WorldWideScience

Sample records for excretory cell gene-expression

  1. Differences in the gene expression profiles of haemocytes from schistosome-susceptible and -resistant biomphalaria glabrata exposed to Schistosoma mansoni excretory-secretory products.

    Directory of Open Access Journals (Sweden)

    Zahida Zahoor

    Full Text Available During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory-secretory products (ESPs that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni-resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20 μg/ml for 1 h, using a 5K B. glabrata cDNA microarray. Ninety-eight genes were found differentially expressed between haemocytes from the two snail strains, 57 resistant specific and 41 susceptible specific, 60 of which had no known homologue in GenBank. Known differentially expressed resistant-snail genes included the nuclear factor kappa B subunit Relish, elongation factor 1α, 40S ribosomal protein S9, and matrilin; known susceptible-snail specific genes included cathepsins D and L, and theromacin. Comparative analysis with other gene expression studies revealed 38 of the 98 identified genes to be uniquely differentially expressed in haemocytes in the presence of ESPs, thus identifying for the first time schistosome ESPs as important molecules that influence global snail host-defence cell gene expression profiles. Such immunomodulation may benefit the schistosome, enabling its survival and successful development in the snail host.

  2. Nanomaterials Enhanced Gene Expression in Yeast Cells

    Directory of Open Access Journals (Sweden)

    Su-Fang Chien

    2008-01-01

    Full Text Available Metal nanomaterials are shown to enhance gene expression for rice -galactosidase gene (-Gal in yeast cells. Au and Ag nanoparticles and their nanocomposites, silica-Au and silica-Ag, were prepared and characterized by UV-vis spectroscopy and TEM technique. The rice -galactosidase gene was cloned into the yeast chromosome, where the cloned cells were precultured and induced into a medium containing each of the testing nanomaterials. The nanomaterials were observed to incorporate inside the cells, and no cell death has been detected during the course of gene expression. The enzyme activity was determined by a synthetic substrate, p-nitrophenyl--D-galctopyranoside, and the yellow product yield was recorded in a spectrophotometer at 400 nm. When Au and Ag nanoparticles were incorporated with the culture, a 3–5 fold enhancement in -galactosidase was observed for intracellular activity as well as the secreted activity into the medium. The secreted protein was analyzed to have a pure form and displayed as a single protein band in the SDS-gel electrophoresis. The effects of size and chemical nature of nanomaterials on gene expression for the rice -galactosidase gene in yeast cells are discussed.

  3. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  4. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Bahlool, Qusay Zuhair Mohammad; Skovgaard, Alf; Kania, Per Walter

    2013-01-01

    Excretory/secretory (ES) products are molecules produced by parasitic nematodes, including larval Anisakis simplex, a parasite occurring in numerous marine fish hosts. The effects of these substances on host physiology have not been fully described. The present work elucidates the influence of ES...

  5. Identifying gene expression modules that define human cell fates

    OpenAIRE

    Germanguz, I; Listgarten, J; Cinkornpumin, J.; Solomon, A; Gaeta, X.; Lowry, W. E.

    2016-01-01

    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in f...

  6. Identifying gene expression modules that define human cell fates.

    Science.gov (United States)

    Germanguz, I; Listgarten, J; Cinkornpumin, J; Solomon, A; Gaeta, X; Lowry, W E

    2016-05-01

    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate. Lastly, we introduce a web-based database to disseminate the results. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    The role of mast cells in allergic diseases and innate immunity has been widely researched and much is known about the expression profiles of immune-related genes in mast cells after bacterial challenges. However, little is known about the gene expression profiles of mast cells in response to adenosine. Herein, we ...

  8. Gene expression signatures of human cell and tissue longevity.

    Science.gov (United States)

    Seim, Inge; Ma, Siming; Gladyshev, Vadim N

    2016-01-01

    Different cell types within the body exhibit substantial variation in the average time they live, ranging from days to the lifetime of the organism. The underlying mechanisms governing the diverse lifespan of different cell types are not well understood. To examine gene expression strategies that support the lifespan of different cell types within the human body, we obtained publicly available RNA-seq data sets and interrogated transcriptomes of 21 somatic cell types and tissues with reported cellular turnover, a bona fide estimate of lifespan, ranging from 2 days (monocytes) to a lifetime (neurons). Exceptionally long-lived neurons presented a gene expression profile of reduced protein metabolism, consistent with neuronal survival and similar to expression patterns induced by longevity interventions such as dietary restriction. Across different cell lineages, we identified a gene expression signature of human cell and tissue turnover. In particular, turnover showed a negative correlation with the energetically costly cell cycle and factors supporting genome stability, concomitant risk factors for aging-associated pathologies. In addition, the expression of p53 was negatively correlated with cellular turnover, suggesting that low p53 activity supports the longevity of post-mitotic cells with inherently low risk of developing cancer. Our results demonstrate the utility of comparative approaches in unveiling gene expression differences among cell lineages with diverse cell turnover within the same organism, providing insights into mechanisms that could regulate cell longevity.

  9. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  10. Gene expression profiling predicts survival in conventional renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hongjuan Zhao

    2006-01-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  11. Versatile epitope tagging vector for gene expression in mammalian cells.

    Science.gov (United States)

    Hosfield, T; Lu, Q

    1998-08-01

    We have constructed an epitope-tagging vector, pCMV-Tag1, for gene expression in mammalian cells. This vector, which allows for N-terminal, C-terminal and internal tagging of the gene product of interest with the FLAG and/or c-myc epitopes, enables researchers to rapidly and efficiently characterize gene products in vivo.

  12. A functional profile of gene expression in ARPE-19 cells

    Directory of Open Access Journals (Sweden)

    Johnson Dianna A

    2005-11-01

    Full Text Available Abstract Background Retinal pigment epithelium cells play an important role in the pathogenesis of age related macular degeneration. Their morphological, molecular and functional phenotype changes in response to various stresses. Functional profiling of genes can provide useful information about the physiological state of cells and how this state changes in response to disease or treatment. In this study, we have constructed a functional profile of the genes expressed by the ARPE-19 cell line of retinal pigment epithelium. Methods Using Affymetrix MAS 5.0 microarray analysis, genes expressed by ARPE-19 cells were identified. Using GeneChip® annotations, these genes were classified according to their known functions to generate a functional gene expression profile. Results We have determined that of approximately 19,044 unique gene sequences represented on the HG-U133A GeneChip® , 6,438 were expressed in ARPE-19 cells irrespective of the substrate on which they were grown (plastic, fibronectin, collagen, or Matrigel. Rather than focus our subsequent analysis on the identity or level of expression of each individual gene in this large data set, we examined the number of genes expressed within 130 functional categories. These categories were selected from a library of HG-U133A GeneChip® annotations linked to the Affymetrix MAS 5.0 data sets. Using this functional classification scheme, we were able to categorize about 70% of the expressed genes and condense the original data set of over 6,000 data points into a format with 130 data points. The resulting ARPE-19 Functional Gene Expression Profile is displayed as a percentage of ARPE-19-expressed genes. Conclusion The Profile can readily be compared with equivalent microarray data from other appropriate samples in order to highlight cell-specific attributes or treatment-induced changes in gene expression. The usefulness of these analyses is based on the assumption that the numbers of genes

  13. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  14. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  15. Embryo quality predictive models based on cumulus cells gene expression

    Directory of Open Access Journals (Sweden)

    Devjak R

    2016-06-01

    Full Text Available Since the introduction of in vitro fertilization (IVF in clinical practice of infertility treatment, the indicators for high quality embryos were investigated. Cumulus cells (CC have a specific gene expression profile according to the developmental potential of the oocyte they are surrounding, and therefore, specific gene expression could be used as a biomarker. The aim of our study was to combine more than one biomarker to observe improvement in prediction value of embryo development. In this study, 58 CC samples from 17 IVF patients were analyzed. This study was approved by the Republic of Slovenia National Medical Ethics Committee. Gene expression analysis [quantitative real time polymerase chain reaction (qPCR] for five genes, analyzed according to embryo quality level, was performed. Two prediction models were tested for embryo quality prediction: a binary logistic and a decision tree model. As the main outcome, gene expression levels for five genes were taken and the area under the curve (AUC for two prediction models were calculated. Among tested genes, AMHR2 and LIF showed significant expression difference between high quality and low quality embryos. These two genes were used for the construction of two prediction models: the binary logistic model yielded an AUC of 0.72 ± 0.08 and the decision tree model yielded an AUC of 0.73 ± 0.03. Two different prediction models yielded similar predictive power to differentiate high and low quality embryos. In terms of eventual clinical decision making, the decision tree model resulted in easy-to-interpret rules that are highly applicable in clinical practice.

  16. Gene expression profiling of chicken primordial germ cell ESTs

    Directory of Open Access Journals (Sweden)

    Lim Dajeong

    2006-08-01

    Full Text Available Abstract Background Germ cells are the only cell type that can penetrate from one generation to next generation. At the early embryonic developmental stages, germ cells originally stem from primordial germ cells, and finally differentiate into functional gametes, sperm in male or oocyte in female, after sexual maturity. This study was conducted to investigate a large-scale expressed sequence tag (EST analysis in chicken PGCs and compare the expression of the PGC ESTs with that of embryonic gonad. Results We constructed 10,851 ESTs from a chicken cDNA library of a collection of highly separated embryonic PGCs. After chimeric and problematic sequences were filtered out using the chicken genomic sequences, there were 5,093 resulting unique sequences consisting of 156 contigs and 4,937 singlets. Pearson chi-square tests of gene ontology terms in the 2nd level between PGC and embryonic gonad set showed no significance. However, digital gene expression profiling using the Audic's test showed that there were 2 genes expressed significantly with higher number of transcripts in PGCs compared with the embryonic gonads set. On the other hand, 17 genes in embryonic gonads were up-regulated higher than those in the PGC set. Conclusion Our results in this study contribute to knowledge of mining novel transcripts and genes involved in germline cell proliferation and differentiation at the early embryonic stages.

  17. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells.

    Science.gov (United States)

    Pellagatti, A; Cazzola, M; Giagounidis, A; Perry, J; Malcovati, L; Della Porta, M G; Jädersten, M; Killick, S; Verma, A; Norbury, C J; Hellström-Lindberg, E; Wainscoat, J S; Boultwood, J

    2010-04-01

    To gain insight into the molecular pathogenesis of the myelodysplastic syndromes (MDS), we performed global gene expression profiling and pathway analysis on the hematopoietic stem cells (HSC) of 183 MDS patients as compared with the HSC of 17 healthy controls. The most significantly deregulated pathways in MDS include interferon signaling, thrombopoietin signaling and the Wnt pathways. Among the most significantly deregulated gene pathways in early MDS are immunodeficiency, apoptosis and chemokine signaling, whereas advanced MDS is characterized by deregulation of DNA damage response and checkpoint pathways. We have identified distinct gene expression profiles and deregulated gene pathways in patients with del(5q), trisomy 8 or -7/del(7q). Patients with trisomy 8 are characterized by deregulation of pathways involved in the immune response, patients with -7/del(7q) by pathways involved in cell survival, whereas patients with del(5q) show deregulation of integrin signaling and cell cycle regulation pathways. This is the first study to determine deregulated gene pathways and ontology groups in the HSC of a large group of MDS patients. The deregulated pathways identified are likely to be critical to the MDS HSC phenotype and give new insights into the molecular pathogenesis of this disorder, thereby providing new targets for therapeutic intervention.

  18. Aging: a portrait from gene expression profile in blood cells.

    Science.gov (United States)

    Calabria, Elisa; Mazza, Emilia Maria Cristina; Dyar, Kenneth Allen; Pogliaghi, Silvia; Bruseghini, Paolo; Morandi, Carlo; Salvagno, Gian Luca; Gelati, Matteo; Guidi, Gian Cesare; Bicciato, Silvio; Schiaffino, Stefano; Schena, Federico; Capelli, Carlo

    2016-08-01

    The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process.

  19. Mural granulosa cell gene expression associated with oocyte developmental competence

    Directory of Open Access Journals (Sweden)

    Jiang Jin-Yi

    2010-03-01

    Full Text Available Abstract Background Ovarian follicle development is a complex process. Paracrine interactions between somatic and germ cells are critical for normal follicular development and oocyte maturation. Studies have suggested that the health and function of the granulosa and cumulus cells may be reflective of the health status of the enclosed oocyte. The objective of the present study is to assess, using an in vivo immature rat model, gene expression profile in granulosa cells, which may be linked to the developmental competence of the oocyte. We hypothesized that expression of specific genes in granulosa cells may be correlated with the developmental competence of the oocyte. Methods Immature rats were injected with eCG and 24 h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC. Gene expression profiles of mural granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array. Results The result showed that twelve genes were up-regulated, while one gene was down-regulated more than 1.5 folds in the NDC group compared with those in the PDC group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase (Lox and nerve growth factor receptor associated protein 1 (Ngfrap1, which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2 (Ggbt2, which is involved in the regulation of extracellular matrix organization and biogenesis. Conclusions The data in the present study demonstrate a close association between specific gene expression in mural granulosa cells and

  20. Gene expression profiling of Drosophila tracheal fusion cells.

    Science.gov (United States)

    Chandran, Rachana R; Iordanou, Ekaterini; Ajja, Crystal; Wille, Michael; Jiang, Lan

    2014-07-01

    The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  2. Can dead bacterial cells be defined and are genes expressed after cell death?

    Science.gov (United States)

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Profiling helper T cell subset gene expression in deer mice

    Directory of Open Access Journals (Sweden)

    Hjelle Brian

    2006-08-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV, the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT, Th2 cells (GATA-3, STAT6, IL-4, IL-5 and regulatory T cells (Fox-p3, IL-10, TGFβ1. These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.

  4. The effect of the colostral cells on gene expression of cytokines in cord blood cells.

    Science.gov (United States)

    Hrdý, Jiří; Novotná, Olga; Kocourková, Ingrid; Prokešová, Ludmila

    2017-11-01

    Beneficial effect of maternal milk is acknowledged, but there is still question whether maternal milk from allergic mother is as good as from healthy one. In our study, we have assayed the effect of cells from colostrum of healthy and allergic mothers on gene expression of cytokines in cord blood cells of newborns of healthy and allergic mothers. Cytokines typical for Th1 (IL-2, IFN-gamma), Th2 (IL-4, IL-13), Tregs (IL-10, TGF-beta), and IL-8 were followed. We were not able to detect significant influence of colostral cells on gene expression of cytokines in cord blood after 2-day coculture using Transwell system. There was no difference in gene expression of cytokines in nonstimulated cord blood cells of newborns of healthy and allergic mothers, but generally increased gene expression of cytokines except IL-10 and TGF-beta after polyclonal stimulation was detected in cord blood cells of children of allergic mothers. There was no difference in IL-10 expression in stimulated cord blood cells of children of healthy and allergic mothers. Gene expression of TGF-beta was even decreased in stimulated cord blood cells of children of allergic mothers in comparison to healthy ones. We have not observed difference in the capacity of colostral cells of healthy and allergic mothers to influence gene expression of cytokines in cord blood cells, but we have described difference in the reactivity of cord blood cells between children of allergic and healthy mothers.

  5. Euphorbia tirucalli modulates gene expression in larynx squamous cell carcinoma.

    Science.gov (United States)

    Franco-Salla, Gabriela Bueno; Prates, Janesly; Cardin, Laila Toniol; Dos Santos, Anemari Ramos Dinarte; Silva, Wilson Araújo da; da Cunha, Bianca Rodrigues; Tajara, Eloiza Helena; Oliani, Sonia Maria; Rodrigues-Lisoni, Flávia Cristina

    2016-05-21

    Some plants had been used in the treatment of cancer and one of these has attracted scientific interest, the Euphorbia tirucalli (E. tirucalli), used in the treatment of asthma, ulcers, warts has active components with activities scientifically proven as antimutagenic, anti-inflammatory and anticancer. We evaluate the influence of the antitumoral fraction of the E. tirucalli latex in the larynx squamous cell carcinoma (Hep-2), on the morphology, cell proliferation and gene expression. The Hep-2 cells were cultivated in complete medium (MEM 10 %) and treated with E. tirucalli latex for 1, 3, 5 and 7 days. After statistically analyzing the proliferation of the tested cells, the cells were cultivated again for RNA extraction and the Rapid Subtractive Hybridization (RaSH) technique was used to identify genes with altered expression. The genes found using the RaSH technique were analyzed by Gene Ontology (GO) using Ingenuity Systems. The five genes found to have differential expression were validated by real-time quantitative PCR. Though treatment with E. tirucalli latex did not change the cell morphology in comparison to control samples, but the cell growth was significantly decreased. The RaSH showed change in the expression of some genes, including ANXA1, TCEA1, NGFRAP1, ITPR1 and CD55, which are associated with inflammatory response, transcriptional regulation, apoptosis, calcium ion transport regulation and complement system, respectively. The E. tirucalli latex treatment down-regulated ITPR1 and up-regulated ANXA1 and CD55 genes, and was validated by real-time quantitative PCR. The data indicate the involvement of E. tirucalli latex in the altered expression of genes involved in tumorigenic processes, which could potentially be applied as a therapeutic indicator of larynx cancer.

  6. Regulation of cell-to-cell variability in divergent gene expression.

    Science.gov (United States)

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-03-24

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically 'leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs.

  7. Quantitative analyses of circadian gene expression in mammalian cell cultures.

    Directory of Open Access Journals (Sweden)

    Mariko Izumo

    2006-10-01

    Full Text Available The central circadian pacemaker is located in the hypothalamus of mammals, but essentially the same oscillating system operates in peripheral tissues and even in immortalized cell lines. Using luciferase reporters that allow automated monitoring of circadian gene expression in mammalian fibroblasts, we report the collection and analysis of precise rhythmic data from these cells. We use these methods to analyze signaling pathways of peripheral tissues by studying the responses of Rat-1 fibroblasts to ten different compounds. To quantify these rhythms, which show significant variation and large non-stationarities (damping and baseline drifting, we developed a new fast Fourier transform-nonlinear least squares analysis procedure that specifically optimizes the quantification of amplitude for circadian rhythm data. This enhanced analysis method successfully distinguishes among the ten signaling compounds for their rhythm-inducing properties. We pursued detailed analyses of the responses to two of these compounds that induced the highest amplitude rhythms in fibroblasts, forskolin (an activator of adenylyl cyclase, and dexamethasone (an agonist of glucocorticoid receptors. Our quantitative analyses clearly indicate that the synchronization mechanisms by the cAMP and glucocorticoid pathways are different, implying that actions of different genes stimulated by these pathways lead to distinctive programs of circadian synchronization.

  8. Characterization of Dendritic Cell Subsets Through Gene Expression Analysis.

    Science.gov (United States)

    Vu Manh, Thien-Phong; Dalod, Marc

    2016-01-01

    Dendritic cells (DCs) are immune sentinels of the body and play a key role in the orchestration of the communication between the innate and the adaptive immune systems. DCs can polarize innate and adaptive immunity toward a variety of functions, sometimes with opposite roles in the overall control of immune responses (e.g., tolerance or immunosuppression versus immunity) or in the balance between various defense mechanisms promoting the control of different types of pathogens (e.g., antiviral versus antibacterial versus anti-worm immunity). These multiple DC functions result both from the plasticity of individual DC to exert different activities and from the existence of various DC subsets specialized in distinct functions. Functional genomics represents a powerful, unbiased, approach to better characterize these two levels of DC plasticity and to decipher its molecular regulation. Indeed, more and more experimental immunologists are generating high-throughput data in order to better characterize different states of DC based, for example, on their belonging to a specific subpopulation and/or on their exposure to specific stimuli and/or on their ability to exert a specific function. However, the interpretation of this wealth of data is severely hampered by the bottleneck of their bioinformatics analysis. Indeed, most experimental immunologists lack advanced computational or bioinformatics expertise and do not know how to translate raw gene expression data into potential biological meaning. Moreover, subcontracting such analyses is generally disappointing or financially not sustainable, since companies generally propose canonical analysis pipelines that are often unadapted for the structure of the data to analyze or for the precise type of questions asked. Hence, there is an important need of democratization of the bioinformatics analyses of gene expression profiling studies, in order to accelerate interpretation of the results by the researchers at the origin of the

  9. Heterogeneity of premetastatic niches gene expression in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Tashireva L. A.

    2015-12-01

    Full Text Available Aim. To investigate the expression of the genes TGFB1, TNF, CSF1, CSF2, VEGFA and HIF1A in the patients with invasive breast carcinoma of no special type considering the intratumoral morphological heterogeneity. Methods. The technology of laser capture microdissection PALM was used to isolate five types of morphological tumor structures from three patients with invasive carcinoma of no special type (IC NST, luminal A subtype, T1-2NxMx. The level of expression of the cytokine (TNF, growth factor genes (TGFB1, CSF1, CSF2, VEGFA and the HIF1A gene was assessed in the samples obtained using real-time PCR, TaqMan-probes and specific oligonucleotides. Results. The study demonstrated the absence of the expression of the growth factor gene CSF2 in tumor cells of IC NST, and the expression of the gene CSF1, independent from the metastasis status and tumor structure type. The prevalence of the expression of the genes VEGFA and TGFB1 was revealed in the alveolar and solid structures along with the rare expression of the gene TNF. Conclusions. The expression of pre-metastatic niche genes in the tumors of patients with IC NST is heterogeneous. The hypoxia-mediated change in the cytokine gene expression may be expected in the alveolar and solid structures, which ultimately results in the formation of microenvironment, facilitating tumor growth and the formation of tumor metastatic potential.

  10. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  11. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity

    Science.gov (United States)

    Sundaram, Meera V.; Buechner, Matthew

    2016-01-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal’s life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes. PMID:27183565

  12. Direct cell lysis for single-cell gene expression profiling

    Directory of Open Access Journals (Sweden)

    David eSvec

    2013-11-01

    Full Text Available The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA to be the best lysis agent, resulting in efficient cell lysis, high RNA stability and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single cells as well as samples composed of small numbers of cells.

  13. Obesity modulates inflammation and lipid metabolism oocyte gene expression: A single cell transcriptome perspective

    Science.gov (United States)

    This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal weight (NW) women who were undergoing fertility treatments. Using single cell transcriptomic analyses, we investigated oocyte gene expression using RNA-seq. Serum...

  14. Gene expression changes under cyclic mechanical stretching in rat retinal glial (Müller) cells

    National Research Council Canada - National Science Library

    Wang, Xin; Fan, Jiawen; Zhang, Meng; Sun, Zhongcui; Xu, Gezhi

    2013-01-01

    ..., Müller cells are active players in all forms of retinal injury and disease. In this study, we aim to identify patterns of gene expression changes induced by cyclic mechanical stretching in Müller cells. Rat...

  15. Methods and compositions for regulating gene expression in plant cells

    Science.gov (United States)

    Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor); Dai, Shunhong (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  16. Modeling bi-modality improves characterization of cell cycle on gene expression in single cells.

    Science.gov (United States)

    McDavid, Andrew; Dennis, Lucas; Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael

    2014-07-01

    Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%-17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome.

  17. Distribution Associated with Stochastic Processes of Gene Expression in a Single Eukaryotic Cell

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir A

    2001-01-01

    Full Text Available The ability to simultaneously measure mRNA abundance for large number of genes has revolutionized biological research by allowing statistical analysis of global gene-expression data. Large-scale gene-expression data sets have been analyzed in order to identify the probability distributions of gene expression levels (or transcript copy numbers in eukaryotic cells. Determining such function(s may provide a theoretical basis for accurately counting all expressed genes in a given cell and for understanding gene expression control. Using the gene-expression libraries derived from yeast cells and from different human cell tissues we found that all observed gene expression levels data appear to follow a Pareto-like skewed frequency distribution. We produced a the skewed probability function, called the Binomial Differential distribution, that accounts for many rarely transcribed genes in a single cell. We also developed a novel method for estimating and removing major experimental errors and redundancies from the Serial Analysis Gene Expression (SAGE data sets. We successfully applied this method to the yeast transcriptome. A "basal" random transcription mechanism for all protein-coding genes in every eukaryotic cell type is predicted.

  18. Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Chen, Li

    2008-01-01

    genes. However, it is not fully clear whether multilineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of BMSC is associated with a specific gene expression pattern. In the present study, we investigated the gene expression pattern of representative transcription factors and marker...... differentiation was induced in cell pellet culture by expression of sox9, type 2 collagen, and aggrecan. Cbfa1 and PPARγ2 were inhibited in chondrogenic medium. These results indicate that the differentiation potential of BMSC to a particular mesenchymal lineage relies upon specific gene expression pattern...

  19. Breast Cancer and Early Onset Childhood Obesity: Cell Specific Gene Expression in Mammary Epithelia and Adipocytes

    Science.gov (United States)

    2007-07-01

    where tumor cells (purple) are invading adjacent muscle tissue ( pink ). In the middle panel a benign adenoma, with adjacent fat cells (white), from...NK, Saliba G, Floyd JJ, Anania FA. Leptin induces increased alpha 2(I) collagen gene expression in cultured rat hepatic stellate cells. J Cell Biochem

  20. Dental pulp stem cells: osteogenic differentiation and gene expression

    National Research Council Canada - National Science Library

    Mori, Giorgio; Brunetti, Giacomina; Oranger, Angela; Carbone, Claudia; Ballini, Andrea; Muzio, Lorenzo Lo; Colucci, Silvia; Mori, Claudio; Grassi, Felice Roberto; Grano, Maria

    2011-01-01

    Dental pulp stem cells (DPSCs) are an adult stem cell population with high proliferative potential and the ability to differentiate in many cell types, and this has led scientists to consider these cells to be an...

  1. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    Science.gov (United States)

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  2. Anaplasma phagocytophilum and Anaplasma marginale Elicit Different Gene Expression Responses in Cultured Tick Cells

    Directory of Open Access Journals (Sweden)

    Zorica Zivkovic

    2009-01-01

    Full Text Available The genus Anaplasma (Rickettsiales: Anaplasmataceae includes obligate tick-transmitted intracellular organisms, Anaplasma phagocytophilum and Anaplasma marginale that multiply in both vertebrate and tick host cells. Recently, we showed that A. marginale affects the expression of tick genes that are involved in tick survival and pathogen infection and multiplication. However, the gene expression profile in A. phagocytophilum-infected tick cells is currently poorly characterized. The objectives of this study were to characterize tick gene expression profile in Ixodes scapularis ticks and cultured ISE6 cells in response to infection with A. phagocypthilum and to compare tick gene expression responses in A. phagocytophilum- and A. marginale-infected tick cells by microarray and real-time RT-PCR analyses. The results of these studies demonstrated modulation of tick gene expression by A. phagocytophilum and provided evidence of different gene expression responses in tick cells infected with A. phagocytophilum and A. marginale. These differences in Anaplasma-tick interactions may reflect differences in pathogen life cycle in the tick cells.

  3. Effects of Extreme Dilutions of Apis mellifica Preparations on Gene Expression Profiles of Human Cells

    Directory of Open Access Journals (Sweden)

    Elisabetta Bigagli

    2016-01-01

    Full Text Available Gene expression analysis has been employed in the past to test the effects of high dilutions on cell systems. However, most of the previous studies were restricted to the investigation of few dilutions, making it difficult to explore underlying mechanisms of action. Using whole-genome transcriptomic analysis, we investigated the effects of a wide range of Apis mellifica dilutions on gene expression profiles of human cells. RWPE-1 cells, a nonneoplastic adult human epithelial prostate cell line, were exposed to Apis mellifica preparations (3C, 5C, 7C, 9C, 12C, 15C, and 30C or to the reference solvent solutions for 24 hours; nonexposed cells were also checked for gene expression variations. Our results showed that even the most diluted solutions retained the ability to trigger significant variations in gene expression. Gene pathway analysis revealed consistent variations in gene expression induced by Apis mellifica when compared to nonexposed reference cells but not to reference solvent solutions. Since the effects of Apis Mellifica at extreme dilutions did not show dose–effect relationships, the biological or functional interpretation of these results remains uncertain.

  4. Understanding development and stem cells using single cell-based analyses of gene expression.

    Science.gov (United States)

    Kumar, Pavithra; Tan, Yuqi; Cahan, Patrick

    2017-01-01

    In recent years, genome-wide profiling approaches have begun to uncover the molecular programs that drive developmental processes. In particular, technical advances that enable genome-wide profiling of thousands of individual cells have provided the tantalizing prospect of cataloging cell type diversity and developmental dynamics in a quantitative and comprehensive manner. Here, we review how single-cell RNA sequencing has provided key insights into mammalian developmental and stem cell biology, emphasizing the analytical approaches that are specific to studying gene expression in single cells. © 2017. Published by The Company of Biologists Ltd.

  5. A Self-Directed Method for Cell-Type Identification and Separation of Gene Expression Microarrays

    Science.gov (United States)

    Zuckerman, Neta S.; Noam, Yair; Goldsmith, Andrea J.; Lee, Peter P.

    2013-01-01

    Gene expression analysis is generally performed on heterogeneous tissue samples consisting of multiple cell types. Current methods developed to separate heterogeneous gene expression rely on prior knowledge of the cell-type composition and/or signatures - these are not available in most public datasets. We present a novel method to identify the cell-type composition, signatures and proportions per sample without need for a-priori information. The method was successfully tested on controlled and semi-controlled datasets and performed as accurately as current methods that do require additional information. As such, this method enables the analysis of cell-type specific gene expression using existing large pools of publically available microarray datasets. PMID:23990767

  6. Gene expression heterogeneities in embryonic stem cell populations

    DEFF Research Database (Denmark)

    Martinez Arias, Alfonso; Brickman, Joshua M

    2011-01-01

    Stem and progenitor cells are populations of cells that retain the capacity to populate specific lineages and to transit this capacity through cell division. However, attempts to define markers for stem cells have met with limited success. Here we consider whether this limited success reflects...... an intrinsic requirement for heterogeneity with stem cell populations. We focus on Embryonic Stem (ES) cells, in vitro derived cell lines from the early embryo that are considered both pluripotent (able to generate all the lineages of the future embryo) and indefinitely self renewing. We examine the relevance...... of recently reported heterogeneities in ES cells and whether these heterogeneities themselves are inherent requirements of functional potency and self renewal....

  7. Distance in cancer gene expression from stem cells predicts patient survival.

    Directory of Open Access Journals (Sweden)

    Markus Riester

    Full Text Available The degree of histologic cellular differentiation of a cancer has been associated with prognosis but is subjectively assessed. We hypothesized that information about tumor differentiation of individual cancers could be derived objectively from cancer gene expression data, and would allow creation of a cancer phylogenetic framework that would correlate with clinical, histologic and molecular characteristics of the cancers, as well as predict prognosis. Here we utilized mRNA expression data from 4,413 patient samples with 7 diverse cancer histologies to explore the utility of ordering samples by their distance in gene expression from that of stem cells. A differentiation baseline was obtained by including expression data of human embryonic stem cells (hESC and human mesenchymal stem cells (hMSC for solid tumors, and of hESC and CD34+ cells for liquid tumors. We found that the correlation distance (the degree of similarity between the gene expression profile of a tumor sample and that of stem cells orients cancers in a clinically coherent fashion. For all histologies analyzed (including carcinomas, sarcomas, and hematologic malignancies, patients with cancers with gene expression patterns most similar to that of stem cells had poorer overall survival. We also found that the genes in all undifferentiated cancers of diverse histologies that were most differentially expressed were associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes. Thus, a stem cell-oriented phylogeny of cancers allows for the derivation of a novel cancer gene expression signature found in all undifferentiated forms of diverse cancer histologies, that is competitive in predicting overall survival in cancer patients compared to previously published prediction models, and is coherent in that gene expression was associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes associated with

  8. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell

    Science.gov (United States)

    Boullé, Mikaël; Müller, Thorsten G.; Dähling, Sabrina; Jackson, Laurelle; Mahamed, Deeqa; Oom, Lance; Lustig, Gila

    2016-01-01

    Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. PMID:27812216

  9. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell.

    Science.gov (United States)

    Boullé, Mikaël; Müller, Thorsten G; Dähling, Sabrina; Ganga, Yashica; Jackson, Laurelle; Mahamed, Deeqa; Oom, Lance; Lustig, Gila; Neher, Richard A; Sigal, Alex

    2016-11-01

    Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses.

  10. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells.

    Directory of Open Access Journals (Sweden)

    Lode Godderis

    Full Text Available Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes, we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose-response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti- apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.

  11. Stage-dependent gene expression profiles during natural killer cell development.

    Science.gov (United States)

    Kang, Hyung-Sik; Kim, Eun-Mi; Lee, Sanggyu; Yoon, Suk-Ran; Kawamura, Toshihiko; Lee, Young-Cheol; Kim, Sangsoo; Myung, Pyung-Keun; Wang, San Ming; Choi, Inpyo

    2005-11-01

    Natural killer (NK) cells develop from hematopoietic stem cells (HSCs) in the bone marrow. To understand the molecular regulation of NK cell development, serial analysis of gene expression (SAGE) was applied to HSCs, NK precursor (pNK) cells, and mature NK cells (mNK) cultured without or with OP9 stromal cells. From 170,464 total individual tags from four SAGE libraries, 35,385 unique genes were identified. A set of genes was expressed in a stage-specific manner: 15 genes in HSCs, 30 genes in pNK cells, and 27 genes in mNK cells. Among them, lipoprotein lipase induced NK cell maturation and cytotoxic activity. Identification of genome-wide profiles of gene expression in different stages of NK cell development affords us a fundamental basis for defining the molecular network during NK cell development.

  12. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles

    NARCIS (Netherlands)

    Gu, Jieruo; Rihl, Markus; Märker-Hermann, Elisabeth; Baeten, Dominique; Kuipers, Jens G.; Song, Yeong Wook; Maksymowych, Walter P.; Burgos-Vargas, Ruben; Veys, Eric M.; de Keyser, Filip; Deister, Helmuth; Xiong, Momiao; Huang, Feng; Tsai, Wen Chan; Yu, David Tak Yan

    2002-01-01

    OBJECTIVE: To use gene expression profiles of spondyloarthropathy (SpA) synovial fluid mononuclear cells (SFMC) to determine if there are transcripts that support the unfolded protein response (UPR) hypothesis, and to identify which cytokines/chemokines are being expressed and which cell fractions

  13. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    Science.gov (United States)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  14. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    DEFF Research Database (Denmark)

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik

    2013-01-01

    for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize...... of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE...... formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were...

  15. Suppression of MHC gene expression in cancer cells

    NARCIS (Netherlands)

    Bernards, R.A.

    1987-01-01

    The class I antigens of the major histocompatibility complex play a crucial part in the recognition of foreign antigens by cytotoxic T lymphocytes. Some cancer cells exhibit a reduced expression of these antigens and this may help these cells to escape immune surveillance.

  16. Excretory urography.

    Science.gov (United States)

    Heuter, Kerry J

    2005-02-01

    Excretory urography is a type of contrast study used to verify and localize upper urinary tract disease. In some instances, information regarding renal function and disease pathophysiology can also be obtained. With the recent advances in small animal ultrasonagraphy, excretory urography has become an underutilized procedure. This article will help explain why excretory urography remains, and will remain, a ubiquitous test that gives excellent detail of the entire urinary tract, and remains an essential tool for the assessment of the renal pelves and especially the ureters. Specifically, this article will focus on technique and interpretation of a properly performed excretory urogram.

  17. Propranolol enhances cell cycle-related gene expression in pressure overloaded hearts

    Science.gov (United States)

    Musumeci, Marco; Maccari, Sonia; Sestili, Paola; Signore, Michele; Molinari, Paola; Ambrosio, Caterina; Stati, Tonino; Colledge, William H; Grace, Andrew A; Catalano, Liviana; Marano, Giuseppe

    2011-01-01

    BACKGROUND AND PURPOSE Cell cycle regulators are regarded as essential for cardiomyocyte hypertrophic growth. Given that the β-adrenoceptor antagonist propranolol blunts cardiomyocyte hypertrophic growth, we determined whether propranolol alters the expression of cell cycle-related genes in mouse hearts subjected to pressure overload. EXPERIMENTAL APPROACH Pressure overload was induced by transverse aortic constriction (TAC), whereas the expression levels of 84 cell cycle-related genes were assayed by real-time PCR. Propranolol (80 mg·kg−1·day−1) was administered in drinking water for 14 days. KEY RESULTS Two weeks after surgery, TAC caused a 46% increase in the left ventricular weight-to-body weight (LVW/BW) ratio but no significant changes in cell cycle gene expression. Propranolol, at plasma concentrations ranging from 10 to 140 ng·mL−1, blunted the LVW/BW ratio increase in TAC mice, while significantly increasing expression of 10 cell cycle genes including mitotic cyclins and proliferative markers such as Ki67. This increase in cell cycle gene expression was paralleled by a significant increase in the number of Ki67-positive non-cardiomyocyte cells as revealed by immunohistochemistry and confocal microscopy. β-Adrenoceptor signalling was critical for cell cycle gene expression changes, as genetic deletion of β-adrenoceptors also caused a significant increase in cyclins and Ki67 in pressure overloaded hearts. Finally, we found that metoprolol, a β1-adrenoceptor antagonist, failed to enhance cell cycle gene expression in TAC mice. CONCLUSIONS AND IMPLICATIONS Propranolol treatment enhances cell cycle-related gene expression in pressure overloaded hearts by increasing the number of cycling non-cardiomyocyte cells. These changes seem to occur via β2-adrenoceptor-mediated mechanisms. PMID:21615725

  18. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Georg, Birgitte; Fahrenkrug, Jan

    2009-01-01

    Ganglia expressing the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) innervate vasoactive intestinal peptide (VIP) containing neurons suggesting a role of PACAP in regulating VIP expression. Human NB-1 neuroblastoma cells were applied to study PACAP regulated VIP gene...... in PACAP regulation of the FOS and VIP gene expressions suggest for the first time a role of FOS in PACAP-induced VIP gene expression in human NB-1 neuroblastoma cells....... expression aiming to identify the receptor and the signaling proteins involved. The PACAP receptor subtype PAC1 induced VIP gene expression as (i) PACAP and the PAC1 receptor agonist maxadilan were equally efficient and approximately 200-fold more potent than VIP, and (ii) PACAP6-38 and PG99-465, antagonists...

  19. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    Ganglia expressing the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) innervate vasoactive intestinal peptide (VIP) containing neurons suggesting a role of PACAP in regulating VIP expression. Human NB-1 neuroblastoma cells were applied to study PACAP regulated VIP gene...... in PACAP regulation of the FOS and VIP gene expressions suggest for the first time a role of FOS in PACAP-induced VIP gene expression in human NB-1 neuroblastoma cells. (C) 2009 Elsevier Ltd. All rights reserved Udgivelsesdato: 2009/10...... expression aiming to identify the receptor and the signaling proteins involved. The PACAP receptor subtype PAC1 induced VIP gene expression as (i) PACAP and the PAC1 receptor agonist maxadilan were equally efficient and similar to 200-fold more potent than VIP, and (ii) PACAP6-38 and PG99-465, antagonists...

  20. Cell-to-Cell Heterogeneity in Growth Rate and Gene Expression in Methylobacterium extorquens AM1▿

    OpenAIRE

    Strovas, Tim J.; Sauter, Linda M.; Guo, Xiaofeng; Lidstrom, Mary E.

    2007-01-01

    Cell-to-cell heterogeneity in gene expression and growth parameters was assessed in the facultative methylotroph Methylobacterium extorquens AM1. A transcriptional fusion between a well-characterized methylotrophy promoter (PmxaF) and gfpuv (encoding a variant of green fluorescent protein [GFPuv]) was used to assess single-cell gene expression. Using a flowthrough culture system and laser scanning microscopy, data on fluorescence and cell size were obtained over time through several growth cy...

  1. Noise in Gene Expression Determines Cell Fate in Bacillus subtilis

    National Research Council Canada - National Science Library

    Hédia Maamar; Arjun Raj; David Dubnau

    2007-01-01

    .... In Bacillus subtilis, noise in ComK, the protein that regulates competence for DNA uptake, is thought to cause cells to transition to the competent state in which genes encoding DNA uptake proteins are expressed...

  2. Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation.

    Science.gov (United States)

    Fietz, D; Markmann, M; Lang, D; Konrad, L; Geyer, J; Kliesch, S; Chakraborty, T; Hossain, H; Bergmann, M

    2015-12-29

    Androgens play an important role for the development of male fertility and gained interest as growth and survival factors for certain types of cancer. Androgens act via the androgen receptor (AR/Ar), which is involved in various cell biological processes such as sex differentiation. To study the functional mechanisms of androgen action, cell culture systems and AR-transfected cell lines are needed. Transfection of AR into cell lines and subsequent gene expression analysis after androgen treatment is well established to investigate the molecular biology of target cells. However, it remains unclear how the transfection with AR itself can modulate the gene expression even without androgen stimulation. Therefore, we transfected Ar-deficient rat Sertoli cells 93RS2 by electroporation using a full length human AR. Transfection success was confirmed by Western Blotting, immunofluorescence and RT-PCR. AR transfection-related gene expression alterations were detected with microarray-based genome-wide expression profiling of transfected and non-transfected 93RS2 cells without androgen stimulation. Microarray analysis revealed 672 differentially regulated genes with 200 up- and 472 down-regulated genes. These genes could be assigned to four major biological categories (development, hormone response, immune response and metabolism). Microarray results were confirmed by quantitative RT-PCR analysis for 22 candidate genes. We conclude from our data, that the transfection of Ar-deficient Sertoli cells with AR has a measurable effect on gene expression even without androgen stimulation and cause Sertoli cell damage. Studies using AR-transfected cells, subsequently stimulated, should consider alterations in AR-dependent gene expression as off-target effects of the AR transfection itself.

  3. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation.

    Science.gov (United States)

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien; Singer, Robert H; Park, Hye Yoon

    2016-11-23

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.

  4. Simvastatin Modulates Mesenchymal Stromal Cell Proliferation and Gene Expression

    Science.gov (United States)

    Zanette, Dalila Lucíola; Lorenzi, Julio Cesar Cetrulo; Panepucci, Rodrigo Alexandre; Palma, Patricia Vianna Bonini; dos Santos, Daiane Fernanda; Prata, Karen Lima; Silva, Wilson Araújo

    2015-01-01

    Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy) minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester) staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR). These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells) proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential. PMID:25874574

  5. Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ

    Science.gov (United States)

    Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro

    2015-01-01

    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies. DOI: http://dx.doi.org/10.7554/eLife.07405.001 PMID:26057828

  6. Regulation of. beta. -cell glucose transporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ling; Alam, Tausif; Johnson, J.H.; Unger, R.H. (Univ. of Texas Southwestern Medical Center, Dallas (USA) Department of Veterans Affairs Medical Center, Dallas, TX (USA)); Hughes, S.; Newgard, C.B. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

    1990-06-01

    It has been postulated that a glucose transporter of {beta} cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated {beta}-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the K{sub m} for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high K{sub m} glucose transporter in {beta} cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in {beta} cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis.

  7. Gene expression dynamics during cell differentiation: Cell fates as attractors and cell fate decisions as bifurcations

    Science.gov (United States)

    Huang, Sui

    2006-03-01

    During development of multicellular organisms, multipotent stem and progenitor cells undergo a series of hierarchically organized ``somatic speciation'' processes consisting of binary branching events to achieve the diversity of discretely distinct differentiated cell types in the body. Current paradigms of genetic regulation of development do not explain this discreteness, nor the time-irreversibility of differentiation. Each cell contains the same genome with the same N (˜ 25,000) genes and each cell type k is characterized by a distinct stable gene activation pattern, expressed as the cell state vector Sk(t) = xk1(t) ,.. xki(t),.. xkN(t), where xki is the activation state of gene i in cell type k. Because genes are engaged in a network of mutual regulatory interactions, the movement of Sk(t) in the N-dimensional state space is highly constrained and the organism can only realize a tiny fraction of all possible configurations Sk. Then, the trajectories of Sk reflect the diversifying developmental paths and the mature cell types are high-dimensional attractor states. Experimental results based on gene expression profile measurements during blood cell differentiation using DNA microarrays are presented that support the old idea that cell types are attractors. This basic notion is extended to treat binary fate decisions as bifurcations in the dynamics of networks circuits. Specifically, during cell fate decision, the metastable progenitor attractor is destabilized, poising the cell on a `watershed state' so that it can stochastically or in response to deterministic perturbations enter either one of two alternative fates. Overall, the model and supporting experimental data provide an overarching conceptual framework that helps explain how the specifics of gene network architecture produces discreteness and robustness of cell types, allows for both stochastic and deterministic cell fate decision and ensures directionality of organismal development.

  8. [Study of testicular cancer gene expression in samples of oral leukoplakia and squamous cell carcinoma of the mouth].

    Science.gov (United States)

    Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S

    2012-01-01

    Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.

  9. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation...... analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX...... demonstrating the CDX2 regulation of HOXB4 gene expression in the developed intestinal epithelium, indicating a possible role for HOXB4 in intestinal homeostasis....

  10. EGF receptor activation stimulates endogenous gastrin gene expression in canine G cells and human gastric cell cultures.

    OpenAIRE

    Ford, M G; Valle, J D; Soroka, C J; Merchant, J L

    1997-01-01

    Gastrin release from the antral gastrin-expressing cell (G cell) is regulated by bombesin and luminal factors. Yet, these same extracellular regulators do not stimulate expression of the gene. Since the gastric mucosa expresses large quantities of EGF receptor ligands such as TGFalpha, we examined whether EGF receptor ligands stimulate gastrin gene expression in gastrin-expressing cell cultures. EGF receptor activation of primary cultures stimulated gastrin gene expression about twofold; wher...

  11. Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line

    Directory of Open Access Journals (Sweden)

    Golnaz Vaseghi

    2017-10-01

    Full Text Available Objective(s: Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. Materials and Methods: In the treatment group, melanoma (B1617 was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Results: Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls.  Conclusion: C. sativa decreased tau and stathmin gene expression and cancer metastasis.  The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.

  12. c-jun gene expression in human cells exposed to either ionizing radiation or hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Horio, M.; Huberman, E.

    1993-06-01

    We investigated the role of reactive oxygen intermediates (ROIs) and protein kinase C (PKC) in radiation- and H{sub 2}O{sub 2}-evoked c-jun gene expression in human HL-205 cells. This induction of c-jun gene expression could be prevented by pretreatment of the cells with Nacetylcysteine (an antioxidant) or H7 (a PKC and PKA inhibitor) but not by HA1004, a PKA inhibitor, suggesting a role for ROls and PKC in mediating c-jun gene expression. We also investigated potential differences in c-jun gene expression in a panel of normal and tumor cells untreated or treated with ionizing radiation or H{sub 2}O{sub 2}. Treatment with radiation or H{sub 2}O{sub 2} produced a varied response, from some reduction to an increase of more than an order of magnitude in the steady-state level of c-jun mRNA. These data indicate that although induction of c-jun may be a common response to ionizing radiation and H{sub 2}O{sub 2}, this response was reduced or absent in some cell types.

  13. Evaluation of neural gene expression in serum treated embryonic stem cells in Alzheimer′s patients

    Directory of Open Access Journals (Sweden)

    Leila Dehghani

    2013-01-01

    Full Text Available Background: Previous studies confirmed that neural gene expression in embryonic stem cells (ESC could influence by chemical compounds through stimulating apoptotic pathway. We aimed to use ESCs-derived neural cells by embryoid body formation as an in vitro model for determination of neural gene expression changes in groups that treated by sera from Alzheimer′s patients and compare with healthy individuals. Materials and Methods: ESC line which was derived from the C57BL/6 mouse strain was used throughout this study. ESC-derived neural cells were treated with serum from Alzheimer′s patient and healthy individual. Neural gene expression was assessed in both groups by quantitative real-time polymerase chain reaction analysis. The data was analyzed by SPSS Software (version 18. Results: Morphologically, the reducing in neurite out-growth was observed in neural cells in group, which treated by serum from Alzheimer′s patient, while neurite growth was natural in appearance in control group. Microtubule-associated protein 2 and glial fibrillary acidic protein expression significantly reduced in the Alzheimer′s patient group compared with the control group. Nestin expression did not significantly differ among the groups. Conclusion: Neural gene expression could be reduced in serum treated ESC in Alzheimer′s patients.

  14. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser

    2004-01-01

    was gradually extinguished in the later spermatid stages but was followed by another cluster of genes expressed in spermatids. Finally, a group of genes was downregulated during spermatogenesis and probably expressed in nongerm cells. We believe that expression of most genes can be described by a combination...

  15. Opioid receptor gene expression in human neuroblastoma SH-SY5Y cells following tapentadol exposure.

    Science.gov (United States)

    Caputi, Francesca Felicia; Carretta, Donatella; Tzschentke, Thomas M; Candeletti, Sanzio; Romualdi, Patrizia

    2014-08-01

    Recent studies showed that combination of mu opioid receptor (MOP) agonism and monoamine reuptake inhibition may improve the therapeutic effect of opioids by reducing requirement for MOP activation. Tapentadol, showing such a combined mechanism of action, exhibits delayed analgesic tolerance development compared to pure MOP agonists. Here we investigated how opioid receptors are regulated following different schedules (two ranges of concentrations for 24 and 48 h) of tapentadol exposure in vitro in SH-SY5Y cells. MOP and nociceptin/orphaninFQ (NOP) receptor gene expressions were quantified using qReal-Time PCR. Moreover, studies were performed in U2 cells to assess tapentadol effect on MOP internalization compared with morphine and DAMGO. Ten and 100 nM tapentadol for 48 h induced a significant increase of MOP gene expression; cells exposed to 100 μM tapentadol for 24 and 48 h showed a significant increase of MOP mRNA levels. NOP gene expression showed a significant decrease following tapentadol at all low concentrations used after 24 h and at high concentrations (45 and 60 μM) after 24 h and (60 μM) after 48 h. Differently from DAMGO, tapentadol or morphine showed no effects on MOP internalization. This study suggests that tapentadol affects MOP and NOP gene expression and MOP internalization showing a pattern distinct from classical MOP agonists. Whether these differences can explain the improved therapeutic profile of tapentadol remains to be investigated.

  16. Mapping dynamic histone acetylation patterns to gene expression in nanog-depleted murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Florian Markowetz

    2010-12-01

    Full Text Available Embryonic stem cells (ESC have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in a concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.

  17. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    2016-01-01

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver.

  18. Analysis of gene expression levels in individual bacterial cells without image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, In Hae; Son, Minjun [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States); Hagen, Stephen J., E-mail: sjhagen@ufl.edu [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  19. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  20. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    Science.gov (United States)

    2010-01-01

    Background The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Methods Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. Results TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). Conclusions This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis. PMID:21034493

  1. Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies.

    Science.gov (United States)

    Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U

    2015-06-01

    A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Gene expression signatures of extracellular matrix and growth factors during embryonic stem cell differentiation.

    Science.gov (United States)

    Nair, Rekha; Ngangan, Alyssa V; Kemp, Melissa L; McDevitt, Todd C

    2012-01-01

    Pluripotent stem cells are uniquely capable of differentiating into somatic cell derivatives of all three germ lineages, therefore holding tremendous promise for developmental biology studies and regenerative medicine therapies. Although temporal patterns of phenotypic gene expression have been relatively well characterized during the course of differentiation, coincident patterns of endogenous extracellular matrix (ECM) and growth factor expression that accompany pluripotent stem cell differentiation remain much less well-defined. Thus, the objective of this study was to examine the global dynamic profiles of ECM and growth factor genes associated with early stages of pluripotent mouse embryonic stem cell (ESC) differentiation. Gene expression analysis of ECM and growth factors by ESCs differentiating as embryoid bodies for up to 14 days was assessed using PCR arrays (172 unique genes total), and the results were examined using a variety of data mining methods. As expected, decreases in the expression of genes regulating pluripotent stem cell fate preceded subsequent increases in morphogen expression associated with differentiation. Pathway analysis generated solely from ECM and growth factor gene expression highlighted morphogenic cell processes within the embryoid bodies, such as cell growth, migration, and intercellular signaling, that are required for primitive tissue and organ developmental events. In addition, systems analysis of ECM and growth factor gene expression alone identified intracellular molecules and signaling pathways involved in the progression of pluripotent stem cell differentiation that were not contained within the array data set. Overall, these studies represent a novel framework to dissect the complex, dynamic nature of the extracellular biochemical milieu of stem cell microenvironments that regulate pluripotent cell fate decisions and morphogenesis.

  3. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  4. Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus.

    Science.gov (United States)

    Orban, Tihamer; Kis, Janos; Szereday, Laszlo; Engelmann, Peter; Farkas, Klara; Jalahej, Heyam; Treszl, Andras

    2007-06-01

    Type 1 diabetes mellitus (T1DM) in humans is characterized by the T-cell-dependent destruction of the insulin producing pancreatic beta cells; however, the precise pathogenesis of the disease, especially the initiation of pathologic immune response, is still largely unknown. We hypothesized that the function of human CD4+ T cells is altered in T1DM and analyzed unstimulated human peripheral blood CD4+ T-cell gene expression. We used a novel three-way comparison of DNA microarray data of CD4+ T cells isolated from patients with new onset T1DM, patients with long-term Type 2 diabetes (T2DM), and from healthy control subjects in order to eliminate any possible influence of glucose homeostasis on our findings. We analyzed the T1DM specific gene-expression changes and their functional relevance to T1DM autoimmunity. Our genetic and functional data show that T1DM CD4+ T cells are down-regulated specifically affecting key immune functions and cell cycle. Histone deacetylase gene expression, a key regulator of epigenetic modification is also reduced. The CD4+ T cells showed impaired function, including an abnormal immune response, which may be a key element that leads to the breakdown of self-tolerance.

  5. Silibinin regulates gene expression, production and secretion of mucin from cultured airway epithelial cells.

    Science.gov (United States)

    Kim, Kil-Dong; Lee, Hyun Jae; Lim, Seung Pyong; Sikder, Asaduzzaman; Lee, Su Yel; Lee, Choong Jae

    2012-09-01

    We investigated whether silibinin significantly affects gene expression, production and secretion of mucin from cultured airway epithelial cells. Confluent NCI-H292 cells were pretreated with silibinin for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or TNF-α for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The effect of silibinin on TNF-α-induced activation of NF-κB p65 was also examined. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min in the presence of silibinin to assess the effect on mucin secretion using ELISA. The results were as follows: (i) silibinin inhibited the expression of the MUC5AC mucin gene induced by EGF, PMA or TNF-α from NCI-H292 cells; (ii) silibinin also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells; (iii) silibinin inhibited the activation of NF-κB p65 by TNF-α in NCI-H292 cells; (iv) silibinin significantly decreased ATP-induced mucin secretion from cultured RTSE cells. This result suggests that silibinin can regulate gene expression, production and secretion of mucin by directly acting on airway epithelial cells. Copyright © 2012 John Wiley & Sons, Ltd.

  6. GENE EXPRESSION PROFILE OF CIRCULATING CD34+ CELLS AND GRANULOCYTES IN CHRONIC MYELOID LEUKEMIA

    Science.gov (United States)

    Čokić, Vladan P.; Mojsilović, Slavko; Jauković, Aleksandra; Kraguljac-Kurtović, Nada; Mojsilović, Sonja; Šefer, Dijana; Ajtić, Olivera Mitrović; Milošević, Violeta; Bogdanović, Andrija; Đikić, Dragoslava; Milenković, Pavle; Puri, Raj K.

    2015-01-01

    Purpose We compared the gene expression profile of peripheral blood CD34+ cells and granulocytes in subjects with chronic myeloid leukemia (CML), with the accent on signaling pathways affected by BCR-ABL oncogene. Methods The microarray analyses have been performed in circulating CD34+ cells and granulocytes from peripheral blood of 7 subjects with CML and 7 healthy donors. All studied BCR-ABL positive CML patients were in chronic phase, with mean value of 2012±SD of CD34+ cells/μl in peripheral blood. Results The gene expression profile was more prominent in CML CD34+ cells (3553 genes) compared to granulocytes (2701 genes). The 41 and 39 genes were significantly upregulated in CML CD34+ cells (HINT1, TXN, SERBP1) and granulocytes, respectively. BCR-ABL oncogene activated PI3K/AKT and MAPK signaling through significant upregulation of PTPN11, CDK4/6, MYC and reduction of E2F1, KRAS, NFKBIA gene expression in CD34+ cells. Among genes linked to inhibition of cellular proliferation by BCR-ABL inhibitor Imatinib, the FOS and STAT1 demonstrated significantly decreased expression in CML. Conclusion Presence of BCR-ABL fusion gene doubled the expression quantity of genes involved in the regulation of cell cycle, proliferation and apoptosis of CD34+ cells. These results determined the modified genes in PI3K/AKT and MAPK signaling of CML subjects. PMID:26460262

  7. Gene expression profile of circulating CD34(+) cells and granulocytes in chronic myeloid leukemia.

    Science.gov (United States)

    Čokić, Vladan P; Mojsilović, Slavko; Jauković, Aleksandra; Kraguljac-Kurtović, Nada; Mojsilović, Sonja; Šefer, Dijana; Mitrović Ajtić, Olivera; Milošević, Violeta; Bogdanović, Andrija; Đikić, Dragoslava; Milenković, Pavle; Puri, Raj K

    2015-12-01

    We compared the gene expression profile of peripheral blood CD34(+) cells and granulocytes in subjects with chronic myeloid leukemia (CML), with the accent on signaling pathways affected by BCR-ABL oncogene. The microarray analyses have been performed in circulating CD34(+) cells and granulocytes from peripheral blood of 7 subjects with CML and 7 healthy donors. All studied BCR-ABL positive CML patients were in chronic phase, with a mean value of 2012±SD of CD34(+)cells/μl in peripheral blood. The gene expression profile was more prominent in CML CD34(+) cells (3553 genes) compared to granulocytes (2701 genes). The 41 and 39 genes were significantly upregulated in CML CD34(+) cells (HINT1, TXN, SERBP1) and granulocytes, respectively. BCR-ABL oncogene activated PI3K/AKT and MAPK signaling through significant upregulation of PTPN11, CDK4/6, and MYC and reduction of E2F1, KRAS, and NFKBIA gene expression in CD34(+) cells. Among genes linked to the inhibition of cellular proliferation by BCR-ABL inhibitor Imatinib, the FOS and STAT1 demonstrated significantly decreased expression in CML. The presence of BCR-ABL fusion gene doubled the expression quantity of genes involved in the regulation of cell cycle, proliferation and apoptosis of CD34(+) cells. These results determined the modified genes in PI3K/AKT and MAPK signaling of CML subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Heavy alcohol drinking downregulates ALDH2 gene expression but heavy smoking up-regulates SOD2 gene expression in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Lee, Dong Jin; Lee, Hyung Min; Kim, Jin Hwan; Park, Ii Seok; Rho, Young Soo

    2017-08-25

    This study aims to determine the relationship between expression levels of ALDH2 and SOD2 genes and clinical parameters such as alcohol drinking, tobacco smoking, primary site of HNSCC, and human papilloma virus (HPV) state. Gene expression data were obtained from gene expression omnibus (GEO accession number: GSE65858). Clinical data (N = 270) including survival result, gender, age, TNM stage, primary site of HNSCC, HPV status, alcohol drinking, and tobacco smoking habit were analyzed according to gene expression pattern. ALDH2 gene was expressed in low levels in patients with heavy alcohol consumption. It was expressed in high (p = 0.01) levels in patients with no or light alcohol consumption. ALDH2 gene was also expressed in low levels in patients with oral cavity cancers or hypopharynx cancers. However, ALDH2 gene was expressed in high (p = 0.03) levels in patients with oropharyngeal cancers or laryngeal cancers. HPV-positive patients were found to have high (p = 0.02) expression levels of ALDH2. SOD2 gene was expressed in high (p = 0.005) levels in patients who had greater mean pack-year of tobacco smoking. Based on log rank test, the group of patients with high expression of ALDH2 showed better (p = 0.002) clinical results than those with low expression of ALDH2. Difference of survival results between ALDH2 high-expressed group and ALDH2 low-expressed group was validated in another cohort (GSE39368, N = 138). Heavy alcohol drinking downregulates ALDH2 gene expression level. Heavy smoking up-regulates SOD2 gene expression level in patients with head and neck squamous cell carcinoma. The group of patients with low expression levels of ALDH2 showed significantly poorer survival results compared to those with high expression levels of ALDH2.

  9. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Science.gov (United States)

    Nawata, Hisakatsu; Kashino, Genro; Tano, Keizo; Daino, Kazuhiro; Shimada, Yoshiya; Kugoh, Hiroyuki; Oshimura, Mitsuo; Watanabe, Masami

    2011-01-01

    A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells) by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  10. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  11. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells

    DEFF Research Database (Denmark)

    Høgh, Mette; Tannetta, D; Sargent, I

    2006-01-01

    Objective Syncytiotrophoblast membrane fragments (STBM) exist in the peripheral circulation in pregnant women and it has been shown that the level of circulating STBM is significantly increased with pre-eclampsia compared with uncomplicated pregnancies. STBM could be one of the factors which...... directly causes the endothelial cell dysfunction of pre-eclampsia. This study investigates the effect of STBM on endothelial cell gene expression. Design Human umbilical vein endothelial cells were cultured in the presence and absence of STBM. At specified time points, total RNA was purified from...... results. Results Overall, the results do not show any great changes in gene expression in endothelial cells after STBM treatment (28 genes changed two-fold or more out of approximately 10 000 genes examined by microarray). In general, the changes observed are consistent with inhibition of proliferation...

  12. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells

    DEFF Research Database (Denmark)

    Hoegh, A M; Tannetta, D; Sargent, I

    2006-01-01

    OBJECTIVE: Syncytiotrophoblast membrane fragments (STBM) exist in the peripheral circulation in pregnant women and it has been shown that the level of circulating STBM is significantly increased with pre-eclampsia compared with uncomplicated pregnancies. STBM could be one of the factors which...... directly causes the endothelial cell dysfunction of pre-eclampsia. This study investigates the effect of STBM on endothelial cell gene expression. DESIGN: Human umbilical vein endothelial cells were cultured in the presence and absence of STBM. At specified time points, total RNA was purified from...... results. RESULTS: Overall, the results do not show any great changes in gene expression in endothelial cells after STBM treatment (28 genes changed two-fold or more out of approximately 10,000 genes examined by microarray). In general, the changes observed are consistent with inhibition of proliferation...

  13. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Tuoqi Liu

    2016-05-01

    Full Text Available According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.

  14. Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum.

    Science.gov (United States)

    Takeuchi, Miki; Yamaguchi, Shingo; Sakakibara, Yoshimasa; Hayashi, Takuto; Matsuda, Koji; Hara, Yuichiro; Tanegashima, Chiharu; Shimizu, Takashi; Kuraku, Shigehiro; Hibi, Masahiko

    2017-05-01

    The structure of the neural circuitry of the cerebellum, which functions in some types of motor learning and coordination, is generally conserved among vertebrates. However, some cerebellar features are species specific. It is not clear which genes are involved in forming these conserved and species-specific structures and functions. This study uses zebrafish transgenic larvae expressing fluorescent proteins in granule cells, Purkinje cells, or other cerebellar neurons and glial cells to isolate each type of cerebellar cells by fluorescence-activated cell sorting and to profile their gene expressions by RNA sequencing and in situ hybridization. We identify genes that are upregulated in granule cells or Purkinje cells, including many genes that are also expressed in mammalian cerebella. Comparison of the transcriptomes in granule cells and Purkinje cells in zebrafish larvae reveals that more developmental genes are expressed in granule cells, whereas more neuronal-function genes are expressed in Purkinje cells. We show that some genes that are upregulated in granule cells or Purkinje cells are also expressed in the cerebellum-like structures. Our data provide a platform for understanding the development and function of the cerebellar neural circuits in zebrafish and the evolution of cerebellar circuits in vertebrates. J. Comp. Neurol. 525:1558-1585, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Diet-induced obesity regulates adipose-resident stromal cell quantity and extracellular matrix gene expression

    OpenAIRE

    Pincu, Yair; Huntsman, Heather D.; Zou, Kai; De Lisio, Michael; Ziad S. Mahmassani; Michael R. Munroe; Garg, Koyal; Jensen, Tor; Boppart, Marni D.

    2016-01-01

    Adipose tissue expansion during periods of excess nutrient intake requires significant turnover of the extracellular matrix (ECM) to allow for maximal lipid filling. Recent data suggest that stromal cells may be a primary contributor to ECM modifications in visceral adipose. The purpose of this study was to investigate the capacity for high fat diet (HFD)-induced obesity to alter adipose-derived stromal cell (ADSC) relative quantity and ECM gene expression, and determine the extent to which e...

  16. SCANPY: large-scale single-cell gene expression data analysis.

    Science.gov (United States)

    Wolf, F Alexander; Angerer, Philipp; Theis, Fabian J

    2018-02-06

    SCANPY is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells ( https://github.com/theislab/Scanpy ). Along with SCANPY, we present ANNDATA, a generic class for handling annotated data matrices ( https://github.com/theislab/anndata ).

  17. SW-620 cells treated with topoisomerase I inhibitor SN-38: gene expression profiling

    Directory of Open Access Journals (Sweden)

    Zacharias Wolfgang

    2005-12-01

    Full Text Available Abstract Background The goal of this study was to evaluate changes in gene expression in SW-620 cells in response to SN-38 in order to further elucidate the mechanisms by which SN-38 causes apoptosis and cell cycle arrest. Methods We used a quantitative gene expression microarray assay to identify the genes regulated by SN-38 treatment in colon cancer cells and confirmed our results with RT-PCR. By gene expression profiling, we first screened a proprietary list of about 22,000 genes. Results Treatment with SN-38 cells resulted in two-fold or greater alteration in the level of expression of 192 genes compared to control treatment. Most of the affected genes were not known to be responsive to SN-38 prior to this study. SN-38 treatment of these cells was found to affect the expression of various genes involved in DNA replication, transcription, signal transduction, growth factors, cell cycle regulation, and apoptosis, as well as other genes with unknown function. Changes in expression of 14 genes were confirmed by quantitative real-time polymerase chain reaction (RT-PCR. Conclusion This study leads to an increased understanding of the biochemical pathways involved in SN-38-induced apoptosis and possibly to the identification of new therapeutic targets.

  18. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  19. EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Yaguchi, Akinori; Ishibashi, Takeshi; Terada, Kazuki; Ueno-Yokohata, Hitomi; Saito, Yuya; Fujimura, Junya; Shimizu, Toshiaki; Ohki, Kentaro; Manabe, Atsushi; Kiyokawa, Nobutaka

    2017-08-01

    ZNF384-related fusion genes are associated with a distinct subgroup of B-cell precursor acute lymphoblastic leukemias in childhood, with a frequency of approximately 3-4%. We previously identified a novel EP300-ZNF384 fusion gene. Patients with the ZNF384-related fusion gene exhibit a hematopoietic stem cell (HSC) gene expression signature and characteristic immunophenotype with negative or low expression of CD10 and aberrant expression of myeloid antigens, such as CD33 and CD13. However, the molecular basis of this pathogenesis remains completely unknown. In the present study, we examined the biological effects of EP300-ZNF384 expression induced by retrovirus-mediated gene transduction in an REH B-cell precursor acute lymphoblastic leukemia cell line, and observed the acquisition of the HSC gene expression signature and an up-regulation of GATA3 gene expression, as assessed by microarray analysis. In contrast, the gene expression profile induced by wild-type ZNF384 in REH cells was significantly different from that by EP300-ZNF384 expression. Together with the results of reporter assays, which revealed the enhancement of GATA3-promoter activity by EP300-ZNF384 expression, these findings suggest that EP300-ZNF384 mediates GATA3 gene expression and may be involved in the acquisition of the HSC gene expression signature and characteristic immunophenotype in B-cell precursor acute lymphoblastic leukemia cells.

  20. Involvement of Resveratrol and ω-3 Polyunsaturated Fatty Acids on Sirtuin 1 Gene Expression in THP1 Cells.

    Science.gov (United States)

    Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko

    2017-10-01

    Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene

  1. Impact of laparoscopy on the biological behavior and gene expression of endometrial adenocarcinoma cells.

    Science.gov (United States)

    Huang, Shouguo; Qin, Jie; Chen, Jin; Cheng, Hong; Meng, Qiu; Zhang, Jing; Wang, Haiyan

    2017-11-01

    The current study investigated the effect of laparoscopy on the biological behavior and gene expression of endometrial adenocarcinoma cells. Totally, 40 patients with stage I endometrial adenocarcinoma and 20 patients with benign uterine diseases were enrolled in this study. For patients with endometrial adenocarcinoma, laparoscopy was performed in 20 cases and laparotomy was carried out in the other 20 cases. Total laparoscopic hysterectomy was performed in patients with benign diseases. Cell apoptotic rate and the gene expression of N-myc, Fas, metastasis-associated protein 1 (MTA1), and nm23-H1 were determined in the normal and cancerous endometrial tissues both preoperatively and postoperatively. For endometrial adenocarcinoma cells, laparoscopy, instead of laparotomy, promoted the apoptosis of endometrial adenocarcinoma cells, down-regulated the expression of apoptosis suppressor gene N-myc and metastasis-promoting gene MTA1, up-regulated the expression of apoptosis-promoting gene Fas and metastasis suppressor gene nm23-H1. However, laparoscopy did not affect the apoptotic rate and gene expression in normal endometrial cells. Laparoscopy may be used as a safe and effective intervention for endometrial cancer.

  2. RNA-binding proteins to assess gene expression states of co-cultivated cells in response to tumor cells

    Directory of Open Access Journals (Sweden)

    Penalva Luiz OF

    2004-09-01

    Full Text Available Abstract Background Tumors and complex tissues consist of mixtures of communicating cells that differ significantly in their gene expression status. In order to understand how different cell types influence one another's gene expression, it will be necessary to monitor the mRNA profiles of each cell type independently and to dissect the mechanisms that regulate their gene expression outcomes. Results In order to approach these questions, we have used RNA-binding proteins such as ELAV/Hu, poly (A binding protein (PABP and cap-binding protein (eIF-4E as reporters of gene expression. Here we demonstrate that the epitope-tagged RNA binding protein, PABP, expressed separately in tumor cells and endothelial cells can be used to discriminate their respective mRNA targets from mixtures of these cells without significant mRNA reassortment or exchange. Moreover, using this approach we identify a set of endothelial genes that respond to the presence of co-cultured breast tumor cells. Conclusion RNA-binding proteins can be used as reporters to elucidate components of operational mRNA networks and operons involved in regulating cell-type specific gene expression in tissues and tumors.

  3. Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study.

    Science.gov (United States)

    Albrecht, C; Tichy, B; Nürnberger, S; Hosiner, S; Zak, L; Aldrian, S; Marlovits, S

    2011-10-01

    Although scaffold composition and architecture are considered to be important parameters for tissue engineering, their influence on gene expression and cell differentiation is rarely investigated in scaffolds used for matrix-associated autologous chondrocyte transplantation (MACT). In this study we have therefore comparatively analyzed the gene expression of important chondrogenic markers in four clinical applied cell-graft systems with very different scaffold characteristics. Residuals (n=165) of four different transplant types (MACI®, Hyalograft®C, CaReS® and Novocart®3D) were collected during surgery and analyzed for Col1, Col2, aggrecan, versican, melanoma inhibitory activity (MIA) and IL-1β by real-time PCR. Scaffold and cell morphology were evaluated by histology and electron microscopy. Despite the cultivation on 3D scaffolds, the cell differentiation on all transplant types didn't reach the levels of native cartilage. Gene expression highly differed between the transplant types. The highest differentiation of cells (Col2/Col1 ratio) was found in CaReS®, followed by Novocart®3D, Hyalograft®C and MACI®. IL-1β expression also exhibited high differences between the scaffolds showing low expression levels in Novocart®3D and CaReS® and higher expression levels in MACI® and Hyalograft®C. Our data indicate that scaffold characteristics as well as culture conditions highly influence gene expression in cartilage transplants and that these parameters may have profound impact on the tissue regeneration after MACT. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    Science.gov (United States)

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Effects of Structurally Related Flavonoids on hsp Gene Expression in Human Promyeloid Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Herwig O. Gutzeit

    2002-01-01

    Full Text Available Quercetin is a known specific inhibitor of hsp70 synthesis and thus might be a potent agent for enhancing the selective cytotoxicity of heat on tumour cells. A comparative analysis of the effects of quercetin and five structurally related flavonoids on hsp90α, hsp70A, hsp60 and hsp27 gene expression was carried out using human myeloid leukaemia cells (HL-60. The cells were preincubated with 50 μM quercetin, kaempferol, myricetin, taxifolin, isorhamnetin, methylquercetagetin or 0.1 % DMSO (controls for 24 h at 37 °C before heat shock treatment (43 °C for 30 min. Total RNA was isolated from heat-stressed and unstressed cells and analysed by RT PCR. Hsp27 gene expression was inhibited by flavonoids more strongly than other hsp genes investigated in heat stressed as well as in unstressed cells. Among the hsp genes tested, only hsp60 was expressed above control level under the influence of taxifolin. Members of the hsp70 and hsp27 families are highly expressed in breast and lung cancer and leukaemias and they play a role in the acquired resistance to chemotherapy or radiation therapy combined with hyperthermia. Therefore, hsps present potential targets for cancer diagnosis and treatment. The present structure/activity study indicates that position, number and substitution of hydroxyl groups of the B ring and saturation of the C2-C3 bond are important factors affecting flavonoid activity on hsp gene expression. This study could help provide a basis for further design of specific inhibitors of hsp gene expression.

  6. Quantitation of gene expression in formaldehyde-fixed and fluorescence-activated sorted cells.

    Directory of Open Access Journals (Sweden)

    Julia N Russell

    Full Text Available Fluorescence-activated cell sorting (FACS is a sensitive and valuable technique to characterize cellular subpopulations and great advances have been made using this approach. Cells are often fixed with formaldehyde prior to the sorting process to preserve cell morphology and maintain the expression of surface molecules, as well as to ensure safety in the sorting of infected cells. It is widely recognized that formaldehyde fixation alters RNA and DNA structure and integrity, thus analyzing gene expression in these cells has been difficult. We therefore examined the effects of formaldehyde fixation on the stability and quantitation of nucleic acids in cell lines, primary leukocytes and also cells isolated from SIV-infected pigtailed macaques. We developed a method to extract RNA from fixed cells that yielded the same amount of RNA as our common method of RNA isolation from fresh cells. Quantitation of RNA by RT-qPCR in fixed cells was not always comparable with that in unfixed cells. In comparison, when RNA was measured by the probe-based NanoString system, there was no significant difference in RNA quantitation. In addition, we demonstrated that quantitation of proviral DNA in fixed cells by qPCR is comparable to that in unfixed cells when normalized by a single-copy cellular gene. These results provide a systematic procedure to quantitate gene expression in cells that have been fixed with formaldehyde and sorted by FACS.

  7. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    Science.gov (United States)

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with {sup 33}P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells.

  9. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  10. PERP regulates enamel formation via effects on cell–cell adhesion and gene expression

    Science.gov (United States)

    Jheon, Andrew H.; Mostowfi, Pasha; Snead, Malcolm L.; Ihrie, Rebecca A.; Sone, Eli; Pramparo, Tiziano; Attardi, Laura D.; Klein, Ophir D.

    2011-01-01

    Little is known about the role of cell–cell adhesion in the development of mineralized tissues. Here we report that PERP, a tetraspan membrane protein essential for epithelial integrity, regulates enamel formation. PERP is necessary for proper cell attachment and gene expression during tooth development, and its expression is controlled by P63, a master regulator of stratified epithelial development. During enamel formation, PERP is localized to the interface between the enamel-producing ameloblasts and the stratum intermedium (SI), a layer of cells subjacent to the ameloblasts. Perp-null mice display dramatic enamel defects, which are caused, in part, by the detachment of ameloblasts from the SI. Microarray analysis comparing gene expression in teeth of wild-type and Perp-null mice identified several differentially expressed genes during enamel formation. Analysis of these genes in ameloblast-derived LS8 cells upon knockdown of PERP confirmed the role for PERP in the regulation of gene expression. Together, our data show that PERP is necessary for the integrity of the ameloblast–SI interface and that a lack of Perp causes downregulation of genes that are required for proper enamel formation. PMID:21285247

  11. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Park, Jeong Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs.

  12. Optimization of single-cell electroporation protocol for forced gene expression in primary neuronal cultures.

    Science.gov (United States)

    Nishikawa, Shin; Hirashima, Naohide; Tanaka, Masahiko

    2014-09-01

    The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.

  13. Gene Expression Music Algorithm-Based Characterization of the Ewing Sarcoma Stem Cell Signature

    Directory of Open Access Journals (Sweden)

    Martin Sebastian Staege

    2016-01-01

    Full Text Available Gene Expression Music Algorithm (GEMusicA is a method for the transformation of DNA microarray data into melodies that can be used for the characterization of differentially expressed genes. Using this method we compared gene expression profiles from endothelial cells (EC, hematopoietic stem cells, neuronal stem cells, embryonic stem cells (ESC, and mesenchymal stem cells (MSC and defined a set of genes that can discriminate between the different stem cell types. We analyzed the behavior of public microarray data sets from Ewing sarcoma (“Ewing family tumors,” EFT cell lines and biopsies in GEMusicA after prefiltering DNA microarray data for the probe sets from the stem cell signature. Our results demonstrate that individual Ewing sarcoma cell lines have a high similarity to ESC or EC. Ewing sarcoma cell lines with inhibited Ewing sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWSR1-FLI1 oncogene retained the similarity to ESC and EC. However, correlation coefficients between GEMusicA-processed expression data between EFT and ESC decreased whereas correlation coefficients between EFT and EC as well as between EFT and MSC increased after knockdown of EWSR1-FLI1. Our data support the concept of EFT being derived from cells with features of embryonic and endothelial cells.

  14. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  15. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers.

    Directory of Open Access Journals (Sweden)

    Jen-Tsan Chi

    2006-03-01

    Full Text Available Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases.We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use.The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis in breast and ovarian cancer.

  16. Classification of Single-cell Gene Expression Trajectories from Incomplete and Noisy Data.

    Science.gov (United States)

    Karbalayghareh, Alireza; Braga-Neto, Ulisses; Dougherty, Edward Russell

    2017-10-16

    This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp, which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring gene expressions at different times yields trajectories only when measurements come from a single cell. In multiple-cell scenarios, the expression values are averages over many cells with possibly different states. Via the central-limit theorem, we propose another model for expression data in multiple-cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform multiple-cell average expression data relative to classification error, especially in high-noise situations. We also consider data generated via a mammalian cell-cycle network, both the wild-type and with a common mutation affecting p27.This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp, which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After

  17. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    beta1 (HLA-DQB1) was significantly reduced in RA patients compared to healthy controls. Conclusions: With the analytical procedure employed, we did not find any indication that RF-positive and RF-negative RA are two fundamentally different diseases. Most of the genes discriminative between RA patients......To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  18. Blood cell gene expression profiling in rheumatoid arthritis - Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, L.F.; Rieneck, K.; Workman, Christopher

    2004-01-01

    beta1 (HLA-DQB1) was significantly reduced in RA patients compared to healthy controls. Conclusions: With the analytical procedure employed, we did not find any indication that RF-positive and RF-negative RA are two fundamentally different diseases. Most of the genes discriminative between RA patients......To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  19. Comparison of excretory urography, angiography, ultrasound and computed tomography for T category staging of renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Tammela, T.L.J.; Leinonen, A.S.S.; Kontturi, M.J. (Dept. of Surgery and Dept. of Diagnostic Radiology, Oulu Univ. Hospital (Finland))

    1991-01-01

    The diagnostic significance of excretory urography, renal angiography, ultrasound and computed tomography for predicting the stage of tumours was evaluated by comparing their results with preoperative and histopathological findings. Thirty-nine out of 178 patients operated on for renal cell carcinoma from 1981 to 1988 were subjected to all four diagnostic procedures. The T-stage was determined correctly by computed tomography in 80% of the cases, by ultrasound in 74.5%, by renal angiography in 64% and by excretory urography in 56.5%. Excretory urography did not give any significant additional information on the T category compared with the other imaging methods. Angiography is still of value in that it gives preoperative information on the collateral circulation and the number of renal arteries and their location. (au).

  20. SCALE: modeling allele-specific gene expression by single-cell RNA sequencing.

    Science.gov (United States)

    Jiang, Yuchao; Zhang, Nancy R; Li, Mingyao

    2017-04-26

    Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average expression across cells. Single-cell RNA sequencing allows the comparison of expression distribution between the two alleles of a diploid organism and the characterization of allele-specific bursting. Here, we propose SCALE to analyze genome-wide allele-specific bursting, with adjustment of technical variability. SCALE detects genes exhibiting allelic differences in bursting parameters and genes whose alleles burst non-independently. We apply SCALE to mouse blastocyst and human fibroblast cells and find that cis control in gene expression overwhelmingly manifests as differences in burst frequency.

  1. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells.

    Science.gov (United States)

    Skiadas, Christine C; Duan, Shenghua; Correll, Mick; Rubio, Renee; Karaca, Nilay; Ginsburg, Elizabeth S; Quackenbush, John; Racowsky, Catherine

    2012-07-01

    Diminished ovarian reserve (DOR) is a challenging diagnosis of infertility, as there are currently no tests to predict who may become affected with this condition, or at what age. We designed the present study to compare the gene expression profile of membrana granulosa cells from young women affected with DOR with those from egg donors of similar age and to determine if distinct genetic patterns could be identified to provide insight into the etiology of DOR. Young women with DOR were identified based on FSH level in conjunction with poor follicular development during an IVF cycle (n = 13). Egg donors with normal ovarian reserve (NOR) comprised the control group (n = 13). Granulosa cells were collected following retrieval, RNA was extracted and microarray analysis was conducted to evaluate genetic differences between the groups. Confirmatory studies were undertaken with quantitative RT-PCR (qRT-PCR). Multiple significant differences in gene expression were observed between the DOR patients and egg donors. Two genes linked with ovarian function, anti-Mullerian hormone (AMH) and luteinizing hormone receptor (LHCGR), were further analyzed with qRT-PCR in all patients. The average expression of AMH was significantly higher in egg donors (adjusted P-value = 0.01), and the average expression of LHCGR was significantly higher in DOR patients (adjusted P-value = 0.005). Expression levels for four additional genes, progesterone receptor membrane component 2 (PGRMC2), prostaglandin E receptor 3 (subtype EP3) (PTGER3), steroidogenic acute regulatory protein (StAR), and StAR-related lipid transfer domain containing 4 (StarD4), were validated in a group consisting of five NOR and five DOR patients. We conclude that gene expression analysis has substantial potential to determine which young women may be affected with DOR. More importantly, our analysis suggests that DOR patients fall into two distinct subgroups based on gene expression profiles, indicating that different

  2. Lung Adenocarcinoma and Squamous Cell Carcinoma Gene Expression Subtypes Demonstrate Significant Differences in Tumor Immune Landscape.

    Science.gov (United States)

    Faruki, Hawazin; Mayhew, Gregory M; Serody, Jonathan S; Hayes, D Neil; Perou, Charles M; Lai-Goldman, Myla

    2017-06-01

    Molecular subtyping of lung adenocarcinoma (AD) and lung squamous cell carcinoma (SCC) reveal biologically diverse tumors that vary in their genomic and clinical attributes. Published immune cell signatures and several lung AD and SCC gene expression data sets, including The Cancer Genome Atlas, were used to examine immune response in relation to AD and SCC expression subtypes. Expression of immune cell populations and other immune related genes, including CD274 molecule gene (CD274) (programmed death ligand 1), was investigated in the tumor microenvironment relative to the expression subtypes of the AD (terminal respiratory unit, proximal proliferative, and proximal inflammatory) and SCC (primitive, classical, secretory, and basal) subtypes. Lung AD and SCC expression subtypes demonstrated significant differences in tumor immune landscape. The proximal proliferative subtype of AD demonstrated low immune cell expression among ADs whereas the secretory subtype showed elevated immune cell expression among SCCs. Tumor expression subtype was a better predictor of immune cell expression than CD274 (programmed death ligand 1) in SCC tumors but was a comparable predictor in AD tumors. Nonsilent mutation burden was not correlated with immune cell expression across subtypes; however, major histocompatibility complex class II gene expression was highly correlated with immune cell expression. Increased immune and major histocompatibility complex II gene expression was associated with improved survival in the terminal respiratory unit and proximal inflammatory subtypes of AD and in the primitive subtype of SCC. Molecular expression subtypes of lung AD and SCC demonstrate key and reproducible differences in immune host response. Evaluation of tumor expression subtypes as potential biomarkers for immunotherapy should be investigated. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. Resveratrol inhibits mucin gene expression, production and secretion from airway epithelial cells.

    Science.gov (United States)

    Lee, Su Yel; Lee, Hyun Jae; Sikder, Md Asaduzzaman; Shin, Hyun-Dae; Kim, Jang-Hyun; Chang, Gyu Tae; Seok, Jeong Ho; Lee, Choong Jae

    2012-07-01

    The study investigated whether resveratrol significantly affects mucin gene expression, production and secretion from airway epithelial cells. Confluent NCI-H292 cells were pretreated with resveratrol for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) and TNF-α (tumor necrosis factor-α) for 24 h, respectively. The MUC5AC gene expression and mucin protein production were measured by RT-PCR and ELISA. The effect of resveratrol on TNF-α- or PMA-induced activation of NF-κB p65 was also examined. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min in the presence of resveratrol to assess the effect on mucin secretion using ELISA. The results were as follows: (1) resveratrol inhibited the expression of MUC5AC gene induced by EGF or PMA or TNF-α from NCI-H292 cells; (2) resveratrol also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells; (3) resveratrol inhibited the activation of NF-κB p65 by TNF-α or PMA in NCI-H292 cells; (4) resveratrol significantly decreased ATP-induced mucin secretion from cultured RTSE cells. This result suggests that resveratrol can regulate mucin gene expression, production and secretion, by directly acting on airway epithelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Do GnRH analogues directly affect human endometrial epithelial cell gene expression?

    KAUST Repository

    Zhang, Xiaomei

    2010-03-04

    We examined whether Gonadotrophin-releasing hormone (GnRH) analogues [leuprolide acetate (LA) and ganirelix acetate (GA)] modulate gene expression in Ishikawa cells used as surrogate for human endometrial epithelial cells in vitro. The specific aims were: (i) to study the modulatory effect of GnRH analogues by RT-PCR [in the absence and presence of E2 and P4, and cyclic adenosine monophos-phate (cAMP)] on mRNA expression of genes modulated during the window of implantation in GnRH analogues/rFSH-treated assisted reproductive technology cycles including OPTINEURIN (OPTN), CHROMATIN MODIFYING PROTEIN (CHMP1A), PROSAPOSIN (PSAP), IGFBP-5 and SORTING NEXIN 7 (SNX7), and (ii) to analyze the 5\\'-flanking regions of such genes for the presence of putative steroid-response elements [estrogen-response elements (EREs) and P4-response element (PREs)]. Ishikawa cells were cytokeratin+/vimentin2 and expressed ERa,ERb, PR and GnRH-R proteins. At 6 and 24 h, neither LA nor GA alone had an effect on gene expression. GnRH analogues alone or following E2 and/or P4 co-incubation for 24 h also had no effect on gene expression, but P4 significantly increased expression of CHMP1A.E2 + P4 treatment for 4 days, alone or followed by GA, had no effect, but E2 + P4 treatment followed by LA significantly decreased IGFBP-5 expression. The addition of 8-Br cAMP did not modify gene expression, with the exception of IGFBP-5 that was significantly increased. The GnRH analogues did not modify intracellular cAMP levels. We identified conserved EREs for OPN, CHMP1A, SNX7 and PSAP and PREs for SNX7. We conclude that GnRH analogues appear not to have major direct effects on gene expression of human endo-metrial epithelial cells in vitro. © The Author 2010. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

  5. B-cell subpopulations from normal human secondary lymphoid tissues with specific gene expression profiles and phenotypes

    DEFF Research Database (Denmark)

    Johnsen, Hans Erik; Schmitz, Alexander; Perez Andres, Martin

    In order to improve insights into the B-cell biology and thereby B-cell myelomagenesis we have established a MSCNET standard for multiparametric flow cytometry (MFC) and cell sorting (FACS) for subsequent genetic analysis. The material analysed was fresh tonsils, blood and bone marrow. The method...... and single gene expression analysis (qRT-PCR) for transcription factors as well as global gene expression profiling (GEP; GeneChip Human Exon 1.0 ST Array). For example for tonsils, based on the immunophenotypic presentation (including CD3/44/CXCR4 in the panel), B-cell subsets were identified and sorted......-cell subpopulations identified have distinct gene expression profiles reflecting their functions but also revealing genes with subpopulation specific exon splicing. In conclusion a combination of surface markers expressed antigens and gene expression analysis of B cell subsets confirm a strong methodology to be used...

  6. Gene expression profile of cervical tissue compared to exfoliated cells: Impact on biomarker discovery

    Directory of Open Access Journals (Sweden)

    Vernon Suzanne D

    2005-05-01

    Full Text Available Abstract Background Exfoliated cervical cells are used in cytology-based cancer screening and may also be a source for molecular biomarkers indicative of neoplastic changes in the underlying tissue. However, because of keratinization and terminal differentiation it is not clear that these cells have an mRNA profile representative of cervical tissue, and that the profile can distinguish the lesions targeted for early detection. Results We used whole genome microarrays (25,353 unique genes to compare the transcription profiles from seven samples of normal exfoliated cells and one cervical tissue. We detected 10,158 genes in exfoliated cells, 14,544 in the tissue and 7320 genes in both samples. For both sample types the genes grouped into the same major gene ontology (GO categories in the same order, with exfoliated cells, having on average 20% fewer genes in each category. We also compared microarray results of samples from women with cervical intraepithelial neoplasia grade 3 (CIN3, n = 15 to those from age and race matched women without significant abnormalities (CIN1, CIN0; n = 15. We used three microarray-adapted statistical packages to identify differential gene expression. The six genes identified in common were two to four fold upregulated in CIN3 samples. One of these genes, the ubiquitin-conjugating enzyme E2 variant 1, participates in the degradation of p53 through interaction with the oncogenic HPV E6 protein. Conclusion The findings encourage further exploration of gene expression using exfoliated cells to identify and validate applicable biomarkers. We conclude that the gene expression profile of exfoliated cervical cells partially represents that of tissue and is complex enough to provide potential differentiation between disease and non-disease.

  7. Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line

    Directory of Open Access Journals (Sweden)

    Patricia Oliveira Carminati

    2010-01-01

    Full Text Available Gliomas are the most common tumors in the central nervous system, the average survival time of patients with glioblastoma multiforme being about 1 year from diagnosis, in spite of harsh therapy. Aiming to study the transcriptional profiles displayed by glioma cells undergoing cisplatin treatment, gene expression analysis was performed by the cDNA microarray method. Cell survival and apoptosis induction following treatment were also evaluated. Drug concentrations of 12.5 to 300 μM caused a pronounced reduction in cell survival rates five days after treatment, whereas concentrations higher than 25 μM were effective in reducing the survival rates to ~1%. However, the maximum apoptosis frequency was 20.4% for 25 μM cisplatin in cells analyzed at 72 h, indicating that apoptosis is not the only kind of cell death induced by cisplatin. An analysis of gene expression revealed 67 significantly (FDR < 0.05 modulated genes: 29 of which down- and 38 up-regulated. These genes belong to several classes (metabolism, protein localization, cell proliferation, apoptosis, adhesion, stress response, cell cycle and DNA repair that may represent several affected cell processes under the influence of cisplatin treatment. The expression pattern of three genes (RHOA, LIMK2 and TIMP2 was confirmed by the real time PCR method.

  8. Real-Time Gene Expression Profiling of Live Shewanella Oneidensis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoliang Sunney Xie

    2009-03-30

    The overall objective of this proposal is to make real-time observations of gene expression in live Shewanella oneidensis cells with high sensitivity and high throughput. Gene expression, a central process to all life, is stochastic because most genes often exist in one or two copies per cell. Although the central dogma of molecular biology has been proven beyond doubt, due to insufficient sensitivity, stochastic protein production has not been visualized in real time in an individual cell at the single-molecule level. We report the first direct observation of single protein molecules as they are generated, one at a time in a single live E. coli cell, yielding quantitative information about gene expression [Science 2006; 311: 1600-1603]. We demonstrated a general strategy for live-cell single-molecule measurements: detection by localization. It is difficult to detect single fluorescence protein molecules inside cytoplasm - their fluorescence is spread by fast diffusion to the entire cell and overwhelmed by the strong autofluorescence. We achieved single-molecule sensitivity by immobilizing the fluorescence protein on the cell membrane, where the diffusion is much slowed. We learned that under the repressed condition protein molecules are produced in bursts, with each burst originating from a stochastically-transcribed single messenger RNA molecule, and that protein copy numbers in the bursts follow a geometric distribution. We also simultaneously published a paper reporting a different method using β-glactosidase as a reporter [Nature 440, 358 (2006)]. Many important proteins are expressed at low levels, inaccessible by previous proteomic techniques. Both papers allowed quantification of protein expression with unprecedented sensitivity and received overwhelming acclaim from the scientific community. The Nature paper has been identified as one of the most-cited papers in the past year [http://esi-topics.com/]. We have also an analytical framework describing the

  9. Obesity Modulates Inflammation and Lipid Metabolism Oocyte Gene Expression: A Single-Cell Transcriptome Perspective.

    Science.gov (United States)

    Ruebel, Meghan L; Cotter, Matthew; Sims, Clark R; Moutos, Dean M; Badger, Thomas M; Cleves, Mario A; Shankar, Kartik; Andres, Aline

    2017-06-01

    It is hypothesized that obesity adversely affects the ovarian environment, which can disrupt oocyte maturation and embryonic development. This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal-weight (NW) women who were undergoing fertility treatments. Using single-cell transcriptomic analyses, we investigated oocyte gene expression using RNA sequencing. Eleven OW women and 13 NW women undergoing fertility treatments were enrolled. Oocyte messenger RNA profiles as well as serum and FF hormone and lipid levels were assessed. OW women had significantly higher body mass index, body fat percentage, and serum homeostatic model assessment-insulin resistance index compared with NW women (P metabolism; P = 0.065), TXNIP (oxidative stress; P = 0.055), and transcription factors ID3 (P = 0.075) and TWIST1 (P = 0.099) compared with NW women. These findings provide evidence for the significant influence of body composition on oocyte transcript abundance in women undergoing hormonal induction to retrieve oocytes. They further identify the potential for maternal diet to influence oocyte gene expression. The preconception period is, therefore, an important window of opportunity to consider for lifestyle interventions.

  10. UV-induced CYP1A1 gene expression in human cells is mediated by tryptophan.

    Science.gov (United States)

    Wei, Y D; Rannug, U; Rannug, A

    1999-04-01

    Induction of cytochrome P-4501A1 (CYP1A1) activity by UV has been observed earlier in animal studies via a mechanism that has not yet been resolved. Our previous data have indicated that formylated indolocarbazoles which are formed by UV irradiation of tryptophan solutions are very potent Ah-receptor agonists. To evaluate the effect of UV light on cytochrome P4501A1 gene expression, we studied the induction of CYP1A1 mRNA by UV irradiation of cultured human keratinocytes (HaCaT cell line), primary human blood lymphocytes and mouse Hepa-1 cells. The cells were exposed to UV light delivered by a bank of 6 Philips TL20/12RS sun lamps emitting primarily in the UVB range in the absence and presence of tryptophan. A semiquantitative reverse transcriptase-linked polymerase chain reaction (RT-PCR) was used for analysis of gene expression in the treated cells. The results show that the CYP1A1 mRNA level induced by UV in the presence of tryptophan was higher than that induced by UV alone in both HaCaT cells and lymphocytes after 3 h of incubation post-UV irradiation. To find out if the induction by UV light is caused by the formation of an Ah receptor ligand, Hepa-1 wild-type and Ah receptor deficient c12 cell lines were applied. Wild-type (wt) cells were inducible either by the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) or by UV-irradiation but very low or undetectable levels were observed in the c12 cells. This shows that the induction of gene expression by FICZ and UV is Ah receptor dependent. Together, these results indicate that UV-induced CYP1A1 gene expression in mammalian cells is mediated by an Ah receptor ligand formed from tryptophan. Thus, the photoproducts of tryptophan are suggested to be mediators of light via binding to the Ah receptor and as such also could have a role in light-regulated biological rhythms.

  11. Targeting of gene expression by siRNA in CML primary cells.

    Science.gov (United States)

    Merkerova, Michaela; Klamova, Hana; Brdicka, Radim; Bruchova, Hana

    2007-03-01

    Development of array methods contributes to elucidation of many genes expressed during oncogenesis. Our array-based analyses of gene expression in patients with chronic myeloid leukemia (CML) revealed several genes (MMP8, MMP9, PCNA, JNK2, MAPK p38) with significant increased expression. We suppose that the genes may be implicated in the disease development and a siRNA-suppression can elucidate their functions in leukemogenesis. One of the crucial requirements for this purpose is a high efficiency of siRNA delivery into CML primary cells. Using fluorescein-labeled siRNAs we systematically tested a variety of physical and chemical non-vector based transfection methods in order to evaluate which of them gave the most suitable transfer. Chemically synthesized siRNAs against mentioned genes were transfected into the cells and level of knockdown was determined by real time RT-PCR. Chemical transfection reagents (Oligofectamine, Metafectene, siPORT Amine) commonly used to transfect siRNAs in CML cell lines showed very low siRNA delivery in CML primary cells-mRNA levels decreased at the most to 76%. Electroporation achieved better results (suppression to 63%) but it was associated with high degree of cell death (more than 60%). In the study we obtained the best transfection efficiency using nucleofector technology. Gene expressions ranged 22-37% that remained from original levels. According to our results, nucleofection appears to be the only suitable non-viral method for siRNA delivery into the hard-to-transfect CML primary cells.

  12. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium.

    Science.gov (United States)

    Cartularo, Laura; Laulicht, Freda; Sun, Hong; Kluz, Thomas; Freedman, Jonathan H; Costa, Max

    2015-11-01

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the Earth's crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24h; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181 genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24h indicated a reduction in global levels of histone methylation and acetylation that persisted 72 h post-treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Successful Reconstruction of Tooth Germ with Cell Lines Requires Coordinated Gene Expressions from the Initiation Stage

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tomooka

    2012-10-01

    Full Text Available Tooth morphogenesis is carried out by a series of reciprocal interactions between the epithelium and mesenchyme in embryonic germs. Previously clonal dental epithelial cell (epithelium of molar tooth germ (emtg lines were established from an embryonic germ. They were odontogenic when combined with a dental mesenchymal tissue, although the odontogenesis was quantitatively imperfect. To improve the microenvironment in the germs, freshly isolated dental epithelial cells were mixed with cells of lines, and germs were reconstructed in various combinations. The results demonstrated that successful tooth construction depends on the mixing ratio, the age of dental epithelial cells and the combination with cell lines. Analyses of gene expression in these germs suggest that some signal(s from dental epithelial cells makes emtg cells competent to communicate with mesenchymal cells and the epithelial and mesenchymal compartments are able to progress  odontogenesis from the initiation stage.

  14. Dissecting the heterogeneity of gene expressions in mouse embryonic stem cells

    Science.gov (United States)

    Zou, Ling-Nan; Thomson, Matt; Liu, S. John; Ramanathan, Sharad

    2011-03-01

    A population of genetically identical cells, of the same nominal cell type, and cultured in the same petri dish, will nevertheless often exhibit varying patterns of gene expression. Taking mouse embryonic stem (ES) cells as a model system, we use immunofluorescence and flow cytometry to examine in detail the distribution of expression levels for various transcription factors key to the maintenance of the ES cell identity. We find the population-level distribution of many proteins, once rescaled by the average expression level, have very similar shapes. This suggest the largest component of observed heterogeneity comes from a single source. More subtly, we find the expression many of genes appears to modulate with the cell cycle. This may suggest that the program for maintaining ES cell identity is tightly coupled to the cell cycle machinery. This work is supported by the Harvard Stem Cell Institute and the Jane Coffin Childs Memorial Fund for Medical Research.

  15. Rapamycin increases oxidative stress response gene expression in adult stem cells

    Science.gov (United States)

    Kofman, Amber E.; McGraw, Margeaux R.; Payne, Christopher J.

    2012-01-01

    Balancing quiescence with proliferation is of paramount importance for adult stem cells in order to avoid hyperproliferation and cell depletion. In some models, stem cell exhaustion may be reversed with the drug rapamycin, which was shown can suppress cellular senescence in vitro and extend lifespan in animals. We hypothesized that rapamycin increases the expression of oxidative stress response genes in adult stem cells, and that these gene activities diminish with age. To test our hypothesis, we exposed mice to rapamycin and then examined the transcriptome of their spermatogonial stem cells (SSCs). Gene expression microarray analysis revealed that numerous oxidative stress response genes were upregulated upon rapamycin treatment, including superoxide dismutase 1, glutathione reductase, and delta-aminolevulinate dehydratase. When we examined the expression of these genes in 55-week-old wild type SSCs, their levels were significantly reduced compared to 3-week-old SSCs, suggesting that their downregulation is coincident with the aging process in adult stem cells. We conclude that rapamycin-induced stimulation of oxidative stress response genes may promote cellular longevity in SSCs, while a decline in gene expression in aged stem cells could reflect the SSCs' diminished potential to alleviate oxidative stress, a hallmark of aging. PMID:22529334

  16. Gene expression profiling in chemoresistant variants of three cell lines of different origin

    DEFF Research Database (Denmark)

    Johnsson, Anders; Vallon-Christensson, Johan; Strand, Carina

    2005-01-01

    lines (K562 leukemia, MCF-7 breast cancer and S1 colon cancer) with acquired resistance against five cytostatic drugs; daunorubicin (DNR), doxorubicin (DOX), vincristine (VCR), etoposide (VP) and mitoxantrone (MX). RESULTS: The resistant cell lines clustered together based on their type of origin......BACKGROUND: Drug resistance is a major problem in clinical cancer chemotherapy. Several mechanisms of resistance have been identified, but the underlying genomic changes are still poorly understood. MATERIALS AND METHODS: Gene expression profiling, using cDNA microarray, was performed in eight cell...

  17. Gene Expression Profiling of Dendritic Cells Reveals Important Mechanisms Associated with Predisposition to Staphylococcus Infections

    Science.gov (United States)

    Toufeer, Mehdi; Bonnefont, Cécile M. D.; Foulon, Eliane; Caubet, Cécile; Tasca, Christian; Aurel, Marie-Rose; Robert-Granié, Christèle; Rupp, Rachel; Foucras, Gilles

    2011-01-01

    Background Staphylococcus aureus is a major pathogen of humans and animals and emerging antibiotic-resistant strains have further increased the concern of this health issue. Host genetics influence susceptibility to S. aureus infections, and the genes determining the outcome of infections should be identified to find alternative therapies to treatment with antibiotics. Here, we used outbred animals from a divergent selection based on susceptibility towards Staphylococcus infection to explore host immunogenetics. Methodology/Principal Findings We investigated how dendritic cells respond to heat-inactivated S. aureus and whether dendritic cells from animals showing different degrees of susceptibility had distinct gene expression profiles. We measured gene expression levels of in vitro S. aureus-stimulated bone marrow-derived dendritic cells at three different time points (0, 3 and 8 hrs) by using 15 k ovine Agilent microarrays. Furthermore, differential expression of a selected number of genes was confirmed by RT-qPCR. Gene signatures of stimulated DCs were obtained and showed that genes involved in the inflammatory process and T helper cell polarization were highly up-regulated upon stimulation. Moreover, a set of 204 genes were statistically differentially expressed between susceptible and resistant animals, and grouped them according to their predisposition to staphylococcal infection. Interestingly, over-expression of the C1q and Ido1 genes was observed in the resistant line and suggested a role of classical pathway of complement and early regulation of inflammation pathways, respectively. On the contrary, over expression of genes involved in the IL1R pathway was observed in susceptible animals. Furthermore, the leucocyte extravasation pathway was also found to be dominant in the susceptible line. Conclusion/Significance We successfully obtained Staphylococcus aureus associated gene expression of ovine BM-DC in an 8-hour kinetics experiment. The distinct

  18. Docetaxel-Chitosan nanoparticles for breast cancer treatment: cell viability and gene expression study.

    Science.gov (United States)

    Mirzaie, Zahra H; Irani, Shiva; Mirfakhraie, Reza; Atyabi, Seyed Mohammad; Dinarvand, Meshkat; Dinarvand, Rassoul; Varshochian, Reyhaneh; Atyabi, Fatemeh

    2016-12-01

    Docetaxel acts through the inhibition of tubulin polymerization and reduction in the expression of BCL-2 gene. In this study, nanoparticles containing Docetaxel were prepared and their effects on the gene expression levels of BCL-2 and BAX genes were investigated. The drug was first conjugated to chitosan, and the nanoparticles were assembled in the presence of hyaluronic acid. Conjugations were confirmed by (1) H-NMR, and the obtained nanoparticles were characterized by dynamic light scattering and SEM. Cytotoxicity of the nanoparticles, cellular uptake, and cell death were evaluated. Finally, the effect of nanoparticles on the expression of BAX and BCL-2 genes in MCF-7 cells were investigated through real-time PCR. The results revealed that the prepared NPs had spherical shape with narrow size distribution of nanoparticles and free Docetaxel investigations revealed that increasing the treatment time with nanoparticles led to decrease in the rate of cell viability. BAX and BCL-2 gene expressions were decreased in nanoparticle-treated cells in comparison with intact cells, while the BAX/BCL-2 ratio was significantly elevated compared with free drug-treated cells after 72 h. Docetaxel-conjugated NPs may offer a promising treatment with low off-target toxicity for breast cancer. © 2016 John Wiley & Sons A/S.

  19. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    Science.gov (United States)

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  20. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    Directory of Open Access Journals (Sweden)

    Nuria Troyano-Suárez

    2015-01-01

    Full Text Available Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK, a scaffold protein at cell-extracellular matrix (ECM adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.

  1. Protective Effect of Gwakhyangjeonggisan Herbal Acupuncture Solution in Glioblastoma Cells: Microarray Analysis of Gene Expression

    Directory of Open Access Journals (Sweden)

    Hong-Seok Lee

    2005-12-01

    Full Text Available Objectives : Neurological disorders have been one of main therapeutic targets of acupuncture. The present study investigated the protective effects of Gwakhyangjeonggisan herbal acupuncture solution (GHAS. Methods : We performed 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in glioblastoma cells, and did microarray analysis with cells exposed to reactive oxigen species (ROS of hydrogen peroxide by 8.0 k Human cDNA, with cut-off level of 2-fold changes in gene expression. Results : MTT assay showed protective effect of GHAS on the glioblastoma cells exposed to hydrogen peroxide. When glioblastoma cells were exposed to hydrogen peroxide, 24 genes were downregulated. When the cells were pretreated with GHAS before exposure to hydrogen peroxide, 46 genes were downregulated. Many of the genes downregulated by hydrogen peroxide stimulation were decreased in the amount of downregulation or reversed to upregulation. Conclusions : The gene expression changes observed in the present study are supposed to be related to the protective molecular mechanism of GHAS in the glioblastoma cells exposed to ROS stress.

  2. Self-organization vs Watchmaker: stochastic gene expression and cell differentiation.

    Science.gov (United States)

    Kurakin, Alexei

    2005-01-01

    Cell differentiation and organism development are traditionally described in deterministic terms of program and design, echoing a conventional clockwork perception of the cell on another scale. However, the current experimental reality of stochastic gene expression and cell plasticity is poorly consistent with the ideas of design, purpose and determinism, suggesting that the habit of classico-mechanistic interpretation of life phenomena may handicap our ability to adequately comprehend and model biological systems. An alternative conceptualization of cell differentiation and development is proposed where the developing organism is viewed as a dynamic self-organizing system of adaptive interacting agents. This alternative interpretation appears to be more consistent with the probabilistic nature of gene expression and the phenomena of cell plasticity, and is coterminous with the novel emerging image of the cell as a self-organizing molecular system. I suggest that stochasticity, as a principle of differentiation and adaptation, and self-organization, as a concept of emergence, have the potential to provide an interpretational framework that unites phenomena across different scales of biological organization, from molecules to societies.

  3. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma

    Science.gov (United States)

    Bochkov, YA; Hanson, KM; Keles, S; Brockman-Schneider, RA; Jarjour, NN; Gern, JE

    2010-01-01

    Rhinovirus (RV) infections trigger asthma exacerbations. Genome-wide expression analysis of RV1A-infected primary bronchial epithelial cells from normal and asthmatic donors was performed to determine whether asthma is associated with a unique pattern of RV-induced gene expression. Virus replication rates were similar in cells from normal and asthmatic donors. Overall, RV downregulated 975 and upregulated 69 genes. Comparisons of transcriptional profiles generated from microarrays and confirmed by quantitative reverse transcription PCR and cluster analysis showed some up- and downregulated genes in asthma cells involved in immune responses (IL1B, IL1F9, IL24, IFI44) and airway remodeling (LOXL2, MMP10, FN1). Notably, most of the asthma-related differences in RV-infected cells were also present in the cells before infection. These findings suggest that differences in RV-induced gene expression profiles of cells from normal and mild asthmatic subjects could affect the acute inflammatory response to RV and subsequent airway repair and remodeling. PMID:19710636

  4. MST-312 Alters Telomere Dynamics, Gene Expression Profiles and Growth in Human Breast Cancer Cells.

    Science.gov (United States)

    Gurung, Resham Lal; Lim, Shi Ni; Low, Grace Kah Mun; Hande, M Prakash

    2014-01-01

    Targeting telomerase is a potential cancer management strategy given that it allows unlimited cellular replication in the majority of cancers. Dysfunctional telomeres are recognized as double-strand breaks. However, the status of DNA repair response pathways following telomerase inhibition is not well understood in human breast cancer cells. Here, we evaluated the effects of MST-312, a chemically modified derivative from tea catechin, epigallocatechin gallate, on telomere dynamics and DNA damage gene expression in breast cancer cells. Breast cancer cells MCF-7 and MDA-MB-231 were treated with MST-312, and telomere-telomerase homeostasis, induced DNA damage and gene expression profiling were analyzed. MST-312 decreased telomerase activity and induced telomere dysfunction and growth arrest in breast cancer cells with more profound effects in MDA-MB-231 than in MCF-7 cells. Consistent with these data, the telomere-protective protein TRF2 was downregulated in MDA-MB-231 cells. MST-312 induced DNA damage at telomeres accompanied by reduced expression of DNA damage-related genes ATM and RAD50. Co-treatment with MST-312 and the poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor PJ-34 further enhanced growth reduction as compared to single treatment with MST-312 or PJ-34. Our work demonstrates potential importance for the establishment of antitelomerase cancer therapy using MST-312 along with PARP-1 inhibition in breast cancer therapy. © 2015 S. Karger AG, Basel.

  5. Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici.

    Science.gov (United States)

    Lung, Shiu-Cheung; Yanagisawa, Makoto; Chuong, Simon D X

    2011-04-01

    Although transient gene expression using reporters such as green fluorescent protein is a versatile tool for examining gene functions and intracellular protein trafficking, the establishment of a highly efficient gene manipulation method remains a challenge in many plant species. A reliable transformation protocol has not yet been established for the three single-cell C(4) species, despite their potential of serving as model systems for their extraordinary C(4) photosynthetic metabolism. We report the first protocol optimized for isolating a large-scale and homogenous population of protoplasts from chlorenchyma cells of the single-cell C(4) species Bienertia sinuspersici. Cytochemical staining confirmed the preservation of the unusual subcellular compartmentation of organelles in chlorenchyma cells after cell wall digestion. Approximately 84% of isolated protoplasts expressed the reporter fluorescent protein following our optimized polyethylene glycol-mediated transfection procedures. Fluorescent fusion protein tagged with various intracellular sorting signals demonstrated potential use of the transient gene expression system in subcellular protein localization and organelle dynamics studies. Further applications of the current protoplast isolation and transfection techniques in understanding the novel single-cell C(4) photosynthetic mechanism are discussed.

  6. Positive and negative regulation of the human heme oxygenase-1 gene expression in cultured cells.

    Science.gov (United States)

    Takahashi, S; Takahashi, Y; Ito, K; Nagano, T; Shibahara, S; Miura, T

    1999-10-28

    To elucidate the regulation of the human heme oxygenase-1 (hHO-1) gene expression, we assessed approximately 4 kb of the 5'-flanking region of the hHO-1 gene for basal promoter activity and sequenced approximately 2 kb of the 5'-flanking region. A series of deletion mutants of the 5'-flanking region linked to the luciferase gene was constructed. Basal level expression of these constructs was tested in HepG2 human hepatoma cells and HeLa cervical cancer cells. By measuring luciferase activity, which was transiently expressed in the transfected cells, we found a positive regulatory region at position -1976 to -1655 bp. This region functions in HepG2 cells but not in HeLa cells. A negative regulatory region was also found at position -981 to -412 bp that functions in both HepG2 cells and HeLa cells.

  7. TLM-Quant : An Open-Source Pipeline for Visualization and Quantification of Gene Expression Heterogeneity in Growing Microbial Cells

    NARCIS (Netherlands)

    Piersma, Sjouke; Denham, Emma L.; Drulhe, Samuel; Tonk, Rudi H. J.; Schwikowski, Benno; van Dijl, Jan Maarten

    2013-01-01

    Gene expression heterogeneity is a key driver for microbial adaptation to fluctuating environmental conditions, cell differentiation and the evolution of species. This phenomenon has therefore enormous implications, not only for life in general, but also for biotechnological applications where

  8. Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets.

    Science.gov (United States)

    Schwarz-Schilling, M; Aufinger, L; Mückl, A; Simmel, F C

    2016-04-18

    Position-dependent gene expression in gradients of morphogens is one of the key processes involved in cellular differentiation during development. Here, we study a simple artificial differentiation process, which is based on the diffusion of genetic inducers within one-dimensional arrangements of 50 μm large water-in-oil droplets. The droplets are filled with either bacteria or cell-free gene expression systems, both equipped with genetic constructs that produce inducers or respond to them via expression of a fluorescent protein. We quantitatively study the coupled diffusion-gene expression process and demonstrate that gene expression can be made position-dependent both within bacteria-containing and cell-free droplets. By generating diffusing quorum sensing signals in situ, we also establish communication between artificial cell-free sender cells and bacterial receivers, and vice versa.

  9. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  10. Dengue Virus Induces Novel Changes in Gene Expression of Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Warke, Rajas V.; Xhaja, Kris; Martin, Katherine J.; Fournier, Marcia F.; Shaw, Sunil K.; Brizuela, Nathaly; de Bosch, Norma; Lapointe, David; Ennis, Francis A.; Rothman, Alan L.; Bosch, Irene

    2003-01-01

    Endothelial cells are permissive to dengue virus (DV) infection in vitro, although their importance as targets of DV infection in vivo remains a subject of debate. To analyze the virus-host interaction, we studied the effect of DV infection on gene expression in human umbilical vein endothelial cells (HUVECs) by using differential display reverse transcription-PCR (DD-RTPCR), quantitative RT-PCR, and Affymetrix oligonucleotide microarrays. DD identified eight differentially expressed cDNAs, including inhibitor of apoptosis-1, 2′-5′ oligoadenylate synthetase (OAS), a 2′-5′ OAS-like (OASL) gene, galectin-9, myxovirus protein A (MxA), regulator of G-protein signaling, endothelial and smooth muscle cell-derived neuropilin-like protein, and phospholipid scramblase 1. Microarray analysis of 22,000 human genes confirmed these findings and identified an additional 269 genes that were induced and 126 that were repressed more than fourfold after DV infection. Broad functional responses that were activated included the stress, defense, immune, cell adhesion, wounding, inflammatory, and antiviral pathways. These changes in gene expression were seen after infection of HUVECs with either laboratory-adapted virus or with virus isolated directly from plasma of DV-infected patients. Tumor necrosis factor alpha, OASL, and MxA and h-IAP1 genes were induced within the first 8 to 12 h after infection, suggesting a direct effect of DV infection. These global analyses of DV effects on cellular gene expression identify potentially novel mechanisms involved in dengue disease manifestations such as hemostatic disturbance. PMID:14557666

  11. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Electric pulse stimulation of cultured murine muscle cells reproduces gene expression changes of trained mouse muscle.

    Directory of Open Access Journals (Sweden)

    Nathalie Burch

    2010-06-01

    Full Text Available Adequate levels of physical activity are at the center of a healthy lifestyle. However, the molecular mechanisms that mediate the beneficial effects of exercise remain enigmatic. This gap in knowledge is caused by the lack of an amenable experimental model system. Therefore, we optimized electric pulse stimulation of muscle cells to closely recapitulate the plastic changes in gene expression observed in a trained skeletal muscle. The exact experimental conditions were established using the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha as a marker for an endurance-trained muscle fiber. We subsequently compared the changes in the relative expression of metabolic and myofibrillar genes in the muscle cell system with those observed in mouse muscle in vivo following either an acute or repeated bouts of treadmill exercise. Importantly, in electrically stimulated C2C12 mouse muscle cells, the qualitative transcriptional adaptations were almost identical to those in trained muscle, but differ from the acute effects of exercise on muscle gene expression. In addition, significant alterations in the expression of myofibrillar proteins indicate that this stimulation could be used to modulate the fiber-type of muscle cells in culture. Our data thus describe an experimental cell culture model for the study of at least some of the transcriptional aspects of skeletal muscle adaptation to physical activity. This system will be useful for the study of the molecular mechanisms that regulate exercise adaptation in muscle.

  13. Analyzing inhibition of BCL11A gene expression in K562 cells by RNAi

    Directory of Open Access Journals (Sweden)

    Urkude Vikas

    2013-01-01

    Full Text Available RNA interference (RNAi, an effective approach to sequence-specific gene knockdown is widely used for the investigation of regulation of gene expression in various cells. BCL11A (B cell lymphoma 11A plays a vital role in the evolutionarily different globin gene switches of mammals. In the current study, siRNA complementary to BCL11A was used to inhibit the BCL11A gene expression in erythroleukemic K562 cells and the expression was evaluated through real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR and western blot analysis. On day 7 of cell culture, 1x106 K562 cells were transfected with lipofectamine containing BCL11A specific siRNA. GAPDH (Glyceraldehyde-3-phosphate dehydrogenase was used as the reference gene to confirm the relative expression level of BCL11A gene mRNA and BCL11A protein. After 48 h of transfection, BCL11A specific siRNA produced significantly reduction of BCL11A mRNA level in a dose-dependent manner. It also affects the level of BCL11A protein. BCL11A siRNAs were equally effective at reducing the expression level of BCL11A mRNA and protein.

  14. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  15. Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells

    DEFF Research Database (Denmark)

    Gjetting, T.; Carver, Timothy L. W.; Skøt, Leif

    2004-01-01

    Resistance and susceptibility in barley to the powdery mildew fungus (Blumeria graminis f. sp. hordei) is determined at the single-cell level. Even in genetically compatible interactions, attacked plant epidermal cells defend themselves against attempted fungal penetration by localized responses...... leading to papilla deposition and reinforcement of their cell wall. This conveys a race-nonspecific form of resistance. However, this defense is not complete, and a proportion of penetration attempts succeed in infection. The resultant mixture of infected and uninfected leaf cells makes it impossible...... to relate powdery mildew-induced gene expression in whole leaves or even dissected epidermal tissues to resistance or susceptibility. A method for generating transcript profiles from individual barley epidermal cells was established and proven useful for analyzing resistant and successfully infected cells...

  16. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  17. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Directory of Open Access Journals (Sweden)

    Carlos Díaz-Castillo

    2017-11-01

    Full Text Available Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications.

  18. Modelling epigenetic regulation of gene expression in 12 human cell types reveals combinatorial patterns of cell-type-specific genes.

    Science.gov (United States)

    Lu, Yiming; Qu, Wubin; Min, Bo; Liu, Zheyan; Chen, Changsheng; Zhang, Chenggang

    2014-06-01

    The maintenance of the diverse cell types in a multicellular organism is one of the fundamental mysteries of biology. Modelling the dynamic regulatory relationships between the histone modifications and the gene expression across the diverse cell types is essential for the authors to understand the mechanisms of the epigenetic regulation. Here, the authors thoroughly assessed the histone modification enrichment profiles at the promoters and constructed quantitative models between the histone modification abundances and the gene expression in 12 human cell types. The author's results showed that the histone modifications at the promoters exhibited remarkably cell-type-dependent variability in the cell-type-specific (CTS) genes. They demonstrated that the variable profiles of the modifications are highly predictive for the dynamic changes of the gene expression across all the cell types. Their findings revealed the close relationship between the combinatorial patterns of the histone modifications and the CTS gene expression. They anticipate that the findings and the methods they used in this study could provide useful information for the future studies of the regulatory roles of the histone modifications in the CTS genes.

  19. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  20. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jing [The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Zhang, Jun-ying [Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Yin, Li [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Wu, Jian-zhong [Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Guo, Wen-jie; Wu, Jian-feng [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Chen, Meng; Xia, You-you [The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Tang, Jin-hai [Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Ma, Yong-chao [Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China); He, Xia, E-mail: hexiadoctor@163.com [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China)

    2015-01-02

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.

  1. Differential BCCIP gene expression in primary human ovarian cancer, renal cell carcinoma and colorectal cancer tissues.

    Science.gov (United States)

    Liu, Xiaoxia; Cao, Lingling; Ni, Jinsong; Liu, Ning; Zhao, Xiaoming; Wang, Yanfang; Zhu, Lin; Wang, Lingyao; Wang, Jin; Yue, Ying; Cai, Yong; Jin, Jingji

    2013-12-01

    Human BCCIP, a protein which interacts with BRCA2 and CDKN1A (Cip1, p21), has been implicated in many cellular processes including cell cycle regulation, DNA recombination and damage repair, telomere maintenance, embryonic development and genomic stability. BCCIP gene expression, which is an important BRCA2 cofactor in tumor suppression, has been identified in some primary cancers. Thus, we investigated the role of BCCIP expression in a large sample of clinically diagnosed primary ovarian cancer, renal cell carcinoma (RCC) and colorectal cancer (CRC) tissues. Using clinically diagnosed frozen primary cancer tissues, quantitative PCR (qPCR), western blot analysis (WB) and immunohistochemical staining (IHC) approaches were used to detect and measure gene expression. Reduced BCCIP gene expression in ovarian cancer, RCC and CRC tissues occurred in 74, 89 and 75% of tissue samples, respectively. qPCR analysis of mRNA expression in 54 ovarian cancer, 50 RCC and 44 CRC samples revealed significant (>2-fold decreased) BCCIP downregulation in 56, 70 and 46% of tissue samples, respectively. Although BCCIP expression in three different tumor tissues decreased, the relationship between BCCIP expression and clinicopathological features of each cancer was distinct. Compared to normal tissues, BCCIP expression in ovarian cancers was significantly downregulated in serous, endometrioid and mucinous carcinomas. Downregulation of BCCIP expression was strongly associated with clear cell RCC (ccRCC) and Fuhrman tumor grading, but significant differences in BCCIP expression between CRC and matched normal tissues occurred only in male CRC tissues (povarian cancer and RCC tissue samples (povarian cancer, RCC and CRC tissues, suggesting a role for the gene in the pathogenesis of these cancers.

  2. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  3. Interferon-beta induces distinct gene expression response patterns in human monocytes versus T cells.

    Directory of Open Access Journals (Sweden)

    Noa Henig

    Full Text Available BACKGROUND: Monocytes, which are key players in innate immunity, are outnumbered by neutrophils and lymphocytes among peripheral white blood cells. The cytokine interferon-β (IFN-β is widely used as an immunomodulatory drug for multiple sclerosis and its functional pathways in peripheral blood mononuclear cells (PBMCs have been previously described. The aim of the present study was to identify novel, cell-specific IFN-β functions and pathways in tumor necrosis factor (TNF-α-activated monocytes that may have been missed in studies using PBMCs. METHODOLOGY/PRINCIPAL FINDINGS: Whole genome gene expression profiles of human monocytes and T cells were compared following in vitro priming to TNF-α and overnight exposure to IFN-β. Statistical analyses of the gene expression data revealed a cell-type-specific change of 699 transcripts, 667 monocyte-specific transcripts, 21 T cell-specific transcripts and 11 transcripts with either a difference in the response direction or a difference in the magnitude of response. RT-PCR revealed a set of differentially expressed genes (DEGs, exhibiting responses to IFN-β that are modulated by TNF-α in monocytes, such as RIPK2 and CD83, but not in T cells or PBMCs. Known IFN-β promoter response elements, such as ISRE, were enriched in T cell DEGs but not in monocyte DEGs. The overall directionality of the gene expression regulation by IFN-β was different in T cells and monocytes, with up-regulation more prevalent in T cells, and a similar extent of up and down-regulation recorded in monocytes. CONCLUSIONS: By focusing on the response of distinct cell types and by evaluating the combined effects of two cytokines with pro and anti-inflammatory activities, we were able to present two new findings First, new IFN-β response pathways and genes, some of which were monocytes specific; second, a cell-specific modulation of the IFN-β response transcriptome by TNF-α.

  4. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...

  5. Gene expression profile of colon cancer cell lines treated with SN-38

    DEFF Research Database (Denmark)

    Wallin, A; Francis, P; Nilbert, M

    2010-01-01

    Colorectal cancer is the third most common form of cancer in the industrial countries. Due to advances regarding the treatments, primarily development of improved surgical methods and the ability to make the earlier diagnosis, the mortality has remained constant during the past decades even though...... the incidence in fact has increased. To improve chemotherapy and enable personalised treatment, the need of biomarkers is of great significance. In this study, we evaluated the gene expression profiles of the colon cancer cell lines treated with SN-38, the active metabolite of topoisomerase-1 inhibitor...

  6. Gene expression profile of colon cancer cell lines treated with SN-38

    DEFF Research Database (Denmark)

    Wallin, A; Francis, P; Nilbert, M

    2010-01-01

    the incidence in fact has increased. To improve chemotherapy and enable personalised treatment, the need of biomarkers is of great significance. In this study, we evaluated the gene expression profiles of the colon cancer cell lines treated with SN-38, the active metabolite of topoisomerase-1 inhibitor......Colorectal cancer is the third most common form of cancer in the industrial countries. Due to advances regarding the treatments, primarily development of improved surgical methods and the ability to make the earlier diagnosis, the mortality has remained constant during the past decades even though...

  7. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  8. Resveratrol induces apoptosis and alters gene expression in human fibrosarcoma cells.

    Science.gov (United States)

    Harati, Kamran; Slodnik, Pawel; Chromik, Ansgar Michael; Goertz, Ole; Hirsch, Tobias; Kapalschinski, Nikolai; Klein-Hitpass, Ludger; Kolbenschlag, Jonas; Uhl, Waldemar; Lehnhardt, Marcus; Daigeler, Adrien

    2015-02-01

    Metastatic fibrosarcomas still represent a therapeutic dilemma. Commonly used chemotherapeutic agents such as doxorubicin have been proven effective in fewer than 30% of all cases disseminated of fibrosarcoma. Elderly patients with cardiac disease are not suitable for systemic chemotherapy with doxorubicin. We therefore tested the apoptotic effects of the natural and well-tolerated compound resveratrol on human fibrosarcoma cells (HT1080). Vital, apoptotic and necrotic cells were quantified using flow cytometric analysis. Gene expression was analyzed by RNA microarrays. Application of resveratrol induced apoptotic cell death and significantly reduced proliferation of HT1080 cells. Correspondingly, expression of apoptosis-associated genes was altered in microarray analysis. This in vitro study demonstrates the anticancer activity of resveratrol against human fibrosarcoma cells. These results provide experimental support for in vivo trials assessing the effect of the natural polyphenol resveratrol. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  10. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  11. Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis.

    Science.gov (United States)

    Gou, Na; Onnis-Hayden, Annalisa; Gu, April Z

    2010-08-01

    This study performed mechanistic toxicity assessment of nanosilver (nAg) and nanotitanium dioxide anatase (nTiO2_a) via toxicogenomic approach, employing a whole-cell-array library consisting of 91 recombinated Escherichia coli K12 strains with transcriptional GFP-fusions covering most known stress response genes. The results, for the first time, revealed more detailed transcriptional information on the toxic mechanism of nAg and nTiO2_a, and led to a better understanding of the mode of action (MOA) of metal and metal oxide nanomaterials (NMs). The detailed pathways network established for the oxidative stress system and for the SOS (DNA damage) repair system based on the temporal gene expression profiling data revealed the relationships and sequences of key genes involved in these toxin response systems. Both NMs were found to cause oxidative stress as well as cell membrane and transportation damage. Genotoxicity and DNA damage were also observed, although nTiO2_a induced SOS response via previously identified pathway and nAg seemed to induce DNA repair via a pathway different from SOS. We observed that the NMs at lower concentration tend to induce more chemical-specific toxicity response, while at higher concentrations, more general global stress response dominates. The information-rich real-time gene expression data allowed for identification of potential biomarkers that can be employed for specific toxin detection and biosensor developments. The concentration-dependent gene expression response led to the determination of the No Observed Transcriptional Effect Level (NOTEL) values, which can be potentially applied in the regulatory and risk assessment framework as an alternative toxicity assessment end point.

  12. Influence of stochastic gene expression on the cell survival rheostat after traumatic brain injury.

    Science.gov (United States)

    Rojo, Daniel R; Prough, Donald S; Falduto, Michael T; Boone, Deborah R; Micci, Maria-Adelaide; Kahrig, Kristen M; Crookshanks, Jeanna M; Jimenez, Arnaldo; Uchida, Tatsuo; Cowart, Jeremy C; Hawkins, Bridget E; Avila, Marcela; DeWitt, Douglas S; Hellmich, Helen L

    2011-01-01

    Experimental evidence suggests that random, spontaneous (stochastic) fluctuations in gene expression have important biological consequences, including determination of cell fate and phenotypic variation within isogenic populations. We propose that fluctuations in gene expression represent a valuable tool to explore therapeutic strategies for patients who have suffered traumatic brain injury (TBI), for which there is no effective drug therapy. We have studied the effects of TBI on the hippocampus because TBI survivors commonly suffer cognitive problems that are associated with hippocampal damage. In our previous studies we separated dying and surviving hippocampal neurons by laser capture microdissection and observed unexplainable variations in post-TBI gene expression, even though dying and surviving neurons were adjacent and morphologically identical. We hypothesized that, in hippocampal neurons that subsequently are subjected to TBI, randomly increased pre-TBI expression of genes that are associated with neuroprotection predisposes neurons to survival; conversely, randomly decreased expression of these genes predisposes neurons to death. Thus, to identify genes that are associated with endogenous neuroprotection, we performed a comparative, high-resolution transcriptome analysis of dying and surviving hippocampal neurons in rats subjected to TBI. We found that surviving hippocampal neurons express a distinct molecular signature--increased expression of networks of genes that are associated with regeneration, cellular reprogramming, development, and synaptic plasticity. In dying neurons we found decreased expression of genes in those networks. Based on these data, we propose a hypothetical model in which hippocampal neuronal survival is determined by a rheostat that adds injury-induced genomic signals to expression of pro-survival genes, which pre-TBI varies randomly and spontaneously from neuron to neuron. We suggest that pharmacotherapeutic strategies that co

  13. Heterogeneity of astrocytes: from development to injury - single cell gene expression.

    Directory of Open Access Journals (Sweden)

    Vendula Rusnakova

    Full Text Available Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K(+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10-50 days of postnatal development (P10-P50. The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20 was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50. Within 14 days after ischemia (D3, D7, D14, additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3, transcriptionally active early reactive glia (mainly from D7 and permanent reactive glia (solely from D14. Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.

  14. Diet-induced obesity regulates adipose-resident stromal cell quantity and extracellular matrix gene expression

    Directory of Open Access Journals (Sweden)

    Yair Pincu

    2016-07-01

    Full Text Available Adipose tissue expansion during periods of excess nutrient intake requires significant turnover of the extracellular matrix (ECM to allow for maximal lipid filling. Recent data suggest that stromal cells may be a primary contributor to ECM modifications in visceral adipose. The purpose of this study was to investigate the capacity for high fat diet (HFD-induced obesity to alter adipose-derived stromal cell (ADSC relative quantity and ECM gene expression, and determine the extent to which exercise training can mitigate such changes. Male C57BL/6J mice were placed on control or HFD for 8 weeks prior to and following initiation of a 16 week treadmill exercise program. ADSCs (Sca-1+CD45− were isolated from epididymal adipose tissue and mRNA was evaluated using high throughput qPCR. Stromal cells were also obtained from skeletal muscle (MDSC. HFD decreased the quantity of ADSCs and markedly altered gene expression related to ECM remodeling (Col1α1, MMP2, MMP9, Timp1. Exercise did not reverse these changes. MDSCs were minimally altered by HFD or exercise. Overall, the data from this study suggest that ADSCs decrease in quantity and contribute to adipose ECM remodeling in response to obesity, and exercise training does not significantly impact these outcomes.

  15. Diet-induced obesity regulates adipose-resident stromal cell quantity and extracellular matrix gene expression.

    Science.gov (United States)

    Pincu, Yair; Huntsman, Heather D; Zou, Kai; De Lisio, Michael; Mahmassani, Ziad S; Munroe, Michael R; Garg, Koyal; Jensen, Tor; Boppart, Marni D

    2016-07-01

    Adipose tissue expansion during periods of excess nutrient intake requires significant turnover of the extracellular matrix (ECM) to allow for maximal lipid filling. Recent data suggest that stromal cells may be a primary contributor to ECM modifications in visceral adipose. The purpose of this study was to investigate the capacity for high fat diet (HFD)-induced obesity to alter adipose-derived stromal cell (ADSC) relative quantity and ECM gene expression, and determine the extent to which exercise training can mitigate such changes. Male C57BL/6J mice were placed on control or HFD for 8weeks prior to and following initiation of a 16week treadmill exercise program. ADSCs (Sca-1(+)CD45(-)) were isolated from epididymal adipose tissue and mRNA was evaluated using high throughput qPCR. Stromal cells were also obtained from skeletal muscle (MDSC). HFD decreased the quantity of ADSCs and markedly altered gene expression related to ECM remodeling (Col1α1, MMP2, MMP9, Timp1). Exercise did not reverse these changes. MDSCs were minimally altered by HFD or exercise. Overall, the data from this study suggest that ADSCs decrease in quantity and contribute to adipose ECM remodeling in response to obesity, and exercise training does not significantly impact these outcomes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Heterogeneity of Astrocytes: From Development to Injury – Single Cell Gene Expression

    Science.gov (United States)

    Rusnakova, Vendula; Honsa, Pavel; Dzamba, David; Ståhlberg, Anders; Kubista, Mikael; Anderova, Miroslava

    2013-01-01

    Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10–50 days of postnatal development (P10–P50). The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20) was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50). Within 14 days after ischemia (D3, D7, D14), additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3), transcriptionally active early reactive glia (mainly from D7) and permanent reactive glia (solely from D14). Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers. PMID:23940528

  17. Gene expression during phorbol ester-induced differentiation of cultured human megakaryoblastic cells.

    Science.gov (United States)

    Dorn, G W; Davis, M G; D'Angelo, D D

    1994-05-01

    Platelet protein makeup is determined during transformation of megakaryoblasts to mature megakaryocytes, the immediate precursor of circulating platelets. To better understand the molecular mechanisms of megakaryocyte formation, gene expression was characterized by Northern analysis and RNA fingerprinting of cultured human CHRF-288 megakaryoblastic cells undergoing phorbol ester-stimulated megakaryocytic differentiation or serum-stimulated megakaryoblast proliferation. Protooncogenes c-fos and c-jun were coordinately upregulated in both proliferating and differentiating cells, whereas c-myc transcripts were upregulated during proliferation only. In contrast, mRNAs for transforming growth factor-beta 1 (TGF-beta 1) and thromboxane receptors were coordinately upregulated during differentiation but differentially regulated during proliferation. RNA fingerprinting revealed multiple transcripts specific to either proliferating or differentiated cells. Three of these were identified by homology to known DNA sequence: CDw44 adhesion molecule (upregulated during differentiation), glutathione sulfhydryl peroxidase (downregulated during differentiation), and plectin cytoskeletal protein (upregulated during differentiation). Thus, although megakaryoblast proliferation and megakaryocyte differentiation both involve DNA and protein synthesis, each growth response is characterized by a distinct pattern of gene expression.

  18. Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA

    Directory of Open Access Journals (Sweden)

    Rottier Peter JM

    2008-05-01

    Full Text Available Abstract Background Sensitivity and accuracy are key points when using microarrays to detect alterations in gene expression under different conditions. Critical to the acquisition of reliable results is the preparation of the RNA. In the field of virology, when analyzing the host cell's reaction to infection, the often high representation of viral RNA (vRNA within total RNA preparations from infected cells is likely to interfere with microarray analysis. Yet, this effect has not been investigated despite the many reports that describe gene expression profiling of virus-infected cells using microarrays. Results In this study we used coronaviruses as a model to show that vRNA indeed interferes with microarray analysis, decreasing both sensitivity and accuracy. We also demonstrate that the removal of vRNA from total RNA samples, by means of virus-specific oligonucleotide capturing, significantly reduced the number of false-positive hits and increased the sensitivity of the method as tested on different array platforms. Conclusion We therefore recommend the specific removal of vRNA, or of any other abundant 'contaminating' RNAs, from total RNA samples to improve the quality and reliability of microarray analyses.

  19. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan); Naganuma, Kaori [Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka (Japan); Kato, Kenichi; Yamazaki, Jun [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan)

    2015-12-04

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  20. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    Science.gov (United States)

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  1. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ryan D Huff

    Full Text Available The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production.Allergen and cigarette smoke mouse models were performed using house dust mite (HDM and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies.HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4 inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells.Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  2. Effects of achilline on lipid metabolism gene expression in cell culture

    Directory of Open Access Journals (Sweden)

    A. V. Ratkin

    2016-01-01

    Full Text Available Objective. Evaluation in vitro of the mechanisms of the hypolipidemic effect of sesquiterpene γ-lactone achilline in the hepatoma tissue culture (HTC.Materials and methods.The influence of sesquiterpene γ-lactone achilline and gemfibrozil (comparison drug on the viability, lipid content and expression of key genes of lipid metabolism in the hepatoma tissue culture. The lipid content was assessed by fluorescent method with the vital dye Nile Red, the cell viability was assessed using MTT assay.Results. Cultivation of of cell cultures of rat’s hepatoma cell line HTC for 48 h with achilline in a concentration of from 0.25 to 1.0 mm and gemfibrozil from 0,25 to 0,5 mm did not change cell viability compared to control. In these same concentrations of the test substance reduced the lipid content in the cells, assessed by fluorescent method with the vital dye Nile Red. To study the mechanism of hypolipidemicaction of achillinedetermined the expression of key genes of lipid metabolism in cell culture lines HTC. The possible mechanism of hypolipidemic action of achilline can be attributed to the increased transport and oxidation of long-chain fatty acids in mitochondria, as evidenced by the increase in the gene expression of carnitine-palmitoyltransferase 2 (Cpt2. The decrease in cholesterol level may be due to increased synthesis of bile acids from cholesterol, due to increased gene expression of 7-alphahydroxylase (Cyp7a1. Conclusion. In cell cultures of rat’s hepatoma cell line HTC sesquiterpene γ-lactone achilline reduces the accumulation of lipids in cells, as evidenced by the decrease in the fluorescence of Nile Red, increased gene expression of the carnitine-palmitoyltransferase 2 (Cpt2 gene and 7-alpha-hydroxylase (Cyp7a1.

  3. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    Science.gov (United States)

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  4. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Hiromasa [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Oki, Yoshinao [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Bono, Hidemasa [Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kano, Koichiro, E-mail: kkano@brs.nihon-u.ac.jp [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan)

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  5. Dynamics of protein phosphatase gene expression in Corbicula fluminea exposed to microcystin-LR and to toxic Microcystis aeruginosa cells.

    Science.gov (United States)

    Martins, José Carlos; Machado, João; Martins, António; Azevedo, Joana; OlivaTeles, Luís; Vasconcelos, Vitor

    2011-01-01

    This study investigated the in vivo effects of microcystins on gene expression of several phosphoprotein phosphatases (PPP) in the freshwater clam Corbicula fluminea with two different exposure scenarios. Clams were exposed for 96 h to 5 μg L(-1) of dissolved microcystin-LR and the relative changes of gene expression of three different types of PPP (PPP1, 2 and 4) were analyzed by quantitative real-time PCR. The results showed a significant induction of PPP2 gene expression in the visceral mass. In contrast, the cyanotoxin did not cause any significant changes on PPP1 and PPP4 gene expression. Based on these results, we studied alterations in transcriptional patterns in parallel with enzymatic activity of C. fluminea for PPP2, induced by a Microcystis aeruginosa toxic strain (1 × 10(5) cells cm(-3)) during 96 h. The relative changes of gene expression and enzyme activity in visceral mass were analyzed by quantitative real-time PCR and colorimetric assays respectively. The clams exhibited a significant reduction of PPP2 activity with a concomitant enhancement of gene expression. Considering all the results we can conclude that the exposure to an ecologically relevant concentration of pure or intracellular microcystins (-LR) promoted an in vivo effect on PPP2 gene expression in C. fluminea.

  6. Dynamics of Protein Phosphatase Gene Expression in Corbicula fluminea Exposed to Microcystin-LR and to Toxic Microcystis aeruginosa Cells

    Directory of Open Access Journals (Sweden)

    Vitor Vasconcelos

    2011-12-01

    Full Text Available This study investigated the in vivo effects of microcystins on gene expression of several phosphoprotein phosphatases (PPP in the freshwater clam Corbicula fluminea with two different exposure scenarios. Clams were exposed for 96 h to 5 µg L−1 of dissolved microcystin-LR and the relative changes of gene expression of three different types of PPP (PPP1, 2 and 4 were analyzed by quantitative real-time PCR. The results showed a significant induction of PPP2 gene expression in the visceral mass. In contrast, the cyanotoxin did not cause any significant changes on PPP1 and PPP4 gene expression. Based on these results, we studied alterations in transcriptional patterns in parallel with enzymatic activity of C. fluminea for PPP2, induced by a Microcystis aeruginosa toxic strain (1 × 105 cells cm−3 during 96 h. The relative changes of gene expression and enzyme activity in visceral mass were analyzed by quantitative real-time PCR and colorimetric assays respectively. The clams exhibited a significant reduction of PPP2 activity with a concomitant enhancement of gene expression. Considering all the results we can conclude that the exposure to an ecologically relevant concentration of pure or intracellular microcystins (-LR promoted an in vivo effect on PPP2 gene expression in C. fluminea.

  7. Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells.

    Science.gov (United States)

    Cheng, Chao; Gerstein, Mark

    2012-01-01

    Transcription factor (TF) binding and histone modification (HM) are important for the precise control of gene expression. Hence, we constructed statistical models to relate these to gene expression levels in mouse embryonic stem cells. While both TF binding and HMs are highly 'predictive' of gene expression levels (in a statistical, but perhaps not strictly mechanistic, sense), we find they show distinct differences in the spatial patterning of their predictive strength: TF binding achieved the highest predictive power in a small DNA region centered at the transcription start sites of genes, while the HMs exhibited high predictive powers across a wide region around genes. Intriguingly, our results suggest that TF binding and HMs are redundant in strict statistical sense for predicting gene expression. We also show that our TF and HM models are cell line specific; specifically, TF binding and HM are more predictive of gene expression in the same cell line, and the differential gene expression between cell lines is predictable by differential HMs. Finally, we found that the models trained solely on protein-coding genes are predictive of expression levels of microRNAs, suggesting that their regulation by TFs and HMs may share a similar mechanism to that for protein-coding genes.

  8. Bisphenol-A exposure and gene expression in human luteinized membrana granulosa cells in vitro.

    Science.gov (United States)

    Mansur, Abdallah; Israel, Ariel; Combelles, Catherine M H; Adir, Michal; Racowsky, Catherine; Hauser, Russ; Baccarelli, Andrea A; Machtinger, Ronit

    2017-02-01

    Does bisphenol-A (BPA) affect gene expression in human membrana granulosa cells (MGC)? In vitro, short exposure to supra-physiological concentrations of BPA alters human MGC gene expression. Exposure to BPA may interfere with reproductive endocrine signaling. In vitro studies, mostly in animal models, have shown an inverse correlation between exposure to BPA and follicular growth, meiosis, and steroid hormone production in granulosa cells. Primary cultures of MGC obtained from 24 patients undergoing IVF (for PGD, male factor infertility or unexplained infertility) were exposed to various concentrations of BPA (0, 0.02, 0.2, 2 or 20 µg/ml) for 48 h. The study was conducted in a university-affiliated hospital. Microarray analysis was used to identify genes exhibiting expression changes following BPA exposure. Genes significantly altered were identified based on changes greater than 2-fold relative to the control group (not treated by BPA) and a Student's t-test P-value <0.05. Statistical significance was adjusted for multiple comparisons using the Benjamini-Hochberg method. Alterations in the expression of genes that are involved in the enriched functional annotations altered by BPA at the concentration of 20 µg/ml were confirmed by real-time PCR. A distinct pattern of gene expression was observed in primary cultures of MGC exposed to the highest BPA concentration compared with untreated cells. We identified 652 genes that exhibited at least 2-fold differences in expression after BPA exposure (all P < 0.05 versus untreated). These genes were significantly enriched for annotations related to cell cycle progression, segregation of chromosomes, steroid metabolism, apoptosis, lipid synthesis, oocyte maturation and chromosomal alignment. No significant changes in gene expression were found at the lower doses of BPA most relevant to human exposure. N/A. Human exposure to BPA in vivo occurs over long periods of time. In this in vitro model, cells were exposed to the

  9. Profiling of N-glycosylation gene expression in CHO cell fed-batch cultures.

    Science.gov (United States)

    Wong, Danny Chee Furng; Wong, Niki Soo Ching; Goh, John Soo Yang; May, Lee May; Yap, Miranda Gek Sim

    2010-10-15

    One of the goals of recombinant glycoprotein production is to achieve consistent glycosylation. Although many studies have examined the changes in the glycosylation quality of recombinant protein with culture, very little has been done to examine the underlying changes in glycosylation gene expression as a culture progresses. In this study, the expression of 24 genes involved in N-glycosylation were examined using quantitative RT PCR to gain a better understanding of recombinant glycoprotein glycosylation during production processes. Profiling of the N-glycosylation genes as well as concurrent analysis of glycoprotein quality was performed across the exponential, stationary and death phases of a fed-batch culture of a CHO cell line producing recombinant human interferon-gamma (IFN-gamma). Of the 24 N-glycosylation genes examined, 21 showed significant up- or down-regulation of gene expression as the fed-batch culture progressed from exponential, stationary and death phase. As the fed-batch culture progressed, there was also an increase in less sialylated IFN-gamma glycoforms, leading to a 30% decrease in the molar ratio of sialic acid to recombinant IFN-gamma. This correlated with decreased expression of genes involved with CMP sialic acid synthesis coupled with increased expression of sialidases. Compared to batch culture, a low glutamine fed-batch strategy appears to need a 0.5 mM glutamine threshold to maintain similar N-glycosylation genes expression levels and to achieve comparable glycoprotein quality. This study demonstrates the use of quantitative real time PCR method to identify possible "bottlenecks" or "compromised" pathways in N-glycosylation and subsequently allow for the development of strategies to improve glycosylation quality. Copyright 2010 Wiley Periodicals, Inc.

  10. Gene Expression Differences Predict Treatment Outcome of Merkel Cell Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    Loren Masterson

    2014-01-01

    Full Text Available Due to the rarity of Merkel cell carcinoma (MCC, prospective clinical trials have not been practical. This study aimed to identify biomarkers with prognostic significance. While sixty-two patients were identified who were treated for MCC at our institution, only seventeen patients had adequate formalin-fixed paraffin-embedded archival tissue and followup to be included in the study. Patients were stratified into good, moderate, or poor prognosis. Laser capture microdissection was used to isolate tumor cells for subsequent RNA isolation and gene expression analysis with Affymetrix GeneChip Human Exon 1.0 ST arrays. Among the 191 genes demonstrating significant differential expression between prognostic groups, keratin 20 and neurofilament protein have previously been identified in studies of MCC and were significantly upregulated in tumors from patients with a poor prognosis. Immunohistochemistry further established that keratin 20 was overexpressed in the poor prognosis tumors. In addition, novel genes of interest such as phospholipase A2 group X, kinesin family member 3A, tumor protein D52, mucin 1, and KIT were upregulated in specimens from patients with poor prognosis. Our pilot study identified several gene expression differences which could be used in the future as prognostic biomarkers in MCC patients.

  11. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  12. Detection of Imprinted Genes by Single-Cell Allele-Specific Gene Expression.

    Science.gov (United States)

    Santoni, Federico A; Stamoulis, Georgios; Garieri, Marco; Falconnet, Emilie; Ribaux, Pascale; Borel, Christelle; Antonarakis, Stylianos E

    2017-03-02

    Genomic imprinting results in parental-specific gene expression. Imprinted genes are involved in the etiology of rare syndromes and have been associated with common diseases such as diabetes and cancer. Standard RNA bulk cell sequencing applied to whole-tissue samples has been used to detect imprinted genes in human and mouse models. However, lowly expressed genes cannot be detected by using RNA bulk approaches. Here, we report an original and robust method that combines single-cell RNA-seq and whole-genome sequencing into an optimized statistical framework to analyze genomic imprinting in specific cell types and in different individuals. Using samples from the probands of 2 family trios and 3 unrelated individuals, 1,084 individual primary fibroblasts were RNA sequenced and more than 700,000 informative heterozygous single-nucleotide variations (SNVs) were genotyped. The allele-specific coverage per gene of each SNV in each single cell was used to fit a beta-binomial distribution to model the likelihood of a gene being expressed from one and the same allele. Genes presenting a significant aggregate allelic ratio (between 0.9 and 1) were retained to identify of the allelic parent of origin. Our approach allowed us to validate the imprinting status of all of the known imprinted genes expressed in fibroblasts and the discovery of nine putative imprinted genes, thereby demonstrating the advantages of single-cell over bulk RNA-seq to identify imprinted genes. The proposed single-cell methodology is a powerful tool for establishing a cell type-specific map of genomic imprinting. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Global Gene Expression Profiling in Three Tumor Cell Lines Subjected to Experimental Cycling and Chronic Hypoxia

    Science.gov (United States)

    Olbryt, Magdalena; Habryka, Anna; Student, Sebastian; Jarząb, Michał; Tyszkiewicz, Tomasz; Lisowska, Katarzyna Marta

    2014-01-01

    Hypoxia is one of the most important features of the tumor microenvironment, exerting an adverse effect on tumor aggressiveness and patient prognosis. Two types of hypoxia may occur within the tumor mass, chronic (prolonged) and cycling (transient, intermittent) hypoxia. Cycling hypoxia has been shown to induce aggressive tumor cell phenotype and radioresistance more significantly than chronic hypoxia, though little is known about the molecular mechanisms underlying this phenomenon. The aim of this study was to delineate the molecular response to both types of hypoxia induced experimentally in tumor cells, with a focus on cycling hypoxia. We analyzed in vitro gene expression profile in three human cancer cell lines (melanoma, ovarian cancer, and prostate cancer) exposed to experimental chronic or transient hypoxia conditions. As expected, the cell-type specific variability in response to hypoxia was significant. However, the expression of 240 probe sets was altered in all 3 cell lines. We found that gene expression profiles induced by both types of hypoxia were qualitatively similar and strongly depend on the cell type. Cycling hypoxia altered the expression of fewer genes than chronic hypoxia (6,132 vs. 8,635 probe sets, FDR adjusted pcycling hypoxia than by prolonged hypoxia, such as IL8, PLAU, and epidermal growth factor (EGF) pathway-related genes (AREG, HBEGF, and EPHA2). These transcripts were, in most cases, validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our results indicate that experimental cycling hypoxia exerts similar, although less intense effects, on the examined cancer cell lines than its chronic counterpart. Nonetheless, we identified genes and molecular pathways that seem to be preferentially regulated by cyclic hypoxia. PMID:25122487

  14. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    Science.gov (United States)

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  15. Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells.

    Science.gov (United States)

    Falcón, Cristian; Carranza, Franco; Martínez, Fernando F; Knubel, Carolina P; Masih, Diana T; Motrán, Claudia C; Cervi, Laura

    2010-09-15

    Fasciola hepatica is a helminth trematode that migrates through the host tissues until reaching bile ducts where it becomes an adult. During its migration the parasite releases different excretory-secretory products (ESP), which are in contact with the immune system. In this study, we focused on the effect of ESP on the maturation and function of murine bone marrow derived-dendritic cells (DC). We found that the treatment of DC with ESP failed to induce a classical maturation of these cells, since ESP alone did not activate DC to produce any cytokines, although they impaired the ability of DC to be activated by TLR ligands and also their capacity to stimulate an allospecific response. In addition, using an in vitro ovalbumin peptide-restricted priming assay, ESP-treated DC exhibited a capacity to drive Th2 and regulatory T cell (Treg) polarization of CD4(+) cells from DO11.10 transgenic mice. This was characterized by increased IL-4, IL-5, IL-10 and TGF-beta production and the expansion of CD4(+)CD25(+)Foxp3(+) cells. Our results support the hypothesis that ESP from F. hepatica modulate the maturation and function of DC as part of a generalized immunosuppressive mechanism that involves a bias towards a Th2 response and Treg development. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Gene expression microarray data from human microvascular endothelial cells supplemented with a low concentration of niacin

    Directory of Open Access Journals (Sweden)

    Jennifer M. Hughes-Large

    2016-03-01

    Full Text Available The systemic lipid modifying drug, niacin, can directly improve human microvascular endothelial cell angiogenic function under lipotoxic conditions, possibly through activation of niacin receptors “Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity” (Hughes-Large et al. 2014. Here we provide accompanying data collected using Affymetrix GeneChip microarrays to identify changes in gene expression in human microvascular endothelial cells treated with 10 μM niacin. Statistical analyses of robust multi-array average (RMA values revealed that only 16 genes exhibited greater than 1.3-fold differential expression. Of these 16, only 5 were identified protein coding genes, while 3 of the remaining 11 genes appeared to be small nuclear/nucleolar RNAs. Altered expression of EFCAB4B, NAP1L2, and OR13C8 was confirmed by real time quantitative PCR.

  17. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra; Peck, Matthew L.; Vega-Sánchez, Miguel E.; Williams, Brian; Chiniquy, Dawn M.; Saha, Prasenjit; Pattathil, Sivakumar; Conlin, Brian; Zhu, Lan; Hahn, Michael G.; Willats, William G. T.; Scheller, Henrik V.; Ronald, Pamela C.; Bartley, Laura E.

    2016-08-01

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.

  18. Morphologic and gene expression criteria for identifying human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Shohei Wakao

    Full Text Available Induced pluripotent stem (iPS cells can be generated from somatic cells by the forced expression of four factors, Oct3/4, Sox2, Klf4, and c-Myc. While a great variety of colonies grow during induction, only a few of them develop into iPS cells. Researchers currently use visual observation to identify iPS cells and select colonies resembling embryonic stem (ES cells, and there are no established objective criteria. Therefore, we exhaustively analyzed the morphology and gene expression of all the colonies generated from human fibroblasts after transfection with four retroviral vectors encoding individual factors (192 and 203 colonies in two experiments and with a single polycistronic retroviral vector encoding all four factors (199 and 192 colonies in two experiments. Here we demonstrate that the morphologic features of emerged colonies can be categorized based on six parameters, and all generated colonies that could be passaged were classified into seven subtypes in colonies transfected with four retroviral vectors and six subtypes with a single polycistronic retroviral vector, both including iPS cell colonies. The essential qualifications for iPS cells were: cells with a single nucleolus; nucleus to nucleolus (N/Nls ratio ∼2.19: cell size ∼43.5 µm(2: a nucleus to cytoplasm (N/C ratio ∼0.87: cell density in a colony ∼5900 cells/mm(2: and number of cell layer single. Most importantly, gene expression analysis revealed for the first time that endogenous Sox2 and Cdx2 were expressed specifically in iPS cells, whereas Oct3/4 and Nanog, popularly used markers for identifying iPS cells, are expressed in colonies other than iPS cells, suggesting that Sox2 and Cdx2 are reliable markers for identifying iPS cells. Our findings indicate that morphologic parameters and the expression of endogenous Sox2 and Cdx2 can be used to accurately identify iPS cells.

  19. Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure

    Directory of Open Access Journals (Sweden)

    Sahbaie Peyman

    2007-06-01

    Full Text Available Abstract Background Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined whether similar exposure to acid or bile salts results in gene expression changes that provide insights into malignant transformation. Methods Using previously published methods, Barrett's-associated esophageal adenocarcinoma cell lines and primary cultures of Barrett's esophageal tissue were exposed to short pulses of acid or bile salts followed by incubation in culture media at pH 7.4. A genome-wide assessment of gene expression was then determined for the samples using cDNA microarrays. Subsequent analysis evaluated for statistical differences in gene expression with and without treatment. Results The SEG-1 cell line showed changes in gene expression that was dependent on the length of exposure to pH 3.5. Further analysis using the Gene Ontology, however, showed that representation by genes associated with cell proliferation is not enhanced by acid exposure. The changes in gene expression also did not involve genes known to be differentially expressed in esophageal adenocarcinoma. Similar experiments using short-term primary cultures of Barrett's esophagus also did not result in detectable changes in gene expression with either acid or bile salt exposure. Conclusion Short-term exposure of esophageal adenocarcinoma SEG-1 cells or primary cultures of Barrett's esophagus does not result in gene expression changes that are consistent with enhanced cell proliferation. Thus other model systems are needed that may reflect the impact of acid and bile salt exposure on the esophagus in vivo.

  20. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation

    DEFF Research Database (Denmark)

    Milani, Lili; Lundmark, Anders; Nordlund, Jessica

    2008-01-01

    To identify genes that are regulated by cis-acting functional elements in acute lymphoblastic leukemia (ALL) we determined the allele-specific expression (ASE) levels of 2, 529 genes by genotyping a genome-wide panel of single nucleotide polymorphisms in RNA and DNA from bone marrow and blood...... of these sites. Our results demonstrate that CpG site methylation is one of the factors that regulates gene expression in ALL cells....... overexpression of one allele to apparent monoallelic expression. For genes exhibiting ASE, 55% displayed bidirectional ASE in which overexpression of either of the two SNP alleles occurred. For bidirectional ASE we also observed overall higher levels of ASE and correlation with the methylation level...

  1. Differential gene expression by oxyphil and chief cells of human parathyroid glands.

    Science.gov (United States)

    Ritter, Cynthia S; Haughey, Bruce H; Miller, Brent; Brown, Alex J

    2012-08-01

    Parathyroid oxyphil cells, whose function is unknown, are thought to be derived from chief cells. Oxyphil cells increase in number in parathyroid glands of patients with chronic kidney disease (CKD) and are even more abundant in patients receiving treatment for hyperparathyroidism with calcitriol and/or the calcimimetic cinacalcet. We examined oxyphil and chief cells of parathyroid glands of CKD patients for differential expression of genes important to parathyroid function. Parathyroid tissue from CKD patients with refractory hyperparathyroidism was immunostained for gene expression studies. Immunostaining for PTH, PTHrP, calcium-sensing receptor, glial cells missing 2, vitamin D receptor, 25-hydroxyvitamin D-1α-hydroxylase, and cytochrome c was quantified and expression reported for oxyphil and chief cells. Expression of all proteins analyzed, except for the vitamin D receptor, was higher in oxyphil cells than in chief cells. Human parathyroid oxyphil cells express parathyroid-relevant genes found in the chief cells and have the potential to produce additional autocrine/paracrine factors, such as PTHrP and calcitriol. Additional studies are warranted to define the secretory properties of these cells and clarify their role in parathyroid pathophysiology.

  2. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    Science.gov (United States)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A comparative analysis of gene expression patterns and cell phenotypes between cervical and peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Rachel E Horton

    2009-12-01

    Full Text Available Studies of the immunological environment in the female genital tract (FGT are critical for the development of vaccines or microbicides to halt the spread of sexually transmitted infections. Challenges arise due to the difficulties of sampling from this site, and the majority of studies have been conducted utilising peripheral blood mononuclear cells. Identifying functional differences between immune cells of the FGT and peripheral blood would aid in our understanding of mucosal immunology. We compared the gene expression profile of mononuclear cells at these two sites. Messenger RNA expression analysis was performed using gene expression arrays on matched cervical mononuclear cells and peripheral blood mononuclear cells. Further cellular phenotyping was done by 10 colour flow cytometry. Of the 22,185 genes expressed by these samples, 5345 genes were significantly differentially expressed between the cell populations. Most differences can be explained by significantly lower levels of T and B cells and higher levels of macrophages and dendritic cells in the FGT compared with peripheral blood. Several immunologically relevant pathways such as apoptosis and innate immune signalling, and a variety of cytokines and cytokine receptors were differentially expressed. This study highlights the importance of the unique immunological environment of the FGT and identifies important differences between systemic and mucosal immune compartments.

  4. Resistance of renal cell carcinoma to sorafenib is mediated by potentially reversible gene expression.

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    Full Text Available PURPOSE: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. EXPERIMENTAL DESIGN: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. RESULTS: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. CONCLUSIONS: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment.

  5. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  6. Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery.

    Science.gov (United States)

    Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the proteins to be tested. These problems can be circumvented by biolistic delivery of the genes of interest. Here, we present an optimized protocol for biolistic delivery of plasmid DNA into epidermal cells of plant leaves, which can be easily performed using the Bio-Rad Helios gene gun system. This protocol allows efficient and reproducible transient expression of diverse genes in Arabidopsis, Nicotiana benthamiana and N. tabacum, and is suitable for studies of the biological function and subcellular localization of the gene products directly in planta. The protocol also can be easily adapted to other species by optimizing the delivery gas pressure.

  7. SARS-CoV regulates immune function-related gene expression in human monocytic cells.

    Science.gov (United States)

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A

    2012-08-01

    Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.

  8. MDP Up-Regulates the Gene Expression of Type I Interferons in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiumei Xie

    2012-03-01

    Full Text Available Muramyldipeptide (MDP, the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2. Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  9. Altered cell cycle gene expression and apoptosis in post-implantation dog parthenotes.

    Directory of Open Access Journals (Sweden)

    Jung Eun Park

    Full Text Available Mature oocytes can be parthenogenetically activated by a variety of methods and the resulting embryos are valuable for studies of the respective roles of paternal and maternal genomes in early mammalian development. In the present study, we report the first successful development of parthenogenetic canine embryos to the post-implantation stage. Nine out of ten embryo transfer recipients became pregnant and successful in utero development of canine parthenotes was confirmed. For further evaluation of these parthenotes, their fetal development was compared with artificially inseminated controls and differentially expressed genes (DEGs were compared using ACP RT-PCR, histological analysis and immunohistochemistry. We found formation of the limb-bud and no obvious differences in histological appearance of the canine parthenote recovered before degeneration occurred; however canine parthenotes were developmentally delayed with different cell cycle regulating-, mitochondria-related and apoptosis-related gene expression patterns compared with controls. In conclusion, our protocols were suitable for activating canine oocytes artificially and supported early fetal development. We demonstrated that the developmental abnormalities in canine parthenotes may result from defective regulation of apoptosis and aberrant gene expression patterns, and provided evidence that canine parthenotes can be a useful tool for screening and for comparative studies of imprinted genes.

  10. Cell-type-specific gene expression patterns in the knee cartilage in an osteoarthritis rat model.

    Science.gov (United States)

    Korostynski, Michal; Malek, Natalia; Piechota, Marcin; Starowicz, Katarzyna

    2018-01-01

    Osteoarthritis (OA) is a chronic degenerative disease that leads to joint failure, pain, and disability. Gene regulation is implicated as a driver of the imbalance between the expression of catabolic and anabolic factors that eventually leads to the degeneration of osteoarthritic cartilage. In our model, knee-joint OA was induced in male Wistar rats by intra-articular sodium monoiodoacetate (MIA) injections. Whole-genome microarrays were used to analyse the alterations in gene expression during the time-course of OA development (at 2, 14, and 28 days post-injection) in rat knee joints. The identified co-expressed groups of genes were analysed for enriched regulatory mechanisms, functional classes, and cell-type-specific expression. This analysis revealed 272 regulated transcripts (ANOVA FDR  2). Functionally, the five major gene expression patterns (A-E) were connected to PPAR signalling and adipogenesis (in cluster A), WNT signalling (in cluster B), endochondral ossification (in cluster C), matrix metalloproteinases and the ACE/RAGE pathway (in cluster D), and the Toll-like receptor, and IL-1 signalling pathways (in cluster E). Moreover, the dynamic profiles of these transcriptional changes were assigned to cellular compartments of the knee joint. Classifying the molecular processes associated with the development of cartilage degeneration provides novel insight into the OA disease process. Our study identified groups of co-regulated genes that share functional relationships and that may play an important role in the early and intermediate stages of OA.

  11. Gene expression profiling of mononuclear cells from patients with sepsis secondary to community-acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Patricia Severino

    2014-12-01

    Full Text Available Mechanisms governing the inflammatory response during sepsis involve crosstalk between diverse signaling pathways, but current knowledge provides an incomplete picture of the syndrome. Microarray-based expression profiling is a powerful approach for the investigation of complex clinical conditions such as sepsis. In this study, we investigated whole-genome expression profiles in mononuclear cells from septic patients admitted in intensive care units with community-acquired pneumonia. Blood samples were collected at the time of sepsis diagnosis and seven days later since we aimed to evaluate the role of biological processes or genes possibly involved in patient recovery. Here we provide a detailed description of the study design, including clinical information, experimental methods and procedures regarding data analysis. Metadata corresponding to microarray results deposited in the database Gene Expression Omnibus (GEO under the accession number GSE48080 are also described in this report. Our dataset allows the identification of genes possibly associated with host defense to infection as well as gene expression patterns associated with patient outcome.

  12. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes.

    Science.gov (United States)

    Zhang, Ruosi; Hao, Lili; Wang, Lingping; Chen, Meili; Li, Wen; Li, Rujiao; Yu, Jun; Xiao, Jingfa; Wu, Jiayan

    2013-01-01

    Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis.

  13. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  14. Peripheral Blood Mononuclear Cell Gene Expression in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Bahr, Timothy M.; Hughes, Grant J.; Armstrong, Michael; Reisdorph, Rick; Coldren, Christopher D.; Edwards, Michael G.; Schnell, Christina; Kedl, Ross; LaFlamme, Daniel J.; Reisdorph, Nichole; Kechris, Katerina J.

    2013-01-01

    Although most cases of chronic obstructive pulmonary disease (COPD) occur in smokers, only a fraction of smokers develop the disease. We hypothesized distinct molecular signatures for COPD and emphysema in the peripheral blood mononuclear cells (PBMCs) of current and former smokers. To test this hypothesis, we identified and validated PBMC gene expression profiles in smokers with and without COPD. We generated expression data on 136 subjects from the COPDGene study, using Affymetrix U133 2.0 microarrays (Affymetrix, Santa Clara, CA). Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, and pack-years) was used to identify candidate genes, and ingenuity pathway analysis was used to identify candidate pathways. Candidate genes were validated in 149 subjects according to multiplex quantitative real-time polymerase chain reaction, which included 75 subjects not previously profiled. Pathways that were differentially expressed in subjects with COPD and emphysema included those that play a role in the immune system, inflammatory responses, and sphingolipid (ceramide) metabolism. Twenty-six of the 46 candidate genes (e.g., FOXP1, TCF7, and ASAH1) were validated in the independent cohort. Plasma metabolomics was used to identify a novel glycoceramide (galabiosylceramide) as a biomarker of emphysema, supporting the genomic association between acid ceramidase (ASAH1) and emphysema. COPD is a systemic disease whose gene expression signatures in PBMCs could serve as novel diagnostic or therapeutic targets. PMID:23590301

  15. The influence of lovastatin on thrombomodulin gene expression in vascular endothelial cells--in vitro study.

    Directory of Open Access Journals (Sweden)

    Olga Haus

    2009-05-01

    Full Text Available OBJECTIVE
    Statins reduce lipids concentration in blood. The latest investigations show they also improved the function of vascular endothelial cells (ECs. Thrombomodulin (TM is particularly important marker of ECs activity. We investigated the in vitro effect of lovastatin on the expression level of TM gene.

    METHODS AND RESULTS
    ECs were incubated for 24 h in culture medium including lovastatin in 3 concentrations: 0.1, 1.0, 10.0 mol/l. The mRNA level of TM increased in correlation with rising concentrations of lovastatin to 600 % vs. control group.

    CONCLUSIONS
    TM is essential antithrombotic factor in endothelial cells. Lovastatin significantly raises thrombomodulin gene expression. It is important characteristics of this medicine, which prevents cardiovascular events.

  16. Comparison of the Gene Expression Profiles of Human Hematopoietic Stem Cells between Humans and a Humanized Xenograft Model.

    Science.gov (United States)

    Matsuzawa, Hideyuki; Matsushita, Hiromichi; Yahata, Takashi; Tanaka, Masayuki; Ando, Kiyoshi

    2017-04-20

    The aim of this study is to evaluate the feasibility of NOD/Shi-scid-IL2Rγnull(NOG) mice transplanted with human CD34+/CD38-/Lin-/low hematopoietic cells from cord blood (CB) as an experimental model of the gene expression in human hematopoiesis. We compared the gene expressions of human CD34+/CD38-/Lin-/low cells from human bone marrow (BM) and in xenograft models. The microarray data revealed that 25 KEGG pathways were extracted from the comparison of human CD34+/CD38-/Lin-/low HSCs between CB and BM, and that 17 of them--which were mostly related to cellular survival, RNA metabolism and lymphoid development--were shared with the xenograft model. When the probes that were commonly altered in CD34+/CD38-/Lin-/low cells from both human and xenograft BM were analyzed, most of them, including the genes related hypoxia, hematopoietic differentiation, epigenetic modification, translation initiation, and RNA degradation, were downregulated. These alterations of gene expression suggest a reduced differentiation capacity and likely include key alterations of gene expression for settlement of CB CD34+/CD38-/Lin-/low cells in BM. Our findings demonstrate that the xenograft model of human CB CD34+/CD38-/Lin-/low cells using NOG mice was useful, at least in part, for the evaluation of the gene expression profile of human hematopoietic stem cells.

  17. Isolating dividing neural and brain tumour cells for gene expression profiling.

    Science.gov (United States)

    Endaya, Berwini; Cavanagh, Brenton; Alowaidi, Faisal; Walker, Tom; de Pennington, Nicholas; Ng, Jin-Ming A; Lam, Paula Y P; Mackay-Sim, Alan; Neuzil, Jiri; Meedeniya, Adrian C B

    2016-01-15

    The characterisation of dividing brain cells is fundamental for studies ranging from developmental and stem cell biology, to brain cancers. Whilst there is extensive anatomical data on these dividing cells, limited gene transcription data is available due to technical constraints. We focally isolated dividing cells whilst conserving RNA, from culture, primary neural tissue and xenografted glioma tumours, using a thymidine analogue that enables gene transcription analysis. 5-ethynyl-2-deoxyuridine labels the replicating DNA of dividing cells. Once labelled, cultured cells and tissues were dissociated, fluorescently tagged with a revised click chemistry technique and the dividing cells isolated using fluorescence-assisted cell sorting. RNA was extracted and analysed using real time PCR. Proliferation and maturation related gene expression in neurogenic tissues was demonstrated in acutely and 3 day old labelled cells, respectively. An elevated expression of marker and pathway genes was demonstrated in the dividing cells of xenografted brain tumours, with the non-dividing cells showing relatively low levels of expression. BrdU "immune-labelling", the most frequently used protocol for detecting cell proliferation, causes complete denaturation of RNA, precluding gene transcription analysis. This EdU labelling technique, maintained cell integrity during dissociation, minimized copper exposure during labelling and used a cell isolation protocol that avoided cell lysis, thus conserving RNA. The technique conserves RNA, enabling the definition of cell proliferation-related changes in gene transcription of neural and pathological brain cells in cells harvested immediately after division, or following a period of maturation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  19. Comparative analysis of gene expression in normal and cancer human prostate cell lines

    Directory of Open Access Journals (Sweden)

    E. E. Rosenberg

    2014-04-01

    Full Text Available Prostate cancer is one of the main causes of mortality in men with malignant tumors. The urgent problem was a search for biomarkers of prostate cancer, which would allow distinguishing between aggressive metastatic and latent tumors. The aim of this work was to search for differentially expressed genes in normal epithelial cells PNT2 and prostate cancer cell lines LNCaP, DU145 and PC3, produced from tumors with different aggressiveness and metas­tatic ability. Such genes might be used to create a panel of prognostic markers for aggressiveness and metastasis. Relative gene expression of 65 cancer-related genes was determined by the quantitative polymerase chain reaction (Q-PCR. Expression of 29 genes was changed in LNCaP cells, 20 genes in DU145 and 16 genes in PC3 cell lines, compared with normal line PNT2. The obtained data make it possible to conclude that the epithelial-mesenchymal cell transition took place, which involved the loss of epithelial markers, reduced cell adhesion and increased migration. We have also found few differentially expressed genes among 3 prostate cancer cell lines. We have found that genes, involved in cell adhesion (CDH1, invasiveness and metastasis (IL8, CXCL2 and cell cycle control (P16, CCNE1 underwent most changes. These genes might be used for diagnosis and prognosis of invasive metastatic prostate tumors.

  20. Differential gene expression in apoptosis: identification of ribosomal protein 23K, a cell proliferation inhibitor.

    Science.gov (United States)

    Chen, F W; Davies, J P; Ioannou, Y A

    1998-08-01

    Gene expression during the camptothecin-induced apoptotic death of human leukemic U937 cells and mouse T-cell hybridoma QW4.1 cells was studied by the mRNA differential display technique. Ten clones were confirmed to be differentially expressed, nine of which encoded novel sequences. One clone, U3.2, was induced approximately 10-fold in camptothecin-treated cells and was found to be identical to a highly basic 23-kDa human protein which contains basic leucine zipper-like motifs and has recently been identified as the human homologue of the rat ribosomal protein L13a. Northern blot analysis revealed a major mRNA of approximately 0.9 kb and a minor mRNA of approximately 1.3 kb. Overexpression of a full-length 23K cDNA, tagged with a FLAG sequence, in COS-7 cells revealed a predominantly nucleolar localization and the absence of any 23K protein from the cytoplasm. Subsequent transfection studies, using antisense phosphorothioate-modified oligonucleotides, revealed that inhibition of 23K expression results in an increased cell proliferation and greater sensitivity of U937 cells to the effects of camptothecin-induced cell death. Upregulation of 23K expression using a cDNA construct resulted in a decrease in cell proliferation and growth arrest, suggesting a role for 23K protein as a proliferation checkpoint following a cellular insult. Copyright 1998 Academic Press.

  1. Isolation and gene expression analysis of single potential human spermatogonial stem cells.

    Science.gov (United States)

    von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N

    2016-04-01

    It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT

  2. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  3. Multidetector computerized tomography urography is more accurate than excretory urography for diagnosing transitional cell carcinoma of the upper urinary tract in adults with hematuria.

    Science.gov (United States)

    Wang, Li-Jen; Wong, Yon-Cheong; Huang, Chen-Chih; Wu, Cheng-Hsien; Hung, Sheng-Che; Chen, Huan-Wu

    2010-01-01

    It is debatable whether traditionally used excretory urography or the recently introduced multidetector computerized tomography urography is more accurate for diagnosing upper urinary tract transitional cell carcinoma. We compared accuracy measures of both methods for diagnosing upper urinary tract transitional cell carcinoma in adult patients with hematuria. We retrospectively analyzed consecutive adult patients with hematuria undergoing excretory urography and multidetector computerized tomography urography before any surgery, intervention or treatment from April 2004 to December 2006 in our hospital. The presence of upper urinary tract transitional cell carcinoma on excretory urography and multidetector computerized tomography urography was reviewed independently by 2 uroradiologists who were blinded to clinical information and other imaging results. Final diagnosis of upper urinary tract transitional cell carcinoma was confirmed by histological results. Measures of the diagnostic accuracy of excretory urography and multidetector computerized tomography urography for upper urinary tract transitional cell carcinoma were calculated and compared with reference to the final diagnosis. Of 34 men and 26 women with hematuria (mean age 60.73 +/- 12.95 years) 19 (31.7%) had a final diagnosis of 24 upper urinary tract transitional cell carcinomas. The sensitivity, specificity and accuracy of excretory urography were 0.750, 0.860 and 0.849, respectively. In contrast, the sensitivity, specificity and accuracy of multidetector computerized tomography urography were 0.958, 1.000 and 0.996, respectively. Overall the area under the receiver operating characteristic curve for multidetector computerized tomography urography was significantly larger than that for excretory urography (0.978 vs 0.815, p = 0.005). Multidetector computerized tomography urography is more sensitive, specific and accurate than excretory urography in the diagnosis of upper urinary tract transitional cell

  4. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells.

    Science.gov (United States)

    Khan, Mohammed I; Czarnecka, Anna M; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells-stem cell-like cancer cells (SCLCCs)-which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers-CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent's human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have

  5. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Mohammed I Khan

    Full Text Available Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells-stem cell-like cancer cells (SCLCCs-which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin.Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers-CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2 and metastatic (ACHN renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent's human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis.Metastatic RCC cell lines (ACHN and Caki-1 demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations

  6. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension.

    Science.gov (United States)

    Zhou, Ying; Chen, Haiyan; Li, Hong; Wu, Yaojiong

    2017-06-01

    Three-dimensional (3D) culture has been shown to improve pluripotent gene expression in mesenchymal stem cells (MSCs), but the underlining mechanisms were poorly understood. Here, we found that the relaxation of cytoskeleton tension of MSCs in 3D culture was critically associated with the expressional up-regulation of Nanog. Cultured in spheroids, MSCs showed decreased integrin-based cell-matrix adhesion but increased cadherin-based cell-cell interaction. Different from that in 2D culture, where MSCs exhibited branched and multiple-directed F-actin stress bundles at the cell edge and strengthened stress fibres transversing the cell body, MSCs cultured in spheroids showed compact cell body, relaxed cytoskeleton tension with very thin cortical actin filament outlining the cell, and increased expression of Nanog along with reduced levels of Suv39h1 (H3K9 methyltransferase) and H3K9me3. Notably, pharmaceutical inhibition of actin polymerization with cytochalasin D or silencing Suv39h1 expression with siRNA in 2D-cultured MSCs elevated the expression of Nanog via H3K9 demethylation. Thus, our data suggest that 3D culture increases the expression of Nanog through the relaxation of actin cytoskeleton, which mediates reduced Suv39h1 and H3K9me3 levels. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging.

    Science.gov (United States)

    Krishnan, Manickam; Park, Jinha M; Cao, Feng; Wang, Dongxu; Paulmurugan, Ramasay; Tseng, Jeffrey R; Gonzalgo, Mark L; Gambhir, Sanjiv S; Wu, Joseph C

    2006-01-01

    Tracking stem cell localization, survival, differentiation, and proliferation after transplantation in living subjects is essential for understanding stem cell biology and physiology. In this study, we investigated the long-term stability of reporter gene expression in an embryonic rat cardiomyoblast cell line and the role of epigenetic modulation on reversing reporter gene silencing. Cells were stably transfected with plasmids carrying cytomegalovirus promoter driving firefly luciferase reporter gene (CMV-Fluc) and passaged repeatedly for 3-8 months. Within the highest expressor clone, the firefly luciferase activity decreased progressively from passage 1 (843+/-28) to passage 20 (250+/-10) to passage 40 (44+/-3) to passage 60 (3+/-1 RLU/microg; P<0.05 vs. passage 1). Firefly luciferase activity was maximally rescued by treatment with 5-azacytidine (DNA methyltransferase inhibitor) compared with trichostatin A (histone deacetylase inhibitor) and retinoic acid (transcriptional activator; P<0.05). Increasing dosages of 5-azacytidine treatment led to higher levels of firefly luciferase mRNA (RT-PCR) and protein (Western blots) and inversely lower levels of methylation in the CMV promoter (DNA nucleotide sequence). These in vitro results were extended to in vivo bioluminescence imaging (BLI) of cell transplant in living animals. Cells treated with 5-azacytidine were monitored for 2 wk compared with 1 wk for untreated cells (P<0.05). These findings should have important implications for reporter gene-based imaging of stem cell transplantation.

  8. Impact of enriched environment on murine T cell differentiation and gene expression profile

    Directory of Open Access Journals (Sweden)

    Lorenza Rattazzi

    2016-09-01

    Full Text Available T cells are known to be plastic and to change their phenotype according to the cellular and biochemical milieu they are embedded in. In this study we transposed this concept at a macroscopic level assessing whether changes in the environmental housing conditions of C57/BL6 mice would influence the phenotype and function of T cells. Our study shows that exposure to two weeks in an enriched environment does not impact the T cell repertoire in vivo and causes no changes in the early TCR-driven activation events of these cells. Surprisingly, however, T cells from enriched mice showed a unique T helper effector-cell phenotype upon differentiation in vitro. This was featured by a significant reduction in their ability to produce IFN-γ and by an increased release of IL-10 and IL-17. Microarray analysis of these cells also revealed a unique gene fingerprint with key signaling pathways involved in autoimmunity being modulated. Together our results provide first evidence for a specific effect of enriched environment on T cell differentiation and its associated changes in gene expression profile. In addition, our study sheds new light on the possible mechanisms by which changes in environmental factors can significantly influence the immune response of the host and favor the resolution of the inflammatory response.

  9. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  10. Validation and implementation of a method for microarray gene expression profiling of minor B-cell subpopulations in man

    DEFF Research Database (Denmark)

    Bergkvist, Kim Steve; Nyegaard, Mette; Bøgsted, Martin

    2014-01-01

    Abstract BACKGROUND: This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and theref...

  11. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells.

    Directory of Open Access Journals (Sweden)

    Emma C Skoog

    Full Text Available Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.

  12. Comprehensive transcriptome analysis of fluid shear stress altered gene expression in renal epithelial cells

    Science.gov (United States)

    Kunnen, Steven J.; Malas, Tareq B.; Semeins, Cornelis M.; Bakker, Astrid D.

    2017-01-01

    Renal epithelial cells are exposed to mechanical forces due to flow‐induced shear stress within the nephrons. Shear stress is altered in renal diseases caused by tubular dilation, obstruction, and hyperfiltration, which occur to compensate for lost nephrons. Fundamental in regulation of shear stress are primary cilia and other mechano‐sensors, and defects in cilia formation and function have profound effects on development and physiology of kidneys and other organs. We applied RNA sequencing to get a comprehensive overview of fluid‐shear regulated genes and pathways in renal epithelial cells. Functional enrichment‐analysis revealed TGF‐β, MAPK, and Wnt signaling as core signaling pathways up‐regulated by shear. Inhibitors of TGF‐β and MAPK/ERK signaling modulate a wide range of mechanosensitive genes, identifying these pathways as master regulators of shear‐induced gene expression. However, the main down‐regulated pathway, that is, JAK/STAT, is independent of TGF‐β and MAPK/ERK. Other up‐regulated cytokine pathways include FGF, HB‐EGF, PDGF, and CXC. Cellular responses to shear are modified at several levels, indicated by altered expression of genes involved in cell‐matrix, cytoskeleton, and glycocalyx remodeling, as well as glycolysis and cholesterol metabolism. Cilia ablation abolished shear induced expression of a subset of genes, but genes involved in TGF‐β, MAPK, and Wnt signaling were hardly affected, suggesting that other mechano‐sensors play a prominent role in the shear stress response of renal epithelial cells. Modulations in signaling due to variations in fluid shear stress are relevant for renal physiology and pathology, as suggested by elevated gene expression at pathological levels of shear stress compared to physiological shear. PMID:29044509

  13. Induction of circadian gene expression in human subcutaneous adipose-derived stem cells.

    Science.gov (United States)

    Wu, Xiying; Zvonic, Sanjin; Floyd, Z Elizabeth; Kilroy, Gail; Goh, Brian C; Hernandez, Teri L; Eckel, Robert H; Mynatt, Randall L; Gimble, Jeffrey M

    2007-11-01

    Genes encoding the circadian transcriptional apparatus exhibit robust oscillatory expression in murine adipose tissues. This study tests the hypothesis that human subcutaneous adipose-derived stem cells (ASCs) provide an in vitro model in which to monitor the activity of the core circadian transcriptional apparatus. Primary cultures of undifferentiated or adipocyte-differentiated ASCs were treated with dexamethasone, rosiglitazone, or 30% fetal bovine serum. The response of undifferentiated ASCs to dexamethasone was further evaluated in the presence of lithium chloride. Lithium inhibits glycogen synthase kinase 3, a key component of the circadian apparatus. Total RNA was harvested at 4-hour intervals over 48 hours and examined by real-time reverse transcription polymerase chain reaction (RT-PCR). Adipocyte-differentiated cells responded more rapidly to treatments than their donor-matched undifferentiated controls; however, the period of the circadian gene oscillation was longer in the adipocyte-differentiated cells. Dexamethasone generated circadian gene expression patterns with mean periods of 25.4 and 26.7 hours in undifferentiated and adipocyte-differentiated ASCs, respectively. Both rosiglitazone and serum shock generated a significantly longer period in adipocyte-differentiated ASCs relative to undifferentiated ASCs. The Bmal1 profile was phase-shifted by approximately 8 to 12 hours relative to Per1, Per3, and Cry2, consistent with their expression in vivo. Lithium chloride inhibited adipogenesis and significantly lengthened the period of Per3 and Rev-erbalpha gene expression profiles by >5 hours in dexamethasone-activated undifferentiated ASCs. These results support the initial hypothesis and validate ASCs as an in vitro model for the analysis of circadian biology in human adipose tissue.

  14. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  15. Suppression of dendritic cell maturation by Trichinella spiralis excretory/secretory products.

    Science.gov (United States)

    Langelaar, M; Aranzamendi, C; Franssen, F; Van Der Giessen, J; Rutten, V; van der Ley, P; Pinelli, E

    2009-10-01

    Evidence from experimental studies indicates that during chronic infections with certain helminth species a regulatory network is induced that can down-modulate not only parasite-induced inflammation but also reduce other immunopathologies such as allergies and autoimmune diseases. The mechanisms however, and the molecules involved in this immunomodulation are unknown. Here, we focus on the effect of Trichinella spiralis excretory/secretory antigens (TspES) on the innate immune response by studying the effect of TspES on DC maturation in vitro. Bone marrow-derived DC from BALB/c mice were incubated with TspES either alone or in combination with LPS derived from two different bacteria. As indicators of DC maturation, the cytokine production (IL-1alpha, IL-6, IL-10, IL-12p70 and TNF-alpha) and the expression of various surface molecules (MHC-II, CD40, CD80 and CD86) were measured. Results indicate that while TspES alone did not change the expression of the different surface molecules or the cytokine production, it completely inhibited DC maturation induced by Escherichia coli LPS (E. coli LPS). In contrast, DC maturation induced by LPS from another bacterium, Neisseria meningitidis, was not affected by TspES. These results were confirmed using TLR4/MD2/CD14 transfected HEK 293 cells. In conclusion, T. spiralis ES antigens lead to suppression of DC maturation but this effect depends on the type of LPS used to activate these cells.

  16. High-throughput gene expression profiling of memory differentiation in primary human T cells

    Directory of Open Access Journals (Sweden)

    Russell Kate

    2008-08-01

    Full Text Available Abstract Background The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1 the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2 a suitable cell-line representative of naive T cells. Results Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.

  17. Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells

    Directory of Open Access Journals (Sweden)

    Min-Seock Seo

    2012-08-01

    Full Text Available Objectives We analyzed gene-expression profiles after 14 day odontogenic induction of human dental pulp cells (DPCs using a DNA microarray and sought candidate genes possibly associated with mineralization. Materials and Methods Induced human dental pulp cells were obtained by culturing DPCs in odontogenic induction medium (OM for 14 day. Cells exposed to normal culture medium were used as controls. Total RNA was extracted from cells and analyzed by microarray analysis and the key results were confirmed selectively by reverse-transcriptase polymerase chain reaction (RT-PCR. We also performed a gene set enrichment analysis (GSEA of the microarray data. Results Six hundred and five genes among the 47,320 probes on the BeadChip differed by a factor of more than two-fold in the induced cells. Of these, 217 genes were upregulated, and 388 were down-regulated. GSEA revealed that in the induced cells, genes implicated in Apoptosis and Signaling by wingless MMTV integration (Wnt were significantly upregulated. Conclusions Genes implicated in Apoptosis and Signaling by Wnt are highly connected to the differentiation of dental pulp cells into odontoblast.

  18. Emergent Lévy behavior in single-cell stochastic gene expression

    Science.gov (United States)

    Jia, Chen; Zhang, Michael Q.; Qian, Hong

    2017-10-01

    Single-cell gene expression is inherently stochastic; its emergent behavior can be defined in terms of the chemical master equation describing the evolution of the mRNA and protein copy numbers as the latter tends to infinity. We establish two types of "macroscopic limits": the Kurtz limit is consistent with the classical chemical kinetics, while the Lévy limit provides a theoretical foundation for an empirical equation proposed in N. Friedman et al., Phys. Rev. Lett. 97, 168302 (2006), 10.1103/PhysRevLett.97.168302. Furthermore, we clarify the biochemical implications and ranges of applicability for various macroscopic limits and calculate a comprehensive analytic expression for the protein concentration distribution in autoregulatory gene networks. The relationship between our work and modern population genetics is discussed.

  19. Gene expression profiling of valvular interstitial cells in Rapacz familial hypercholesterolemic swine

    Directory of Open Access Journals (Sweden)

    Ana M. Porras

    2014-12-01

    Full Text Available Rapacz familial hypercholesterolemic (RFH swine is a well-established model of human FH, a highly prevalent hereditary disease associated with increased risk of coronary artery disease and calcific aortic valve disease (CAVD. However, while these animals have been used extensively for the study of atherosclerosis, the heart valves from RFH swine have not previously been examined. We report the analysis of valvular interstitial cell gene expression in adult (two year old and juvenile (three months old RFH and WT swine by microarray analysis via the Affymetrix Porcine Genome Array (GEO #: GSE53997. Principal component and hierarchical clustering analysis revealed grouping and almost no variability between the RFH juvenile and WT juvenile groups. Additionally, only 21 genes were found differentially expressed between these two experimental groups whereas over 900 genes were differentially expressed when comparing either RFH or WT juvenile swine to RFH adults.

  20. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...... bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-beta, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate...

  1. Gene expression changes during Giardia-host cell interactions in serum-free medium.

    Science.gov (United States)

    Ferella, Marcela; Davids, Barbara J; Cipriano, Michael J; Birkeland, Shanda R; Palm, Daniel; Gillin, Frances D; McArthur, Andrew G; Svärd, Staffan

    2014-10-01

    Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  3. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder.

    Science.gov (United States)

    Fries, Gabriel R; Colpo, Gabriela D; Monroy-Jaramillo, Nancy; Zhao, Junfei; Zhao, Zhongming; Arnold, Jodi G; Bowden, Charles L; Walss-Bass, Consuelo

    2017-11-01

    Lithium is the most commonly prescribed medication for the treatment of bipolar disorder (BD), yet the mechanisms underlying its beneficial effects are still unclear. We aimed to compare the effects of lithium treatment in lymphoblastoid cell lines (LCLs) from BD patients and controls. LCLs were generated from sixty-two BD patients (based on DSM-IV) and seventeen healthy controls matched for age, sex, and ethnicity. Patients were recruited from outpatient clinics from February 2012 to October 2014. LCLs were treated with 1mM lithium for 7 days followed by microarray gene expression assay and validation by real-time quantitative PCR. Baseline differences between groups, as well as differences between vehicle- and lithium-treated cells within each group were analyzed. The biological significance of differentially expressed genes was examined by pathway enrichment analysis. No significant differences in baseline gene expression (adjusted p-value Lithium treatment of LCLs from controls did not lead to any significant differences. However, lithium altered the expression of 236 genes in LCLs from patients; those genes were enriched for signaling pathways related to apoptosis. Among those genes, the alterations in the expression of PIK3CG, SERP1 and UPP1 were validated by real-time PCR. A significant correlation was also found between circadian functioning and CEBPG and FGF2 expression levels. In summary, our results suggest that lithium treatment induces expression changes in genes associated with the apoptosis pathway in BD LCLs. The more pronounced effects of lithium in patients compared to controls suggest a disease-specific effect of this drug. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  4. Changes in gene expression by trabecular meshwork cells in response to mechanical stretching.

    Science.gov (United States)

    Vittal, Vasavi; Rose, Anastasia; Gregory, Kate E; Kelley, Mary J; Acott, Ted S

    2005-08-01

    Trabecular meshwork (TM) cells appear to sense changes in intraocular pressure (IOP) as mechanical stretching. In response, they make homeostatic corrections in the aqueous humor outflow resistance, partially by increasing extracellular matrix (ECM) turnover initiated by the matrix metalloproteinases. To understand this homeostatic adjustment process further, studies were conducted to evaluate changes in TM gene expression that occur in response to mechanical stretching. Porcine TM cells were subjected to sustained mechanical stretching, and RNA was isolated after 12, 24, or 48 hours. Changes in gene expression were evaluated with microarrays containing approximately 8000 cDNAs. Select mRNA changes were then compared by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western immunoblots were used to determine whether some of these changes were associated with changes in protein levels. On the microarrays, 126 genes were significantly upregulated, and 29 genes were significantly downregulated at one or more time points, according to very conservative statistical and biological criteria. Of the genes that changed, several ECM regulatory genes, cytoskeletal-regulatory genes, signal-transduction genes, and stress-response genes were notable. These included several proteoglycans and matricellular ECM proteins composed of common repetitive binding domains. The results of analysis of mRNA changes in more than 20 selected genes by qRT-PCR supported the findings in the microarray analysis. Western immunoblots of several proteins demonstrated protein level changes associated with changes in the level of mRNA. The expression of a variety of TM genes is significantly affected by mechanical stretching. These include several ECM proteins that contain multiple binding sites and may serve organizational roles in the TM. Several proteins that could contribute to the homeostatic modification of aqueous humor outflow resistance are also upregulated or

  5. Gene expression in peripheral blood mononuclear cells from patients with chronic fatigue syndrome.

    Science.gov (United States)

    Kaushik, N; Fear, D; Richards, S C M; McDermott, C R; Nuwaysir, E F; Kellam, P; Harrison, T J; Wilkinson, R J; Tyrrell, D A J; Holgate, S T; Kerr, J R

    2005-08-01

    Chronic fatigue syndrome (CFS) is a multisystem disease, the pathogenesis of which remains undetermined. To test the hypothesis that there are reproducible abnormalities of gene expression in patients with CFS compared with normal healthy persons. To gain further insight into the pathogenesis of this disease, gene expression was analysed in peripheral blood mononuclear cells from 25 patients with CFS diagnosed according to the Centers for Disease Control criteria and 25 normal blood donors matched for age, sex, and geographical location, using a single colour microarray representing 9522 human genes. After normalisation, average difference values for each gene were compared between test and control groups using a cutoff fold difference of expression > or = 1.5 and a p value of 0.001. Genes showing differential expression were further analysed using Taqman real time polymerase chain reaction (PCR) in fresh samples. Analysis of microarray data revealed differential expression of 35 genes. Real time PCR confirmed differential expression in the same direction as array results for 16 of these genes, 15 of which were upregulated (ABCD4, PRKCL1, MRPL23, CD2BP2, GSN, NTE, POLR2G, PEX16, EIF2B4, EIF4G1, ANAPC11, PDCD2, KHSRP, BRMS1, and GABARAPL1) and one of which was downregulated (IL-10RA). This profile suggests T cell activation and perturbation of neuronal and mitochondrial function. Upregulation of neuropathy target esterase and eukaryotic translation initiation factor 4G1 may suggest links with organophosphate exposure and virus infection, respectively. These results suggest that patients with CFS have reproducible alterations in gene regulation.

  6. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Moutia, Mouna; Seghrouchni, Fouad; Abouelazz, Omar; Elouaddari, Anass; Al Jahid, Abdellah; Elhou, Abdelhalim; Nadifi, Sellama; Jamal Eddine, Jamal; Habti, Norddine; Badou, Abdallah

    2016-09-29

    Allium sativum L. (A.S.) "garlic", one of the most interesting medicinal plants, has been suggested to contain compounds that could be beneficial in numerous pathological situations including cancer. In this work, we aimed to assess the immunomodulatory effect of A.S. preparation on human peripheral blood mononuclear cells from healthy individuals. Nontoxic doses of A.S. were identified using MTT assay. Effects on CD4+ or CD8+ T lymphocyte proliferation were studied using flow cytometry. The effect of A.S. on cytokine gene expression was studied using qRT-PCR. Finally, qualitative analysis of A.S. was performed by HPLC approach. Data were analyzed statistically by one-way ANOVA test. The nontoxic doses of A.S. preparation did not affect neither spontaneous nor TCR-mediated CD4+ or CD8+ T lymphocyte proliferation. Interestingly, A.S. exhibited a statistically significant regulation of IL-17 gene expression, a cytokine involved in several inflammatory and autoimmune diseases. In contrast, the expression of IL-4, an anti-inflammatory cytokine, was unaffected. Qualitative analysis of A.S. ethanol preparation indicated the presence of three polyphenol bioactive compounds, which are catechin, vanillic acid and ferulic acid. The specific inhibition of the pro-inflammatory cytokine, IL-17 without affecting cell proliferation in human PBMCs by the Allium sativum L. preparation suggests a potential valuable effect of the compounds present in this plant for the treatment of inflammatory diseases and cancer, where IL-17 is highly expressed. The individual contribution of these three compounds to this global effect will be assessed.

  7. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  8. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    Science.gov (United States)

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  9. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  10. Differential Gene Expression of Primary Cultured Lymphatic and Blood Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Gregory M. Nelson

    2007-12-01

    Full Text Available Blood vascular endothelial cells (BECs and the developmentally related lymphatic endothelial cells (LECs create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment. Tumors also take advantage of the molecules that are expressed in these vascular systems to enhance their metastatic potential. We completed transcriptome analyses on primary cultured LECs and BECs, where each comparative set was isolated from the same individual. Differences were resolved in the expression of several major categories, such as cell adhesion molecules (CAMs, cytokines, cytokine receptors. We have identified new molecules that are associated with BECs (e.g., claudin-9, CXCL11, neurexin-1, neurexin-2, the neuronal growth factor regulator-1 and LECs (e.g., claudin-7, CD58, hyaluronan and proteoglycan link protein 1 (HAPLN1, the poliovirus receptor-related 3 molecule that may lead to novel therapeutic treatments for diseases of lymphatic or blood vessels, including metastasis of cancer to lymph nodes or distant organs.

  11. Differential gene expression in intestinal epithelial cells induced by single and mixtures of potato glycoalkaloids.

    Science.gov (United States)

    Mandimika, Tafadzwa; Baykus, Hakan; Vissers, Yvonne; Jeurink, Prescilla; Poortman, Jenneke; Garza, Cutberto; Kuiper, Harry; Peijnenburg, Ad

    2007-11-28

    Alpha-chaconine and alpha-solanine are naturally occurring toxins. They account for 95% of the total glycoalkaloids in potatoes ( Solanum tuberosum L.). At high levels, these glycoalkaloids may be toxic to humans, mainly by disrupting cell membranes of the gastrointestinal tract. Gene-profiling experiments were performed, whereby Caco-2 cells were exposed to equivalent concentrations (10 microM) of pure alpha-chaconine or alpha-solanine or glycoalkaloid mixtures of varying alpha-chaconine/alpha-solanine ratios for 6 h. In addition, lactate dehydrogenase, cell cycle, and apoptosis analyses experiments were also conducted to further elucidate the effects of glycoalkaloids. The main aims of the study were to determine the transcriptional effects of these glycoalkaloid treatments on Caco-2 cells and to investigate DNA microarray utility in conjunction with conventional toxicology in screening for potential toxicities and their severity. Gene expression and pathway analyses identified changes related to cholesterol biosynthesis, growth signaling, lipid and amino acid metabolism, mitogen-activated protein kinase (MAPK) and NF-kappaB cascades, cell cycle, and cell death/apoptosis. To varying extents, DNA microarrays discriminated the severity of the effect among the different glycoalkaloid treatments.

  12. Effect of high intratesticular estrogen on global gene expression and testicular cell number in rats

    Directory of Open Access Journals (Sweden)

    He Zuping

    2010-06-01

    Full Text Available Abstract Background The identification of estrogen receptors alpha and beta and aromatase in the testis has highlighted the important role of estrogens in regulating spermatogenesis. There is a wealth of information on the deleterious effects of fetal and neonatal exposure of estrogens and xenoestrogens in the testis, including spermiation failure and germ cell apoptosis. However, very little is known about gene transcripts affected by exogenous estradiol exposure in the testis. The objective of the present study was to unveil global gene expression profiles and testicular cell number changes in rats after estradiol treatment. Methods 17beta-estradiol was administered to adult male rats at a dose of 100 micrograms/kg body weight in saline daily for 10 days; male rats receiving only saline were used as controls. Microarray analysis was performed to examine global gene expression profiles with or without estradiol treatment. Real time RT-PCR was conducted to verify the microarray data. In silico promoter and estrogen responsive elements (EREs analysis was carried out for the differentially expressed genes in response to estradiol. Quantitation of testicular cell number based on ploidy was also performed using flow cytometry in rats with or without estradiol treatment. Results We found that 221 genes and expressed sequence tags (ESTs were differentially expressed in rat testes treated with estradiol compared to the control; the microarray data were confirmed by real time RT-PCR. Gene Ontology analysis revealed that a number of the differentially expressed genes are involved in androgen and xenobiotic metabolism, maintenance of cell cytoskeleton, endocytosis, and germ cell apoptosis. A total of 33 up-regulated genes and 67 down-regulated genes showed the presence of EREs. Flow cytometry showed that estradiol induced a significant decrease in 2n cells (somatic and germ cells and 4n cells (pachytene spermatocytes and a marked increase in the number of

  13. Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions

    Science.gov (United States)

    Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.

    Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p

  14. [Preparation of a novel AAV-ITR gene expression mini vector in Sf9 insect cells via baculovirus].

    Science.gov (United States)

    Li, Taiming; Pan, Junjie; Qi, Jing; Zhang, Chun

    2015-08-01

    AAV-ITR gene expression mini vector is a double-strand or single-strand DNA that only contains inverted terminal repeats of adeno-associated virus, cis-elements and gene of interest and does not contain any other foreign DNA sequences. We prepared Bac-ITR-EGFP and Bac-inrep. Spodoptera frugiperda cells were infected with Bac-ITR-EGFP (P3) and Bac-inrep (P3). Up to 100 μg of AAV-ITR-EGFP gene expression mini vectors were extracted from 2 x 10(7) cells of Sf9 72 h after infection. The gel electrophoresis analysis shows that most forms of AAV-ITR-EGFP gene expression mini vector were monomer and dimer. The mini vector expression efficacy was examined in vitro with HEK 293T cells. The EGFP expression was observed at 24 h after transfection, and the positive ratio reached 65% at 48 h after transfection.

  15. Induced Pluripotent Stem Cell Model of Pulmonary Arterial Hypertension Reveals Novel Gene Expression and Patient Specificity.

    Science.gov (United States)

    Sa, Silin; Gu, Mingxia; Chappell, James; Shao, Ning-Yi; Ameen, Mohamed; Elliott, Kathryn A T; Li, Dan; Grubert, Fabian; Li, Caiyun G; Taylor, Shalina; Cao, Aiqin; Ma, Yu; Fong, Ryan; Nguyen, Long; Wu, Joseph C; Snyder, Michael P; Rabinovitch, Marlene

    2017-04-01

    Idiopathic or heritable pulmonary arterial hypertension is characterized by loss and obliteration of lung vasculature. Endothelial cell dysfunction is pivotal to the pathophysiology, but different causal mechanisms may reflect a need for patient-tailored therapies. Endothelial cells differentiated from induced pluripotent stem cells were compared with pulmonary arterial endothelial cells from the same patients with idiopathic or heritable pulmonary arterial hypertension, to determine whether they shared functional abnormalities and altered gene expression patterns that differed from those in unused donor cells. We then investigated whether endothelial cells differentiated from pluripotent cells could serve as surrogates to test emerging therapies. Functional changes assessed included adhesion, migration, tube formation, and propensity to apoptosis. Expression of bone morphogenetic protein receptor type 2 (BMPR2) and its target, collagen IV, signaling of the phosphorylated form of the mothers against decapentaplegic proteins (pSMAD1/5), and transcriptomic profiles were also analyzed. Native pulmonary arterial and induced pluripotent stem cell-derived endothelial cells from patients with idiopathic and heritable pulmonary arterial hypertension compared with control subjects showed a similar reduction in adhesion, migration, survival, and tube formation, and decreased BMPR2 and downstream signaling and collagen IV expression. Transcriptomic profiling revealed high kisspeptin 1 (KISS1) related to reduced migration and low carboxylesterase 1 (CES1), to impaired survival in patient cells. A beneficial angiogenic response to potential therapies, FK506 and Elafin, was related to reduced slit guidance ligand 3 (SLIT3), an antimigratory factor. Despite the site of disease in the lung, our study indicates that induced pluripotent stem cell-derived endothelial cells are useful surrogates to uncover novel features related to disease mechanisms and to better match patients to

  16. Comparison of Signaling Pathways Gene Expression in CD34− Umbilical Cord Blood and Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Rafał Stojko

    2016-01-01

    Full Text Available The aim of the study was to compare the biological activity of the total pool of genes in CD34− umbilical cord blood and bone marrow stem cells and to search for the differences in signaling pathway gene expression responsible for the biological processes. The introductory analysis revealed a big similarity of gene expression among stem cells. When analyzing GO terms for biological processes, we observed an increased activity of JAK-STAT signaling pathway, calcium-mediated, cytokine-mediated, integrin-mediated signaling pathway, and MAPK in a cluster of upregulating genes in CD34− umbilical cord blood stem cells. At the same time, we observed a decreased activity of BMP signaling pathways, TGF-beta pathway, and VEGF receptor signaling pathway in a cluster of downregulating genes in CD34− umbilical cord blood stem cells. In accordance with KEGG classification, the cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, and JAK-STAT signaling pathway are overrepresented in CD34− umbilical cord blood stem cells. A similar gene expression in both CD34− UCB and BM stem cells was characteristic for such biological processes as cell division, cell cycle gene expression, mitosis, telomere maintenance with telomerase, RNA and DNA treatment processes during cell division, and similar genes activity of Notch and Wnt signaling pathways.

  17. Induction of manganese superoxide dismutase gene expression in bronchoepithelial cells after rockwool exposure.

    Science.gov (United States)

    Marks-Konczalik, J; Gillissen, A; Jaworska, M; Löseke, S; Voss, B; Fisseler-Eckhoff, A; Schmitz, I; Schultze-Werninghaus, G

    1998-01-01

    Superoxide dismutases play an important protective role in the lung defense against the pro-oxidative effect of fibrous dusts (e.g. crocidolite fibers). Particularly crocidolite, but also other asbestos fibers, are known to induce cellular antioxidant defense. Although rockwool, a man-made fiber made from rock, is used widely for insulation purposes, its effects on the superoxide dismutases in bronchoepithelial cells have not been investigated. Thus, the purpose of this study was to determine whether human bronchoepithelial cells (BEAS 2B) respond to rockwool fibers (115-4 experimental rockwool fiber) by induction of MnSOD mRNA and an increase of MnSOD activity levels. The results were compared with BEAS 2B cells exposed to silica (alpha-quartz: DQ12; SiO2) and UICC (Union Internationale Contre le Cancer) crocidolite (concentrations of all dusts: 0, 2, 5, 10, 25, 50 micrograms/cm2 = 0, 2.4, 6, 12, 30, 60 micrograms/ml; 24-h exposure) as control fibers. Scanning electron microscopy confirmed close dust cell contact under all experimental settings. Very low MnSOD mRNA baseline levels rose significantly (p 25 micrograms/cm2 MnSOD mRNA levels in silica- and crocidolite- but not in rockwool-exposed cells decreased. Slight (no significance) increases of MnSOD activity were observed which decreased at higher dust (> 5 micrograms/cm2) concentrations. These results suggest that: (1) like crocidolite and silica, rockwool accelerates MnSOD gene expression in bronchoepithelial cells; (2) an increase of MnSOD mRNA levels is not accompanied by MnSOD activity elevation; (3) in contrast to rockwool, high concentrations (> or = 25 micrograms/cm2) of crocidolite and silica reduced MnSOD activity and MnSOD mRNA levels. Because oxidants (H2O2) and crocidolite fibers were shown to reduce SOD activity, lack of active MnSOD protein may be caused by inactivation on a post-translational level. Furthermore, the decline of MnSOD mRNA and MnSOD activity levels coincides with increasing

  18. Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production.

    Science.gov (United States)

    Chaiyadet, Sujittra; Smout, Michael; Johnson, Michael; Whitchurch, Cynthia; Turnbull, Lynne; Kaewkes, Sasithorn; Sotillo, Javier; Loukas, Alex; Sripa, Banchob

    2015-10-01

    Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south

  19. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States

    Directory of Open Access Journals (Sweden)

    Lydia Hopp

    2015-09-01

    Full Text Available Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12.

  20. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells.

    Science.gov (United States)

    Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara; Podszywalow-Bartnicka, Paulina; Hoser, Grazyna; Maifrede, Silvia; Martinez, Esteban; Di Marcantonio, Daniela; Bolton-Gillespie, Elisabeth; Cramer-Morales, Kimberly; Lee, Jaewong; Li, Min; Slupianek, Artur; Gritsyuk, Daniel; Cerny-Reiterer, Sabine; Seferynska, Ilona; Stoklosa, Tomasz; Bullinger, Lars; Zhao, Huaqing; Gorbunova, Vera; Piwocka, Katarzyna; Valent, Peter; Civin, Curt I; Muschen, Markus; Dick, John E; Wang, Jean Cy; Bhatia, Smita; Bhatia, Ravi; Eppert, Kolja; Minden, Mark D; Sykes, Stephen M; Skorski, Tomasz

    2017-06-01

    Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients.

  1. Response-predictive gene expression profiling of glioma progenitor cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sylvia Moeckel

    Full Text Available High-grade gliomas are amongst the most deadly human tumors. Treatment results are disappointing. Still, in several trials around 20% of patients respond to therapy. To date, diagnostic strategies to identify patients that will profit from a specific therapy do not exist.In this study, we used serum-free short-term treated in vitro cell cultures to predict treatment response in vitro. This approach allowed us (a to enrich specimens for brain tumor initiating cells and (b to confront cells with a therapeutic agent before expression profiling.As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed to predict therapy-induced impairment of proliferation in vitro.For the tyrosine kinase inhibitor Sunitinib used in this dataset, the approach revealed additional predictive information in comparison to the evaluation of classical signaling analysis.

  2. Replication, gene expression and particle production by a consensus Merkel Cell Polyomavirus (MCPyV genome.

    Directory of Open Access Journals (Sweden)

    Friederike Neumann

    Full Text Available Merkel Cell Polyomavirus (MCPyV genomes are clonally integrated in tumor tissues of approximately 85% of all Merkel cell carcinoma (MCC cases, a highly aggressive tumor of the skin which predominantly afflicts elderly and immunosuppressed patients. All integrated viral genomes recovered from MCC tissue or MCC cell lines harbor signature mutations in the early gene transcript encoding for the large T-Antigen (LT-Ag. These mutations selectively abrogate the ability of LT-Ag to support viral replication while still maintaining its Rb-binding activity, suggesting a continuous requirement for LT-Ag mediated cell cycle deregulation during MCC pathogenesis. To gain a better understanding of MCPyV biology, in vitro MCPyV replication systems are required. We have generated a synthetic MCPyV genomic clone (MCVSyn based on the consensus sequence of MCC-derived sequences deposited in the NCBI database. Here, we demonstrate that transfection of recircularized MCVSyn DNA into some human cell lines recapitulates efficient replication of the viral genome, early and late gene expression together with virus particle formation. However, serial transmission of infectious virus was not observed. This in vitro culturing system allows the study of viral replication and will facilitate the molecular dissection of important aspects of the MCPyV lifecycle.

  3. Identification of circadian-related gene expression profiles in entrained breast cancer cell lines.

    Science.gov (United States)

    Gutiérrez-Monreal, Miguel A; Treviño, Victor; Moreno-Cuevas, Jorge E; Scott, Sean-Patrick

    2016-01-01

    Cancer cells have broken circadian clocks when compared to their normal tissue counterparts. Moreover, it has been shown in breast cancer that disruption of common circadian oscillations is associated with a more negative prognosis. Numerous studies, focused on canonical circadian genes in breast cancer cell lines, have suggested that there are no mRNA circadian-like oscillations. Nevertheless, cancer cell lines have not been extensively characterized and it is unknown to what extent the circadian oscillations are disrupted. We have chosen representative non-cancerous and cancerous breast cell lines (MCF-10A, MCF-7, ZR-75-30, MDA-MB-231 and HCC-1954) in order to determine the degree to which the circadian clock is damaged. We used serum shock to synchronize the circadian clocks in culture. Our aim was to initially observe the time course of gene expression using cDNA microarrays in the non-cancerous MCF-10A and the cancerous MCF-7 cells for screening and then to characterize specific genes in other cell lines. We used a cosine function to select highly correlated profiles. Some of the identified genes were validated by quantitative polymerase chain reaction (qPCR) and further evaluated in the other breast cancer cell lines. Interestingly, we observed that breast cancer and non-cancerous cultured cells are able to generate specific circadian expression profiles in response to the serum shock. The rhythmic genes, suggested via microarray and measured in each particular subtype, suggest that each breast cancer cell type responds differently to the circadian synchronization. Future results could identify circadian-like genes that are altered in breast cancer and non-cancerous cells, which can be used to propose novel treatments. Breast cell lines are potential models for in vitro studies of circadian clocks and clock-controlled pathways.

  4. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    Science.gov (United States)

    Kohn, Kurt W; Zeeberg, Barry M; Reinhold, William C; Pommier, Yves

    2014-01-01

    Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.

  5. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study.

    Science.gov (United States)

    Joehanes, Roby; Johnson, Andrew D; Barb, Jennifer J; Raghavachari, Nalini; Liu, Poching; Woodhouse, Kimberly A; O'Donnell, Christopher J; Munson, Peter J; Levy, Daniel

    2012-01-18

    Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL.

  6. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    Science.gov (United States)

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells. Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  7. Quantitative gene expression profiling of CD45+ and CD45- skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Ditte Caroline Andersen, Ditte Caroline; Kristiansen, Gitte Qvist; Jensen, Line

    2012-01-01

    The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...

  8. Quantitative gene expression profiling of CD45(+) and CD45(-) skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Kristiansen, Gitte Qvistgaard; Jensen, Line

    2011-01-01

    The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...

  9. Differential angiogenic gene expression in TP53 wild-type and mutant ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Brittany Anne Davidson

    2014-06-01

    Full Text Available Objectives: Underlying mechanisms regulating angiogenesis in ovarian cancer have not been completely elucidated. Evidence suggests that the TP53 tumor suppressor pathway and tumor microenvironment play integral roles. We utilized microarray technology to study the interaction between TP53 mutational status & hypoxia on angiogenic gene expression.Methods: Affymetrix U133A arrays were analyzed for angiogenic gene expression in 19 ovarian cancer cell lines stratified both by TP53 mutation status and A2780 wild-type (wt TP53 vs. mutated (m TP53 cell lines after treatment under hypoxic conditions or with ionizing radiation. Results: Twenty-eight differentially expressed angiogenic genes were identified in the mTP53 cell lines compared to wtTP53 lines. Five genes were upregulated in mTP53 cells: 40% involved in extracellular matrix (ECM degradation (MMP10/15 and 60% in angiogenesis (FGFR3/VEGFA/EPHB4. Twenty-three genes were upregulated in wtTP53: nearly 22% were ECM constituents or involved in ECM degradation; over 40% were growth factors or mediators of angiogenesis. Five genes were upregulated in the A2780mTP53 cells: 40% involved in ECM remodeling (MMP10, ADAMTS1, 40% with pro-angiogenic activity (EFNB2, F2R, and 20% with anti-angiogenic properties (ADAMTS1. Three genes were upregulated in hypoxia treated cells compared to controls: 1 with anti-angiogenic activity (ANGPTL4 and 2 with pro-angiogenic activity (VEGFA, EFNA3. No significant gene fold changes were noted after exposure to radiation.Four genes continued to demonstrate significant differential expression (p≤0.05 after adjusting for multiple comparisons. These genes included ENG upregulation in wild-type lines and upregulation of FGF-20, ADAMTS1 & MMP10 in mTP53 lines.Conclusions: Our exploratory findings indicate that non-overlapping angiogenic pathways may be altered by TP53 mutations and hypoxic conditions in ththe tumor microenvironment. Further evaluation is needed for confirmation.

  10. Fibroblast growth factor 23 inhibits osteoblastic gene expression and induces osteoprotegerin in vascular smooth muscle cells.

    Science.gov (United States)

    Nakahara, Takehiro; Kawai-Kowase, Keiko; Matsui, Hiroki; Sunaga, Hiroaki; Utsugi, Toshihiro; Iso, Tatsuya; Arai, Masashi; Tomono, Shouichi; Kurabayashi, Masahiko

    2016-10-01

    Elevated fibroblast growth factor 23 (FGF23) levels are associated with cardiovascular mortality in patients with chronic kidney disease. However, both clinical and basic research have demonstrated conflicting evidence regarding the pathophysiological role of FGF23 in vascular calcification. The aim of this study was to determine the role of FGF23 in the osteoblastic gene expression in vascular smooth muscle cells (SMCs). We transduce human aortic SMCs (HASMCs) expressing klotho and FGF receptors with the adenovirus expressing human FGF23 (Ad-FGF23). We observed significant decreases in the expression of osteoblast-marker genes including BMP2, BMP4, MSX2, RUNX2 and ALP, as well as reduced calcification. Notably, Ad-FGF23 increased mRNA and protein levels of osteoprotegerin (OPG), and human OPG promoter was activated by FGF23. Moreover, in HASMCs overexpressing klotho, FGF23 upregulated OPG expression, whereas depletion of klotho by siRNA attenuated FGF23-induced OPG expression. Furthermore, in 73 consecutive patients with type 2 diabetes mellitus undergoing cardiac computed tomography to determine coronary calcium scores (CCSs), serum FGF23 levels were positively correlated with OPG independent of phosphate and estimated glomerular filtration rate (eGFR, r = 0.65, p < 0.01). Serum FGF23 levels were significantly elevated in patients with high CCSs (≧100) compared to those with low CCSs (<100). Our in vitro results indicate that FGF23 suppresses osteoblastic gene expression and induces OPG expression in HASMCs. Together with our cross-sectional clinical assessment, the present study lends support to our hypothesis that FGF23 counteracts osteogenic conversion of vascular SMCs as a part of a compensatory mechanism to mitigate vascular calcification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    Science.gov (United States)

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  12. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes.

    Science.gov (United States)

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-08-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Directory of Open Access Journals (Sweden)

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  14. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation

    Science.gov (United States)

    Babarit, Candice; Larcher, Thibaut; Dubreil, Laurence; Leroux, Isabelle; Zuber, Céline; Ledevin, Mireille; Deschamps, Jack-Yves; Fromes, Yves; Cherel, Yan; Guevel, Laetitia; Rouger, Karl

    2015-01-01

    Background Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. Results In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Conclusions Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the

  15. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation.

    Directory of Open Access Journals (Sweden)

    Florence Robriquet

    Full Text Available Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD. We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation.In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells.Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex

  16. Gene expression profiles of HLA-G1 overexpressed in hES cells.

    Science.gov (United States)

    Zhu, Yajing; Zhao, Sanjun; Zhao, Hongxi; Yao, Yuanqing

    2012-10-01

    The goals of this study were to analyze the change in the global gene expression profile of exogenous human leukocyte antigen-G1 (HLA-G1) overexpressed in human embryonic stem (hES) cells and to explore the molecular mechanism by which the overexpression of HLA-G1 modifies immunologic pathways. Microarray and quantitative real-time PCR analyses were performed to quantify the differential expression pattern of HLA-G1 + H1 hES cells. The results showed that HLA-G1 differentially regulated the expression of 425 genes with at least a twofold increase or decrease. These differentially expressed genes were classified into 13 functional groups, including cellular components, biological processes, and molecular functions. The pathways of focal adhesion, the TGF-β signaling pathway, and the immune response were the most predominantly affected. The synergism of these genes could explain the mechanism of the immunosuppression of HLA-G1 + H1 hES cells. Thus, the expression pattern reflected a broad spectrum of roles of HLA-G1 in hES cells.

  17. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells.

    Science.gov (United States)

    Chen, Jin-Cherng; Liu, Kris Sun; Yang, Ting-Ju; Hwang, Juen-Haur; Chan, Yin-Ching; Lee, I-Te

    2012-11-01

    Our aim was to investigate the effects of Spirulina on BV-2 microglial cell cytotoxicity and inflammatory genes expression. BV-2 microglial cells were treated with lipopolysaccharide (LPS) (1 µg/ml) and various concentrations of Spirulina platensis water extract or its active component (C-phycocyanin (C-PC)) for 24 hours. Cytotoxicity (lactate dehydrogenase (LDH) release) and expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNAs were assayed. LPS increased LDH production and up-regulated expression of iNOS, COX-2, TNF-α, and IL-6 by BV-2 microglial cells. However, Spirulina platensis water extract and C-PC significantly reduced LPS-induced LDH release, and expression of iNOS, COX-2, TNF-α, and IL-6 mRNAs. Spirulina can reduce the cytotoxicity and inhibit expression of inflammation-related genes of LPS-stimulated BV-2 microglial cells.

  18. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression.

    Science.gov (United States)

    Du, Fengkun; Li, Yan; Zhang, Wensheng; Kale, Shubha P; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2016-08-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian cancer potential biomarkers while overexpressed AR and 72 gene set represented moderately aggressive ovarian cancer potential biomarkers. Based on our knowledge, the current study is first time to report the potential biomarkers relevant to different aggressive

  19. Dynamic Epstein-Barr Virus Gene Expression on the Path to B-Cell Transformation

    Science.gov (United States)

    Price, Alexander M.; Luftig, Micah A.

    2016-01-01

    Epstein-Barr Virus is an oncogenic human herpesvirus in the γ-herpesvirinae sub-family that contains a 170–180 kb double stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B cell compartment of the peripheral blood. EBV can be reactivated from its latent state leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome as well as structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady state viral gene expression within EBV immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection EBV only expressed the well-characterized latency associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation as well as delayed responses in the known latency genes. This review summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, inhibition of apoptosis, and control of innate and adaptive immune responses. PMID:24373315

  20. Suitability of endogenous reference genes for gene expression studies with human intraocular endothelial cells

    Directory of Open Access Journals (Sweden)

    Wei Ruoxin

    2013-02-01

    Full Text Available Abstract Background The use of quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR has become widely applied as a method to measure transcript abundance. In order to be reflective of biological processes during health and disease this method is dependent on normalisation of data against stable endogenous controls. However, these genes can vary in their stability in different cell types. The importance of reference gene validation for a particular cell type is now well recognised and is an important step in any gene expression study. Results Cultured primary human choroidal and retinal endothelial cells were treated with the immunostimulant polyinosinic: polycytidylic acid or untreated. qRT-PCR was used to quantify the expression levels of 10 commonly used endogenous control genes, TBP, HPRT1, GAPDH, GUSB, PPIA, RPLP0, B2M, 18S rRNA, PGK1 and ACTB. Three different mathematical algorithms, GeNorm, NormFinder, and BestKeeper were used to analyse gene stability to give the most representative validation. In choroidal endothelial cells the most stable genes were ranked as HPRT1 and GUSB by GeNorm and NormFinder and HPRT1 and PPIA by BestKeeper. In retinal endothelial cells the most stable genes ranked were TBP and PGK1 by GeNorm and NormFinder and HPRT1 by BestKeeper. The least stable gene for both cell types was 18S with all 3 algorithms. Conclusions We have identified the most stable endogenous control genes in intraocular endothelial cells. It is suggested future qRT-PCR studies using these cells would benefit from adopting the genes identified in this study as the most appropriate endogenous control genes.

  1. A cell system for phenotypic screening of modifiers of SMN2 gene expression and function.

    Directory of Open Access Journals (Sweden)

    Darrick K Li

    Full Text Available Spinal muscular atrophy (SMA is an inherited neurodegenerative disease caused by homozygous inactivation of the SMN1 gene and reduced levels of the survival motor neuron (SMN protein. Since higher copy numbers of the nearly identical SMN2 gene reduce disease severity, to date most efforts to develop a therapy for SMA have focused on enhancing SMN expression. Identification of alternative therapeutic approaches has partly been hindered by limited knowledge of potential targets and the lack of cell-based screening assays that serve as readouts of SMN function. Here, we established a cell system in which proliferation of cultured mouse fibroblasts is dependent on functional SMN produced from the SMN2 gene. To do so, we introduced the entire human SMN2 gene into NIH3T3 cell lines in which regulated knockdown of endogenous mouse Smn severely decreases cell proliferation. We found that low SMN2 copy number has modest effects on the cell proliferation phenotype induced by Smn depletion, while high SMN2 copy number is strongly protective. Additionally, cell proliferation correlates with the level of SMN activity in small nuclear ribonucleoprotein assembly. Following miniaturization into a high-throughput format, our cell-based phenotypic assay accurately measures the beneficial effects of both pharmacological and genetic treatments leading to SMN upregulation. This cell model provides a novel platform for phenotypic screening of modifiers of SMN2 gene expression and function that act through multiple mechanisms, and a powerful new tool for studies of SMN biology and SMA therapeutic development.

  2. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  3. Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells.

    Science.gov (United States)

    Ali, Anwar; Akhter, Muhammad Aleem; Haneef, Kanwal; Khan, Irfan; Naeem, Nadia; Habib, Rakhshinda; Kabir, Nurul; Salim, Asmat

    2015-01-25

    Various preconditioning strategies influence regeneration properties of stem cells. Preconditioned stem cells generally show better cell survival, increased differentiation, enhanced paracrine effects, and improved homing to the injury site by regulating the expression of tissue-protective cytokines and growth factors. In this study, we analyzed gene expression pattern of growth factors through RT-PCR after treatment of mesenchymal stem cells (MSCs) with a metabolic inhibitor, 2,4 dinitrophenol (DNP) and subsequent re-oxygenation for periods of 2, 6, 12 and 24h. These growth factors play important roles in cardiomyogenesis, angiogenesis and cell survival. Mixed pattern of gene expression was observed depending on the period of re-oxygenation. Of the 13 genes analyzed, ankyrin repeat domain 1 (Ankrd1) and GATA6 were downregulated after DNP treatment and subsequent re-oxygenations. Ankrd1 expression was, however, increased after 24h of re-oxygenation. Placental growth factor (Pgf), endoglin (Eng), neuropilin (Nrp1) and jagged 1 (Jag1) were up-regulated after DNP treatment. Gradual increase was observed as re-oxygenation advances and by the end of the re-oxygenation period the expression started to decrease and ultimately regained normal values. Epiregulin (Ereg) was not expressed in normal MSCs but its expression increased gradually from 2 to 24h after re-oxygenation. No change was observed in the expression level of connective tissue growth factor (Ctgf) at any time period after re-oxygenation. Kindlin3, kinase insert domain receptor (Kdr), myogenin (Myog), Tbx20 and endothelial tyrosine kinase (Tek) were not expressed either in normal cells or cells treated with DNP. It can be concluded from the present study that MSCs adjust their gene expression levels under the influence of DNP induced metabolic stress. Their levels of expression vary with varying re-oxygenation periods. Preconditioning of MSCs with DNP can be used for enhancing the potential of these cells for

  4. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells

    DEFF Research Database (Denmark)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and ¿d T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular...... CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression....... we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype...... than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation...

  5. Quality controls in cellular immunotherapies: rapid assessment of clinical grade dendritic cells by gene expression profiling.

    Science.gov (United States)

    Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F

    2013-02-01

    Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers.

  6. Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction

    Directory of Open Access Journals (Sweden)

    Ou Chern-Han

    2007-11-01

    Full Text Available Abstract Background Ganoderma lucidum has been widely used as a herbal medicine for promoting health and longevity in China and other Asian countries. Polysaccharide extracts from Ganoderma lucidum have been reported to exhibit immuno-modulating and anti-tumor activities. In previous studies, F3, the active component of the polysaccharide extract, was found to activate various cytokines such as IL-1, IL-6, IL-12, and TNF-α. This gave rise to our investigation on how F3 stimulates immuno-modulating or anti-tumor effects in human leukemia THP-1 cells. Results Here, we integrated time-course DNA microarray analysis, quantitative PCR assays, and bioinformatics methods to study the F3-induced effects in THP-1 cells. Significantly disturbed pathways induced by F3 were identified with statistical analysis on microarray data. The apoptosis induction through the DR3 and DR4/5 death receptors was found to be one of the most significant pathways and play a key role in THP-1 cells after F3 treatment. Based on time-course gene expression measurements of the identified pathway, we reconstructed a plausible regulatory network of the involved genes using reverse-engineering computational approach. Conclusion Our results showed that F3 may induce death receptor ligands to initiate signaling via receptor oligomerization, recruitment of specialized adaptor proteins and activation of caspase cascades.

  7. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  8. Single-cell gene expression analysis reveals diversity among human spermatogonia.

    Science.gov (United States)

    Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R

    2017-02-10

    Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human

  9. Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells.

    Science.gov (United States)

    Perrais, Michaël; Rousseaux, Christel; Ducourouble, Marie-Paule; Courcol, René; Vincent, Pascal; Jonckheere, Nicolas; Van Seuningen, Isabelle

    2014-04-01

    Helicobacter pylori (Hp), which is one of the causative agents in human gastric adenocarcinoma, is known to interact with mucous gel and alter mucin gene expression. The aim of this work was to study, using an in vitro model of cell infection, the effects of urease, flagellin, and CagA virulence factors on the regulation of the four 11p15 mucin genes (MUC2, MUC5AC, MUC5B, and MUC6). KATO-III and AGS gastric cancer cells were infected for 1, 3 or 6 h with Hp wild-type strains (ATCC 43504, N6, and SS1) or corresponding isogenic mutants deficient for urease subunit B, flagellin subunit A, and CagA. mRNA levels of MUC2, MUC5B, MUC5AC and MUC6 were assessed by RT-PCR, and functional activity of their promoters was measured by transient transfection assays. Infection of KATO-III cells with Hp wild-type strains resulted in an early (at 1 h) transient expression of MUC2, MUC5AC, and MUC6 mRNA concomitant with those of interleukin (IL)-1β, IL-8, and TNF-α cytokines. In these cells, the UreB(-) isogenic mutant induced strong activation of MUC5AC expression, and UreB-responsive elements were located in the -486/-1 region of the promoter. FlaA(-) and CagA(-) mutants had no effect on mucin gene mRNA levels in KATO-III cells. In AGS cells, Hp-responsive elements were identified in all promoters, and overexpression of NF-κB induced upregulation of MUC5AC promoter activity when infected with the UreB(-) isogenic mutant. These results indicate that Hp infection of gastric cancer cells alters 11p15 mucin gene transcription and that MUC5AC downregulation is mediated by urease virulence factor.

  10. Effect of Serum and Oxygen Concentration on Gene Expression and Secretion of Paracrine Factors by Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Patrick Page

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSC secrete paracrine factors that may exert a protective effect on the heart after coronary artery occlusion. This study was done to determine the effect of hypoxia and serum levels on the mRNA expression and secretion of paracrine factors. Mouse bone marrow MSC were cultured with 5% or 20% serum and in either normoxic (21% O2 or hypoxic (1% O2 conditions. Expression of mRNA for vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, macrophage inflammatory protein-1α (MIP-1α, MIP-1β, and matrix metalloproteinase-2 (MMP-2 was determined by RT-qPCR. Secretion into the culture media was determined by ELISA. Hypoxia caused a reduction in gene expression for MCP-1 and an increase for VEGF (5% serum, MIP-1α, MIP-1β, and MMP-2. Serum reduction lowered gene expression for VEGF (normoxia, MCP-1 (hypoxia, MIP-1α (hypoxia, MIP-1β (hypoxia, and MMP-2 (hypoxia and increased gene expression for MMP-2 (normoxia. The level of secretion of these factors into the media generally paralleled gene expression with some exceptions. These data demonstrate that serum and oxygen levels have a significant effect on the gene expression and secretion of paracrine factors by MSC which will affect how MSC interact in vivo during myocardial ischemia.

  11. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  12. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Science.gov (United States)

    van Gool, Sandy A; Emons, Joyce A M; Leijten, Jeroen C H; Decker, Eva; Sticht, Carsten; van Houwelingen, Johannes C; Goeman, Jelle J; Kleijburg, Carin; Scherjon, Sicco A; Gretz, Norbert; Wit, Jan Maarten; Rappold, Gudrun; Post, Janine N; Karperien, Marcel

    2012-01-01

    We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  13. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma

    Directory of Open Access Journals (Sweden)

    Lu Lizhi

    2006-12-01

    Full Text Available Abstract Background Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown. Results In this study, by FACS analysis we determined the percentage of CD133 positive cells in three primary cultured cell lines established from glioblastoma patients 10.2%, 69.7% and 27.5%, respectively. We also determined the average mRNA levels of markers associated with neural precursors. For example, CD90, CD44, CXCR4, Nestin, Msi1 and MELK mRNA on CD133 positive cells increased to 15.6, 5.7, 337.8, 21.4, 84 and 1351 times, respectively, compared to autologous CD133 negative cells derived from cell line No. 66. Additionally, CD133 positive cells express higher levels of BCRP1 and MGMT mRNA, as well as higher mRNA levels of genes that inhibit apoptosis. Furthermore, CD133 positive cells were significantly resistant to chemotherapeutic agents including temozolomide, carboplatin, paclitaxel (Taxol and etoposide (VP16 compared to autologous CD133 negative cells. Finally, CD133 expression was significantly higher in recurrent GBM tissue obtained from five patients as compared to their respective newly diagnosed tumors. Conclusion Our study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy. This resistance is probably contributed by the CD133 positive cell with higher expression of on BCRP1 and MGMT, as well as the anti-apoptosis protein and inhibitors of apoptosis protein families. Future treatment should target this small population of CD133 positive cancer stem cells in

  14. Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma

    Science.gov (United States)

    Ghita, Mihaela Adriana; Voiculescu, Suzana; Rosca, Adrian E.; Moraru, Liliana; Greabu, Maria

    2016-01-01

    Basal cell carcinoma (BCC) is the world's leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC. PMID:27578920

  15. Gene expression in cell lines from propionic acidemia patients, carrier parents, and controls.

    Science.gov (United States)

    Chapman, Kimberly A; Bush, William S; Zhang, Zhe

    2015-08-01

    Propionic acidemia (PA) is an inborn of metabolism which usually presents with metabolic acidosis and accumulation of 3-hydroxypropionate among other toxins. Examining the gene expression in lymphoblastoid cell lines (LCLs) from PA patients, their carrier parents and age/sex-matched controls at normal glucose and low glucose growth conditions demonstrated differences among and between these groups. Using three-way ANOVA analysis, four DAVID clusters of response were identified of which three of the four clusters showed that LCLs from carrier parents had an intermediate response between healthy controls and PA patients. These differences included changes in expression of cell cycle regulatory genes, mitochondrial related genes, and transcriptional regulation. In addition, differences also were observed in expression of genes involved in transendothelial migration and focal adhesion at normal growth conditions when comparing the LCLs from PA patients and controls. These studies demonstrate transcriptional differences between LCLs from PA patients, their parents and biochemically normal controls. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells.

    Science.gov (United States)

    Gao, Xiugong; Sprando, Robert L; Yourick, Jeffrey J

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72h after exposure to 0.25mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. Published by Elsevier Inc.

  17. Infectomic Analysis of Gene Expression Profiles of Human Brain Microvascular Endothelial Cells Infected with Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Ambrose Jong

    2008-01-01

    Full Text Available In order to dissect the pathogenesis of Cryptococcus neoformans meningoencephalitis, a genomic survey of the changes in gene expression of human brain microvascular endothelial cells infected by C. neoformans was carried out in a time-course study. Principal component analysis (PCA revealed sigificant fluctuations in the expression levels of different groups of genes during the pathogen-host interaction. Self-organizing map (SOM analysis revealed that most genes were up- or downregulated 2 folds or more at least at one time point during the pathogen-host engagement. The microarray data were validated by Western blot analysis of a group of genes, including β-actin, Bcl-x, CD47, Bax, Bad, and Bcl-2. Hierarchical cluster profile showed that 61 out of 66 listed interferon genes were changed at least at one time point. Similarly, the active responses in expression of MHC genes were detected at all stages of the interaction. Taken together, our infectomic approaches suggest that the host cells significantly change the gene profiles and also actively participate in immunoregulations of the central nervous system (CNS during C. neoformans infection.

  18. Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Mihai Lupu

    2016-01-01

    Full Text Available Basal cell carcinoma (BCC is the world’s leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC.

  19. The effect of macromolecular crowding on mobility of biomolecules, association kinetics and gene expression in living cells

    Science.gov (United States)

    Tabaka, Marcin; Kalwarczyk, Tomasz; Szymanski, Jedrzej; Hou, Sen; Hołyst, Robert

    2014-09-01

    We discuss a quantitative influence of macromolecular crowding on biological processes: motion, bimolecular reactions, and gene expression in prokaryotic and eukaryotic cells. We present scaling laws relating diffusion coefficient of an object moving in a cytoplasm of cells to a size of this object and degree of crowding. Such description leads to the notion of the length scale dependent viscosity characteristic for all living cells. We present an application of the length-scale dependent viscosity model to the description of motion in the cytoplasm of both eukaryotic and prokaryotic living cells. We compare the model with all recent data on diffusion of nanoscopic objects in HeLa, and E. coli cells. Additionally a description of the mobility of molecules in cell nucleus is presented. Finally we discuss the influence of crowding on the bimolecular association rates and gene expression in living cells.

  20. Gene expression of cumulus cells in women with poor ovarian response after dehydroepiandrosterone supplementation

    Directory of Open Access Journals (Sweden)

    Kuan-Hao Tsui

    2014-12-01

    Conclusion: The study showed that DHEA therapy positively affected the gene expression of CCs in women with POR, and provided evidence to support the positive effect of DHEA supplementation on women with POR.

  1. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    KAUST Repository

    Diaz-Rua, Ruben

    2016-11-23

    Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases.

  2. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells

    NARCIS (Netherlands)

    Grosse, J.; Wehland, M.; Pietsch, J.; Ma, X.; Ulbrich, C.; Schulz, H.; Saar, K.; Hübner, N.; Hauslage, J.; Hemmersbach, R.; Braun, M.; van Loon, J.; Vagt, N.; Infanger, M.; Eilles, C.; Egli, M.; Richter, P.; Baltz, T.; Einspanier, R.; Sharbati, S.; Grimm, D.

    2012-01-01

    This study focused on the effects of short-term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft- und Raumfahrt) parabolic flight

  3. Simultaneous determination of gene expression and bacterial identity in single cells in defined mixtures of pure cultures

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Dalton, Helen M.; Angels, Mark

    1997-01-01

    A protocol was developed to achieve the simultaneous determination of gene expression and bacterial identity at the level of single cells: a chromogenic beta-galactosidase activity assay was combined with in situ hybridization of Fluorescently labelled oligonucleotide probes to rRNA. The method...

  4. The effect of enamel matrix derivative (Emdogain(R)) on gene expression profiles of human primary alveolar bone cells

    NARCIS (Netherlands)

    Yan, X.Z.; Rathe, F.; Gilissen, C.; Zande, M. van der; Veltman, J.; Junker, R.; Yang, F.; Jansen, J.A.; Walboomers, X.F.

    2014-01-01

    Emdogain(R) is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain(R) on expression profiles of

  5. Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses

    Science.gov (United States)

    Textor, Jamie A.; Clark, Kaitlin C.; Walker, Naomi J.; Aristizobal, Fabio A.; Kol, Amir; LeJeune, Sarah S.; Bledsoe, Andrea; Davidyan, Arik; Gray, Sarah N.; Bohannon‐Worsley, Laurie K.; Woolard, Kevin D.

    2017-01-01

    Abstract Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full‐thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord‐blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic‐ or (b) hypoxic‐preconditioned cells injected into wound margins, or (c) normoxic‐ or (d) hypoxic‐preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel‐treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic‐preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase‐2 expression at week 1. Histologically, significantly more MSC‐treated wounds were categorized as pro‐healing than pro‐inflammatory. Wound area was significantly affected by treatment: MSC‐injected wounds were consistently smaller than gel‐treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. stem cells translational medicine 2018;7:98–108 PMID:29063737

  6. Antisense downregulation of SARS-CoV gene expression in Vero E6 cells.

    Science.gov (United States)

    Shi, Yi; Luo, Haifeng; Jia, Jie; Xiong, Jie; Yang, Dehua; Huang, Bing; Jin, Youxin

    2005-01-01

    Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV). It is an enveloped, single-stranded, plus-sense RNA virus with a genome of approximately 30 kb. The structural proteins E, M and N of SARS-CoV play important roles during host cell entry and viral morphogenesis and release. Therefore, we have studied whether expression of these structural proteins can be down-regulated using an antisense technique. Vero E6 cells were transfected with plasmid constructs containing exons of the SARS-CoV structural protein E, M or N genes or their exons in frame with the reporter protein EGFP. The transfected cell cultures were treated with antisense phosphorothioated oligonucleotides (antisense PS-ODN, 20mer) or a control oligonucleotide by addition to the culture medium. Among a total of 26 antisense PS-ODNs targeting E, M and N genes, we obtained six antisense PS-ODNs which could sequence-specifically reduce target genes expression by over 90% at the concentration of 50 microM in the cell culture medium tested by RT-PCR. The antisense effect was further proved by down-regulating the expression of the fusion proteins containing the structural proteins E, M or N in frame with the reporter protein EGFP. In Vero E6 cells, the antisense effect was dependent on the concentrations of the antisense PS-ODNs in a range of 0-10 microM or 0-30 microM. The antisense PS-ODNs are effective in downregulation of SARS. The findings indicate that antisense knockdown of SARS could be a useful strategy for treatment of SARS, and could also be suitable for studies of the pathological function of SARS genes in a cellular model system.

  7. Modulation of Gene Expression in Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Osteoarthritis.

    Science.gov (United States)

    Bravo, Beatriz; Argüello, Jose Manuel; Gortazar, Arancha R; Forriol, Francisco; Vaquero, Javier

    2018-01-01

    Aim In the osteoarthritis (OA) disease, all structures of the joint are involved. The infrapatellar Hoffa fat pad is rich in macrophages and granulocytes, which also represents a source of adipose mesenchymal progenitor cells (ASC) cells. In our study, we analyze how OA affects the ability of ASC-derived from Hoffa's fat pad to differentiate into chondrocytes. Material and methodology We took knee Hoffa's pad samples and adipose tissue from the proximal thigh from 6 patients diagnosed with severe OA and from another 6 patients with an anterior cruciate ligament (ACL) rupture without OA. From all the patients, we took subcutaneous adipose tissue from the thigh, as the control group. Samples of synovial fluid (SF) were also extracted. The gene expression was analyzed by real-time quantitative polymerase chain reaction. Results PTH1R and MMP13 expression during chondrogenic differentiation were similar between OA and ACL groups, while the expression of OPG, FGF2, TGFβ, MMP3 were significantly lower in the OA group. Exposure of differentiated ASC to OA SF induced an increase in the expression of OPG, PTH1R, and MMP13 and a decrease in the expression of FGF2 in cell culture of the ACL group. However, expression of none of these factors was altered by the OA synovial fluid in ASC cells of the OA group. Conclusion OA of the knee also affects the mesenchymal stem cells of Hoffa fat, suggesting that Hoffa fat is a new actor in the OA degenerative process that can contribute to the origin, onset, and progression of the disease.

  8. Transient Gene Expression in Epidermal Cells of Plant Leaves by Biolistic DNA Delivery

    OpenAIRE

    Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the pr...

  9. Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.

    Directory of Open Access Journals (Sweden)

    Inge Mannaerts

    Full Text Available BACKGROUND: Scarring of the liver is the result of prolonged exposure to exogenous or endogenous stimuli. At the onset of fibrosis, quiescent hepatic stellate cells (HSCs activate and transdifferentiate into matrix producing, myofibroblast-like cells. AIM AND METHODS: To identify key players during early HSC activation, gene expression profiling was performed on primary mouse HSCs cultured for 4, 16 and 64 hours. Since valproic acid (VPA can partly inhibit HSC activation, we included VPA-treated cells in the profiling experiments to facilitate this search. RESULTS: Gene expression profiling confirmed early changes for known genes related to HSC activation such as alpha smooth muscle actin (Acta2, lysyl oxidase (Lox and collagen, type I, alpha 1 (Col1a1. In addition we noticed that, although genes which are related to fibrosis change between 4 and 16 hours in culture, most gene expression changes occur between 16 and 64 hours. Insulin-like growth factor binding protein 3 (Igfbp3 was identified as a gene strongly affected by VPA treatment. During normal HSC activation Igfbp3 is up regulated and this can thus be prevented by VPA treatment in vitro and in vivo. siRNA-mediated silencing of Igfbp3 in primary mouse HSCs induced matrix metalloproteinase (Mmp 9 mRNA expression and strongly reduced cell migration. The reduced cell migration after Igfbp3 knock-down could be overcome by tissue inhibitor of metalloproteinase (TIMP 1 treatment. CONCLUSION: Igfbp3 is a marker for culture-activated HSCs and plays a role in HSC migration. VPA treatment prevents Igfbp3 transcription during activation of HSCs in vitro and in vivo.

  10. B-cell subpopulations from normal human secondary lymphoid tissues with specific gene expression profiles and phenotypes

    DEFF Research Database (Denmark)

    Johnsen, Hans Erik; Schmitz, Alexander; Perez Andres, Martin

    included homogenization, isolation of mononuclear cells, MFC and FACS sorting using multicolour fluorescence single tube panels.of antibodies against surface molecules as CD10/20/27/38/45, supplemented with tissue related antibodies. Isolated B-cell subpopulations were evaluated by morphological inspection......In order to improve insights into the B-cell biology and thereby B-cell myelomagenesis we have established a MSCNET standard for multiparametric flow cytometry (MFC) and cell sorting (FACS) for subsequent genetic analysis. The material analysed was fresh tonsils, blood and bone marrow. The method...... and single gene expression analysis (qRT-PCR) for transcription factors as well as global gene expression profiling (GEP; GeneChip Human Exon 1.0 ST Array). For example for tonsils, based on the immunophenotypic presentation (including CD3/44/CXCR4 in the panel), B-cell subsets were identified and sorted...

  11. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    Science.gov (United States)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  12. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters.

    Science.gov (United States)

    Ramanathan, Chidambaram; Khan, Sanjoy K; Kathale, Nimish D; Xu, Haiyan; Liu, Andrew C

    2012-09-27

    In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host

  13. Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity.

    Science.gov (United States)

    Souza, Vânia L; de Almeida, Alex-Alan F; Souza, Jadiel de S; Mangabeira, Pedro A O; de Jesus, Raildo M; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C; Loguercio, Leandro L

    2014-01-01

    Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L(-1)) in nutrient solution. When doses were equal or higher than 8 mg Cu L(-1), after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L(-1) significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.

  14. Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells.

    Science.gov (United States)

    Perales, Sonia; Alejandre, Ma José; Morales, Rogelio Palomino; Torres, Carolina; Linares, Ana

    2010-07-14

    Nutritional control of gene regulation guides the transformation of smooth muscle cells (SMC) into foam cells in atherosclerosis. Oxidative stress has been reported in areas of lipid accumulation, activating proliferation genes. Suppression of oxidative stress by antioxidant administration reduces this activation and the progression of lesions. We hypothesized that fish oil consumption may protect against atherosclerotic vascular disease. The study objective was to determine the effects of dietary cholesterol and fish-oil intake on the apoptotic pathways induced by 25-hydroxycholesterol (25-HC) in SMC cultures. An in vivo/in vitro cell model was used, culturing SMC isolated from chicks exposed to an atherogenic cholesterol-rich diet with 5% of cholesterol (SMC-Ch) alone or followed by an anti-atherogenic fish oil-rich diet with 10% of menhaden oil (SMC-Ch-FO) and from chicks on standard diet (SMC-C). Cells were exposed to 25-HC, studying apoptosis levels by flow cytometry (Annexin V) and expressions of caspase-3, c-myc, and p53 genes by quantitative real-time reverse transcriptase-polymerase chain reaction. Exposure to 25-HC produced apoptosis in all three SMC cultures, which was mediated by increases in caspase-3, c-myc, and p53 gene expression. Changes were more marked in SMC-Ch than in SMC-C, indicating that dietary cholesterol makes SMC more susceptible to 25-HC-mediated apoptosis. Expression of p53 gene was elevated in SMC-Ch-FO. This supports the proposition that endogenous levels of p53 protect SMC against apoptosis and possibly against the development of atherosclerosis. Fish oil attenuated the increase in c-myc levels observed in SMC-C and SMC-Ch, possibly through its influence on the expression of antioxidant genes. Replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of the cholesterol-induced changes, increasing the resistance of SMC to apoptosis.

  15. Comparative analysis of HPV16 gene expression profiles in cervical and in oropharyngeal squamous cell carcinoma

    Science.gov (United States)

    Cerasuolo, Andrea; Annunziata, Clorinda; Tortora, Marianna; Starita, Noemy; Stellato, Giovanni; Greggi, Stefano; Maglione, Maria Grazia; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M.; Tornesello, Maria Lina

    2017-01-01

    Human papillomavirus type 16 (HPV16) is the major cause of cervical cancer and of a fraction of oropharyngeal carcinoma. Few studies compared the viral expression profiles in the two types of tumor. We analyzed HPV genotypes and viral load as well as early (E2/E4, E5, E6, E6*I, E6*II, E7) and late (L1 and L2) gene expression of HPV16 in cervical and oropharyngeal cancer biopsies. The study included 28 cervical squamous cell carcinoma (SCC) and ten oropharyngeal SCC, along with pair-matched non-tumor tissues, as well as four oropharynx dysplastic tissues and 112 cervical intraepithelial neoplasia biopsies. Viral load was found higher in cervical SCC (<1 to 694 copies/cell) and CIN (<1 to 43 copies/cell) compared to oropharyngeal SCC (<1 to 4 copies/cell). HPV16 E2/E4 and E5 as well as L1 and L2 mRNA levels were low in cervical SCC and CIN and undetectable in oropharynx cases. The HPV16 E6 and E7 mRNAs were consistently high in cervical SCC and low in oropharyngeal SCC. The analysis of HPV16 E6 mRNA expression pattern showed statistically significant higher levels of E6*I versus E6*II isoform in cervical SCC (p = 0.002) and a slightly higher expression of E6*I versus E6*II in oropharyngeal cases. In conclusion, the HPV16 E5, E6, E6*I, E6*II and E7 mRNA levels were more abundant in cervical SCC compared to oropharyngeal SCC suggesting different carcinogenic mechanisms in the two types of HPV-related cancers. PMID:28423662

  16. Comparative analysis of HPV16 gene expression profiles in cervical and in oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Cerasuolo, Andrea; Annunziata, Clorinda; Tortora, Marianna; Starita, Noemy; Stellato, Giovanni; Greggi, Stefano; Maglione, Maria Grazia; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M; Tornesello, Maria Lina

    2017-05-23

    Human papillomavirus type 16 (HPV16) is the major cause of cervical cancer and of a fraction of oropharyngeal carcinoma. Few studies compared the viral expression profiles in the two types of tumor. We analyzed HPV genotypes and viral load as well as early (E2/E4, E5, E6, E6*I, E6*II, E7) and late (L1 and L2) gene expression of HPV16 in cervical and oropharyngeal cancer biopsies. The study included 28 cervical squamous cell carcinoma (SCC) and ten oropharyngeal SCC, along with pair-matched non-tumor tissues, as well as four oropharynx dysplastic tissues and 112 cervical intraepithelial neoplasia biopsies. Viral load was found higher in cervical SCC (<1 to 694 copies/cell) and CIN (<1 to 43 copies/cell) compared to oropharyngeal SCC (<1 to 4 copies/cell). HPV16 E2/E4 and E5 as well as L1 and L2 mRNA levels were low in cervical SCC and CIN and undetectable in oropharynx cases. The HPV16 E6 and E7 mRNAs were consistently high in cervical SCC and low in oropharyngeal SCC. The analysis of HPV16 E6 mRNA expression pattern showed statistically significant higher levels of E6*I versus E6*II isoform in cervical SCC (p = 0.002) and a slightly higher expression of E6*I versus E6*II in oropharyngeal cases. In conclusion, the HPV16 E5, E6, E6*I, E6*II and E7 mRNA levels were more abundant in cervical SCC compared to oropharyngeal SCC suggesting different carcinogenic mechanisms in the two types of HPV-related cancers.

  17. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells

    Science.gov (United States)

    Hughes-Fulford, M.; Chen, Y.; Tjandrawinata, R. R.

    2001-01-01

    It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.

  18. TLM-Quant: an open-source pipeline for visualization and quantification of gene expression heterogeneity in growing microbial cells.

    Directory of Open Access Journals (Sweden)

    Sjouke Piersma

    Full Text Available Gene expression heterogeneity is a key driver for microbial adaptation to fluctuating environmental conditions, cell differentiation and the evolution of species. This phenomenon has therefore enormous implications, not only for life in general, but also for biotechnological applications where unwanted subpopulations of non-producing cells can emerge in large-scale fermentations. Only time-lapse fluorescence microscopy allows real-time measurements of gene expression heterogeneity. A major limitation in the analysis of time-lapse microscopy data is the lack of fast, cost-effective, open, simple and adaptable protocols. Here we describe TLM-Quant, a semi-automatic pipeline for the analysis of time-lapse fluorescence microscopy data that enables the user to visualize and quantify gene expression heterogeneity. Importantly, our pipeline builds on the open-source packages ImageJ and R. To validate TLM-Quant, we selected three possible scenarios, namely homogeneous expression, highly 'noisy' heterogeneous expression, and bistable heterogeneous expression in the Gram-positive bacterium Bacillus subtilis. This bacterium is both a paradigm for systems-level studies on gene expression and a highly appreciated biotechnological 'cell factory'. We conclude that the temporal resolution of such analyses with TLM-Quant is only limited by the numbers of recorded images.

  19. Genome-wide gene expression profiling of homeodomain-interacting protein kinase 2 deficient medullary thymic epithelial cells

    Directory of Open Access Journals (Sweden)

    Kristin Rattay

    2015-12-01

    Full Text Available The establishment of central tolerance essentially depends on the promiscuous gene expression (pGE of a plethora of tissue restricted antigens by the medullary thymic epithelial cells. The antigens are presented to developing thymocytes in the thymus to select for non-self reactive T-cell receptors in order to prevent autoimmune reactions in the periphery. However the molecular regulation of tissue-restricted antigen expression is still poorly understood. The only regulator known to play a role in the transcriptional regulation so far is the autoimmune regulator (AIRE. AIRE is thought to act in a multi-protein complex, promoting transcription, elongation and splicing of target genes. Yet the full composition of this Aire-associated multi-protein complex and its mode of action remain to be elucidated. Here we describe the experimental details and controls of the gene array analysis on the impact of the homeodomain-interacting protein kinase 2 (Hipk2 on promiscuous gene expression in medullary thymic epithelial cells based on the analysis of newly generated TEC-specific Hipk2 conditional knockout mice. The changes in gene expression are presumably mediated through a regulatory effect of Hipk2 on AIRE as published in the study by Rattay and colleagues in the Journal of Immunology [1]. The gene array data reported in this paper have been deposited in the Gene Expression Omnibus (GEO database, www.ncbi.nlm.nih.gov/geo (accession no. GSE63432.

  20. Gene Expression in Hair Follicle Dermal Papilla Cells after Treatment with Stanozolol

    Directory of Open Access Journals (Sweden)

    M. Reiter

    2009-01-01

    Full Text Available Doping with anabolic agents is a topic in sports where strength is crucial, e.g. sprinting, weight lifting and many more. Testosterone and its functional analogs are the drugs of choice taken as pills, creams, tape or injections to increase muscle mass and body performance, and to reduce body fat. Stanozolol (17β-hydroxy-17α-methyl-5α-androst- 2-eno[3,2c]pyrazol is a testosterone analogue with the same anabolic effect like testosterone but its ring structure makes it possible to take it orally. Therefore, stanozolol is one of the most frequently used anabolic steroids. Common verification methods for anabolic drugs exist, identifying the chemicals in tissues, like hair or blood samples. The idea of this feasibility study was to search for specific gene expression regulations induced by stanozolol to identify the possible influence of the synthetically hormone on different metabolic pathways. Finding biomarkers for anabolic drugs could be supportive of the existing methods and an additional proof for illegal drug abuse. In two separate cell cultures, human HFDPC (hair follicle dermal papilla cells from a female and a male donor were treated with stanozolol. In the female cell culture treatment concentrations of 0 nM (control, 1 nM, 10 nM and 100 nM were chosen. Cells were taken 0 h, 6 h, 24 h and 48 h after stimulation and totalRNA was extracted. Learning from the results of the pilot experiment, the male cell culture was treated in 10 nM and 100 nM concentrations and taken after 0 h, 6 h, 24 h and 72 h. Using quantitative real-time RT-PCR expression of characteristics of different target genes were analysed. Totally 13 genes were selected according to their functionality by screening the actual literature and composed to functional groups: factors of apoptosis regulation were Fas Ligand (FasL, its receptor (FasR, Caspase 8 and Bcl-2. Androgen receptor (AR and both estrogen receptors (ERα, ERβ were summarized in the steroid receptor group

  1. Gene expression in hair follicle dermal papilla cells after treatment with stanozolol.

    Science.gov (United States)

    Reiter, M; Pfaffl, M W; Schönfelder, M; Meyer, H H D

    2008-12-23

    Doping with anabolic agents is a topic in sports where strength is crucial, e.g. sprinting, weight lifting and many more. Testosterone and its functional analogs are the drugs of choice taken as pills, creams, tape or injections to increase muscle mass and body performance, and to reduce body fat. Stanozolol (17beta-hydroxy-17alpha-methyl-5alpha-androst-2-eno[3,2c]pyrazol) is a testosterone analogue with the same anabolic effect like testosterone but its ring structure makes it possible to take it orally. Therefore, stanozolol is one of the most frequently used anabolic steroids.Common verification methods for anabolic drugs exist, identifying the chemicals in tissues, like hair or blood samples. The idea of this feasibility study was to search for specific gene expression regulations induced by stanozolol to identify the possible influence of the synthetically hormone on different metabolic pathways. Finding biomarkers for anabolic drugs could be supportive of the existing methods and an additional proof for illegal drug abuse.In two separate cell cultures, human HFDPC (hair follicle dermal papilla cells) from a female and a male donor were treated with stanozolol. In the female cell culture treatment concentrations of 0 nM (control), 1 nM, 10 nM and 100 nM were chosen. Cells were taken 0 h, 6 h, 24 h and 48 h after stimulation and totalRNA was extracted. Learning from the results of the pilot experiment, the male cell culture was treated in 10 nM and 100 nM concentrations and taken after 0 h, 6 h, 24 h and 72 h. Using quantitative real-time RT-PCR expression of characteristics of different target genes were analysed.Totally 13 genes were selected according to their functionality by screening the actual literature and composed to functional groups: factors of apoptosis regulation were Fas Ligand (FasL), its receptor (FasR), Caspase 8 and Bcl-2. Androgen receptor (AR) and both estrogen receptors (ERalpha, ERbeta) were summarized in the steroid receptor group. The

  2. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  3. Single cell transcriptome profiling revealed differences in gene expression during oocyte maturation in Haimen white goats.

    Science.gov (United States)

    Yin, X Y; Cheng, G H; Guo, H Y; Wang, Q; Li, Y J; Zhang, H

    2017-03-15

    Juvenile in vitro embryo transfer is an important animal reproductive technology that can shorten the generation interval of livestock, explore the reproductive potential of dams with excellent genetic traits, accelerate genetic progress and production efficiency of the herd, and provide a wealth of genetic resources for livestock breeding. However, oocytes from kids do not develop as well as those from female goats during in vitro maturation. To identify differences during different stages of oocyte maturation, we used single cell transcriptome sequencing to compare gene expression in mature oocytes from kids and female goats. We identified 1086 differentially expressed genes in mature oocytes from kids and female goats. Of these, we observed upregulated expression in 355 genes and downregulated expression in 435 genes. The differentially expressed genes were involved in a total of 245 different pathways; of which 30 were significant (P ≤ 0.05). We used real-time quantitative polymerase chain reaction to screen and verify the expression of five genes specifically involved in oocyte maturation (MOS, RPS6KA1, CPEB1, ANAPC13, and CDK1). Further study of these genes will be of great importance for improving the reproductive performance of Haimen white goats.

  4. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

    Directory of Open Access Journals (Sweden)

    Elisabeth Hessmann

    2016-01-01

    Full Text Available Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

  5. Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain.

    Science.gov (United States)

    Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun

    2014-08-01

    The contributing molecular pathways underlying the pathogenesis of breast cancer need to be better characterized. The principle of our study was to better understand the genetic mechanism of oncogenesis for human breast cancer and to discover new possible tumor markers for use in clinical practice. We used complimentary DNA (cDNA) microarrays to compare gene expression profiles of treated Michigan Cancer Foundation-7 (MCF-7) with recombinant bromelain and untreated MCF-7. SpringGene analysis was carried out of differential expression followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We identified 1,102 known genes differentially expressed to a significant degree (pbromelain produces a unique signature affecting different pathways, specific for each congener. The microarray results give a molecular mechanistic insight and functional effects, following recombinant bromelain treatment. The extent of changes in genes is related to and involved significantly in gap junction signaling, amyloid processing, cell cycle regulation by BTG family proteins, and breast cancer regulation by stathmin1 that play major roles.

  6. Effects of Nebivolol on Endothelial Gene Expression during Oxidative Stress in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ulisse Garbin

    2008-01-01

    Full Text Available The endothelium plays a key role in the development of atherogenesis and its inflammatory and proliferative status influences the progression of atherosclerosis. The aim of this study is to compare the effects of two beta blockers such as nebivolol and atenolol on gene expression in human umbilical vein endothelial cells (HUVECs following an oxidant stimulus. HUVECs were incubated with nebivolol or atenolol (10 micromol/L for 24 hours and oxidative stress was induced by the addition of oxidized (ox-LDL. Ox-LDL upregulated adhesion molecules (ICAM-1, ICAM-2, ICAM-3, E-selectin, and P-selectin; proteins linked to inflammation (IL-6 and TNFalpha, thrombotic state (tissue factor, PAI-1 and uPA, hypertension such as endothelin-1 (ET-1, and vascular remodeling such as metalloproteinases (MMP-2, MMP-9 and protease inhibitor (TIMP-1. The exposure of HUVECs to nebivolol, but not to atenolol, reduced these genes upregulated by oxidative stress both in terms of protein and RNA expression. The known antioxidant properties of the third generation beta blocker nebivolol seem to account to the observed differences seen when compared to atenolol and support the specific potential protective role of this beta blocker on the expression of a number of genes involved in the initiation and progression of atherosclerosis.

  7. A strategy for full interrogation of prognostic gene expression patterns: exploring the biology of diffuse large B cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Lisa M Rimsza

    Full Text Available Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL. Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome.We explored gene expression profiling data using variable cut-point analysis for 36 genes with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of significance: 1 genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g. HLA-DR; 2 genes with significant cut-points above the median, whose over-expression is associated with poor outcome (e.g. CCND2; and 3 genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as FN1.Variable cut-point analysis with permutation p-value calculation can be used to identify significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of gene effects.

  8. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  9. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  10. Silencing TAK1 alters gene expression signatures in bladder cancer cells.

    Science.gov (United States)

    Chen, Jimin; Zhang, Nan; Wen, Jiaming; Zhang, Zhewei

    2017-05-01

    The aim of the present study was to identify the differentially expressed genes (DEGs) that are induced by the silencing of transforming growth factor-β-activated kinase 1 (TAK1) in bladder cancer cells and to analyze the potential biological effects. Dataset GSE52452 from mutant fibroblast growth factor receptor 3 (FGFR3) bladder cancer cells transfected with control siRNA or TAK1-specific siRNA was downloaded from Gene Expression Omnibus. The DEGs between the two groups were identified using Limma package following data pre-processing by Affy in Bioconductor. Enrichment analysis of DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, followed by functional annotation using TRANSFAC, TSGene and TAG databases. Integrated networks were constructed by Cytoscape and sub-networks were extracted employing BioNet, followed by enrichment analysis of DEGs in the sub-network. A total of 43 downregulated and 21 upregulated genes were obtained. The downregulated genes were enriched in five pathways, including NOD-like receptor signaling pathway and functions related to cellular response. The upregulated genes were associated with cellular developmental processes. Transcription factor EGR1 and 9 tumor-associated genes were screened from the DEGs. Among the DEGs, 10 hub nodes may represent important roles in the complex metabolic network, including EGFR, CYP3A5, MAP3K7, GSTA1, PTHLH, ALDH1A1, KCND2, EGR1, ARRB1 and ITPR1. Additionally, EGFR was correlated with ERBB2, GRB2 and PIK3R1, and these were enriched in ErbB signaling pathway and various cancer-associated pathways. Silencing TAK1 may decrease cellular response to chemical stimulus via downregulating CYP3A5, MAP3K7, GSTA1, ALDH1A1, ARRB1 and ITPR1; increase cancer cell development via upregulating EGFR, EGR1 and PTHLH; and regulate cancer metastasis through EGFR, ERBB2, GRB2 and PIK3R1.

  11. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures.

    Science.gov (United States)

    van Dartel, Dorien A M; Pennings, Jeroen L A; de la Fonteyne, Liset J J; Brauers, Karen J J; Claessen, Sandra; van Delft, Joost H; Kleinjans, Jos C S; Piersma, Aldert H

    2011-03-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing. Copyright © 2010 Elsevier Inc

  12. A plasmid-based Escherichia coli gene expression system with cell-to-cell variation below the extrinsic noise limit

    Science.gov (United States)

    2017-01-01

    Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range. PMID:29084263

  13. Different Wnt-5A gene expressions in the renal cell carcinoma GRC-1 cell line during the cell cycle.

    Science.gov (United States)

    Zhuang, L; Guo, H; Xin, D; Zhang, Z; Li, H; Yuan, X; Tang, D; Ding, Y; Liu, L; Guo, Y

    2000-04-01

    To investigate the gene expression at transcription level of growth factor Wnt-5A in different phase during the cell cycle. We synchronized the renal cell carcinoma GRC-1 cell line by double thymidine blocks and high-pressure N2O gae methods and amplified Wnt-5A cDNAs from different phase using Semi-quantitative RT-PCR (reverse transcriptase polymerase chain reaction). The PCR products were electrophoresized on the agrose gel and detected by Gel Doc 1000 computer controlled system integrating the volumes of each band, representing the intensities of all pixels in a defined band. The different mRNA expressions of growth factor Wnt-5A was detected in RCC GRC-1 cell line. In S phase, the highest level of Wnt-5A transcript was observed, and in G1 and M phase, medial and lowest, respectively. The differences between S and M stages were statistically significant (P < 0.05). Growth factor Wnt-5A has the potential effect on tumorigenesis. It contributes to all phases during cell cycle but in S phase especially.

  14. Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2010-09-01

    Full Text Available Modifications on specific histone residues and DNA methylation play an essential role in lineage choice and cellular reprogramming. We have previously shown that histone modifications or combinatorial codes of transcription factors (TFs are critical for the differentiation of multipotential progenitors into myelinating oligodendrocytes. In this study we asked whether combining global manipulation of DNA methylation and histone acetylation together with the expression of oligodendrocyte-specific TFs, was sufficient to switch the identity of fibroblasts into myelin gene-expressing cells.Transfection of six oligodendrocyte-specific TFs (Olig1, Olig2, Sox10, Mash1, E47 and Nkx2.2 into NIH3T3 fibroblasts was capable of inducing expression of myelin gene promoter-driven reporters, but did not activate endogenous myelin gene expression. These results suggested the existence of a transcriptionally incompetent chromatin conformation in NIH3T3 fibroblasts. Using chromatin immunoprecipitation (ChIP analysis, we compared the histone code on the conserved regions of myelin genes (i.e. Mbp and Mag in differentiating oligodendrocyte progenitors and NIH3T3 fibroblasts. Chromatin at myelin gene loci was characterized by the presence of repressive histone modifications (me3K9H3 and me3K27H3 in NIH3T3 fibroblasts and active histone marks (me3K4H3 and AcH3 in oligodendrocyte lineage cells. To induce a transcriptionally competent chromatin signature, NIH3T3 fibroblasts were treated with 5-azadeoxy-citidine (5-AzaC to decrease DNA methylation, and trichostatin A (TSA or sirtinol, to favor histone acetylation. Treatment with 5-AzaC/TSA but not sirtinol, resulted in the detection of endogenous myelin gene transcripts in fibroblasts, although not to the levels detected in myelinating cells. Transfection of oligodendrocyte-specific TFs after 5-AzaC/TSA treatment did not further increase myelin gene expression, nor did it reprogram the transcriptional network of NIH3T3

  15. Gene expression profile associated with oncogenic ras-induced senescence, cell death, and transforming properties in human cells.

    Science.gov (United States)

    Moumtzi, Sophy S; Roberts, Michael L; Joyce, Tobias; Evangelidou, Maria; Probert, Lesley; Frillingos, Stathis; Fotsis, Theodore; Pintzas, Alexander

    2010-07-01

    We developed inducible and constitutive expression systems of Ha-RasV12 in HEK 293 cells to examine early oncogenic RasV12 signaling. Inducible expression of oncogenic Ras-triggered growth arrest, early senescence, and later apoptosis. Gene expression profile analysis revealed early Ras proliferation and cell cycle genes like c-fos, cyclin E, cdk2, cell-cell contact, and signaling like integrin a6, MEK5, and free radical signaling genes, like proline oxidase. Therefore, Ras-mediated signaling is a fine regulated process both positively and negatively influencing cell cycle, senescence, and apoptosis pathways. Novel early RAS-target genes could be potentially exploited in cancer diagnostics and therapeutics.

  16. Strategy of tuning gene expression ratio in prokaryotic cell from perspective of noise and correlation.

    Science.gov (United States)

    Li, Rui; Xu, Liufang; Shi, Hualin

    2015-01-21

    Genes are organized into operons in procaryote, and these genes in one operon generally have related functions. However, genes in the same operon are usually not equally expressed, and the ratio needs to be fine-tuned for specific functions. We examine the difference of gene expression noise and correlation when tuning the expression level at the transcriptional or translational level in a bicistronic operon driven by a constitutive or a two-state promoter. We get analytic results for the noise and correlation of gene expression levels, which is confirmed by our stochastic simulations. Both the noise and the correlation of gene expressions in an operon with a two-state promoter are higher than in an operon with a constitutive promoter. Premature termination of mRNA induced by transcription terminator in the intergenic region or changing translation rates can tune the protein ratio at the transcriptional level or at the translational level. We find that gene expression correlation between promoter-proximal and promoter-distal genes at the protein level decreases as termination increases. In contrast, changing translation rates in the normal range almost does not alter the correlation. This explains why the translation rate is a key factor of modulating gene expressions in an operon. Our results can be useful to understand the relationship between the operon structure and the biological function of a gene network, and also may help in synthetic biology design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-01-01

    Full Text Available Abstract Background Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip® Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR. Results This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis. Conclusion Transcript profiling using the Affymetrix GeneChip® Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip®. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was

  18. Evaluation of developmental toxicant identification using gene expression profiling in embryonic stem cell differentiation cultures.

    Science.gov (United States)

    van Dartel, Dorien A M; Pennings, Jeroen L A; de la Fonteyne, Liset J J; Brauers, Karen J J; Claessen, Sandra; van Delft, Joost H; Kleinjans, Jos C S; Piersma, Aldert H

    2011-01-01

    The murine embryonic stem cell test (EST) is an alternative testing method designed to assess potential developmental toxicity of compounds. The implementation of transcriptomics in the EST has been shown to reduce the culture duration and improve endpoint evaluation and is expected to result in an enhanced predictability and definition of the applicability domain. We evaluated the identification of developmental toxicity in the EST using two gene sets ("Van_Dartel_heartdiff_24h" and "EST biomarker genes") defined in our earlier studies. Nonexposed embryonic stem cells (ESC) differentiation cultures were sampled 0, 24, and 48 h after initiation of differentiation. Additionally, cultures exposed to 12 diverse well-characterized positive and negative developmental toxicants were isolated 24 h after the onset of exposure. Inhibition of ESC differentiation was evaluated in parallel by morphological scoring on culture day 10. Transcriptomics analysis was conducted using the Affymetrix Gene Chips platform. We applied principal component analysis on the basis of the two predefined gene sets to define the "differentiation track" that represents ESC differentiation. The significance of derivations in the gene expression-based differentiation track because of compound exposures were evaluated to determine developmental toxicity of tested compounds. We successfully predicted developmental toxicity using transcriptomics for 83% (10/12) and 67% (8/12) of the compounds, respectively, using the two predefined gene sets ("Van_Dartel_heartdiff_24h" and "EST biomarker genes"). Our study suggests that the application of transcriptomics may improve the applicability of the EST for the prediction of the developmental toxicity of chemicals.

  19. Bioinformatics analysis of gene expression profiles in B cells of postmenopausal osteoporosis patients.

    Science.gov (United States)

    Ma, Min; Luo, Shulin; Zhou, Wei; Lu, Liangyu; Cai, Junfeng; Yuan, Feng; Yin, Feng

    2017-04-01

    The aim of this study was to gain a better understanding of the molecular mechanisms and identify more critical genes associated with the pathogenesis of postmenopausal osteoporosis (PMOP). Microarray data of GSE13850 were download from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified either in B cells from postmenopausal female nonsmokers with high bone mineral density (BMD) compared with those with low BMD (defined as DEG1 group) or in B cells from postmenopausal female smokers with high BMD compared with postmenopausal female nonsmokers with high BMD (defined as DEG2 group). Gene ontology and immune-related functional enrichment analysis of DEGs were performed. Additionally, the protein-protein interaction network of all DEGs was constructed and subnetworks of the hub genes were extracted. A total of 51 DEGs were identified in the DEG1 group, including 30 up- and 21 downregulated genes. Besides, 86 DEGs were identified in the DEG2 group, of which 46 were upregulated and 40 were downregulated. Immune enrichment analysis showed DEGs were mainly enriched in functions of CD molecules and chemokines and receptor, and the upregulated gene interleukin 4 receptor (IL-4R) was significantly enriched. Moreover, guanine nucleotide-binding protein G (GNAI2), filamin A alpha (FLNA), and transforming growth factor-β1 (TGFB1) were hub proteins in the protein-protein interaction network. IL-4R, GNAI2, FLNA, and TGFB1 may be potential target genes associated with the pathogenesis of PMOP. In particular, FLNA, and TGFB1 may be affected by smoking, a risk factor of PMOP. Copyright © 2017. Published by Elsevier B.V.

  20. Anti-Cancer Effect of Silibinin on Epithelial Ovarian Cancer Cell Line and P21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Fatemeh Pashaei-Asl

    2016-10-01

    Full Text Available Background & objectives: Epithelial ovarian carcinoma seems to be one of the most lethal cancer types among all gynecological malignancies. The conventional course of therapy includes chemotherapy. Actually most cancers respond to chemotherapy but in the long run drug resistance and side effects cause treatment failure. In addition, milk thistle (silibinin, a plant that has been used from ancient time because of its good effects on different organs, determined to have powerful antioxidant activity.  The aim of this study was to examine the effect of silibinin on SKOV-3 cancer cell line after 48 hours of treatment and P21 gene expression which involves in cell cycle progression. Methods: The human epithelial ovarian cancer cell line SKOV-3 was cultured as monolayer in 25 cm2 flask in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS. Then the numbers of live cells were calculated using hemocytometer method and the cells were seeded in 96-well flat-bottomed culture plates and treated with different concentration of Silibinin. MTT assay was carried out to determine cell viability. To study P21 gene expression, RNA extraction and cDNA synthesis were carried out and real-time PCR was done. Results: Cell growth was inhibited considerably by Silibinin treated groups compared with control after 48 hours. P21 gene expression was increased as well. Conclusions: According to the results, Silibinin can be used as an effective drug in cancer treatment. More studies on animal models are also suggested.

  1. Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells.

    OpenAIRE

    Dupont, G P; Huecksteadt, T P; Marshall, B C; Ryan, U S; Michael, J R; Hoidal, J R

    1992-01-01

    The central importance of xanthine dehydrogenase (XDH) and xanthine oxidase (XO) in the pathobiochemistry of a number of clinical disorders underscores the need for a comprehensive understanding of the regulation of their expression. This study was undertaken to examine the effects of cytokines on XDH/XO activity and gene expression in pulmonary endothelial cells. The results indicate that IFN-gamma is a potent inducer of XDH/XO activity in rat lung endothelial cells derived from both the mic...

  2. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Perkins Timothy N

    2012-02-01

    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  3. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells.

    Science.gov (United States)

    Perkins, Timothy N; Shukla, Arti; Peeters, Paul M; Steinbacher, Jeremy L; Landry, Christopher C; Lathrop, Sherrill A; Steele, Chad; Reynaert, Niki L; Wouters, Emiel F M; Mossman, Brooke T

    2012-02-02

    Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis), and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B) exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2). Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE) were used to comparatively assess silica particle-induced alterations in gene expression. Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75) and high (150 × 106μm2/cm2) amounts, respectively (p silica micro-particles at high amounts (150 × 106μm2/cm2) induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p crystalline silica, but none were induced by amorphous silica. QRT-PCR revealed that cristobalite selectively up-regulated stress-related genes and cytokines (FOS, ATF3, IL6 and IL8) early and over time (2, 4, 8, and 24 h). Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2) revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed

  4. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  5. Spatiotemporal Reconstruction of the Human Blastocyst by Single-Cell Gene-Expression Analysis Informs Induction of Naive Pluripotency.

    Science.gov (United States)

    Durruthy-Durruthy, Jens; Wossidlo, Mark; Pai, Sunil; Takahashi, Yusuke; Kang, Gugene; Omberg, Larsson; Chen, Bertha; Nakauchi, Hiromitsu; Reijo Pera, Renee; Sebastiano, Vittorio

    2016-07-11

    Human preimplantation embryo development involves complex cellular and molecular events that lead to the establishment of three cell lineages in the blastocyst: trophectoderm, primitive endoderm, and epiblast. Owing to limited resources of biological specimens, our understanding of how the earliest lineage commitments are regulated remains narrow. Here, we examined gene expression in 241 individual cells from early and late human blastocysts to delineate dynamic gene-expression changes. We distinguished all three lineages and further developed a 3D model of the inner cell mass and trophectoderm in which individual cells were mapped into distinct expression domains. We identified in silico precursors of the epiblast and primitive endoderm lineages and revealed a role for MCRS1, TET1, and THAP11 in epiblast formation and their ability to induce naive pluripotency in vitro. Our results highlight the potential of single-cell gene-expression analysis in human preimplantation development to instruct human stem cell biology. Published by Elsevier Inc.

  6. Gene expression profiling of dexamethasone-treated RBL-2H3 cells: induction of anti-inflammatory molecules.

    Science.gov (United States)

    Nakamura, Ryosuke; Okunuki, Haruyo; Ishida, Seiichi; Saito, Yoshiro; Teshima, Reiko; Sawada, Jun-Ichi

    2005-05-15

    Glucocorticoids are well known for their anti-inflammatory effect through the regulation of gene expression in many types of immune cells, including mast cells. However, the genes that are involved in suppression of mast cell-mediated inflammation by glucocorticoids have not been fully identified. Therefore, we examined the dexamethasone (Dex)-responsive genes in RBL-2H3 mast cells using a high-density oligonucleotide microarray technique. Gene expression profiling revealed that the antigen-induced up-regulation of pro-inflammatory factors, including monocyte chemoattractant protein-1, was markedly inhibited by 100 nM Dex. On the other hand, Dex treatment itself caused the substantial up-regulation of many genes, including phenylethanolamine-N-methyl transferase (PNMT) and cytokine-inducible SH2-containing protein (CISH), in the mast cells. The expression of these two genes significantly increased 6 h after Dex exposure and lasted for more than 24 h. Considering that PNMT is the rate-determining enzyme in epinephrine synthesis and that CISH is a suppressor of cytokine signaling, these Dex-responsive genes may be potential anti-inflammatory factors. Thus, gene expression profiling suggested that Dex might exert its anti-inflammatory effect through two pathways in mast cells: the suppression and induction of potentially pro- and anti-inflammatory factors, respectively.

  7. Tse-2: a trans-dominant extinguisher of albumin gene expression in hepatoma hybrid cells.

    Science.gov (United States)

    Chin, A C; Fournier, R E

    1989-09-01

    Serum albumin gene expression is generally extinguished in hepatoma x fibroblast hybrids. To define the genetic basis of this phenomenon, we screened a panel of hepatoma hybrids retaining different fibroblast chromosomes for albumin production by immunofluorescence. We report that albumin extinction in these clones was strictly correlated with the retention of mouse chromosome 1. Furthermore, albumin was systematically reexpressed in chromosome 1 segregants. These data define a tissue-specific extinguisher locus (Tse-2) that affects albumin gene expression in trans. Two other liver genes, those encoding liver alcohol dehydrogenase and liv-10, were coordinately extinguished with albumin in monochromosomal hybrids that specifically retained mouse chromosome 1.

  8. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression

    DEFF Research Database (Denmark)

    Kenny, Paraic A; Lee, Genee Y; Myers, Connie A

    2007-01-01

    large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene...... expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even...

  9. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  10. Gene expression analysis on small numbers of invasive cells collected by chemotaxis from primary mammary tumors of the mouse

    Directory of Open Access Journals (Sweden)

    Segall Jeffrey E

    2003-08-01

    Full Text Available Abstract Background cDNA microarrays have the potential to identify the genes involved in invasion and metastasis. However, when used with whole tumor tissue, the results average the expression patterns of different cell types. We have combined chemotaxis-based cell collection of the invasive subpopulation of cells within the primary tumor with array-based gene expression analysis to identify the genes necessary for the process of carcinoma cell invasion. Results Invasive cells were collected from live primary tumors using microneedles containing chemotactic growth factors to mimic chemotactic signals thought to be present in the primary tumor. When used with mammary tumors of rats and mice, carcinoma cells and macrophages constitute the invasive cell population. Microbeads conjugated with monoclonal anti-CD11b (Mac-1α antibodies were used to separate macrophages from carcinoma cells. We utilized PCR-based cDNA amplification from small number of cells and compared it to the quality and complexity of conventionally generated cDNA to determine if amplified cDNA could be used with fidelity for array analysis of this cell population. These techniques showed a very high level of correlation indicating that the PCR based amplification technique yields a cDNA population that resembles, with high fidelity, the original template population present in the small number of cells used to prepare the cDNA for use with the chip. Conclusions The specific collection of invasive cells from a primary tumor and the analysis of gene expression in these cells are is now possible. By further comparing the gene expression patterns of cells collected by invasion into microneedles with that of carcinoma cells obtained from the whole primary tumor, the blood, and whole metastatic tumors, genes that contribute to the invasive process in carcinoma cells may be identified.

  11. Specificity Protein 1 Regulates Gene Expression Related to Fatty Acid Metabolism in Goat Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jiangjiang Zhu

    2015-01-01

    Full Text Available Specificity protein 1 (SP1 is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311 and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium, pig, primates (pongo, gorilla, macaca and papio and murine (rattus and mus, while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ and lower liver X receptor α (LXRα mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.

  12. A murrel interferon regulatory factor-1: molecular characterization, gene expression and cell protection activity.

    Science.gov (United States)

    Arockiaraj, Jesu; Sathyamoorthi, Akila; Kumaresan, Venkatesh; Palanisamy, Rajesh; Chaurasia, Mukesh Kumar; Bhatt, Prasanth; Gnanam, Annie J; Pasupuleti, Mukesh; Arasu, Abirami

    2014-08-01

    In this study, we have reported a first murrel interferon regulatory factor-1 (designated as Murrel IRF-1) which is identified from a constructed cDNA library of striped murrel Channa striatus. The identified sequence was obtained by internal sequencing method from the library. The Murrel IRF-1 varies in size of the polypeptide from the earlier reported fish IRF-1. It contains a DNA binding domain along with a tryptophan pentad repeats, a nuclear localization signal and a transactivation domain. The homologous analysis showed that the Murrel IRF-1 had a significant sequence similarity with other known fish IRF-1 groups. The phylogenetic analysis exhibited that the Murrel IRF-1 clustered together with IRF-1 members, but the other members including IRF-2, 3, 4, 5, 6, 7, 8, 9 and 10 were clustered individually. The secondary structure of Murrel IRF-1 contains 27% α-helices (85 aa residues), 5.7% β-sheets (19 aa residues) and 67.19% random coils (210 aa residues). Furthermore, we predicted a tertiary structure of Murrel IRF-1 using I-Tasser program and analyzed the structure on PyMol surface view. The RNA structure of the Murrel IRF-1 along with its minimum free energy (-284.43 kcal/mol) was also predicted. The highest gene expression was observed in spleen and its expression was inducted with pathogenic microbes which cause epizootic ulcerative syndrome in murrels such as fungus, Aphanomyces invadans and bacteria, Aeromonas hydrophila, and poly I:C, a viral RNA analog. The results of cell protection assay suggested that the Murrel IRF-1 regulates the early defense response in C. striatus. Moreover, it showed Murrel IRF-1 as a potential candidate which can be developed as a therapeutic agent to control microbial infections in striped murrel. Overall, these results indicate the immune importance of IRF-1, however, the interferon signaling mechanism in murrels upon infection is yet to be studied at proteomic level.

  13. Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Linares Ana

    2010-07-01

    Full Text Available Abstract Background Nutritional control of gene regulation guides the transformation of smooth muscle cells (SMC into foam cells in atherosclerosis. Oxidative stress has been reported in areas of lipid accumulation, activating proliferation genes. Suppression of oxidative stress by antioxidant administration reduces this activation and the progression of lesions. We hypothesized that fish oil consumption may protect against atherosclerotic vascular disease. The study objective was to determine the effects of dietary cholesterol and fish-oil intake on the apoptotic pathways induced by 25-hydroxycholesterol (25-HC in SMC cultures. Methods An in vivo/in vitro cell model was used, culturing SMC isolated from chicks exposed to an atherogenic cholesterol-rich diet with 5% of cholesterol (SMC-Ch alone or followed by an anti-atherogenic fish oil-rich diet with 10% of menhaden oil (SMC-Ch-FO and from chicks on standard diet (SMC-C. Cells were exposed to 25-HC, studying apoptosis levels by flow cytometry (Annexin V and expressions of caspase-3, c-myc, and p53 genes by quantitative real-time reverse transcriptase-polymerase chain reaction. Results: Exposure to 25-HC produced apoptosis in all three SMC cultures, which was mediated by increases in caspase-3, c-myc, and p53 gene expression. Changes were more marked in SMC-Ch than in SMC-C, indicating that dietary cholesterol makes SMC more susceptible to 25-HC-mediated apoptosis. Expression of p53 gene was elevated in SMC-Ch-FO. This supports the proposition that endogenous levels of p53 protect SMC against apoptosis and possibly against the development of atherosclerosis. Fish oil attenuated the increase in c-myc levels observed in SMC-C and SMC-Ch, possibly through its influence on the expression of antioxidant genes. Conclusion Replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of the cholesterol-induced changes, increasing the resistance of SMC to apoptosis.

  14. EPConDB: a web resource for gene expression related to pancreatic development, beta-cell function and diabetes.

    Science.gov (United States)

    Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J

    2007-01-01

    EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.

  15. Identification of gene expression signatures across different types of neural stem cells with the Monte-Carlo feature selection method.

    Science.gov (United States)

    Chen, Lei; Li, JiaRui; Zhang, Yu-Hang; Feng, KaiYan; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Kong, Xiangyin; Cai, Yu-Dong

    2017-11-11

    Adult neural stem cells (NSCs) are a group of multi-potent, self-renewing progenitor cells that contribute to the generation of new neurons and oligodendrocytes. Three subtypes of NSCs can be isolated based on the stages of the NSC lineage, including quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs). Although it is widely accepted that these three groups of NSCs play different roles in the development of the nervous system, their molecular signatures are poorly understood. In this study, we applied the Monte-Carlo Feature Selection (MCFS) method to identify the gene expression signatures, which can yield a Matthews correlation coefficient (MCC) value of 0.918 with a support vector machine evaluated by ten-fold cross-validation. In addition, some classification rules yielded by the MCFS program for distinguishing above three subtypes were reported. Our results not only demonstrate a high classification capacity and subtype-specific gene expression patterns but also quantitatively reflect the pattern of the gene expression levels across the NSC lineage, providing insight into deciphering the molecular basis of NSC differentiation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Analyzing gene expression profile in K562 cells exposed to sodium valproate using microarray combined with the connectivity map database.

    Science.gov (United States)

    Zhang, Xiang-Zhong; Yin, Ai-Hua; Lin, Dong-Jun; Zhu, Xiao-Yu; Ding, Qian; Wang, Chun-Huai; Chen, Yun-Xian

    2012-01-01

    To explore the mechanism underlying antileukaemia effect of sodium valproate, the growth and survival of the K562 cell line were investigated. Global profiles of gene expression in K562 cells exposed to sodium valproate were assessed and validated. The differentially expressed genes identified were further used to query the connectivity map database to retrieve a ranked list of compounds that act on the same intracellular targets as sodium valproate. A significant increase in cell apoptosis and a change in gene expression profile were observed in valproate-exposed K562 cells. The significant enrichment analysis of gene ontology terms for the differentially expressed genes showed that these genes were involved in many important biological processes. Eight differentially expressed genes involved in apoptosis were verified by quantitative real-time PCR. The connectivity map analysis showed gene expression profile in K562 cells exposed to sodium valproate was most similar to that of HDACi and PI3K inhibitors, suggesting that sodium valproate might exert antileukaemic action by inhibiting HDAC as well as inhibiting PI3K pathway. In conclusion, our data might provide clues to elucidate the molecular and therapeutic potential of VPA in leukaemia treatment, and the connectivity map is a useful tool for exploring the molecular mechanism of drug action.

  17. Analyzing Gene Expression Profile in K562 Cells Exposed to Sodium Valproate Using Microarray Combined with the Connectivity Map Database

    Directory of Open Access Journals (Sweden)

    Xiang-Zhong Zhang

    2012-01-01

    Full Text Available To explore the mechanism underlying antileukaemia effect of sodium valproate, the growth and survival of the K562 cell line were investigated. Global profiles of gene expression in K562 cells exposed to sodium valproate were assessed and validated. The differentially expressed genes identified were further used to query the connectivity map database to retrieve a ranked list of compounds that act on the same intracellular targets as sodium valproate. A significant increase in cell apoptosis and a change in gene expression profile were observed in valproate-exposed K562 cells. The significant enrichment analysis of gene ontology terms for the differentially expressed genes showed that these genes were involved in many important biological processes. Eight differentially expressed genes involved in apoptosis were verified by quantitative real-time PCR. The connectivity map analysis showed gene expression profile in K562 cells exposed to sodium valproate was most similar to that of HDACi and PI3K inhibitors, suggesting that sodium valproate might exert antileukaemic action by inhibiting HDAC as well as inhibiting PI3K pathway. In conclusion, our data might provide clues to elucidate the molecular and therapeutic potential of VPA in leukaemia treatment, and the connectivity map is a useful tool for exploring the molecular mechanism of drug action.

  18. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    Science.gov (United States)

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  20. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    Science.gov (United States)

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  1. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Tareq Al-Maqtari

    Full Text Available Although transplantation of c-kit+ cardiac progenitor cells (CPCs significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs. We introduced five different TFs (Gata4, MEF2C, NKX2.5, TBX5, and BAF60C into CPCs, either alone or in combination, and then examined the expression of marker genes associated with the major cardiac cell types using quantitative RT-PCR. When introduced individually, Gata4 and TBX5 induced a subset of myocyte markers. Moreover, Gata4 alone significantly induced smooth muscle cell and fibroblast markers. Interestingly, these gene expression changes brought by Gata4 were also accompanied by morphological changes. In contrast, MEF2C and NKX2.5 were largely ineffective in initiating cardiac gene expression in CPCs. Surprisingly, introduction of multiple TFs in different combinations mostly failed to act synergistically. Likewise, addition of BAF60C to Gata4 and/or TBX5 did not further potentiate their effects on cardiac gene expression. Based on our results, it appears that GATA4 is able to potentiate gene expression programs associated with multiple cardiovascular lineages in CPCs, suggesting that GATA4 may be effective in priming CPCs for enhanced differentiation in the setting of stem cell therapy.

  2. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  3. Comparing the Gene Expression Profile of Stromal Cells from Human Cord Blood and Bone Marrow: Lack of the Typical “Bone” Signature in Cord Blood Cells

    Directory of Open Access Journals (Sweden)

    Julia Bosch

    2013-01-01

    Full Text Available With regard to the bone-regenerative capacity, bone marrow stromal cells (BMSC can still be termed the “gold standard.” Nevertheless, neonatal stromal cells from cord blood (CB feature advantages concerning availability, immaturity, and proliferation potential. The detailed gene expression analysis and overexpression of genes expressed differentially provide insight into the inherent capacity of stromal cells. Microarray and qRT-PCR analyses revealed closely related gene expression patterns of two stromal cell populations derived from CB. In contrast to the CB-derived cell types, BMSC displayed high expression levels of BSP, OSX, BMP4, OC, and PITX2. Lentiviral overexpression of BSP but not of OSX in CB-cells increased the capacity to form a mineralized matrix. BMP4 induced the secretion of proteoglycans during chondrogenic pellet culture and extended the osteogenic but reduced the adipogenic differentiation potential. BMSC revealed the typical osteogenic gene expression signature. In contrast, the CB-derived cell types exhibited a more immature gene expression profile and no predisposition towards skeletal development. The absence of BSP and BMP4—which were defined as potential key players affecting the differentiation potential—in neonatal stromal cells should be taken into consideration when choosing a cell source for tissue regeneration approaches.

  4. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  5. Inflammatory gene expression in whole blood cells after EPA vs. DHA supplementation: Results from the ComparED study.

    Science.gov (United States)

    Vors, Cécile; Allaire, Janie; Marin, Johanne; Lépine, Marie-Claude; Charest, Amélie; Tchernof, André; Couture, Patrick; Lamarche, Benoît

    2017-02-01

    Whether EPA and DHA exert similar anti-inflammatory effects through modulation of gene expression in immune cells remains unclear. The aim of the study was to compare the impact of EPA and DHA supplementation on inflammatory gene expression in subjects at risk for cardiometabolic diseases. In this randomized double-blind crossover trial, 154 men and women with abdominal obesity and low-grade inflammation were subjected to three 10-wk supplementation phases: 1) EPA (2.7 g/d); 2) DHA (2.7 g/d); 3) corn oil (3 g/d), separated by a 9-wk washout. Pro- and anti-inflammatory gene expression was assessed in whole blood cells by RT-qPCR after each treatment in a representative sample of 44 participants. No significant difference was observed between EPA and DHA in the expression of any of the genes investigated. Compared with control, EPA enhanced TRAF3 and PPARA expression and lowered CD14 expression (p DHA increased expression of PPARA and TNFA and decreased CD14 expression (p DHA were strongly correlated for PPARA (r = 0.73, p DHA has similar effects on the expression of many inflammation-related genes in immune cells of men and women at risk for cardiometabolic diseases. The effects of EPA and of DHA on anti-inflammatory gene expression may be more consistent than their effects on expression of pro-inflammatory genes in whole blood cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    OpenAIRE

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I; Chen, Lung-Chi; Costa, Max

    2012-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM10 and to identify genes and pathways that may contribute to PM related adverse heal...

  7. Gene Expression Profiling of Corynebacterium glutamicum during Anaerobic Nitrate Respiration: Induction of the SOS Response for Cell Survival ▿ †

    OpenAIRE

    Nishimura, Taku; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-01-01

    The gene expression profile of Corynebacterium glutamicum under anaerobic nitrate respiration revealed marked differences in the expression levels of a number of genes involved in a variety of cellular functions, including carbon metabolism and respiratory electron transport chain, compared to the profile under aerobic conditions using DNA microarrays. Many SOS genes were upregulated by the shift from aerobic to anaerobic nitrate respiration. An elongated cell morphology, similar to that indu...

  8. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    OpenAIRE

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin; Oskarsson, Agneta

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters a...

  9. Gene Expression Changes in Human Lung Cells Exposed to Arsenic, Chromium, Nickel or Vanadium Indicate the First Steps in Cancer

    OpenAIRE

    Clancy, Hailey A.; Sun, Hong; Passantino, Lisa; Kluz, Thomas; Muñoz, Alexandra; Zavadil, Jiri; Costa, Max

    2012-01-01

    The complex process of carcinogenesis begins with transformation of a single cell to favor aberrant traits such as loss of contact inhibition and unregulated proliferation – features found in every cancer. Despite cancer’s widespread prevalence, the early events that initiate cancer remain elusive, and without knowledge of these events cancer prevention is difficult. Here we show that exposure to As, Cr, Ni, or Vanadium (V) promotes changes in gene expression that occur in conjunction with ab...

  10. Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells.

    Science.gov (United States)

    Gallardo, Viviana E; Behra, Martine

    2013-08-15

    Transgenic lines carrying fluorescent reporter genes like GFP have been of great value in the elucidation of developmental features and physiological processes in various animal models, including zebrafish. The lateral line (LL), which is a fish specific superficial sensory organ, is an emerging organ model for studying complex cellular processes in the context of the whole living animal. Cell migration, mechanosensory cell development/differentiation and regeneration are some examples. This sensory system is made of superficial and sparse small sensory patches called neuromasts, with less than 50 cells in any given patch. The paucity of cells is a real problem in any effort to characterize those cells at the transcriptional level. We describe here a method which we applied to efficiently separate subpopulation of cells of the LL, using two distinct stable transgenic zebrafish lines, Tg(cldnb:gfp) and Tg(tnks1bp1:EGFP). In both cases, the GFP positive (GFP+) cells were separated from the remainder of the animal by using a Fluorescent Activated Cell Sorter (FACS). The transcripts of the GFP+ cells were subsequently analyzed on gene expression microarrays. The combination of FACS and microarrays is an efficient method to establish a transcriptional signature for discrete cell populations which would otherwise be masked in whole animal preparation. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Quantification of cell identity from single-cell gene expression profiles.

    Science.gov (United States)

    Efroni, Idan; Ip, Pui-Leng; Nawy, Tal; Mello, Alison; Birnbaum, Kenneth D

    2015-01-22

    The definition of cell identity is a central problem in biology. While single-cell RNA-seq provides a wealth of information regarding cell states, better methods are needed to map their identity, especially during developmental transitions. Here, we use repositories of cell type-specific transcriptomes to quantify identities from single-cell RNA-seq profiles, accurately classifying cells from Arabidopsis root tips and human glioblastoma tumors. We apply our approach to single cells captured from regenerating roots following tip excision. Our technique exposes a previously uncharacterized transient collapse of identity distant from the injury site, demonstrating the biological relevance of a quantitative cell identity index.

  12. The effect of aging and caloric restriction on murine CD8+ T cell chemokine receptor gene expression

    Directory of Open Access Journals (Sweden)

    Mo RuRan

    2007-11-01

    Full Text Available Abstract Background The mechanism explaining the increased disease susceptibility in aging is not well understood. CD8+ T cells are crucial in anti-viral and anti-tumor responses. Although the chemokine system plays a critical role in CD8+ T cell function, very little is known about the relationship between aging and the T cell chemokine system. Results In this study we have examined the effect of aging on murine CD8+ T cell chemokine receptor gene expression. Freshly isolated splenic CD8+ T cells from old C57BL/6 mice were found to have higher CCR1, CCR2, CCR4, CCR5 and CXCR5, and lower CCR7 gene expression compared to their younger cohort. Anti-CD3/anti-CD28 stimulation elicited a similar robust chemokine receptor response from young and old CD8+ T cells. Western blot analyses confirmed elevated protein level of CCR4 and CCR5 in aged CD8+ T cells. Increases in T cell CCR1 and CCR5 expression also correlate to increased in vitro chemotaxis response to macrophage-inflammatory protein-1 α(MIP-1α. Finally, caloric restriction selectively prevents the loss of CD8+ T cell CCR7 gene expression in aging to the level that is seen in young CD8+ T cells. Conclusion These findings are consistent with the notion that aging exists in a state of low grade pro-inflammatory environment. In addition, our results provide a potential mechanism for the reported aging-associated impaired T cell lymphoid homing and allograft response, and reduced survival in sepsis.

  13. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  14. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses.

    Science.gov (United States)

    VanLeuven, James T; Ridenhour, Benjamin J; Gonzalez, Andres J; Miller, Craig R; Miura, Tanya A

    2017-01-01

    The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.

  15. Effect of Chrysin on Gene Expression and Production of MUC5AC Mucin from Cultured Airway Epithelial Cells.

    Science.gov (United States)

    Shin, Hyun-Dae; Lee, Hyun Jae; Sikder, Md Asaduzzaman; Park, Su Hyun; Ryu, Jiho; Hong, Jang-Hee; Kim, Ju-Ock; Seok, Jeong Ho; Lee, Choong Jae

    2012-10-01

    We investigated whether chrysin affected MUC5AC mucin production and gene expression induced by phorbol ester (phorbol 12-myristate 13-acetate, PMA) or epidermal growth factor (EGF) from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with varying concentrations of chrysin for 30 minutes, and were then stimulated with PMA and EGF for 24 hours, respectively. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Concentrations of 10µM and 100µM chrysin were found to inhibit the production of MUC5AC mucin protein induced by PMA; A concentration of 100µM chrysin also inhibited the production of MUC5AC mucin protein induced by EGF; 100µM chrysin inhibited the expression of MUC5AC mucin gene induced by PMA or EGF. The cytotoxicity of chrysin was checked by lactate dehydrogenase assay, and there was no cytotoxic effect observed for chrysin. These results suggest that chrysin can inhibit mucin gene expression and the production of mucin protein by directly acting on airway epithelial cells.

  16. The effect of oxythioquinox exposure on normal human mammary epithelial cell gene expression: A microarray analysis study

    Directory of Open Access Journals (Sweden)

    Weston Ainsley

    2004-09-01

    Full Text Available Abstract Background Inter-individual variation in normal human mammary epithelial cells in response to oxythioquinox (OTQ is reported. Gene expression signatures resulting from chemical exposures are generally created from analysis of exposures in rat, mouse or other genetically similar animal models, limiting information about inter-individual variations. This study focused on the effect of inter-individual variation in gene expression signatures. Methods Gene expression was studied in primary normal human mammary epithelial cells (NHMECs derived from four women undergoing reduction mammoplasty [Cooperative Human Tissue Network (National Cancer Institute and National Disease Research Interchange]. Gene transcription in each cell strain was analyzed using high-density oligonucleotide DNA microarrays (HuGeneFL, Affymetrix™ and changes in the expression of selected genes were verified by real-time polymerase chain reaction at extended time points (ABI. DNA microarrays were hybridized to materials prepared from total RNA that was collected after OTQ treatment for 15, 60 and 120 min. RNA was harvested from the vehicle control (DMSO at 120 min. The gene expression profile included all genes altered by at least a signal log ratio (SLR of ± 0.6 and p value ≤ 0.05 in three of four cell strains analyzed. Results RNA species were clustered in various patterns of expression highlighting genes with altered expression in one or more of the cell strains, including metabolic enzymes and transcription factors. Of the clustered RNA species, only 36 were found to be altered at one time point in three or more of the cell strains analyzed (13 up-regulated, 23 down-regulated. Cluster analysis examined the effects of OTQ on the cells with specific p53 polymorphisms. The two strains expressing the major variant of p53 had 83 common genes altered (35 increased, 48 decreased at one or more time point by at least a 0.6 signal log ratio (SLR. The intermediate variant

  17. Connection between cell phone use, p53 gene expression in different zones of glioblastoma multiforme and survival prognoses

    Directory of Open Access Journals (Sweden)

    Reza Akhavan-Sigari

    2014-08-01

    Full Text Available The aim of this paper is to investigate p53 gene expression in the central and peripheral zones of glioblastoma multiforme using a real-time reverse transcription polymerase chain reaction (RT-PCR technique in patients who use cell phones ≥3 hours a day and determine its relationship to clinicopathological findings and overall survival. Sixty-three patients (38 males and 25 females, diagnosed with glioblastoma multiforme (GBM, underwent tumor resection between 2008 and 2011. Patient ages ranged from 25 to 88 years, with a mean age of 55. The levels of expression of p53 in the central and peripheral zone of the GBM were quantified by RT-PCR. Data on p53 gene expression from the central and peripheral zone, the related malignancy and the clinicopatholagical findings (age, gender, tumor location and size, as well as overall survival, were analyzed. Forty-one out of 63 patients (65% with the highest level of cell phone use (≥3 hours/day had higher mutant type p53 expression in the peripheral zone of the glioblastoma; the difference was statistically significant (P=0.034. Results from the present study on the use of mobile phones for ≥3 hours a day show a consistent pattern of increased risk for the mutant type of p53 gene expression in the peripheral zone of the glioblastoma, and that this increase was significantly correlated with shorter overall survival time. The risk was not higher for ipsilateral exposure. We found that the mutant type of p53 gene expression in the peripheral zone of the glioblastoma was increased in 65% of patients using cell phones ≥3 hours a day.

  18. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Science.gov (United States)

    2012-01-01

    Background MicroRNAs (miRNAs) are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128). We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time) polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT) and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective. PMID:22853714

  19. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Directory of Open Access Journals (Sweden)

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  20. DNA methylation analysis in the intestinal epithelium-effect of cell separation on gene expression and methylation profile.

    Directory of Open Access Journals (Sweden)

    Andreas C Jenke

    Full Text Available Epigenetic signatures are highly cell type specific. Separation of distinct cell populations is therefore desirable for all epigenetic studies. However, to date little information is available on whether separation protocols might influence epigenetic and/or gene expression signatures and hence might be less beneficial. We investigated the influence of two frequently used protocols to isolate intestinal epithelium cells (IECs from 6 healthy individuals.Epithelial cells were isolated from small bowel (i.e. terminal ileum biopsies using EDTA/DTT and enzymatic release followed by magnetic bead sorting via EPCAM labeled microbeads. Effects on gene/mRNA expression were analyzed using a real time PCR based expression array. DNA methylation was assessed by pyrosequencing of bisulfite converted DNA and methylated DNA immunoprecipitation (MeDIP.While cell purity was >95% using both cell separation approaches, gene expression analysis revealed significantly higher mRNA levels of several inflammatory genes in EDTA/DTT when compared to enzymatically released cells. In contrast, DNA methylation of selected genes was less variable and only revealed subtle differences. Comparison of DNA methylation of the epithelial cell marker EPCAM in unseparated whole biopsy samples with separated epithelium (i.e. EPCAM positive and negative fraction demonstrated significant differences in DNA methylation between all three tissue fractions indicating cell type specific methylation patterns can be masked in unseparated tissue samples.Taken together, our data highlight the importance of considering the potential effect of cell separation on gene expression as well as DNA methylation signatures. The decision to separate tissue samples will therefore depend on study design and specific separation protocols.

  1. DNA Methylation Analysis in the Intestinal Epithelium—Effect of Cell Separation on Gene Expression and Methylation Profile

    Science.gov (United States)

    Jenke, Andreas C.; Postberg, Jan; Raine, Timothy; Nayak, Komal M.; Molitor, Malte; Wirth, Stefan; Kaser, Arthur; Parkes, Miles; Heuschkel, Robert B.; Orth, Valerie; Zilbauer, Matthias

    2013-01-01

    Background Epigenetic signatures are highly cell type specific. Separation of distinct cell populations is therefore desirable for all epigenetic studies. However, to date little information is available on whether separation protocols might influence epigenetic and/or gene expression signatures and hence might be less beneficial. We investigated the influence of two frequently used protocols to isolate intestinal epithelium cells (IECs) from 6 healthy individuals. Materials and Methods Epithelial cells were isolated from small bowel (i.e. terminal ileum) biopsies using EDTA/DTT and enzymatic release followed by magnetic bead sorting via EPCAM labeled microbeads. Effects on gene/mRNA expression were analyzed using a real time PCR based expression array. DNA methylation was assessed by pyrosequencing of bisulfite converted DNA and methylated DNA immunoprecipitation (MeDIP). Results While cell purity was >95% using both cell separation approaches, gene expression analysis revealed significantly higher mRNA levels of several inflammatory genes in EDTA/DTT when compared to enzymatically released cells. In contrast, DNA methylation of selected genes was less variable and only revealed subtle differences. Comparison of DNA methylation of the epithelial cell marker EPCAM in unseparated whole biopsy samples with separated epithelium (i.e. EPCAM positive and negative fraction) demonstrated significant differences in DNA methylation between all three tissue fractions indicating cell type specific methylation patterns can be masked in unseparated tissue samples. Conclusions Taken together, our data highlight the importance of considering the potential effect of cell separation on gene expression as well as DNA methylation signatures. The decision to separate tissue samples will therefore depend on study design and specific separation protocols. PMID:23409010

  2. Gene expression profiling of MYC-driven tumor signatures in porcine liver stem cells by transcriptome sequencing.

    Science.gov (United States)

    Aravalli, Rajagopal N; Talbot, Neil C; Steer, Clifford J

    2015-02-21

    To identify the genes induced and regulated by the MYC protein in generating tumors from liver stem cells. In this study, we have used an immortal porcine liver stem cell line, PICM-19, to study the role of c-MYC in hepatocarcinogenesis. PICM-19 cells were converted into cancer cells (PICM-19-CSCs) by overexpressing human MYC. To identify MYC-driven differential gene expression, transcriptome sequencing was carried out by RNA sequencing, and genes identified by this method were validated using real-time PCR. In vivo tumorigenicity studies were then conducted by injecting PICM-19-CSCs into the flanks of immunodeficient mice. Our results showed that MYC-overexpressing PICM-19 stem cells formed tumors in immunodeficient mice demonstrating that a single oncogene was sufficient to convert them into cancer cells (PICM-19-CSCs). By using comparative bioinformatics analyses, we have determined that > 1000 genes were differentially expressed between PICM-19 and PICM-19-CSCs. Gene ontology analysis further showed that the MYC-induced, altered gene expression was primarily associated with various cellular processes, such as metabolism, cell adhesion, growth and proliferation, cell cycle, inflammation and tumorigenesis. Interestingly, six genes expressed by PICM-19 cells (CDO1, C22orf39, DKK2, ENPEP, GPX6, SRPX2) were completely silenced after MYC-induction in PICM-19-CSCs, suggesting that the absence of these genes may be critical for inducing tumorigenesis. MYC-driven genes may serve as promising candidates for the development of hepatocellular carcinoma therapeutics that would not have deleterious effects on other cell types in the liver.

  3. Gene expression changes after ionizing radiation in endothelial cells derived from human endometrial cancer-preliminary outcomes.

    Science.gov (United States)

    Liu, Ting; Du, Xuelian; Sheng, Xiugui

    2014-06-01

    Accumulating evidence has demonstrated that death of microvascular endothelial cells plays a decisive role in the tumor response against radiotherapy. Nevertheless, radiation-induced gene alterations on cancer-associated endothelial cells of human endometrial carcinoma remain poorly understood. The purpose of this study was to elucidate the gene expression changes after X-ray radiation in human endometrial carcinoma vascular endothelial cells and to provide new targets for combined treatment of radiation and anti-angiogenesis in human endometrial carcinoma. Endometrial cancer-derived endothelial cells, which obtained before and 4 h after 400 cGy X-ray radiation from four endometrial carcinomas, were analyzed by gene expression profile. The selected meaningful genes from gene microarray experiments were validated by real-time quantitative PCR. Microarray analyses showed 49 significantly changed genes which were common to all the microarray experiments. There into, 14 genes were found to be in persistent up-regulation and 14 in persistent down-regulation 4 h after X-ray radiation when compared with the control group. These genes were involved in cell cycle and growth regulation, cell-apoptosis, chemokine, cell signaling, cellular stress response, angiogenesis, DNA synthesis and repair and cell adhesion. Eight randomly selected genes were validated by real-time PCR. The genes of cancer-derived endothelial cells regulated by X-ray radiation as well as their related signal pathways, which obtained from gene expression profiling data, were relevant to radiosensitivity of endometrial cancer. This study shows that the identified genes and their related signaling pathways are candidated biomarkers for radiation and anti-angiogenesis of human endometrial carcinoma.

  4. Identification and characterization of germ cell genes expressed in the F9 testicular teratoma stem cell line.

    Directory of Open Access Journals (Sweden)

    Jun Tae Kwon

    Full Text Available The F9 cell line, which was derived from a mouse testicular teratoma that originated from pluripotent germ cells, has been used as a model for differentiation. However, it is largely unknown whether F9 cells possess the characteristics of male germ cells. In the present study, we investigated spermatogenic stage- and cell type-specific gene expression in F9 cells. Analysis of previous microarray data showed that a large number of stage-regulated germ cell genes are expressed in F9 cells. Specifically, genes that are prominently expressed in spermatogonia and have transcriptional regulatory functions appear to be enriched in F9 cells. Our in silico and in vitro analyses identified several germ cell-specific or -predominant genes that are expressed in F9 cells. Among them, strong promoter activities were observed in the regions upstream of the spermatogonial genes, Dmrt1 (doublesex and mab-3 related transcription factor 1, Stra8 (stimulated by retinoic acid gene 8 and Tex13 (testis expressed gene 13, in F9 cells. A detailed analysis of the Tex13 promoter allowed us to identify an enhancer and a region that is implicated in germ cell-specificity. We also found that Tex13 expression is regulated by DNA methylation. Finally, analysis of GFP (green fluorescent protein TEX13 localization revealed that the protein distributes heterogeneously in the cytoplasm and nucleus, suggesting that TEX13 shuttles between these two compartments. Taken together, our results demonstrate that F9 cells express numerous spermatogonial genes and could be used for transcriptional studies focusing on such genes. As an example of this, we use F9 cells to provide comprehensive expressional information about Tex13, and report that this gene appears to encode a germ cell-specific protein that functions in the nucleus during early spermatogenesis.

  5. Experiment and quantitative modeling of cell-free gene expression dynamics

    OpenAIRE

    Stögbauer, Tobias Roland

    2012-01-01

    Genexpression that is the cellular synthesis of proteins is comprised of the sub-steps tran- scription (mRNA synthesis based on the DNA master), translation (protein synthesis based on the mRNA) and protein folding. Owing to the large number of interactions between individual components this process is very complex in vivo and therefore mathematical modeling is extremely laborious. By means of simpli�ed in vitro model systems individual aspects of cellular gene expression can be studied...

  6. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  7. In Vitro Effect of Cell Phone Radiation on Motility, DNA Fragmentation and Clusterin Gene Expression in Human Sperm

    Directory of Open Access Journals (Sweden)

    Adel Zalata

    2015-04-01

    Full Text Available Background: Use of cellular phones emitting radiofrequency electromagnetic field (RF-EMF has been increased exponentially and become a part of everyday life. This study aimed to investigate the effects of in vitro RF-EMF exposure emitted from cellular phones on sperm motility index, sperm DNA fragmentation and seminal clusterin (CLU gene expression. Materials and Methods: In this prospective study, a total of 124 semen samples were grouped into the following main categories: i. normozoospermia (N, n=26, ii. asthenozoospermia (A, n=32, iii. asthenoteratozoospermia (AT, n=31 and iv. oligoasthenoteratozoospermia (OAT, n=35. The same semen samples were then divided into two portions non-exposed and exposed samples to cell phone radiation for 1 hour. Before and immediately after exposure, both aliquots were subjected to different assessments for sperm motility, acrosin activity, sperm DNA fragmentation and CLU gene expression. Statistical differences were analyzed using paired t student test for comparisons between two sub-groups where pAT>A>N groups, respectively (p<0.05. Conclusion: Cell phone emissions have a negative impact on exposed sperm motility index, sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression, especially in OAT cases.

  8. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T.; Lorenz, Katrin; Lee, Eva H.; Barcellos-Hoff, Mary Helen; Petersen, Ole W.; Gray, Joe W.; Bissell, MinaJ.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.

  9. Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Shanaz A Ghandhi

    Full Text Available We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.

  10. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Rong Yin

    Full Text Available Bisphenol A (BPA is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  11. Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Erin Regan

    Full Text Available It is well established that lung tumors induce the formation of lymphatic vessels. However, the molecular mechanisms controlling tumor lymphangiogenesis in lung cancer have not been fully delineated. In the present study, we identify a panel of non-small cell lung cancer (NSCLC cell lines that induce lymphangiogenesis and use genome-wide mRNA expression to characterize the molecular mechanisms regulating tumor lymphangiogenesis. We show that Calu-1, H1993, HCC461, HCC827, and H2122 NSCLC cell lines form tumors that induce lymphangiogenesis whereas Calu-3, H1155, H1975, and H2073 NSCLC cell lines form tumors that do not induce lymphangiogenesis. By analyzing genome-wide mRNA expression data, we identify a 17-gene expression signature that distinguishes lymphangiogenic from non-lymphangiogenic NSCLC cell lines. Importantly, VEGF-C is the only lymphatic growth factor in this expression signature and is approximately 50-fold higher in the lymphangiogenic group than in the non-lymphangiogenic group. We show that forced expression of VEGF-C by H1975 cells induces lymphangiogenesis and that knockdown of VEGF-C in H1993 cells inhibits lymphangiogenesis. Additionally, we demonstrate that the triple angiokinase inhibitor, nintedanib (small molecule that blocks all FGFRs, PDGFRs, and VEGFRs, suppresses tumor lymphangiogenesis in H1993 tumors. Together, these data suggest that VEGF-C is the dominant driver of tumor lymphangiogenesis in NSCLC and reveal a specific therapy that could potentially block tumor lymphangiogenesis in NSCLC patients.

  12. Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Regan, Erin; Sibley, Robert C.; Cenik, Bercin Kutluk; Silva, Asitha; Girard, Luc; Minna, John D.; Dellinger, Michael T.

    2016-01-01

    It is well established that lung tumors induce the formation of lymphatic vessels. However, the molecular mechanisms controlling tumor lymphangiogenesis in lung cancer have not been fully delineated. In the present study, we identify a panel of non-small cell lung cancer (NSCLC) cell lines that induce lymphangiogenesis and use genome-wide mRNA expression to characterize the molecular mechanisms regulating tumor lymphangiogenesis. We show that Calu-1, H1993, HCC461, HCC827, and H2122 NSCLC cell lines form tumors that induce lymphangiogenesis whereas Calu-3, H1155, H1975, and H2073 NSCLC cell lines form tumors that do not induce lymphangiogenesis. By analyzing genome-wide mRNA expression data, we identify a 17-gene expression signature that distinguishes lymphangiogenic from non-lymphangiogenic NSCLC cell lines. Importantly, VEGF-C is the only lymphatic growth factor in this expression signature and is approximately 50-fold higher in the lymphangiogenic group than in the non-lymphangiogenic group. We show that forced expression of VEGF-C by H1975 cells induces lymphangiogenesis and that knockdown of VEGF-C in H1993 cells inhibits lymphangiogenesis. Additionally, we demonstrate that the triple angiokinase inhibitor, nintedanib (small molecule that blocks all FGFRs, PDGFRs, and VEGFRs), suppresses tumor lymphangiogenesis in H1993 tumors. Together, these data suggest that VEGF-C is the dominant driver of tumor lymphangiogenesis in NSCLC and reveal a specific therapy that could potentially block tumor lymphangiogenesis in NSCLC patients. PMID:26950548

  13. Mycoplasma hyorhinis and Mycoplasma fermentans induce cell apoptosis and changes in gene expression profiles of 32D cells.

    Science.gov (United States)

    Liu, Wenbin; Shou, Chengchao

    2011-01-01

    Infection of mycoplasmas has been linked to various human diseases including arthritis, pneumonia, infertility and cancer. While Mycoplasma hyorhinis and Mycoplasma fermentans have been detected in gastric adenocarcinomas, the mechanisms underlyine the pathogenesis are unknown. In this study, cell growth kinetics, Hoechst 33258 staining, DNA ladder assays, Western blotting analysis and cDNA microarray assays were performed to investigate the roles of M. hyorhinis and M. fermentans during infection of mammalian cells. Our data demonstrated that these mycoplasmas inhibid the growth of immortalised cell lines (32D and COS-7) ane tumor cell lines (HeLa and AGS). In addition, the infection of the 32D cell line with M. hyorhinis and M. fermentans induced compression of the nucleus, degradation of the cell genome and dysregulation of the expression of genes related to proliferation, apoptosis, tumorigenesis, signaling pathway and metabolism. Apoptosis related proteins Bcl-2, Bid and p53 were down-regulated, Fas was up-regulated and Bax was dysregulated in mycoplasma-infected 32D cells. Together, our data demonstrated that infection of mycoplasmas inhibitd cele growts through modification of gene expression profiles and post-translation modification of proliferation and apoptosis related proteins.

  14. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Zhi-Ming; Zhou, Le-Yuan; Liu, Bin-Bin; Jia, Qin-An; Dong, Yin-Ying; Xia, Yun-Hong; Ye, Sheng-Long

    2014-10-01

    The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investigated. Non-contact co-culture altered the expression of 573 HCC genes by >2-fold of the control levels. Among the six selected genes, ELISA revealed increased protein levels of hepatic growth factor, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9). Incubation of HCC cells with medium conditioned by activated HSCs significantly increased the proliferation rate (Pexpression profile of HCC cells and affected their growth, migration and invasiveness. The results from the present study indicate that the interaction between the activated HSCs and HCC has an important role in the development of HCC.

  15. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  16. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression.

    Science.gov (United States)

    Mouslim, Chakib; Hughes, Kelly T

    2014-03-01

    The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.

  17. Toward the beginning of time: circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiffin K Paulose

    Full Text Available The appearance, progression, and potential role for circadian rhythms during early development have previously focused mainly on the suprachiasmatic nucleus (SCN and peri- and postnatal expression of canonical clock genes. More recently, gene expression studies in embryonic stem cells have shown that some clock genes are expressed in undifferentiated cells; however rhythmicity was only established when cells are directed toward a neural fate. These studies also concluded that a functional clock is not present in ESCs, based solely on their gene expression. The null hypothesis underlying the present study is that embryonic stem cells become rhythmic in both clock gene expression and glucose utilization only when allowed to spontaneously differentiate. Undifferentiated stem cells (ESCs, n = 6 cultures/timepoint for all experiments were either maintained in their pluripotent state or released into differentiation (dESCs, n = 6 cultures/timepoint for all experiments. Glucose utilization was assayed through 2-deoxyglucose uptake measurement, and clock gene and glucose transporter expression was assayed every 4 hours for 2 days in ESCs and dESCs by quantitative PCR (qPCR in the same cell lysates. Undifferentiated stem cells expressed a self-sustained rhythm in glucose uptake that was not coincident with rhythmic expression of clock genes. This physiological rhythm was paralleled by glucose transporter mRNA expression. Upon differentiation, circadian patterns of some but not all clock genes were expressed, and the amplitude of the glucose utilization rhythm was enhanced in dESCs. These data provide the earliest evidence of a functional circadian clock, in addition to further challenging the idea that rhythmic transcription of clock genes are necessary for rhythmic physiological output and suggest a role for a clock-controlled physiology in the earliest stages of development.

  18. The impact of reference gene selection in quantification of gene expression levels in guinea pig cervical tissues and cells.

    Science.gov (United States)

    Lindqvist, Annika; Manders, Dustin; Word, R Ann

    2013-01-30

    Accurate measurements of mRNA expression levels in tissues or cells are crucially dependent on the use of relevant reference genes for normalization of data. In this study we used quantitative real-time PCR and two Excel-based applets (geNorm and BestKeeper) to determine the best reference genes for quantification of target gene mRNA in a complex tissue organ such as the guinea pig cervix. Gene expression studies were conducted in cervical epithelium and stroma during pregnancy and parturition and in cultures of primary cells from this tissue. Among 15 reference gene candidates examined, both geNorm and BestKeeper found CLF1 and CLTC to be the most stable in cervical stroma and cervical epithelium, ACTB and PPIB in primary stroma cells, and CLTC and PPIB in primary epithelial cells. The order of stability among the remaining candidate genes was not in such an agreement. Commonly used reference such as GAPDH and B2M demonstrated lower stability. Determination of pairwise variation values for reference gene combinations using geNorm revealed that the geometric mean of the two most stable genes provides sufficient normalization in most cases. However, for cervical stroma tissue in which many reference gene candidates displayed low stability, inclusion of three reference genes in the geometric mean may improve accuracy of target gene expression level analyses. Using the top ranked reference genes we examined the expression levels of target gene PTGS2 in cervical tissue and cultured cervical cells. We compared the results with PTGS2 expression normalized to the least stable gene and found significant differences in gene expression, up to 10-fold in some samples, emphasizing the importance of appropriately selecting reference genes. We recommend using the geometric mean of CFL1 and CLTC for normalization of qPCR studies in guinea pig cervical tissue studies, ACTB and PPIB in primary stroma cells and CLTC and PPIB in primary epithelial cells from guinea pig.

  19. Citosol (thiamylal sodium) triggers apoptosis and affects gene expressions of murine leukemia RAW 264.7 cells.

    Science.gov (United States)

    Wu, R S-C; Yu, C-S; Liu, K-C; Huang, H-Y; Ip, S-W; Lin, J-P; Chueh, F-S; Yang, J-S; Chung, J-G

    2012-08-01

    Citosol (thiamylal sodium) is one of generally used anesthetic-sedative agents for clinical patients, and it has not been reported to show induction of cytotoxic effects in cancer cells, especially in mice leukemia RAW 264.7 cells in vitro. In the present study, we investigated the cytotoxic effects of citosol on mice leukemic RAW 264.7 cells, including the effects on protein and gene expression levels which are determined by Western blotting and DNA microarray methods, respectively. Results indicated that citosol induced cell morphological changes, cytotoxic effect, and induction of apoptosis in RAW 264.7 cells. Western blotting analysis demonstrated that citosol promoted the levels of Fas, cytochrome c, caspase 9 and 3 active form and Bax levels, but it suppressed Bcl-xl protein level that may lead to apoptotic death in RAW 264.7 cells. Furthermore, DNA microarray assay indicated that citosol significantly promoted the expression of 5 genes (Gm4884, Gm10883, Lce1c, Lrg1, and LOC100045878) and significantly inhibited the expression of 24 genes (Gm10679, Zfp617, LOC621831, Gm5929, Snord116, Gm3994, LOC380994, Gm5592, LOC380994, LOC280487, Gm4638, Tex24, A530064D06Rik, BC094916, EG668725, Gm189, Hist2h3c2, Gm8020, Snord115, Gm3079, Olfr198, Tdh, Snord115, and Olfr1249). Based on these observations, citosol induced cell apoptosis and influenced gene expression in mice leukemia RAW 264.7 cells in vitro.

  20. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    Science.gov (United States)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing

  1. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm.

    Science.gov (United States)

    Zalata, Adel; El-Samanoudy, Ayman Z; Shaalan, Dalia; El-Baiomy, Youssef; Mostafa, Taymour

    2015-01-01

    Use of cellular phones emitting radiofrequency electromagnetic field (RF-EMF) has been increased exponentially and become a part of everyday life. This study aimed to investigate the effects of in vitro RF-EMF exposure emitted from cellular phones on sperm motility index, sperm DNA fragmentation and seminal clusterin (CLU) gene expression. In this prospective study, a total of 124 semen samples were grouped into the following main categories: i. normozoospermia (N, n=26), ii. asthenozoospermia (A, n=32), iii. asthenoteratozoospermia (AT, n=31) and iv. oligoasthenoteratozoospermia (OAT, n=35). The same semen samples were then divided into two portions non-exposed and exposed samples to cell phone radiation for 1 hour. Before and immediately after exposure, both aliquots were subjected to different assessments for sperm motility, acrosin activity, sperm DNA fragmentation and CLU gene expression. Statistical differences were analyzed using paired t student test for comparisons between two sub-groups where pAT>A>N groups, respectively (pnegative impact on exposed sperm motility index, sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression, especially in OAT cases.

  2. Genome-wide mapping of DNase I hypersensitive sites and association analysis with gene expression in MSB1 cells

    Directory of Open Access Journals (Sweden)

    Yanghua eHe

    2014-10-01

    Full Text Available DNase I hypersensitive sites (DHSs mark diverse classes of cis-regulatory regions, such as promoters and enhancers. MSB-1 derived from chicken Marek's disease (MD lymphomas is an MDV-transformed CD4+ T-cell line for MD study. Previously, DNase I HS sites were studied mainly in human cell types for mammalian. To capture the regulatory elements specific to MSB1 cells and explore the molecular mechanisms of T-cell transformation caused by MDV in MD, we generated high-quality of DHSs map and gene expression profile for functional analysis in MSB1 cell line. The total of 21,724 significant peaks of DHSs was identified from around 40 million short reads. DHSs distribution varied between chromosomes and they preferred to enrich in the gene-rich chromosomes. More interesting, DHSs enrichments appeared to be scarce on regions abundant in CpG islands. Besides, we integrated DHSs into the gene expression data and found that DHSs tended to enrich on high expressed genes throughout whole gene regions while DHSs did not show significant changes for low and silent expressed genes. Furthermore, the correlation of DHSs with lincRNAs expression was also calculated and it implied that enhancer-associated lincRNAs probably originated from enhancer-like regions of DHSs. Together, our results indicated that DNase I HS sites highly correlate with active genes expression in MSB1 cells, suggesting DHSs can be considered as markers to identify the cis-regulatory elements associated with chicken Marek’s disease.

  3. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  4. A microfluidic device for temporally controlled gene expression and long-term fluorescent imaging in unperturbed dividing yeast cells.

    Directory of Open Access Journals (Sweden)

    Gilles Charvin

    Full Text Available BACKGROUND: Imaging single cells with fluorescent markers over multiple cell cycles is a powerful tool for unraveling the mechanism and dynamics of the cell cycle. Over the past ten years, microfluidic techniques in cell biology have emerged that allow for good control of growth environment. Yet the control and quantification of transient gene expression in unperturbed dividing cells has received less attention. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe a microfluidic flow cell to grow Saccharomyces Cerevisiae for more than 8 generations (approximately 12 hrs starting with single cells, with controlled flow of the growth medium. This setup provides two important features: first, cells are tightly confined and grow in a remarkably planar array. The pedigree can thus be determined and single-cell fluorescence measured with 3 minutes resolution for all cells, as a founder cell grows to a micro-colony of more than 200 cells. Second, we can trigger and calibrate rapid and transient gene expression using reversible administration of inducers that control the GAL1 or MET3 promoters. We then show that periodic 10-20 minutes gene induction pulses can drive many cell division cycles with complete coherence across the cell cluster, with either a G1/S trigger (cln1 cln2 cln3 MET3-CLN2 or a mitotic trigger (cdc20 GALL-CDC20. CONCLUSIONS/SIGNIFICANCE: In addition to evident cell cycle applications, this device can be used to directly measure the amount and duration of any fluorescently scorable signal-transduction or gene-induction response over a long time period. The system allows direct correlation of cell history (e.g., hysteresis or epigenetics or cell cycle position with the measured response.

  5. Growth-phase-dependent gene expression profiling of poplar (Populus alba x Populus tremula var. glandulosa) suspension cells.

    Science.gov (United States)

    Lee, Hyoshin; Bae, Eun-Kyung; Park, So-Young; Sjödin, Andreas; Lee, Jae-Soon; Noh, Eun-Woon; Jansson, Stefan

    2007-12-01

    Complex sequences of morphological and biochemical changes occur during the developmental course of a batch plant cell culture. However, little information is available about the changes in gene expression that could explain these changes, because of the difficulties involved in isolating specific cellular events or developmental phases in the overlapping phases of cell growth. In an attempt to obtain such information we have examined the global growth phase-dependent gene expression of poplar cells in suspension cultures by cDNA microarray analysis. Our results reveal that significant changes occur in the expression of genes with functions related to protein synthesis, cell cycling, hormonal responses and cell wall biosynthesis, as cultures progress from initiation to senescence, that are highly correlated with observed developmental and physiological changes in the cells. Genes encoding protein kinases, calmodulin and proteins involved in both ascorbate metabolism and water-limited stress responses also showed strong stage-specific expression patterns. Our report provides fundamental information on molecular mechanisms that control cellular changes throughout the developmental course of poplar cell cultures.

  6. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression.

    Science.gov (United States)

    Woodruff, Prescott G; Dolganov, Gregory M; Ferrando, Ronald E; Donnelly, Samantha; Hays, Steven R; Solberg, Owen D; Carter, Roderick; Wong, Hofer H; Cadbury, Peggy S; Fahy, John V

    2004-05-01

    Bronchial hyperresponsiveness in mild to moderate asthma may result from airway smooth muscle cell proliferation or acquisition of a hypercontractile phenotype. Because these cells have not been well characterized in mild to moderate asthma, we examined the morphometric and gene expression characteristics of smooth muscle cells in this subgroup of patients with asthma. Using bronchial biopsies from 14 subjects with mild to moderate asthma and 15 control subjects, we quantified smooth muscle cell morphology by stereology and the expression of a panel of genes related to a hypercontractile phenotype of airway smooth muscle, using laser microdissection and two-step real-time polymerase chain reaction. We found that airway smooth muscle cell size was similar in both groups, but cell number was nearly twofold higher in subjects with asthma (p = 0.03), and the amount of smooth muscle in the submucosa was increased 50-83% (p 0.1). We conclude that airway smooth muscle proliferation is a pathologic characteristic of subjects with mild to moderate asthma. However, smooth muscle cells in mild to moderate asthma do not show hypertrophy or gene expression changes of a hypercontractile phenotype observed in vitro.

  7. Specific Colon Cancer Cell Cytotoxicity Induced by Bacteriophage E Gene Expression under Transcriptional Control of Carcinoembryonic Antigen Promoter

    Directory of Open Access Journals (Sweden)

    Ana R. Rama

    2015-06-01

    Full Text Available Colorectal cancer is one of the most prevalent cancers in the world. Patients in advanced stages often develop metastases that require chemotherapy and usually show a poor response, have a low survival rate and develop considerable toxicity with adverse symptoms. Gene therapy may act as an adjuvant therapy in attempts to destroy the tumor without affecting normal host tissue. The bacteriophage E gene has demonstrated significant antitumor activity in several cancers, but without any tumor-specific activity. The use of tumor-specific promoters may help to direct the expression of therapeutic genes so they act against specific cancer cells. We used the carcinoembryonic antigen promoter (CEA to direct E gene expression (pCEA-E towards colon cancer cells. pCEA-E induced a high cell growth inhibition of human HTC-116 colon adenocarcinoma and mouse MC-38 colon cancer cells in comparison to normal human CCD18co colon cells, which have practically undetectable levels of CEA. In addition, in vivo analyses of mice bearing tumors induced using MC-38 cells showed a significant decrease in tumor volume after pCEA-E treatment and a low level of Ki-67 in relation to untreated tumors. These results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically toward colon cancer cells.

  8. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo

    Directory of Open Access Journals (Sweden)

    Anastassiou Dimitris

    2011-12-01

    Full Text Available Abstract Background The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT. Methods We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. Results Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. Conclusions The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics.

  9. Live-cell Imaging of Pol II Promoter Activity to Monitor Gene expression with RNA IMAGEtag reporters

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilchung [Ames Laboratory; Ray, Judhajeet [Ames Laboratory; Gupta, Vinayak [Iowa State University; Ilgu, Muslum [Ames Laboratory; Beasley, Jonathan [Iowa State University; Bendickson, Lee [Ames Laboratory; Mehanovic, Samir [Molecular Express; Kraus, George A. [Iowa State University; Nilsen-Hamilton, Marit [Ames Laboratory

    2014-04-20

    We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from the GAL1, ADH1 or ACT1 promoters. Transcription from all three promoters was imaged in live cells and transcriptional increases from the GAL1 promoter were observed with time after adding galactose. Expression of the IMAGEtags did not affect cell proliferation or endogenous gene expression. Advantages of this method are that no foreign proteins are produced in the cells that could be toxic or otherwise influence the cellular response as they accumulate, the IMAGEtags are short lived and oxygen is not required to generate their signals. The IMAGEtag RNA reporter system provides a means of tracking changes in transcriptional activity in live cells and in real time.

  10. Quantitative large scale gene expression profiling from human stem cell culture micro samples using multiplex pre-amplification.

    Science.gov (United States)

    Kibschull, Mark; Lye, Stephen J; Okino, Steven T; Sarras, Haya

    2016-01-01

    Transcriptional profiling is a powerful tool to study biological mechanisms during stem cell differentiation and reprogramming. Genome-wide methods like microarrays or next generation sequencing are expensive, time consuming, and require special equipment and bioinformatics expertise. Quantitative RT-PCR remains one of today's most widely accepted and used methods for analyzing gene expression in biological samples. However, limitations in the amount of starting materials often hinder the quantity and quality of information that could be obtained from a given sample. Here, we present a fast 4-step workflow allowing direct, column-free RNA isolation from limited human pluripotent stem cell (hPSC) cultures that is directly compatible with subsequent reverse transcription, target specific multiplex pre-amplification, and standard SYBR-Green quantitative PCR (qPCR) analysis. The workflow delivers excellent correlations in normalized gene-expression data obtained from different samples of hPSCs over a wide range of cell numbers (500-50,000 cells). We demonstrate accurate and unbiased target gene quantification in limiting stem cell cultures which allows for monitoring embryoid body differentiation and induced pluripotent stem cell (iPSC) reprogramming. This method highlights a rapid and cost effective screening process, allowing reduction of culture formats and increase of processing throughputs for various stem cell applications.

  11. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute

    2004-01-01

    in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported......Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly...

  12. Comparation of the effects of different 5'-untranslated regions (UTRs) on gene expression in HEK293 cells.

    Science.gov (United States)

    Zhang, Xue-Mei; Zha, Guang-Ming; Wang, Jiang; Wang, Xin-Jian; Song, Shuang; Shu, Jing-Chao; Chu, Bei-Bei; Yang, Guo-Yu

    2016-12-01

    To evaluate four 5'-UTRs on GFP expression in HEK293T cells. The recombinant plasmids were constructed by restriction enzyme digestion, digestion and DNA sequencing. Quantitative real-time PCR and western blotting results showed that the transcription and translation level of PPRV-GFP mRNA was significantly lower than that of the other reporters. The transcription and translation level of ChEF1-GFP was the highest in HEK293T cells. Different UTRs can significantly affect protein expression. Additionally, the findings also will be useful in biological applications that require tuning of gene expression and system optimization.

  13. Propranolol Decreases Proliferation of Endothelial Cells Transformed by Kaposi's Sarcoma-Associated Herpesvirus and Induces Lytic Viral Gene Expression

    Science.gov (United States)

    Hanson, Ryan S.; Manion, Rory D.

    2015-01-01

    Kaposi's sarcoma (KS) is common in Africa, but economic constraints hinder successful treatment in most patients. Propranolol, a generic β-adrenergic antagonist, decreased proliferation of KS-associated herpesvirus (KSHV)-infected cells. Downregulation of cyclin A2 and cyclin-dependent kinase 1 (CDK1) recapitulated this phenotype. Additionally, propranolol induced lytic gene expression in association with downregulation of CDK6. Thus, propranolol has diverse effects on KSHV-infected cells, and this generic drug has potential as a therapeutic agent for KS. PMID:26269192

  14. Aluminum oxide nanoparticles alter cell cycle progression through CC