung

    2016-01-01

    Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function (?Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle? [1], ?Effects of exercise on mitochondrial content and function in aging human skeletal muscle? [2]). However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mit...

  14. Abdominal muscle fatigue following exercise in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Moxham John

    2010-02-01

    Full Text Available Abstract Background In patients with chronic obstructive pulmonary disease, a restriction on maximum ventilatory capacity contributes to exercise limitation. It has been demonstrated that the diaphragm in COPD is relatively protected from fatigue during exercise. Because of expiratory flow limitation the abdominal muscles are activated early during exercise in COPD. This adds significantly to the work of breathing and may therefore contribute to exercise limitation. In healthy subjects, prior expiratory muscle fatigue has been shown itself to contribute to the development of quadriceps fatigue. It is not known whether fatigue of the abdominal muscles occurs during exercise in COPD. Methods Twitch gastric pressure (TwT10Pga, elicited by magnetic stimulation over the 10th thoracic vertebra and twitch transdiaphragmatic pressure (TwPdi, elicited by bilateral anterolateral magnetic phrenic nerve stimulation were measured before and after symptom-limited, incremental cycle ergometry in patients with COPD. Results Twenty-three COPD patients, with a mean (SD FEV1 40.8(23.1% predicted, achieved a mean peak workload of 53.5(15.9 W. Following exercise, TwT10Pga fell from 51.3(27.1 cmH2O to 47.4(25.2 cmH2O (p = 0.011. TwPdi did not change significantly; pre 17.0(6.4 cmH2O post 17.5(5.9 cmH2O (p = 0.7. Fatiguers, defined as having a fall TwT10Pga ≥ 10% had significantly worse lung gas transfer, but did not differ in other exercise parameters. Conclusions In patients with COPD, abdominal muscle but not diaphragm fatigue develops following symptom limited incremental cycle ergometry. Further work is needed to establish whether abdominal muscle fatigue is relevant to exercise limitation in COPD, perhaps indirectly through an effect on quadriceps fatigability.

  15. The Molecular Basis for Load-Induced Skeletal Muscle Hypertrophy

    Science.gov (United States)

    Marcotte, George R.; West, Daniel W.D.; Baar, Keith

    2016-01-01

    In a mature (weight neutral) animal, an increase in muscle mass only occurs when the muscle is loaded sufficiently to cause an increase in myofibrillar protein balance. A tight relationship between muscle hypertrophy, acute increases in protein balance, and the activity of the mechanistic target of rapamycin complex 1 (mTORC1) was demonstrated 15 years ago. Since then, our understanding of the signals that regulate load-induced hypertrophy has evolved considerably. For example, we now know that mechanical load activates mTORC1 in the same way as growth factors, by moving TSC2 (a primary inhibitor of mTORC1) away from its target (the mTORC activator) Rheb. However, the kinase that phosphorylates and moves TSC2 is different in the two processes. Similarly, we have learned that a distinct pathway exists whereby amino acids activate mTORC1 by moving it to Rheb. While mTORC1 remains at the forefront of load-induced hypertrophy, the importance of other pathways that regulate muscle mass are becoming clearer. Myostatin, is best known for its control of developmental muscle size. However, new mechanisms to explain how loading regulates this process are suggesting that it could play an important role in hypertrophic muscle growth as well. Lastly, new mechanisms are highlighted for how β2 receptor agonists could be involved in load-induced muscle growth and why these agents are being developed as non-exercise-based therapies for muscle atrophy. Overall, the results highlight how studying the mechanism of load-induced skeletal muscle mass is leading the development of pharmaceutical interventions to promote muscle growth in those unwilling or unable to perform resistance exercise. PMID:25359125

  16. Beneficial effects of neuropeptide galanin on reinstatement of exercise-induced somatic and psychological trauma.

    Science.gov (United States)

    He, Biao; Fang, Penghua; Guo, Lili; Shi, Mingyi; Zhu, Yan; Xu, Bo; Bo, Ping; Zhang, Zhenwen

    2017-04-01

    Galanin is a versatile neuropeptide that is distinctly upregulated by exercise in exercise-related tissues. Although benefits from exercise-induced upregulation of this peptide have been identified, many issues require additional exploration. This Review summarizes the information currently available on the relationship between galanin and exercise-induced physical and psychological damage. On the one hand, body movement, exercise damage, and exercise-induced stress and pain significantly increase local and circulatory galanin levels. On the other hand, galanin plays an exercise-protective role to inhibit the flexor reflex and prevent excessive movement of skeletal muscles through enhancing response threshold and reducing acetylcholine release. Additionally, elevated galanin levels can boost repair of the exercise-induced damage in exercise-related tissues, including peripheral nerve, skeletal muscle, blood vessel, skin, bone, articulation, and ligament. Moreover, elevated galanin levels may serve as effective signals to buffer sport-induced stress and pain via inhibiting nociceptive signal transmission and enhancing pain threshold. This Review deepens our understanding of the profitable roles of galanin in exercise protection, exercise injury repair, and exercise-induced stress and pain. Galanin and its agonists may be used to develop a novel preventive and therapeutic strategy to prevent and treat exercise-induced somatic and psychological trauma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Cognitive and motor function after administration of hydrocodone bitartrate plus ibuprofen, ibuprofen alone, or placebo in healthy subjects with exercise-induced muscle damage: a randomized, repeated-dose, placebo-controlled study.

    Science.gov (United States)

    Allen, George J; Hartl, Tamara L; Duffany, Shannon; Smith, Stefanie F; VanHeest, Jaci L; Anderson, Jeffrey M; Hoffman, Jay R; Kraemer, William J; Maresh, Carl M

    2003-03-01

    Medications combining hydrocodone bitartrate and non-steroidal anti-inflammatory agents appear more beneficial than anti-inflammatory medications alone in treating pain and inflammation from acute soft tissue trauma, but opiate side effects may include sedation and impaired cognitive and motor performance. Performance on complex cognitive and motor tasks was evaluated in healthy subjects with exercise-induced muscle damage who were treated with a hydrocodone-ibuprofen combination, ibuprofen alone, or placebo. This double-blind, randomized, placebo-controlled, repeated-dose clinical trial compared the effects of hydrocodone bitartrate (7.5 mg) plus ibuprofen (200 mg), ibuprofen alone, and placebo on cognitive and motor function in 72 healthy college men. Muscle damage in the quadriceps of each subject's dominant leg was induced by an eccentric exercise protocol. Subjects took the study medication four times daily (every 4-6 h) for 5 days. Forty minutes after medication ingestion at the same time each day, subjects underwent tests of attention/concentration, motor performance, and reaction time. Four trained assessors rotated among subjects so that none tested the same participant on more than three occasions. Repeated measures analyses of covariance revealed no between-group differences on a complex memory and cognition task or complex reaction time. Subjects using hydrocodone bitartrate plus ibuprofen performed significantly less well on a simple tracking task and made significantly more errors on a simple reaction-time task than the other two groups. These deficits were found to be highly transitory and not related to confusion or fatigue. Hydrocodone plus ibuprofen was not associated with deterioration in complex cognition but was related to very transitory decrements in tasks involving simple hand-eye coordination.

  18. Muscle metabolic remodelling in response to endurance exercise in salmonids

    Directory of Open Access Journals (Sweden)

    Andrea J Morash

    2014-11-01

    Full Text Available Phenotypic plasticity of skeletal muscle is relevant to swimming performance and metabolism in fishes, especially those that undergo extreme locomotory feats, such as seasonal migration. However, the influence of endurance exercise and the molecular mechanisms coordinating this remodelling are not well understood. The present study examines muscle metabolic remodelling associated with endurance exercise in fed rainbow trout as compared to migrating salmon. Trout were swum for 4 weeks at 1.5BL/s, a speed similar to that of migrating salmon and red and white muscles were sampled after each week. We quantified changes in key enzymes in aerobic and carbohydrate metabolism (citrate synthase (CS, β-hydroxyacyl-CoA dehydrogenase (HOAD, hexokinase (HK and changes in mRNA expression of major regulators of metabolic phenotype (AMPK, PPARs and lipid (carnitine palmitoyltransferase, CPT I, protein (aspartate aminotransferase, AST and carbohydrate (HK oxidation pathways. After one week of swimming substantial increases were seen in AMPK and PPARα mRNA expression and of their downstream target genes, CPTI and HK in red muscle. However, significant changes in CS and HK activity occurred only after 4 weeks. In contrast, there were few changes in mRNA expression and enzyme activities in white muscle over the 4-weeks. Red muscle results mimic those found in migrating salmon suggesting a strong influence of exercise on red muscle phenotype. In white muscle, only changes in AMPK and PPAR expression were similar to that seen with migrating salmon. However, in contrast to exercise alone, in natural migration HK decreased while AST increased suggesting that white muscle plays a role in supplying fuel and intermediates possibly through tissue breakdown during prolonged fasting. Dissecting individual and potentially synergistic effects of multiple stressors will enable us to determine major drivers of the metabolic phenotype and their impacts on whole animal

  19. Eccentric Contraction-Induced Muscle Fibre Adaptation

    Directory of Open Access Journals (Sweden)

    Arabadzhiev T. I.

    2009-12-01

    Full Text Available Hard-strength training induces strength increasing and muscle damage, especially after eccentric contractions. Eccentric contractions also lead to muscle adaptation. Symptoms of damage after repeated bout of the same or similar eccentrically biased exercises are markedly reduced. The mechanism of this repeated bout effect is unknown. Since electromyographic (EMG power spectra scale to lower frequencies, the adaptation is related to neural adaptation of the central nervous system (CNS presuming activation of slow-non-fatigable motor units or synchronization of motor unit firing. However, the repeated bout effect is also observed under repeated stimulation, i.e. without participation of the CNS. The aim of this study was to compare the possible effects of changes in intracellular action potential shape and in synchronization of motor units firing on EMG power spectra. To estimate possible degree of the effects of central and peripheral changes, interferent EMG was simulated under different intracellular action potential shapes and different degrees of synchronization of motor unit firing. It was shown that the effect of changes in intracellular action potential shape and muscle fibre propagation velocity (i.e. peripheral factors on spectral characteristics of EMG signals could be stronger than the effect of synchronization of firing of different motor units (i.e. central factors.

  20. Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study

    Directory of Open Access Journals (Sweden)

    Mille-Hamard Laurence

    2012-06-01

    Full Text Available Abstract Background Erythropoietin (EPO is known to improve exercise performance by increasing oxygen blood transport and thus inducing a higher maximum oxygen uptake (VO2max. Furthermore, treatment with (or overexpression of EPO induces protective effects in several tissues, including the myocardium. However, it is not known whether EPO exerts this protective effect when present at physiological levels. Given that EPO receptors have been identified in skeletal muscle, we hypothesized that EPO may have a direct, protective effect on this tissue. Thus, the objectives of the present study were to confirm a decrease in exercise performance and highlight muscle transcriptome alterations in a murine EPO functional knock-out model (the EPO-d mouse. Methods We determined VO2max peak velocity and critical speed in exhaustive runs in 17 mice (9 EPO-d animals and 8 inbred controls, using treadmill enclosed in a metabolic chamber. Mice were sacrificed 24h after a last exhaustive treadmill exercise at critical speed. The tibialis anterior and soleus muscles were removed and total RNA was extracted for microarray gene expression analysis. Results The EPO-d mice’s hematocrit was about 50% lower than that of controls (p  1.4 and 115 were strongly down-regulated (normalized ratio  Conclusions Our results showed that the lack of functional EPO induced a decrease in the aerobic exercise capacity. This decrease was correlated with the hematocrit and reflecting poor oxygen supply to the muscles. The observed alterations in the muscle transcriptome suggest that physiological concentrations of EPO exert both direct and indirect muscle-protecting effects during exercise. However, the signaling pathway involved in these protective effects remains to be described in detail.

  1. Molecular studies of exercise, skeletal muscle, and ageing.

    Science.gov (United States)

    Timmons, James A; Gallagher, Iain J

    2016-01-01

    The purpose of an F1000 review is to reflect on the bigger picture, exploring controversies and new concepts as well as providing opinion as to what is limiting progress in a particular field. We reviewed about 200 titles published in 2015 that included reference to 'skeletal muscle, exercise, and ageing' with the aim of identifying key articles that help progress our understanding or research capacity while identifying methodological issues which represent, in our opinion, major barriers to progress. Loss of neuromuscular function with chronological age impacts on both health and quality of life. We prioritised articles that studied human skeletal muscle within the context of age or exercise and identified new molecular observations that may explain how muscle responds to exercise or age. An important aspect of this short review is perspective: providing a view on the likely 'size effect' of a potential mechanism on physiological capacity or ageing.

  2. Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral- Sclerosis Mice

    Science.gov (United States)

    Desseille, Céline; Deforges, Séverine; Biondi, Olivier; Houdebine, Léo; D’amico, Domenico; Lamazière, Antonin; Caradeuc, Cédric; Bertho, Gildas; Bruneteau, Gaëlle; Weill, Laure; Bastin, Jean; Djouadi, Fatima; Salachas, François; Lopes, Philippe; Chanoine, Christophe; Massaad, Charbel; Charbonnier, Frédéric

    2017-01-01

    Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS)-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR), we unexpectedly found that SOD1(G93A) ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease. PMID:29104532

  3. Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral- Sclerosis Mice

    Directory of Open Access Journals (Sweden)

    Céline Desseille

    2017-10-01

    Full Text Available Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR, we unexpectedly found that SOD1(G93A ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease.

  4. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions

    DEFF Research Database (Denmark)

    Kristiansen, S; Asp, Svend; Richter, Erik

    1996-01-01

    Eccentric exercise causes muscle damage and decreased muscle glycogen and glucose transporter isoform (GLUT-4) protein content. We investigated whether the contraction-induced increase in skeletal muscle glucose transport and muscle performance is affected by prior eccentric contractions. The calf...... contractions. EC rats had a significantly lower total GLUT-4 protein content in the white gastrocnemius (GW) muscle (55%) and red gastrocnemius (GR) muscle (34%) compared with muscle from the CT, ST, and CC rats. In contrast, GLUT-1 protein content was approximately twofold higher in the GW muscle in EC rats...... than in CT rats. In the GW and GR muscle, prior eccentric exercise decreased contraction-induced stimulation of glucose transport compared with CT, ST, and CC rats despite no difference in tension development and oxygen uptake among the groups. There was no change in total GLUT-4 content and glucose...

  5. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise

    DEFF Research Database (Denmark)

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette

    2005-01-01

    in target proteins by gas chromatography-mass spectrometry. Patellar tendon and quadriceps biopsies were taken in exercised and rested legs at 6, 24, 42 or 48 and 72 h after exercise. The fractional synthetic rates of all proteins were elevated at 6 h and rose rapidly to peak at 24 h post exercise (tendon...... in human tendon and muscle. The similar time course of changes of protein synthetic rates in different cell types supports the idea of coordinated musculotendinous adaptation....

  6. Muscle-damaging exercise affects isokinetic torque more at short muscle length.

    Science.gov (United States)

    Skurvydas, Albertas; Brazaitis, Marius; Kamandulis, Sigitas

    2011-05-01

    The aim of this study was to investigate the differences in the length-dependent changes in quadriceps muscle torque during voluntary isometric and isokinetic contractions performed after severe muscle-damaging exercise. Thirteen physically active men (age = 23.8 ± 3.2 years, body weight = 77.2 ± 4.5 kg) performed stretch-shortening cycle (SSC) exercise comprising 100 drop jumps with 30-second intervals between each jump. Changes in the voluntary and electrically evoked torque in concentric and isometric conditions at different muscle lengths, muscle soreness, and plasma creatine kinase (CK) activity were assessed within 72 hours after SSC exercise. Isokinetic knee extension torque decreased significantly (p torque were significantly smaller at 80° (where 180° = full knee extension) than at 110-130°. At 2 minutes after SSC exercise, the optimal angle for isokinetic knee extension torque shifted by 9.5 ± 8.9° to a longer muscle length (p torque at low-frequency (20-Hz) stimulation decreased significantly more at a knee joint angle of 130° than at 90°. The subjects felt acute muscle pain and CK activity in the blood increased to 1,593.9 ± 536.2 IU·L⁻¹ within 72 hours after SSC exercise (p muscle-damaging exercise on isokinetic torque is greatest for contractions at short muscle lengths. These findings have practical importance because the movements in most physical activities are dynamic in nature, and the decrease in torque at various points in the range of motion during exercise might affect overall performance.

  7. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.

    Science.gov (United States)

    Bangsbo, J; Graham, T; Johansen, L; Saltin, B

    1994-10-01

    This study examined the effect of low-intensity exercise on lactate metabolism during the first 10 min of recovery from high-intensity exercise. Subjects exercised (61.0 +/- 5.4 W) one leg to exhaustion (approximately 3.5 min), and after 1 h of rest they performed the same exhaustive exercise with the other leg. For one leg the intense exercise was followed by rest [passive (P) leg], and for the other leg the exercise was followed by a 10-min period with low-intensity exercise at a work rate of 10 W [active (A) leg]. The muscle lactate concentration after the intense exercise was the same in the P and A legs, but after 10 min of recovery, the lactate concentration and the arterial blood lactate level were higher for the P leg than for the A leg (both P O2 consumption during 10 min of recovery was 440 and 750 ml for the P and A legs, respectively. The present data suggest that a lowered blood lactate level during active recovery is due to an elevated muscle lactate metabolism and is not caused by a transient higher release of lactate from the exercising muscles coupled with greater uptake in other tissues.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise.

    Science.gov (United States)

    Chen, Hsuan-Ying; Cheng, Fu-Chou; Pan, Huan-Chuan; Hsu, Jaw-Cheng; Wang, Ming-Fu

    2014-01-01

    Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg) is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p.) 30 min before treadmill exercise (20 m/min for 60 min). Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (Pbrain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (Pexercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise.

  9. Apoptosis and physical exercise: effects on skeletal muscle

    Directory of Open Access Journals (Sweden)

    José Alberto Ramos Duarte

    2008-01-01

    Full Text Available This brief review will discuss an exciting new area in exercise science, namely the role of apoptosis programmed cell death in exercise. Apoptotic cell death differs morphologically and biochemically from necrotic cell death, although both appear to occur after exercise. Accelerated apoptosis has been documented to occur in a variety of disease states, such as AIDS and Alzheimer’s disease, as well as in the aging heart. In striking contrast, failure to activate this genetically regulated cell death may result in cancer and certain viral infections. Here, the apoptosis phenomenon will be discussed, as it occurs in skeletal muscle, and its relation to physical exercise, as well as the interaction with the HSP70 protein. We speculate that exercise-induced apoptosis is a normal regulatory process that serves to remove certain damaged cells without a pronounced inflammatory response, thus ensuring optimal organism function. Resumo Esta breve revisão irá discutir uma nova e excitante área em ciências do exercício, conhecida como o papel da apoptose ou morte celular programada no exercício. A morte celular por apoptose difere morfológica e bioquimicamente da morte celular por necrose, embora ambas parecem ocorrer após o exercício. A ocorrência de apoptose acelerada tem sido relatada em uma grande variedade de doenças, tais como a AIDS e o mal de Alzheimer, bem como em problemas cardíacos relacionados com o envelhecimento. Por outro lado, falhas ao ativar essa regulação genética de morte celular pode resultar em câncer e em certas infecções virais. Aqui será discutido o fenômeno da apoptose, na musculatura esquelética, relacionado com o exercício físico, assim como a interação com a proteína HSP70. Nós especulamos que a apoptose induzida pelo exercício é um processo regulatório normal, que se torna útil no sentido de remover certas células lesadas com ausência de resposta inflamatória pronunciada, otimizando, assim

  10. Using exercise training to understand control of skeletal muscle metabolism.

    Science.gov (United States)

    Gibala, Martin J

    2017-01-01

    Bengt Saltin believed that exercise was the unsurpassed tool to study human integrative physiology. He demonstrated this over the course of his career by employing physical training as a model to advance our understanding of skeletal muscle metabolic control and the impact of physical activity on performance and health. Bengt was also a pioneer in advocating the concept of exercise is medicine. His scientific curiosity was perhaps exceeded only by his generosity.

  11. A rehabilitation exercise program to remediate skeletal muscle atrophy in an estrogen-deficient organism may be ineffective.

    Science.gov (United States)

    Brown, Marybeth; Ferreira, J Andries; Foley, Andrea M; Hemmann, Kaitlyn M

    2012-01-01

    To determine rehabilitation exercise program effects under hormone deficient (ovariectomy or OVX) and hormone supplemented [OVX + 17-beta estradiol (E2)] conditions. Mature female rats (n = 123) were assigned to OVX or OVX + E2-supplemented groups. OVX and OVX + E2 groups were allocated to one of four conditions: (1) control, (2) hindlimb unweighted (HLU) for 4 weeks to induce muscle atrophy, (3) cage Recovery for 2 weeks after HLU, and (4) Recovery with 2 weeks of rehabilitation exercise program after 4 weeks of HLU. Atrophy following HLU was comparable for OVX and OVX + E2-supplemented rats and was significant in all muscles examined (soleus, tibialis anterior, plantaris, gastrocnemius, quadriceps). Also significant with HLU was the decline in muscle force (P muscle mass in Recovery OVX and Recovery OVX + E2 groups but only the E2 supplemented OVX rats had return of muscle mass (4/5 muscles studied) with exercise. Peak tetanic tension (Po) returned to control values in the E2 supplemented Exercise rats but not in the unsupplemented Exercise group. For example, gastrocnemius Po for OVX HLU, OVX Recovery and OVX-Exercise groups was 82%*, 82%* and 76%* of control. Gastrocnemius Po for E2 supplemented HLU, Recovery and Exercise groups was 72%*, 95% and 106% of control (*P rehabilitation exercise program to remediate acute atrophy in females appears more effective if E2 is present.

  12. The effect of bridge exercise method on the strength of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels.

    Science.gov (United States)

    Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook

    2017-04-01

    [Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.

  13. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response...... was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19...

  14. Effect of pelvic floor muscle exercises on pulmonary function

    OpenAIRE

    Han, Dongwook; Ha, Misook

    2015-01-01

    [Purpose] This study aimed to determine the correlation between pelvic floor muscle strength and pulmonary function. In particular, we examined whether pelvic floor muscle exercises can improve pulmonary function. [Subjects] Thirty female college students aged 19?21 with no history of nervous or musculoskeletal system injury were randomly divided into experimental and control groups. [Methods] For the pulmonary function test, spirometry items included forced vital capacity and maximal volunta...

  15. Muscle oxygenation profiles between active and inactive muscles with nitrate supplementation under hypoxic exercise.

    Science.gov (United States)

    Horiuchi, Masahiro; Endo, Junko; Dobashi, Shohei; Handa, Yoko; Kiuchi, Masataka; Koyama, Katsuhiro

    2017-11-01

    Whether dietary nitrate supplementation improves exercise performance or not is still controversial. While redistribution of sufficient oxygen from inactive to active muscles is essential for optimal exercise performance, no study investigated the effects of nitrate supplementation on muscle oxygenation profiles between active and inactive muscles. Nine healthy males performed 25 min of submaximal (heart rate ~140 bpm; EXsub) and incremental cycling (EXmax) until exhaustion under three conditions: (A) normoxia without drink; (B) hypoxia (FiO2 = 13.95%) with placebo (PL); and (c) hypoxia with beetroot juice (BR). PL and BR were provided for 4 days. Oxygenated and deoxygenated hemoglobin (HbO2 and HHb) were measured in vastus lateralis (active) and biceps brachii (inactive) muscles, and the oxygen saturation of skeletal muscle (StO2; HbO2/total Hb) were calculated. During EXsub, BR suppressed the HHb increases in active muscles during the last 5 min of exercise. During EXmax, time to exhaustion with BR (513 ± 24 sec) was significantly longer than with PL (490 ± 39 sec, P muscles, BR suppressed the HHb increases at moderate work rates during EXmax compared to PL (P muscles during EXmax Collectively, these findings indicate that short-term dietary nitrate supplementation improved hypoxic exercise tolerance, perhaps, due to suppressed increases in HHb in active muscles at moderate work rates. Moreover, nitrate supplementation caused greater reductions in oxygenation in inactive muscle at higher work rates during hypoxic exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles

    Science.gov (United States)

    Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.

    1992-01-01

    It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.

  17. Skeletal muscle metabolism during prolonged exercise in Pompe disease

    Directory of Open Access Journals (Sweden)

    Nicolai Preisler

    2017-07-01

    Full Text Available Objective: Pompe disease (glycogenosis type II is caused by lysosomal alpha-glucosidase deficiency, which leads to a block in intra-lysosomal glycogen breakdown. In spite of enzyme replacement therapy, Pompe disease continues to be a progressive metabolic myopathy. Considering the health benefits of exercise, it is important in Pompe disease to acquire more information about muscle substrate use during exercise. Methods: Seven adults with Pompe disease were matched to a healthy control group (1:1. We determined (1 peak oxidative capacity (VO2peak and (2 carbohydrate and fatty acid metabolism during submaximal exercise (33 W for 1 h, using cycle-ergometer exercise, indirect calorimetry and stable isotopes. Results: In the patients, VO2peak was less than half of average control values; mean difference −1659 mL/min (CI: −2450 to −867, P = 0.001. However, the respiratory exchange ratio increased to >1.0 and lactate levels rose 5-fold in the patients, indicating significant glycolytic flux. In line with this, during submaximal exercise, the rates of oxidation (ROX of carbohydrates and palmitate were similar between patients and controls (mean difference 0.226 g/min (CI: 0.611 to −0.078, P = 0.318 and mean difference 0.016 μmol/kg/min (CI: 1.287 to −1.255, P = 0.710, respectively. Conclusion: Reflecting muscle weakness and wasting, Pompe disease is associated with markedly reduced maximal exercise capacity. However, glycogenolysis is not impaired in exercise. Unlike in other metabolic myopathies, skeletal muscle substrate use during exercise is normal in Pompe disease rendering exercise less complicated for e.g. medical or recreational purposes.

  18. Time course of muscle soreness following different types of exercise

    Directory of Open Access Journals (Sweden)

    Vickers Andrew J

    2001-10-01

    Full Text Available Abstract Background Post-exercise muscle soreness is a dull, aching sensation that follows unaccustomed muscular exertion. Primarily on the basis of previous laboratory-based research on eccentric exercise, soreness is usually said to follow an inverted U-shaped curve over time, peaking 24 – 48 hours after exercise. As such, it is often described as "delayed-onset" muscle soreness. In a study of long-distance runners, soreness seemed to peak immediately and then reduce gradually over time. The study is a secondary analysis of clinical trial data that aims to determine whether the time course of soreness following a natural exercise, long-distance running, is different from that following a laboratory-based exercise, bench-stepping. Methods This is a reanalysis of data from three previous clinical trials. The trials included 400 runners taking part in long-distance races and 82 untrained volunteers performing a bench-stepping test. Subjects completed a Likert scale of muscle soreness every morning and evening for the five days following their exercise. Results Interaction between trial and time is highly significant, suggesting a different time course of soreness following running and bench-stepping. 45% of subjects in the bench-stepping trial experienced peak soreness at the third or fourth follow-up (approximately 36 – 48 hours after exercise compared to only 14% of those in the running trial. The difference between groups is robust to multivariate analysis incorporating possible confounding variables. Conclusion Soreness in runners following long-distance running follows a different time course to that in untrained individuals undertaking bench-stepping. Research on exercise taking place in the laboratory context does not necessarily generalize to exercise undertaken by trained athletes when engaged in their chosen sport.

  19. Skeletal muscle metabolism during prolonged exercise in Pompe disease.

    Science.gov (United States)

    Preisler, Nicolai; Laforêt, Pascal; Madsen, Karen Lindhardt; Husu, Edith; Vissing, Christoffer Rasmus; Hedermann, Gitte; Galbo, Henrik; Lindberg, Christopher; Vissing, John

    2017-08-01

    Pompe disease (glycogenosis type II) is caused by lysosomal alpha-glucosidase deficiency, which leads to a block in intra-lysosomal glycogen breakdown. In spite of enzyme replacement therapy, Pompe disease continues to be a progressive metabolic myopathy. Considering the health benefits of exercise, it is important in Pompe disease to acquire more information about muscle substrate use during exercise. Seven adults with Pompe disease were matched to a healthy control group (1:1). We determined (1) peak oxidative capacity (VO2peak) and (2) carbohydrate and fatty acid metabolism during submaximal exercise (33 W) for 1 h, using cycle-ergometer exercise, indirect calorimetry and stable isotopes. In the patients, VO2peak was less than half of average control values; mean difference -1659 mL/min (CI: -2450 to -867, P = 0.001). However, the respiratory exchange ratio increased to >1.0 and lactate levels rose 5-fold in the patients, indicating significant glycolytic flux. In line with this, during submaximal exercise, the rates of oxidation (ROX) of carbohydrates and palmitate were similar between patients and controls (mean difference 0.226 g/min (CI: 0.611 to -0.078, P = 0.318) and mean difference 0.016 µmol/kg/min (CI: 1.287 to -1.255, P = 0.710), respectively). Reflecting muscle weakness and wasting, Pompe disease is associated with markedly reduced maximal exercise capacity. However, glycogenolysis is not impaired in exercise. Unlike in other metabolic myopathies, skeletal muscle substrate use during exercise is normal in Pompe disease rendering exercise less complicated for e.g. medical or recreational purposes. © 2017 The authors.

  20. Alcohol after Resistance Exercise Does not Affect Muscle Power Recovery.

    Science.gov (United States)

    Levitt, Danielle E; Idemudia, Nosakhare O; Cregar, Carianne M; Duplanty, Anthony A; Hill, David W; Vingren, Jakob L

    2018-01-29

    The purpose of this study was to investigate the effect of alcohol consumed after heavy eccentric resistance exercise on measures of muscle power. After familiarization and an initial eccentric exercise bout to control for the "repeated-bout effect," ten recreationally resistance-trained men completed two identical heavy eccentric squat bouts (4 sets of 10 repetitions at 110% of concentric 1-repetition maximum) one week apart. Each exercise bout was followed by ingestion of a beverage containing either alcohol (1.09 g ethanol[BULLET OPERATOR]kg fat-free body mass) or no alcohol (placebo; volume of alcohol replaced with water). Vertical jump (VJ) peak power, VJ peak force, VJ jump height, change-of-direction ability (shuttle run), sprint acceleration (sprint test), and muscle soreness were measured before (PRE), 24 hrs after (24H), and 48 hrs after (48H) each eccentric exercise bout. Although the exercise bout resulted in significantly (p < 0.05) decreased VJ peak power at 24H, significantly decreased VJ jump height at 24H, and significantly increased muscle soreness at 24H and 48H, consuming alcohol after the exercise bout did not affect any of the performance outcome measures. When consumed after a non-novel heavy eccentric resistance exercise bout, alcohol did not affect soreness or recovery of muscular power. Practitioners can use this information to advise their athletes with regards to responsible alcohol use after non-novel exercise. Although short-term anaerobic performance does not appear compromised as a result of acute post-exercise alcohol ingestion, practitioners and athletes should be aware of potential long-term effects of such alcohol use.

  1. Nedocromil sodium and exercise induced asthma.

    OpenAIRE

    Chudry, N; Correa, F; Silverman, M.

    1987-01-01

    Serial exercise tests were carried out by 12 children with asthma on two study days. After a control exercise test either nedocromil sodium 4 mg or placebo were given double blind by metered dose inhaler. Highly significant inhibition of exercise induced asthma occurred after nedocromil, lasting for over two hours.

  2. The effect of resistance exercise direction for hip joint stabilization on lateral abdominal muscle thickness.

    Science.gov (United States)

    Jung, Ju-Hyeon; Lee, Sang-Yeol

    2016-10-01

    The aim of this study was to determine the effects of resistance direction in hip joint stabilization exercise on change in lateral abdominal muscle thickness in healthy adults. Twenty-six healthy adults were randomly allocated to either a hip stabilization exercise by hip straight resistance group (n=12) or a hip diagonal resistance group (n=14). The outcome measures included contraction thickness ratio in transversus abdominis (TrA), internal oblique (IO) and external oblique, and TrA lateral slide were assessed during the abdominal drawing-in maneuver by b-mode ultrasound. The researcher measured the abdominal muscle thickness of each participant before the therapist began the intervention and at the moment intervention was applied. There was a significant difference in lateral abdominal muscle thickness between the straight resistance exercise of hip joint group and the diagonal resistance exercise of hip joint group. Significant differences were found between the two groups in the percentage of change of muscle thickness of the TrA (P=0.018) and in the thickness ratio of the TrA (P=0.018). Stability exercise accompanied by diagonal resistance on the hip joint that was applied in this study can induce automatic contraction of the IO and TrA, which provides stability to the lumbar spine.

  3. The effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight.

    Science.gov (United States)

    Paschalis, Vassilis; Nikolaidis, Michalis G; Theodorou, Anastasios A; Deli, Chariklia K; Raso, Vagner; Jamurtas, Athanasios Z; Giakas, Giannis; Koutedakis, Yiannis

    2013-09-01

    The aim of this study was to estimate the effect of being overweight or underweight on proprioception at rest and after muscle damaging eccentric exercise. Twelve lean, 12 overweight, and 8 underweight female participants performed an eccentric exercise session using the knee extensor muscles of the dominant leg. Muscle damage indices and proprioception were assessed up to 3 days postexercise. The results indicated that proprioception at baseline of the lean individuals was superior to that of the other 2 groups. The overweight individuals exhibited a smaller knee joint reaction angle to release than did the lean group, whereas the underweight individuals exhibited a larger reaction angle to release than did the lean group. After eccentric exercise, proprioception was affected more in the overweight and the underweight groups than in the lean group. The greater exercise-induced muscle damage appeared in the overweight group, and the deficient muscle mass of the underweight participants could explain in part the greater disturbances that appeared in proprioception in these 2 groups than for the lean counterparts. In conclusion, deviating from the normal body mass is associated with significant disturbances in the proprioception of the legs at rest and after participation in activities involving eccentric actions.

  4. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure.

    Science.gov (United States)

    Sung, Miranda M; Byrne, Nikole J; Robertson, Ian M; Kim, Ty T; Samokhvalov, Victor; Levasseur, Jody; Soltys, Carrie-Lynn; Fung, David; Tyreman, Neil; Denou, Emmanuel; Jones, Kelvin E; Seubert, John M; Schertzer, Jonathan D; Dyck, Jason R B

    2017-04-01

    We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction resveratrol (~450 mg·kg-1·day-1) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients.NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms. Copyright © 2017 the American Physiological Society.

  5. Exercise training reverses skeletal muscle atrophy in an experimental model of VCP disease.

    Directory of Open Access Journals (Sweden)

    Angèle Nalbandian

    Full Text Available The therapeutic effects of exercise resistance and endurance training in the alleviation of muscle hypertrophy/atrophy should be considered in the management of patients with advanced neuromuscular diseases. Patients with progressive neuromuscular diseases often experience muscle weakness, which negatively impact independence and quality of life levels. Mutations in the valosin containing protein (VCP gene lead to Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD and more recently affect 2% of amyotrophic lateral sclerosis (ALS-diagnosed cases.The present investigation was undertaken to examine the effects of uphill and downhill exercise training on muscle histopathology and the autophagy cascade in an experimental VCP mouse model carrying the R155H mutation. Progressive uphill exercise in VCP(R155H/+ mice revealed significant improvement in muscle strength and performance by grip strength and Rotarod analyses when compared to the sedentary mice. In contrast, mice exercised to run downhill did not show any significant improvement. Histologically, the uphill exercised VCP(R155H/+ mice displayed an improvement in muscle atrophy, and decreased expression levels of ubiquitin, P62/SQSTM1, LC3I/II, and TDP-43 autophagy markers, suggesting an alleviation of disease-induced myopathy phenotypes. There was also an improvement in the Paget-like phenotype.Collectively, our data highlights that uphill exercise training in VCP(R155H/+ mice did not have any detrimental value to the function of muscle, and may offer effective therapeutic options for patients with VCP-associated diseases.

  6. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  7. Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines

    Directory of Open Access Journals (Sweden)

    S. Pourteymour

    2017-04-01

    Conclusion: We identified 17 new, exercise-responsive transcripts encoding secretory proteins. We further identified CSF1 as a novel myokine, which is secreted from cultured muscle cells and up-regulated in muscle and plasma after acute exercise.

  8. Exercise intensity progression for exercises performed on unstable and stable platforms based on ankle muscle activation.

    Science.gov (United States)

    Borreani, Sebastien; Calatayud, Joaquin; Martin, Julio; Colado, Juan Carlos; Tella, Victor; Behm, David

    2014-01-01

    Ankle sprains are a common sports injury. The literature focuses on the application of neuromuscular training for the improvement of balance, injury prevention and rehabilitation. However, there is a dearth of knowledge about the appropriate prescription of exercises using unstable platforms and surfaces. The purpose of this study was to devise an ankle rehabilitation or training program with exercise progression based on the extent of muscle activation, employing platforms with different levels of stability and additional resistance. A descriptive study of electromyography (EMG) during ankle exercises was performed with a convenience sample of healthy subjects. Forty-four subjects completed 12 exercises performed in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG from the tibialis anterior (TA), peroneus longus (PL) and soleus (SOL) were collected to quantify the amount of muscle activity. Significant differences were found between exercise conditions for PL (pexercises for the ankle should progress from bilateral exercises on exercise balls (lowest intensity), to a unipedal position on a soft surface in combination with elastic tubing (highest intensity) in order to achieve progressively greater ankle muscle activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Exercise myopathy: changes in myofibrils of fast-twitch muscle fibres.

    Science.gov (United States)

    Kaasik, P; Umnova, M; Seene, T

    2014-08-01

    The purpose of the present study was to determine the relationships between the changes of myofibrils in fast-twitch oxidative-glycolytic (type IIA) fibres and fast-twitch glycolytic (type IIB) muscle fibres, protein synthesis and degradation rate in exercise-induced myopathic skeletal muscle. Exhaustive exercise was used to induce myopathy in Wistar rats. Intensity of glycogenolysis in muscle fibres during exercise, protein synthesis rate, degradation rate and structural changes of myofibrils were measured using morphological and biochemical methods. Myofibril cross sectional area (CSA) in type IIA fibres decreased 33% and type IIB fibres 44%. Protein degradation rate increased in both type IIA and IIB fibres, 63% and 69% respectively in comparison with the control group. According to the intensity of glycogenolysis, fast oxidative-glycolytic fibres are recruited more frequently during overtraining. Myofibrils in both types of fast-twitch myopathic muscle fibres are significantly thinner as the result of more intensive protein degradation. Regeneration capacity according to the presence of satellite cells is higher in type IIA fibres than in type IIB fibres in myopathic muscle.

  10. EXERCISE MYOPATHY: CHANGES IN MYOFIBRILS OF FAST-TWITCH MUSCLE FIBRES

    Directory of Open Access Journals (Sweden)

    P. Kaasik

    2014-08-01

    Full Text Available The purpose of the present study was to determine the relationships between the changes of myofibrils in fast-twitch oxidative-glycolytic (type IIA fibres and fast-twitch glycolytic (type IIB muscle fibres, protein synthesis and degradation rate in exercise-induced myopathic skeletal muscle. Exhaustive exercise was used to induce myopathy in Wistar rats. Intensity of glycogenolysis in muscle fibres during exercise, protein synthesis rate, degradation rate and structural changes of myofibrils were measured using morphological and biochemical methods. Myofibril cross sectional area (CSA in type IIA fibres decreased 33% and type IIB fibres 44%. Protein degradation rate increased in both type IIA and IIB fibres, 63% and 69% respectively in comparison with the control group. According to the intensity of glycogenolysis, fast oxidative-glycolytic fibres are recruited more frequently during overtraining. Myofibrils in both types of fast-twitch myopathic muscle fibres are significantly thinner as the result of more intensive protein degradation. Regeneration capacity according to the presence of satellite cells is higher in type IIA fibres than in type IIB fibres in myopathic muscle.

  11. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Science.gov (United States)

    Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L; Huang, Chih-Yang; Kuo, Chia-Hua

    2015-01-01

    The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  12. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Directory of Open Access Journals (Sweden)

    Chien-Wen Hou

    Full Text Available The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05. Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05.Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  13. The effects of topical Arnica on performance, pain and muscle damage after intense eccentric exercise.

    Science.gov (United States)

    Pumpa, Kate L; Fallon, Kieran E; Bensoussan, Alan; Papalia, Shona

    2014-01-01

    The aim of the study was to determine if topical Arnica is effective in reducing pain, indicators of inflammation and muscle damage, and in turn improve performance in well-trained males experiencing delayed onset muscle soreness (DOMS). Twenty well-trained males matched by maximal oxygen uptake (V̇O2 Max) completed a double-blind, randomised placebo-controlled trial. Topical Arnica was applied to the skin superficial to the quadriceps and gastrocnemius muscles immediately after a downhill running protocol designed to induce DOMS. Topical Arnica was reapplied every 4 waking hours for the duration of the study. Performance measures (peak torque, countermovement and squat jump), pain assessments (visual analogue scale (VAS) and muscle tenderness) and blood analysis (interleukin-1 beta, interleukin-6, tumour necrosis factor-alpha, C-reactive protein, myoglobin and creatine kinase) were assessed at seven time points over five days (pre-, post-, 4, 24, 48, 72 and 96 hours after the downhill run). Participants in the topical Arnica group reported less pain as assessed through muscle tenderness and VAS 72 hours post-exercise. The application of topical Arnica did not affect any performance assessments or markers of muscle damage or inflammation. Topical Arnica used immediately after intense eccentric exercise and for the following 96 hours did not have an effect on performance or blood markers. It did however demonstrate the possibility of providing pain relief three days post-eccentric exercise.

  14. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    , and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P creatine kinase and myoglobin were all attenuated after the repeated...... not change at any specific time point post-exercise for either intervention. Our mRNA results suggest a regulation on the calpain-calpastatin expression response to muscle damaging eccentric exercise, but not concentric exercise. Although a repeated bout effect was demonstrated in terms of muscle function...

  15. Systemic adaptation to oxidative challenge induced by regular exercise.

    Science.gov (United States)

    Radak, Zsolt; Chung, Hae Young; Goto, Sataro

    2008-01-15

    Exercise is associated with increased ATP need and an enhanced aerobic and/or anaerobic metabolism, which results in an increased formation of reactive oxygen species (ROS). Regular exercise seems to decrease the incidence of a wide range of ROS-associated diseases, including heart disease, type II diabetes, rheumatic arthritis, Alzheimer and Parkinson diseases, and certain cancers. The preventive effect of regular exercise, at least in part, is due to oxidative stress-induced adaptation. The oxidative challenge-related adaptive process of exercise is probably not just dependent upon the generated level of ROS but primarily on the increase in antioxidant and housekeeping enzyme activities, which involves the oxidative damage repair enzymes. Therefore, the effects of exercise resemble the characteristics of hormesis. In addition, it seems that the oxidative challenge-related effects of exercise are systemic. Skeletal muscle, liver, and brain have very different metabolic rates and functions during exercise, but the adaptive response is very similar: increased antioxidant/damage repair enzyme activity, lower oxidative damage, and increased resistance to oxidative stress, due to the changes in redox homeostasis. Hence, it is highly possible that the well-known beneficial effects of exercise are due to the capability of exercise to produce increased levels of ROS. Or in other words, it seems that the vulnerability of the body to oxidative stress and diseases is significantly enhanced in a sedentary compared to a physically active lifestyle.

  16. Bone structure and quality preserved by active versus passive muscle exercise in 21 days tail-suspended rats

    Science.gov (United States)

    Luan, Huiqin; Sun, Lian-wen; Fan, Yu-bo

    2012-07-01

    Humans in Space suffer from microgravity-induced attenuated bone strength that needs to be addressed by on-orbit exercise countermeasures. However, exercise prescriptions so far did not adequately counteract the bone loss of astronauts in spaceflight because even active muscle contractions were converted to passive mode during voluntary bouts. We tested our hypothesis in unloaded rat hind limb following twenty-one days of tail-suspension (TS) combined with exercise using a hind limb stepper device designed by our group. Female Sprague Dawley rats (250g b.wt.) were divided into four groups (n=5, each): TS-only (hind limb unloading), TS plus passive mode exercise (TSP) induced by mechanically-forced passive hind limb lifting, TS plus active mode exercise (TSA) entrained by plantar electrostimulation, and control (CON) group. Standard measures of bone (e.g., mineral density, trabecular microstructure, biomechanics and ash weight) were monitored. Results provided that the attenuated properties of unloaded hind limb bone in TS-rats were more effectively supported by active mode than by passive mode motions. We here propose a modified exercise regimen combined with spontaneous muscle contractions thereby considering the biodynamic demands of both muscle and bone during resistive-load exercise in microgravity. Keywords: rat, BMD, DXA, passive exercise, active exercise, bone loss, tail suspension, spaceflight analogue, exercise countermeasure.

  17. A pilot study of muscle plasma protein changes after exercise

    DEFF Research Database (Denmark)

    Dahlqvist, Julia R; Voss, Line G; Lauridsen, Thomas

    2014-01-01

    profiles were measured before and after exercise in 3 groups: subjects affected by either Becker muscular dystrophy or McArdle disease, and healthy subjects. RESULTS: Mb and TnI appeared early in the blood, and the increase of TnI was only observed in patients with muscle disease. The CK increase was more...

  18. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression

    DEFF Research Database (Denmark)

    Davidsen, Peter K; Gallagher, Iain J; Hartman, Joseph W

    2011-01-01

    R-26a, and miR-451, from the weighted cumulative context ranking methodology, indicated that miRNA changes in the low responders may be compensatory, reflecting a failure to "activate" growth and remodeling genes. We report, for the first time, that RT-induced hypertrophy in human skeletal muscle......MicroRNAs (miRNA), small noncoding RNA molecules, may regulate protein synthesis, while resistance exercise training (RT) is an efficient strategy for stimulating muscle protein synthesis in vivo. However, RT increases muscle mass, with a very wide range of effectiveness in humans. We therefore...... determined the expression level of 21 abundant miRNAs to determine whether variation in these miRNAs was able to explain the variation in RT-induced gains in muscle mass. Vastus lateralis biopsies were obtained from the top and bottom ~20% of responders from 56 young men who undertook a 5 day/wk RT program...

  19. Influence of exercise intensity on respiratory muscle fatigue and brachial artery blood flow during cycling exercise.

    Science.gov (United States)

    Smith, Joshua R; Ade, Carl J; Broxterman, Ryan M; Skutnik, Benjamin C; Barstow, Thomas J; Wong, Brett J; Harms, Craig A

    2014-08-01

    During high intensity exercise, both respiratory muscle fatigue and cardiovascular reflexes occur; however, it is not known how inactive limb blood flow is influenced. The purpose of this study was to determine the influence of moderate and high exercise intensity on respiratory muscle fatigue and inactive limb muscle and cutaneous blood flow during exercise. Twelve men cycled at 70 and 85 % [Formula: see text] for 20 min. Subjects also performed a second 85 % [Formula: see text] test after ingesting 1,800 mg of N-acetylcysteine (NAC), which has been shown to reduce respiratory muscle fatigue (RMF). Maximum inspiratory pressures (P Imax), brachial artery blood flow (BABF), cutaneous vascular conductance (CVC), and mean arterial pressure were measured at rest and during exercise. Significant RMF occurred with 85 % [Formula: see text] (P Imax, -12.8 ± 9.8 %), but not with 70 % [Formula: see text] (P Imax, -5.0 ± 5.9 %). BABF and BA vascular conductance were significantly lower at end exercise of the 85 % [Formula: see text] test compared to the 70 % [Formula: see text] test. CVC during exercise was not different (p > 0.05) between trials. With NAC, RMF was reduced (p RMF, decreases in inactive arm blood flow, and vascular conductance, but not cutaneous blood flow.

  20. Calf muscle oxygen saturation and the effects of supervised exercise training for intermittent claudication.

    Science.gov (United States)

    Beckitt, Tim A; Day, Jude; Morgan, Maria; Lamont, Peter M

    2012-08-01

    The mechanisms underlying the symptomatic improvement witnessed as a result of exercise training in intermittent claudication remain unclear. There is no reproducible evidence to support increased limb blood flow resulting from neovascularization. Changes in oxygenation of active muscles as a result of blood redistribution are hypothesized but unproven. This study sought evidence of improved gastrocnemius oxygenation resulting from exercise training. The study recruited 42 individuals with claudication. After an initial control period of exercise advice, participants undertook a 3-month supervised exercise program. Spatially resolved near-infrared spectroscopy monitored calf muscle oxygen saturation (Sto(2)) during exercise and after a period of cuff-induced ischemia. Comparison was made with 14 individuals undergoing angioplasty for calf claudication. Clinical outcomes of claudication distance and maximum walking distance were measured by treadmill assessment. Significant increases occurred in mean [interquartile range] claudication disease (57 [38-78] to 119 [97-142] meters; P = .01) and maximum walking distance (124 [102-147] to 241 [193-265] meters; P = .02) after supervised exercise but not after the control period. No change occurred in resting Sto(2) at any interval. Angioplasty (27% [21-34] to 19% [13-29]; P = .02) but not exercise training (26% [21-32] vs 23% [20-31]; P > .20) resulted in a reduced Sto(2) desaturation in response to submaximal exercise and an increased hyperemic hemoglobin oxygen recovery rate after ischemia (0.48 [0.39-0.55] to 0.63 [0.52-0.69] s(-1); P = .01). However supervised exercise reduced the Sto(2) recovery half-time by 17% (82 [64-101] to 68 [55-89] seconds; P = .02). Supervised exercise training is not associated with increased gastrocnemius muscle oxygenation during exercise or increased hyperemic hemoglobin flow after a model of ischemia. This suggests that the symptomatic improvement witnessed is not the result of increased

  1. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Tharciano Luiz Teixeira Braga da Silva

    2015-01-01

    Full Text Available Abstract Background: Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective: To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME-induced hypertensive rats. Methods: Wistar rats were divided into three groups: control (C, hypertensive (H, and exercised hypertensive (EH. Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN, potassium chloride (KCl and sodium nitroprusside (SNP. Results: Rats treated with L-NAME showed an increase (p < 0.001 in systolic blood pressure (SBP, diastolic blood pressure (DBP and mean arterial pressure (MAP compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001 the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01 smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion: One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  2. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    Science.gov (United States)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  3. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle.

    Science.gov (United States)

    Ulbricht, Anna; Gehlert, Sebastian; Leciejewski, Barbara; Schiffer, Thorsten; Bloch, Wilhelm; Höhfeld, Jörg

    2015-01-01

    Chaperone-assisted selective autophagy (CASA) is a tension-induced degradation pathway essential for muscle maintenance. Impairment of CASA causes childhood muscle dystrophy and cardiomyopathy. However, the importance of CASA for muscle function in healthy individuals has remained elusive so far. Here we describe the impact of strength training on CASA in a group of healthy and moderately trained men. We show that strenuous resistance exercise causes an acute induction of CASA in affected muscles to degrade mechanically damaged cytoskeleton proteins. Moreover, repeated resistance exercise during 4 wk of training led to an increased expression of CASA components. In human skeletal muscle, CASA apparently acts as a central adaptation mechanism that responds to acute physical exercise and to repeated mechanical stimulation.

  4. Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Passos, Madla; Bangsbo, Jens

    2013-01-01

    The effect of acute intense intermittent exercise compared to moderate intensity exercise, on angiogenic factors and the effect of four weeks of intense intermittent training on capillary growth were examined in nine young healthy males, pre-conditioned by moderate intensity endurance training...... for VEGF secretion and endothelial cell proliferation and that intense intermittent training does not induce a sufficient angiogenic stimulus to induce capillary growth in muscle previously conditioned by moderate intensity exercise........ The intense training consisted of 24 one-min cycling bouts at an initial work rate of 316 ± 19W (~117% of pre VO2 max), performed 3 times/week. Skeletal muscle biopsies and muscle microdialysates were otained from m.v. lateralis before, during, and after acute exercise performed at either moderate or high...

  5. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species.

    Science.gov (United States)

    King, Michelle A; Clanton, Thomas L; Laitano, Orlando

    2016-01-15

    Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. Copyright © 2016 the American Physiological Society.

  6. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training

    Directory of Open Access Journals (Sweden)

    Tanner Stokes

    2018-02-01

    Full Text Available Skeletal muscle supports locomotion and serves as the largest site of postprandial glucose disposal; thus it is a critical organ for physical and metabolic health. Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS and muscle protein breakdown (MPB, both of which are sensitive to external loading and aminoacidemia. Hyperaminoacidemia results in a robust but transient increase in rates of MPS and a mild suppression of MPB. Resistance exercise potentiates the aminoacidemia-induced rise in MPS that, when repeated over time, results in gradual radial growth of skeletal muscle (i.e., hypertrophy. Factors that affect MPS include both quantity and composition of the amino acid source. Specifically, MPS is stimulated in a dose-responsive manner and the primary amino acid agonist of this process is leucine. MPB also appears to be regulated in part by protein intake, which can exert a suppressive effect on MPB. At high protein doses the suppression of MPB may interfere with skeletal muscle adaptation following resistance exercise. In this review, we examine recent advancements in our understanding of how protein ingestion impacts skeletal muscle growth following resistance exercise in young adults during energy balance and energy restriction. We also provide practical recommendations for exercisers who wish to maximize the hypertrophic response of skeletal muscle during resistance exercise training.

  7. Exercise and Type 2 Diabetes: Molecular Mechanisms Regulating Glucose Uptake in Skeletal Muscle

    Science.gov (United States)

    Stanford, Kristin I.; Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial…

  8. Muscle Adaptations Permitting Fatigue-Resistant Exercise

    Science.gov (United States)

    2014-09-15

    the CHO dependence of the Alaskan Husky. Previous studies in yearling Alaskan Huskies have reported an average VO2max of 198.7 ml/kg/min after 4...completed at approximately 30% of the VO2max values reported for lightly-trained dogs, and this percentage may be lower if more intensively-trained dogs...develop higher VO2max values as has been anecdotally described in other, more intensively trained dogs. Further, our exercise task was completed at

  9. Inspiratory muscle training improves exercise capacity with thoracic load carriage.

    Science.gov (United States)

    Shei, Ren-Jay; Chapman, Robert F; Gruber, Allison H; Mickleborough, Timothy D

    2018-02-01

    Thoracic load carriage (LC) exercise impairs exercise performance compared to unloaded exercise, partially due to impaired respiratory mechanics. We investigated the effects of LC on exercise and diaphragmatic fatigue in a constant-load exercise task; and whether inspiratory muscle training (IMT) improved exercise capacity and diaphragmatic fatigue with LC. Twelve recreationally active males completed three separate running trials to exhaustion (T lim ) at a fixed speed eliciting 70% of their V˙O 2max . The first two trials were completed either unloaded (UL) or while carrying a 10 kg backpack (LC). Subjects then completed 6 weeks of either true IMT or placebo-IMT. Posttraining, subjects completed an additional LC trial identical to the pretraining LC trial. Exercise metabolic and ventilatory measures were recorded. Diaphragm fatigue was assessed as the difference between preexercise and postexercise twitch diaphragmatic pressure (P di, tw ), assessed by bilateral stimulation of the phrenic nerve with esophageal balloon-tipped catheters measuring intrathoracic pressures. T lim was significantly shorter (P  0.05). Minute ventilation and breathing mechanics were unchanged post-IMT (P > 0.05). Six weeks of flow-resistive IMT improved exercise capacity, but did not mitigate diaphragmatic fatigue following submaximal, constant-load running to volitional exhaustion with LC. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes.

    Science.gov (United States)

    Tagougui, Semah; Leclair, Erwan; Fontaine, Pierre; Matran, Régis; Marais, Gaelle; Aucouturier, Julien; Descatoire, Aurélien; Vambergue, Anne; Oussaidene, Kahina; Baquet, Georges; Heyman, Elsa

    2015-02-01

    Aerobic fitness, as reflected by maximal oxygen (O2) uptake (VO2max), is impaired in poorly controlled patients with type 1 diabetes. The mechanisms underlying this impairment remain to be explored. This study sought to investigate whether type 1 diabetes and high levels of glycated hemoglobin (HbA1c) influence O2 supply including O2 delivery and release to active muscles during maximal exercise. Two groups of patients with uncomplicated type 1 diabetes (T1D-A, n = 11, with adequate glycemic control, HbA1c 8%) were compared with healthy controls (CON-A, n = 11; CON-I, n = 12, respectively) matched for physical activity and body composition. Subjects performed exhaustive incremental exercise to determine VO2max. Throughout the exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in the vastus lateralis. Venous and arterialized capillary blood was sampled during exercise to assess arterial O2 transport and factors able to shift the oxyhemoglobin dissociation curve. Arterial O2 content was comparable between groups. However, changes in total hemoglobin (i.e., muscle blood volume) was significantly lower in T1D-I compared with that in CON-I. T1D-I also had impaired changes in deoxyhemoglobin levels and increase during high-intensity exercise despite normal erythrocyte 2,3-diphosphoglycerate levels. Finally, VO2max was lower in T1D-I compared with that in CON-I. No differences were observed between T1D-A and CON-A. Poorly controlled patients displayed lower VO2max and blunted muscle deoxyhemoglobin increase. The latter supports the hypotheses of increase in O2 affinity induced by hemoglobin glycation and/or of a disturbed balance between nutritive and nonnutritive muscle blood flow. Furthermore, reduced exercise muscle blood volume in poorly controlled patients may warn clinicians of microvascular dysfunction occurring even before overt microangiopathy.

  11. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Sakelliou

    2016-01-01

    Full Text Available We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day immediately after a muscle-damaging exercise protocol (300 eccentric contractions and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.

  12. Effects of eccentric exercise on branched-chain amino acid profiles in rat serum and skeletal muscle.

    Science.gov (United States)

    Qun, Z; Xinkai, Y; Jing, W

    2014-04-01

    Supplementation of branched-chain amino acid (BCAA) is often used to attenuate exercise-induced skeletal muscle damage and promote adaptation, but no definitive conclusion on the benefits of BCAA on muscle recovery after injurious exercise can be drawn. Exploration of the systematic BCAA alteration in muscular injury-repair stage per se without any BCAA supplement should provide some useful information in favour of BCAA application in muscle regeneration after injury. One bout of 90-min downhill-running exercise was performed to cause rat skeletal muscle injury. After exercise, myofibrillar BCAA concentrations showed minor changes compared with exercise before, while serum concentrations of BCAA were lower after exercise. Especially, serum leucine, isoleucine and total BCAA concentrations 2 weeks post-run were significantly lower than normal values of exercise before (p = 0.008, p = 0.041, p = 0.015). The data demonstrate that a single eccentric exercise can significantly decrease the serum BCAA concentrations, which mean high utilization of BCAA for myogenesis after injurious exercise. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  13. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction.

    Science.gov (United States)

    Lee, Heow Won; Ahmad, Monir; Wang, Hong-Wei; Leenen, Frans H H

    2017-03-01

    What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no

  14. Fatigue-related adaptations in muscle coordination during a cyclic exercise in humans

    National Research Council Canada - National Science Library

    Turpin, Nicolas A; Guével, Arnaud; Durand, Sylvain; Hug, François

    2011-01-01

    .... A possible strategy to counteract the effects of fatigue is to modify muscle coordination. We designed this study to quantify the effect of fatigue on muscle coordination during a cyclic exercise involving numerous muscles...

  15. The Impact of Exercise on Statin-Associated Skeletal Muscle Myopathy.

    Directory of Open Access Journals (Sweden)

    Hae R Chung

    Full Text Available HMG-CoA reductase inhibitors (statins are the most effective pharmacological means of reducing cardiovascular disease risk. The most common side effect of statin use is skeletal muscle myopathy, which may be exacerbated by exercise. Hypercholesterolemia and training status are factors that are rarely considered in the progression of myopathy. The purpose of this study was to determine the extent to which acute and chronic exercise can influence statin-induced myopathy in hypercholesterolemic (ApoE-/- mice. Mice either received daily injections of saline or simvastatin (20 mg/kg while: 1 remaining sedentary (Sed, 2 engaging in daily exercise for two weeks (novel, Nov, or 3 engaging in daily exercise for two weeks after a brief period of training (accustomed, Acct (2x3 design, n = 60. Cholesterol, activity, strength, and indices of myofiber damage and atrophy were assessed. Running wheel activity declined in both exercise groups receiving statins (statin x time interaction, p<0.05. Cholesterol, grip strength, and maximal isometric force were significantly lower in all groups following statin treatment (statin main effect, p<0.05. Mitochondrial content and myofiber size were increased and 4-HNE was decreased by exercise (statin x exercise interaction, p<0.05, and these beneficial effects were abrogated by statin treatment. Exercise (Acct and Nov increased atrogin-1 mRNA in combination with statin treatment, yet enhanced fiber damage or atrophy was not observed. The results from this study suggest that exercise (Nov, Acct does not exacerbate statin-induced myopathy in ApoE-/- mice, yet statin treatment reduces activity in a manner that prevents muscle from mounting a beneficial adaptive response to training.

  16. Neuromuscular fatigue induced by whole-body vibration exercise.

    Science.gov (United States)

    Maffiuletti, Nicola A; Saugy, Jonas; Cardinale, Marco; Micallef, Jean-Paul; Place, Nicolas

    2013-06-01

    The aim of this study was to examine the magnitude and the origin of neuromuscular fatigue induced by half-squat static whole-body vibration (WBV) exercise, and to compare it to a non-WBV condition. Nine healthy volunteers completed two fatiguing protocols (WBV and non-WBV, randomly presented) consisting of five 1-min bouts of static half-squat exercise with a load corresponding to 50 % of their individual body mass. Neuromuscular fatigue of knee and ankle muscles was investigated before and immediately after each fatiguing protocol. The main outcomes were maximal voluntary contraction (MVC) torque, voluntary activation, and doublet peak torque. Knee extensor MVC torque decreased significantly (P fatiguing protocols. Doublet peak torque decreased significantly and to a similar extent following WBV and non-WBV exercise, for both knee extensors (-25 %; P fatigue and did not change its causative factors compared to non-WBV half-squat resistive exercise in recreationally active subjects.

  17. Comparison of muscle activity between two adult groups according to the number of Shaker exercise.

    Science.gov (United States)

    Woo, H-S; Won, S-Y; Chang, K-Y

    2014-06-01

    The purpose of this study was to investigate the muscle activity of the suprahyoid and infrahyoid muscles according to the number of Shaker exercise. The 19 experimental subjects were recruited and randomly assigned to the two experimental groups. The 1st experimental group performed Shaker exercise once a day, and 2nd experimental group performed Shaker exercise three times a day for 6 weeks. Shaker exercise consists of isometric and isotonic contraction movement, enhancing the strength of suprahyoid muscle and increasing the opening of UES. After performing Shaker exercise for 6 weeks, the muscle activity of experimental groups was measured and analysed by surface electromyography. As a result, muscle activity of the suprahyoid and infrahyoid muscles showed significant improvement in both groups (P Shaker exercise shows similar exercise effects on suprahyoid muscle which is the primary target muscle irrespective of the number of Shaker exercise. The activity of the infrahyoid muscle, which takes a supportive role, also showed significant difference between the two groups. In the results of a follow-up test after 4 weeks, muscle activity was higher than the initial status and the value of the EMG activity was statistically significant (P Shaker exercise performed once a day, like performing three times a day, has enough exercise effect and there is similar effect on the suprahyoid muscle between the 2 groups. In addition, the exercise effect lasts for 4 weeks after completing exercise. © 2014 John Wiley & Sons Ltd.

  18. Exercise induced fatigue: unfit or unwell?

    LENUS (Irish Health Repository)

    Moore, D M

    2011-05-01

    This case report outlines the diagnoses of a rare myophosphorylase deficiency (McArdle Syndrome) in a unique way. A set of characteristic values from a Cardiopulmonary Exercise Test (CPET) combined with a typical patient history pointed to a failure of the glycolytic pathway in the skeletal muscle. McArdle Syndrome was confirmed with a skeletal muscle biopsy. There is no evidence of such a diagnostic method in the literature.

  19. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle

    DEFF Research Database (Denmark)

    Cheng, Arthur J; Willis, Sarah J; Zinner, Christoph

    2017-01-01

    recovery from fatigue-induced by endurance exercise is impaired by cooling and improved by heating, due to changes in glycogen resynthesis rate. ABSTRACT: Manipulation of muscle temperature is believed to improve post-exercise recovery, with cooling being especially popular among athletes. However......KEY POINTS: We investigated whether intramuscular temperature affects the acute recovery of exercise performance following fatigue-induced by endurance exercise. Mean power output was better preserved during an all-out arm-cycling exercise following a 2 h recovery period in which the upper arms...... muscle fibres where we found that recovery of submaximal force and restoration of fatigue resistance was worsened by cooling (16-26°C) and improved by heating (36°C). Isolated whole mouse muscle experiments confirmed that cooling impaired muscle glycogen resynthesis. We conclude that skeletal muscle...

  20. A Novel Fiber Bragg Grating Based Sensing Methodology for Direct Measurement of Surface Strain on Body Muscles during Physical Exercises

    Science.gov (United States)

    Prasad Arudi Subbarao, Guru; Subbaramajois Narasipur, Omkar; Kalegowda, Anand; Asokan, Sundarrajan

    2012-07-01

    The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

  1. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Halberg, Nils; Hillig, Thore

    2005-01-01

    Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H......-CHO) or 2) a low-carbohydrate diet (L-CHO) before exercise to alter muscle glycogen content as well as to induce, respectively, low and high rates of fat oxidation. Leg fat oxidation was 122% higher during exercise in L-CHO than in H-CHO (P ...-activated protein kinase (a2-AMPK) was increased twice as much in L-CHO as in H-CHO (P exercise. However, acetyl-CoA carboxylase (ACC)ß Ser221 phosphorylation was increased to the same extent (6-fold) under the two conditions. The concentration of malonyl-CoA was reduced 13% by exercise in both...

  2. 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jakob Nis; Mustard, Kirsty J.W.; Graham, Drew A.

    2002-01-01

    (3)) AMPK subunits and exercise-induced AMPK activity are influenced by exercise training status, muscle biopsies were obtained from seven endurance exercise-trained and seven sedentary young healthy men. The alpha(1)- and alpha(2)-AMPK mRNA contents in trained subjects were both 117 +/- 2...... trained human skeletal muscle has increased alpha(1)-AMPK protein levels and blunted AMPK activation during exercise.......5'-AMP-activated protein kinase (AMPK) has been proposed to be a pivotal factor in cellular responses to both acute exercise and exercise training. To investigate whether protein levels and gene expression of catalytic (alpha(1), alpha(2)) and regulatory (beta(1), beta(2), gamma(1), gamma(2), gamma...