WorldWideScience

Sample records for exclusively specific protease

  1. Cleavage Entropy as Quantitative Measure of Protease Specificity

    Science.gov (United States)

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Margreiter, Michael A.; Spitzer, Gudrun M.; Wallnoefer, Hannes G.; Liedl, Klaus R.

    2013-01-01

    A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. PMID:23637583

  2. Cleavage entropy as quantitative measure of protease specificity.

    Directory of Open Access Journals (Sweden)

    Julian E Fuchs

    2013-04-01

    Full Text Available A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity.

  3. Characterizing Protease Specificity: How Many Substrates Do We Need?

    Directory of Open Access Journals (Sweden)

    Michael Schauperl

    Full Text Available Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points. Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4' with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.

  4. Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment.

    Science.gov (United States)

    Bayram, Tuğba; Pekmez, Murat; Arda, Nazli; Yalçin, A Süha

    2008-05-15

    Whey proteins were isolated from whey powder by a combination of gel exclusion chromatography and protease (pepsin or trypsin) treatment. Whey solution (6g/dl) was applied to Sephadex G-200 column chromatography and three fractions were obtained. Gel electrophoresis (SDS-PAGE) was used to identify the fractions; the first one contained immunoglobulins and bovine serum albumin, the second contained beta-lactoglobulin and alpha-lactalbumin whereas the third fraction contained small peptides. We have also subjected the whey filtrate to proteases (pepsin and trypsin). Treatment with proteases showed that beta-lactoglobulin can be obtained after hydrolysis of the second fraction with pepsin. When the whey filtrate was treated with pepsin and then applied to Sephadex G-200 column chromatography three fractions were obtained; the first one was bovine serum albumin, the second was beta-lactoglobulin and the third fraction contained small peptides. After trypsin treatment only two fractions were obtained; the first one was serum albumin and the second fraction was an alpha-lactalbumin rich fraction. We have determined the antioxidant activity of the fractions using an assay based on the measurement of superoxide radical scavenging activity. Our results showed that among the three fractions, the first fraction had the highest superoxide radical scavenging activity. Also, protease treatment of the second fraction resulted in an increase in the antioxidant activity.

  5. Characterization of the tail-specific protease (Tsp) from Legionella.

    Science.gov (United States)

    Lawrence, Amba; K Nicholls, Simon; H Stansfield, Scott; M Huston, Wilhelmina

    2014-01-01

    Bacterial tail-specific proteases (Tsps) have been attributed a wide variety of functions including intracellular virulence, cell wall morphology, proteolytic signal cascades and stress response. This study tested the hypothesis that Tsp has a key function for the transmissive form of Legionella pneumophila. A tsp mutant was generated in Legionella pneumophila 130b and the characteristics of this strain and the isogenic wild-type were examined using a range of growth and proteomic analyses. Recombinant Tsp protein was also produced and analyzed. The L. pneumophila tsp mutant showed no defect in growth on rich media or during thermo-osmotic stress conditions. In addition, no defects in cellular morphology were observed when the cells were examined using transmission electron microscopy. Purified recombinant Tsp was found to be an active protease with a narrow substrate range. Proteome analysis using iTRAQ (5% coverage of the proteome) found that, of those proteins detected, only 5 had different levels in the tsp mutant compared to the wild type. ACP (Acyl Carrier Protein), which has a key role for Legionella differentiation to the infectious form, was reduced in the tsp mutant; however, tsp(-) was able to infect and replicate inside macrophages to the same extent as the wild type. Combined, these data demonstrate that Tsp is a protease but is not essential for Legionella growth or cell infection. Thus, Tsp may have functional redundancy in Legionella.

  6. Specificity and Application of the Lantibiotic Protease NisP

    Directory of Open Access Journals (Sweden)

    Manuel Montalbán-López

    2018-02-01

    Full Text Available Lantibiotics are ribosomally produced and posttranslationally modified peptides containing several lanthionine residues. They exhibit substantial antimicrobial activity against Gram-positive bacteria, including relevant pathogens. The production of the model lantibiotic nisin minimally requires the expression of the modification and export machinery. The last step during nisin maturation is the cleavage of the leader peptide. This liberates the active compound and is catalyzed by the cell wall-anchored protease NisP. Here, we report the production and purification of a soluble variant of NisP. This has enabled us to study its specificity and test its suitability for biotechnological applications. The ability of soluble NisP to cleave leaders from various substrates was tested with two sets of nisin variants. The first set was designed to investigate the influence of amino acid variations in the leader peptide or variations around the cleavage site. The second set was designed to study the influence of the lanthionine ring topology on the proteolytic efficiency. We show that the substrate promiscuity is higher than has previously been suggested. Our results demonstrate the importance of the arginine residue at the end of the leader peptide and the importance of lanthionine rings in the substrate for specific cleavage. Collectively, these data indicate that NisP is a suitable protease for the activation of diverse heterologously expressed lantibiotics, which is required to release active antimicrobial compounds.

  7. Specific and efficient cleavage of fusion proteins by recombinant plum pox virus NIa protease.

    Science.gov (United States)

    Zheng, Nuoyan; Pérez, José de Jesús; Zhang, Zhonghui; Domínguez, Elvira; Garcia, Juan Antonio; Xie, Qi

    2008-02-01

    Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q black triangle down A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 degrees C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.

  8. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    OpenAIRE

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-01-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test inc...

  9. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    Science.gov (United States)

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-02-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test increases our confidence in the overall correctness of our proposed alignment of the enzyme sequence with those of other proteases of known structure and constitutes a first step in the construction of a complete model of the viral protease domain.

  10. Understanding the specificity of serpin-protease complexes through interface analysis.

    Science.gov (United States)

    Rashid, Qudsia; Kapil, Charu; Singh, Poonam; Kumari, Vineeta; Jairajpuri, Mohamad Aman

    2015-01-01

    Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.

  11. Pattern of urine specific gravity in exclusively breastfed and water ...

    African Journals Online (AJOL)

    Background: Exclusive breastfeeding, an essential intervention for the reduction of infant mortality, is not widely practised. A major reason is the issue of thirst, especially in the hot regions of the world. Objective: To describe the pattern of specific gravity of breastfeeding infants aged 0-6 months as a measure of their ...

  12. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvizo, Oscar; Mittal, Seema; Mayo, Stephen L.; Schiffer, Celia A. (CIT); (UMASS, MED)

    2012-10-23

    HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.

  13. The threonine protease activity of testes-specific protease 50 (TSP50 is essential for its function in cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yu-Yin Li

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50, a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.

  14. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG*

    Science.gov (United States)

    Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G.; von Pawel-Rammingen, Ulrich

    2016-01-01

    Streptococcus suis is a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. Zoonotic S. suis infections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease of S. suis that exclusively cleaves porcine IgM and represents the first virulence factor described, linking S. suis to pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease of S. suis that exclusively targets porcine IgG. This enzyme, designated IgdE for immunoglobulin G-degrading enzyme of S. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that all S. suis strains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressed in vivo during infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. PMID:26861873

  15. Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2007-02-01

    Full Text Available We examined the efficiency of digestion of hemoglobin from four mammalian species, human, cow, sheep, and horse by acidic extracts of mixed sex adults of Schistosoma japonicum and S. mansoni. Activity ascribable to aspartic protease(s from S. japonicum and S. mansoni cleaved human hemoglobin. In addition, aspartic protease activities from S. japonicum cleaved hemoglobin from bovine, sheep, and horse blood more efficiently than did the activity from extracts of S. mansoni. These findings support the hypothesis that substrate specificity of hemoglobin-degrading proteases employed by blood feeding helminth parasites influences parasite host species range; differences in amino acid sequences in key sites of the parasite proteases interact less or more efficiently with the hemoglobins of permissive or non-permissive hosts.

  16. The Coat Protein and NIa Protease of Two Potyviridae Family Members Independently Confer Superinfection Exclusion.

    Science.gov (United States)

    Tatineni, Satyanarayana; French, Roy

    2016-12-01

    Superinfection exclusion (SIE) is an antagonistic virus-virus interaction whereby initial infection by one virus prevents subsequent infection by closely related viruses. Although SIE has been described in diverse viruses infecting plants, humans, and animals, its mechanisms, including involvement of specific viral determinants, are just beginning to be elucidated. In this study, SIE determinants encoded by two economically important wheat viruses, Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) and Triticum mosaic virus (TriMV; genus Poacevirus, family Potyviridae), were identified in gain-of-function experiments that used heterologous viruses to express individual virus-encoded proteins in wheat. Wheat plants infected with TriMV expressing WSMV P1, HC-Pro, P3, 6K1, CI, 6K2, NIa-VPg, or NIb cistrons permitted efficient superinfection by WSMV expressing green fluorescent protein (WSMV-GFP). In contrast, wheat infected with TriMV expressing WSMV NIa-Pro or coat protein (CP) substantially excluded superinfection by WSMV-GFP, suggesting that both of these cistrons are SIE effectors encoded by WSMV. Importantly, SIE is due to functional WSMV NIa-Pro or CP rather than their encoding RNAs, as altering the coded protein products by minimally changing RNA sequences led to abolishment of SIE. Deletion mutagenesis further revealed that elicitation of SIE by NIa-Pro requires the entire protein while CP requires only a 200-amino-acid (aa) middle fragment (aa 101 to 300) of the 349 aa. Strikingly, reciprocal experiments with WSMV-mediated expression of TriMV proteins showed that TriMV CP, and TriMV NIa-Pro to a lesser extent, likewise excluded superinfection by TriMV-GFP. Collectively, these data demonstrate that WSMV- and TriMV-encoded CP and NIa-Pro proteins are effectors of SIE and that these two proteins trigger SIE independently of each other. Superinfection exclusion (SIE) is an antagonistic virus-virus interaction that prevents secondary

  17. Expanding proteome coverage with orthogonal-specificity α-Lytic proteases

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jesse G.; Kim, Sangtae; Maltby, David A.; Ghassemian, Majid; Bandeira, Nuno; Komives, Elizabeth A.

    2014-03-01

    Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage by cleavage at sequences complimentary to trypsin may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type alpha-lytic protease (WaLP), and an active site mutant of WaLP, M190A alpha-lytic protease (MaLP). We assess several relevant factors including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. By combining data from separate digestions with trypsin, LysC, WaLP, and MaLP, proteome coverage was increased 101% compared to trypsin digestion alone. To demonstrate how the gained sequence coverage can access additional PTM information, we show identification of a number of novel phosphorylation sites in the S. pombe proteome and include an illustrative example from the protein MPD2, wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined.

  18. The coat protein and NIa protease of two potyviridae family members independently confer superinfection exclusion

    Science.gov (United States)

    Superinfection exclusion (SIE) is an antagonistic virus-virus interaction whereby initial infection by one virus prevents subsequent infection by closely related viruses. Although SIE has been described in diverse viruses infecting plants, humans, and animals, its mechanisms, including involvement o...

  19. Enzyme specificity and effects of gyroxin, a serine protease from the venom of the South American rattlesnake Crotalus durissus terrificus, on protease-activated receptors.

    Science.gov (United States)

    Yonamine, Camila M; Kondo, Marcia Y; Nering, Marcela B; Gouvêa, Iuri E; Okamoto, Débora; Andrade, Douglas; da Silva, José Alberto A; Prieto da Silva, Alvaro R B; Yamane, Tetsuo; Juliano, Maria A; Juliano, Luiz; Lapa, Antônio J; Hayashi, Mirian A F; Lima-Landman, Maria Teresa R

    2014-03-01

    Gyroxin is a serine protease displaying a thrombin-like activity found in the venom of the South American rattlesnake Crotalus durissus terrificus. Typically, intravenous injection of purified gyroxin induces a barrel rotation syndrome in mice. The serine protease thrombin activates platelets aggregation by cleaving and releasing a tethered N-terminus peptide from the G-protein-coupled receptors, known as protease-activated receptors (PARs). Gyroxin also presents pro-coagulant activity suggested to be dependent of PARs activation. In the present work, the effects of these serine proteases, namely gyroxin and thrombin, on PARs were comparatively studied by characterizing the hydrolytic specificity and kinetics using PARs-mimetic FRET peptides. We show for the first time that the short (sh) and long (lg) peptides mimetizing the PAR-1, -2, -3, and -4 activation sites are all hydrolyzed by gyroxin exclusively after the Arg residues. Thrombin also hydrolyzes PAR-1 and -4 after the Arg residue, but hydrolyzes sh and lg PAR-3 after the Lys residue. The kcat/KM values determined for gyroxin using sh and lg PAR-4 mimetic peptides were at least 2150 and 400 times smaller than those determined for thrombin, respectively. For the sh and lg PAR-2 mimetic peptides the kcat/KM values determined for gyroxin were at least 6500 and 2919 times smaller than those determined for trypsin, respectively. The kcat/KM values for gyroxin using the PAR-1 and -3 mimetic peptides could not be determined due to the extreme low hydrolysis velocity. Moreover, the functional studies of the effects of gyroxin on PARs were conducted in living cells using cultured astrocytes, which express all PARs. Despite the ability to cleavage the PAR-1, -2, -3, and -4 peptides, gyroxin was unable to activate the PARs expressed in astrocytes as determined by evaluating the cytosolic calcium mobilization. On the other hand, we also showed that gyroxin is able to interfere with the activation of PAR-1 by thrombin or

  20. A 5'-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion.

    Science.gov (United States)

    Atallah, Osama O; Kang, Sung-Hwan; El-Mohtar, Choaa A; Shilts, Turksen; Bergua, María; Folimonova, Svetlana Y

    2016-02-01

    Superinfection exclusion (SIE), a phenomenon in which a primary virus infection prevents a secondary infection with the same or closely related virus, has been observed with various viruses. Earlier we demonstrated that SIE by Citrus tristeza virus (CTV) requires viral p33 protein. In this work we show that p33 alone is not sufficient for virus exclusion. To define the additional viral components that are involved in this phenomenon, we engineered a hybrid virus in which a 5'-proximal region in the genome of the T36 isolate containing coding sequences for the two leader proteases L1 and L2 has been substituted with a corresponding region from the genome of a heterologous T68-1 isolate. Sequential inoculation of plants pre-infected with the CTV L1L2T68 hybrid with T36 CTV resulted in superinfection with the challenge virus, which indicated that the substitution of the L1-L2 coding region affected SIE ability of the virus. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structure of the lysine specific protease Kgp from Porphyromonas gingivalis, a target for improved oral health.

    Science.gov (United States)

    Gorman, Michael A; Seers, Christine A; Michell, Belinda J; Feil, Susanne C; Huq, N Laila; Cross, Keith J; Reynolds, Eric C; Parker, Michael W

    2015-01-01

    The oral pathogen Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Gingipains, the principle virulence factors of P. gingivalis are multidomain, cell-surface proteins containing a cysteine protease domain. The lysine specific gingipain, Kgp, is a critical virulence factor of P. gingivalis. We have determined the X-ray crystal structure of the lysine-specific protease domain of Kgp to 1.6 Å resolution. The structure provides insights into the mechanism of substrate specificity and catalysis. © 2014 The Protein Society.

  2. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation.

    Science.gov (United States)

    Xia, Zuyong; Xing, Yun; So, Min-Kyung; Koh, Ai Leen; Sinclair, Robert; Rao, Jianghong

    2008-11-15

    We report here a protease sensing nanoplatform based on semiconductor nanocrystals or quantum dots (QDs) and bioluminescence resonance energy transfer (QD-BRET) to detect the protease activity in complex biological samples. These nanosensors consist of bioluminescent proteins as the BRET donor, quantum dots as the BRET acceptor, and protease substrates sandwiched between the two as a sensing group. An intein-mediated conjugation strategy was developed for site-specific conjugation of proteins to QDs in preparing these QD nanosensors. In this traceless ligation, the intein itself is spliced out and excluded from the final conjugation product. With this method, we have synthesized a series of QD nanosensors for highly sensitive detection of an important class of protease matrix metalloproteinase (MMP) activity. We demonstrated that these nanosensors can detect the MMP activity in buffers and in mouse serum with the sensitivity to a few nanograms per milliliter and secreted proteases by tumor cells. The suitability of these nanosensors for a multiplex protease assay has also been shown.

  3. Expanding proteome coverage with orthogonal-specificity α-lytic proteases.

    Science.gov (United States)

    Meyer, Jesse G; Kim, Sangtae; Maltby, David A; Ghassemian, Majid; Bandeira, Nuno; Komives, Elizabeth A

    2014-03-01

    Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage through cleavage at sequences complementary to trypsin's may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type α-lytic protease (WaLP) and an active site mutant of WaLP, M190A α-lytic protease (MaLP). We assess several relevant factors, including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. When data from separate digestions with trypsin, LysC, WaLP, and MaLP were combined, proteome coverage was increased by 101% relative to that achieved with trypsin digestion alone. To demonstrate how the gained sequence coverage can yield additional post-translational modification information, we show the identification of a number of novel phosphorylation sites in the Schizosaccharomyces pombe proteome and include an illustrative example from the protein MPD2 wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined.

  4. Expanding Proteome Coverage with Orthogonal-specificity α-Lytic Proteases*

    Science.gov (United States)

    Meyer, Jesse G.; Kim, Sangtae; Maltby, David A.; Ghassemian, Majid; Bandeira, Nuno; Komives, Elizabeth A.

    2014-01-01

    Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage through cleavage at sequences complementary to trypsin's may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type α-lytic protease (WaLP) and an active site mutant of WaLP, M190A α-lytic protease (MaLP). We assess several relevant factors, including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. When data from separate digestions with trypsin, LysC, WaLP, and MaLP were combined, proteome coverage was increased by 101% relative to that achieved with trypsin digestion alone. To demonstrate how the gained sequence coverage can yield additional post-translational modification information, we show the identification of a number of novel phosphorylation sites in the Schizosaccharomyces pombe proteome and include an illustrative example from the protein MPD2 wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined. PMID:24425750

  5. Highly specific protease-based approach for detection of Porphyromonas gingivalis in diagnosis of periodontitis

    NARCIS (Netherlands)

    Kaman, W.E.; Galassi, F.; de Soet, J.J.; Bizzarro, S.; Loos, B.G.; Veerman, E.C.I.; van Belkum, A.; Hays, J.P.; Bikker, F.J.

    2012-01-01

    Porphyromonas gingivalis is associated with the development of periodontitis. Here we describe the development of a highly specific protease-based diagnostic method for the detection of P. gingivalis in gingival crevicular fluid. Screening of a proteolytic peptide substrate library, including

  6. Highly specific protease-based approach for detection of porphyromonas gingivalis in diagnosis of periodontitis

    NARCIS (Netherlands)

    J.P. Hays (John); W.E. Kaman (Wendy); F. Galassi (Fabiano); J.J. de Soet (Johannes); S. Bizzarro (Sergio); B.G. Loos (Bruno G.); E.C.I. Veerman (Enno); A.F. van Belkum (Alex); F.J. Bikkerk

    2012-01-01

    textabstractPorphyromonas gingivalis is associated with the development of periodontitis. Here we describe the development of a highly specific protease-based diagnostic method for the detection of P. gingivalis in gingival crevicular fluid. Screening of a proteolytic peptide substrate library,

  7. Identification of a novel host-specific IgG protease in Streptococcus phocae subsp. phocae.

    Science.gov (United States)

    Rungelrath, Viktoria; Wohlsein, Jan Christian; Siebert, Ursula; Stott, Jeffrey; Prenger-Berninghoff, Ellen; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter; Baums, Christoph G; Seele, Jana

    2017-03-01

    Streptococcus (S.) phocae subsp. phocae causes bronchopneumonia and septicemia in a variety of marine mammals. Especially in harbor seals infected with phocine distemper virus it plays an important role as an opportunistic pathogen. This study was initiated by the detection of IgG cleavage products in Western blot analysis after incubation of bacterial supernatant with harbor seal serum. Hence, the objectives of this study were the identification and characterization of a secreted IgG cleaving protease in S. phocae subsp. phocae isolated from marine mammals. To further identify the responsible factor of IgG cleavage a protease inhibitor profile was generated. Inhibition of the IgG cleaving activity by iodoacetamide and Z-LVG-CHN2 indicated that a cysteine protease is involved. Moreover, an anti-IdeS antibody directed against the IgG endopeptidase IdeS of S. pyogenes showed cross reactivity with the putative IgG protease of S. phocae subsp. phocae. The IgG cleaving factor of S. phocae subsp. phocae was identified through an inverse PCR approach and designated IdeP (Immunoglobulin G degrading enzyme of S. phocae subsp. phocae) in analogy to the cysteine protease IdeS. Notably, recombinant (r) IdeP is a host and substrate specific protease as it cleaves IgG from grey and harbor seals but not IgG from harbor porpoises or non-marine mammals. The identification of IdeP represents the first description of a protein in S. phocae subsp. phocae involved in immune evasion. Furthermore, the fact that IdeP cleaves solely IgG of certain marine mammals reflects functional adaption of S. phocae subsp. phocae to grey and harbor seals as its main hosts. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Science.gov (United States)

    Pirisinu, Laura; Di Bari, Michele; Marcon, Stefano; Vaccari, Gabriele; D'Agostino, Claudia; Fazzi, Paola; Esposito, Elena; Galeno, Roberta; Langeveld, Jan; Agrimi, Umberto; Nonno, Romolo

    2010-09-14

    Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc), a disease-associated isoform of the host-encoded cellular protein (PrP(C)). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc). However, PrP(Sc) is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc) aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C) and PrP(Sc) by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrP(Sc) solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2) values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2) values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc), we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc) aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc) conformational stabilities of protease-resistant and protease-sensitive PrP(Sc) and that it is a valuable tool for

  9. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Directory of Open Access Journals (Sweden)

    Laura Pirisinu

    Full Text Available Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc, a disease-associated isoform of the host-encoded cellular protein (PrP(C. Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc. However, PrP(Sc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C and PrP(Sc by means of differential centrifugation. The conformational solubility and stability assay (CSSA was then developed by measuring PrP(Sc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M, followed by sheep scrapie (2.2 M and by MM2 sCJD (1.6 M. In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc conformational stabilities of protease-resistant and protease-sensitive PrP(Sc and that it is a valuable tool

  10. Identification of genetic variation exclusive to specific lineages associated with Staphylococcus aureus bacteraemia.

    Science.gov (United States)

    Patel, D; Ellington, M J; Hope, R; Reynolds, R; Arnold, C; Desai, M

    2015-10-01

    Meticillin-resistant Staphylococcus aureus (MRSA) bacteraemia cases have declined since 2003, and have mostly been due to two epidemic (E) strains, E15 (multi-locus sequence type clonal complex CC22) and E16 (CC30). By contrast, the incidence of meticillin-susceptible S. aureus (MSSA) bacteraemia has remained largely unchanged and our understanding of these isolates has remained poor. To investigate the distribution and nucleotide sequence of heterogeneous regions between successful lineages using the 2009 British Society for Antimicrobial Chemotherapy (BSAC) Bacteraemia Resistance Surveillance Programme collection of S. aureus. S. aureus isolates (N = 202) comprised of 103 MRSA and 99 MSSA isolates were analysed using fluorescent amplified fragment length polymorphism (FAFLP) to detect nucleotide variations due to lineage-specific sequence motifs as well as differences in the distribution of mobile genetic elements between lineages. E15 and E16 MRSA strains comprised 79% and 6% of the collection in 2009 respectively. Six lineages, including CC22 and CC30, were associated with MRSA bacteraemia in the UK and Ireland. MSSA isolates were more diverse with 19 different lineages detected. FAFLP revealed lineage-specific sequence variations in loci encoding factors such as proteases or factors involved in haem biosynthesis, both of which may affect the success of major S. aureus lineages. Proteins encoded on certain mobile genetic elements or involved in cobalamin biosynthesis were found to be exclusive to CC8, CC22, or CC30. Overall, the genetic diversity among regions of the core genome and mobile genetic elements may alter antimicrobial resistance and the production of virulence or fitness factors that may be linked to strain success. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  11. The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress.

    Science.gov (United States)

    Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John

    2017-01-09

    Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion.

    Science.gov (United States)

    Liu, Juan; Sharma, Anupma; Niewiara, Marie Jamille; Singh, Ratnesh; Ming, Ray; Yu, Qingyi

    2018-01-06

    Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might

  13. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    Energy Technology Data Exchange (ETDEWEB)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie; Gatchalian, Jovylyn; Cornillez-Ty, Cromwell; Kuhn, Peter (Scripps)

    2010-03-04

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

  14. Substrate Specificity and Possible Heterologous Targets of Phytaspase, a Plant Cell Death Protease*

    Science.gov (United States)

    Galiullina, Raisa A.; Kasperkiewicz, Paulina; Chichkova, Nina V.; Szalek, Aleksandra; Serebryakova, Marina V.; Poreba, Marcin; Drag, Marcin; Vartapetian, Andrey B.

    2015-01-01

    Plants lack aspartate-specific cell death proteases homologous to animal caspases. Instead, a subtilisin-like serine-dependent plant protease named phytaspase shown to be involved in the accomplishment of programmed death of plant cells is able to hydrolyze a number of peptide-based caspase substrates. Here, we determined the substrate specificity of rice (Oryza sativa) phytaspase by using the positional scanning substrate combinatorial library approach. Phytaspase was shown to display an absolute specificity of hydrolysis after an aspartic acid residue. The preceding amino acid residues, however, significantly influence the efficiency of hydrolysis. Efficient phytaspase substrates demonstrated a remarkable preference for an aromatic amino acid residue in the P3 position. The deduced optimum phytaspase recognition motif has the sequence IWLD and is strikingly hydrophobic. The established pattern was confirmed through synthesis and kinetic analysis of cleavage of a set of optimized peptide substrates. An amino acid motif similar to the phytaspase cleavage site is shared by the human gastrointestinal peptide hormones gastrin and cholecystokinin. In agreement with the established enzyme specificity, phytaspase was shown to hydrolyze gastrin-1 and cholecystokinin at the predicted sites in vitro, thus destroying the active moieties of the hormones. PMID:26283788

  15. Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Jiang Fu

    2014-10-01

    Full Text Available Post-translational modification of proteins by small ubiquitin-related modifier (SUMO is reversible and highly evolutionarily conserved from yeasts to humans. Unlike ubiquitination with a well-established role in protein degradation, sumoylation may alter protein function, activity, stability and subcellular localization. Members of SUMO-specific protease (SENP family, capable of SUMO removal, are involved in the reversed conjugation process. Although SUMO-specific proteases are known to reverse sumoylation in many well-defined systems, their importance in mammalian development and pathogenesis remains largely elusive. In patients with neurodegenerative diseases, aberrant accumulation of SUMO-conjugated proteins has been widely described. Several aggregation-prone proteins modulated by SUMO have been implicated in neurodegeneration, but there is no evidence supporting a direct involvement of SUMO modification enzymes in human diseases. Here we show that mice with neural-specific disruption of SENP2 develop movement difficulties which ultimately results in paralysis. The disruption induces neurodegeneration where mitochondrial dynamics is dysregulated. SENP2 regulates Drp1 sumoylation and stability critical for mitochondrial morphogenesis in an isoform-specific manner. Although dispensable for development of neural cell types, this regulatory mechanism is necessary for their survival. Our findings provide a causal link of SUMO modification enzymes to apoptosis of neural cells, suggesting a new pathogenic mechanism for neurodegeneration. Exploring the protective effect of SENP2 on neuronal cell death may uncover important preventive and therapeutic strategies for neurodegenerative diseases.

  16. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease

    OpenAIRE

    1991-01-01

    Hemoglobin is an important nutrient source for intraerythrocytic malaria organisms. Its catabolism occurs in an acidic digestive vacuole. Our previous studies suggested that an aspartic protease plays a key role in the degradative process. We have now isolated this enzyme and defined its role in the hemoglobinolytic pathway. Laser desorption mass spectrometry was used to analyze the proteolytic action of the purified protease. The enzyme has a remarkably stringent specificity towards native h...

  17. Interaction specificity between the chaperone and proteolytic components of the cyanobacterial Clp protease.

    Science.gov (United States)

    Tryggvesson, Anders; Ståhlberg, Frida M; Mogk, Axel; Zeth, Kornelius; Clarke, Adrian K

    2012-09-01

    The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.

  18. Processing Proteases

    DEFF Research Database (Denmark)

    Ødum, Anders Sebastian Rosenkrans

    Processing proteases are proteases which proteolytically activate proteins and peptides into their biologically active form. Processing proteases play an important role in biotechnology as tools in protein fusion technology. Fusion strategies where helper proteins or peptide tags are fused...... to the protein of interest are an elaborate method to optimize expression or purification systems. It is however critical that fusion proteins can be removed and processing proteases can facilitate this in a highly specific manner. The commonly used proteases all have substrate specificities to the N......-terminal of the scissile bond, leaving C-terminal fusions to have non-native C-termini after processing. A solution yielding native C-termini would allow novel expression and purification systems for therapeutic proteins and peptides.The peptidyl-Lys metallopeptidase (LysN) of the fungus Armillaria mellea (Am) is one...

  19. Identification and isoforms specificity of barley (Hordeum vulgare) grain proteinaceous inhibitors of commercial feed protease

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2016-01-01

    Protease is commonly used as feed additive. Ronozyme® ProAct, a subtilisin-like serine feed protease is different from the already characterized Bacillus subtilisin-like serine protease. When used in wheat and barley based feed, its degree of efficiency differs according to the cultivar in analysis...

  20. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    Science.gov (United States)

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  1. Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Shuang Tang

    Full Text Available Most cancer cells exhibit a shift in glucose metabolic strategy, displaying increased glycolysis even with adequate oxygen supply. SUMO-specific proteases (SENPs de-SUMOylate substrates including HIF1α and p53,two key regulators in cancer glucose metabolism, to regulate their activity, stability and subcellular localization. However, the role of SENPs in tumor glucose metabolism remains unclear. Here we report that SUMO-specific protease 2 (SENP2 negatively regulates aerobic glycolysis in MCF7 and MEF cells. Over-expression of SENP2 reduces the glucose uptake and lactate production, increasing the cellular ATP levels in MCF7 cells, while SENP2 knockout MEF cells show increased glucose uptake and lactate production along with the decreased ATP levels. Consistently, the MCF7 cells over-expressing SENP2 exhibit decreased expression levels of key glycolytic enzymes and an increased rate of glucose oxidation compared with control MCF7 cells, indicating inhibited glycolysis but enhanced oxidative mitochondrial respiration. Moreover, SENP2 over-expressing MCF7 cells demonstrated a reduced amount of phosphorylated AKT, whereas SENP2 knockout MEFs exhibit increased levels of phosphorylated AKT. Furthermore, inhibiting AKT phosphorylation by LY294002 rescued the phenotype induced by SENP2 deficiency in MEFs. In conclusion, SENP2 represses glycolysis and shifts glucose metabolic strategy, in part through inhibition of AKT phosphorylation. Our study reveals a novel function of SENP2 in regulating glucose metabolism.

  2. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    Energy Technology Data Exchange (ETDEWEB)

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.; (Guelph)

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  3. Distal hinge of plasminogen activator inhibitor-1 involves its latency transition and specificities toward serine proteases

    Directory of Open Access Journals (Sweden)

    Shaltiel Shmuel

    2003-07-01

    Full Text Available Abstract Background The plasminogen activator inhibitor-1 (PAI-1 spontaneously converts from an inhibitory into a latent form. Specificity of PAI-1 is mainly determined by its reactive site (Arg346-Met347, which interacts with serine residue of tissue-type plasminogen activator (tPA with concomitant formation of SDS-stable complex. Other sites may also play roles in determining the specificity of PAI-1 toward serine proteases. Results To understand more about the role of distal hinge for PAI-1 specificities towards serine proteases and for its conformational transition, wild type PAI-1 and its mutants were expressed in baculovirus system. WtPAI-1 was found to be about 12 fold more active than the fibrosarcoma PAI-1. Single site mutants within the Asp355-Arg356-Pro357 segment of PAI-1 yield guanidine activatable inhibitors (a that can still form SDS stable complexes with tPA and urokinase plasminogen activator (uPA, and (b that have inhibition rate constants towards plasminogen activators which resemble those of the fibrosarcoma inhibitor. More importantly, latency conversion rate of these mutants was found to be ~3–4 fold faster than that of wtPAI-1. We also tested if Glu351 is important for serine protease specificity. The functional stability of wtPAI-1, Glu351Ala, Glu351Arg was about 18 ± 5, 90 ± 8 and 14 ± 3 minutes, respectively, which correlated well with both their corresponding specific activities (84 ± 15 U/ug, 112 ± 18 U/ug and 68 ± 9 U/ug, respectively and amount of SDS-stable complex formed with tPA after denatured by Guanidine-HCl and dialyzed against 50 mM sodium acetate at 4°C. The second-order rate constants of inhibition for uPA, plasmin and thrombin by Glu351Ala and Glu351Arg were increased about 2–10 folds compared to wtPAI-1, but there was no change for tPA. Conclusion The Asp355-Pro357 segment and Glu351 in distal hinge are involved in maintaining the inhibitory conformation of PAI-1. Glu351 is a specificity

  4. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries.

    Science.gov (United States)

    Barré, Olivier; Dufour, Antoine; Eckhard, Ulrich; Kappelhoff, Reinhild; Béliveau, François; Leduc, Richard; Overall, Christopher M

    2014-01-01

    Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P') sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  5. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  6. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    Energy Technology Data Exchange (ETDEWEB)

    Gottipati, Keerthi; Acholi, Sudheer [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States); Ruggli, Nicolas [Institute of Virology and Immunology, CH-3147 Mittelhäusern (Switzerland); Choi, Kyung H., E-mail: kychoi@utmb.edu [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States)

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  7. Development of a highly reliable assay for ubiquitin-specific protease 2 inhibitors.

    Science.gov (United States)

    Wang, Zhongli; Xie, Wenjuan; Zhu, Mingyan; Zhou, Huchen

    2017-09-01

    The dynamic modification of proteins with ubiquitin plays crucial roles in major celluar functions, and is associated with a number of pathological conditions. Ubiquitin-specific proteases (USPs) cleave ubiquitin from substrate proteins, and rescue them from proteasomal degradation. Among them, USP2 is overexpressed and plays important roles in various cancers including prostate cancer. Thus, it represents an attractive target for drug discovery. In order to develop potent and selective USP2 inhibitors, a highly reliable assay is needed for in-depth structure-activity relationship study. We report the cloning, expression, and purification of USP2 and UBA52, and the development of a highly reliable assay based on readily available SDS-PAGE-Coomassie systeme using UBA52 as the substrate protein. A number of effective USP2 inhibitors were also identified using this assay. Copyright © 2017. Published by Elsevier Ltd.

  8. The importance of physicochemical characteristics and nonlinear classifiers in determining HIV-1 protease specificity.

    Science.gov (United States)

    Manning, Timmy; Walsh, Paul

    2016-04-02

    This paper reviews recent research relating to the application of bioinformatics approaches to determining HIV-1 protease specificity, outlines outstanding issues, and presents a new approach to addressing these issues. Leading machine learning theory for the problem currently suggests that the direct encoding of the physicochemical properties of the amino acid substrates is not required for optimal performance. A number of amino acid encoding approaches which incorporate potentially relevant physicochemical properties of the substrate are identified, and are evaluated using a nonlinear task decomposition based neuroevolution algorithm. The results are evaluated, and compared against a recent benchmark set on a nonlinear classifier using only amino acid sequence and identity information. Ensembles of these nonlinear classifiers using the physicochemical properties of the substrate are demonstrated to consistently outperform the recently published state-of-the-art linear support vector machine based approach in out-of-sample evaluations.

  9. The importance of physicochemical characteristics and nonlinear classifiers in determining HIV-1 protease specificity

    Science.gov (United States)

    Manning, Timmy; Walsh, Paul

    2016-01-01

    ABSTRACT This paper reviews recent research relating to the application of bioinformatics approaches to determining HIV-1 protease specificity, outlines outstanding issues, and presents a new approach to addressing these issues. Leading machine learning theory for the problem currently suggests that the direct encoding of the physicochemical properties of the amino acid substrates is not required for optimal performance. A number of amino acid encoding approaches which incorporate potentially relevant physicochemical properties of the substrate are identified, and are evaluated using a nonlinear task decomposition based neuroevolution algorithm. The results are evaluated, and compared against a recent benchmark set on a nonlinear classifier using only amino acid sequence and identity information. Ensembles of these nonlinear classifiers using the physicochemical properties of the substrate are demonstrated to consistently outperform the recently published state-of-the-art linear support vector machine based approach in out-of-sample evaluations. PMID:27212259

  10. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease

    Directory of Open Access Journals (Sweden)

    Florine E.M. Scholte

    2017-09-01

    Full Text Available Antiviral responses are regulated by conjugation of ubiquitin (Ub and interferon-stimulated gene 15 (ISG15 to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.

  11. Regulation of neuronal morphogenesis and positioning by ubiquitin-specific proteases in the cerebellum.

    Directory of Open Access Journals (Sweden)

    Julius Anckar

    Full Text Available Ubiquitin signaling mechanisms play fundamental roles in the cell-intrinsic control of neuronal morphogenesis and connectivity in the brain. However, whereas specific ubiquitin ligases have been implicated in key steps of neural circuit assembly, the roles of ubiquitin-specific proteases (USPs in the establishment of neuronal connectivity have remained unexplored. Here, we report a comprehensive analysis of USP family members in granule neuron morphogenesis and positioning in the rodent cerebellum. We identify a set of 32 USPs that are expressed in granule neurons. We also characterize the subcellular localization of the 32 USPs in granule neurons using a library of expression plasmids encoding GFP-USPs. In RNAi screens of the 32 neuronally expressed USPs, we uncover novel functions for USP1, USP4, and USP20 in the morphogenesis of granule neuron dendrites and axons and we identify a requirement for USP30 and USP33 in granule neuron migration in the rodent cerebellar cortex in vivo. These studies reveal that specific USPs with distinct spatial localizations harbor key functions in the control of neuronal morphogenesis and positioning in the mammalian cerebellum, with important implications for our understanding of the cell-intrinsic mechanisms that govern neural circuit assembly in the brain.

  12. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    Science.gov (United States)

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  13. Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation.

    Science.gov (United States)

    Liu, Ningning; Chai, Renjie; Liu, Bin; Zhang, Zhenhui; Zhang, Shuangwei; Zhang, Jingzhi; Liao, Yuning; Cai, Jianyu; Xia, Xiaohong; Li, Aiqun; Liu, Jinbao; Huang, Hongbiao; Liu, Shiming

    2016-09-23

    Cardiac hypertrophy, a compensatory response to various stimuli in the heart, independently predicts cardiovascular ailments and related deaths. Increasing evidence indicates ubiquitin-proteasome signaling contributes to cardiac hypertrophy regulation. Here, we identified ubiquitin-specific protease 14 (USP14), a 19S proteasome associated deubiquitinase (DUB), as a novel target for cardiac hypertrophy therapy via inhibition of the GSK-3β pathway. Indeed, USP14 expression was increased in an animal model of abdominal aorta constriction. In an angiotensin II (AngII) induced primary neonatal rat cardiomyocyte hypertrophy model, USP14 expression was increased in a time-dependent manner, and reduced USP14 deubiquitinase activity or USP14 knockdown resulted in lower expression levels of the myocardial hypertrophy specific marker β-MHC, and subsequent decreased GSK-3β phosphorylation. In conclusion, USP14 mediates the development of cardiac hypertrophy by promoting GSK-3β phosphorylation, suggesting that USP14 might represent a novel therapeutic target for cardiac hypertrophy treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Thermodynamic characterization of specific interactions between the human Lon protease and G-quartet DNA.

    Science.gov (United States)

    Chen, Si-Han; Suzuki, Carolyn K; Wu, Shih-Hsiung

    2008-03-01

    Lon is an ATP-powered protease that binds DNA. However, the function of DNA binding by Lon remains elusive. Studies suggest that human Lon (hLon) binds preferentially to a G-rich single-stranded DNA (ssDNA) sequence overlapping the light strand promoter of mitochondrial DNA. This sequence is contained within a 24-base oligonucleotide referred to as LSPas. Here, we use biochemical and biophysical approaches to elucidate the structural properties of ssDNAs bound by hLon, as well as the thermodynamics of DNA binding by hLon. Electrophoretic mobility shift assay and circular dichroism show that ssDNAs with a propensity for forming parallel G-quartets are specifically bound by hLon. Isothermal titration calorimetry demonstrates that hLon binding to LSPas is primarily driven by enthalpy change associated with a significant reduction in heat capacity. Differential scanning calorimetry pinpoints an excess heat capacity upon hLon binding to LSPas. By contrast, hLon binding to an 8-base G-rich core sequence is entropically driven with a relatively negligible change in heat capacity. A considerable enhancement of thermal stability accompanies hLon binding to LSPas as compared to the G-rich core. Taken together, these data support the notion that hLon binds G-quartets through rigid-body binding and that binding to LSPas is coupled with structural adaptation.

  15. Thermodynamic characterization of specific interactions between the human Lon protease and G-quartet DNA

    Science.gov (United States)

    Chen, Si-Han; Suzuki, Carolyn K.; Wu, Shih-Hsiung

    2008-01-01

    Lon is an ATP-powered protease that binds DNA. However, the function of DNA binding by Lon remains elusive. Studies suggest that human Lon (hLon) binds preferentially to a G-rich single-stranded DNA (ssDNA) sequence overlapping the light strand promoter of mitochondrial DNA. This sequence is contained within a 24-base oligonucleotide referred to as LSPas. Here, we use biochemical and biophysical approaches to elucidate the structural properties of ssDNAs bound by hLon, as well as the thermodynamics of DNA binding by hLon. Electrophoretic mobility shift assay and circular dichroism show that ssDNAs with a propensity for forming parallel G-quartets are specifically bound by hLon. Isothermal titration calorimetry demonstrates that hLon binding to LSPas is primarily driven by enthalpy change associated with a significant reduction in heat capacity. Differential scanning calorimetry pinpoints an excess heat capacity upon hLon binding to LSPas. By contrast, hLon binding to an 8-base G-rich core sequence is entropically driven with a relatively negligible change in heat capacity. A considerable enhancement of thermal stability accompanies hLon binding to LSPas as compared to the G-rich core. Taken together, these data support the notion that hLon binds G-quartets through rigid-body binding and that binding to LSPas is coupled with structural adaptation. PMID:18174225

  16. Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein

    Science.gov (United States)

    2012-01-01

    Superinfection exclusion, a phenomenon in which a preexisting viral infection prevents a secondary infection with the same or a closely related virus, has been described for various viruses, including important pathogens of humans, animals, and plants. The phenomenon was initially used to test the relatedness of plant viruses. Subsequently, purposeful infection with a mild isolate has been implemented as a protective measure against virus isolates that cause severe disease. In the medical and veterinary fields, superinfection exclusion was found to interfere with repeated applications of virus-based vaccines to individuals with persistent infections and with the introduction of multicomponent vaccines. In spite of its significance, our understanding of this phenomenon is surprisingly incomplete. Recently, it was demonstrated that superinfection exclusion of Citrus tristeza virus (CTV), a positive-sense RNA closterovirus, occurs only between isolates of the same strain, but not between isolates of different strains of the virus. In this study, I show that superinfection exclusion by CTV requires production of a specific viral protein, the p33 protein. Lack of the functional p33 protein completely eliminated the ability of the virus to exclude superinfection by the same or a closely related virus. Remarkably, the protein appeared to function only in a homology-dependent manner. A cognate protein from a heterologous strain failed to confer the exclusion, suggesting the existence of precise interactions of the p33 protein with other factors involved in this complex phenomenon. PMID:22398285

  17. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species.

    Science.gov (United States)

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J; Paton, Lois; Woof, Jenny M; von Pawel-Rammingen, Ulrich

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use.

  18. HIV protease inhibitor resistance

    NARCIS (Netherlands)

    Wensing, Annemarie M.J.; Fun, Axel; Nijhuis, Monique

    2017-01-01

    HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of

  19. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Jaspreet Pannu

    Full Text Available USP21 is a ubiquitin specific protease that catalyzes protein deubiquitination, however the identification of its physiological substrates remains challenging. USP21 is known to deubiquitinate transcription factor GATA3 and death-domain kinase RIPK1 in vitro, however the in vivo settings where this regulation plays a biologically significant role remain unknown. In order to determine whether USP21 is an essential and non-redundant regulator of GATA3 or RIPK1 activity in vivo, we characterized Usp21-deficient mice, focusing on mouse viability and development, hematopoietic stem cell function, and lymphocyte differentiation. The Usp21-knockout mice were found to be viable and fertile, with no significant dysmorphology, in contrast to the GATA3 and RIPK1 knockout lines that exhibit embryonic or perinatal lethality. Loss of USP21 also had no effect on hematopoietic stem cell function, lymphocyte development, or the responses of antigen presenting cells to TLR and TNFR stimulation. GATA3 levels in hematopoietic stem cells or T lymphocytes remained unchanged. We observed that aged Usp21-knockout mice exhibited spontaneous T cell activation, however this was not linked to altered GATA3 levels in the affected cells. The contrast in the phenotype of the Usp21-knockout line with the previously characterized GATA3 and RIPK1 knockout mice strongly indicates that USP21 is redundant for the regulation of GATA3 and RIPK1 activity during mouse development, in hematopoietic stem cells, and in lymphocyte differentiation. The Usp21-deficient mouse line characterized in this study may serve as a useful tool for the future characterization of USP21 physiological functions.

  20. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc

    Science.gov (United States)

    Sun, Xiao-Xin; He, Xia; Yin, Li; Komada, Masayuki; Sears, Rosalie C.; Dai, Mu-Shui

    2015-01-01

    c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCFFbw7 (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc’s nucleolar degradation pathway. PMID:25775507

  1. Subtype-Specific Differences in Gag-Protease-Driven Replication Capacity Are Consistent with Intersubtype Differences in HIV-1 Disease Progression.

    Science.gov (United States)

    Kiguoya, Marion W; Mann, Jaclyn K; Chopera, Denis; Gounder, Kamini; Lee, Guinevere Q; Hunt, Peter W; Martin, Jeffrey N; Ball, T Blake; Kimani, Joshua; Brumme, Zabrina L; Brockman, Mark A; Ndung'u, Thumbi

    2017-07-01

    There are marked differences in the spread and prevalence of HIV-1 subtypes worldwide, and differences in clinical progression have been reported. However, the biological reasons underlying these differences are unknown. Gag-protease is essential for HIV-1 replication, and Gag-protease-driven replication capacity has previously been correlated with disease progression. We show that Gag-protease replication capacity correlates significantly with that of whole isolates (r = 0.51; P = 0.04), indicating that Gag-protease is a significant contributor to viral replication capacity. Furthermore, we investigated subtype-specific differences in Gag-protease-driven replication capacity using large well-characterized cohorts in Africa and the Americas. Patient-derived Gag-protease sequences were inserted into an HIV-1 NL4-3 backbone, and the replication capacities of the resulting recombinant viruses were measured in an HIV-1-inducible reporter T cell line by flow cytometry. Recombinant viruses expressing subtype C Gag-proteases exhibited substantially lower replication capacities than those expressing subtype B Gag-proteases (P protease sequences were engineered into an HIV-1 subtype C backbone. We identified Gag residues 483 and 484, located within the Alix-binding motif involved in virus budding, as major contributors to subtype-specific replicative differences. In East African cohorts, we observed a hierarchy of Gag-protease-driven replication capacities, i.e., subtypes A/C protease-driven replication capacity of subtypes A and C slows disease progression in individuals infected with these subtypes, which in turn leads to greater opportunity for transmission and thus increased prevalence of these subtypes.IMPORTANCE HIV-1 subtypes are unevenly distributed globally, and there are reported differences in their rates of disease progression and epidemic spread. The biological determinants underlying these differences have not been fully elucidated. Here, we show that HIV-1

  2. Activity, specificity, and probe design for the smallpox virus protease K7L.

    Science.gov (United States)

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  3. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H

    1999-01-01

    Vaccinia virus was increased after 3-6 months, whereas the specific HIV-directed CTL activity and the concentration and lytic activity of natural killer (NK) cells were unchanged during follow-up. These results demonstrate that the initiation of a treatment including an HIV protease inhibitor is followed......The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...... including a protease inhibitor. Unstimulated and pokeweed mitogen (PWM)-, interleukin (IL)-2- and phytohaemagglutinin (PHA)-stimulated lymphocyte proliferative responses increased during follow-up reaching average levels from 1.3-fold (PHA) to 3.7-fold (PWM) above baseline values. The total CD4+ lymphocyte...

  4. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    Science.gov (United States)

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  5. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Heyda, J.; Konvalinka, Jan

    2013-01-01

    Roč. 160, č. 1 (2013), s. 359-370 ISSN 1359-6640 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP207/11/1798 Institutional support: RVO:61388963 Keywords : HIV -1 protease * ion-protein interaction * Hofmeister series * enzyme kinetics * molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 4.194, year: 2013

  6. Evolution of a mass spectrometry-grade protease with PTM-directed specificity.

    Science.gov (United States)

    Tran, Duc T; Cavett, Valerie J; Dang, Vuong Q; Torres, Héctor L; Paegel, Brian M

    2016-12-20

    Mapping posttranslational modifications (PTMs), which diversely modulate biological functions, represents a significant analytical challenge. The centerpiece technology for PTM site identification, mass spectrometry (MS), requires proteolytic cleavage in the vicinity of a PTM to yield peptides for sequencing. This requirement catalyzed our efforts to evolve MS-grade mutant PTM-directed proteases. Citrulline, a PTM implicated in epigenetic and immunological function, made an ideal first target, because citrullination eliminates arginyl tryptic sites. Bead-displayed trypsin mutant genes were translated in droplets, the mutant proteases were challenged to cleave bead-bound fluorogenic probes of citrulline-dependent proteolysis, and the resultant beads (1.3 million) were screened. The most promising mutant efficiently catalyzed citrulline-dependent peptide bond cleavage (kcat/KM = 6.9 × 105 M-1⋅s-1). The resulting C-terminally citrullinated peptides generated characteristic isotopic patterns in MALDI-TOF MS, and both a fragmentation product y1 ion corresponding to citrulline (176.1030 m/z) and diagnostic peak pairs in the extracted ion chromatograms of LC-MS/MS analysis. Using these signatures, we identified citrullination sites in protein arginine deiminase 4 (12 sites) and in fibrinogen (25 sites, two previously unknown). The unique mass spectral features of PTM-dependent proteolytic digest products promise a generalized PTM site-mapping strategy based on a toolbox of such mutant proteases, which are now accessible by laboratory evolution.

  7. Rapid and simple IgG specific test for the exclusion of heparin induced thrombocytopenia (HIT).

    Science.gov (United States)

    Kolde, Hans-Jürgen; Dostatni, Ralf; Mauracher, Susanne

    2011-08-29

    The exclusion of heparin induced thrombocytopenia (HIT) is required for selecting the most appropriate anticoagulation therapy in affected patients. It requires the combination of clinical data with the detection of antibodies directed against platelet factor 4 (PF4) in complex with polyanions (PA) such as heparin. We developed a lateral flow immunoassay (LFIA) for PF4/PA complex specific IgG antibodies based on gold nanoparticles. Unlike most other assays, the initial immune reaction takes place in the liquid phase. The sensitivity of the assay has been adjusted with clinical samples aiming in the reliable detection of sera which are positive in a functional platelet activation assay. Sera from 60 patients with suspected HIT were investigated. LFIA identified correctly all samples (n=20) which were positive in a functional assay (HIPA) and an IgG specific ELISA. It correlated with ELISA, but false positive results were less frequent (7 samples were negative with LFIA and HIPA but positive with ELISA). The LFIA may be a suitable tool for the rapid exclusion of HIT within 10 min.

  8. Arginine-specific gingipains from Porphyromonas gingivalis deprive protective functions of secretory leucocyte protease inhibitor in periodontal tissue

    National Research Council Canada - National Science Library

    Into, T; Inomata, M; Kanno, Y; Matsuyama, T; Machigashira, M; Izumi, Y; Imamura, T; Nakashima, M; Noguchi, T; Matsushita, K

    2006-01-01

    .... In this study, we found that the expression of secretory leucocyte protease inhibitor (SLPI), an endogenous inhibitor for neutrophil-derived proteases, was reduced in gingival tissues with chronic periodontitis associated with P...

  9. Protease inhibitors, part 13: Specific, weakly basic thrombin inhibitors incorporating sulfonyl dicyandiamide moieties in their structure.

    Science.gov (United States)

    Clare, B W; Scozzafava, A; Supuran, C T

    2001-01-01

    A series of compounds has been prepared by reaction of dicyandiamide with alkyl/arylsulfonyl halides as well as arylsulfonylisocyanates to locate a lead for obtaining weakly basic thrombin inhibitors with sulfonyldicyandiamide moieties as the S1 anchoring group. The detected lead was sulfanilyl-dicyandiamide (K1 of 3 microM against thrombin, and 15 microM against trypsin), which has been further derivatized at the 4-amino group by incorporating arylsulfonylureido as well as amino acyl/dipeptidyl groups protected at the amino terminal moiety with benzyloxycarbonyl or tosylureido moieties. The best compound obtained (ts-D-Phe-Pro-sulfanilyl-dicyandiamide) showed inhibition constants of 9 nM against thrombin and 1400 nM against trypsin. pKa measurements showed that the new derivatives reported here do indeed possess a reduced basicity, with the pKa of the modified guanidine moieties in the range 7.9-8.3 pKa units. Molecular mechanics calculations showed that the preferred tautomeric form of these compounds is of the type ArSO2N=C(NH2) NH-CN, probably allowing for the formation of favorable interaction between this new anchoring group and the active site amino acid residue Asp 189, critical for substrate/inhibitor binding to this type of serine protease. Thus, the main finding of the present paper is that the sulfonyldicyandiamide group may constitute an interesting alternative for obtaining weakly basic, potent thrombin inhibitors, which bind with less affinity to trypsin.

  10. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H

    1999-01-01

    The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...... Vaccinia virus was increased after 3-6 months, whereas the specific HIV-directed CTL activity and the concentration and lytic activity of natural killer (NK) cells were unchanged during follow-up. These results demonstrate that the initiation of a treatment including an HIV protease inhibitor is followed...... count increased mainly due to increases in numbers of CD4+ CD28+ and CD4+ CD45RO+ cells, whereas increases in numbers of CD4+ CD45RA+ cells contributed little to the increase in CD4+ cell count. The total cytotoxic T-cell (CTL) killing of autologous B cells infected with HIV-encoding recombinant...

  11. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.; Torbett, Bruce E.; Elder, John H.; Stout, C. David, E-mail: dave@scripps.edu [The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2011-06-01

    Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC{sub 50} values in the nanomolar range.

  12. Discovery of 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivatives as non-peptidic selective SUMO-sentrin specific protease (SENP)1 inhibitors.

    Science.gov (United States)

    Uno, Masaharu; Koma, Yosuke; Ban, Hyun Seung; Nakamura, Hiroyuki

    2012-08-15

    We developed 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivative 4 (GN6958) as a non-peptidic selective SUMO-sentrin specific protease (SENP)1 protease inhibitor based on the hypoxia inducible factor (HIF)-1α inhibitor 1 (GN6767). The direct interaction of compound 1 with SENP1 protein in cells was observed by the pull-down experiments using the biotin-tagged compound 2 coated on the streptavidin affinity column. Among the various 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivatives tested, compounds 3 and 4 suppressed HIF-1α accumulation in a concentration-dependent manner without affecting the expression level of tubulin protein in HeLa cells. Both compounds inhibited SENP1 protease activity in a concentration-dependent manner, and compound 4 exhibited more potent inhibition than compound 3. Compound 4 exhibited selective inhibition against SENP1 protease activity without inhibiting other protease enzyme activities in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development.

    Science.gov (United States)

    Francis, Nidhish; Every, Alison L; Ayodele, Babatunde A; Pike, Robert N; Mackie, Eleanor J; Pagel, Charles N

    2017-11-01

    Activation of protease-activated receptor-2 (PAR2) expressed by T cells has been linked to the bone loss associated with periodontitis. We generated PAR2 conditional-null mice and crossed these with mice expressing Cre recombinase under control of the Lck proximal promoter, to produce T cell-specific PAR2-null mice in order to further study the cellular mechanism involved in periodontitis. Here we report that efficient deletion of PAR2 in thymocytes isolated from T cell-specific PAR2-null mice resulted in thymic and splenic hypoplasia and a reduction in the cells of the cortex and a loss of distinction between the cortex and the medulla of the thymus. FACS analysis confirmed significant reductions in CD4 and CD8 double negative (DN3 and DN4) sub-populations, as well as double positive and single positive T cells, in T cell-specific PAR2-null mice compared to Cre expressing PAR2 wild-type mice. The proportion of annexin V positive and propidium iodide negative cells was increased in CD4 and CD8 double negative, double positive and single positive T cells from T cell-specific PAR2-null mice. No change in the proportion of Ki67 positive cells was observed in sections of thymus from T cell-specific PAR2-null mice, suggesting that the depletion of T cell sub-populations in T cell-specific PAR2-null mice resulted from increased apoptosis rather than reduced proliferation. Together, these results demonstrate that PAR2 plays an important and previously unrecognised anti-apoptotic role in T cell development and suggest that the PAR2 conditional-null mouse will be an important resource for determining tissue and cell specific effects of PAR2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Site-SpecificCu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N), Using Copper Free Click Chemistry

    DEFF Research Database (Denmark)

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H

    2018-01-01

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migration...

  15. HupW Protease Specifically Required for Processing of the Catalytic Subunit of the Uptake Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120

    Science.gov (United States)

    Lindberg, Pia; Devine, Ellenor; Stensjö, Karin

    2012-01-01

    The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512

  16. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease.

    Science.gov (United States)

    Lin, Ying Chuan; Perryman, Alexander L; Olson, Arthur J; Torbett, Bruce E; Elder, John H; Stout, C David

    2011-06-01

    A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC(50) values in the nanomolar range. © 2011 International Union of Crystallography

  17. Ubiquitin-Specific Protease 2 Regulates Hepatic Gluconeogenesis and Diurnal Glucose Metabolism Through 11β-Hydroxysteroid Dehydrogenase 1

    Science.gov (United States)

    Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.

    2012-01-01

    Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855

  18. Quantitation of fibroblast activation protein (FAP-specific protease activity in mouse, baboon and human fluids and organs

    Directory of Open Access Journals (Sweden)

    Fiona M. Keane

    2014-01-01

    Full Text Available The protease fibroblast activation protein (FAP is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.

  19. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors.

    Science.gov (United States)

    Ribeiro, Cristina; Togawa, Roberto C; Neshich, Izabella A P; Mazoni, Ivan; Mancini, Adauto L; Minardi, Raquel C de Melo; da Silveira, Carlos H; Jardine, José G; Santoro, Marcelo M; Neshich, Goran

    2010-10-20

    Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes. The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor. The table (matrix) of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. The serine proteases interfaces prefer polar (including glycine) residues (with some exceptions). Charged residues were found to be uniquely prevalent at the interfaces between the "miscellaneous-virus" subfamily

  20. Analysis of binding properties and specificity through identification of the interface forming residues (IFR for serine proteases in silico docked to different inhibitors

    Directory of Open Access Journals (Sweden)

    da Silveira Carlos H

    2010-10-01

    Full Text Available Abstract Background Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR. We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. Results We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI, ecotine and ovomucoid third domain inhibitor. The table (matrix of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. Conclusions The serine proteases interfaces prefer polar (including glycine residues (with some exceptions. Charged residues were found to be uniquely prevalent at the

  1. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Satoshi Nakajima

    Full Text Available During the DNA damage response (DDR, ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5, a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.

  2. Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Ulf Meyer-Hoffert

    Full Text Available Kallikreins-related peptidases (KLKs are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI. Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.

  3. A 6-kb promoter fragment mimics in transgenic mice the prostate-specific and androgen-regulated expression of the endogenous prostate-specific antigen gene in humans

    NARCIS (Netherlands)

    C.B.J.M. Cleutjens (Kitty); H.A.G.M. van der Korput (Hetty); C.C.E.M. Ehren-van Eekelen (Conny); R.A. Sikes; C. Fasciana (Claudia); L.W. Chung; J. Trapman (Jan)

    1997-01-01

    textabstractProstate-specific antigen (PSA) is a kallikrein-like serine protease, which is almost exclusively synthesized in the luminal epithelial cells of the human prostate. PSA expression is androgen regulated. Previously, we characterized in vitro the proximal

  4. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme.

    Science.gov (United States)

    Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P C; Ovaa, Huib; Drag, Marcin; Lima, Christopher D; Huang, Tony T

    2015-06-01

    Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.

  5. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera

    OpenAIRE

    Marri Swathi; Mishra, Prashant K.; Vadthya Lokya; Swaroop Vanka; Nalini Mallikarjuna; Aparna Dutta Gupta; Kollipara Padmasree

    2016-01-01

    AbstractProteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in cont...

  6. Protease inhibitor

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a polypeptide exhibiting a protease inhibitory activity and uses of said polypeptide in methods for inhibiting, directly or indirectly, one or more proteases of the blood clotting cascade. The invention also relates to use of said polypeptide as a pharmaceutical e...

  7. Specific cysteine protease inhibitors act as deterrents of Western flower thrips Frankliniella occidentalis (Pergande) in transgenic potato

    NARCIS (Netherlands)

    Outchkourov, N.S.; Kogel, de J.; Bruin, de A.; Abrahamson, M.; Jongsma, M.A.

    2004-01-01

    In this study, the effects of the accumulation of cysteine protease inhibitors on the food preferences of adult female western flower thrips, Frankliniella occidentalis (Pergande), were investigated. Representative members of the cystatin and thyropin gene families (stefin A, cystatin C, kininogen

  8. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of aptamer selection, proteinaptamer recognition, protease inhibition, and advantages of aptamers...... for pharmacological intervention with pathophysiological functions of proteases. Aptamers can be selected so that they bind their targets highly specifically and with affinities corresponding to K(D) values in the nM range. Aptamers can be selected so that they recognize their targets conformation...

  9. Site-Specific 64Cu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N3), Using Copper Free Click Chemistry.

    Science.gov (United States)

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H; Petersen, Lars C; Kristensen, Jesper B; Behrens, Carsten; Madsen, Jacob; Kjaer, Andreas

    2018-01-17

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with 64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migration, and survival of cancer cells. First a single azide moiety was introduced in the active site of this 50 kDa protease. Then a NOTA moiety was introduced via a strain promoted azide-alkyne reaction and the corresponding conjugate was labeled with 64Cu. Binding to TF and the stability was evaluated in vitro. TF targeting capability of the radiolabeled conjugate was tested in vivo by positron emission tomography (PET) imaging in pancreatic human xenograft cancer mouse models with various TF expressions. The conjugate showed good stability (>91% at 16 h), an immunoreactivity of 93.5%, and a mean tumor uptake of 2.1 ± 0.2%ID/g at 15 h post injection. In conclusion, FVIIai was radiolabeled with 64Cu in single well-defined position of the protein. This method can be utilized to prepare conjugates from serine proteases with the label at a specific position.

  10. Spink13, an Epididymis-specific Gene of the Kazal-type Serine Protease Inhibitor (SPINK) Family, Is Essential for the Acrosomal Integrity and Male Fertility*

    Science.gov (United States)

    Ma, Li; Yu, Heguo; Ni, Zimei; Hu, Shuanggang; Ma, Wubin; Chu, Chen; Liu, Qiang; Zhang, Yonglian

    2013-01-01

    Sperm maturation involves numerous surface modifications by a variety of secreted proteins from epididymal epithelia. The sperm surface architecture depends on correct localization of its components and highlights the importance of the sequence of the proteolytic processing of the sperm surface in the epididymal duct. The presence of several protease inhibitors from different families is consistent with the hypothesis that correctly timed epididymal protein processing is essential for proper sperm maturation. Here we show that the rat (Rattus norvegicus) epididymis-specific gene Spink13, an androgen-responsive serine protease inhibitor, could bind to the sperm acrosome region. Furthermore, knockdown of Spink13 in vivo dramatically enhanced the acrosomal exocytosis during the process of capacitation and thus led to a significant reduction in male fertility, indicating that Spink13 was essential for sperm maturation. We conclude that blockade of SPINK13 may provide a new putative target for post-testicular male contraceptives. PMID:23430248

  11. A new method for the Characterization of Strain-Specific Conformational Stability of Protease-Sensitive and Protease Resistant PrPSc

    NARCIS (Netherlands)

    Pirisinu, L.; Bari, Di M.; Marcon, S.; Vaccari, G.; Agostino, D' C.; Fazzi, P.; Esposito, E.; Cardone, F.; Langeveld, J.P.M.; Agrimi, U.; Nonno, R.

    2010-01-01

    Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrPSc, a disease-associated isoform of the host-encoded cellular protein (PrPC). Molecular strain typing approaches

  12. Supermarket Proteases.

    Science.gov (United States)

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  13. An ER complex of ODR-4 and ODR-8/Ufm1 specific protease 2 promotes GPCR maturation by a Ufm1-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Changchun Chen

    2014-03-01

    Full Text Available Despite the importance of G-protein coupled receptors (GPCRs their biogenesis is poorly understood. Like vertebrates, C. elegans uses a large family of GPCRs as chemoreceptors. A subset of these receptors, such as ODR-10, requires the odr-4 and odr-8 genes to be appropriately localized to sensory cilia. The odr-4 gene encodes a conserved tail-anchored transmembrane protein; the molecular identity of odr-8 is unknown. Here, we show that odr-8 encodes the C. elegans ortholog of Ufm1-specific protease 2 (UfSP2. UfSPs are cysteine proteases identified biochemically by their ability to liberate the ubiquitin-like modifier Ufm1 from its pro-form and protein conjugates. ODR-8/UfSP2 and ODR-4 are expressed in the same set of twelve chemosensory neurons, and physically interact at the ER membrane. ODR-4 also binds ODR-10, suggesting that an ODR-4/ODR-8 complex promotes GPCR folding, maturation, or export from the ER. The physical interaction between human ODR4 and UfSP2 suggests that this complex's role in GPCR biogenesis may be evolutionarily conserved. Unexpectedly, mutant versions of ODR-8/UfSP2 lacking catalytic residues required for protease activity can rescue all odr-8 mutant phenotypes tested. Moreover, deleting C. elegans ufm-1 does not alter chemoreceptor traffic to cilia, either in wild type or in odr-8 mutants. Thus, UfSP2 proteins have protease- and Ufm1-independent functions in GPCR biogenesis.

  14. Structural Characterization and Determinants of Specificity of Single- Chain Antibody Inhibitors of Membrane-Type Serine Protease 1

    Science.gov (United States)

    2007-03-01

    protease involved in male chromatin remodeling blocks the development of sea urchin embryos at the initial cell cycle. J. Cell Biochem. 98, 335–342. 18...Macrophage Morphology Changes and Inhibition of Nitric Oxide Production by Macrophages. The cleavage of MSP-1 by MT-SP1 was then tested in primary cells in...inhibitor (Fig. 3) were studied. The morphology change in response to MSP-1 was independent of HAI-1 or anti-MT-SP1 antibody presence. Both inhibitors

  15. Secreted proteases from dermatophytes.

    Science.gov (United States)

    Monod, Michel

    2008-01-01

    Dermatophytes are highly specialized pathogenic fungi that exclusively infect the stratum corneum, nails or hair, and it is evident that secreted proteolytic activity is important for their virulence. Endo- and exoproteases-secreted by dermatophytes are similar to those of species of the genus Aspergillus. However, in contrast to Aspergillus spp., dermatophyte-secreted endoproteases are multiple and are members of two large protein families, the subtilisins (serine proteases) and the fungalysins (metalloproteases). In addition, dermatophytes excrete sulphite as a reducing agent. In the presence of sulphite, disulphide bounds of the keratin substrate are directly cleaved to cysteine and S-sulphocysteine, and reduced proteins become accessible for further digestion by various endo- and exoproteases secreted by the fungi. Sulphitolysis is likely to be an essential step in the digestion of compact keratinized tissues which precedes the action of all proteases.

  16. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme

    Science.gov (United States)

    Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P. C.; Ovaa, Huib; Drag, Marcin; Lima, Christopher D.; Huang, Tony T.

    2015-01-01

    Ubiquitin (Ub) and the ubiquitin-like modifier interferon stimulated gene 15 (ISG15) participate in the host defense of viral infections. Viruses, including the Severe Acute Respiratory Syndrome human coronavirus (SARS hCoV), have co-opted Ub/ISG15-conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub/ISG15-conjugated host proteins. Here, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle Eastern Respiratory Syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that similar to SARS PLpro, MERS PLpro is both a deubiquitinating and a deISGylating enzyme. Further analysis of the intrinsic deubiquitinating enzyme (DUB) activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, while SARS PLpro prefers to cleave Lys48-linked polyUb chains. Second, MERS PLpro cleaves polyUb chains in a “mono-distributive” manner (one Ub at a time), and SARS PLpro prefers to cleave K48-linked poly-Ub chains by sensing a di-Ub moiety as a minimal recognition element using a “di-distributive” cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses. PMID:25764917

  17. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis.

    Science.gov (United States)

    Pulido, Pablo; Llamas, Ernesto; Llorente, Briardo; Ventura, Salvador; Wright, Louwrance P; Rodríguez-Concepción, Manuel

    2016-01-01

    The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid.

  18. Human kallikrein 2 (hK2), but not prostate-specific antigen (PSA), rapidly complexes with protease inhibitor 6 (PI-6) released from prostate carcinoma cells.

    Science.gov (United States)

    Saedi, M S; Zhu, Z; Marker, K; Liu, R S; Carpenter, P M; Rittenhouse, H; Mikolajczyk, S D

    2001-11-01

    Human kallikrein 2 (hK2) is a secreted, trypsin-like protease that shares 80% amino acid sequence identity with prostate-specific antigen (PSA). hK2 has been shown to be a serum marker for prostate cancer and may also play a role in cancer progression and metastasis. We have previously identified a novel complex between human kallikrein 2 (hK2) and protease inhibitor 6 (PI-6) in prostate cancer tissue. PI-6 is an intracellular serine protease inhibitor with both antitrypsin and antichymotrypsin activity. In the current study we have shown that PI-6 forms a rapid in vitro complex with hK2 but does not complex with PSA. Recombinant mammalian cells expressing both hK2 and PI-6 showed hK2-PI-6 complex in the spent media only after cell death and lysis. Similarly, LNCaP cells expressing endogenous hK2 and PI-6 showed extracellular hK2-PI-6 complex formation concurrently with cell death. Immunostaining of prostate cancer tissues with PI-6 monoclonal antibodies showed a marked preferential staining pattern in cancerous epithelial cells compared with noncancerous tissue. These results indicate that the hK2-PI-6 complex may be a naturally occurring marker of tissue damage and necrosis associated with neoplasia. Both hK2 and PI-6 were shed into the lumen of prostate cancer glands as granular material that appeared to be cellular necrotic debris. The differential staining pattern of PI6 in tissues suggests a complex regulation of PI-6 expression that may play a role in other aspects of neoplastic progression. Copyright 2001 Wiley-Liss, Inc.

  19. Network analyses reveal pervasive functional regulation between proteases in the human protease web.

    Directory of Open Access Journals (Sweden)

    Nikolaus Fortelny

    2014-05-01

    Full Text Available Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8 and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8-/- versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically

  20. SUMO-Specific Protease 2 Suppresses Cell Migration and Invasion through Inhibiting the Expression of MMP13 in Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Yue Tan

    2013-08-01

    Full Text Available Background: SUMO-specific protease 2 (SENP2 is a de-SUMOylation protease family member which has an indispensable role in the regulation of NF-κB transcriptional activation and Wnt signaling. However, whether SENP2 plays a role in tumor metastasis is completely unknown. Methods: Real-time PCR and Western blot was used to detect the expression of SENP2 in human bladder cancer samples and cell lines. Small interfering RNA (siRNA was used to silencing the expression of SENP2. Matrigel-coated invasion chambers were used to detect the invasion ability of SENP2 in bladder cancer cells. Results: SENP2 was down-regulated in bladder cancer samples. SENP2 inhibited bladder cancer cells migration and invasion in vitro. Transcriptional analysis of several genes associated with tumor metastasis and invasion demonstrated that SENP2 selectively down-regulated MMP13 in bladder cancer cells. Further analysis indicated that silencing of MMP13 rescued the invasive phenotype in SENP2 expressing T24 cells. Conclusion: SENP2 functions as a tumor metastasis suppressor in bladder cancer. The effects of SENP2 on bladder cancer invasion are partially mediated by inhibiting the expression of MMP13.

  1. Modification of calcite crystal morphology by designed phosphopeptides and primary structures and substrate specifities of the cysteine proteases mexicain and chymomexicain

    Science.gov (United States)

    Lian, Zhirui

    In order to better understand the mechanism of biomineralization, we have undertaken to synthesize polypeptide model compounds of well-defined structure that can interact with specific faces of calcite and alter its crystal morphology. These peptides were designed based on the structure of alpha-helical winter flounder antifreeze polypeptide HPLC-6. In these peptides, from one to three of the threonine residues in HPLC-6 were substituted by phosphoserine or phosphotyrosine. CD spectra show that all the peptides have virtually the same alpha-helicity, i.e., about 90% at 4°C and 50% at 25°C. However, only peptides which contain at least two phosphate groups spaced 16.8-A apart can modify the crystal morphology of the calcite. The newly developed surface has been tentatively identified as the (001) basal face. Molecular modeling indicates that the spacing of phosphate groups allows for a good match with crystal lattice ions on the (001) plane. Another peptide, CBP-3D, in which the three threonine residues in HPLC-6 were substituted by aspartic acids, appears to bind only to {104} rhombohedral faces of calcite. These experiments suggest that conformation and orientation of the binding ligands in the peptide are important factors governing the mutual recognition of crystal surface and proteins. The complete amino acid sequences of the cysteine proteases mexicain and chymomexicain, isolated from the latex of the plant Pileus mexicanus , were determined by Edman degradation of proteolytic fragments. Mexicain and chymomexicain show-high sequence homology to the papain family of cysteine protease. Mexicain and chymomexicain are monomeric polypeptides, with molecular masses of 23,762 Da and 23,694 Da, respectively, and both contain three deduced disulfide bonds. The proteolytic substrate specificities of mexicain and chymomexicain were studied by digesting a series of synthetic peptides and analyzing the fragments by mass spectrometry. The two proteases showed virtually

  2. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells.

    Science.gov (United States)

    Brocker, Chad N; Yue, Jiang; Kim, Donghwan; Qu, Aijuan; Bonzo, Jessica A; Gonzalez, Frank J

    2017-03-01

    Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation. NPC contribution to PPARA agonist-induced hepatomegaly was assessed in hepatocyte ( Ppara △Hep )- and macrophage ( Ppara △Mac )-specific Ppara null mice. Mice were treated with the agonist Wy-14643 for 14 days, and response of conditional null mice was compared with conventional knockout mice ( Ppara -/- ). Wy-14643 treatment caused weight loss and severe hepatomegaly in wild-type and Ppara △Mac mice, and histological analysis revealed characteristic hepatocyte swelling; Ppara △Hep and Ppara -/- mice were protected from these effects. Ppara △Mac serum chemistries, as well as aspartate aminotransferase and alanine aminotransferase levels, matched wild-type mice. Agonist-treated Ppara △Hep mice had elevated serum cholesterol, phospholipids, and triglycerides when compared with Ppara -/- mice, indicating a possible role for extrahepatic PPARA in regulating circulating lipid levels. BrdU labeling confirmed increased cell proliferation only in wild-type and Ppara △Mac mice. Macrophage PPARA disruption did not impact agonist-induced upregulation of lipid metabolism, cell proliferation, or DNA damage and repair-related gene expression, whereas gene expression was repressed in Ppara △Hep mice. Interestingly, downregulation of inflammatory cytokines IL-15 and IL-18 was dependent on macrophage PPARA. Cell type-specific regulation of target genes was confirmed in primary hepatocytes and Kupffer cells. These studies conclusively show that cell proliferation is mediated exclusively by PPARA activation in hepatocytes and that Kupffer cell PPARA has an important role in mediating the anti-inflammatory effects of PPARA agonists

  3. Specific determination of selenoaminoacids in whole milk by 2D size-exclusion-ion-paring reversed phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP MS)

    Energy Technology Data Exchange (ETDEWEB)

    Bierla, Katarzyna [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS UMR5254, Helioparc, 2, av. Pr. Angot, 64053 Pau (France)], E-mail: katarzyabierla@wp.pl; Szpunar, Joanna [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS UMR5254, Helioparc, 2, av. Pr. Angot, 64053 Pau (France); Lobinski, Ryszard [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS UMR5254, Helioparc, 2, av. Pr. Angot, 64053 Pau (France); Warsaw Technical University, Department of Analytical Chemistry, Noakowskiego 3, 00-664 Warsaw (Poland)

    2008-08-29

    A procedure was developed for the quantitative recovery of selenomethionine (SeMet) and selenocysteine (SeCys) from whole milk. It was based on the protein unfolding, carbamidomethylation of the aminoacid residues using iodoacetamide and proteolysis using Protease XIV. The selenoaminoacids were specifically determined by ion-paring reversed phase HPLC-ICP MS after their isolation from the post-reaction mixture by size-exclusion LC. Se(IV) present in the sample was derivatized as well and was determined along with the selenoaminoacids. The origin and identity of species were identified by the co-elution with the Se(IV), isotopically labelled selenomethionine, and with the synthetic standard of carbamidomethylated selenocysteine. The method development for SeCys was assisted by using glutathione peroxidise as the SeCys standard. SeMet, SeCys and Se(IV) were quantified by the method of standard additions. The mass balance provided a measure of the method validation. The method was applied to monitoring selenium speciation during supplementation of cows (dose-effect study) with Se-rich yeast containing feed and during milk processing.

  4. Specific determination of selenoaminoacids in whole milk by 2D size-exclusion-ion-paring reversed phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP MS).

    Science.gov (United States)

    Bierla, Katarzyna; Szpunar, Joanna; Lobinski, Ryszard

    2008-08-29

    A procedure was developed for the quantitative recovery of selenomethionine (SeMet) and selenocysteine (SeCys) from whole milk. It was based on the protein unfolding, carbamidomethylation of the aminoacid residues using iodoacetamide and proteolysis using Protease XIV. The selenoaminoacids were specifically determined by ion-paring reversed phase HPLC-ICP MS after their isolation from the post-reaction mixture by size-exclusion LC. Se(IV) present in the sample was derivatized as well and was determined along with the selenoaminoacids. The origin and identity of species were identified by the co-elution with the Se(IV), isotopically labelled selenomethionine, and with the synthetic standard of carbamidomethylated selenocysteine. The method development for SeCys was assisted by using glutathione peroxidase as the SeCys standard. SeMet, SeCys and Se(IV) were quantified by the method of standard additions. The mass balance provided a measure of the method validation. The method was applied to monitoring selenium speciation during supplementation of cows (dose-effect study) with Se-rich yeast containing feed and during milk processing.

  5. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera.

    Science.gov (United States)

    Swathi, Marri; Mishra, Prashant K; Lokya, Vadthya; Swaroop, Vanka; Mallikarjuna, Nalini; Dutta-Gupta, Aparna; Padmasree, Kollipara

    2016-01-01

    Proteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI) activity than trypsin inhibitor (TI) activity. Analysis of CpPI 63 using two-dimensional (2-D) electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6 and 58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs). The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6) of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs) as well as miraculin-like proteins (MLPs). Further, modification of lysine residue(s) lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus.

  6. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L.(Fabaceae active against Gut Proteases of Lepidopteran pest Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Marri Swathi

    2016-09-01

    Full Text Available AbstractProteinase inhibitors (PIs are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63 were purified from mature dry seeds of C. platycarpus (ICPW-63 and characterized their biochemical properties in contributing to H. armigera resistance. CpPI 63 possessed significant H. armigera gut trypsin-like proteinase inhibitor (HGPI activity than trypsin inhibitor (TI activity. Analysis of CpPI 63 using two-dimensional (2-D electrophoresis and matrix assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry revealed that it contained several isoinhibitors and small oligomers with masses ranging between 6-58 kDa. The gelatin activity staining studies suggest that these isoinhibitors and oligomers possessed strong inhibitory activity against H. armigera gut trypsin-like proteases (HGPs. The N-terminal sequence of the isoinhibitors (pI 6.6 and pI 5.6 of CpPI 63 exhibited 80% homology with several Kunitz trypsin inhibitors (KTIs as well as miraculin-like proteins (MLPs. Further, modification of lysine residue(s lead to 80% loss in both TI and HGPI activities of CpPI 63. In contrast, the TI and HGPI activities of CpPI 63 were stable over a wide range of temperature and pH conditions. The reported results provide a biochemical basis for pod borer resistance in C. platycarpus.

  7. Co-evolution of insect proteases and plant protease inhibitors.

    Science.gov (United States)

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  8. Specific Detection of Naturally Occurring Hepatitis C Virus Mutants with Resistance to Telaprevir and Boceprevir (Protease Inhibitors) among Treatment-Naïve Infected Individuals

    Science.gov (United States)

    Fonseca-Coronado, Salvador; Escobar-Gutiérrez, Alejandro; Ruiz-Tovar, Karina; Cruz-Rivera, Mayra Yolanda; Rivera-Osorio, Pilar; Vazquez-Pichardo, Mauricio; Carpio-Pedroza, Juan Carlos; Ruíz-Pacheco, Juan Alberto; Cazares, Fernando

    2012-01-01

    The use of telaprevir and boceprevir, both protease inhibitors (PI), as part of the specifically targeted antiviral therapy for hepatitis C (STAT-C) has significantly improved sustained virologic response (SVR) rates. However, different clinical studies have also identified several mutations associated with viral resistance to both PIs. In the absence of selective pressure, drug-resistant hepatitis C virus (HCV) mutants are generally present at low frequency, making mutation detection challenging. Here, we describe a mismatch amplification mutation assay (MAMA) PCR method for the specific detection of naturally occurring drug-resistant HCV mutants. MAMA PCR successfully identified the corresponding HCV variants, while conventional methods such as direct sequencing, endpoint limiting dilution (EPLD), and bacterial cloning were not sensitive enough to detect circulating drug-resistant mutants in clinical specimens. Ultradeep pyrosequencing was used to confirm the presence of the corresponding HCV mutants. In treatment-naïve patients, the frequency of all resistant variants was below 1%. Deep amplicon sequencing allowed a detailed analysis of the structure of the viral population among these patients, showing that the evolution of the NS3 is limited to a rather small sequence space. Monitoring of HCV drug resistance before and during treatment is likely to provide important information for management of patients undergoing anti-HCV therapy. PMID:22116161

  9. Structural And Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease: Implications for Dual Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R.; Sikorra, S.; Stegmann, C.M.; Pich, A.; Binz, T.; Brunger, A.T.

    2009-06-01

    Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote a-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the a-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.

  10. Structure and mechanism of rhomboid protease.

    Science.gov (United States)

    Ha, Ya; Akiyama, Yoshinori; Xue, Yi

    2013-05-31

    Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases.

  11. Structure and Mechanism of Rhomboid Protease*

    Science.gov (United States)

    Ha, Ya; Akiyama, Yoshinori; Xue, Yi

    2013-01-01

    Rhomboid protease was first discovered in Drosophila. Mutation of the fly gene interfered with growth factor signaling and produced a characteristic phenotype of a pointed head skeleton. The name rhomboid has since been widely used to describe a large family of related membrane proteins that have diverse biological functions but share a common catalytic core domain composed of six membrane-spanning segments. Most rhomboid proteases cleave membrane protein substrates near the N terminus of their transmembrane domains. How these proteases function within the confines of the membrane is not completely understood. Recent progress in crystallographic analysis of the Escherichia coli rhomboid protease GlpG in complex with inhibitors has provided new insights into the catalytic mechanism of the protease and its conformational change. Improved biochemical assays have also identified a substrate sequence motif that is specifically recognized by many rhomboid proteases. PMID:23585569

  12. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Liqing Wang

    2016-11-01

    Full Text Available Foxp3+ T-regulatory (Treg cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or “secondary” modulation, e.g. using anti-CTLA-4 monoclonal antibody. Our ongoing studies of the post-translational modifications that regulate Foxp3 demonstrated that the histone/protein acetyltransferase, Tip60, plays a dominant role in promoting acetylation, dimerization and function in Treg cells. We now show that the ubiquitin-specific protease, Usp7, controls Treg function largely by stabilizing the expression and promoting the multimerization of Tip60 and Foxp3. Genetic or pharmacologic targeting of Usp7 impairs Foxp3+ Treg suppressive functions, while conventional T cell responses remain intact. As a result, pharmacologic inhibitors of Usp7 can limit tumor growth in immunocompetent mice, and promote the efficacy of antitumor vaccines and immune checkpoint therapy with anti-PD1 monoclonal antibody in murine models. Hence, pharmacologic therapy with Usp7 inhibitors may have an important role in future cancer immunotherapy.

  13. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction.

    Directory of Open Access Journals (Sweden)

    Yunguang Wang

    Full Text Available The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes' expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism.

  14. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... encoding polypeptides conferring resistance to microbial growth inhibitors; wherein the polypeptides comprise the recognition site amino acid sequence cleavable by the protease. Protease inhibitors are detected by their ability to inhibit protease specific cleavage and inactivation of the polypeptides...... platform for screening for a protease inhibitor....

  15. Switching Futile para-Quinone to Efficient Reactive Oxygen Species Generator: Ubiquitin-Specific Protease-2 Inhibition, Electrocatalysis, and Quantification.

    Science.gov (United States)

    Gopinath, Pushparathinam; Mahammed, Atif; Eilon-Shaffer, Tal; Nawatha, Mickal; Ohayon, Shimrit; Shabat, Doron; Gross, Zeev; Brik, Ashraf

    2017-09-05

    Understanding the correlation between structural features of small-molecule drugs and their mode of action is a fascinating topic and crucial for the drug-discovery process. However, in many cases, knowledge of the exact parameters that dictate the mode of action is still lacking. Following a large screening for ubiquitin specific protease 2 (USP2) inhibition, an effective para-quinone-based inhibitor with an unclear mode of action was identified. To gain a deeper understanding of the mechanism of inhibition, a set of para-quinones were prepared and studied for USP2 inhibition, electrocatalysis, and reactive oxygen species (ROS) quantification. The excellent correlation obtained from the above-mentioned studies disclosed a distinct pattern of "N-C=O-N" in the bicyclic para-quinones to be a crucial factor for ROS generation, and demonstrated that minor changes in such a skeleton drastically altered the ROS-generating ability. The knowledge acquired herein would serve as an important guideline for future medicinal chemistry optimization of related structures to select the preferred mode of action. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Discovery and characterization of a novel plant pathogen protease

    Science.gov (United States)

    Chitinase modifying proteins are fungal proteases that attack specific plant defense chitinases. At least three unrelated types of proteases have evolved to have this function. They all truncate the targeted chitinases by cleaving near their amino termini, but each protease type targets a different ...

  17. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV.

    Science.gov (United States)

    Lee, Hyun; Lei, Hao; Santarsiero, Bernard D; Gatuz, Joseph L; Cao, Shuyi; Rice, Amy J; Patel, Kavankumar; Szypulinski, Michael Z; Ojeda, Isabel; Ghosh, Arun K; Johnson, Michael E

    2015-06-19

    The Middle East Respiratory Syndrome coronavirus (MERS-CoV) papain-like protease (PLpro) blocking loop 2 (BL2) structure differs significantly from that of SARS-CoV PLpro, where it has been proven to play a crucial role in SARS-CoV PLpro inhibitor binding. Four SARS-CoV PLpro lead inhibitors were tested against MERS-CoV PLpro, none of which were effective against MERS-CoV PLpro. Structure and sequence alignments revealed that two residues, Y269 and Q270, responsible for inhibitor binding to SARS-CoV PLpro, were replaced by T274 and A275 in MERS-CoV PLpro, making critical binding interactions difficult to form for similar types of inhibitors. High-throughput screening (HTS) of 25 000 compounds against both PLpro enzymes identified a small fragment-like noncovalent dual inhibitor. Mode of inhibition studies by enzyme kinetics and competition surface plasmon resonance (SPR) analyses suggested that this compound acts as a competitive inhibitor with an IC50 of 6 μM against MERS-CoV PLpro, indicating that it binds to the active site, whereas it acts as an allosteric inhibitor against SARS-CoV PLpro with an IC50 of 11 μM. These results raised the possibility that inhibitor recognition specificity of MERS-CoV PLpro may differ from that of SARS-CoV PLpro. In addition, inhibitory activity of this compound was selective for SARS-CoV and MERS-CoV PLpro enzymes over two human homologues, the ubiquitin C-terminal hydrolases 1 and 3 (hUCH-L1 and hUCH-L3).

  18. Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB)

    DEFF Research Database (Denmark)

    van der Post, Sjoerd; Subramani, Durai B; Bäckström, Malin

    2013-01-01

    The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there ar......The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether...

  19. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hidehito Kuroyanagi

    Full Text Available An enormous number of alternative pre-mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a-4c and 7a-7b, of the Caenorhabditis elegans uncoordinated (unc-32 gene, encoding the a subunit of V0 complex of vacuolar-type H(+-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA-binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA-binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive

  20. CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans

    Science.gov (United States)

    Kuroyanagi, Hidehito; Watanabe, Yohei; Hagiwara, Masatoshi

    2013-01-01

    An enormous number of alternative pre–mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a–4c and 7a–7b, of the Caenorhabditis elegans uncoordinated (unc)-32 gene, encoding the a subunit of V0 complex of vacuolar-type H+-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA–binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA–binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive exons of

  1. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans.

    Science.gov (United States)

    Kuroyanagi, Hidehito; Watanabe, Yohei; Hagiwara, Masatoshi

    2013-01-01

    An enormous number of alternative pre-mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a-4c and 7a-7b, of the Caenorhabditis elegans uncoordinated (unc)-32 gene, encoding the a subunit of V0 complex of vacuolar-type H(+)-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA-binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA-binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive exons of the unc-32

  2. Establishment of a novel triple-transgenic mouse: conditionally and liver-specifically expressing hepatitis C virus NS3/4A protease.

    Science.gov (United States)

    Lan, H Y; Zhao, Y; Yang, J; Sun, M N; Lei, Y F; Yao, M; Huang, X J; Zhang, J M; Xu, Z K; Lü, X; Yin, W

    2014-11-01

    It is well known that NS3/4A protein plays crucial roles in the hepatitis C virus (HCV) replication. NS3/4A protein also results to virus-mediated immune evasion and persistence of infection through the interaction with host proteins. However, the lack of a suitable animal model hampers studies of HCV NS3/4A protein interaction with host proteins, which impacts immunopathology due to infection. Here, transgenic vector containing transcriptional regulation and Fluc reporter gene was constructed to conditionally express NS3/4A protein under the dual control of Tet-On regulatory system and Cre/LoxP gene-knockout system. NS3/4A transgenic founder mice were continuously crossed with Lap transgenic mice expressing reverse tetracycline-controlled transcriptional activator (rtTA), the NS3/4A/Lap double transgenic mouse lines with liver-specifically and conditionally expressing reporter (luciferase Fluc) under control of Tet-On system were established. The NS3/4A/Lap double transgenic mouse are mated with Lap/LC-1 double transgenic mouse with liver-specifically and conditionally expressing Cre recombinase under control of Tet-On system, NS3/4A/Lap/LC-1 triple transgenic mouse were generated. In vivo bioluminescent imaging, western blotting and immunohistochemical staining (IHS) was used to confirm that NS3/4A protein was strictly expressed in the liver of Doxycycline-induced triple transgenic mice. The results show that we established a triple-transgenic mouse model conditionally expressing the HCV NS3/4A protein under strict control of the Tet-On regulatory system and Cre/loxP system. This novel transgenic mouse model expressing NS3/4A in a temporally and spatially-specific manner will be useful for studying interactions between HCV NS3/4A protein and the host, also for evaluating NS3/4A protease inhibitors.

  3. Differential Survivorship of Invasive Mosquito Species in South Florida Cemeteries: Do Site-Specific Microclimates Explain Patterns of Coexistence and Exclusion?

    Science.gov (United States)

    LOUNIBOS, L. P.; O'MEARA, G. F.; JULIANO, S. A.; NISHIMURA, N.; ESCHER, R. L.; REISKIND, M. H.; CUTWA, M.; GREENE, K.

    2010-01-01

    Within 2 yr of the arrival of the invasive container mosquito Aedes albopictus (Skuse), the previously dominant invasive mosquito Aedes aegypti (L.) disappeared from many Florida cemeteries. At some cemeteries, however, Ae. aegypti populations seem stable despite Ae. albopictus invasion. We sought to understand this variation in the outcome (exclusion, coexistence) of this invasion, given that previous experiments show that Ae. albopictus is the superior larval competitor. We tested experimentally the hypothesis that climate-dependent egg survivorship differs between exclusion and coexistence cemeteries and that differences in invasion outcome are associated with microclimate. Viability of eggs oviposited in the laboratory and suspended in vases at six cemeteries was significantly greater for Ae. aegypti than for Ae. albopictus, and greater in 2001 than in 2006. Cemeteries differed significantly in egg survivorship of Ae. albopictus, but not of Ae. aegypti, which is consistent with the hypothesis that Ae. albopictus suffers site-specific, climate-driven egg mortality that mitigates the competitive superiority of larval Ae. albopictus. Principal component (PC) analysis of microclimate records from vases during the experiments yielded three PCs accounting for >96% of the variance in both years of experiments. Multivariate analysis of variance of the three PCs revealed significant microclimate differences among the six cemeteries and between exclusion versus coexistence cemeteries. Stepwise logistic regression of egg survivorship versus microclimate PCs yielded significant fits for both species, and twice as much variance explained for Ae. albopictus as for Ae. aegypti in both years. Higher mortalities in 2006 were associated with high average daily maximum temperatures in vases, with lethal thresholds for both species at ≈40°C. From 1990 to 2007, vase occupancy by Ae. albopictus increased and that by Ae. aegypti decreased, with increasing seasonal precipitation at

  4. Protease-degradable electrospun fibrous hydrogels

    Science.gov (United States)

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-03-01

    Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose-dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fibre populations support selective fibre degradation based on individual fibre degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications.

  5. Total vascular exclusion safely facilitates liver specific gene transfer by the HVJ (sendai virus)-liposome method in rats.

    Science.gov (United States)

    Kawashita, Yujo; Fujioka, Hikaru; Ohtsuru, Akira; Kuroda, Hiroaki; Eguchi, Susumu; Kaneda, Yasufumi; Yamashita, Shunichi; Kanematsu, Takashi

    2006-05-01

    Most virus mediated transfection systems are efficient; however, their highly immunogenic properties do tend to cause clinical problems. HVJ-liposome vector is a hybrid vector consisting of liposome and inactivated sendai virus (hemagglutinating virus of Japan HVJ), which has been reported to be have a low immunogenicity, while it can also be repeatedly administered. To enhance the transfection efficiency, especially in the liver, we investigated the efficacy of total vascular exclusion (TVE) during the portal vein injection (PVI) of the vectors. beta-galactosidase and luciferase expression were used as reporter genes. Wistar rats were injected with HVJ-liposome through PVI without TVE (PVI group, n = 10) or PVI with TVE (PVI + TVE group, n = 10). The control rats were infused with equal volumes of saline through the portal vein (control group n = 12). The transfection efficiencies were assessed by beta-galactosidase staining and a luciferase assay. Biochemical and histological analyses were performed to evaluate the tissue toxicity after gene transfer. The reporter genes expression in the liver dramatically increased after PVI + TVE in comparison to after PVI alone (1.2 x 10(5)versus 1.5 x 10(4) RLU/mg protein, P HVJ-liposome method and this modality might also be applicable to other gene transfer systems.

  6. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  7. Exclusive Dealing

    DEFF Research Database (Denmark)

    Fumagalli, Chiara; Motta, Massimo; Rønde, Thomas

    2012-01-01

    This paper studies a model whereby exclusive dealing (ED) can both promote investment and foreclose a more efficient supplier. Since ED promotes the incumbent seller's investment, the seller and the buyer realize a greater surplus from bilateral trade under exclusivity. Hence, the parties involved...... may sign an ED contract that excludes a more efficient entrant in circumstances where ED would not arise absent investment. The paper therefore invites a more cautious attitude towards accepting possible investment promotion arguments as a defense for ED....

  8. Characterization by Tin-Specific Size Exclusion Chromatography of the Free Radical Copolymerization of Tributyltin Methacrylate and Methyl Methacrylate,

    Science.gov (United States)

    1980-12-11

    organometallic polymers (OMP’s) represent a. novel class of tailored materials especially effective as long-service marine antifoulants on ships [2]. Prior to...the commercial utilization of the polymers , specific information must be obtained regarding the polymerization process. Synthetic work done to date has...taken from two separate polymerization runs. 14 REFERENCES 1. W. L. Yeager and V. J. Castelli, " Antifouling Applications of Various Tin-Containing

  9. Intra- and inter-clade cross-reactivity by HIV-1 Gag specific T-cells reveals exclusive and commonly targeted regions: implications for current vaccine trials.

    Directory of Open Access Journals (Sweden)

    Lycias Zembe

    Full Text Available The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128 and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001. Consistent with these results, the predicted Major Histocompatibility Complex Class I IC(50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001, suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.

  10. QRI, a retina-specific gene, encodes an extracellular matrix protein exclusively expressed during neural retina differentiation.

    Science.gov (United States)

    Casado, F J; Pouponnot, C; Jeanny, J C; Lecoq, O; Calothy, G; Pierani, A

    1996-02-01

    Neural retina development results from growth arrest of neuroectodermal precursors and differentiation of postmitotic cells. The QRI gene is specifically expressed in Müller retinal glial cells. Its expression coincides with the stage of withdrawal from the cell cycle and establishment of differentiation and is repressed upon induction of retinal cell proliferation by the v-src gene product. In this report, we show that the QR1 gene encodes several glycosylated proteins that are secreted and can either associate with the extracellular matrix or remain diffusible in the medium. By using pulse-chase experiments, the 100-103 kDa forms seem to appear first and are specifically incorporated into the extracellular matrix, whereas the 108 and 60 kDa polypeptides appear later and are detected as soluble forms in the culture medium. We also report that expression of the QR1 gene is developmentally regulated in the chicken. Its mRNA is first detectable at embryonic day 10, reaches a maximal level at embryonic day 15 and is no longer detected at embryonic day 18. Immunolocalization of the QR1 protein in chicken retina sections during development shows that expression of the protein parallels the differentiation pattern of post-miotic cells (in particular Müller cells and rods), corresponding to the two differentiation gradients in the retina: from the ganglion cell layer to the inner nuclear layer and outer nuclear layer, and from the optic nerve to the iris. At embryonic day 10, expression of the QR1 protein(s) is restricted to the optic nerve region and the inner nuclear layer, colocalizing with Müller cell bodies. As development proceeds, QR1 protein localization spreads towards the iris and towards the outer nuclear layer, following Müller cell elongations towards the photoreceptors. Between embryonic days 16 and 18, the QR1 protein is no longer detectable in the optic nerve region and is concentrated around the basal segment of the photoreceptors in the peripheral

  11. Measurement of fractionated plasma metanephrines for exclusion of pheochromocytoma: Can specificity be improved by adjustment for age?

    Directory of Open Access Journals (Sweden)

    Gafni Amiram

    2005-02-01

    Full Text Available Abstract Background Biochemical testing for pheochromocytoma by measurement of fractionated plasma metanephrines is limited by false positive rates of up to 18% in people without known genetic predisposition to the disease. The plasma normetanephrine fraction is responsible for most false positives and plasma normetanephrine increases with age. The objective of this study was to determine if we could improve the specificity of fractionated plasma measurements, by statistically adjusting for age. Methods An age-adjusted metanephrine score was derived using logistic regression from 343 subjects (including 33 people with pheochromocytoma who underwent fractionated plasma metanephrine measurements as part of investigations for suspected pheochromocytoma at Mayo Clinic Rochester (derivation set. The performance of the age-adjusted score was validated in a dataset of 158 subjects (including patients 23 with pheochromocytoma that underwent measurements of fractionated plasma metanephrines at Mayo Clinic the following year (validation dataset. None of the participants in the validation dataset had known genetic predisposition to pheochromocytoma. Results The sensitivity of the age-adjusted metanephrine score was the same as that of traditional interpretation of fractionated plasma metanephrine measurements, yielding a sensitivity of 100% (23/23, 95% confidence interval [CI] 85.7%, 100%. However, the false positive rate with traditional interpretation of fractionated plasma metanephrine measurements was 16.3% (22/135, 95% CI, 11.0%, 23.4% and that of the age-adjusted score was significantly lower at 3.0% (4/135, 95% CI, 1.2%, 7.4% (p Conclusion An adjustment for age in the interpretation of results of fractionated plasma metanephrines may significantly decrease false positives when using this test to exclude sporadic pheochromocytoma. Such improvements in false positive rate may result in savings of expenditures related to confirmatory imaging.

  12. Novel method for analysis of allele specific expression in triploid Oryzias latipes reveals consistent pattern of allele exclusion.

    Directory of Open Access Journals (Sweden)

    Tzintzuni I Garcia

    Full Text Available Assessing allele-specific gene expression (ASE on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types and diseased tissues (trisomies, non-disjunction events, cancerous tissues. In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82% shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18% displayed a wide range of ASE levels. Interestingly the majority of genes (78% displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.

  13. Novel fungal protease.

    NARCIS (Netherlands)

    Buxton, F.; Jarai, G.; Visser, J.

    1994-01-01

    The present invention concerns a novel DNA sequence coding for an Aspergillus serine protease of the subtilisin-type, an Aspergillus serine protease of the subtilisin-type per se and a method for the preparation thereof. The invention further concerns a novel Aspergillus mutant strain defective in a

  14. Adapted J6/JFH1-Based Hepatitis C Virus Recombinants with Genotype-Specific NS4A Show Similar Efficacies against Lead Protease Inhibitors, Alpha Interferon, and a Putative NS4A Inhibitor

    Science.gov (United States)

    Gottwein, Judith M.; Jensen, Sanne B.; Serre, Stéphanie B. N.; Ghanem, Lubna; Scheel, Troels K. H.; Jensen, Tanja B.; Krarup, Henrik; Uzcategui, Nathalie; Mikkelsen, Lotte S.

    2013-01-01

    To facilitate studies of hepatitis C virus (HCV) NS4A, we aimed at developing J6/JFH1-based recombinants with genotype 1- to 7-specific NS4A proteins. We developed efficient culture systems expressing NS4A proteins of genotypes (isolates) 1a (H77 and TN), 1b (J4), 2a (J6), 4a (ED43), 5a (SA13), 6a (HK6a), and 7a (QC69), with peak infectivity titers of ∼3.5 to 4.5 log10 focus-forming units per ml. Except for genotype 2a (J6), growth depended on adaptive mutations identified in long-term culture. Genotype 1a, 1b, and 4a recombinants were adapted by amino acid substitutions F772S (p7) and V1663A (NS4A), while 5a, 6a, and 7a recombinants required additional substitutions in the NS3 protease and/or NS4A. We demonstrated applicability of the developed recombinants for study of antivirals. Genotype 1 to 7 NS4A recombinants showed similar responses to the protease inhibitors telaprevir (VX-950), boceprevir (Sch503034), simeprevir (TMC435350), danoprevir (ITMN-191), and vaniprevir (MK-7009), to alpha interferon 2b, and to the putative NS4A inhibitor ACH-806. The efficacy of ACH-806 was lower than that of protease inhibitors and was not influenced by changes at amino acids 1042 and 1065 (in the NS3 protease), which have been suggested to mediate resistance to ACH-806 in replicons. Genotype 1a, 1b, and 2a recombinants showed viral spread under long-term treatment with ACH-806, without acquisition of resistance mutations in the NS3-NS4A region. Relatively high concentrations of ACH-806 inhibited viral assembly, but not replication, in a single-cycle production assay. The developed HCV culture systems will facilitate studies benefitting from expression of genotype-specific NS4A in a constant backbone in the context of the complete viral replication cycle, including functional studies and evaluations of the efficacy of antivirals. PMID:24060868

  15. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    Science.gov (United States)

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  16. Secreted fungal aspartic proteases: A review.

    Science.gov (United States)

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  17. Role of Proteases in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2017-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.

  18. Characterization of a chemostable serine alkaline protease from Periplaneta americana

    OpenAIRE

    Sanatan, Prashant T; Purushottam R. Lomate; Giri, Ashok P; Hivrale, Vandana K.

    2013-01-01

    Background Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects? gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. Results In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in v...

  19. Protease-activated receptor signalling by coagulation proteases in endothelial cells.

    Science.gov (United States)

    Rezaie, Alireza R

    2014-11-01

    Endothelial cells express several types of integral membrane protein receptors, which upon interaction and activation by their specific ligands, initiate a signalling network that links extracellular cues in circulation to various biological processes within a plethora of cells in the vascular system. A small family of G-protein coupled receptors, termed protease-activated receptors (PAR1-4), can be specifically activated by coagulation proteases, thereby modulating a diverse array of cellular activities under various pathophysiological conditions. Thrombin and all vitamin K-dependent coagulation proteases, with the exception of factor IXa for which no PAR signalling has been attributed, can selectively activate cell surface PARs on the vasculature. Thrombin can activate PAR1, PAR3 and PAR4, but not PAR2 which can be specifically activated by factors VIIa and Xa. The mechanistic details of the specificity of PAR signalling by coagulation proteases are the subject of extensive investigation by many research groups worldwide. However, analysis of PAR signalling data in the literature has proved to be challenging since a single coagulation protease can elicit different signalling responses through activation of the same PAR receptor in endothelial cells. This article is focused on briefly reviewing the literature with respect to determinants of the specificity of PAR signalling by coagulation proteases with special emphasis on the mechanism of PAR1 signalling by thrombin and activated protein C in endothelial cells.

  20. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing....... These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  1. Expression, purification and molecular modeling of the NIa protease of Cardamom mosaic virus.

    Science.gov (United States)

    Jebasingh, T; Pandaranayaka, Eswari P J; Mahalakshmi, A; Kasin Yadunandam, A; Krishnaswamy, S; Usha, R

    2013-01-01

    The NIa protease of Potyviridae is the major viral protease that processes potyviral polyproteins. The NIa protease coding region of Cardamom mosaic virus (CdMV) is amplified from the viral cDNA, cloned and expressed in Escherichia coli. NIa protease forms inclusion bodies in E.coli. The inclusion bodies are solubilized with 8 M urea, refolded and purified by Nickel-Nitrilotriacetic acid affinity chromatography. Three-dimensional modeling of the CdMV NIa protease is achieved by threading approach using the homologous X-ray crystallographic structure of Tobacco etch mosaic virus NIa protease. The model gave an insight in to the substrate specificities of the NIa proteases and predicted the complementation of nearby residues in the catalytic triad (H42, D74 and C141) mutants in the cis protease activity of CdMV NIa protease.

  2. MICROSPHERE-BASED FLOW CYTOMETRY PROTEASE ASSAYS FOR USE IN PROTEASE ACTIVITY DETECTION AND HIGH-THROUGHPUT SCREENING

    Science.gov (United States)

    Saunders, Matthew J.; Edwards, Bruce S.; Zhu, Jingshu; Sklar, Larry A.; Graves, Steven W.

    2015-01-01

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein specific protease of interest and results can be measured in both real time and as end point fluorescence assays on a flow cytometer. End point assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. PMID:20938917

  3. Adapted J6/JFH1-based hepatitis C virus recombinants with genotype-specific NS4A show similar efficacies against lead protease inhibitors, alpha interferon and a putative NS4A inhibitor

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Serre, Stéphanie B N

    2013-01-01

    To facilitate studies of hepatitis C virus (HCV) NS4A, we aimed at developing J6/JFH1-based recombinants with genotype 1- to 7-specific NS4A proteins. We developed efficient culture systems expressing NS4A proteins of genotypes (isolates) 1a (H77 and TN), 1b (J4), 2a (J6), 4a (ED43), 5a (SA13), 6a......), boceprevir (Sch503034), simeprevir (TMC435350), danoprevir (ITMN-191), and vaniprevir (MK-7009), to alpha interferon 2b, and to the putative NS4A inhibitor ACH-806. The efficacy of ACH-806 was lower than that of protease inhibitors and was not influenced by changes at amino acids 1042 and 1065 (in the NS3...

  4. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans.

  5. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation

    DEFF Research Database (Denmark)

    Kousted, Tina Mostrup; Skjoedt, K; Petersen, S V

    2013-01-01

    of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme. Previously, three mechanisms have been proposed for the inactivation of serpins by monoclonal antibodies: steric blockage of protease recognition......, conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all...... abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between...

  6. Proteases hold the key to an exclusive mutualism.

    Science.gov (United States)

    Bronstein, Judith L

    2013-08-01

    Mutualisms, cooperative interactions between species, generally involve an economic exchange: species exchange commodities that are cheap for them to provide, for ones that cannot be obtained affordably or at all. But these associations can only succeed if effective partners can be enticed to interact. In some mutualisms, partners can actively seek one another out. However, plants, which use mutualists for a wide array of essential life history functions, do not have this option. Instead, natural selection has repeatedly favoured the evolution of rewards – nutritional substances (such as sugar-rich nectar and fleshy fruit) with which plants attract certain organisms whose feeding activities can then be co-opted for their own benefit. The trouble with rewards, however, is that they are usually also attractive to organisms that confer no benefits at all. Losing rewards to 'exploiters' makes a plant immediately less attractive to the mutualists it requires; if the reward cannot be renewed quickly (or at all), then mutualistic service is precluded entirely. Thus, it is in plants' interests to either restrict rewards to only the most beneficial partners or somehow punish or deter exploiters. Yet, at least in cases where the rewards are highly nutritious, we can expect counter-selection for exploiter traits that permit them to skirt such control. How, then, can mutualisms persist? In this issue, Orona-Tamayo et al. () describe a remarkable adaptation that safeguards one particularly costly reward from nonmutualists. Their study helps to explain the evolutionary success of an iconic interaction and illuminates one way in which mutualism as a whole can persist in the face of exploitation.

  7. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bacterially-derived protease enzyme preparation... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1150 Bacterially-derived protease enzyme preparation. (a) Bacterially-derived protease enzyme preparation is obtained from the culture...

  8. Recombinant expression, refolding, purification and characterization of Pseudomonas aeruginosa protease IV in Escherichia coli.

    Science.gov (United States)

    Zhao, Mingzhi; Cai, Man; Wu, Feilin; Zhang, Yao; Xiong, Zhi; Xu, Ping

    2016-10-01

    Several protease IV enzymes are widely used in proteomic research. Specifically, protease IV from Pseudomonas aeruginosa has lysyl endopeptidase activity. Here, we report the recombinant expression, refolding, activation, and purification of this protease in Escherichia coli. Proteolytic instability of the activated intermediate, a major obstacle for efficient production, is controlled through ammonium sulfate precipitation. The purified protease IV exhibits superior lysyl endopeptidase activity compared to a commercial product. Copyright © 2016. Published by Elsevier Inc.

  9. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity......Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type...

  10. Fusion of the SUMO/Sentrin-specific protease 1 gene SENP1 and the embryonic polarity-related mesoderm development gene MESDC2 in a patient with an infantile teratoma and a constitutional t(12;15)(q13;q25).

    NARCIS (Netherlands)

    Veltman, I.M.; Basten-Vreede, L.A.J.; Cheng, J.; Looijenga, L.H.J.; Janssen, H.A.P.; Schoenmakers, E.F.P.M.; Yeh, E.T.; Geurts van Kessel, A.H.M.

    2005-01-01

    Recently, we identified a patient with an infantile sacrococcygeal teratoma and a constitutional t(12;15)(q13;q25). Here, we show that, as a result of this chromosomal translocation, the SUMO/Sentrin-specific protease 1 gene (SENP1) on chromosome 12 and the embryonic polarity-related mesoderm

  11. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum.

    Directory of Open Access Journals (Sweden)

    Zhiping Han

    Full Text Available Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482 and an environmental strain (WM 10.136 grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5-75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.

  12. Intervention with Serine Protease Activity with Small Peptides

    DEFF Research Database (Denmark)

    Xu, Peng

    2015-01-01

    Serine proteases perform proteolytic reactions in many physiological and metabolic processes and have been certified as targets for therapeutics. Small peptides can be used as potent antagonists to target serine proteases and intervene with their activities. Urokinase-type plasminogen activator (u...... before, we elucidated the binding and inhibitory mechanism by using multiple techniques, like X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and surface plasmon resonance analysis. By studying the peptide-enzyme interaction, we discovered an unusual inhibitor-protease...... discovered that the mupain-1 scaffold is highly versatile, based on which mupain-1 is potentially able to be retargeted to other serine proteases in the trypsin-like clan. With the scaffold of mupain-1, we rationally designed three inhibitors with high affinity and specificity for another serine protease...

  13. Isolation and characterization of a cysteine protease of freesia corms.

    Science.gov (United States)

    Uchikoba, Tetsuya; Okubo, Michiko; Arima, Kazunari; Yonezawa, Hiroo

    2002-02-01

    A protease, freesia protease (FP)-A, was purified to electrophoretic homogeneity from regular freesia (Freesia reflacta) corms in harvest time. The Mr of FP-A was estimated to be 24 k by SDS-PAGE. The optimum pH of the enzyme was 8.0 using a casein substrate. These enzymes were strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethane-sulfonylfluoride and EDTA. These results indicate that FP-A belongs to the cysteine proteases. The amino terminal sequence of FP-A was similar to that of papain, and the sequences was regarded to the conservative residues of cysteine protease. From the hydrolysis of peptidyl-p-NAs, the specificity of FP-A was found to be broad. It was thought that FP-A was a new protease from freesia corms.

  14. A plant alternative to animal caspases: subtilisin-like proteases

    National Research Council Canada - National Science Library

    Vartapetian, A B; Tuzhikov, A I; Chichkova, N V; Taliansky, M; Wolpert, T J

    2011-01-01

    ...(s) structurally unrelated yet possessing caspase specificity have functions in plant PCD. Here, we review recent data showing that some caspase-like activities are attributable to the plant subtilisin-like proteases, saspases and phytaspases...

  15. Determination and characterization of site-specific N-glycosylation using MALDI-Qq-TOF tandem mass spectrometry: case study with a plant protease.

    Science.gov (United States)

    Bykova, Natalia V; Rampitsch, Christof; Krokhin, Oleg; Standing, Kenneth G; Ens, Werner

    2006-02-15

    MALDI tandem mass spectrometry analysis on a hybrid quadrupole-quadrupole time-of-flight (Qq-TOF) instrument was used in combination with two-dimensional gel electrophoresis, proteolytic digestion, and liquid chromatography for identification and structural characterization of glycosylation in a novel glycoprotein, pathogenesis-related subtilisin-like proteinase P69B from tomato. Glycopeptide fractions from microcolumn reversed-phase HPLC deposited on MALDI targets were identified from MS by their specific m/z spacing patterns (203, 162, 146 u) between glycoforms. In most cases, MS/MS spectra of [M + H]+ ions of glycopeptides featured peaks useful for determining sugar compositions, peptide sequences, and thus probable glycosylation sites. Furthermore, peptide-related product ions could readily be used in database search procedures to identify the glycoprotein. Four out of five predicted glycosylation sites were biologically relevant and occupied by five N-linked glycan side chains each. In addition, the fragmentation efficiency allowed detection of further modification of methionine-containing glycoforms with either oxidized or iodoacetamide alkylated methionine. The high resolution furnished by MALDI-Qq-TOF allowed rapid and sensitive structural characterization of site-specific N-glycosylation from a limited quantity of material and revealed heterogeneity at different levels, including different glycan side-chain modifications, and heterogeneity of oligosaccharide structures on the same glycosylation site.

  16. A Tobacco Etch Virus Protease with Increased Substrate Tolerance at the P1' position

    Science.gov (United States)

    Renicke, Christian; Spadaccini, Roberta; Taxis, Christof

    2013-01-01

    Site-specific proteases are important tools for in vitro and in vivo cleavage of proteins. They are widely used for diverse applications, like protein purification, assessment of protein–protein interactions or regulation of protein localization, abundance or activity. Here, we report the development of a procedure to select protease variants with altered specificity based on the well-established Saccharomyces cerevisiae adenine auxotrophy-dependent red/white colony assay. We applied this method on the tobacco etch virus (TEV) protease to obtain a protease variant with altered substrate specificity at the P1’ Position. In vivo experiments with tester substrates showed that the mutated TEV protease still efficiently recognizes the sequence ENLYFQ, but has almost lost all bias for the amino acid at the P1’ Position. Thus, we generated a site-specific protease for synthetic approaches requiring in vivo generation of proteins or peptides with a specific N-terminal amino acid. PMID:23826349

  17. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  18. Clp chaperone-proteases: structure and function.

    Science.gov (United States)

    Kress, Wolfgang; Maglica, Zeljka; Weber-Ban, Eilika

    2009-11-01

    Clp proteases are the most widespread energy-dependent proteases in bacteria. Their two-component architecture of protease core and ATPase rings results in an inventory of several Clp protease complexes that often coexist. Here, we present insights into Clp protease function, from their assembly to substrate recruitment and processing, and how this is coupled to the expense of energy.

  19. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus

    Directory of Open Access Journals (Sweden)

    Fabíola Dorneles Inácio

    2015-01-01

    Full Text Available Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine.

  20. The active adenovirus protease is the intact L3 23K protein.

    Science.gov (United States)

    Webster, A; Kemp, G

    1993-07-01

    The L3 23K protein was isolated from adenovirus type 2 and shown to cleave purified substrates, confirming that this protein is the adenovirus protease. Separate antisera, prepared against the amino- and carboxy-terminal regions of the 23K protein react with active protease, demonstrating that, contrary to previous reports, zymogen activation is not involved in the regulation of this enzyme. Molecular exclusion chromatography indicated that the protease is active as a monomer. Purified protease was shown to be inhibited by Zn2+ and Cu2+ and by some, but not all, recognized cysteine protease inhibitors, indicating participation of a thiol group and providing additional support to the suggestion that regulation of the enzyme involves a form of thiol-disulphide interchange.

  1. Propeptides as modulators of functional activity of proteases.

    Science.gov (United States)

    Demidyuk, Ilya V; Shubin, Andrey V; Gasanov, Eugene V; Kostrov, Sergey V

    2010-10-01

    Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.

  2. Proteochemometric modeling of HIV protease susceptibility

    National Research Council Canada - National Science Library

    Lapins, Maris; Eklund, Martin; Spjuth, Ola; Prusis, Peteris; Wikberg, Jarl E S

    2008-01-01

    .... Therefore, we used proteochemometrics to model the susceptibility of HIV to protease inhibitors in current use, utilizing descriptions of the physico-chemical properties of mutated HIV proteases...

  3. Genome-wide survey of prokaryotic serine proteases: Analysis of distribution and domain architectures of five serine protease families in prokaryotes

    Directory of Open Access Journals (Sweden)

    Tripathi Lokesh P

    2008-11-01

    Full Text Available Abstract Background Serine proteases are one of the most abundant groups of proteolytic enzymes found in all the kingdoms of life. While studies have established significant roles for many prokaryotic serine proteases in several physiological processes, such as those associated with metabolism, cell signalling, defense response and development, functional associations for a large number of prokaryotic serine proteases are relatively unknown. Current analysis is aimed at understanding the distribution and probable biological functions of the select serine proteases encoded in representative prokaryotic organisms. Results A total of 966 putative serine proteases, belonging to five families, were identified in the 91 prokaryotic genomes using various sensitive sequence search techniques. Phylogenetic analysis reveals several species-specific clusters of serine proteases suggesting their possible involvement in organism-specific functions. Atypical phylogenetic associations suggest an important role for lateral gene transfer events in facilitating the widespread distribution of the serine proteases in the prokaryotes. Domain organisations of the gene products were analysed, employing sensitive sequence search methods, to infer their probable biological functions. Trypsin, subtilisin and Lon protease families account for a significant proportion of the multi-domain representatives, while the D-Ala-D-Ala carboxypeptidase and the Clp protease families are mostly single-domain polypeptides in prokaryotes. Regulatory domains for protein interaction, signalling, pathogenesis, cell adhesion etc. were found tethered to the serine protease domains. Some domain combinations (such as S1-PDZ; LON-AAA-S16 etc. were found to be widespread in the prokaryotic lineages suggesting a critical role in prokaryotes. Conclusion Domain architectures of many serine proteases and their homologues identified in prokaryotes are very different from those observed in eukaryotes

  4. Ubiquitin-Specific Protease 14 Negatively Regulates Toll-Like Receptor 4-Mediated Signaling and Autophagy Induction by Inhibiting Ubiquitination of TAK1-Binding Protein 2 and Beclin 1

    Directory of Open Access Journals (Sweden)

    Yoon Min

    2017-12-01

    Full Text Available Ubiquitin-specific protease 14 (USP14, one of three proteasome-associated deubiquitinating enzymes, has multifunctional roles in cellular context. Here, we report a novel molecular mechanism and function of USP14 in regulating autophagy induction and nuclear factor-kappa B (NF-κB activation induced by toll-like receptor (TLR 4 (TLR4. USP14 interacted with tumor necrosis factor (TNF receptor-associated factor 6 (TRAF6 and interrupted the association of Beclin 1 with TRAF6, leading to inhibition of TRAF6-mediated ubiquitination of Beclin 1. Reduced expression of USP14 in USP14-knockdown (USP14KD THP-1 cells enhanced autophagy induction upon TLR4 stimulation as shown by the increased conversion of cytosolic LC3-I to membrane-bound LC3-II. Moreover, USP14KD human breast carcinoma MDA-MB-231 cells and USP14KD human hepatic adenocarcinoma SK-HEP-1 cells showed increased cell migration and invasion, indicating that USP14 is negatively implicated in the cancer progression by the inhibition of autophagy induction. Furthermore, we found that USP14 interacted with TAK1-binding protein (TAB 2 protein and induced deubiquitination of TAB 2, a key factor in the activation of NF-κB. Functionally, overexpression of USP14 suppressed TLR4-induced activation of NF-κB. In contrast, USP14KD THP-1 cells showed enhanced activation of NF-κB, NF-κB-dependent gene expression, and production of pro-inflammatory cytokines such as IL-6, IL-1β, and tumor necrosis factor-α. Taken together, our data demonstrate that USP14 can negatively regulate autophagy induction by inhibiting Beclin 1 ubiquitination, interrupting association between TRAF6 and Beclin 1, and affecting TLR4-induced activation of NF-κB through deubiquitination of TAB 2 protein.

  5. Ubiquitin-Specific Protease 14 Negatively Regulates Toll-Like Receptor 4-Mediated Signaling and Autophagy Induction by Inhibiting Ubiquitination of TAK1-Binding Protein 2 and Beclin 1.

    Science.gov (United States)

    Min, Yoon; Lee, Sena; Kim, Mi-Jeong; Chun, Eunyoung; Lee, Ki-Young

    2017-01-01

    Ubiquitin-specific protease 14 (USP14), one of three proteasome-associated deubiquitinating enzymes, has multifunctional roles in cellular context. Here, we report a novel molecular mechanism and function of USP14 in regulating autophagy induction and nuclear factor-kappa B (NF-κB) activation induced by toll-like receptor (TLR) 4 (TLR4). USP14 interacted with tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and interrupted the association of Beclin 1 with TRAF6, leading to inhibition of TRAF6-mediated ubiquitination of Beclin 1. Reduced expression of USP14 in USP14-knockdown (USP14KD) THP-1 cells enhanced autophagy induction upon TLR4 stimulation as shown by the increased conversion of cytosolic LC3-I to membrane-bound LC3-II. Moreover, USP14KD human breast carcinoma MDA-MB-231 cells and USP14KD human hepatic adenocarcinoma SK-HEP-1 cells showed increased cell migration and invasion, indicating that USP14 is negatively implicated in the cancer progression by the inhibition of autophagy induction. Furthermore, we found that USP14 interacted with TAK1-binding protein (TAB) 2 protein and induced deubiquitination of TAB 2, a key factor in the activation of NF-κB. Functionally, overexpression of USP14 suppressed TLR4-induced activation of NF-κB. In contrast, USP14KD THP-1 cells showed enhanced activation of NF-κB, NF-κB-dependent gene expression, and production of pro-inflammatory cytokines such as IL-6, IL-1β, and tumor necrosis factor-α. Taken together, our data demonstrate that USP14 can negatively regulate autophagy induction by inhibiting Beclin 1 ubiquitination, interrupting association between TRAF6 and Beclin 1, and affecting TLR4-induced activation of NF-κB through deubiquitination of TAB 2 protein.

  6. In-cell protease assay systems based on trans-localizing molecular beacon proteins using HCV protease as a model system.

    Directory of Open Access Journals (Sweden)

    Jeong Hee Kim

    Full Text Available This study describes a sensitive in-cell protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells. This live-cell imaging system provides a fluorescent molecular beacon protein comprised of an intracellular translocation signal sequence, a protease-specific cleavage sequence, and a fluorescent tag sequence(s. The molecular beacon protein is designed to change its intracellular localization upon cleavage by a target protease, i.e., from the cytosol to a subcellular organelle or from a subcellular organelle to the cytosol. Protease activity can be monitored at the single cell level, and accordingly the entire cell population expressing the protease can be accurately enumerated. The clear cellular change in fluorescence pattern makes this system an ideal tool for various life science and drug discovery research, including high throughput and high content screening applications.

  7. Expression profile of the Schistosoma japonicum degradome reveals differential protease expression patterns and potential anti-schistosomal intervention targets.

    Science.gov (United States)

    Liu, Shuai; Cai, Pengfei; Piao, Xianyu; Hou, Nan; Zhou, Xiaosu; Wu, Chuang; Wang, Heng; Chen, Qijun

    2014-10-01

    Blood fluke proteases play pivotal roles in the processes of invasion, nutrition acquisition, immune evasion, and other host-parasite interactions. Hundreds of genes encoding putative proteases have been identified in the recently published schistosome genomes. However, the expression profiles of these proteases in Schistosoma species have not yet been systematically analyzed. We retrieved and culled the redundant protease sequences of Schistosoma japonicum, Schistosoma mansoni, Echinococcus multilocularis, and Clonorchis sinensis from public databases utilizing bioinformatic approaches. The degradomes of the four parasitic organisms and Homo sapiens were then comparatively analyzed. A total of 262 S. japonicum protease sequences were obtained and the expression profiles generated using whole-genome microarray. Four main clusters of protease genes with different expression patterns were identified: proteases up-regulated in hepatic schistosomula and adult worms, egg-specific or predominantly expressed proteases, cercaria-specific or predominantly expressed proteases, and constantly expressed proteases. A subset of protease genes with different expression patterns were further validated using real-time quantitative PCR. The present study represents the most comprehensive analysis of a degradome in Schistosoma species to date. These results provide a firm foundation for future research on the specific function(s) of individual proteases and may help to refine anti-proteolytic strategies in blood flukes.

  8. Unique AGG Interruption in the CGG Repeats of the FMR1 Gene Exclusively Found in Asians Linked to a Specific SNP Haplotype

    Directory of Open Access Journals (Sweden)

    Pornprot Limprasert

    2016-01-01

    Full Text Available Fragile X syndrome (FXS is the most common inherited intellectual disability. It is caused by the occurrence of more than 200 pure CGG repeats in the FMR1 gene. Normal individuals have 6–54 CGG repeats with two or more stabilizing AGG interruptions occurring once every 9- or 10-CGG-repeat blocks in various populations. However, the unique (CGG6AGG pattern, designated as 6A, has been exclusively reported in Asians. To examine the genetic background of AGG interruptions in the CGG repeats of the FMR1 gene, we studied 8 SNPs near the CGG repeats in 176 unrelated Thai males with 19–56 CGG repeats. Of these 176 samples, we identified AGG interruption patterns from 95 samples using direct DNA sequencing. We found that the common CGG repeat groups (29, 30, and 36 were associated with 3 common haplotypes, GCGGATAA (Hap A, TTCATCGC (Hap C, and GCCGTTAA (Hap B, respectively. The configurations of 9A9A9, 10A9A9, and 9A9A6A9 were commonly found in chromosomes with 29, 30, and 36 CGG repeats, respectively. Almost all chromosomes with Hap B (22/23 carried at least one 6A pattern, suggesting that the 6A pattern is linked to Hap B and may have originally occurred in the ancestors of Asian populations.

  9. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... kinetics and thermodynamics by surface plasmon resonance and isothermal titration calorimetry. We found that upain-1 changes both main-chain conformation and side-chain orientations as it binds to the protease, in particular its Trp3 residue and the surrounding backbone. The properties of upain-1...

  10. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  11. Differential efficacy of protease inhibitors against HCV genotypes 2a, 3a, 5a, and 6a NS3/4A protease recombinant viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Scheel, Troels K H; Jensen, Tanja B

    2011-01-01

    The hepatitis C virus (HCV) genotype influences efficacy of interferon (IFN)-based therapy. HCV protease inhibitors are being licensed for treatment of genotype 1 infection. Because there are limited or no data on efficacy against HCV genotypes 2-7, we aimed at developing recombinant infectious c...... cell culture systems expressing genotype-specific nonstructural (NS) protein 3 protease (NS3P)....

  12. Protease-Sensitive Synthetic Prions

    OpenAIRE

    Colby, David W.; Wain, Rachel; Baskakov, Ilia V.; Legname, Giuseppe; Palmer, Christina G.; Nguyen, Hoang-Oanh B.; Lemus, Azucena; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but no...

  13. Production, Characterization and Antioxidant Potential of Protease from Streptomyces sp. MAB18 Using Poultry Wastes

    OpenAIRE

    Panchanathan Manivasagan; Jayachandran Venkatesan; Kannan Sivakumar; Se-Kwon Kim

    2013-01-01

    Poultry waste is an abundant renewable source for the recovery of several value-added metabolites with potential industrial applications. This study describes the production of protease on poultry waste, with the subsequent use of the same poultry waste for the extraction of antioxidants. An extracellular protease-producing strain was isolated from Cuddalore coast, India, and identified as Streptomyces sp. MAB18. Its protease was purified 17.13-fold with 21.62% yield with a specific activity ...

  14. A novel assay for rapid HIV-1 protease detection using optical sensors and magnetic carriers

    Science.gov (United States)

    Esseghaier, Chiheb; Ng, Andy; Zourob, Mohammed

    2012-10-01

    In this work, a very simple electrochemical HIV-1 protease biosensor useful for the development of an inexpensive lab-on-a- chip (LOC) device was constructed. The detection mechanism was designed to minimize the complexity either in the recognition receptor immobilization step or during the detection itself. The magnetic self-assembled monolayer of HIV-1 protease substrate peptide was able to detect as low as 10 pg/ml of the protease within 25 minutes with high specificity.

  15. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    Microbial proteases have wide industrial applications and proteases of the lactic acid bacteria (LAB) have received special attention because of their importance in the ... The crude protease had temperature and pH optima of 28 oC and 4.0 respectively thus indicating that the enzyme is a mesophilic and acidic protease.

  16. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  17. Photoactivated Spatiotemporally-Responsive Nanosensors of in Vivo Protease Activity.

    Science.gov (United States)

    Dudani, Jaideep S; Jain, Piyush K; Kwong, Gabriel A; Stevens, Kelly R; Bhatia, Sangeeta N

    2015-12-22

    Proteases play diverse and important roles in physiology and disease, including influencing critical processes in development, immune responses, and malignancies. Both the abundance and activity of these enzymes are tightly regulated and highly contextual; thus, in order to elucidate their specific impact on disease progression, better tools are needed to precisely monitor in situ protease activity. Current strategies for detecting protease activity are focused on functionalizing synthetic peptide substrates with reporters that emit detection signals following peptide cleavage. However, these activity-based probes lack the capacity to be turned on at sites of interest and, therefore, are subject to off-target activation. Here we report a strategy that uses light to precisely control both the location and time of activity-based sensing. We develop photocaged activity-based sensors by conjugating photolabile molecules directly onto peptide substrates, thereby blocking protease cleavage by steric hindrance. At sites of disease, exposure to ultraviolet light unveils the nanosensors to allow proteases to cleave and release a reporter fragment that can be detected remotely. We apply this spatiotemporally controlled system to probe secreted protease activity in vitro and tumor protease activity in vivo. In vitro, we demonstrate the ability to dynamically and spatially measure metalloproteinase activity in a 3D model of colorectal cancer. In vivo, veiled nanosensors are selectively activated at the primary tumor site in colorectal cancer xenografts to capture the tumor microenvironment-enriched protease activity. The ability to remotely control activity-based sensors may offer a valuable complement to existing tools for measuring biological activity.

  18. Activity Assays for Rhomboid Proteases.

    Science.gov (United States)

    Arutyunova, E; Strisovsky, K; Lemieux, M J

    2017-01-01

    Rhomboids are ubiquitous intramembrane serine proteases that are involved in various signaling pathways. This fascinating class of proteases harbors an active site buried within the lipid milieu. High-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed the catalytic mechanism for rhomboid-mediated proteolysis; however, a quantitative characterization was lacking. Assessing an enzyme's catalytic parameters is important for understanding the details of its proteolytic reaction and regulatory mechanisms. To assay rhomboid protease activity, many challenges exist such as the lipid environment and lack of known substrates. Here, we summarize various enzymatic assays developed over the last decade to study rhomboid protease activity. We present detailed protocols for gel-shift and FRET-based assays, and calculation of KM and Vmax to measure catalytic parameters, using detergent solubilized rhomboids with TatA, the only known substrate for bacterial rhomboids, and the model substrate fluorescently labeled casein. © 2017 Elsevier Inc. All rights reserved.

  19. Protease inhibitors and beyond.

    Science.gov (United States)

    1997-03-01

    A new generation of protease inhibitors is entering studies. Abbott Lab's ABT-378 and Pharmacia/Upjohn's PNU-140690 are beginning clinical studies and both are designed to overcome resistance problems. Several companies are developing new compounds to inhibit reverse transcriptase, such as Bristol-Myers Squibb's lobucavir and Hoechst/Bayer's HBY097. Calanolide A, which will soon begin trials, has a different resistance pattern than other non-nucleoside reverse transcriptase inhibitors, which may be an important advantage. Several groups are developing compounds to inhibit the HIV zinc finger, such as Parke-Davis' compound, CI-1012; and a Dutch company who is developing Azodicarbonamide, a drug currently in phase I/II trials for people with advanced disease in Europe. HIV drugs to date have not been successful in blocking viral fusion. However, three new fusion inhibitors are showing promise within the laboratory: Pentafuside (currently in phase I trials), Fuji ImmunoPharmaceuticals' FP-21399 (currently in phase I trials), and ISIS Pharmaceuticals' ISIS 5320. A new class of drugs known as integrase inhibitors has been of interest to pharmaceutical companies for the past several years; only one drug, Aronex Pharmaceuticals' Zintevir, has reached phase I/II trials.

  20. Expression and Purification of Haemophilus influenzae Rhomboid Intramembrane Protease GlpG for Structural Studies.

    Science.gov (United States)

    Panwar, Pankaj; Lemieux, M Joanne

    2014-04-01

    Rhomboid proteases are membrane-embedded proteases that cleave peptide bonds of transmembrane proteins. They play a variety of roles in cell signaling events. The rhomboid protease GlpG from Haemophilus influenzae (hiGlpG) is a canonical form of rhomboid protease having six transmembrane segments. In this unit, detailed protocols are presented for optimization of hiGlpG expression using the araBAD promotor system in the pBAD vector. The parameters for optimization include concentration of inducing agent, induction temperature, and time. Optimization of these key factors led to the development of a protocol yielding 1.6 to 2.5 mg/liter protein purified after ion metal affinity chromatography (IMAC). Further purification can include size exclusion chromatography (SEC). Copyright © 2014 John Wiley & Sons, Inc.

  1. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mixed carbohydrase and protease enzyme product. 184.1027 Section 184.1027 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1027 Mixed carbohydrase and protease...

  2. Explaining Social Exclusion

    NARCIS (Netherlands)

    Gerda Jehoel-Gijsbers; Cok Vrooman

    2007-01-01

    Although social exclusion has become a key issue on the European policy agenda in recent years, both the social phenomena the term refers to and the best way to monitor these remain unclear. In response to this, we developed a conceptual model for social exclusion and a methodology for its

  3. Social Exclusion Anxiety

    DEFF Research Database (Denmark)

    Søndergaard, Dorte Marie

    2017-01-01

    exclusion anxiety and longing for belonging are both central aspects of the affects and processes that enact and challenge social groups. Social exclusion anxiety should not be confused with ‘social phobia’, which is a concept within clinical psychology that focuses on the individual and refers to a phobic...

  4. Mining proteases in the genome databases.

    Science.gov (United States)

    Coates, David

    2002-01-01

    Protease data mining can take advantage both of the many specialist, Web-available databases that cover the genetic, protein and nucleic acid sequence information that is specific to a variety of organisms, and of a flexible, but defined, classification system. However, precomputed data, such as gene predictions, should be used with care. Unless there is definitive supporting information, ideally sequencing of a cDNA to show that the predictions are accurate, followed by expression and biochemical characterization of the predicted protein, the predicted gene and its product remains a possibility, rather than a certainty.

  5. PURIFIKASI DAN KARAKTERISASI PARSIAL ENZIM PROTEASE DARI GETAH TANAMAN BIDURI (Calotropis gigantea [Purification and Partial Characterization of Protease from Biduri (Calotropis gigantea Latex

    Directory of Open Access Journals (Sweden)

    Yuli Witono1

    2007-06-01

    Full Text Available The main objectives of this research we to purify protease from biduri (Calotropis gigantean latex and its partial characterization in relation with this application in the food processing. Protease was extracted from biduri latex by using ammonium sulphate 35-80%, dialyzed and then purified subsequently through sephadex G-25 gel and CM sephadex C-50 caution exchanger. Biduri protease has specific activity of 59 unit/g in casein substrate. Optimum pH was 7 and temperature 550C. Apparent Km was 21.63 g/ml and reaction maximum velocity (Vmax being 18.9 mg/ml/min. SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis analysis showed the apparent molecular weight of the protease was 25.2 kD. Moreover, the protease can be inactivated at 900C for 10 min, or 600C for 30 min.

  6. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. [Ohio State Univ., Columbus, OH (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  7. Flexible catalytic site conformations implicated in modulation of HIV-1 protease autoprocessing reactions

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2011-10-01

    Full Text Available Abstract Background The HIV-1 protease is initially synthesized as part of the Gag-Pol polyprotein in the infected cell. Protease autoprocessing, by which the protease domain embedded in the precursor catalyzes essential cleavage reactions, leads to liberation of the free mature protease at the late stage of the replication cycle. To examine autoprocessing reactions in transfected mammalian cells, we previously described an assay using a fusion precursor consisting of the mature protease (PR along with its upstream transframe region (p6* sandwiched between GST and a small peptide epitope. Results In this report, we studied two autoprocessing cleavage reactions, one between p6* and PR (the proximal site and the other in the N-terminal region of p6* (the distal site catalyzed by the embedded protease, using our cell-based assay. A fusion precursor carrying the NL4-3 derived protease cleaved both sites, whereas a precursor with a pseudo wild type protease preferentially autoprocessed the proximal site. Mutagenesis analysis demonstrated that several residues outside the active site (Q7, L33, N37, L63, C67 and H69 contributed to the differential substrate specificity. Furthermore, the cleavage reaction at the proximal site mediated by the embedded protease in precursors carrying different protease sequences or C-terminal fusion peptides displayed varied sensitivity to inhibition by darunavir, a catalytic site inhibitor. On the other hand, polypeptides such as a GCN4 motif, GFP, or hsp70 fused to the N-terminus of p6* had a minimal effect on darunavir inhibition of either cleavage reaction. Conclusions Taken together, our data suggest that several non-active site residues and the C-terminal flanking peptides regulate embedded protease activity through modulation of the catalytic site conformation. The cell-based assay provides a sensitive tool to study protease autoprocessing reactions in mammalian cells.

  8. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    Science.gov (United States)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  9. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases.

    Science.gov (United States)

    Ceuleers, Hannah; Van Spaendonk, Hanne; Hanning, Nikita; Heirbaut, Jelena; Lambeir, Anne-Marie; Joossens, Jurgen; Augustyns, Koen; De Man, Joris G; De Meester, Ingrid; De Winter, Benedicte Y

    2016-12-21

    Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors (PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein.

  10. Purification and characterization of a cysteine protease from corms of freesia, Freesia reflacta.

    Science.gov (United States)

    Kaneda, M; Yonezawa, H; Uchikoba, T

    1997-09-01

    A protease (freesia protease B) has been purified to electrophoretic homogeneity from corms of freesia, Freesia reflacta by five steps of chromatography. Its M(r) was estimated to be about 26,000 by SDS-PAGE. The optimum pH of the enzyme was 6.0-7.0 at 30 degrees C using casein as a substrate. The enzyme was strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethanesulphonylfluoride and EDTA. These results indicate that freesia protease B is a cysteine protease. Nine sites of oxidized insulin B-chain were cleaved by freesia protease B in 24 h of hydrolysis. The four cleavage sites among them resembled those of papain. From the digestion of five peptidyl substrates the specificity of freesia protease B was found to be approximately broad, but the preferential cleavage sites were negatively charged residues at P1 positions. Freesia protease B preferred also the large hydrophobic amino acid residues at the P2 position, in a similar manner to papain. The amino terminal sequence of freesia protease B was identical with those of papain in regard to the conservative residues of cysteine protease.

  11. Characterization of a chemostable serine alkaline protease from Periplaneta americana

    Science.gov (United States)

    2013-01-01

    Background Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects’ gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. Results In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents. Conclusion Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource. PMID:24229392

  12. Social exclusion and shame in obesity.

    Science.gov (United States)

    Westermann, Stefan; Rief, Winfried; Euteneuer, Frank; Kohlmann, Sebastian

    2015-04-01

    Weight bias often results in the social exclusion of individuals with obesity. The direct, short-term psychological effects of social exclusion in obesity have not been investigated yet. This study experimentally tests whether social exclusion elicits stronger negative emotions in individuals with obesity compared to normal-weight controls. Specifically, we test whether social exclusion has a specific impact on shame. In total, N=299 individuals (n=130 with body mass index [BMI]≤30 and n=169 with BMI>30) were randomly assigned to a social exclusion condition or a control condition that was implemented with an online Cyberball paradigm. Before and after, they filled out questionnaires assessing state emotionality. Social exclusion increased negative emotionality in both groups compared to the control condition (pshame in the group with obesity during social exclusion (pshame. As social exclusion is frequent in individuals with obesity, psychological interventions focussing shame-related emotional distress could be crucial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Protease-Sensitive Nanomaterials for Cancer Therapeutics and Imaging

    Science.gov (United States)

    2017-01-01

    Many diseases can be characterized by the abnormal activity exhibited by various biomolecules, the targeting of which can provide therapeutic and diagnostic utility. Recent trends in medicine and nanotechnology have prompted the development of protease-sensitive nanomaterials systems for therapeutic, diagnostic, and theranostic applications. These systems can act specifically in response to the target enzyme and its associated disease conditions, thus enabling personalized treatment and improved prognosis. In this Review, we discuss recent advancements in the development of protease-responsive materials for imaging and drug delivery and analyze several representative systems to illustrate their key design principles. PMID:28572701

  14. Plant cysteine proteases that evoke itch activate protease-activated receptors

    Science.gov (United States)

    Reddy, V.B.; Lerner, E.A.

    2013-01-01

    Background Bromelain, ficin and papain are cysteine proteases from plants that produce itch upon injection into skin. Their mechanism of action has not been considered previously. Objectives To determine the mechanism by which these proteases function. Methods The ability of these proteases to activate protease-activated receptors was determined by ratiometric calcium imaging. Results We show here that bromelain, ficin and papain activate protease-activated receptors 2 and 4. Conclusions Bromelain, ficin and papain function as signalling molecules and activate protease-activated receptors. Activation of these receptors is the likely mechanism by which these proteases evoke itch. PMID:20491769

  15. [Exclusive breastfeeding in Mexico].

    Science.gov (United States)

    González-de Cossío, Teresita; Escobar-Zaragoza, Leticia; González-Castell, Dinorah; Shamah-Levy, Teresa; Rivera-Dommarco, Juan A

    2014-01-01

    To evaluate the effect of exclusive breastfeeding in Breastfeeding indicators from WHO-2008 were calculated. We estimated the effect modifier EBFBreastfeeding promotion, protection and support must be targeted mainly at the most vulnerable, food insecure families.

  16. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: Microbial proteases have wide industrial applications and proteases of the lactic acid bacteria (LAB) ... the food and dairy industry. ..... Sumantha, A., Larroche, C. and Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food. Technology and Biotechnology ...

  17. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  18. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... A protease producing bacteria was isolated from meat waste contaminated soil and identified as. Pseudomonas ... Key words: Alkaline protease, casein agar, meat waste contaminated soil, Pseudomonas fluorescens. INTRODUCTION ... advent of new frontiers in biotechnology, the spectrum of protease ...

  19. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  20. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    They were inhibited by the serine-protease inhibitor phenylmethylsulfonyl fluoride (PMSF) and trypsin specific inhibitor benzamidine, but were not inhibited by the β-mercaptoethanol. The enzymes were slightly activated by metal ions such as Na+ and Ba2+ and inhibited by Cu2+, Zn2+, K+ and Mn2+ at different degrees.

  1. Increasing the alkaline protease activity of Bacillus cereus and ...

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... These examinations showed that, the production of alkaline protease started with the beginning of the log phase in the ... sporulation phase of the two bacteria and were measured at 383 and 418 u/ml, respectively. The next ..... building blocks of specific spore proteins, peptides and amino acids, from.

  2. Exclusive reactions in QCD

    OpenAIRE

    Pire, Bernard

    1996-01-01

    We review the theory of hard exclusive scattering in Quantum Chromodynamics. After recalling the classical counting rules which describe the leading scale dependence of form factors and exclusive cross-sections at fixed angle, the pedagogical example of the pion form factor is developped in some detail in order to show explicitely what factorization means in the QCD framework. The picture generalizes to many hard reactions which are at the heart of the ELFE project. We briefly present the con...

  3. Deprivation and Social Exclusion

    OpenAIRE

    BOSSERT, Walter; D'AMBROSIO, Conchita; PERAGINE, Vito

    2004-01-01

    Social exclusion manifests itself in the lack of an individual’s access to functionings as compared to other members of society. Thus, the concept is closely related to deprivation. We view deprivation as having two basic determinants: the lack of identification with other members of society and the aggregate alienation experienced by an agent with respect to those with fewer functioning failures. We use an axiomatic approach to characterize classes of deprivation and exclusion measures and a...

  4. Direct visualization of protease activity on cells migrating in three-dimensions.

    Science.gov (United States)

    Packard, Beverly Z; Artym, Vira V; Komoriya, Akira; Yamada, Kenneth M

    2009-01-01

    Determining the specific role(s) of proteases in cell migration and invasion will require high-resolution imaging of sites of protease activity during live-cell migration through extracellular matrices. We have designed a novel fluorescent biosensor to detect localized extracellular sites of protease activity and to test requirements for matrix metalloprotease (MMP) function as cells migrate and invade three-dimensional collagen matrices. This probe fluoresces after cleavage of a peptide site present in interstitial collagen by a variety of proteases including MMP-2, -9, and -14 (MT1-MMP) without requiring transfection or modification of the cells being characterized. Using matrices derivatized with this biosensor, we show that protease activity is localized at the polarized leading edge of migrating tumor cells rather than further back on the cell body. This protease activity is essential for cell migration in native cross-linked but not pepsin-treated collagen matrices. The new type of high-resolution probe described in this study provides site-specific reporting of protease activity and insights into mechanisms by which cells migrate through extracellular matrices; it also helps to clarify discrepancies between previous studies regarding the contributions of proteases to metastasis.

  5. Production of Recombinant Rhomboid Proteases.

    Science.gov (United States)

    Arutyunova, E; Panigrahi, R; Strisovsky, K; Lemieux, M J

    2017-01-01

    Rhomboid proteases are intramembrane enzymes that hydrolyze peptide bonds of transmembrane proteins in the lipid bilayer. They play a variety of roles in key biological events and are linked to several disease states. Over the last decade a great deal of structural and functional knowledge has been generated on this fascinating class of proteases. Both structural and kinetic analyses require milligram amounts of protein, which may be challenging for membrane proteins such as rhomboids. Here, we present a detailed protocol for optimization of expression and purification of three rhomboid proteases from Escherichia coli (ecGlpG), Haemophilus influenzae (hiGlpG), and Providencia stuartii (AarA). We discuss the optimization of expression conditions, such as concentration of inducing agent, induction time, and temperature, as well as purification protocol with precise details for each step. The provided protocol yields 1-2.5mg of rhomboid enzyme per liter of bacterial culture and can assist in structural and functional studies of intramembrane proteases. © 2017 Elsevier Inc. All rights reserved.

  6. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    User

    2014-09-15

    Sep 15, 2014 ... Department of Animal and Wildlife Sciences, Faculty of Natural and Agricultural Science ... control birds was 12% higher than that of the positive control, while diets supplemented with single enzyme ... The inclusion of exogenous proteases in maize-soya-based diets increases protein digestion by.

  7. Factor VII-activating protease

    DEFF Research Database (Denmark)

    Ramanathan, Ramshanker; Gram, Jørgen B; Sand, Niels Peter R

    2017-01-01

    : Factor VII-activating protease (FSAP) may regulate development of cardiovascular disease (CVD). We evaluated sex differences in FSAP measures and examined the association between FSAP and coronary artery calcification (CAC) in a middle-aged population. Participants were randomly selected citizens...

  8. Immunoglobulin A Protease Variants Facilitate Intracellular Survival in Epithelial Cells By Nontypeable Haemophilus influenzae That Persist in the Human Respiratory Tract in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Murphy, Timothy F; Kirkham, Charmaine; Gallo, Mary C; Yang, Yang; Wilding, Gregory E; Pettigrew, Melinda M

    2017-12-05

    Nontypeable Haemophilus influenzae (NTHi) persists in the airways in chronic obstructive pulmonary disease (COPD). NTHi expresses 4 immunoglobulin (Ig)A protease variants (A1, A2, B1, B2) with distinct cleavage specificities for human IgA1. Little is known about the different roles of IgA protease variants in NTHi infection. Twenty-six NTHi isolates from a 20-year longitudinal study of COPD were analyzed for IgA protease expression, survival in human respiratory epithelial cells, and cleavage of lysosomal-associated membrane protein 1 (LAMP1). IgA protease B1 and B2-expressing strains showed greater intracellular survival in host epithelial cells than strains expressing no IgA protease (P protease A1 or A2 (P protease expression showed reduced survival in host cells compared with the same strain that expressed IgA protease B1 (P = .006) or B2 (P = .015). IgA proteases B1 and B2 cleave LAMP1. Passage of strains through host cells selected for expression of IgA proteases B1 and B2 but not A1. IgA proteases B1 and B2 cleave LAMP1 and mediate intracellular survival in respiratory epithelial cells. Intracellular persistence of NTHi selects for expression of IgA proteases B1 and B2. The variants of NTHi IgA proteases play distinct roles in pathogenesis of infection.

  9. Cathepsin B-like cysteine proteases confer intestinal cysteine protease activity in Haemonchus contortus.

    Science.gov (United States)

    Shompole, S; Jasmer, D P

    2001-01-26

    Cathepsin B-like cysteine protease genes (cbls) constitute large multigene families in parasitic and nonparasitic nematodes. Although expressed in the intestine of some nematodes, the biological and biochemical functions of the CBL proteins remain unresolved. Di- and tetra-oligopeptides were used as fluorogenic substrates and irreversible/competitive inhibitors to establish CBL functions in the intestine of the parasitic nematode Haemonchus contortus. Cysteine protease activity was detected against diverse substrates including the cathepsin B/L substrate FR, the caspase 1 substrate YVAD, the cathepsin B substrate RR, but not the CED-3 (caspase 3) substrate DEVD. The pH at which maximum activity was detected varied according to substrate and ranged from pH 5.0 to 7.0. Individual CBLs were affinity isolated using FA and YVAD substrates. pH influenced CBL affinity isolation in a substrate-specific manner that paralleled pH effects on individual substrates. N-terminal sequencing identified two isolated CBLs as H. contortus GCP-7 (33 kDa) and AC-4 (37 kDa). N termini of each began at a position consistent with proregion cleavage and protease activation. Isolation of the GCP-7 band by each peptide was preferentially inhibited when competed with a diazomethane-conjugated inhibitor, Z-FA-CHN(2), demonstrating one functional difference among CBLs and among inhibitors. Substrate-based histological analysis placed CBLs on the intestinal microvilli. Data indicate that CBLs are responsible for cysteine protease activity described from H. contortus intestine. Results also support a role of CBLs in nutrient digestion.

  10. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent.

    Science.gov (United States)

    Sharma, Ruchika; Waller, Amanda P; Agrawal, Shipra; Wolfgang, Katelyn J; Luu, Hiep; Shahzad, Khurrum; Isermann, Berend; Smoyer, William E; Nieman, Marvin T; Kerlin, Bryce A

    2017-09-01

    Nephrotic syndrome is characterized by massive proteinuria and injury of specialized glomerular epithelial cells called podocytes. Studies have shown that, whereas low-concentration thrombin may be cytoprotective, higher thrombin concentrations may contribute to podocyte injury. We and others have demonstrated that ex vivo plasma thrombin generation is enhanced during nephrosis, suggesting that thrombin may contribute to nephrotic progression. Moreover, nonspecific thrombin inhibition has been shown to decrease proteinuria in nephrotic animal models. We thus hypothesized that thrombin contributes to podocyte injury in a protease-activated receptor-specific manner during nephrosis. Here, we show that specific inhibition of thrombin with hirudin reduced proteinuria in two rat nephrosis models, and thrombin colocalized with a podocyte-specific marker in rat glomeruli. Furthermore, flow cytometry immunophenotyping revealed that rat podocytes express the protease-activated receptor family of coagulation receptors in vivo High-concentration thrombin directly injured conditionally immortalized human and rat podocytes. Using receptor-blocking antibodies and activation peptides, we determined that thrombin-mediated injury depended upon interactions between protease-activated receptor 3 and protease-activated receptor 4 in human podocytes, and between protease-activated receptor 1 and protease-activated receptor 4 in rat podocytes. Proximity ligation and coimmunoprecipitation assays confirmed thrombin-dependent interactions between human protease-activated receptor 3 and protease-activated receptor 4, and between rat protease-activated receptor 1 and protease-activated receptor 4 in cultured podocytes. Collectively, these data implicate thrombinuria as a contributor to podocyte injury during nephrosis, and suggest that thrombin and/or podocyte-expressed thrombin receptors may be novel therapeutic targets for nephrotic syndrome. Copyright © 2017 by the American Society of

  11. Vacuolar proteases from Candida glabrata: Acid aspartic protease PrA, neutral serine protease PrB and serine carboxypeptidase CpY. The nitrogen source influences their level of expression.

    Science.gov (United States)

    Sepúlveda-González, M Eugenia; Parra-Ortega, Berenice; Betancourt-Cervantes, Yuliana; Hernández-Rodríguez, César; Xicohtencatl-Cortes, Juan; Villa-Tanaca, Lourdes

    2016-01-01

    The Saccharomyces cerevisiae vacuole is actively involved in the mechanism of autophagy and is important in homeostasis, degradation, turnover, detoxification and protection under stressful conditions. In contrast, vacuolar proteases have not been fully studied in phylogenetically related Candida glabrata. The present paper is the first report on proteolytic activity in the C. glabrata vacuole. Biochemical studies in C. glabrata have highlighted the presence of different kinds of intracellular proteolytic activity: acid aspartyl proteinase (PrA) acts on substrates such as albumin and denatured acid hemoglobin, neutral serine protease (PrB) on collagen-type hide powder azure, and serine carboxypeptidase (CpY) on N-benzoyl-tyr-pNA. Our results showed a subcellular fraction with highly specific enzymatic activity for these three proteases, which allowed to confirm its vacuolar location. Expression analyses were performed in the genes CgPEP4 (CgAPR1), CgPRB1 and CgCPY1 (CgPRC), coding for vacuolar aspartic protease A, neutral protease B and carboxypeptidase Y, respectively. The results show a differential regulation of protease expression depending on the nitrogen source. The proteases encoded by genes CgPEP4, CgPRB1 and CgCPY1 from C. glabrata could participate in the process of autophagy and survival of this opportunistic pathogen. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  12. Characterization of cysteine protease-like genes in the striped rice stem borer, Chilo suppressalis.

    Science.gov (United States)

    Ge, Zhao-Yu; Wan, Pin-Jun; Li, Guo-Qing; Xia, Yong-Gui; Han, Zhao-Jun

    2014-02-01

    The striped rice stem borer, Chilo suppressalis (Walker), is a major pest for rice production in China and the rest of Southeast Asia. Chemical control is the main means to alleviate losses due to this pest, which causes serious environmental pollution. An effective and environmentally friendly approach is needed for the management of the striped rice stem borer. Cysteine proteases in insects could be useful targets for pest management either through engineering plant protease inhibitors, targeting insect digestive cysteine proteases, or through RNA interference-based silencing of cysteine proteases, disrupting developmental regulation of insects. In this study, eight cysteine protease-like genes were identified and partially characterized. The genes CCO2 and CCL4 were exclusively expressed in the larval gut, and their expression was affected by the state of nutrition in the insect. The expression of CCL2, CCL3, and CCO1 was significantly affected by the type of host plant, suggesting a role in host plant - insect interactions. Our initial characterization of the striped rice stem borer cysteine protease-like genes provides a foundation for further research on this important group of genes in this major insect pest of rice.

  13. Protease Silencing to Explore the Molecular Mechanisms of Cancer and Aging.

    Science.gov (United States)

    Fraile, Julia M; Campos-Iglesias, Diana; Freije, José M P

    2018-01-01

    Proteases play key roles in the execution and regulation of most if not all biological functions, and alterations in their activity, expression, or location are associated with multiple pathological conditions, including cancer and aging. In this regard, the use of RNA interference-based approaches to specifically target the expression of individual proteases constitutes an invaluable tool to identify enzymes involved in central aspects of these processes and to explore their potential as targets of therapeutic interventions. Here we describe simple protocols to optimize and monitor the specific silencing of cancer- and aging-related proteases.

  14. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    DEFF Research Database (Denmark)

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban

    2016-01-01

    stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious....... Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications....

  15. Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-07-01

    Full Text Available Abstract The fractionation of serine protease inhibitor (SPI from fish roe extracts was carried out using polyethylene glycol-4000 (PEG4000 precipitation. The protease inhibitory activity of extracts and PEG fractions from Alaska pollock (AP, bastard halibut (BH, skipjack tuna (ST, and yellowfin tuna (YT roes were determined against target proteases. All of the roe extracts showed inhibitory activity toward bromelain (BR, chymotrypsin (CH, trypsin (TR, papain-EDTA (PED, and alcalase (AL as target proteases. PEG fractions, which have positive inhibitory activity and high recovery (%, were the PEG1 fraction (0–5 %, w/v against cysteine proteases (BR and PA and the PEG4 fraction (20–40 %, w/v against serine proteases (CH and TR. The strongest specific inhibitory activity toward CH and TR of PEG4 fractions was AP (9278 and 1170 U/mg followed by ST (6687 and 2064 U/mg, YT (3951 and 1536 U/mg, and BH (538 and 98 U/mg. The inhibitory activity of serine protease in extracts and PEG fractions from fish roe was stronger than that of cysteine protease toward common casein substrate. Therefore, SPI is mainly distributed in fish roe and PEG fractionation effectively isolated the SPI from fish roes.

  16. Purification and biochemical characterization of a novel protease from Penicillium digitatum - Use in bioactive peptides production.

    Science.gov (United States)

    Aissaoui, Neyssene; Abidi, Ferid; Mahat, Safa; Marzouki, M Nejib

    2014-07-01

    This work reports the production of a novel serine protease enzyme (P. dig-protease) from the fungus Penicillium digitatum. The protease was purified from the culture supernatant to homogeneity using ammonium sulfate precipitation, Sephadex G-150 gel filtration and carboxymethyl-sepharose ion exchange chromatography with a 13-fold increase in specific activity. The apparent molecular weight of P.dig-protease was estimated to be 120 kDa by native high performance liquid chromatography (HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a single polypeptide at about 30 kDa that indicates a tetrameric protein. The proteolytic activity was inhibited by phenylmethylsulfonyl fluoride suggesting a serine-protease enzyme. P.dig-protease stability was investigated over broad range of pH, temperature, salt concentrations, surfactants and metal ions. The purified P.dig-protease was used for the production of bioactive peptides. Red scorpionfish (Scorpaena notata) muscle was hydrolyzed with P.dig-protease in order to obtain peptides with biological activities. Interestingly, the hydrolysate revealed the presence of antioxidant and angiotensin-I converting enzyme inhibitor peptides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Targeted expression of cystatin restores fertility in cysteine protease induced male sterile tobacco plants.

    Science.gov (United States)

    Shukla, Pawan; Subhashini, Mranu; Singh, Naveen Kumar; Ahmed, Israr; Trishla, Shalibhadra; Kirti, P B

    2016-05-01

    Fertility restoration in male sterile plants is an essential requirement for their utilization in hybrid seed production. In an earlier investigation, we have demonstrated that the targeted expression of a cysteine protease in tapetal cell layer resulted in complete male sterility in tobacco transgenic plants. In the present investigation, we have used a cystatin gene, which encodes for a cysteine protease inhibitor, from a wild peanut, Arachis diogoi and developed a plant gene based restoration system for cysteine protease induced male sterile transgenic tobacco plants. We confirmed the interaction between the cysteine protease and a cystatin of the wild peanut, A. diogoi through in silico modeling and yeast two-hybrid assay. Pollen from primary transgenic tobacco plants expressing cystatin gene under the tapetum specific promoter- TA29 restored fertility on cysteine protease induced male sterile tobacco plants developed earlier. This has confirmed the in vivo interaction of cysteine protease and cystatin in the tapetal cells, and the inactivation of cysteine protease and modulation of its negative effects on pollen fertility. Both the cysteine protease and cystatin genes are of plant origin in contrast to the analogous barnase-barstar system that deploys genes of prokaryotic origin. Because of the deployment of genes of plant origin, this system might not face biosafety problems in developing hybrids in food crops. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Clinical islet isolation outcomes with a highly purified neutral protease for pancreas dissociation.

    Science.gov (United States)

    O'Gorman, Doug; Kin, Tatsuya; Pawlick, Rena; Imes, Sharleen; Senior, Peter A; Shapiro, A M James

    2013-01-01

    Pancreas dissociation is a critical initial component of the islet isolation procedure and introduces high variability based on factors including the enzyme type, specificity and potency. Product refinement and alterations to the application strategies have improved isolation outcomes over time; however, islet utilization from donor organs remains low. In this study we evaluate a low endotoxin-high activity grade neutral protease in clinical islet isolation. The use of a non-collagenolytic enzyme, either thermolysin or high active neutral protease, was randomized in clinical islet isolations to evaluate efficacy. Additionally a retrospective comparison to neutral protease NB was conducted. The thermolysin group had lower trapped islet population and increased purity and post-culture islet mass in comparison to high active grade neutral protease. Comparison of neutral protease NB GMP grade to high active neutral protease displayed no measurable difference in islet mass or viability and transplantation outcomes at 1 mo post-transplant were favorable for both groups. High activity neutral protease can generate clinical grade islets and may prove beneficial to islet function and viability based on a reduced endotoxin load but dosing of neutral protease requires ongoing optimization.

  19. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Maha-Hamadien Abdulla

    2007-01-01

    Full Text Available Schistosomiasis is a chronic, debilitating parasitic disease infecting more than 200 million people and is second only to malaria in terms of public health importance. Due to the lack of a vaccine, patient therapy is heavily reliant on chemotherapy with praziquantel as the World Health Organization-recommended drug, but concerns over drug resistance encourage the search for new drug leads.The efficacy of the vinyl sulfone cysteine protease inhibitor K11777 was tested in the murine model of schistosomiasis mansoni. Disease parameters measured were worm and egg burdens, and organ pathology including hepato- and splenomegaly, presence of parasite egg-induced granulomas in the liver, and levels of circulating alanine aminotransferase activity as a marker of hepatocellular function. K11777 (25 mg/kg twice daily [BID], administered intraperitoneally at the time of parasite migration through the skin and lungs (days 1-14 postinfection [p.i.], resulted in parasitologic cure (elimination of parasite eggs in five of seven cases and a resolution of other disease parameters. K11777 (50 mg/kg BID, administered at the commencement of egg-laying by mature parasites (days 30-37 p.i., reduced worm and egg burdens, and ameliorated organ pathology. Using protease class-specific substrates and active-site labeling, one molecular target of K11777 was identified as the gut-associated cathepsin B1 cysteine protease, although other cysteine protease targets are not excluded. In rodents, dogs, and primates, K11777 is nonmutagenic with satisfactory safety and pharmacokinetic profiles.The significant reduction in parasite burden and pathology by this vinyl sulfone cysteine protease inhibitor validates schistosome cysteine proteases as drug targets and offers the potential of a new direction for chemotherapy of human schistosomiasis.

  20. Impact of preformed donor-specific antibodies against HLA class I on kidney graft outcomes: Comparative analysis of exclusively anti-Cw vs anti-A and/or -B antibodies

    Science.gov (United States)

    Santos, Sofia; Malheiro, Jorge; Tafulo, Sandra; Dias, Leonídio; Carmo, Rute; Sampaio, Susana; Costa, Marta; Campos, Andreia; Pedroso, Sofia; Almeida, Manuela; Martins, La Salete; Henriques, Castro; Cabrita, António

    2016-01-01

    AIM To analyze the clinical impact of preformed antiHLA-Cw vs antiHLA-A and/or -B donor-specific antibodies (DSA) in kidney transplantation. METHODS Retrospective study, comparing 12 patients transplanted with DSA exclusively antiHLA-Cw with 23 patients with preformed DSA antiHLA-A and/or B. RESULTS One year after transplantation there were no differences in terms of acute rejection between the two groups (3 and 6 cases, respectively in the DSA-Cw and the DSA-A-B groups; P = 1). At one year, eGFR was not significantly different between groups (median 59 mL/min in DSA-Cw group, compared to median 51 mL/min in DSA-A-B group, P = 0.192). Moreover, kidney graft survival was similar between groups at 5-years (100% in DSA-Cw group vs 91% in DSA-A-B group, P = 0.528). The sole independent predictor of antibody mediated rejection (AMR) incidence was DSA strength (HR = 1.07 per 1000 increase in MFI, P = 0.034). AMR was associated with shortened graft survival at 5-years, with 75% and 100% grafts surviving in patients with or without AMR, respectively (Log-rank P = 0.005). CONCLUSION Our data indicate that DSA-Cw are associated with an identical risk of AMR and impact on graft function in comparison with “classical” class I DSA. PMID:28058219

  1. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Directory of Open Access Journals (Sweden)

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  2. Inclusive and Exclusive |Vub|

    Energy Technology Data Exchange (ETDEWEB)

    Petrella, Antonio; /Ferrara U. /INFN, Ferrara

    2011-11-17

    The current status of the determinations of CKM matrix element |V{sub ub}| via exclusive and inclusive charmless semileptonic B decays is reviewed. The large datasets collected at the B-Factories, and the increased precision of theoretical calculations have allowed an improvement in the determination of |V{sub ub}|. However, there are still significant uncertainties. In the exclusive approach, the most precise measurement of the pion channel branching ratio is obtained by an untagged analysis. This very good precision can be reached by tagged analyses with more data. The problem with exclusive decays is that the strong hadron dynamics can not be calculated from first principles and the determination of the form factor has to rely on light-cone sum rules or lattice QCD calculations. The current data samples allow a comparison of different FF models with data distributions. With further developments on lattice calculations, the theoretical error should shrink to reach the experimental one. The inclusive approach still provides the most precise |V{sub ub}| determinations. With new theoretical calculations, the mild (2.5{sigma}) discrepancy with respect to the |V{sub ub}| value determined from the global UT fit has been reduced. As in the exclusive approach, theoretical uncertainties represent the limiting factor to the precision of the measurement. Reducing the theoretical uncertainties to a level comparable with the statistical error is challenging. New measurements in semileptonic decays of charm mesons could increase the confidence in theoretical calculations and related uncertainties.

  3. Ombuds' Corner: Social exclusion

    CERN Multimedia

    CERN bulletin

    2012-01-01

    In this special video edition of the Ombuds' Corner, Ombudsman Vincent Vuillemin takes a look at a social exclusion at CERN. Please note that the characters and situations appearing in this work are fictitious, and any resemblance to real persons or events is purely coincidental.

  4. Exclusive Production at CMS

    CERN Document Server

    Walczak, Marek

    2016-01-01

    I briefly introduce so-called central exclusive production. I mainly focus on the example analyses that have been performed in the CMS experiment at CERN. I conclude with ideas and perspectives for future work that will be done during Run 2 of the LHC. I pay special attention to the ultraperipheral collisions.

  5. EXCLUSIVELY FOR SIX MONTHS

    African Journals Online (AJOL)

    Method: Infant feeding practices was studied prospectively among 461 mothers who delivered in JU TH and who initially intended to breastfeed exclusively for 6 months. K. Y Result: Four hundred and twenty two (91.5%) of the recruited mothers continued EBFing practice for 6 months, while 25 (5.4%) dropped out from the ...

  6. Ombuds' Corner: Social exclusion

    CERN Multimedia

    Vincent Vuillemin

    2012-01-01

    In this special video edition of the Ombuds' Corner, Vincent Vuillemin takes a look at a social exclusion at CERN. Please note that the characters and situations appearing in this work are fictitious, and any resemblance to real persons or events is purely coincidental.   Contact the Ombuds Early!

  7. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pieper Rembert

    2011-05-01

    Full Text Available Abstract Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3 pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP, SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA and Glutathione S-transferase (GST improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.

  8. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries

    Science.gov (United States)

    Yi, Li; Gebhard, Mark C.; Li, Qing; Taft, Joseph M.; Georgiou, George; Iverson, Brent L.

    2013-01-01

    Myriad new applications of proteases would be enabled by an ability to fine-tune substrate specificity and activity. Herein we present a general strategy for engineering protease selectivity and activity by capitalizing on sequestration of the protease to be engineered within the yeast endoplasmic reticulum (ER). A substrate fusion protein composed of yeast adhesion receptor subunit Aga2, selection and counterselection substrate sequences, multiple intervening epitope tag sequences, and a C-terminal ER retention sequence is coexpressed with a protease library. Cleavage of the substrate fusion protein by the protease eliminates the ER retention sequence, facilitating transport to the yeast surface. Yeast cells that display Aga2 fusions in which only the selection substrate is cleaved are isolated by multicolor FACS with fluorescently labeled antiepitope tag antibodies. Using this system, the Tobacco Etch Virus protease (TEV-P), which strongly prefers Gln at P1 of its canonical ENLYFQ↓S substrate, was engineered to recognize selectively Glu or His at P1. Kinetic analysis indicated an overall 5,000-fold and 1,100-fold change in selectivity, respectively, for the Glu- and His-specific TEV variants, both of which retained high catalytic turnover. Human granzyme K and the hepatitis C virus protease were also shown to be amenable to this unique approach. Further, by adjusting the signaling strategy to identify phosphorylated as opposed to cleaved sequences, this unique system was shown to be compatible with the human Abelson tyrosine kinase. PMID:23589865

  9. Characterisation of an extracellular serine protease gene (nasp gene) from Dermatophilus congolensis.

    Science.gov (United States)

    Garcia-Sanchez, Alfredo; Cerrato, Rosario; Larrasa, Jose; Ambrose, Nicholas C; Parra, Alberto; Alonso, Juan M; Hermoso-de-Mendoza, Miguel; Rey, Joaquin M; Mine, Madisa O; Carnegie, Patrick R; Ellis, Trevor M; Masters, Anne M; Pemberton, Alan D; Hermoso-de-Mendoza, Javier

    2004-02-09

    A partial amino acid sequence of a serine protease from Dermatophilus congolensis allowed the design of oligonucleotide primers that were complemented with additional ones from previously published partial sequences of the gene encoding the enzyme. The polymerase chain reaction (PCR), using combinations of specific and degenerate oligonucleotide primers, allowed the amplification of a 1738-bp internal fragment of the gene, which was finally characterised by inverse PCR as the first full-length sequenced serine protease gene (nasp) from Dermatophilus congolensis. The deduced amino acid sequence of this enzyme, probably involved in the pathogenesis of dermatophilosis, links it to the subtilisin family of proteases.

  10. Inhibitory Properties of Cysteine Protease Pro-Peptides from Barley Confer Resistance to Spider Mite Feeding

    OpenAIRE

    Santamaria, M. Estrella; Arnaiz, Ana; Diaz-Mendoza, Mercedes; Martinez, Manuel; Diaz, Isabel

    2015-01-01

    C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and ac...

  11. Improved solubility of TEV protease by directed evolution.

    Science.gov (United States)

    van den Berg, Susanne; Löfdahl, Per-Ake; Härd, Torleif; Berglund, Helena

    2006-02-10

    The efficiency and high specificity of tobacco etch virus (TEV) protease has made it widely used for cleavage of recombinant fusion proteins. However, the production of TEV protease in E. coli is hampered by low solubility. We have subjected the gene encoding TEV protease to directed evolution to improve the yield of soluble protein. Libraries of mutated genes obtained by error-prone PCR and gene shuffling were introduced into the Gateway cloning system for facilitated transfer between vectors for screening, purification, or other applications. Fluorescence based in vivo solubility screening was carried out by cloning the libraries into a plasmid encoding a C-terminal GFP fusion. Mutant genes giving rise to high GFP fluorescence intensity indicating high levels of soluble TEV-GFP were subsequently transferred to a vector providing a C-terminal histidine tag for expression, purification, and activity tests of mutated TEV. We identified a mutant, TEV(SH), in which three amino acid substitutions result in a five-fold increase in the yield of purified protease with retained activity.

  12. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    Directory of Open Access Journals (Sweden)

    Adela Rendón-Ramírez

    Full Text Available Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP. CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP and a scaffold recognizing a β-lactam (imipenem in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV, we sought to query other OMV proteins, like phospholipase C (PLC, using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM. Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

  13. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    Science.gov (United States)

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

  14. The psychology of exclusivity

    Directory of Open Access Journals (Sweden)

    Troy Jollimore

    2008-02-01

    Full Text Available Friendship and romantic love are, by their very nature, exclusive relationships. This paper suggests that we can better understand the nature of the exclusivity in question by understanding what is wrong with the view of practical reasoning I call the Comprehensive Surveyor View. The CSV claims that practical reasoning, in order to be rational, must be a process of choosing the best available alternative from a perspective that is as detached and objective as possible. But this view, while it means to be neutral between various value-bearers, in fact incorporates a bias against those value-bearers that can only be appreciated from a perspective that is not detached—that can only be appreciated, for instance, by agents who bear long-term commitments to the values in question. In the realm of personal relationships, such commitments tend to give rise to the sort of exclusivity that characterizes friendship and romantic love; they prevent the agent from being impartial between her beloved’s needs, interests, etc., and those of other persons. In such contexts, I suggest, needs and claims of other persons may be silenced in much the way that, as John McDowell has suggested, the temptations of immorality are silenced for the virtuous agent.

  15. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases

    Science.gov (United States)

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927

  16. Extracellular fluid proteins of goldfish brain: evidence for the presence of proteases and esterases.

    Science.gov (United States)

    Shashoua, V E; Holmquist, B

    1986-09-01

    Preparations of enriched fractions of extracellular fluid (ECF) proteins from goldfish brain were found to contain protease(s) and esterase(s). The N-substituted furanacryloyl (FA) peptides FA-Phe-Gly-Gly and FA-Phe-OMe were used as model substrates for determining protease and esterase activity, respectively, in a spectrophotometric assay. Studies of the profile of substrate specificity and identification of the types of compounds that were effective as inhibitors showed that these ECF enzymes have some distinctive properties. GSH, but not GSSG, and EDTA inhibited the protease(s) without influencing the esterase(s), whereas L-1-tosylamide-2-phenylethylchloromethyl ketone blocked both protease and esterase activities of ECF. Most of the protease and esterase properties of ECF could be bound to concanavalin A-Sepharose affinity chromatographic columns in association with ependymin--a brain extracellular protein. These observations indicate that ECF may contain a metalloprotease(s) and raise the possibility that the ependymins might be a substrate for these ECF enzymes.

  17. Evaluation of the CFP-substrate-YFP system for protease studies: advantages and limitations.

    Science.gov (United States)

    Felber, Loyse M; Cloutier, Sylvain M; Kündig, Christoph; Kishi, Tadaaki; Brossard, Vincent; Jichlinski, Patrice; Leisinger, Hans-Jürg; Deperthes, David

    2004-05-01

    A protease can be defined as an enzyme capable of hydrolyzing peptide bonds. Thus, characterization of a protease involves identification of target peptide sequences, measurement of activities toward these sequences, and determination of kinetic parameters. Biological protease substrates based on fluorescent protein pairs, which allow for use of fluorescence resonance energy transfer (FRET), have been recently developed for in vivo protease activity detection and represent a very interesting alternative to chemical substrates for in vitro protease characterization. Here, we analyze a FRET system consisting of cyan and yellow fluorescent proteins (CFP and YFP, respectively), which are fused by a peptide linker serving as protease substrate. Conditions for CFP-YFP fusion protein production in Escherichia coli and purification of proteins were optimized. FRET between CFP and YFP was found to be optimum at a pH between 5.5 and 10.0, at low concentrations of salt and a temperature superior to 25 degrees C. For efficient FRET to occur, the peptide linker between CFP and YFP can measure up to 25 amino acids. The CFP-substrate-YFP system demonstrated a high degree of resistance to nonspecific proteolysis, making it suitable for enzyme kinetic analysis. As with chemical substrates, substrate specificity of CFP-substrate-YFP proteins was tested towards different proteases and kcat/Km values were calculated.

  18. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.

    Science.gov (United States)

    Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József

    2018-01-01

    In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology.

    Science.gov (United States)

    Gupta, Rani; Sharma, Richa; Beg, Qasim K

    2013-06-01

    Keratinases are special proteases which attack the highly recalcitrant keratin substrates. They stand apart from the conventional proteases due to their broad substrate specificity towards a variety of insoluble keratin rich substrates like feather, wool, nail, hair. Owing to this ability, keratinases find immense applications in various environmental and biotechnological sectors. The current boost in keratinase research has come up with the discovery of the ability of keratinases to address the challenging issue of prion decontamination. Here we present a comprehensive review on microbial keratinases giving an account of chronological progress of research along with the major milestones. Major focus has been on the key characteristics of keratinases, such as substrate specificity, keratin degradation mechanisms, molecular properties, and their role in prion decontamination along with other pharmaceutical applications. We conclude by critically evaluating the present state of the keratinases discussing their commercial status along with future research directions.

  20. Keratinolytic protease: a green biocatalyst for leather industry.

    Science.gov (United States)

    Fang, Zhen; Yong, Yang-Chun; Zhang, Juan; Du, Guocheng; Chen, Jian

    2017-11-01

    Depilation/unhairing is the crucial but heavy pollution process in leather industry. Traditional inorganic sulfide treatment was the most widely used depilation technique in the past decades, which was usually detrimental to leather quality and resulted in serious environmental pollution. Using biocatalysts to substitute inorganic sulfide showed great advantages in environment protection and unhairing efficiency. Keratinolytic protease is one of the excellent biocatalysts to hydrolyze disulfide bond-rich proteins of hair and has little damage to leather. Biological treatment with keratinolytic proteases could largely reduce the quantity and toxicity of wastewater effluent from the leather industry. But low thermostability and substrate specificity or specific activity of these enzymes limited their practical application. Therefore, recent progresses on protein engineering strategies (site-directed mutagenesis, protein fusion, N/C-terminus truncation, and domain swapping) used to enhance the keratinolytic enzyme performance were presented.

  1. HIV protease inhibitors in pregnancy : pharmacology and clinical use.

    Science.gov (United States)

    Andany, Nisha; Loutfy, Mona R

    2013-03-01

    The impact of antiretroviral therapy (ART) on the natural history of HIV-1 infection has resulted in dramatic reductions in disease-associated morbidity and mortality. Additionally, the epidemiology of HIV-1 infection worldwide is changing, as women now represent a substantial proportion of infected adults. As more highly effective and tolerable antiretroviral regimens become available, and as the prevention of mother-to-child transmission becomes an attainable goal in the management of HIV-infected individuals, more and more HIV-positive women are choosing to become pregnant and have children. Consequently, it is important to consider the efficacy and safety of antiretroviral agents in pregnancy. Protease inhibitors are a common class of medication used in the treatment of HIV-1 infection and are increasingly being used in pregnancy. However, several studies have raised concerns regarding pharmacokinetic alterations in pregnancy, particularly in the third trimester, which results in suboptimal drug concentrations and a theoretically higher risk of virologic failure and perinatal transmission. Drug level reductions have been observed with each individual protease inhibitor and dose adjustments in pregnancy are suggested for certain agents. Furthermore, studies have also raised concerns regarding the safety of protease inhibitors in pregnancy, particularly as they may increase the risk of pre-term birth and metabolic disturbances. Overall, protease inhibitors are safe and effective for the treatment of HIV-infected pregnant women. Specifically, ritonavir-boosted lopinavir- and atazanavir-based regimens are preferred in pregnancy, while ritonavir-boosted darunavir- and saquinavir-based therapies are reasonable alternatives. This paper reviews the use of protease inhibitors in pregnancy, focusing on pharmacokinetic and safety considerations, and outlines the recommendations for use of this class of medication in the HIV-1-infected pregnant woman.

  2. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ... at 3.6 g/l and yeast extract at 3.9 g/l gived maximum protease activity of 6804 U/ml. Key words: Medium ... face method, which is used to study the effects of several factors influencing the ...

  3. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Full Length Research Paper. Optimization of medium composition for thermostable protease production by Bacillus sp. HS08 with a statistical method .... Table 2. Effects of some elements in basic medium on the thermostable protease production. Element. Relatively activity (%). Control. Conc. (g/l). 100.

  4. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    This is similar to the findings of Akinkugbe and Onilude. (2013) who reported that protease from Lactobacillus acidophilus had maximum activity at 2% casein concentration. Gerze et al. (2005) obtained a slightly lesser value (1.2%) for protease produced by Bacillus subtilis megaterium (BSM) in their study on the effect of.

  5. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...

  6. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    A protease producing bacteria was isolated from meat waste contaminated soil and identified as Pseudomonas fluorescens. Optimization of the fermentation medium for maximum protease production was carried out. The culture conditions like inoculum concentration, incubation time, pH, temperature, carbon sources, ...

  7. Exclusive Diplepton Production

    CERN Document Server

    CMS Collaboration

    2009-01-01

    We present a first study of exclusive production of dileptons in CMS, by selecting events with a single back-to-back $\\mu^{+}\\mu^{-}$ or $e^{+}e^{-}$ pair and no significant additional activity in the detector. These events result from two-photon exchange and photoproduction of $\\Upsilon$ mesons. The two-photon events potentially provide a high-statistics calibration sample for luminosity normalization and alignment of forward proton detectors. The $\\Upsilon$ sample will allow studies of heavy flavor photoproduction at higher energies than previous experiments.

  8. Production of alkaline protease from Cellulosimicrobium cellulans

    Science.gov (United States)

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (pproduction of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  9. Social exclusion and education

    Directory of Open Access Journals (Sweden)

    Jokić Vesna

    2009-01-01

    Full Text Available Social exclusion is a process whereby certain individuals are pushed to the edge of society and prevented from participating fully by virtue of their poverty, or lack of basic competencies and lifelong learning opportunities or as a result of discrimination. This distances them from job, income and education opportunities as well as social and community networks and activities. Quality education (conditions and access/accessibility/availability is one of the factors that significantly influence the reduced social exclusion. In other words, education has is key role key role in ensuring social inclusion (equal opportunities and active social participation. At the same time, education and lifelong learning is established as the basis for achieving the goals of sustainable economic development (economy based on knowledge and to achieve social cohesion. Quality education is a prerequisite for progress, development and well-being of the community. Conditions and accessibility to education have become priorities of national reforms in most European countries. The subject of this paper is the educational structure of population of Serbia and the accessibility of education. The analysis covers the educational structure with regard to age, gender and type of settlement (city and other/villages settlements.

  10. Investigation of larvae digestive β-glucosidase and proteases of the tomato pest Tuta absoluta for inhibiting the insect development.

    Science.gov (United States)

    Sellami, S; Jamoussi, K

    2016-06-01

    The tomato leaf miner Tuta absoluta is one of the most devastating pests for tomato crops. Digestive proteases and β-glucosidase enzymes were investigated using general and specific substrates and inhibitors. Maximal β-glucosidase and proteolytic activities occurred at temperature and pH optima of 30 and 40°C, 5 and 10-11 unit of pH, respectively. Zymogram analysis showed the presence of distinguished β-glucosidase exhibiting a specific activity of about 183 ± 15 µmol min-1 mg-1. In vitro inhibition experiments suggested that serine proteases were the primary gut proteases. Gel based protease inhibition assays demonstrated that the 28 and 73 kDa proteases might be trypsin-like and chymotrypsin-like enzymes, respectively. Overall gut trypsin-like and chymotrypsin-like activities were evaluated to be about 27.2 ± 0.84 and 1.68 ± 0.03 µmol min-1 mg-1, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that T. absoluta gut serine proteases are responsible for Bacillus thuringiensis Cry insecticidal proteins proteolysis. Additionally, bioassays showed that T. absoluta larvae development was more affected by the β-glucosidases inhibitor (D-glucono-δ-lactone) than the serine proteases inhibitor (soybean trypsin inhibitor). These results are of basic interest since they present interesting data of β-glucosidases and gut serine proteases of T. absoluta larvae.

  11. Efficient expression and purification of a protease from the common cold virus, human rhinovirus type 14

    Science.gov (United States)

    Leong, L. E.-C.; Walker, P. A.; Porter, A. G.

    1992-08-01

    The protease (3C pro) from human rhinovirus serotype-14 (HRV-14) has been cloned and efficiently expressed in E. coli. A straightforward single-step purification of the recombinant 3C pro has been achieved by fusing the protein to the car☐y-terminus of the glutathione-S-transferase from Schistosoma japonicum. Modifications made to the 5' end of the PCR fragment coding for the 3C pro have allowed the specific cleavage of the fusion protein using thrombin to yield mature 3C pro with the correct amino-terminal amino acid. This protease has been shown to be active when assayed using synthetic peptides corresponding to the natural cleavage recognition sequences within the polyprotein. Other substrates are being developed for this protease for possible use in the screening of inhibitors of 3C pro. Sufficient protease 3C pro has been purified for initial attempts at crystallization.

  12. Social exclusion in finite populations.

    Science.gov (United States)

    Li, Kun; Cong, Rui; Wu, Te; Wang, Long

    2015-04-01

    Social exclusion, keeping free riders from benefit sharing, plays an important role in sustaining cooperation in our world. Here we propose two different exclusion regimes, namely, peer exclusion and pool exclusion, to investigate the evolution of social exclusion in finite populations. In the peer exclusion regime, each excluder expels all the defectors independently, and thus bears the total cost on his own, while in the pool exclusion regime, excluders spontaneously form an institution to carry out rejection of the free riders, and each excluder shares the cost equally. In a public goods game containing only excluders and defectors, it is found that peer excluders outperform pool excluders if the exclusion costs are small, and the situation is converse once the exclusion costs exceed some critical points, which holds true for all the selection intensities and different update rules. Moreover, excluders can dominate the whole population under a suitable parameters range in the presence of second-order free riders (cooperators), showing that exclusion has prominent advantages over common costly punishment. More importantly, our finding indicates that the group exclusion mechanism helps the cooperative union to survive under unfavorable conditions. Our results may give some insights into better understanding the prevalence of such a strategy in the real world and its significance in sustaining cooperation.

  13. Deklorofilasi ekstrak protease dari tanaman biduri (Calotropis gigantea dengan absorban celite

    Directory of Open Access Journals (Sweden)

    Yuli Witono

    2012-02-01

    Full Text Available ‘Biduri’ plant is a wild bush in tropical countries which is one of potential protease source. However, protease extracted fromleaf and stamp top of biduri is still green in color due to contain a protein bounding-chlorophyll. It would be problem if it is used forsome food. The objective of this rearch was to study a dechloroplyllation technique in order to obtain protease with low chlorophyllcontent but high specific activity. The results showed that the best dechlorophyllation method of biduri protease could be eluted by celiteabsorbance. The first step elution was obtained 16 ml filtrate of biduri protease with low chlorophyll. Consist to the result above alsodecreased protein content, with loading capacity was 1.067 gram biduri/gram celite or 0.015 μg chlorophyll/gram celite. Howeverin the second step elution, after biduri filtrate has been freezed for 12 hours was obtained the dechlorophylated biduri protease washigher in loading volume. Resulting in increased of loading capacity to be 2.13 gram biduri/gram celite or 0.004 μg chlorophyll/gramcelite. The chlorophyll decreased to about < 44% of chlorophyll from the first step elution, even the specific activity increased 286%compared with the first step elution.

  14. In silico insights into protein-protein interactions and folding dynamics of the saposin-like domain of Solanum tuberosum aspartic protease.

    Directory of Open Access Journals (Sweden)

    Dref C De Moura

    Full Text Available The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L. plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family.

  15. A biotechnology perspective of fungal proteases

    Science.gov (United States)

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  16. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  17. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  18. Studies on the Catalytic Properties of Partially Purified Alkaline Proteases from Some Selected Microorganisms

    Directory of Open Access Journals (Sweden)

    Titilayo Olufunke Femi-Ola

    2012-09-01

    Full Text Available Aims: The research was done to study the conditions enhancing catalytic activities of alkaline proteases from Vibro sp., Lactobacillus brevis, Zymomonas sp., Athrobacter sp., Corynebacterium sp. and Bacillus subtilis.Methodology and Results: The proteolytic enzymes were purified in 2-step procedures involving ammonium sulphate precipitation and sephadex G-150 gel permeation chromatography. The upper and lower limits for the specific activities of proteases from the selected microorganisms were estimated at 20.63 and 47.51 units/mg protein with Zymomonas protease having the highest specific activity towards casein as its substrate and purification fold of 3.46, while that ofLactobacillus brevis protease was 8.06. The native molecular weights of these active proteins ranged from 30.4 to 45.7 kDa with Athrobacter sp. protease having the highest weight for its subunits. The proteolytic enzymes had optimum pH range of 8 to 10 and temperature range of 50 to 62 ºC accounting for the percentage relative activity range of 75 to 94% and 71 to 84 % respectively. The activities of Lactobacillus brevis and Bacillus subtilis proteases were maximum at pH 9 and 10 respectively. Lactobacillus brevis protease activity was maximum at temperature of 62 ºC, while beyond this value, a general thermal instability of these active proteins was observed. At above 70 ºC, the catalytic activities of Corynebacterium sp., Vibrio sp., Zymomonas sp. and Arthrobacter sp. proteases were progressively reduced over a period of 120 min of incubation, while Bacillus subtlis and Lactobacillus brevis proteases were relatively stable. Effect of metal ions was investigated on the catalytic activity of protease from the microorganisms. Lactobacillus brevis,Zymomonas sp., Arthrobacter sp., Corynebacterium sp. and Bacillus subtilis protease activities were strongly activated by metal ions such as Ca+2 and Mg+2. Enzyme activities were inhibited strongly by Cu2+ and Hg2+ but were not

  19. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...... with ritonavir (/r)], darunavir/r has been shown to be associated with increased CVD risk. The effect is cumulative with longer exposure increasing risk and an effect size comparable to what has been observed for previously developed protease inhibitors. Biological mechanisms may be overlapping and include...... on individualization of care based on underlying risk of CVD....

  20. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim

    2007-01-01

    Since sequencing of the human genome was completed, more than 500 genes have been annotated as proteases. Exploring the physiological role of each protease requires the identification of their natural substrates. However, the endogenous substrates of many of the human proteases are as yet unknown......-phase chromatography they are analyzed by tandem mass spectrometry and the substrates identified by database searching. The proof of principle in this study is demonstrated by incubating immobilized human plasma proteins with thrombin and by identifying by tandem mass spectrometry the fibrinopeptides, released...

  1. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Raheem Ullah

    Full Text Available Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  2. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Science.gov (United States)

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  3. Exclusive meson production at COMPASS

    CERN Document Server

    Sznajder, Paweł

    2014-01-01

    In this paper we summarize recent measurements of exclusive meson production performed by the COMPASS Collaboration. In particular, recent results on the transverse target spin asymmetries for exclusive r 0 production are presented. Some of these asymmetries are sensitive to the GPDs E , which are related to the orbital angular momentum of quarks. Other asymmetries are sensitive to the chiral-odd, transverse GPDs H T . Measurements of exclusive processes, which are a part of the COMPASS-II proposal, are also discussed

  4. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    Science.gov (United States)

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Comparative characterization of protease activity in cultured spotted rose snapper juveniles (Lutjanus guttatus

    Directory of Open Access Journals (Sweden)

    Emyr Peña

    2015-09-01

    Full Text Available Partial characterizations of digestive proteases were studied in three life stages of spotted rose snapper: early (EJ, middle (MJ and late juvenile (LJ with corresponding average weights of 21.3 ± 2.6 g (3 months after hatching, MAH, 190 ± 4.4 g (7 MAH, and 400 ± 11.5 g (12 MAH. At sampling points, the digestive tract was dissected into the stomach (St, pyloric caeca (PC, and the intestine in three sections (proximal (PI, middle (MI and distal intestine (DI. The effect of pH and temperature and specific inhibitors were evaluated for acid and alkaline proteases. Total acid and alkaline protease activity showed a tendency to increase with juvenile life stage of fish while trypsin activity decreased. Differences were found in acid and alkaline protease activities at different pH and temperatures during juvenile stages. Pepstatin A inhibited total activity in the stomach extract in all juvenile stages. Activity in total alkaline protease inhibition was significantly higher in EJ using TLCK, PMSF, SBTI, Phen and Ovo than in MJ and LJ, while no significant differences were found with TPCK inhibition. Therefore increases in protease activities with fish growth through juvenile stages in which a substitution or diversification in the type of alkaline enzymes exist. These results lead a better comprehension of changes in digestive potential of Lutjanidae fish.

  6. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  7. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  8. Mannheimia haemolytica A2 secretes different proteases into the culture medium and in outer membrane vesicles.

    Science.gov (United States)

    Ramírez Rico, Gerardo; Martínez-Castillo, Moisés; González-Ruíz, Cynthia; Luna-Castro, Sarahí; de la Garza, Mireya

    2017-12-01

    Respiratory diseases in ruminants have a significantly negative impact on the worldwide economy. The bacterium Mannheimia haemolytica is involved in pneumonic infections in bovine and ovine. In gram-negative bacteria, six secretion systems related to the colonization process and host tissue damage have been reported. In addition, in the last two decades, the production of outer membrane vesicles has been studied as a different bacterial strategy to release virulence factors, such as exotoxins, lipopolysaccharides, and proteases. However, in M. haemolytica serotype A2, protease secretion and release in vesicles have not been reported as virulence mechanisms. The aim of this work was to identify proteases released into the culture supernatant and in vesicles of M. haemolytica A2. Our results showed evident differences in the molecular mass and activity of proteases present in culture supernatants and outer membrane vesicles based on zymography assays. The biochemical characterization of M. haemolytica proteases revealed that the main types were cysteine and metalloproteases. A specific metalloprotease of 100 kDa was active in the culture supernatants, but it was not active and was found in low quantities in vesicles. Proteases could be an important virulence factor during the infectious pneumonic process led by M. haemolytica. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors.

    Science.gov (United States)

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo; de la Garza, Mireya

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.

  10. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    Science.gov (United States)

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  11. A Novel Method for High-Level Production of TEV Protease by Superfolder GFP Tag

    Directory of Open Access Journals (Sweden)

    Xudong Wu

    2009-01-01

    Full Text Available Because of its stringent sequence specificity, tobacco etch virus (TEV protease is widely used to remove fusion tags from recombinant proteins. Due to the poor solubility of TEV protease, many strategies have been employed to increase the expression level of this enzyme. In our work, we introduced a novel method to produce TEV protease by using visible superfolder green fluorescent protein (sfGFP as the fusion tag. The soluble production and catalytic activity of six variants of sfGFP-TEV was examined, and then the best variant was selected for large-scale production. After purified by Ni-NTA affinity chromatography and Q anion exchange chromatography, the best variant of sfGFP-TEV fusion protease was obtained with purity of over 98% and yield of over 320 mg per liter culture. The sfGFP-TEV had a similar catalytic activity to that of the original TEV protease. Our research showed a novel method of large-scale production of visible and functional TEV protease for structural genomics research and other applications.

  12. Role of NADPH oxidase versus neutrophil proteases in antimicrobial host defense.

    Directory of Open Access Journals (Sweden)

    R Robert Vethanayagam

    Full Text Available NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs, suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47(phox-/- were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE(-/-×cathepsin G (CG(-/- mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47(phox-/- mice, whereas NE(-/-×CG(-/- mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens.

  13. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.

    Science.gov (United States)

    Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia

    2015-12-01

    Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. 21 CFR 529.469 - Competitive exclusion culture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Competitive exclusion culture. 529.469 Section 529... Competitive exclusion culture. (a) Specifications. Each packet of lyophilized culture contains either 2,000 or... contents of one 2,000-dose packet of lyophilized culture. Mix thoroughly. (2) For 5,000-dose packet, add...

  15. 26 CFR 31.3401(a)-2 - Exclusions from wages.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Exclusions from wages. 31.3401(a)-2 Section 31... Collection of Income Tax at Source § 31.3401(a)-2 Exclusions from wages. (a) In general. (1) The term “wages... specifically excepted from wages under section 3401(a). (2) The exception attaches to the remuneration for...

  16. Structure-guided fragment-based in silico drug design of dengue protease inhibitors

    Science.gov (United States)

    Knehans, Tim; Schüller, Andreas; Doan, Danny N.; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M. S.; Weil, Tanja; Vasudevan, Subhash G.

    2011-03-01

    An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC50 = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC50 = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.

  17. A novel serine protease with caspase- and legumain-like activities from edible basidiomycete Flammulina velutipes.

    Science.gov (United States)

    Iketani, Aya; Nakamura, Mayumi; Suzuki, Yuya; Awai, Koichiro; Shioi, Yuzo

    2013-03-01

    A serine protease with caspase- and legumain-like activities from basidiocarps of the edible basidiomycete Flammulina velutipes was characterized. The protease was purified to near homogeneity by three steps of chromatography using acetyl-Tyr-Val-Ala-Asp-4-methylcoumaryl-7-amide (Ac-YVAD-MCA) as a substrate. The enzyme was termed FvSerP (F. velutipes serine protease). This enzyme activity was completely inhibited by the caspase-specific inhibitor, Ac-YVAD-CHO, as well as moderately inhibited by serine protease inhibitors. Based on the N-terminal sequence, the cDNA of FvSerP was identified. The deduced protease sequence was a peptide composed of 325 amino acids with a molecular mass of 34.5 kDa. The amino acid sequence of FvSerP showed similarity to neither caspases nor to the plant subtilisin-like serine protease with caspase-like activity called saspase. FvSerP shared identity to the functionally unknown genes from class of Agaricomycetes, with similarity to the peptidase S41 domain of a serine protease. It was thus concluded that this enzyme is likely a novel serine protease with caspase- and legumain-like activities belonging to the peptidase S41 family and distributed in the class Agaricomycetes. This enzyme possibly functions in autolysis, a type of programmed cell death that occurs in the later stages of development of basidiocarps with reference to their enzymatic functions. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Structure-guided fragment-based in silico drug design of dengue protease inhibitors.

    Science.gov (United States)

    Knehans, Tim; Schüller, Andreas; Doan, Danny N; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M S; Weil, Tanja; Vasudevan, Subhash G

    2011-03-01

    An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC(50) = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.

  19. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  20. Biochemical and molecular characterisation of Tetrahymena thermophila extracellular cysteine proteases

    Directory of Open Access Journals (Sweden)

    Tiedtke Arno

    2006-02-01

    Full Text Available Abstract Background Over the last decades molecular biologic techniques have been developed to alter the genome and proteome of Tetrahymena thermophila thereby providing the basis for recombinant protein expression including functional human enzymes. The biotechnological potential of Tetrahymena has been proved in numerous publications, demonstrating fast growth, high biomass, fermentation in ordinary bacterial/yeast equipment, up-scalability, existence of cheap and chemical defined media. For these reasons Tetrahymena offers promising opportunities for the development of a high expression system. Yet optimised high yield strains with protease deficiency such as commonly used in yeast and bacterial systems are not available. Results This work presents the molecular identification of predominant proteases secreted into the medium by Tetrahymena thermophila. A one-step purification of the proteolytic enzymes is described. Conclusion The information provided will allow silencing of protease activity by either knock out methods or by Tetrahymena specific antisense-ribosome-techniques. This will facilitate the next step in the advancement of this exciting organism for recombinant protein production.

  1. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    Optimum protease activity of 116.4 U/ml was observed in the growth medium containing 0.7% KH2PO4, 0.2% K2HPO4, 0.01% MgSO4.7H2O, 0.05% citric acid dehydrate, 0.1% yeast extract and 0.2% casein. The protease production was found to be optimized in 1: 5 cultivation volume with 1% inoculum, shaken at 150 rpm.

  2. Tooth Development and Funcional Aspects of Proteases

    OpenAIRE

    原田, 実

    1994-01-01

    During tooth development in tooth germs, a chain of reciprocal interactions between the epithelial and mesenchymal tissue regulates both morphogenesis and cell differentiation. Several extracellular matrix proteins such as fibronectin, tenascin, syndecan, collagens, and enamel proteins are thought to be involved in the tooth developing process on a timed schedule. The turnover of these proteins can be broken down with proteases in the tooth germs. In this review article, proteases related to ...

  3. Cysteine and Aspartyl Proteases Contribute to Protein Digestion in the Gut of Freshwater Planaria.

    Directory of Open Access Journals (Sweden)

    Louise S Goupil

    2016-08-01

    Full Text Available Proteases perform numerous vital functions in flatworms, many of which are likely to be conserved throughout the phylum Platyhelminthes. Within this phylum are several parasitic worms that are often poorly characterized due to their complex life-cycles and lack of responsiveness to genetic manipulation. The flatworm Schmidtea mediterranea, or planaria, is an ideal model organism to study the complex role of protein digestion due to its simple life cycle and amenability to techniques like RNA interference (RNAi. In this study, we were interested in deconvoluting the digestive protease system that exists in the planarian gut. To do this, we developed an alcohol-induced regurgitation technique to enrich for the gut enzymes in S. mediterranea. Using a panel of fluorescent substrates, we show that this treatment produces a sharp increase in proteolytic activity. These enzymes have broad yet diverse substrate specificity profiles. Proteomic analysis of the gut contents revealed the presence of cysteine and metallo-proteases. However, treatment with class-specific inhibitors showed that aspartyl and cysteine proteases are responsible for the majority of protein digestion. Specific RNAi knockdown of the cathepsin B-like cysteine protease (SmedCB reduced protein degradation in vivo. Immunohistochemistry and whole-mount in situ hybridization (WISH confirmed that the full-length and active forms of SmedCB are found in secretory cells surrounding the planaria intestinal lumen. Finally, we show that the knockdown of SmedCB reduces the speed of tissue regeneration. Defining the roles of proteases in planaria can provide insight to functions of conserved proteases in parasitic flatworms, potentially uncovering drug targets in parasites.

  4. Cysteine and Aspartyl Proteases Contribute to Protein Digestion in the Gut of Freshwater Planaria

    Science.gov (United States)

    Goupil, Louise S.; Ivry, Sam L.; Hsieh, Ivy; Suzuki, Brian M.; Craik, Charles S.; O’Donoghue, Anthony J.; McKerrow, James H.

    2016-01-01

    Proteases perform numerous vital functions in flatworms, many of which are likely to be conserved throughout the phylum Platyhelminthes. Within this phylum are several parasitic worms that are often poorly characterized due to their complex life-cycles and lack of responsiveness to genetic manipulation. The flatworm Schmidtea mediterranea, or planaria, is an ideal model organism to study the complex role of protein digestion due to its simple life cycle and amenability to techniques like RNA interference (RNAi). In this study, we were interested in deconvoluting the digestive protease system that exists in the planarian gut. To do this, we developed an alcohol-induced regurgitation technique to enrich for the gut enzymes in S. mediterranea. Using a panel of fluorescent substrates, we show that this treatment produces a sharp increase in proteolytic activity. These enzymes have broad yet diverse substrate specificity profiles. Proteomic analysis of the gut contents revealed the presence of cysteine and metallo-proteases. However, treatment with class-specific inhibitors showed that aspartyl and cysteine proteases are responsible for the majority of protein digestion. Specific RNAi knockdown of the cathepsin B-like cysteine protease (SmedCB) reduced protein degradation in vivo. Immunohistochemistry and whole-mount in situ hybridization (WISH) confirmed that the full-length and active forms of SmedCB are found in secretory cells surrounding the planaria intestinal lumen. Finally, we show that the knockdown of SmedCB reduces the speed of tissue regeneration. Defining the roles of proteases in planaria can provide insight to functions of conserved proteases in parasitic flatworms, potentially uncovering drug targets in parasites. PMID:27501047

  5. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    M El Bakkouri; A Pow; A Mulichak; K Cheung; J Artz; M Amani; S Fell; T de Koning-Ward; C Goodman; et al.

    2011-12-31

    The Clpchaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clpchaperones and proteases in the humanmalariaparasitePlasmodiumfalciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clpchaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  6. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  7. HIV-1 protease cleavage site prediction based on two-stage feature selection method.

    Science.gov (United States)

    Niu, Bing; Yuan, Xiao-Cheng; Roeper, Preston; Su, Qiang; Peng, Chun-Rong; Yin, Jing-Yuan; Ding, Juan; Li, HaiPeng; Lu, Wen-Cong

    2013-03-01

    Knowledge of the mechanism of HIV protease cleavage specificity is critical to the design of specific and effective HIV inhibitors. Searching for an accurate, robust, and rapid method to correctly predict the cleavage sites in proteins is crucial when searching for possible HIV inhibitors. In this article, HIV-1 protease specificity was studied using the correlation-based feature subset (CfsSubset) selection method combined with Genetic Algorithms method. Thirty important biochemical features were found based on a jackknife test from the original data set containing 4,248 features. By using the AdaBoost method with the thirty selected features the prediction model yields an accuracy of 96.7% for the jackknife test and 92.1% for an independent set test, with increased accuracy over the original dataset by 6.7% and 77.4%, respectively. Our feature selection scheme could be a useful technique for finding effective competitive inhibitors of HIV protease.

  8. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles.

    Science.gov (United States)

    Elhenawy, Wael; Debelyy, Mykhaylo O; Feldman, Mario F

    2014-03-11

    Outer membrane vesicles (OMV) are spherical membranous structures released from the outer membrane (OM) of Gram-negative bacteria. OMV have been proposed to play several different roles during both pathogenesis and symbiosis. Despite the fact that OMV were described several decades ago, their biogenesis is a poorly characterized process. Whether OMV are produced by an active mechanism or by passive disintegration of the OM is a still matter of controversy. Bacteroides fragilis and Bacteroides thetaiotaomicron are important members of the human microbiota. In this work, we determined and compared the protein compositions of OM and OMV from B. fragilis and B. thetaiotaomicron. SDS-PAGE analysis of both fractions revealed dramatically different protein profiles. Proteomic analysis of OM and OMV in B. fragilis identified more than 40 proteins found exclusively in OMV and more than 30 proteins detectable only in the OM. The OMV-specific proteome showed a high prevalence of glycosidases and proteases, some of which were shown to be active in vitro. Similar results were obtained for B. thetaiotaomicron. Most of the OMV-exclusive proteins were acidic. Based on these results, we propose that these species possess machinery devoted to selectively pack acidic proteins into the OMV. These OMV equipped with hydrolytic enzymes could help in securing nutrients for the benefit of the whole bacterial community present in the microbiota, uncovering a novel function for bacterial OMV. IMPORTANCE The members of genus Bacteroides are key players in the symbiosis between the human host and the gut microbiota. It is known for its ability to degrade a wide variety of glycans that are not substrates for human glycosidases. The cleaved glycans can be utilized by Bacteroides and other microbiota members, resulting in the production of short-chain fatty acids that are beneficial for the host. Although members of the genus Bacteroides are known to secrete different hydrolases, their secretion

  9. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  10. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Science.gov (United States)

    2009-01-01

    Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co

  11. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2009-03-01

    Full Text Available Abstract Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW and LexA (hoxW. In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer

  12. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: implications of material selection for dressing and protease sensor design

    Science.gov (United States)

    An intelligent dressing is a self-adjusting material with multifunctional properties and/or a biosensor-interface designed to treat specific pathological issues of wounds at a molecular or cellular level. The ability to detect and treat excessive protease levels in wounds, one indicator of chronic w...

  13. Exclusive Rights and State Aid

    DEFF Research Database (Denmark)

    Ølykke, Grith Skovgaard

    2017-01-01

    Exclusive rights are granted in order to regulate markets as one of several possible tools of public intervention. The article considers the role of State aid law in the regulation of exclusive rights. Whereas the right of Member States to organise markets as monopolies and the choice of provider...

  14. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    Science.gov (United States)

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  15. Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yiu-Wing Kam

    Full Text Available BACKGROUND: Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike of the severe acute respiratory syndrome coronavirus (SARS-CoV to cleavage by various airway proteases. METHODOLOGY/PRINCIPAL FINDINGS: PURIFIED TRISPIKE PROTEINS WERE READILY CLEAVED IN VITRO BY THREE DIFFERENT AIRWAY PROTEASES: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC and amino acid sequencing analyses identified two arginine residues (R667 and R797 as potential protease cleavage site(s. The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A. Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment. CONCLUSIONS/SIGNIFICANCE: These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.

  16. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco.

    Science.gov (United States)

    Moreno, Juan C; Tiller, Nadine; Diez, Mercedes; Karcher, Daniel; Tillich, Michael; Schöttler, Mark A; Bock, Ralph

    2017-04-01

    Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to down-regulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knock-down lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Protease inhibitors targeting coronavirus and filovirus entry.

    Science.gov (United States)

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H; Renslo, Adam R; Simmons, Graham

    2015-04-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  18. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    Directory of Open Access Journals (Sweden)

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  19. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: Implications of material selection for dressing and protease sensor design.

    Science.gov (United States)

    Fontenot, Krystal R; Edwards, J Vincent; Haldane, David; Pircher, Nicole; Liebner, Falk; Condon, Brian D; Qureshi, Huzaifah; Yager, Dorne

    2017-11-01

    Interfacing nanocellulosic-based biosensors with chronic wound dressings for protease point of care diagnostics combines functional material properties of high specific surface area, appropriate surface charge, and hydrophilicity with biocompatibility to the wound environment. Combining a protease sensor with a dressing is consistent with the concept of an intelligent dressing, which has been a goal of wound-dressing design for more than a quarter century. We present here biosensors with a nanocellulosic transducer surface (nanocrystals, nanocellulose composites, and nanocellulosic aerogels) immobilized with a fluorescent elastase tripeptide or tetrapeptide biomolecule, which has selectivity and affinity for human neutrophil elastase present in chronic wound fluid. The specific surface area of the materials correlates with a greater loading of the elastase peptide substrate. Nitrogen adsorption and mercury intrusion studies revealed gas permeable systems with different porosities (28-98%) and pore sizes (2-50 nm, 210 µm) respectively, which influence water vapor transmission rates. A correlation between zeta potential values and the degree of protease sequestration imply that the greater the negative surface charge of the nanomaterials, the greater the sequestration of positively charged neutrophil proteases. The biosensors gave detection sensitivities of 0.015-0.13 units/ml, which are at detectable human neutrophil elastase levels present in chronic wound fluid. Thus, the physical and interactive biochemical properties of the nano-based biosensors are suitable for interfacing with protease sequestrant prototype wound dressings. A discussion of the relevance of protease sensors and cellulose nanomaterials to current chronic wound dressing design and technology is included.

  20. Evaluation of proteases and protease inhibitors in Heterodera glycines cysts obtained from laboratory and field populations

    Science.gov (United States)

    Proteases and proteases inhibitors were evaluated in a number of preparations of Heterodera glycines cysts obtained from glasshouse cultures (GH) and field (LR) populations. Using a FRET-peptide library comprising 512 peptide substrate pools that detect 4 endoprotease types (aspartic, cysteine, meta...

  1. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao

    2018-02-16

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named \\'tamarillin\\'.

  2. Selective modulation of the CD4 molecular complex by Pseudomonas aeruginosa alkaline protease and elastase

    DEFF Research Database (Denmark)

    Pedersen, B K; Kharazmi, A; Theander, T G

    1987-01-01

    The binding of monoclonal antibodies against CD4 was specifically inhibited by treatment of human CD4+ cells with either alkaline protease (AP) or elastase (Ela), purified from Pseudomonas aeruginosa. Binding of antibodies against CD3 (pan T), CD5 (pan T), CD8 (T suppressor/cytotoxic), HLA-ABC, HLA......-DR, HLA-DQ, HLA-DP/DR, and beta 2 microglobulin was not inhibited by AP or Ela. Heat-inactivation of the proteases at 65 degrees C for 20 min or treatment with the metal chelator EDTA abolished the inhibitory activity of both proteases. These findings may serve to develop novel immunological methods...

  3. Rapid peptide based diagnosis: peptide-based Fluorescence Resonance Energy Transfer (FRET) protease substrates for the detection and diagnosis of bacillus spp

    NARCIS (Netherlands)

    Bikker, F.J.; Kaman, W.E.

    2014-01-01

    We describe the development of a highly specific protease-based Fluorescence Resonance Energy Transfer (FRET) assay for easy and rapid detection both in vitro and in vivo of Bacillus spp, including Bacillus anthracis. Synthetic substrates for B. anthracis proteases were designed and exposed to

  4. Persistent random walk with exclusion

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2013-11-01

    Modelling the propagation of a pulse in a dense milieu poses fundamental challenges at the theoretical and applied levels. To this aim, in this paper we generalize the telegraph equation to non-ideal conditions by extending the concept of persistent random walk to account for spatial exclusion effects. This is achieved by introducing an explicit constraint in the hopping rates, that weights the occupancy of the target sites. We derive the mean-field equations, which display nonlinear terms that are important at high density. We compute the evolution of the mean square displacement (MSD) for pulses belonging to a specific class of spatially symmetric initial conditions. The MSD still displays a transition from ballistic to diffusive behaviour. We derive an analytical formula for the effective velocity of the ballistic stage, which is shown to depend in a nontrivial fashion upon both the density (area) and the shape of the initial pulse. After a density-dependent crossover time, nonlinear terms become negligible and normal diffusive behaviour is recovered at long times.

  5. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates.

    Science.gov (United States)

    Moreno, Juan C; Martínez-Jaime, Silvia; Schwartzmann, Joram; Karcher, Daniel; Tillich, Michael; Graf, Alexander; Bock, Ralph

    2018-02-01

    The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco ( Nicotiana tabacum ) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  6. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates1[OPEN

    Science.gov (United States)

    Martínez-Jaime, Silvia; Karcher, Daniel; Tillich, Michael

    2018-01-01

    The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco (Nicotiana tabacum) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis. PMID:29229697

  7. Intracellular proteases of Bacillus thuringiensis subsp. kurstaki and a protease-deficient mutant Btk-q.

    Science.gov (United States)

    Reddy, Y Chandrahasa; Venkateswerlu, G

    2002-12-01

    The commencement of intracellular protease synthesis was studied by gelatin zymography in Bacillus thuringiensis ( Btk) HD1, Btk HD73, and a protease-deficient mutant Btk-q derived from the former strain. By gelatin zymography, a 92-kDa protease was detected first at 3 h of sporulation, which continued until 48 h, whereas two other proteases of mol wt 78 and 69 kDa were detectable from 6 h onwards and continued until 48 h of growth in Btk HD1. Similar studies revealed the presence of two major intracellular proteases in Btk HD73 by gelatin zymography, which first appeared at 6 h of sporulation and continued until 48 h of growth. The quantitative azocasein assay confirmed that the total protease activity increases from 3 to 21 h, thereafter reaching a plateau up to 48 h of growth examined, in HD1 and HD73 strains. Btk-q, a protease-deficient mutant, showed traces of protease activity by azocasein analysis that could not be detected by gelatin zymography. The free amino acid pool content was also increased parallel to the way that the protease activity increased in all three strains. However, this increase was found to be low (16-fold) in Btk-q when compared with Btk HD1 and HD73 strains. The following amino acids were detected by paper chromatography in Btk HD1: DL-alanine, L-glutamic acid, L-aspartic acid, tyrosine, tryptophan/methionine/valine, arginine, leucine/norleucine/isoleucine, and glycine, whereas only DL-alanine, L-glutamic acid, and L-aspartic acid were in Btk-q at 24 and 48 h, when the protease activity was maximum.

  8. The role of serine proteases in the pathogenesis of bacterial infections

    Directory of Open Access Journals (Sweden)

    Ewa Burchacka

    2016-06-01

    Full Text Available An increasing resistance of pathogenic bacterial species has been considered as one of the major health problems worldwide. The discovery of novel protein targets and development of effective anti-bacterial therapeutics is of high need since for some extremely resistant pathogens we are simply left unarmed. One of new promising therapeutic strategy is the application of specific inhibitors targeting bacterial serine proteases. Pathogenic microorganisms secrete abroad range of hydrolases, including serine proteases which lead to activation of various virulence factors. Herein, we review the specific bacteria serine proteases which have an influence on pathogenicity of bacterial infection as well as we introduce the reader with a brief history of the subject.

  9. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design.

    Science.gov (United States)

    Pethe, Manasi A; Rubenstein, Aliza B; Khare, Sagar D

    2017-01-20

    Characterizing the substrate specificity of protease enzymes is critical for illuminating the molecular basis of their diverse and complex roles in a wide array of biological processes. Rapid and accurate prediction of their extended substrate specificity would also aid in the design of custom proteases capable of selectively and controllably cleaving biotechnologically or therapeutically relevant targets. However, current in silico approaches for protease specificity prediction, rely on, and are therefore limited by, machine learning of sequence patterns in known experimental data. Here, we describe a general approach for predicting peptidase substrates de novo using protein structure modeling and biophysical evaluation of enzyme-substrate complexes. We construct atomic resolution models of thousands of candidate substrate-enzyme complexes for each of five model proteases belonging to the four major protease mechanistic classes-serine, cysteine, aspartyl, and metallo-proteases-and develop a discriminatory scoring function using enzyme design modules from Rosetta and AMBER's MMPBSA. We rank putative substrates based on calculated interaction energy with a modeled near-attack conformation of the enzyme active site. We show that the energetic patterns obtained from these simulations can be used to robustly rank and classify known cleaved and uncleaved peptides and that these structural-energetic patterns have greater discriminatory power compared to purely sequence-based statistical inference. Combining sequence and energetic patterns using machine-learning algorithms further improves classification performance, and analysis of structural models provides physical insight into the structural basis for the observed specificities. We further tested the predictive capability of the model by designing and experimentally characterizing the cleavage of four novel substrate motifs for the hepatitis C virus NS3/4 protease using an in vivo assay. The presented structure

  10. Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an octapeptide that determined its cleavability. Two kinds of newly proposed features based on Amino Acid Index database plus traditional orthogonal encoding features are used in this paper, taking both physiochemical and sequence information into consideration. Results of feature selection prove that p2, p1, p1′, and p2′ are the most important positions. Two feature fusion methods are used in this paper: combination fusion and decision fusion aiming to get comprehensive feature representation and improve prediction performance. Decision fusion of subsets that getting after feature selection obtains excellent prediction performance, which proves feature selection combined with decision fusion is an effective and useful method for the task of HIV-1 protease cleavage site prediction. The results and analysis in this paper can provide useful instruction and help designing HIV-1 protease inhibitor in the future.

  11. Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction.

    Science.gov (United States)

    Liu, Hui; Shi, Xiaomiao; Guo, Dongmei; Zhao, Zuowei; Yimin

    2015-01-01

    It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an octapeptide that determined its cleavability. Two kinds of newly proposed features based on Amino Acid Index database plus traditional orthogonal encoding features are used in this paper, taking both physiochemical and sequence information into consideration. Results of feature selection prove that p2, p1, p1', and p2' are the most important positions. Two feature fusion methods are used in this paper: combination fusion and decision fusion aiming to get comprehensive feature representation and improve prediction performance. Decision fusion of subsets that getting after feature selection obtains excellent prediction performance, which proves feature selection combined with decision fusion is an effective and useful method for the task of HIV-1 protease cleavage site prediction. The results and analysis in this paper can provide useful instruction and help designing HIV-1 protease inhibitor in the future.

  12. A parasite cysteine protease is key to host protein degradation and iron acquisition.

    Science.gov (United States)

    O'Brien, Theresa C; Mackey, Zachary B; Fetter, Richard D; Choe, Youngchool; O'Donoghue, Anthony J; Zhou, Min; Craik, Charles S; Caffrey, Conor R; McKerrow, James H

    2008-10-24

    Cysteine proteases of the Clan CA (papain) family are the predominant protease group in primitive invertebrates. Cysteine protease inhibitors arrest infection by the protozoan parasite, Trypanosoma brucei. RNA interference studies implicated a cathepsin B-like protease, tbcatB, as a key inhibitor target. Utilizing parasites in which one of the two alleles of tbcatb has been deleted, the key role of this protease in degradation of endocytosed host proteins is delineated. TbcatB deficiency results in a decreased growth rate and dysmorphism of the flagellar pocket and the subjacent endocytic compartment. Western blot and microscopic analysis indicate that deficiency in tbcatB results in accumulation of both host and parasite proteins, including the lysosomal marker p67. A critical function for parasitism is the degradation of host transferrin, which is necessary for iron acquisition. Substrate specificity analysis of recombinant tbcatB revealed the optimal peptide cleavage sequences for the enzyme and these were confirmed experimentally using FRET-based substrates. Degradation of transferrin was validated by SDS-PAGE and the specific cleavage sites identified by N-terminal sequencing. Because even a modest deficiency in tbcatB is lethal for the parasite, tbcatB is a logical target for the development of new anti-trypanosomal chemotherapy.

  13. Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae.

    Science.gov (United States)

    Santamaría, María E; González-Cabrera, Joel; Martínez, Manuel; Grbic, Vojislava; Castañera, Pedro; Díaz, Lsabel; Ortego, Félix

    2015-07-01

    Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC-nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive

  14. Protease Inhibitors from Plants with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Yoonkyung Park

    2009-06-01

    Full Text Available Antimicrobial proteins (peptides are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides. Plants produce a variety of proteins (peptides that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins. Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents.

  15. Perfil dos internos no sistema prisional do Rio de Janeiro: especificidades de gênero no processo de exclusão social Profile of prisoners in the Rio de Janeiro prison system: specifities of gender in the social exclusion process

    Directory of Open Access Journals (Sweden)

    Márcia Lazaro de Carvalho

    2006-06-01

    Full Text Available O estudo do perfil sociodemográfico, história penal, uso de drogas e doenças sexualmente transmissíveis da população carcerária do Estado do Rio de Janeiro, em 1998, permitiu conhecer diferentes características da população prisional por sexo. O objetivo deste estudo é identificar se o perfil de exclusão social a que essa população é submetida difere quanto ao sexo. Foram entrevistados 2.039 presos por estudo seccional, e utilizada a razão de prevalência como medida de associação entre sexo e as demais variáveis. A análise multivariada, através de regressão logística, compõe um modelo final de explicação dessas diferenças. A população é jovem, de baixa escolaridade, e apresenta ruptura de vínculos da vida social em várias dimensões para ambos os sexos. Fatores mais fortemente associados ao sexo masculino: visita íntima na prisão, estar preso por sete anos ou mais, ser casado, condenação por roubo, ter ainda três anos ou mais a cumprir de pena e uso de maconha antes de ser preso; para o sexo feminino: doença sexualmente transmissível, ser viúva, estrangeira, usar tranqüilizante na prisão, ter visitado alguém na prisão antes de ser presa e ter 35 anos ou mais. A análise dos dados permitiu concluir que embora esses homens e mulheres sejam igualmente excluídos da "vida social" muito antes e também depois da prisão, existem algumas características que os diferenciam nesse processo de injustiça social.The study of the social and demographic profile, criminal records, drug use and sexually transmitted diseases of the prison population of Rio de Janeiro State in 1998 offered a view of different aspects of this population by gender. The objective of this study is to identify if the profile of social exclusion this population is submitted differs by gender. Through a sectional study, 2,039 prisoners were interviewed, using the prevalence ratio as an association measure between gender and the other

  16. Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives.

    Science.gov (United States)

    Sun, Changsheng; Liang, Jiongqiu; Shi, Rui; Gao, Xuna; Zhang, Ruijuan; Hong, Fulin; Yuan, Qihang; Wang, Shengbin

    2012-03-01

    Tobacco etch virus (TEV) protease is widely used to remove tags from recombinant fusion proteins because of its stringent sequence specificity. It is generally accepted that the high concentrations of salts or other special agents in most protein affinity chromatography buffers can affect enzyme activity, including that of TEV protease. Consequently, tedious desalination or the substitution of standard TEV reaction buffer for elution buffer are often needed to ensure TEV protease activity when removing fusion tags after purifying target proteins using affinity chromatography. To address this issue, we used SOE PCR technology to synthesize a TEV protease gene with a codon pattern adapted to the codon usage bias of Escherichia coli, recovered the purified recombinant TEV protease, and examined its activity in various elution buffers commonly used in affinity chromatography as well as the effects of selected additives on its activity. Our results showed that the rTEV protease maintained high activity in all affinity chromatography elution buffers tested and tolerated high concentrations of additives commonly used in protein purification procedures, such as ethylene glycol, EGTA, Triton X-100, Tween-20, NP-40, CHAPS, urea, SDS, guanidine hydrochloride and β-mercaptoethanol. These results will facilitate the use of rTEV protease in removing tags from fusion proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2012-01-01

    Full Text Available Introduction: Organic solvent-tolerant bacteria are relatively novel extermophilic microorganisms, which can produce organic tolerant protease with capacity of being used in industrial biotechnology for producing high-value compounds. Therefore, finding of these bacteria has drawn much researchers attention nowadays. Materials and Methods: In this project, samples were collected from a hot spring, located in Jiroft. Samples were incubated in medium supplemented with cyclohexane and toluene for 3 days. Screening of protease producing bacteria was performed on the specific media, SKM (Skim milk agar, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Protease activity was considered in different temperatures, pH and organic solvents.Results: Sequence alignment and phylogenetic tree results showed that this bacteria was closely related to Bacillus niacini, with 97% homology. Enzymatic studies showed that, this enzyme was active at a wide range of temperatures, 20-90 °C and it,s optimal activity was in 60 °C. In addition, maximum protease activity was obtained in the 8-9 range of pH, and optimal stability was also at pH 9.0. Protease activity in the presence of methanol, toluene, isopropanol, cyclohexane and DMF ‏showed that, remaining activity was at least 80% compared to the control (without organic solvent Discussion and Conclusion: Thermopilic capacity, being active in alkaline protease and high protease stability in the presence of organic solvents all herald a remarkable application for using in different industries.

  18. Triclabendazole Effect on Protease Enzyme Activity in the Excretory- Secretory Products of Fasciola hepatica in Vitro.

    Directory of Open Access Journals (Sweden)

    Yosef Shrifi

    2014-03-01

    Full Text Available Fasciola hepatica is one of the most important helminthes parasites and triclabendazole (TCBZ is routinely used for treatment of infected people and animals. Secreted protease enzymes by the F. hepatica plays a critical role in the invasion, migration, nutrition and the survival of parasite and are key targets for novel drugs and vaccines. The aim of study was to determine the protease activity of excretory- secretory products (ESP of F. hepatica in the presence of TCBZ anthelmintic.F. hepatica helminthes were collected and cultured within RPMI 1640 [TCBZ treated (test and untreated (control] for 6 h at 37 °C. ESP of treated and control were collected, centrifuged and supernatants were stored at -20°C. Protein concentrations were measured according to Bradford method. Protease enzymes activities of ESP samples were estimated by using sigma's non-specific protease activity assay. ESP protein bands were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE.Mean protein concentrations in control and treated of ESP samples were determined 196.1 ±14.52 and 376.4 ±28.20 μg/ml, respectively. Mean protease enzymes activities in control and treated were 0.37 ±0.1 and 0.089 ±0.03 U/ml, respectively. Significant difference between proteins concentrations and protease enzymes activities of two groups was observed (P<0.05. SDS-PAGE showed different patterns of protein bands between treated and control samples.The TCBZ reduced secreted protease enzymes activities and possibly effects on invasion, migration, nutrition and particularly survival of the parasite in the host tissues.

  19. Purification and biochemical characterization of a novel alkaline protease produced by Penicillium nalgiovense.

    Science.gov (United States)

    Papagianni, M; Sergelidis, D

    2014-04-01

    Penicillium nalgiovense PNA9 produces an extracellular protease during fermentation with characteristics of growth-associated product. Enzyme purification involved ammonium sulfate precipitation, dialysis, and ultrafiltration, resulting in 12.1-fold increase of specific activity (19.5 U/mg). The protein was isolated through a series of BN-PAGE and native PAGE runs. ESI-MS analysis confirmed the molecular mass of 45.2 kDa. N-Terminal sequencing (MGFLKLLKGSLATLAVVNAGKLLTANDGDE) revealed 93 % similarity to a Penicillium chrysogenum protease, identified as major allergen. The protease exhibits simple Michaelis-Menten kinetics and K m (1.152 mg/ml), V max (0.827 mg/ml/min), and k cat (3.2 × 10(2)) (1/s) values against azocasein show that it possesses high substrate affinity and catalytic efficiency. The protease is active within 10-45 °C, pH 4.0-10.0, and 0-3 M NaCl, while maximum activity was observed at 35 °C, pH 8.0, and 0.25 M NaCl. It is active against the muscle proteins actin and myosin and inactive against myoglobin. It is highly stable in the presence of non-ionic surfactants, hydrogen peroxide, BTNB, and EDTA. Activity was inhibited by SDS, Mn(2+) and Zn(2+), and by the serine protease inhibitor PMSF, indicating the serine protease nature of the enzyme. These properties make the novel protease a suitable candidate enzyme in meat ripening and other biotechnological applications.

  20. The plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10.

    Directory of Open Access Journals (Sweden)

    Kitiya Ekchaweng

    Full Text Available Rubber tree (Hevea brasiliensis Muell. Arg is an important economic crop in Thailand. Leaf fall and black stripe diseases caused by the aggressive oomycete pathogen Phytophthora palmivora, cause deleterious damage on rubber tree growth leading to decrease of latex production. To gain insights into the molecular function of H. brasiliensis subtilisin-like serine proteases, the HbSPA, HbSPB, and HbSPC genes were transiently expressed in Nicotiana benthamiana via agroinfiltration. A functional protease encoded by HbSPA was successfully expressed in the apoplast of N. benthamiana leaves. Transient expression of HbSPA in N. benthamiana leaves enhanced resistance to P. palmivora, suggesting that HbSPA plays an important role in plant defense. P. palmivora Kazal-like extracellular protease inhibitor 10 (PpEPI10, an apoplastic effector, has been implicated in pathogenicity through the suppression of H. brasiliensis protease. Semi-quantitative RT-PCR revealed that the PpEPI10 gene was significantly up-regulated during colonization of rubber tree by P. palmivora. Concurrently, the HbSPA gene was highly expressed during infection. To investigate a possible interaction between HbSPA and PpEPI10, the recombinant PpEPI10 protein (rPpEPI10 was expressed in Escherichia coli and purified using affinity chromatography. In-gel zymogram and co-immunoprecipitation (co-IP assays demonstrated that rPpEPI10 specifically inhibited and interacted with HbSPA. The targeting of HbSPA by PpEPI10 revealed a defense-counterdefense mechanism, which is mediated by plant protease and pathogen protease inhibitor, in H. brasiliensis-P. palmivora interactions.

  1. Exclusive dimuon production with LHCb

    CERN Multimedia

    Shears, Tara

    2011-01-01

    We report on studies of exclusive dimuon production using LHCb experimental data. Exclusively produced muon pairs can be produced by two photon fusion (a QED process ideally suited to obtaining a precise integrated luminosity measure), or through resonances produced by pomeron-photon fusion or double pomeron exchange.We present cross-section measurements for exclusive dimuon production, and the first observations at a proton-proton collider of exclusive J/psi, psi’ and chi_c states, obtained with 37 pb-1 of data at centre of mass energy of 7 TeV. The resolution of the LHCb detectors allow the chic0, chic1 and chic2 states to be separated. We compare our results to theoretical predictions.

  2. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    potential source of proteases Proteases are of immense interest in food, dairy, detergent, pharmaceutical and leather industries [10]. More than 25 % of the worldwide sale of enzymes is contributed by proteases alone, where mainly alkaline proteases...

  3. Insect response to plant defensive protease inhibitors.

    Science.gov (United States)

    Zhu-Salzman, Keyan; Zeng, Rensen

    2015-01-07

    Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.

  4. Fibrinolytic and antithrombotic protease from Spirodela polyrhiza.

    Science.gov (United States)

    Choi, H S; Sa, Y S

    2001-04-01

    A fibrinolytic protease was purified from a Chinese herb (Spirodela polyrhiza). The protease has a molecular mass of 145 kDa and 70 kDa in gel filtration and SDS-polyacrlamide gel electrophoresis (PAGE), respectively, implying it is a dimer. Its optimum pH was 4.5-5.0. The enzyme was stable below 42 degrees C and after lyophilization. The enzyme activity was inhibited significantly by leupeptin and aprotinin. The protease hydrolyzed not only fibrin but also fibrinogen, cleaving Aalpha and Bbeta without affecting the gamma chain of fibrinogen. It preferentially cleaved the peptide bond of Arg or Lys of synthetic substrates (P1 position). The enzyme had an anticoagulating activity measured with activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) tests. It delayed APTT, TT, and PT two times at the concentration of 36, 39, and 128 nM, respectively and this was drastically reduced after heat treatment.

  5. The Clp protease system; a central component of the chloroplast protease network.

    Science.gov (United States)

    Olinares, Paul Dominic B; Kim, Jitae; van Wijk, Klaas J

    2011-08-01

    Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy.

    Science.gov (United States)

    Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs) which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI) have been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn, and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and therapeutic effects due

  7. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy

    Science.gov (United States)

    Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs) which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI) have been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn, and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and therapeutic effects due

  8. Structural and Biophysical Characterization of Cajanus cajan Protease Inhibitor

    Science.gov (United States)

    Shamsi, Tooba Naz; Parveen, Romana; Ahamad, Shahzaib; Fatima, Sadaf

    2017-01-01

    Context: A large number of studies have proven that Protease inhibitors (PIs), specifically serine protease inhibitors, show immense divergence in regulation of proteolysis by targeting their specific proteases and hence, they play a key role in healthcare. Objective: We aimed to access in-vitro anticancer potential of PI from Cajanus cajan (CCPI). Also, crystallization of CCPI was targetted alongwith structure determination and its structure-function relationship. Materials and Methods: CCPI was purified from Cajanus cajan seeds by chromatographic techniques. The purity and molecular mass was determined by SDS-PAGE. Anticancer potential of CCPI was determined by MTT assay in normal HEK and cancerous A549 cells. The crystallization screening of CCPI was performed by commercially available screens. CCPI sequence was subject to BLASTp with homologous PIs. Progressive multiple alignment was performed using clustalw2 and was modelled using ab initio protocol of I-TASSER. Results: The results showed ~14kDa CCPI was purified in homogeneity. Also, CCPI showed low cytotoxic effects of in HEK i.e., 27% as compared with 51% cytotoxicity in A549 cells. CCPI crystallized at 16°C using 15% PEG 6000 in 0.1M potassium phosphate buffer (pH 6.0) in 2-3weeks as rod or needles visualized as clusters under the microscope. The molecular modelling revealed that it contains 3 beta sheets, 3 beta hairpins, 2 β-bulges, 6 strands, 3 helices, 1helix-helix interaction, 41 β-turns and 27 γ-turns. Discussion and Conclusion: The results indicate that CCPI may help to treat cancer in vivo aswell. Also, this is the first report on preliminary crystallization and structural studies of CCPI. PMID:28781485

  9. Central Exclusive Production at LHCb

    CERN Document Server

    Rachwal, Bartlomiej

    2017-01-01

    The LHCb detector, with its excellent momentum resolution and flexible trigger strategy, is ideally suited for measuring particles produced exclusively. In addition, a new system of forward shower counters has been installed upstream and downstream of the detector, and has been used to facilitate studies of Central Exclusive Production. Such measurements of integrated and differential cross-section in both Run 1 and Run 2 of the LHC, are summarised here.

  10. Young mothers, first time parenthood and exclusive breastfeeding in Kenya.

    Science.gov (United States)

    Naanyu, Violet

    2008-12-01

    Breastfeeding behaviour is explored in Kenya using data collected in the town of Eldoret, Kenya. This paper specifically examines duration of exclusive breastfeeding among young mothers below 20 years of age as compared to older cohorts. Additionally, focus is laid on the effect of first time motherhood and breastfeeding difficulties on exclusive breastfeeding. Results show that Eldoret mothers are aware of benefits of breastfeeding; nevertheless, the mean duration for exclusive breastfeeding in this sample is 2.4 months. Higher durations of exclusive breastfeeding are associated with increasing age and first time motherhood. Predictably, breastfeeding difficulties bear a negative association with exclusive breastfeeding. While HIV is transmissible through breastfeeding, breast milk remains a vital source of nourishment for infants in Sub-Saharan Africa. More research on mothering should examine the changing socio-economic milieu and its influence on women's infant feeding decisions

  11. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  12. Detection of protease and protease activity using a single nanoscrescent SERS probe

    Science.gov (United States)

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  13. Detection of protease and protease activity using a single nanocrescent SERS probe

    Science.gov (United States)

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2015-09-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  14. Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins

    Science.gov (United States)

    2013-10-01

    amplifying cascades. These include hydroxide (pH), fluoride, and nitrite. Nitrite is an indicator of many disease states, as it is a stable oxidation...6582-6598. (10) McPhalen, C. A., Schnebli, H. P., and James, M. N. (1985) Crystal and molecular structure of the inhibitor eglin from leeches in

  15. Ten Prominent Host Proteases in Plant-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Emma L. Thomas

    2018-02-01

    Full Text Available Proteases are enzymes integral to the plant immune system. Multiple aspects of defence are regulated by proteases, including the hypersensitive response, pathogen recognition, priming and peptide hormone release. These processes are regulated by unrelated proteases residing at different subcellular locations. In this review, we discuss 10 prominent plant proteases contributing to the plant immune system, highlighting the diversity of roles they perform in plant defence.

  16. Production, characterization and antioxidant potential of protease from Streptomyces sp. MAB18 using poultry wastes.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2013-01-01

    Poultry waste is an abundant renewable source for the recovery of several value-added metabolites with potential industrial applications. This study describes the production of protease on poultry waste, with the subsequent use of the same poultry waste for the extraction of antioxidants. An extracellular protease-producing strain was isolated from Cuddalore coast, India, and identified as Streptomyces sp. MAB18. Its protease was purified 17.13-fold with 21.62% yield with a specific activity of 2398.36 U/mg and the molecular weight was estimated as 43 kDa. The enzyme was optimally active at pH 8-10 and temperature 50-60 ° C and it was most stable up to pH 12 and 6-12% of NaCl concentration. The enzyme activity was reduced when treated with Hg(2+), Pb(2+), and SDS and stimulated by Fe(2+), Mg(2+), Triton X-100, DMSO (dimethyl sulfoxide), sodium sulphite, and β-mercaptoethanol. Furthermore, the antioxidant activities of protease were evaluated using in vitro antioxidant assays, such as DPPH radical-scavenging activity, O2 scavenging activity, NO scavenging activity, Fe(2+) chelating activity, and reducing power. The enzyme showed important antioxidant potential with an IC50 value of 78 ± 0.28 mg/mL. Results of the present study indicate that the poultry waste-derived protease may be useful as supplementary protein and antioxidant in the animal feed formulations.

  17. Identification of Semicarbazones, Thiosemicarbazones and Triazine Nitriles as Inhibitors of Leishmania mexicana Cysteine Protease CPB

    Science.gov (United States)

    Schröder, Jörg; Noack, Sandra; Marhöfer, Richard J.; Mottram, Jeremy C.; Coombs, Graham H.; Selzer, Paul M.

    2013-01-01

    Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas’ disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases. PMID:24146999

  18. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB.

    Directory of Open Access Journals (Sweden)

    Jörg Schröder

    Full Text Available Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas' disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.

  19. Production and partial characterization of proteases from Mucor hiemalis URM3773

    Directory of Open Access Journals (Sweden)

    Roana Cecília dos Santos Ribeiro

    2015-03-01

    Full Text Available The current study evaluated the proteases production from 11 fungal species belonging to the genera Mucor, Rhizomucor and Absidia. The species were obtained from the Collection of Cultures URM at the Mycology Department-UFPE, Brazil. The best producing species was Mucor hiemalis URM 3773 (1.689 U mL-1. Plackett-Burman design methodology was employed to select the most effective parameter for protease production out of 11 medium components, including: concentration of filtrate soybean, glucose, incubation period, yeast extract, tryptone, pH, aeration, rotation, NH4Cl, MgSO4 and K2HPO4. Filtrated soybean concentration was the significant variable over the response variable, which was the specific protease activity. The crude enzyme extract showed optimal activity in pH 7.5 and at 50ºC. The enzyme was stable within a wide pH range from 5.8 to 8.0, in the phosphate buffer 0.1M and in stable temperature variation of 40-70ºC, for 180 minutes. The ions FeSO4, NaCl, MnCl2, MgCl2 and KCl stimulated the protease activity, whereas ZnCl2 ion inhibited the activity in 2.27%. Iodoacetic acid at 1mM was the proteases inhibitor that presented greater action.The results indicate that the studied enzyme have great potential for industrial application.

  20. Characterization of two cysteine proteases secreted by Blastocystis ST7, a human intestinal parasite.

    Science.gov (United States)

    Wawrzyniak, Ivan; Texier, Catherine; Poirier, Philippe; Viscogliosi, Eric; Tan, Kevin S W; Delbac, Frédéric; El Alaoui, Hicham

    2012-09-01

    Blastocystis spp. are unicellular anaerobic intestinal parasites of both humans and animals and the most prevalent ones found in human stool samples. Their association with various gastrointestinal disorders raises the questions of its pathogenicity and of the molecular mechanisms involved. Since secreted proteases are well-known to be implicated in intestinal parasite virulence, we intended to determine whether Blastocystis spp. possess such pathogenic factors. In silico analysis of the Blastocystis subtype 7 (ST7) genome sequence highlighted 22 genes coding proteases which were predicted to be secreted. We characterized the proteolytic activities in the secretory products of Blastocystis ST7 using specific protease inhibitors. Two cysteine proteases, a cathepsin B and a legumain, were identified in the parasite culture supernatant by gelatin zymographic SDS-PAGE gel and MS/MS analysis. These proteases might act on intestinal cells and disturb gut function. This work provides serious molecular candidates to link Blastocystis spp. and intestinal disorders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization.

    Science.gov (United States)

    Novelli, Paula Kern; Barros, Margarida Maria; Fleuri, Luciana Francisco

    2016-05-01

    A comparative study was carried out for proteases production using agroindustrial residues as substrate for solid state fermentation (SSF) of several fungal strains. High protease production was observed for most of the microorganisms studied, as well as very different biochemical characteristics, including activities at specific temperatures and a wide range of pH values. The enzymes produced were very different regarding optimum pH and they showed stability at 50 °C. Aspergillus oryzae showed stability at all pH values studied. Penicillium roquefortii and Aspergillus flavipes presented optimum activity at temperatures of 50 °C and 90 °C, respectively. Lyophilized protease from A. oryzae reached 1251.60 U/g and yield of 155010.66 U/kg of substrate. Therefore, the substrate as well as the microorganism strain can modify the biochemical character of the enzyme produced. The high protease activity and stability established plus the low cost of substrates, make these fungal proteases potential alternatives for the biotechnological industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Secreted protease mediates interspecies interaction and promotes cell aggregation of the photosynthetic bacterium Chloroflexus aggregans.

    Science.gov (United States)

    Morohoshi, Sho; Matsuura, Katsumi; Haruta, Shin

    2015-01-01

    Interspecies interactions were studied in hot spring microbial mats where diverse species of bacterial cells are densely packed. The anoxygenic photosynthetic bacterium, Chloroflexus aggregans, has been widely found in the microbial mats as a major component in terrestrial hot springs in Japan at the temperature from 50 to 70°C. C. aggregans shows cellular motility to form a microbial mat-like dense cell aggregate. The aggregating ability of C. aggregans was affected by another bacterial species, strain BL55a (related to Bacillus licheniformis) isolated from the microbial mats containing C. aggregans. Cell aggregation rate of C. aggregans was promoted by the addition of culture supernatants of strain BL55a. Similar effects were also detected from other bacterial isolates, specifically Geobacillus sp. and Aeribacillus sp. Protease activity was detected from the culture supernatants from all of these isolates. The promoting effect of strain BL55a was suppressed by a serine protease inhibitor, phenylmethylsulfonyl fluoride. A purified serine protease, subtilisin obtained from B. licheniformis, showed a promoting effect on the cell aggregation. These results suggest that an extracellular protease, secreted from co-existing bacterial species promoted the aggregating motility of C. aggregans. This is the first report that exogenous protease affects bacterial cellular motility. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding.

    Directory of Open Access Journals (Sweden)

    M Estrella Santamaria

    Full Text Available C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari. The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems.

  4. Inhibitory properties of cysteine protease pro-peptides from barley confer resistance to spider mite feeding.

    Science.gov (United States)

    Santamaria, M Estrella; Arnaiz, Ana; Diaz-Mendoza, Mercedes; Martinez, Manuel; Diaz, Isabel

    2015-01-01

    C1A plant cysteine proteases are synthesized as pre-pro-enzymes that need to be processed to become active by the pro-peptide claves off from its cognate enzyme. These pro-sequences play multifunctional roles including the capacity to specifically inhibit their own as well as other C1A protease activities from diverse origin. In this study, it is analysed the potential role of C1A pro-regions from barley as regulators of cysteine proteases in target phytophagous arthropods (coleopteran and acari). The in vitro inhibitory action of these pro-sequences, purified as recombinant proteins, is demonstrated. Moreover, transgenic Arabidopsis plants expressing different fragments of HvPap-1 barley gene containing the pro-peptide sequence were generated and the acaricide function was confirmed by bioassays conducted with the two-spotted spider mite Tetranychus urticae. Feeding trials resulted in a significant reduction of leaf damage in the transgenic lines expressing the pro-peptide in comparison to non-transformed control and strongly correlated with an increase in mite mortality. Additionally, the analysis of the expression levels of a selection of potential mite targets (proteases and protease inhibitors) revealed a mite strategy to counteract the inhibitory activity produced by the C1A barley pro-prodomain. These findings demonstrate that pro-peptides can control mite pests and could be applied as defence proteins in biotechnological systems.

  5. Calpain-like: A Ca(2+) dependent cystein protease in Entamoeba histolytica cell death.

    Science.gov (United States)

    Monroy, Virginia Sánchez; Flores, Olivia Medel; García, Consuelo Gómez; Maya, Yesenia Chávez; Fernández, Tania Domínguez; Pérez Ishiwara, D Guillermo

    2015-12-01

    Entamoeba histolytica programmed cell death (PCD) induced by G418 is characterized by the release of important amounts of intracellular calcium from reservoirs. Nevertheless, no typical caspases have been detected in the parasite, the PCD phenotype is inhibited by the cysteine protease inhibitor E-64. These results strongly suggest that Ca(2+)-dependent proteases could be involved in PCD. In this study, we evaluate the expression and activity of a specific dependent Ca(2+) protease, the calpain-like protease, by real-time quantitative PCR (RTq-PCR), Western blot assays and a enzymatic method during the induction of PCD by G418. Alternatively, using cell viability and TUNEL assays, we also demonstrated that the Z-Leu-Leu-Leu-al calpain inhibitor reduced the rate of cell death. The results demonstrated 4.9-fold overexpression of calpain-like gene 1.5 h after G418 PCD induction, while calpain-like protein increased almost two-fold with respect to basal calpain-like expression after 3 h of induction, and calpain activity was found to be approximately three-fold higher 6 h after treatment compared with untreated trophozoites. Taken together, these results suggest that this Ca(2+)-dependent protease could be involved in the executory phase of PCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle.

    Science.gov (United States)

    Salazar, Ivan L; Caldeira, Margarida V; Curcio, Michele; Duarte, Carlos B

    2016-02-01

    Long-term synaptic plasticity in the hippocampus is thought to underlie the formation of certain forms of memory, including spatial memory. The early phase of long-term synaptic potentiation and synaptic depression depends on post-translational modifications of synaptic proteins, while protein synthesis is also required for the late-phase of both forms of synaptic plasticity (L-LTP and L-LTD). Numerous pieces of evidence show a role for different types of proteases in synaptic plasticity, further increasing the diversity of mechanisms involved in the regulation of the intracellular and extracellular protein content. The cleavage of extracellular proteins is coupled to changes in postsynaptic intracellular mechanisms, and additional alterations in this compartment result from the protease-mediated targeting of intracellular proteins. Both mechanisms contribute to initiate signaling cascades that drive downstream pathways coupled to synaptic plasticity. In this review we summarize the evidence pointing to a role for extracellular and intracellular proteases, with distinct specificities, in synaptic plasticity. Where in the cells the proteases are located, and how they are regulated is also discussed. The combined actions of proteases and translation mechanisms contribute to a tight control of the synaptic proteome relevant for long-term synaptic potentiation and synaptic depression in the hippocampus. Additional studies are required to elucidate the mechanisms whereby these changes in the synaptic proteome are related with plasticity phenomena.

  7. The action of neutrophil serine proteases on elastin and its precursor

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Jahreis, Günther

    2012-01-01

    This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass....... CG shows a strong preference for the charged amino acid Lys at P(1) in tropoelastin, whereas Lys was not identified at P(1) in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P(2) and P(4...

  8. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex.

    Science.gov (United States)

    Ghosh, Arun K; Brindisi, Margherita; Nyalapatla, Prasanth R; Takayama, Jun; Ella-Menye, Jean-Rene; Yashchuk, Sofiya; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2017-10-01

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025nM and antiviral IC50 of 69nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27Å resolution. These structures revealed important molecular insight into the inhibitor-HIV-1 protease interactions in the active site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enzyme-triggered Gelation: Targeting Proteases with Internal Cleavage Sites

    Science.gov (United States)

    Bremmer, Steven C.

    2014-01-01

    A generalizable method for detecting protease activity via gelation is described. A recognition sequence is used to target the protease of interest while a second protease is used to remove the residual residues from the gelator scaffold. Using this approach, selective assays for both MMP-9 and PSA are demonstrated. PMID:24394494

  10. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    The production of extracellular alkaline protease by Bacillus subtilis was studied with submerged fermentation. A new strain of Bacillus sp. was isolated from alkaline soil, which was able to produce extracellular alkaline protease. The production of alkaline protease involved the use of agricultural or animal wastes at pH 8 ...

  11. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    STORAGESEVER

    myecete proteases in the bio-organic chemistry. Like most other microbial proteases, those from .... Various aminoacids for protease production. Gelatin broth was used for studying the influence of organic matter .... Fungicidal activity of marine actinomycetes against phyotopathogenic fungi. Indian J. Biotechnol. 4: 271-276.

  12. Optimization of alkaline protease production from Bacillus subtilis ...

    African Journals Online (AJOL)

    ... maximum production of protease was registered in medium with added glucose. The effect of metals ions indicated that maximum protease production was observed in medium supplemented with magnesium chloride (MgCl). Investigating the effect of sodium chloride (NaCl) concentration on protease production revealed ...

  13. Purification of acidic protease from the cotyledons of germinating ...

    African Journals Online (AJOL)

    The positive correlation between the developments of acid, neutral and alkaline proteases (azocaseinolytic) with protein depletion suggest the involvement of these proteases in the degradation of proteins in germinating Indian bean. These proteases increased in the early stages of germination and decreased later.

  14. Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction

    Science.gov (United States)

    Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.

    1986-04-01

    A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.

  15. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba.

    Science.gov (United States)

    Moon, Eun-Kyung; Hong, Yeonchul; Chung, Dong-Il; Kong, Hyun-Hee

    2012-10-01

    Using the microarray to identify encystation mediating factors, significantly higher expression of a cysteine protease gene was observed in cysts, compared with trophozoites. Results of real-time PCR analysis also showed a magnificent increase of cysteine protease levels during encystation of Acanthamoeba. We named the gene cyst specific cysteine protease (cscp) of Acanthamoeba. The purified recombinant protein of CSCP showed activities of papain and cathepsin B against the substrates. During encystation, EGFP fused CSCP showed colocalization with LysoTracker, an autophagosome marker, in transiently transfected amoeba. Amoeba transfected with siRNA against cscp was unable to form mature cysts. Undigested mitochondria in vacuole like structures were observed in cscp siRNA treated cells by transmission electron microscopy. These results provide evidence of the important role of CSCP in autophagosomal degradation of cell constituents, particularly mitochondria, during encystation of Acanthamoeba. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Expression of sea anemone equistatin in potato: effects of plant proteases on heterologous protein production

    NARCIS (Netherlands)

    Outchkourov, N.S.; Rogelj, B.; Jongsma, M.A.

    2003-01-01

    Plants are increasingly used as production platforms of various heterologous proteins, but rapid protein turnover can seriously limit the steady-state expression level. Little is known about specific plant proteases involved in this process. In an attempt to obtain potato (Solanum tuberosum cv

  17. Studies on aerolysin and a serine protease from Aeromonas trota sp. nov.

    Science.gov (United States)

    Husslein, V; Bergbauer, H; Chakraborty, T

    1991-05-15

    Hybridization of 257 mesophilic aeromonads revealed that the aerolysin gene is present in virtually all strains irrespective of origin of isolation. A probe comprising the promotor region was specific for a species now defined as Aeromonas trota sp. nov. Finally, isolation of a serine protease that is concomitantly expressed with aerolysin is described.

  18. Ultrasensitive tumour-penetrating nanosensors of protease activity.

    Science.gov (United States)

    Kwon, Ester J; Dudani, Jaideep S; Bhatia, Sangeeta N

    2017-01-01

    The ability to identify cancer lesions with endogenous biomarkers is currently limited to tumours ~1 cm in diameter. We recently reported an exogenously administered tumour-penetrating nanosensor that sheds, in response to tumour-specific proteases, peptide fragments that can then be detected in the urine. Here, we report the optimization, informed by a pharmacokinetic mathematical model, of the surface presentation of the peptide substrates to both enhance on-target protease cleavage and minimize off-target cleavage, and of the functionalization of the nanosensors with tumour-penetrating ligands that engage active trafficking pathways to increase activation in the tumour microenvironment. The resulting nanosensor discriminated sub-5 mm lesions in human epithelial tumours and detected nodules with median diameters smaller than 2 mm in an orthotopic model of ovarian cancer. We also demonstrate enhanced receptor-dependent specificity of signal generation in the urine in an immunocompetent model of colorectal liver metastases, and in situ activation of the nanosensors in human tumour microarrays when re-engineered as fluorogenic zymography probes.

  19. A biocompatible "split luciferin" reaction and its application for non-invasive bioluminescent imaging of protease activity in living animals.

    Science.gov (United States)

    Godinat, Aurélien; Budin, Ghyslain; Morales, Alma R; Park, Hyo Min; Sanman, Laura E; Bogyo, Matthew; Yu, Allen; Stahl, Andreas; Dubikovskaya, Elena A

    2014-09-09

    The great complexity of many human pathologies, such as cancer, diabetes, and neurodegenerative diseases, requires new tools for studies of biological processes on the whole organism level. The discovery of novel biocompatible reactions has tremendously advanced our understanding of basic biology; however, no efficient tools exist for real-time non-invasive imaging of many human proteases that play very important roles in multiple human disorders. We recently reported that the "split luciferin" biocompatible reaction represents a valuable tool for evaluation of protease activity directly in living animals using bioluminescence imaging (BLI). Since BLI is the most sensitive in vivo imaging modality known to date, this method can be widely applied for the evaluation of the activity of multiple proteases, as well as identification of their new peptide-specific substrates. In this unit, we describe several applications of this "split luciferin" reaction for quantification of protease activities in test tube assays and living animals. Copyright © 2014 John Wiley & Sons, Inc.

  20. Reversing the negative psychological sequelae of exclusion: inclusion is ameliorative but not protective against the aversive consequences of exclusion.

    Science.gov (United States)

    Tang, Helen H Y; Richardson, Rick

    2013-02-01

    Social exclusion can have devastating personal, social, and clinical consequences, but several recent studies have identified factors that can reduce its aversive impact (e.g., distraction from rumination, control over a noise). In this study, we continued to explore possible strategies for reducing the aversive experiences of being excluded. Three experiments investigated whether an experience of inclusion reduced the impact of exclusion. Specifically, participants engaged in two rounds of a computer ball toss game (Cyberball) in which they were either included or excluded. Participants were told either that they played the two games with the same two sources (Experiment 1), with a different pair of sources (Experiment 2), or with people and then computer controlled sources (Experiment 3). We measured the impact of exclusion and inclusion on the psychological states of belonging, control, self esteem, meaningful existence, hurt feelings, anger, and affect. Across all three experiments, if inclusion occurred after exclusion then it was found to have an ameliorative benefit. However, if inclusion occurred before exclusion there was no protective benefit. Finally, we compared the ratings following one versus two experiences of exclusion, with no additive impact found. Taken together, the results indicate that inclusion can reduce the impact of exclusion, but only if it occurs after exclusion. Further, inclusion is ameliorative even when it is by a different group or a computer program. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. RELIGIOUS EXCLUSIVITY AND PSYCHOSOCIAL FUNCTIONING.

    Science.gov (United States)

    Gegelashvili, M; Meca, A; Schwartz, S J

    2015-01-01

    In the present study we sought to clarify links between religious exclusivity, as form of intergroup favoritism, and indices of psychosocial functioning. The study of in group favoritism has generally been invoked within Social Identity Theory and related perspectives. However, there is a lack of literature regarding religious exclusivity from the standpoint of social identity. In particular, the ways in which religious exclusivity is linked with other dimensions of religious belief and practice, and with psychosocial functioning, among individuals from different religious backgrounds are not well understood. A sample of 8545 emerging-adult students from 30 U.S. universities completed special measures. Measure of religious exclusivity was developed and validated for this group. The results suggest that exclusivity appears as predictor for impaired psychosocial functioning, low self-esteem and low psychosocial well-being for individuals from organized faiths, as well as for those identifying as agnostic, atheist, or spiritual/nonreligious. These findings are discussed in terms of Social Identity Theory and Terror Management Theory (TMT).

  2. Candidate prognostic markers in breast cancer: focus on extracellular proteases and their inhibitors

    Directory of Open Access Journals (Sweden)

    Roy DM

    2014-07-01

    Full Text Available David M Roy,1 Logan A Walsh21Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; 2Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USAAbstract: The extracellular matrix (ECM is the complex network of proteins that surrounds cells in multicellular organisms. Due to its diverse nature and composition, the ECM has a multifaceted role in both normal tissue homeostasis and pathophysiology. It provides structural support, segregates tissues from one another, and regulates intercellular communication. Furthermore, the ECM sequesters a wide range of growth factors and cytokines that may be released upon specific and well-coordinated cues. Regulation of the ECM is performed by the extracellular proteases, which are tasked with cleaving and remodeling this intricate and diverse protein matrix. Accordingly, extracellular proteases are differentially expressed in various tissue types and in many diseases such as cancer. In fact, metastatic dissemination of tumor cells requires degradation of extracellular matrices by several families of proteases, including metalloproteinases and serine proteases, among others. Extracellular proteases are emerging as strong candidate cancer biomarkers for aiding and predicting patient outcome. Not surprisingly, inhibition of these protumorigenic enzymes in animal models of metastasis has shown impressive therapeutic effects. As such, many of these proteolytic inhibitors are currently in various phases of clinical investigation. In addition to direct approaches, aberrant expression of extracellular proteases in disease states may also facilitate the selective delivery of other therapeutic or imaging agents. Herein, we outline extracellular proteases that are either bona fide or probable prognostic markers in breast cancer. Furthermore, using existing patient data and multiple robust statistical analyses, we highlight several

  3. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations.

    Science.gov (United States)

    Snelgrove, Robert J; Gregory, Lisa G; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A; Walker, Simone A; Lloyd, Clare M

    2014-09-01

    The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. IL-33 levels were quantified in wild-type and ST2(-/-) mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease-IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... Egg albumin. 45. BSA, Bovine serum albumin activity towards casein (100%) which was the control. The hydrolysis of BSA was indicated with 72% relative activity. The protease exhibited poor hydrolytic activity on gelatine with 18% relative activity (Table 2). Yossana et al. (2006) had similar finding on ...

  5. Safety aspects of HIV-protease inhibitors

    NARCIS (Netherlands)

    J.P. Dieleman (Jeanne)

    2002-01-01

    textabstractThe objectives of this thesis were to provide more insight into the risk and risk factors of adverse drug reactions associated with HIV-protease inhibitor treatment under non-experimental everyday circumstances. By recognition of risk factors, patients at risk can be identified

  6. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... paration (American Academy of Pediatrics Committee on. Nutrition, 1989), leather processing (George et al., 1995) and in weaving processing (Helmann, 1995). Proteases are complex multienzyme system which catalyses the hydrolysis of amide bond in a protein molecule hence it has been used in the ...

  7. Protease inhibitor mediated resistance to insects

    NARCIS (Netherlands)

    Outchkourov, N.S.

    2003-01-01

    Protease inhibitors (PIs) are among the defensive molecules that plants produce in order to defend themselves against herbivores. A major aim of this thesis is to develop novel insect resistance traits usingheterologous, non-plant PIs. Prerequisite for the success of the

  8. Proteases decode the extracellular matrix cryptome.

    Science.gov (United States)

    Ricard-Blum, Sylvie; Vallet, Sylvain D

    2016-03-01

    The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... optimum activity at 60°C and pH 8.0 with casein as substrate. The enzyme was .... appropriate buffers. 50 mM of buffer solutions (sodium citrate, pH .... Table 2. Hydrolysis of protein substrates by protease from Bacillus coagulans PSB-07. Substrate. Relative activity (%). Casein. 100. Gelatin. 18. BSA. 72.

  10. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... ting into small peptides and free amino acids, which can be absorbed and utilized by living cells. Due to ... in South Korea was used in isolating protease producing bacteria using skim milk agar plates ... nutrient broth supplemented with 1% casein (NBC), starch-soybean meal (SS) medium containing 2% ...

  11. HIV-1 protease-induced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Rumlová, Michaela; Křížová, Ivana; Keprová, Alena; Hadravová, Romana; Doležal, Michal; Strohalmová, Karolína; Pichová, Iva; Hájek, Miroslav; Ruml, T.

    2014-01-01

    Roč. 11, May 20 (2014), 37/1-37/15 ISSN 1742-4690 R&D Projects: GA ČR GA204/09/1388 Institutional support: RVO:61388963 Keywords : HIV protease * BCA3 * AKIP-1 * apoptosis * mitochondria Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014 http://www.retrovirology.com/content/11/1/37

  12. Lipase and protease extraction from activated sludge

    DEFF Research Database (Denmark)

    Gessesse, Amare; Dueholm, Thomas; Petersen, Steffen B.

    2003-01-01

    of gentle and efficient enzyme extraction methods from environmental samples is very important. In this study we present a method for the extraction of lipases and proteases from activated sludge using the non-ionic detergent Triton X-100, EDTA, and cation exchange resin (CER), alone or in combination...

  13. The most abundant protease inhibitor in potato tuber (Cv. Elkana) is a serine protease inhibitor from the Kunitz Family.

    NARCIS (Netherlands)

    Pouvreau, L.A.M.; Gruppen, H.; Koningsveld, van G.A.; Broek, van den L.A.M.; Voragen, A.G.J.

    2003-01-01

    The gene of the most abundant protease inhibitor in potato cv. Elkana was isolated and sequenced. The deduced amino acid sequence of this gene showed 98% identity with potato serine protease inhibitor (PSPI), a member of the Kunitz family. Therefore, the most abundant protease inhibitor was

  14. CMS results on exclusive production

    CERN Document Server

    Khakzad, Mohsen

    2016-01-01

    A search for exclusive or quasi-exclusive $\\gamma\\gamma \\rightarrow W^{+}W^{-}$ production, ${\\rm pp} \\rightarrow {\\rm p}^{(*)} W^{+}W^{-} {\\rm p}^{(*)} \\rightarrow {\\rm p}^{(*)} \\mu^{\\pm} {\\rm e}^{\\mp} {\\rm p}^{(*)}$, at $\\sqrt{s}$ = 8 TeV (7 TeV) are reported using data corresponding to an integrated luminosity of 19.7 $\\rm {fb}^{-1}$ (5.5$\\rm {fb}^{-1}$), respectively. In this study, we look for any deviations that there might be from the Standard Model, and the results are used to set limits on the Anomalous Quartic Gauge Couplings. We also report a measurement of the exclusive production of pairs of charged pions in proton-proton collisions. The differential cross sections for $\\pi^{+}\\pi^{-}$ pairs as a function of the pion pair invariant mass is measured and compared to several phenomenological predictions.

  15. Extraction and Purification of Glucoamylase and Protease Produced by Aspergillus awamori in a Single-Stage Fermentation

    Directory of Open Access Journals (Sweden)

    Suneel Gupta

    2011-01-01

    Full Text Available Simultaneous extraction and purification of glucoamylase and protease produced concomitantly by Aspergillus awamori Nakazawa MTCC 6652 in a single fermentor using solid-state fermentation (SSF has been studied. Soaking for 2 h at room temperature (around 30 °C in 10 % glycerol was found to be most suitable for optimum simultaneous extraction of glucoamylase and protease with the yield of 8645.8 U/g of glucoamylase and 798.6 U/g of protease in dry substrate. Crude extract to acetone ratio of 1:2 yielded optimum simultaneous precipitation of glucoamylase (35.3 % and protease (61.9 % with 4.06- and 7.17-fold purification, respectively. Ion exchange chromatography showed specific activities of purified fractions of 253.2 U/mg of glucoamylase and 59.7 U/mg of protease, with 22.1 and 40.8 % recovery, respectively. After gel filtration chromatography specific activity, recovery and purification of glucoamylase were found to be 306.8 U/mg, 4.6 % and 6.25-fold, respectively, whereas those of protease were 85.6 U/mg, 12.9 % and 17.0-fold, respectively. SDS-PAGE and zymogram studies of the purified enzymes indicated the presence of three starch-hydrolyzing isoforms of glucoamylase with molecular mass of approx. 109.6, 87.1, and 59.4 kDa and two types of acid protease with molecular mass of approx. 47.9 and 35.5 kDa. These findings can be very useful for enzyme industry, where glucoamylases and proteases are used concurrently.

  16. Proteases from the regenerating gut of the holothurian Eupentacta fraudatrix.

    Directory of Open Access Journals (Sweden)

    Nina E Lamash

    Full Text Available Four proteases with molecular masses of 132, 58, 53, and 47 kDa were detected in the digestive system of the holothurian Eupentacta fraudatrix. These proteases displayed the gelatinase activity and characteristics of zinc metalloproteinases. The 58 kDa protease had similar protease inhibitor sensitivity to that of mammalian matrix metalloproteinases. Zymographic assay revealed different lytic activities of all four proteases during intestine regeneration in the holothurian. The 132 kDa protease showed the highest activity at the first stage. During morphogenesis (stages 2-4 of regeneration, the highest activity was measured for the 53 and 58 kDa proteases. Inhibition of protease activity exerts a marked effect on regeneration, which was dependent on the time when 1,10-phenanthroline injections commenced. When metalloproteinases were inhibited at the second stage of regeneration, the restoration rates were decreased. However, such an effect proved to be reversible, and when inhibition ceased, the previous rate of regeneration was recovered. When protease activity is inhibited at the first stage, regeneration is completely abolished, and the animals die, suggesting that early activation of the proteases is crucial for triggering the regenerative process in holothurians. The role of the detected proteases in the regeneration processes of holothurians is discussed.

  17. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  19. New directions for protease inhibitors directed drug discovery.

    Science.gov (United States)

    Hamada, Yoshio; Kiso, Yoshiaki

    2016-11-04

    Proteases play crucial roles in various biological processes, and their activities are essential for all living organisms-from viruses to humans. Since their functions are closely associated with many pathogenic mechanisms, their inhibitors or activators are important molecular targets for developing treatments for various diseases. Here, we describe drugs/drug candidates that target proteases, such as malarial plasmepsins, β-secretase, virus proteases, and dipeptidyl peptidase-4. Previously, we reported inhibitors of aspartic proteases, such as renin, human immunodeficiency virus type 1 protease, human T-lymphotropic virus type I protease, plasmepsins, and β-secretase, as drug candidates for hypertension, adult T-cell leukaemia, human T-lymphotropic virus type I-associated myelopathy, malaria, and Alzheimer's disease. Our inhibitors are also described in this review article as examples of drugs that target proteases. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 563-579, 2016. © 2015 Wiley Periodicals, Inc.

  20. Engineered toxins "zymoxins" are activated by the HCV NS3 protease by removal of an inhibitory protein domain.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available The synthesis of inactive enzyme precursors, also known as "zymogens," serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV as a model, we designed two HCV NS3 protease-activated "zymogenized" chimeric toxins (which we denote "zymoxins". In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA and Ricin A chain (RTA, respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the "zymoxin" approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected.

  1. Facile synthesis of native and protease-resistant ubiquitylated peptides.

    Science.gov (United States)

    Weller, Caroline E; Huang, Wei; Chatterjee, Champak

    2014-06-16

    The reversible post-translational modification of eukaryotic proteins by ubiquitin regulates key cellular processes including protein degradation and gene transcription. Studies of the mechanistic roles for protein ubiquitylation require quantities of homogenously modified substrates that are typically inaccessible from natural sources or by enzymatic ubiquitylation in vitro. Therefore, we developed a facile and scalable methodology for site-specific chemical ubiquitylation. Our semisynthetic strategy utilized a temporary ligation auxiliary, 2-(aminooxy)ethanethiol, to direct ubiquitylation to specific lysine residues in peptide substrates. Mild reductive removal of the auxiliary after ligation yielded ubiquitylated peptides with the native isopeptide linkage. Alternatively, retention of the ligation auxiliary yielded protease-resistant analogues of ubiquitylated peptides. Importantly, our strategy was fully compatible with the presence of protein thiol groups, as demonstrated by the synthesis of peptides modified by the human small ubiquitin-related modifier 3 protein. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A new chymotrypsin-like serine protease involved in dietary protein digestion in a primitive animal, Scorpio maurus: purification and biochemical characterization

    Science.gov (United States)

    2011-01-01

    Background Most recent works on chymotrypsins have been focused on marine animals and insects. However, no study was reported in chelicerate. Results Scorpion chymotrypsin-like protease (SCP) was purified to homogeneity from delipidated hepatopancreases. The protease NH2-terminal sequence exhibited more than 60% monoacids identity with those of insect putative peptidases. The protease displayed no sequence homology with classical proteases. From this point of view, the protease recalls the case of the scorpion lipase which displayed no sequence homology with known lipases. The scorpion amylase purified and characterized by our time, has an amino-acids sequence similar to those of mammalian amylases. The enzyme was characterized with respect its biochemical properties: it was active on a chymotrypsin substrate and had an apparent molecular mass of 25 kDa, like the classically known chymotrypsins. The dependence of the SCP activity and stability on pH and temperature was similar to that of mammalian chymotrypsin proteases. However, the SCP displayed a lower specific activity and a boarder pH activity range (from 6 to 9). Conclusion lower animal have a less evaluated digestive organ: a hepatopancreas, whereas, higher ones possess individualized pancreas and liver. A new chymotrypsin-like protease was purified for the first time from the scorpion hepatopancreas. Its biochemical characterization showed new features as compared to classical chymotrypsin-higher-animals proteases. PMID:21777432

  3. Staphylococcal Proteases Aid in Evasion of the Human Complement System

    DEFF Research Database (Denmark)

    Jusko, Monika; Potempa, Jan; Kantyka, Tomasz

    2014-01-01

    Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the firs...... to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system. © 2013 S. Karger AG, Basel.......Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first...... lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component...

  4. Exclusive processes at Jefferson Lab

    Indian Academy of Sciences (India)

    namics, where nucleon–meson degrees of freedom are effective to perturbative QCD of quark and gluon degrees of freedom, is one of the most fundamental, challenging tasks in nuclear and particle physics. Exclusive ... There is no clear guidance from theory as to the limits of the transition region; it must instead be ...

  5. Exclusive meson production at COMPASS

    CERN Document Server

    Pochodzalla, Josef; Moinester, Murray; Piller, Gunther; Sandacz, Andrzej; Vanderhaeghen, Marc; Pochodzalla, Josef; Mankiewicz, Lech; Moinester, Murray; Piller, Gunther; Sandacz, Andrzej; Vanderhaeghen, Marc

    1999-01-01

    We explore the feasibility to study exclusive meson production (EMP) in hard muon-proton scattering at the COMPASS experiment. These measurements constrain the off-forward parton distributions (OFPD's) of the proton, which are related to the quark orbital contribution to the proton spin.

  6. Exclusive processes at Jefferson Lab

    Indian Academy of Sciences (India)

    Exclusive processes such as proton–proton elastic scattering, meson photoproduction, and deuteron photodisintegration have been pursued extensively at many laboratories over the years in the search for such a transition, particularly at Jefferson Lab in recent years, taking the advantage of the high luminosity capability of ...

  7. Social exclusion in the Netherlands

    NARCIS (Netherlands)

    Gerda Jehoel-Gijsbers

    2004-01-01

    Original title: Sociale uitsluiting. This study seeks to provide a greater insight into the situation of citizens for whom 'taking part' is a problem, in other words who are victims of social exclusion. In order to expose this problem adequately, it is first important to make clear how the

  8. University Ranking as Social Exclusion

    Science.gov (United States)

    Amsler, Sarah S.; Bolsmann, Chris

    2012-01-01

    In this article we explore the dual role of global university rankings in the creation of a new, knowledge-identified, transnational capitalist class and in facilitating new forms of social exclusion. We examine how and why the practice of ranking universities has become widely defined by national and international organisations as an important…

  9. A substrate-inspired probe monitors translocation, activation, and subcellular targeting of bacterial type III effector protease AvrPphB.

    Science.gov (United States)

    Lu, Haibin; Wang, Zheming; Shabab, Mohammed; Oeljeklaus, Julian; Verhelst, Steven H; Kaschani, Farnusch; Kaiser, Markus; Bogyo, Matthew; van der Hoorn, Renier A L

    2013-02-21

    The AvrPphB effector of Pseudomonas syringae is a papain-like protease that is injected into the host plant cell and cleaves specific kinases to disrupt immune signaling. Here, we used the unique substrate specificity of AvrPphB to generate a specific activity-based probe. This probe displays various AvrPphB isoforms in bacterial extracts, upon secretion and inside the host plant. We show that AvrPphB is secreted as a proprotease and that secretion requires the prodomain, but probably does not involve a pH-dependent unfolding mechanism. The prodomain removal is required for the ability of AvrPphB to trigger a hypersensitive cell death in resistant host plants, presumably since processing exposes a hidden acylation site required for subcellular targeting in the host cell. We detected two active isoforms of AvrPphB in planta, of which the major one localizes exclusively to membranes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa.

    Science.gov (United States)

    Coffeen, Warren C; Wolpert, Thomas J

    2004-04-01

    Victoria blight of Avena sativa (oat) is caused by the fungus Cochliobolus victoriae, which is pathogenic because of the production of the toxin victorin. The victorin-induced response in sensitive A. sativa has been characterized as a form of programmed cell death (PCD) and displays morphological and biochemical features similar to apoptosis, including chromatin condensation, DNA laddering, cell shrinkage, altered mitochondrial function, and ordered, substrate-specific proteolytic events. Victorin-induced proteolysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is shown to be prevented by caspase-specific and general protease inhibitors. Evidence is presented for a signaling cascade leading to Rubisco proteolysis that involves multiple proteases. Furthermore, two proteases that are apparently involved in the Rubisco proteolytic cascade were purified and characterized. These proteases exhibit caspase specificity and display amino acid sequences homologous to plant subtilisin-like Ser proteases. The proteases are constitutively present in an active form and are relocalized to the extracellular fluid after induction of PCD by either victorin or heat shock. The role of the enzymes as processive proteases involved in a signal cascade during the PCD response is discussed.

  11. The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    El Bakkouri, Majida; Pow, Andre; Mulichak, Anne; Cheung, Kevin L Y; Artz, Jennifer D; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F; Goodman, C Dean; McFadden, Geoffrey I; Ortega, Joaquin; Hui, Raymond; Houry, Walid A

    2010-12-03

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Nourrisson, C; Wawrzyniak, I; Cian, A; Livrelli, V; Viscogliosi, E; Delbac, F; Poirier, P

    2016-11-01

    Blastocystis spp. pathogenic potential remains unclear as these anaerobic parasitic protozoa are frequently isolated from stools of both symptomatic and asymptomatic subjects. In silico analysis of the whole genome sequence of Blastocystis subtype 7 revealed the presence of numerous proteolytic enzymes including cysteine proteases predicted to be secreted. To assess the potential impact of proteases on intestinal cells and gut function, we focused our study on two cysteine proteases, a legumain and a cathepsin B, which were previously identified in Blastocystis subtype 7 culture supernatants. Both cysteine proteases were produced as active recombinant proteins. Activation of the recombinant legumain was shown to be autocatalytic and triggered by acidic pH, whereas proteolytic activity of the recombinant cathepsin B was only recorded after co-incubation with the legumain. We then measured the diffusion of 4-kDa FITC-labelled dextran across Caco-2 cell monolayers following exposition to either Blastocystis culture supernatants or each recombinant protease. Both Blastocystis culture supernatants and recombinant activated cathepsin B induced an increase of Caco-2 cell monolayer permeability, and this effect was significantly inhibited by E-64, a specific cysteine protease inhibitor. Our results suggest that cathepsin B might play a role in pathogenesis of Blastocystis by increasing intestinal cell permeability.

  13. Isolation and characterization of a metal ion-dependent alkaline protease from a halotolerant Bacillus aquimaris VITP4.

    Science.gov (United States)

    Shivanand, Pooja; Jayaraman, Gurunathan

    2011-04-01

    A halotolerant bacterium Bacillus acquimaris VITP4 was used for the production of extracellular protease. Fractional precipitation using ammonium chloride was used to obtain the enzyme. The protease exhibited optimum activity at pH 8.0 and 40 degrees C and retained 50% of its optimal proteolytic activity even in the presence of 4 M NaCl, suggesting that it is halotolerant. The molecular mass of protease, as revealed by SDS-PAGE was found to be 34 kDa and the homogeneity of the enzyme was confirmed by gelatin zymography and reverse-phase HPLC. Upon purification, the specific activity of th enzyme increased from 533 U/mg to 1719 U/mg. Protease inhibitors like phenyl methane sulphonyl fluoride and 2-mercaptoethanol did not affect the activity of the enzyme, but EDTA inhibited the activity, indicating the requirement of metal ions for activity. Cu2, Ni2+ and Mn2+ enhanced the enzyme activity, but Zn2+, Hg2+ and Fe2+ decreased the activity, while Mg2+, Ca2+ and K+ had no effect on the enzyme activity. The protease was quite stable in the presence of cationic (CTAB), anionic (SDS) and neutral detergents (Triton X-100 and Tween-20) and exhibited antimicrobial activity against selected bacterial and fungal strains. The stability characteristics and broad spectrum antimicrobial activity indicated the potential use of this protease in industrial applications.

  14. Influence of Gag-Protease-Mediated Replication Capacity on Disease Progression in Individuals Recently Infected with HIV-1 Subtype C▿

    Science.gov (United States)

    Wright, Jaclyn K.; Novitsky, Vladimir; Brockman, Mark A.; Brumme, Zabrina L.; Brumme, Chanson J.; Carlson, Jonathan M.; Heckerman, David; Wang, Bingxia; Losina, Elena; Leshwedi, Mopo; van der Stok, Mary; Maphumulo, Lungile; Mkhwanazi, Nompumelelo; Chonco, Fundisiwe; Goulder, Philip J. R.; Essex, Max; Walker, Bruce D.; Ndung'u, Thumbi

    2011-01-01

    HLA class I-mediated selection of immune escape mutations in functionally important Gag epitopes may partly explain slower disease progression in HIV-1-infected individuals with protective HLA alleles. To investigate the impact of Gag function on disease progression, the replication capacities of viruses encoding Gag-protease from 60 individuals in early HIV-1 subtype C infection were assayed in an HIV-1-inducible green fluorescent protein reporter cell line and were correlated with subsequent disease progression. Replication capacities did not correlate with viral load set points (P = 0.37) but were significantly lower in individuals with below-median viral load set points (P = 0.03), and there was a trend of correlation between lower replication capacities and lower rates of CD4 decline (P = 0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (P = 0.04), but host HLA-B-specific polymorphisms were associated with higher viral load set points (P = 0.01). Further, polymorphisms associated with host-specific protective HLA alleles were linked with higher viral load set points (P = 0.03). These data suggest that transmission or early HLA-driven selection of Gag polymorphisms results in reduced early cytotoxic T-lymphocyte (CTL) responses and higher viral load set points. In support of the former, 46% of individuals with nonprotective alleles harbored a Gag polymorphism exclusively associated with a protective HLA allele, indicating a high rate of their transmission in sub-Saharan Africa. Overall, HIV disease progression is likely to be affected by the ability to mount effective Gag CTL responses as well as the replication capacity of the transmitted virus. PMID:21289112

  15. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly......, the disulfide bridge was replaced with amide bonds of various lengths. The novel peptides did not retain their inhibitory activity, but formed the basis for another strategy. Second, bicyclic peptides were obtained by creating head-to-tail cyclized peptides that were made bicyclic by the addition of a covalent...... bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been...

  16. A tandem Kunitz protease inhibitor (KPI106)-serine carboxypeptidase (SCP1) controls mycorrhiza establishment and arbuscule development in Medicago truncatula.

    Science.gov (United States)

    Rech, Stefanie S; Heidt, Sven; Requena, Natalia

    2013-09-01

    Plant proteases and protease inhibitors are involved in plant developmental processes including those involving interactions with microbes. Here we show that a tandem between a Kunitz protease inhibitor (KPI106) and a serine carboxypeptidase (SCP1) controls arbuscular mycorrhiza development in the root cortex of Medicago truncatula. Both proteins are only induced during mycorrhiza formation and belong to large families whose members are also mycorrhiza-specific. Furthermore, the interaction between KPI106 and SCP1 analysed using the yeast two-hybrid system is specific, indicating that each family member might have a defined counterpart. In silico docking analysis predicted a putative P1 residue in KPI106 (Lys173) that fits into the catalytic pocket of SCP1, suggesting that KPI106 might inhibit the enzyme activity by mimicking the protease substrate. In vitro mutagenesis of the Lys173 showed that this residue is important in determining the strength and specificity of the interaction. The RNA interference (RNAi) inactivation of the serine carboxypeptidase SCP1 produces aberrant mycorrhizal development with an increased number of septated hyphae and degenerate arbuscules, a phenotype also observed when overexpressing KPI106. Protease and inhibitor are both secreted as observed when expressed in Nicotiana benthamiana epidermal cells. Taken together we envisage a model in which the protease SCP1 is secreted in the apoplast where it produces a peptide signal critical for proper fungal development within the root. KPI106 also at the apoplast would modulate the spatial and/or temporal activity of SCP1 by competing with the protease substrate. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  17. The neural correlates of dealing with social exclusion in childhood.

    Science.gov (United States)

    van der Meulen, Mara; Steinbeis, Nikolaus; Achterberg, Michelle; Bilo, Elisabeth; van den Bulk, Bianca G; van IJzendoorn, Marinus H; Crone, Eveline A

    2017-08-01

    Observing social exclusion can be a distressing experience for children that can be followed by concerns for self-inclusion (self-concerns), as well as prosocial behavior to help others in distress (other-concerns). Indeed, behavioral studies have shown that observed social exclusion elicits prosocial compensating behavior in children, but motivations for the compensation of social exclusion are not well understood. To distinguish between self-concerns and other-concerns when observing social exclusion in childhood, participants (aged 7-10) played a four-player Prosocial Cyberball Game in which they could toss a ball to three other players. When one player was excluded by the two other players, the participant could compensate for this exclusion by tossing the ball more often to the excluded player. Using a three-sample replication (N = 18, N = 27, and N = 26) and meta-analysis design, we demonstrated consistent prosocial compensating behavior in children in response to observing social exclusion. On a neural level, we found activity in reward and salience related areas (striatum and dorsal anterior cingulate cortex (dACC)) when participants experienced inclusion, and activity in social perception related areas (orbitofrontal cortex) when participants experienced exclusion. In contrast, no condition specific neural effects were observed for prosocial compensating behavior. These findings suggest that in childhood observed social exclusion is associated with stronger neural activity for self-concern. This study aims to overcome some of the issues of replicability in developmental psychology and neuroscience by using a replication and meta-analysis design, showing consistent prosocial compensating behavior to the excluded player, and replicable neural correlates of experiencing exclusion and inclusion during middle childhood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    Directory of Open Access Journals (Sweden)

    Madhusudhan Budatha

    Full Text Available Mice deficient for the fibulin-5 gene (Fbln5(-/- develop pelvic organ prolapse (POP due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/- mice, herein named V1 (25 kDa. V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/- mice. PRSS3 was (a localized in epithelial secretions, (b detected in media of vaginal organ culture from both Fbln5(-/- and wild type mice, and (c cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin and Elafin] was dysregulated in Fbln5(-/- epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.

  19. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  20. Role of rhomboid proteases in bacteria.

    Science.gov (United States)

    Rather, Philip

    2013-12-01

    The first member of the rhomboid family of intramembrane serine proteases in bacteria was discovered almost 20years ago. It is now known that rhomboid proteins are widely distributed in bacteria, with some bacteria containing multiple rhomboids. At the present time, only a single rhomboid-dependent function in bacteria has been identified, which is the cleavage of TatA in Providencia stuartii. Mutational analysis has shown that loss of the GlpG rhomboid in Escherichia coli alters cefotaxime resistance, loss of the YqgP (GluP) rhomboid in Bacillus subtilis alters cell division and glucose uptake, and loss of the MSMEG_5036 and MSMEG_4904 genes in Mycobacterium smegmatis results in altered colony morphology, biofilm formation and antibiotic susceptibilities. However, the cellular substrates for these proteins have not been identified. In addition, analysis of the rhombosortases, together with their possible Gly-Gly CTERM substrates, may shed new light on the role of these proteases in bacteria. This article is part of a Special Issue entitled: Intramembrane Proteases. Published by Elsevier B.V.

  1. Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4.

    Directory of Open Access Journals (Sweden)

    Byoung-Kuk Na

    2010-10-01

    Full Text Available Multiple cysteine proteases of malaria parasites are required for maintenance of parasite metabolic homeostasis and egress from the host erythrocyte. In Plasmodium falciparum these proteases appear to mediate the processing of hemoglobin and aspartic proteases (plasmepsins in the acidic food vacuole and the hydrolysis of erythrocyte structural proteins at neutral pH. Two cysteine proteases, vivapain (VX-2 and VX-3 have been characterized in P. vivax, but comprehensive studies of P. vivax cysteine proteases remain elusive.We characterized a novel cysteine protease of P. vivax, VX-4, of which orthologs appears to have evolved differentially in primate plasmodia with strong cladistic affinity toward those of rodent Plasmodium. Recombinant VX-4 demonstrated dual substrate specificity depending on the surrounding micro-environmental pH. Its hydrolyzing activity against benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA and Z-Phe-Arg-MCA was highest at acidic pH (5.5, whereas that against Z-Arg-Arg-MCA was maximal at neutral pH (6.5-7.5. VX-4 preferred positively charged amino acids and Gln at the P1 position, with less strict specificity at P3 and P4. P2 preferences depended on pH (Leu at pH 5.5 and Arg at pH 7.5. Three amino acids that delineate the S2 pocket were substituted in VX-4 compared to VX-2 and VX-3 (Ala90, Gly157 and Glu180. Replacement of Glu180 abolished activity against Z-Arg-Arg-MCA at neutral pH, indicating the importance of this amino acid in the pH-dependent substrate preference. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. VX-4 showed maximal activity against actin at neutral pH, and that against P. vivax plasmepsin 4 and hemoglobin was detected at neutral/acidic and acidic pH, respectively.VX-4 demonstrates pH-dependent substrate switching, which might offer an efficient mechanism for the specific cleavage of different substrates in different intracellular

  2. Gender, Marginalisation and Social Exclusion

    DEFF Research Database (Denmark)

    D. Munk, Martin

    The paper is focused on the fact that marginalisation and social exclusion are gender-related in the EU. Even when boys and girls experience the same kinds of strain and social inheritance, they react socially different. Likewise women and men are marginalised in different ways. The differing acc...... access to the five ressources: cultural, financial, mental, social and powerrelated resources is highlighted. It is demonstrated how gender involves living in different realities, and requires different solutions to create equal possibilities.......The paper is focused on the fact that marginalisation and social exclusion are gender-related in the EU. Even when boys and girls experience the same kinds of strain and social inheritance, they react socially different. Likewise women and men are marginalised in different ways. The differing...

  3. Intrapersonal and interpersonal processes of social exclusion.

    Science.gov (United States)

    Kawamoto, Taishi; Ura, Mitsuhiro; Nittono, Hiroshi

    2015-01-01

    People have a fundamental need to belong with others. Social exclusion impairs this need and has various effects on cognition, affect, and the behavior of excluded individuals. We have previously reported that activity in the dorsal anterior cingulate cortex (dACC) and right ventrolateral prefrontal cortex (rVLPFC) could be a neurocognitive index of social exclusion (Kawamoto et al., 2012). In this article, we provide an integrative framework for understanding occurrences during and after social exclusion, by reviewing neuroimaging, electrophysiological, and behavioral studies of dACC and rVLPFC, within the framework of intrapersonal and interpersonal processes of social exclusion. As a result, we have indicated directions for future studies to further clarify the phenomenon of social exclusion from the following perspectives: (1) constructional elements of social exclusion, (2) detection sensitivity and interpretation bias in social exclusion, (3) development of new methods to assess the reactivity to social exclusion, and (4) sources of social exclusion.

  4. Human ClpP protease

    DEFF Research Database (Denmark)

    Bross, P; Andresen, B S; Knudsen, I

    1995-01-01

    We identified three overlapping human expressed sequence tags with significant homology to the E. coli ClpP amino sequence by screening the EMBL nucleotide database. With this sequence information we applied 5' and 3'-rapid amplification of cDNA ends (RACE) to amplify and sequence human clpP c......DNA in two overlapping fragments. The open reading frame encodes a 277 amino acid long precursor polypeptide. Two ClpP specific motifs surrounding the active site residues are present and extensive homology to ClpP's from other organisms was observed. Northern blotting showed high relative expression levels...... of clpP mRNA in skeletal muscle, intermediate levels in heart, liver and pancreas, and low levels in brain, placenta, lung and kidney. By analysis of human/rodent cell hybrids the human clpP gene was assigned to chromosome 19....

  5. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors

    Science.gov (United States)

    Smith, Robert A.; Gottlieb, Geoffrey S.

    2015-01-01

    ABSTRACT Protease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9 molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2′ pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2. IMPORTANCE Proteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine

  6. Evaluating the role of a trypsin inhibitor from soap nut (Sapindus trifoliatus L. Var. Emarginatus) seeds against larval gut proteases, its purification and characterization.

    Science.gov (United States)

    Gandreddi, V D Sirisha; Kappala, Vijaya Rachel; Zaveri, Kunal; Patnala, Kiranmayi

    2015-10-22

    The defensive capacities of plant protease Inhibitors (PI) rely on inhibition of proteases in insect guts or those secreted by microorganisms; and also prevent uncontrolled proteolysis and offer protection against proteolytic enzymes of pathogens. An array of chromatographic techniques were employed for purification, homogeneity was assessed by electrophoresis. Specificity, Ki value, nature of inhibition, complex formation was carried out by standard protocols. Action of SNTI on insect gut proteases was computationally evaluated by modeling the proteins by threading and docking studies by piper using Schrodinger tools. We have isolated and purified Soap Nut Trypsin Inhibitor (SNTI) by acetone fractionation, ammonium sulphate precipitation, ion exchange and gel permeation chromatography. The purified inhibitor was homogeneous by both gel filtration and polyacrylamide gel electrophoresis (PAGE). SNTI exhibited a molecular weight of 29 kDa on SDS-PAGE, gel filtration and was negative to Periodic Acid Schiff's stain. SNTI inhibited trypsin and pronase of serine class. SNTI demonstrated non-competitive inhibition with a Ki value of 0.75 ± 0.05×10-10 M. The monoheaded inhibitor formed a stable complex in 1:1 molar ratio. Action of SNTI was computationally evaluated on larval gut proteases from Helicoverpa armigera and Spodoptera frugiperda. SNTI and larval gut proteases were modeled and docked using Schrodinger software. Docking studies revealed strong hydrogen bond interactions between Lys10 and Pro71, Lys299 and Met80 and Van Der Waals interactions between Leu11 and Cys76amino acid residues of SNTI and protease from H. Armigera. Strong hydrogen bonds were observed between SNTI and protease of S. frugiperda at positions Thr79 and Arg80, Asp90 and Gly73, Asp2 and Gly160 respectively. We conclude that SNTI potentially inhibits larval gut proteases of insects and the kinetics exhibited by the protease inhibitor further substantiates its efficacy against serine

  7. Advances in non-peptidomimetic HIV protease inhibitors.

    Science.gov (United States)

    Pang, X; Liu, Z; Zhai, G

    2014-06-01

    HIV protease plays a crucial role in the viral life cycle. It can cleave a series of heptamers in the viral Gag and GagPol precursor proteins to generate mature infectious virus particles. Successful inhibition of the protease will prevent this maturation step and hence block the spreading of HIV. However, the rapid emergence of drug resistance makes it urgent to develop new HIV protease inhibitors to combat the global disease. Besides, poor oral bioavailability, unacceptable side effects, high treatment cost and pill burden also trouble the application of HIV protease inhibitors. In such situations, non-peptidomimetic HIV protease inhibitors have drawn an increasing interest as a potential therapeutic option due to their small molecular weight, favorable bioavailability, high stability in vivo, low resistance and cost of production. In this review, we present the recent advances in non-peptidomimetic HIV protease inhibitors. Their design strategies, biological activities, resistance profiles, as well as clinical application will also be discussed.

  8. A look inside HIV resistance through retroviral protease interaction maps.

    Directory of Open Access Journals (Sweden)

    Aleksejs Kontijevskis

    2007-03-01

    Full Text Available Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular-chemical mechanisms involved in substrate cleavage by retroviral proteases.

  9. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes.

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2014-08-01

    Full Text Available Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a

  10. Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir.

    Science.gov (United States)

    Kuhnert, Maren; Steuber, Holger; Diederich, Wibke E

    2014-07-24

    HTLV-1 protease (HTLV-1 PR) is an aspartic protease which represents a promising drug target for the discovery of novel anti-HTLV-1 drugs. The X-ray structure of HTLV-1 PR in complex with the well-known and approved HIV-1 PR inhibitor Indinavir was determined at 2.40 Å resolution. In this contribution, we describe the first crystal structure in complex with a nonpeptidic inhibitor that accounts for rationalizing the rather moderate affinity of Indinavir against HTLV-1 PR and provides the basis for further structure-guided optimization strategies.

  11. Engineering a temperature sensitive tobacco etch virus protease.

    Science.gov (United States)

    Wong, J; Chen, X; Truong, K

    2017-10-01

    Since tobacco etch virus protease (TEVp) has a high specificity and efficiency in cleaving its target substrates, many groups have attempted to engineer conditional control of its activity. Temperature induction is widely used for modulating gene function because it has fast temporal response, good penetrability and applicability to many model organisms. Here, we engineered a temperature sensitive TEVp (tsTEVp) by using N-terminal truncations to TEVp that achieved efficient proteolysis on a timescale of 4 h after 30°C induction, while remaining relatively inactive at 37°C. As demonstration, tsTEVp was used to generate temperature-induced biological responses for protein translocation, protein degradation and Ca2+-mediated cellular blebbing. Lastly, tsTEVp and their engineered target substrates could find applications in engineered synthetic biological systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Preliminary characterisation of extracellular serine proteases of Dermatophilus congolensis isolates from cattle, sheep and horses.

    Science.gov (United States)

    Ambrose, N C; Mijinyawa, M S; Hermoso de Mendoza, J

    1998-08-15

    Dermatophilus congolensis is a filamentous branching actinomycete that causes dermatophilosis, an exudative dermatitis in ruminants. The pathogenesis of this disease is poorly understood and virulence factors of D. congolensis have not been characterised. Culture filtrate (CF) of 14 D. congolensis isolates from cattle, 15 from sheep and four from horses were examined for proteolytic activity using azocasein as a non-specific substrate. The isolates were from a variety of geographical locations. All the isolates examined produced extracellular proteolytic activity. CF from 24 and 48 h cultures and from first and third passages contained proteases. Proteolytic activity was greatest in neutral to alkaline pH (pH 7-10). CF of bovine isolates contained more proteolytic activity than that of ovine isolates. Furthermore, in substrate SDS-PAGE gels containing azocasein the number of proteolytic bands and their molecular weights in CF of bovine, ovine and equine isolates were different, giving distinctive band patterns for isolates from each host species. Three out of four bovine isolates from Antigua gave a fourth band pattern. Bands of equivalent molecular weights to the proteases could not be identified in silver stained SDS-PAGE gels of CF. Serine protease inhibitors had a concentration-dependent inhibitory effect on proteolytic activity in CF and inhibited activity of all proteolytic bands in substrate gels. With the exception of EDTA which had a variable-enhancing effect on activity, inhibitors of other classes of protease had no effect on activity. We conclude that D. congolensis produces a number of extracellular alkaline serine proteases, our results suggest the presence of host-specific variation between isolates and to a lesser extent between isolates from the same host species.

  13. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    Science.gov (United States)

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  14. Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases.

    Science.gov (United States)

    Shivaprasad, H V; Rajesh, R; Nanda, B L; Dharmappa, K K; Vishwanath, B S

    2009-05-04

    To validate the scientific basis of plant latex to stop bleeding on fresh cuts. Cysteine protease(s) from Asclepias curassavica (Asclepiadaceae) plant latex was assessed for pro-coagulant and thrombin like activities. A waxy material from the latex of Asclepias curassavica latex was removed by freezing and thawing. The resulted latex enzyme fraction was assayed for proteolytic activity using denatured casein as substrate. Its coagulant activity and thrombin like activity were determined using citrated plasma and pure fibrinogen, respectively. Inhibition studies were performed using specific protease inhibitors to know the type of protease. The latex enzyme fraction exhibited strong proteolytic activity when compared to trypsin and exerted pro-coagulant action by reducing plasma clotting time from 195 to 58 s whereas trypsin reduced clotting time marginally from 195 to 155 s. The pro-coagulant activity of this enzyme fraction was exerted by selectively hydrolyzing A alpha and B beta subunits of fibrinogen to form fibrin clot when pure fibrinogen was used as substrate as assessed by fibrinogen-agarose plate method and fibrinogen polymerization assay. Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of thrombin-induced fibrin clot and mimic thrombin like action. The proteolytic activity including thrombin like activity of Asclepias curassavica latex enzyme fraction was completely inhibited by iodoaceticacid (IAA). Cysteine proteases from Asclepias curassavica latex exhibited strong pro-coagulant action and were found to be specific in its action (Thrombin like). This could be the basis for the use of plant latex in pharmacological applications that justify their use as folk medicine.

  15. Economic Methods of Ginger Protease'sextraction and Purification

    Science.gov (United States)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  16. Extracellular protease from the antarctic yeast Candida humicola.

    OpenAIRE

    Ray, M K; Devi, K U; Kumar, G S; Shivaji, S

    1992-01-01

    The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulf...

  17. Protease production by Streptococcus sanguis associated with subacute bacterial endocarditis.

    OpenAIRE

    Straus, D. C.

    1982-01-01

    A viridans streptococcus (Streptococcus sanguis biotype II) isolated from the blood of a patient with subacute bacterial endocarditis was examined for protease production. In broth culture, extracellular proteolytic enzymes were not produced by this organism until after the early exponential phase of growth, with maximal protease production occurring during the stationary phase. Four distinct proteases were isolated and purified from the supernatant fluids of stationary-phase cultures, employ...

  18. PROTEOLYTIC PROCESSING OF VON WILLEBRAND FACTOR BY ADAMTS13 AND LEUKOCYTE PROTEASES

    Directory of Open Access Journals (Sweden)

    Stefano Lancellotti

    2013-09-01

    Full Text Available ADAMTS13 is a 190 kDa zinc protease encoded by a gene located on chromosome 9q34.   This protease specifically hydrolyzes von Willebrand factor (VWF multimers, thus causing VWF size reduction. ADAMTS13 belongs to the A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS family, involved in proteolytic processing of many matrix proteins. ADAMTS13 consists of numerous domains including a metalloprotease domain, a disintegrin domain, several thrombospondin type 1 (TSP1 repeats, a cysteine-rich domain, a spacer domain and 2 CUB (Complement c1r/c1s, sea Urchin epidermal growth factor, and Bone morphogenetic protein domains. ADAMTS13 cleaves a single peptide bond (Tyr1605-Met1606 in the central A2 domain of the VWF molecule. This proteolytic cleavage is essential to reduce the size of ultra-large VWF polymers, which, when exposed to high shear stress in the microcirculation, are prone to form with platelets clumps, which cause severe syndromes called thrombotic microangiopathies (TMAs. In this review, we a discuss the current knowledge of structure-function aspects of ADAMTS13 and its involvement in the pathogenesis of TMAs, b address the recent findings concerning proteolytic processing of VWF multimers by different proteases, such as the leukocyte-derived serine and metallo-proteases and c indicate the direction of future investigations

  19. Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques.

    Science.gov (United States)

    Piddocke, Maya P; Fazio, Alessandro; Vongsangnak, Wanwipa; Wong, Man L; Heldt-Hansen, Hans P; Workman, Chris; Nielsen, Jens; Olsson, Lisbeth

    2011-04-23

    Addition of sugar syrups to the basic wort is a popular technique to achieve higher gravity in beer fermentations, but it results in dilution of the free amino nitrogen (FAN) content in the medium. The multicomponent protease enzyme Flavourzyme has beneficial effect on the brewer's yeast fermentation performance during high gravity fermentations as it increases the initial FAN value and results in higher FAN uptake, higher specific growth rate, higher ethanol yield and improved flavour profile. In the present study, transcriptome and metabolome analysis were used to elucidate the effect on the addition of the multicomponent protease enzyme Flavourzyme and its influence on the metabolism of the brewer's yeast strain Weihenstephan 34/70. The study underlines the importance of sufficient nitrogen availability during the course of beer fermentation. The applied metabolome and transcriptome analysis allowed mapping the effect of the wort sugar composition on the nitrogen uptake. Both the transcriptome and the metabolome analysis revealed that there is a significantly higher impact of protease addition for maltose syrup supplemented fermentations, while addition of glucose syrup to increase the gravity in the wort resulted in increased glucose repression that lead to inhibition of amino acid uptake and hereby inhibited the effect of the protease addition. © 2011 Piddocke et al; licensee BioMed Central Ltd.

  20. Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using "-omics" techniques

    Directory of Open Access Journals (Sweden)

    Workman Chris

    2011-04-01

    Full Text Available Abstract Background Addition of sugar syrups to the basic wort is a popular technique to achieve higher gravity in beer fermentations, but it results in dilution of the free amino nitrogen (FAN content in the medium. The multicomponent protease enzyme Flavourzyme has beneficial effect on the brewer's yeast fermentation performance during high gravity fermentations as it increases the initial FAN value and results in higher FAN uptake, higher specific growth rate, higher ethanol yield and improved flavour profile. Results In the present study, transcriptome and metabolome analysis were used to elucidate the effect on the addition of the multicomponent protease enzyme Flavourzyme and its influence on the metabolism of the brewer's yeast strain Weihenstephan 34/70. The study underlines the importance of sufficient nitrogen availability during the course of beer fermentation. The applied metabolome and transcriptome analysis allowed mapping the effect of the wort sugar composition on the nitrogen uptake. Conclusion Both the transcriptome and the metabolome analysis revealed that there is a significantly higher impact of protease addition for maltose syrup supplemented fermentations, while addition of glucose syrup to increase the gravity in the wort resulted in increased glucose repression that lead to inhibition of amino acid uptake and hereby inhibited the effect of the protease addition.

  1. Infected cell killing by HIV-1 protease promotes NF-kappaB dependent HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Gary D Bren

    2008-05-01

    Full Text Available Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1 NF-kappaB activation, (2 caspase 8 dependent apoptosis, and that (3 caspase 8 directly activates NF-kappaB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-kappaB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-kappaB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-kappaB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-kappaB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1.

  2. Pharmacophore anchor models of flaviviral NS3 proteases lead to drug repurposing for DENV infection.

    Science.gov (United States)

    Pathak, Nikhil; Lai, Mei-Ling; Chen, Wen-Yu; Hsieh, Betty-Wu; Yu, Guann-Yi; Yang, Jinn-Moon

    2017-12-28

    Viruses of the flaviviridae family are responsible for some of the major infectious viral diseases around the world and there is an urgent need for drug development for these diseases. Most of the virtual screening methods in flaviviral drug discovery suffer from a low hit rate, strain-specific efficacy differences, and susceptibility to resistance. It is because they often fail to capture the key pharmacological features of the target active site critical for protein function inhibition. So in our current work, for the flaviviral NS3 protease, we summarized the pharmacophore features at the protease active site as anchors (subsite-moiety interactions). For each of the four flaviviral NS3 proteases (i.e., HCV, DENV, WNV, and JEV), the anchors were obtained and summarized into 'Pharmacophore anchor (PA) models'. To capture the conserved pharmacophore anchors across these proteases, were merged the four PA models. We identified five consensus core anchors (CEH1, CH3, CH7, CV1, CV3) in all PA models, represented as the "Core pharmacophore anchor (CPA) model" and also identified specific anchors unique to the PA models. Our PA/CPA models complied with 89 known NS3 protease inhibitors. Furthermore, we proposed an integrated anchor-based screening method using the anchors from our models for discovering inhibitors. This method was applied on the DENV NS3 protease to screen FDA drugs discovering boceprevir, telaprevir and asunaprevir as promising anti-DENV candidates. Experimental testing against DV2-NGC virus by in-vitro plaque assays showed that asunaprevir and telaprevir inhibited viral replication with EC50 values of 10.4 μM & 24.5 μM respectively. The structure-anchor-activity relationships (SAAR) showed that our PA/CPA model anchors explained the observed in-vitro activities of the candidates. Also, we observed that the CEH1 anchor engagement was critical for the activities of telaprevir and asunaprevir while the extent of inhibitor anchor occupation guided

  3. Social exclusion impairs distractor suppression but not target enhancement in selective attention.

    Science.gov (United States)

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong

    2017-11-01

    Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.

  4. A novel 8.7 kDa protease inhibitor from chan seeds (Hyptis suaveolens L.) inhibits proteases from the larger grain borer Prostephanus truncatus (Coleoptera: Bostrichidae).

    Science.gov (United States)

    Aguirre, Cesar; Valdés-Rodríguez, Silvia; Mendoza-Hernández, Guillermo; Rojo-Domínguez, Arturo; Blanco-Labra, Alejandro

    2004-05-01

    A novel trypsin inhibitor purified from chan seeds (Hyptis suaveolens, Lamiaceae) was purified and characterized. Its apparent molecular mass was 8700 Da with an isoelectric point of 3.4. Its N-terminal sequence showed a high content of acidic amino acids (seven out of 18 residues). Its inhibitory activity was potent toward all trypsin-like proteases extracted from the gut of the insect Prostephanus truncatus (Coleoptera: Bostrichidae), a very important pest of maize. This activity was highly specific, because among proteases from seven different insects, only those from P. truncatus and Manduca sexta (Lepidoptera: Sphingidae) were inhibited. This inhibitor has potential to enhance the defense mechanism of maize against the attack of P. truncatus.

  5. Effect of Gastrointestinal Protease Digestion on Bioactivity of Marine Peptides

    DEFF Research Database (Denmark)

    Jensen, Ida-Johanne; Andersen, Lisa Lystbæk; Ossum, Carlo Gunnar

    2014-01-01

    executed without concerning subsequent digestion after intake and the aim of this work was hence to investigate how the in vitro antioxidative, antihypertensive and caspase activating activities of peptides are affected by digestion with gastrointestinal (GI) proteases. Five different fish protein...... of the peptides obtained by hydrolysis. The antihypertensive effect increased in all samples after digestion with GI proteases whereas the antioxidative capacity decreased. The effect on the caspase activity depended on the proteases used in the preparation of hydrolysates. In conclusion, the caspase activity...... and antihypertensive activity are maintained during digestion with GI proteases, while the antioxidative capacity seems to be reduced....

  6. Structural and functional diversities in lepidopteran serine proteases

    National Research Council Canada - National Science Library

    Srinivasan, Ajay; Giri, Ashok P; Gupta, Vidya S

    2006-01-01

    .... Though the evolutionary significance of mutations that lead to structural diversity in serine proteases has been well characterized, detailing the resultant functional diversity has continually posed...

  7. Hordeum vulgare cysteine protease heterologous expressed in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    During germination of barley seeds, the mobilization of protein is essential and Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins [1]. Cysteine proteases exist as pro-enzyme until activated through reduction...... of the active site cysteines and via removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. One of the key cysteine proteases in Barley...

  8. Role of Protease-Inhibitors in Ocular Diseases

    Directory of Open Access Journals (Sweden)

    Nicola Pescosolido

    2014-12-01

    Full Text Available It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI, metalloproteinase inhibitor (TIMP, maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI, and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models.

  9. Characterization of Fibrinolytic Proteases from Gloydius blomhoffii siniticus Venom

    Directory of Open Access Journals (Sweden)

    Suk Ho Choi

    2011-09-01

    Full Text Available Objectives : This study was undertaken to identify fibrinolytic proteases from Gloydius blomhoffii siniticus venom and to characterize a major fibrinolytic protease purified from the venom. Methods: The venom was subjected to chromatography using columns of Q-Sepharose and Sephadex G-75. The molecular weights of fibrinolytic proteases showing fibrinolytic zone in fibrin plate assay were determined in SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis The effects of inhibitors and metal ions on fibrinolytic protease and the proteolysis patterns of fibrinogen, gelatin, and bovine serum albumin were investigated. Results : 1 The fibrinolytic fractions of the three peaks isolated from Gloydius blomhoffii siniticus venom contained two polypeptides of 46 and 59 kDa and three polypeptides of 32, 18, and 15 kDa and a major polypeptide of 54 kDa, respectively. 2 The fibrinolytic activity of the purified protease of 54 kDA was inhibited by metal chelators, such as EDTA, EGTA, and 1,10-phenanthroline, and disulfhydryl-reducing compounds, such as dithiothreitol and cysteine. 3 Calcium chloride promoted the fibrinolytic activity of the protease, but mercuric chloride and cobalt(II chloride inhibited it. 4 The fibrinolytic protease cleaved preferentially A-chain and slowly B-chain of fibrinogen. It also hydrolyzed gelatin but not bovine serum albumin. Conclusions: The Gloydius blomhoffii siniticus venom contained more than three fibrinolytic proteases. The major fibrinolytic protease was a metalloprotease which hydrolyzed both fibrinogen and gelatin, but not bovine serum albumin.

  10. Human seminal proteinase and prostate-specific antigen are the ...

    Indian Academy of Sciences (India)

    SEARCH U

    Lilja H 1985 A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein; J. Clin. Invest. 76 1899–1903. Lovgren J, Airas K and Lilja H 1999 Enzymatic action of human glandular kallikrein 2 (hK2). Substrate specificity and regulation by Zn2+ and extracellular protease inhibitors; Eur.

  11. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  12. Tartrazine exclusion for allergic asthma.

    Science.gov (United States)

    Ardern, K D; Ram, F S

    2001-01-01

    Tartrazine is the best known and one of the most commonly used food additives. Food colorants are also used in many medications as well as foods. There has been conflicting evidence as to whether tartrazine causes exacerbations of asthma with some studies finding a positive association especially in individuals with cross-sensitivity to aspirin. To assess the overall effect of tartrazine (exclusion or challenge) in the management of asthma. A search was carried out using the Cochrane Airways Group specialised register. Bibliographies of each RCT was searched for additional papers. Authors of identified RCTs were contacted for further information for their trials and details of other studies. RCTs of oral administration of tartrazine (as a challenge) versus placebo or dietary avoidance of tartrazine versus normal diet were considered. Studies which focused upon allergic asthma, were also included. Studies of tartrazine exclusion for other allergic conditions such as hay fever, allergic rhinitis and eczema were only considered if the results for subjects with asthma were separately identified. Trials could be in either adults or children with asthma or allergic asthma (e.g. sensitivity to aspirin or food items known to contain tartrazine). Study quality was assessed and data abstracted by two reviewers independently. Outcomes were analysed using RevMan 4.1.1. Ninety abstracts were found, of which 18 were potentially relevant. Six met the inclusion criteria, but only three presented results in a format that permitted analysis and none could be combined in a meta-analysis. In none of the studies did tartrazine challenge or avoidance in diet significantly alter asthma outcomes. Due to the paucity of available evidence, it is not possible to provide firm conclusions as to the effects of tartrazine on asthma control. However, the six RCTs that could be included in this review all arrived at the same conclusion. Routine tartrazine exclusion may not benefit most patients

  13. Exclusion Bounds for Extended Anyons

    Science.gov (United States)

    Larson, Simon; Lundholm, Douglas

    2017-08-01

    We introduce a rigorous approach to the many-body spectral theory of extended anyons, that is quantum particles confined to two dimensions that interact via attached magnetic fluxes of finite extent. Our main results are many-body magnetic Hardy inequalities and local exclusion principles for these particles, leading to estimates for the ground-state energy of the anyon gas over the full range of the parameters. This brings out further non-trivial aspects in the dependence on the anyonic statistics parameter, and also gives improvements in the ideal (non-extended) case.

  14. Protease-sensitive, polymer-caged liposomes: a method for making highly targeted liposomes using triggered release.

    Science.gov (United States)

    Basel, Matthew T; Shrestha, Tej B; Troyer, Deryl L; Bossmann, Stefan H

    2011-03-22

    Liposomes have become useful and well-known drug delivery vehicles because of their ability to entrap drugs without chemically modifying them and to deliver them somewhat selectively to tumorous tissue via the enhanced permeation and retention (EPR) effect. Although useful, liposome preparations are still less than ideal because of imperfect specificity, slow release kinetics in the tumor, and leakiness prior to reaching the tumor site. Cancer-associated proteases (CAPs), which are differentially expressed in tumors, have also gained traction recently as a method for tumor targeting and drug delivery. By combining the EPR effect with CAPs sensitivity, a much more specific liposome can be produced. The method described here creates an improved liposome system that can target more specifically, with faster release kinetics and lower general leaking, by deliberately producing a very unstable liposome (loaded with hyperosmotic vehicle) that is subsequently stabilized by a cross-linked polymer shell containing consensus sequences for cancer-associated proteases (protease-triggered, caged liposomes). A cholesterol-anchored, graft copolymer, composed of a short peptide sequence for urokinase plasminogen activator (uPA) and poly(acrylic acid), was synthesized and incorporated into liposomes prepared at high osmolarities. Upon cross-linking of the polymers, the protease-triggered, caged liposomes showed significant resistance to osmotic swelling and leaking of contents. Protease-triggered, caged liposomes also showed significant and substantial differential release of contents in the presence of uPA, while bare liposomes showed no differential effect in the presence of uPA. Thus a protease-sensitive liposome system with fast release kinetics was developed that could be used for more specific targeting to tumors.

  15. Midgut cysteine protease-inhibiting activity in Trichoplusia ni protects the peritrophic membrane from degradation by plant cysteine proteases.

    Science.gov (United States)

    Li, Changyou; Song, Xiaozhao; Li, Guoxun; Wang, Ping

    2009-10-01

    The action of plant cysteine proteases on the midgut peritrophic membrane (PM) of a polyphagous herbivorous lepidopteran, Trichoplusia ni, was studied. Proteins in PMs isolated from T. ni larvae were confirmed to be highly resistant to the serine proteinases trypsin and chymotrypsin, but were susceptible to degradation by plant cysteine proteases, which is consistent with the known molecular and biochemical characteristics of the T. ni PM proteins. However, the PM proteins were not degraded by plant cysteine proteases in larvae or in the presence of larval midgut fluid in vitro. With further biochemical analysis, cysteine protease-inhibiting activity was identified in the midgut fluid of T. ni larvae. The cysteine protease-inhibiting activity was heat resistant and active in the tested pH range from 6.0 to 10.0, but could be suppressed by thiol reducing reagents or reduced by treatment with catalase. In addition to T. ni, cysteine protease-inhibiting activity was also identified from two other polyphagous Lepidoptera species, Helicoverpa zea and Heliothis virescens. In conclusion, results from this study uncovered that herbivorous insects may counteract the attack of plant cysteine proteases on the PM by inhibiting the potentially insecticidal cysteine proteases from plants in the digestive tract. However, the biochemical identity of the cysteine protease-inhibiting activity in midgut fluid has yet to be identified.

  16. Proteome profiling reveals tissue-specific protein expression in male and female accessory glands of the silkworm, Bombyx mori.

    Science.gov (United States)

    Dong, Zhaoming; Wang, Xiaohuan; Zhang, Yan; Zhang, Liping; Chen, Quanmei; Zhang, Xiaolu; Zhao, Ping; Xia, Qingyou

    2016-05-01

    Male accessory gland (MAG) and female accessory gland (FAG) of the reproductive system are, respectively, responsible for producing seminal proteins and adhesive proteins during copulation and ovulation. Seminal proteins are ejaculated to female along with sperms, whereas adhesive proteins are excreted along with eggs. Proteins from the male and female reproductive organs are usually indicative of rapid adaptive evolution. Understanding the reproductive isolation and species divergence requires identifying reproduction-related proteins from many different species. Here, we present our proteomic analyses of male and female accessory glands of the silkworm, Bombyx mori. Using LC/MS-MS, we identified 2133 MAG proteins and 1872 FAG proteins. In total, 652 proteins were significant more abundant in the MAG than in the FAG, including growth factors, odorant-binding proteins, enzymes, and proteins of unknown function. Growth factors and odorant-binding proteins are potential signaling molecules, whereas most of proteins of unknown function were found to be Lepidoptera-specific proteins with high evolutionary rates. Microarray experiments and semi-quantitative RT-PCR validated that MAG-specific proteins were expressed exclusively in male moths. Totally, 192 proteins were considered as FAG-specific proteins, including protease inhibitors, enzymes, and other proteins. Protease inhibitors were found to be the most abundant FAG-specific proteins, which may protect eggs from infection by inhibiting pathogen-derived proteases. These results provide comprehensive insights into copulation and oviposition. Moreover, the newly identified Lepidoptera-specific MAG proteins provide useful data for future research on the evolution of reproductive proteins in insects.

  17. Rigidity analysis of HIV-1 protease

    Science.gov (United States)

    Heal, J. W.; Wells, S. A.; Jimenez-Roldan, E.; Freedman, R. F.; Römer, R. A.

    2011-03-01

    We present a rigidity analysis on a large number of X-ray crystal structures of the enzyme HIV-1 protease using the 'pebble game' algorithm of the software FIRST. We find that although the rigidity profile remains similar across a comprehensive set of high resolution structures, the profile changes significantly in the presence of an inhibitor. Our study shows that the action of the inhibitors is to restrict the flexibility of the β-hairpin flaps which allow access to the active site. The results are discussed in the context of full molecular dynamics simulations as well as data from NMR experiments.

  18. Protease sensing using nontoxic silicon quantum dots

    Science.gov (United States)

    Cheng, Xiaoyu; McVey, Benjamin F. P.; Robinson, Andrew B.; Longatte, Guillaume; O'Mara, Peter B.; Tan, Vincent T. G.; Thordarson, Pall; Tilley, Richard D.; Gaus, Katharina; Justin Gooding, John

    2017-08-01

    Herein is presented a proof-of-concept study of protease sensing that combines nontoxic silicon quantum dots (SiQDs) with Förster resonance energy transfer (FRET). The SiQDs serve as the donor and an organic dye as the acceptor. The dye is covalently attached to the SiQDs using a peptide linker. Enzymatic cleavage of the peptide leads to changes in FRET efficiency. The combination of interfacial design and optical imaging presented in this work opens opportunities for use of nontoxic SiQDs relevant to intracellular sensing and imaging.

  19. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    Science.gov (United States)

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer.

    Science.gov (United States)

    Srihari, Sriganesh; Singla, Jitin; Wong, Limsoon; Ragan, Mark A

    2015-10-01

    Synthetic lethality (SL) refers to the genetic interaction between two or more genes where only their co-alteration (e.g. by mutations, amplifications or deletions) results in cell death. In recent years, SL has emerged as an attractive therapeutic strategy against cancer: by targeting the SL partners of altered genes in cancer cells, these cells can be selectively killed while sparing the normal cells. Consequently, a number of studies have attempted prediction of SL interactions in human, a majority by extrapolating SL interactions inferred through large-scale screens in model organisms. However, these predicted SL interactions either do not hold in human cells or do not include genes that are (frequently) altered in human cancers, and are therefore not attractive in the context of cancer therapy. Here, we develop a computational approach to infer SL interactions directly from frequently altered genes in human cancers. It is based on the observation that pairs of genes that are altered in a (significantly) mutually exclusive manner in cancers are likely to constitute lethal combinations. Using genomic copy-number and gene-expression data from four cancers, breast, prostate, ovarian and uterine (total 3980 samples) from The Cancer Genome Atlas, we identify 718 genes that are frequently amplified or upregulated, and are likely to be synthetic lethal with six key DNA-damage response (DDR) genes in these cancers. By comparing with published data on gene essentiality (~16000 genes) from ten DDR-deficient cancer cell lines, we show that our identified genes are enriched among the top quartile of essential genes in these cell lines, implying that our inferred genes are highly likely to be (synthetic) lethal upon knockdown in these cell lines. Among the inferred targets are tousled-like kinase 2 (TLK2) and the deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7) whose overexpression correlates with poor survival in cancers. Mutual exclusivity between

  1. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    Directory of Open Access Journals (Sweden)

    Rajesh Prasad

    Full Text Available Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4. Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5, suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3 to moderate (KP4 preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease

  2. Hepatitis C virus NS3/4A protease inhibits complement activation by cleaving complement component 4.

    Directory of Open Access Journals (Sweden)

    Seiichi Mawatari

    Full Text Available BACKGROUND: It has been hypothesized that persistent hepatitis C virus (HCV infection is mediated in part by viral proteins that abrogate the host immune response, including the complement system, but the precise mechanisms are not well understood. We investigated whether HCV proteins are involved in the fragmentation of complement component 4 (C4, composed of subunits C4α, C4β, and C4γ, and the role of HCV proteins in complement activation. METHODS: Human C4 was incubated with HCV nonstructural (NS 3/4A protease, core, or NS5. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then subjected to peptide sequencing. The activity of the classical complement pathway was examined using an erythrocyte hemolysis assay. The cleavage pattern of C4 in NS3/4A-expressing and HCV-infected cells, respectively, was also examined. RESULTS: HCV NS3/4A protease cleaved C4γ in a concentration-dependent manner, but viral core and NS5 did not. A specific inhibitor of NS3/4A protease reduced C4γ cleavage. NS3/4A protease-mediated cleavage of C4 inhibited classical pathway activation, which was abrogated by a NS3/4A protease inhibitor. In addition, co-transfection of cells with C4 and wild-type NS3/4A, but not a catalytic-site mutant of NS3/4A, produced cleaved C4γ fragments. Such C4 processing, with a concomitant reduction in levels of full-length C4γ, was also observed in HCV-infected cells expressing C4. CONCLUSIONS: C4 is a novel cellular substrate of the HCV NS3/4A protease. Understanding disturbances in the complement system mediated by NS3/4A protease may provide new insights into the mechanisms underlying persistent HCV infection.

  3. Exclusive scattering off the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Amrath, D.

    2007-12-15

    Exclusive processes are a special class of processes giving insight into the inner structure of hadrons. In this thesis we consider two exclusive processes and compute their total cross sections as well as the beam charge and beam polarization asymmetries for different kinematical constraints. These calculations o er the opportunity to get access to the nonperturbative GPDs. Theoretically they can be described with the help of models. The rst process we investigate contains a GPD of the pion, which is basically unknown so far. We include different models and make predictions for observables that could in principle be measured at HERMES at DESY and CLAS at JLab. The second process we consider is electron-deuteron scattering in the kinematical range where the deuteron breaks up into a proton and a neutron. This can be used to investigate the neutron, which cannot be taken as a target due to its lifetime of approximately 15 minutes. For the calculation of the electron-deuteron cross section we implement models for the proton and neutron GPDs. Once there are experimental data available our calculations are ready for comparison. (orig.)

  4. Exclusion Process with Slow Boundary

    Science.gov (United States)

    Baldasso, Rangel; Menezes, Otávio; Neumann, Adriana; Souza, Rafael R.

    2017-06-01

    We study the hydrodynamic and the hydrostatic behavior of the simple symmetric exclusion process with slow boundary. The term slow boundary means that particles can be born or die at the boundary sites, at a rate proportional to N^{-θ }, where θ > 0 and N is the scaling parameter. In the bulk, the particles exchange rate is equal to 1. In the hydrostatic scenario, we obtain three different linear profiles, depending on the value of the parameter θ ; in the hydrodynamic scenario, we obtain that the time evolution of the spatial density of particles, in the diffusive scaling, is given by the weak solution of the heat equation, with boundary conditions that depend on θ . If θ \\in (0,1), we get Dirichlet boundary conditions, (which is the same behavior if θ =0, see Farfán in Hydrostatics, statical and dynamical large deviations of boundary driven gradient symmetric exclusion processes, 2008); if θ =1, we get Robin boundary conditions; and, if θ \\in (1,∞), we get Neumann boundary conditions.

  5. Comparative analysis of procoagulant and fibrinogenolytic activity of crude protease fractions of turmeric species.

    Science.gov (United States)

    Shivalingu, B R; Vivek, H K; Nafeesa, Zohara; Priya, B S; Swamy, S Nanjunda

    2015-08-22

    Turmeric rhizome is a traditional herbal medicine, which has been widely used as a remedy to stop bleeding on fresh cuts and for wound healing by the rural and tribal population of India. To validate scientific and therapeutic application of turmeric rhizomes to stop bleeding on fresh cuts and its role in wound healing process. The water extracts of thoroughly scrubbed and washed turmeric rhizomes viz., Curcuma aromatica Salisb., Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. were subjected to salting out and dialysis. The dialyzed crude enzyme fractions (CEFs) were assessed for proteolytic activity using casein as substrate and were also confirmed by caseinolytic zymography. Its coagulant activity and fibrinogenolytic activity were assessed using human citrated plasma and fibrinogen, respectively. The type of protease(s) in CEFs was confirmed by inhibition studies using specific protease inhibitors. The CEFs of C. aromatica, C. longa and C. caesia showed 1.89, 1.21 and 1.07 folds higher proteolytic activity, respectively, compared to papain. In contrast to these, C. amada and C. zedoria exhibited moderate proteolytic activity. CEFs showed low proteolytic activities compared to trypsin. The proteolytic activities of CEFs were confirmed by caseinolytic zymography. The CEFs of C. aromatica, C. longa and C. caesia showed complete hydrolysis of Aα, Bβ and γ subunits of human fibrinogen, while C. amada and C. zedoria showed partial hydrolysis. The CEFs viz., C. aromatica, C. longa, C. caesia, C. amada and C. zedoria exhibited strong procoagulant activity by reducing the human plasma clotting time from 172s (Control) to 66s, 84s 88s, 78s and 90s, respectively. The proteolytic activity of C. aromatica, C. longa, C. caesia and C. amada was inhibited (>82%) by PMSF, suggesting the possible presence of a serine protease(s). However, C. zedoria showed significant inhibition (60%) against IAA and moderate inhibition (30

  6. Production, Characterization and Antioxidant Potential of Protease from Streptomyces sp. MAB18 Using Poultry Wastes

    Directory of Open Access Journals (Sweden)

    Panchanathan Manivasagan

    2013-01-01

    Full Text Available Poultry waste is an abundant renewable source for the recovery of several value-added metabolites with potential industrial applications. This study describes the production of protease on poultry waste, with the subsequent use of the same poultry waste for the extraction of antioxidants. An extracellular protease-producing strain was isolated from Cuddalore coast, India, and identified as Streptomyces sp. MAB18. Its protease was purified 17.13-fold with 21.62% yield with a specific activity of 2398.36 U/mg and the molecular weight was estimated as 43 kDa. The enzyme was optimally active at pH 8–10 and temperature 50–60°C and it was most stable up to pH 12 and 6–12% of NaCl concentration. The enzyme activity was reduced when treated with Hg2+, Pb2+, and SDS and stimulated by Fe2+, Mg2+, Triton X-100, DMSO (dimethyl sulfoxide, sodium sulphite, and β-mercaptoethanol. Furthermore, the antioxidant activities of protease were evaluated using in vitro antioxidant assays, such as DPPH radical-scavenging activity, O2 scavenging activity, NO scavenging activity, Fe2+ chelating activity, and reducing power. The enzyme showed important antioxidant potential with an IC50 value of 78±0.28 mg/mL. Results of the present study indicate that the poultry waste-derived protease may be useful as supplementary protein and antioxidant in the animal feed formulations.

  7. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    2009-07-01

    Full Text Available Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes.Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified.Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  8. StAR Enhances Transcription of Genes Encoding the Mitochondrial Proteases Involved in Its Own Degradation

    Science.gov (United States)

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Lauria, Ines; Langer, Thomas

    2014-01-01

    Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR. PMID:24422629

  9. Synergistic Effect of Neutral Protease and Clostripain on Rat Pancreatic Islet Isolation.

    Science.gov (United States)

    Dendo, Mami; Maeda, Hiroshi; Yamagata, Youhei; Murayama, Kazutaka; Watanabe, Kimiko; Imura, Takehiro; Inagaki, Akiko; Igarashi, Yasuhiro; Katoh, Yasutake; Ebina, Masayuki; Fujimori, Keisei; Igarashi, Kazuhiko; Ohuchi, Noriaki; Satomi, Susumu; Goto, Masafumi

    2015-07-01

    Islet isolation currently requires collagenase, neutral protease and other components. Thermolysin (TL) from Bacillus thermoproteolyticus is the gold standard neutral protease. However, we speculated that neutral protease derived from Clostridium histolyticum (Ch; ChNP) would be biologically superior for islet isolation. Tryptic-like activity has also been reported to be important. Therefore, we focused on clostripain (CP), since it is one of the main proteases in Clostridium histolyticum which possesses tryptic-like activity. We then examined the synergistic effects of highly purified ChNP and CP on rat islet isolation. The same amount of collagenase was used in all four groups (TL, ChNP, TL+CP and ChNP+CP; n = 12/group). The efficiency was evaluated by the islet yield and function. An immunohistochemical analysis, in vitro digestion assay for each enzyme component and evaluation of the activation of endogenous exocrine proteases during islet isolation were also performed. The islet yield of the TL group was significantly higher than that of the ChNP group (P < 0.01). The islet yield was dose dependently increased in the ChNP+CP group, but was decreased in the TL + CP group. The islet yield in the ChNP + CP group was significantly higher than that in the TL group, but their islet function was similar. Different specificities for laminin, especially laminin-511, were observed in the TL, ChNP, and CP groups. Clostripain had a strong synergistic effect with ChNP, but not with TL. Therefore, ChNP and CP, in combination with collagenase derived from the same bacteria, may effectively increase the isolation efficiency without affecting the quality of islets.

  10. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  11. Young Mothers, First Time Parenthood and Exclusive Breastfeeding ...

    African Journals Online (AJOL)

    Erah

    ABSTRACT. Breastfeeding behaviour is explored in Kenya using data collected in the town of Eldoret,. Kenya. This paper specifically examines duration of exclusive breastfeeding among young mothers below 20 years of age as compared to older cohorts. Additionally, focus is laid on the effect of first time motherhood and ...

  12. Young mothers, first time parenthood and exclusive breastfeeding in ...

    African Journals Online (AJOL)

    Breastfeeding behaviour is explored in Kenya using data collected in the town of Eldoret, Kenya. This paper specifically examines duration of exclusive breastfeeding among young mothers below 20 years of age as compared to older cohorts. Additionally, focus is laid on the effect of first time motherhood and breastfeeding ...

  13. Exclusive Dijet production from CDF2LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gallinaro, Michele; /Rockefeller U.

    2005-04-01

    Exclusive dijet production at the Tevatron can be used as a benchmark to establish predictions on exclusive diffractive Higgs production, a process with a much smaller cross section. Exclusive dijet production in Double Pomeron Exchange processes, including diffractive Higgs production with measurements at the Tevatron and predictions for the Large Hadron Collider are presented. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Upper limits on the exclusive dijet production cross section are presented and compared to current theoretical predictions.

  14. Central exclusive production at the Tevatron

    CERN Document Server

    Albrow, Michael G

    2008-01-01

    In CDF we have observed several exclusive processes: 2-photon --> e+e- and --> mu+mu-, photon+pomeron --> J/psi and psi(2S), and pomeron+pomeron --> chi_c. The cross sections agree with QED, HERA photoproduction data, and theoretical estimates of gg --> chi_c with another gluon exchanged to screen the color. This observation of exclusive chi_c, together with earlier observations of exclusive dijets and exclusive 2-photon candidates, support some theoretical predictions for p+p --> p+H+p at the LHC. Exclusive dileptons offer the best means of precisely calibrating forward proton spectrometers.

  15. Deadlocks and dihomotopy in mutual exclusion models

    DEFF Research Database (Denmark)

    Raussen, Martin

    2005-01-01

    Parallel processes in concurrency theory can be modelled in a geometric framework. A convenient model are the Higher Dimensional Automata of V. Pratt and E. Goubault with cubical complexes as their mathematical description. More abstract models are given by (locally) partially ordered topological...... spaces, the directed ($d$-spaces) of M.Grandis and the flows of P. Gaucher. All models invite to use or modify ideas from algebraic topology, notably homotopy. In specific semaphore models for mutual exclusion, we have developed methods and algorithms that can detect deadlocks and unsafe regions and give...... information about essentially different schedules using higher dimensional "geometric'' representations of the state space and executions (directed paths) along it....

  16. Purification and characterization of protease from Bacillus cereus ...

    African Journals Online (AJOL)

    chitti

    2013-09-16

    Sep 16, 2013 ... Thermostable alkaline proteases of Bacillus licheniformis MIR. 29:isolation, production and characterization. Appl. Microbiol. Biotechnol. 45:327-332. Fulzele R, DeSa E, Yadav A, Shouche Y, Bhadekar R (2011). Characterization of novel extracellular protease produced by marine bacterial isolate from the ...

  17. Purification of an Intracellular Fibrinolytic Protease from Ganoderma ...

    African Journals Online (AJOL)

    Erah

    Method: The intracellular fibrinolytic protease produced by Ganoderma lucidum VK12 was isolated from the mycelia grown in MCDBF broth ... The inhibitory effect of different metal ions and commercial protease inhibitors on enzyme activity was studied. ... sodium hydroxide and 2.9 %w/v sodium carbonate in glass-distilled ...

  18. An overview of Bacillus proteases: from production to application.

    Science.gov (United States)

    Contesini, Fabiano Jares; Melo, Ricardo Rodrigues de; Sato, Hélia Harumi

    2017-08-08

    Proteases have a broad range of applications in industrial processes and products and are representative of most worldwide enzyme sales. The genus Bacillus is probably the most important bacterial source of proteases and is capable of producing high yields of neutral and alkaline proteolytic enzymes with remarkable properties, such as high stability towards extreme temperatures, pH, organic solvents, detergents and oxidizing compounds. Therefore, several strategies have been developed for the cost-effective production of Bacillus proteases, including optimization of the fermentation parameters. Moreover, there are many studies on the use of low-cost substrates for submerged and solid state fermentation. Other alternatives include genetic tools such as protein engineering in order to obtain more active and stable proteases and strain engineering to better secrete recombinant proteases from Bacillus through homologous and heterologous protein expression. There has been extensive research on proteases because of the broad number of applications for these enzymes, such as in detergent formulations for the removal of blood stains from fabrics, production of bioactive peptides, food processing, enantioselective reactions, and dehairing of skins. Moreover, many commercial proteases have been characterized and purified from different Bacillus species. Therefore, this review highlights the production, purification, characterization, and application of proteases from a number of Bacillus species.

  19. Optimization of alkaline protease production and its fibrinolytic ...

    African Journals Online (AJOL)

    Pseudomonas fluorescens AU17 was isolated from the fish waste discharged soil and it was tested for its ability to produce the protease enzyme. The effect of different production parameters such as temperature, pH, carbon and nitrogen sources and sodium chloride concentration for protease production by the isolated ...

  20. A Protease Isolated from the Latex of Plumeria rubra Linn ...

    African Journals Online (AJOL)

    Methods: The protease was isolated from the latex of the plant by acetone precipitation method and given a trivial name, Plumerin-R. The anti-inflammatory activity of the protease was based on its effects on carrageenan-induced paw oedema in rats. Its wound healing effect was investigated using an excision wound rat ...

  1. Milk Clotting Activity of Protease, Extracted from Rhizome of Taffin ...

    African Journals Online (AJOL)

    MBI

    2017-03-07

    Mar 7, 2017 ... Keywords: Ginger Protease, Milk Clotting Activity, Calf rennet, Characterization, Extraction. INTRODUCTION. Ginger rhizome (Zingiber officinale roscoe), the main source of ginger proteases is grown in many parts of Africa, tropical Asia, southeast Asia,. India and the West Indies (Hou-Pin et al., 2009).

  2. Differential expression of cysteine protease inhibitor (CPI) gene of ...

    African Journals Online (AJOL)

    AJL

    2012-03-08

    Mar 8, 2012 ... A cDNA clone which encodes a cysteine protease inhibitor gene, named PsCPI, has been identified in. Polygonum ... Keywords: Polygonum sibiricum Laxm., Polygonum sibiricum Laxm cysteine protease inhibitor, rapid amplification of .... Plasmids containing the insert were purified (Promega minipreps) ...

  3. Protease-induced solubilisation of carbohydrates from brewers' spent grain

    NARCIS (Netherlands)

    Faulds, C.B.; Collins, S.; Robertson, J.A.; Treimo, J.; Eijsink, V.G.H.; Hinz, S.W.A.; Schols, H.A.; Buchert, J.; Waldron, K.W.

    2009-01-01

    The impact of microbial proteases on the release of carbohydrates from BSG was studied. The proteases were able to release the non-cellulosic glucose, a portion of feruloylated arabinoxylan and over 50% of the protein from brewers' spent grain (BSG) after 24 h hydrolysis. The non-cellulosic glucose

  4. Peptide synthesis in neat organic solvents with novel thermostable proteases

    NARCIS (Netherlands)

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the

  5. Enhancement of alkaline protease production by Bacillus clausii ...

    African Journals Online (AJOL)

    Enhancement of alkaline protease production by Bacillus clausii using Taguchi experimental design. ... SFG Oskouie, F Tabandeh, B Yakhchali, F Eftekhar. Abstract. The effect of culture conditions on protease production and bacterial growth of Bacillus clausii was investigated using Taguchi design of experiment.

  6. Model building of a thermolysin-like protease by mutagenesis

    NARCIS (Netherlands)

    Frigerio, F; Margarit, [No Value; Nogarotto, R; Grandi, G; Vriend, G; Hardy, F; Veltman, OR; Venema, G; Eijsink, VGH

    The present study concerns the use of site-directed mutagenesis experiments to optimize a three-dimensional model of the neutral protease of Bacillus subtilis (NP-sub), An initial model of NP-sub was constructed using the crystal structures of the homologous neutral proteases of Bacillus

  7. Isolation of alkaline protease from Bacillus subtilis AKRS3 ...

    African Journals Online (AJOL)

    Primary screening was achieved by skim milk casein hydrolysis method. Microbiological ... The halotolerancy of B. subtilis AKRS3 for alkaline protease production indicated that 3% of sodium chloride was optimum to yield maximum protease activity. During production, agitation rate was 250 rpm at air flow rate of 1 VVM.

  8. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens?

    NARCIS (Netherlands)

    van Rijt, Leonie S.; Utsch, Lara; Lutter, René; van Ree, Ronald

    2017-01-01

    Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2,

  9. Comparison of protease production from newly isolated bacterial ...

    African Journals Online (AJOL)

    Protease has gained a very important position in many industries such as food, pharmaceutical, chemical and leather industries. In this research, protease was obtained from bacteria. The bacterial strain was obtained from soil which was collected from different areas of Lahore, Pakistan. Fermentation medium (by using ...

  10. Improvement of acid protease production by a mixed culture of ...

    African Journals Online (AJOL)

    The synthesis of acid protease by Aspergillus oryzae AS3042 was enhanced significantly with the mixed culture of Aspergillus niger SL-09 using solid-state fermentation technique. The influence of carbon sources, nitrogen sources and the addition of phytic acid on acid protease production were investigated. The enzyme ...

  11. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  12. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  13. Enhancement of alkaline protease production by Bacillus clausii ...

    African Journals Online (AJOL)

    SERVER

    2007-11-19

    Nov 19, 2007 ... Full Length Research Paper. Enhancement of alkaline protease production by. Bacillus clausii using Taguchi ... inorganic nitrogen sources, agitation and metal ion, each at four levels were selected and an orthogonal array layout of L16 (45) were performed. The proposed medium for alkaline protease ...

  14. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The increase in agricultural practices has necessitated the judicious use of agricultural wastes into value added products. In this study, an extracellular, organic solvent and oxidant stable, serine protease was produced by Aspergillus flavus MTCC 9952 under solid state fermentation. Maximum protease yield was obtained ...

  15. A Protease Isolated from the Latex of Plumeria rubra Linn ...

    African Journals Online (AJOL)

    Purpose: To isolate, purify and characterize protease from the latex of the plant. Methods: Protease was isolated from the latex of Plumeria rubra Linn using acetone precipitation method and purified by a sequence of DEAE cellulose column chromatography, followed by two successive column purification in Sephadex G-50 ...

  16. Isolation and partial characterization of a protease enzyme from ...

    African Journals Online (AJOL)

    Administrator

    2011-04-18

    Apr 18, 2011 ... Cold-active protease CP70. Patent. WO9727313. Herbert RA (1992). A perspective on the biotechnological potential of extremophiles. Trends Biotechnol. 10: 395-402. Janssen PH, Peek K, Morgan HW (1994). Effect of culture conditions on the production of an extracellular protease by Thermus sp. Rt41A.

  17. Detection of protease activity in cells and animals

    NARCIS (Netherlands)

    Verdoes, M.; Verhelst, S.H.L.

    2016-01-01

    Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug

  18. Fatores antinutricionais: inibidores de proteases e lectinas

    Directory of Open Access Journals (Sweden)

    SILVA Mara Reis

    2000-01-01

    Full Text Available Os fatores antinutricionais presentes em alimentos podem provocar efeitos fisiológicos adversos ou diminuir a biodisponibilidade de nutrientes. A maior questão sobre os riscos à saúde provocados por antinutrientes é o desconhecimento dos níveis de tolerância, do grau de variação do risco individual e da influência de fatores ambientais sobre a capacidade de detoxificação do organismo humano. Dentre os fatores antinutricionais os inibidores de proteases e as lectinas são considerados instáveis ao tratamento térmico. A hipertrofia pancreática causada pelos inibidores de tripsina tem sido relatada em alguns estudos com animais. As alterações da função fisiológica em animais causadas por ação de lectinas no intestino parecem estar relacionadas à especificidade destas substâncias com as células da mucosa intestinal. Os possíveis efeitos adversos dos inibidores de proteases e das lectinas na maioria das vezes são inferidos somente de experimentos com animais de laboratório.

  19. Perfluorocarbon Nanoparticles as Delivery Vehicles for Melittin and Its Protease-Activated Derivatives

    Science.gov (United States)

    Jallouk, Andrew Philip

    Melittin is a cytolytic peptide derived from honeybee venom which inserts into lipid membranes and oligomerizes to form membrane pores. While this peptide is an attractive candidate for treatment of cancers and infectious processes, its nonspecific cytotoxicity and hemolytic activity have limited its therapeutic applications. The goal of this dissertation was to enhance the specificity of melittin therapy through the use of perfluorocarbon nanoparticles to minimize nonspecific cytotoxicity and the development of melittin prodrugs which only exhibit cytolytic activity following activation by site-specific proteases. Although previous studies have characterized the biological effects of melittin-loaded nanoparticles following intravenous administration, we first investigated their use as topical agents for prevention of HIV infection. We found that incorporation of native melittin onto perfluorocarbon nanoparticles maintained antiviral activity while substantially reducing contact toxicity to sperm and vaginal epithelium. These results demonstrated the potential utility of melittin-loaded nanoparticles as a topical vaginal virucide. To further enhance melittin specificity, we developed melittin derivatives which could be activated by matrix metalloproteinase-9, a protease which is overexpressed in many tumors and which plays a critical role in cancer invasion and metastasis. We then characterized the interactions of these peptides with perfluorocarbon nanoparticles and demonstrated the safety and efficacy of intravenous prodrug-loaded nanoparticle therapy in a mouse model of melanoma. The versatility of this platform could facilitate development of personalized cancer therapies directed towards a patient's individual protease expression profile.

  20. Occurrence and properties of proteases in plant latices.

    Science.gov (United States)

    Domsalla, André; Melzig, Matthias F

    2008-06-01

    Proteases appear to play key roles in the regulation of biological processes in plants, such as the recognition of pathogens and pests and the induction of effective defence responses. On the other side these enzymes are able to activate protease-activated receptors (PARs) and in that way to act as agents with pharmacological and toxicological significance. An important source of plant proteases used in traditional medicine and industry is latex. Over 110 latices of different plant families are known to contain at least one proteolytic enzyme. Most of them belong to the cysteine or serine endopeptidases family and only one to the aspartatic endopeptidases family. This review focuses on the characterization of proteases found in latices of several plant families (Apocynaceae, Asclepiadaceae, Asteraceae, Caricaceae, Convolvulaceae, Euphorbiaceae, Moraceae), and summarizes the known chemical and biological properties of the isolated proteases as well as their importance in pharmacology and toxicology.

  1. Structure-Function of Falcipains: Malarial Cysteine Proteases

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2012-01-01

    Full Text Available Evidence indicates that cysteine proteases play essential role in malaria parasites; therefore an obvious area of investigation is the inhibition of these enzymes to treat malaria. Studies with cysteine protease inhibitors and manipulating cysteine proteases genes have suggested a role for cysteine proteases in hemoglobin hydrolysis. The best characterized Plasmodium cysteine proteases are falcipains, which are papain family enzymes. Falcipain-2 and falcipain-3 are major hemoglobinases of P. falciparum. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. Overall, the complexes of falcipain-2 and falcipain-3 with small and macromolecular inhibitors provide structural insight to facilitate the design or modification of effective drug treatment against malaria. Drug development targeting falcipains should be aided by a strong foundation of biochemical and structural studies.

  2. Poliovirus protease 3C(pro) kills cells by apoptosis.

    Science.gov (United States)

    Barco, A; Feduchi, E; Carrasco, L

    2000-01-20

    The tetracycline-based Tet-Off expression system has been used to analyze the effects of poliovirus protease 3C(pro) on human cells. Stable HeLa cell clones that express this poliovirus protease under the control of an inducible, tightly regulated promoter were obtained. Tetracycline removal induces synthesis of 3C protease, followed by drastic morphological alterations and cellular death. Degradation of cellular DNA in nucleosomes and generation of apoptotic bodies are observed from the second day after 3C(pro) induction. The cleavage of poly(ADP-ribose) polymerase, an enzyme involved in DNA repair, occurs after induction of 3C(pro), indicating caspase activation by this poliovirus protease. The 3C(pro)-induced apoptosis is blocked by the caspase inhibitor z-VAD-fmk. Our findings suggest that the protease 3C is responsible for triggering apoptosis in poliovirus-infected cells by a mechanism that involves caspase activation. Copyright 2000 Academic Press.

  3. Exclusion from gender counter-stereotypic activities: Proximal and distal effects

    OpenAIRE

    McCarty, Megan Kathleen

    2015-01-01

    The current work explored whether an incidence of exclusion is experienced differently depending on the activity from which one is excluded. Specifically, we investigated whether exclusion from gender stereotypic vs. counter-stereotypic activities affects both how threatening the experience is and beliefs about gender stereotypes. The effects of exclusion activity on need threat and beliefs about gender stereotypes were explored in a series of four studies using multiple methods: participants...

  4. Exclusive diffractive processes in QCD

    Science.gov (United States)

    Pichowsky, M. A.; Lee, T.-S. H.

    1996-10-01

    We consider the role of nonperturbative, confined quarks in the Pomeron-exchange model of exclusive, diffractive processes. In our approach, mesons are treated as q-barq bound states and Pomeron-exchange mediates the quark-nucleon interaction. This interaction is modeled in terms of 4 parameters which are completely determined by examining π p and K p elastic scattering. The predicted ρ- and φ-meson electroproduction cross sections are in excellent agreement with the data. It is shown that the differences in the behavior of electroproduction cross sections for the different vector mesons (ρ, φ, J/ψ) arise from their quark substructures. Furthermore, several interesting features of vector meson electroproduction, recently observed at DESY, naturally arise in this approach. The model is also used to predict ρ p, φ p, ρ ρ, φ φ, and φ ρ elastic scattering cross sections necessary for investigations of QCD aspects of vector meson production from relativistic heavy ion collisions.

  5. Human values and moral exclusion

    Directory of Open Access Journals (Sweden)

    Mark Goodale

    2016-12-01

    Full Text Available This article uses empirical data from the anthropology of human rights and the ethics of everyday life to examine the relationship between dominant value frames, moral action, and the rise of ‘counter-humanities’ in the form of cultural identitarianism, racial and class-based nationalism, apocalyptic theologies, and nativist populism. This article focuses, in particular, on the emergence and growing power of the value frame of human rights in the post-Cold War period and argues that the more recent spread of violent movements based in forms of moral exclusion was an ironic consequence of the power of human rights. After considering, and then rejecting, the possibility that citizenship can stand in for ‘humanity’ as a more sustainable value frame, the article concludes with an argument for the promise of a post-utopian solidarity inspired by the humanism of Montaigne and More and the pluralism of Berlin.

  6. The family of Deg/HtrA proteases in plants

    Directory of Open Access Journals (Sweden)

    Schuhmann Holger

    2012-04-01

    Full Text Available Abstract Background The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms from bacteria to human and vascular plants. In recent years, multiple deg/htrA protease genes were identified in various plant genomes. During genome annotations most proteases were named according to the order of discovery, hence the same names were sometimes given to different types of Deg/HtrA enzymes in different plant species. This can easily lead to false inference of individual protease functions based solely on a shared name. Therefore, the existing names and classification of these proteolytic enzymes does not meet our current needs and a phylogeny-based standardized nomenclature is required. Results Using phylogenetic and domain arrangement analysis, we improved the nomenclature of the Deg/HtrA protease family, standardized protease names based on their well-established nomenclature in Arabidopsis thaliana, and clarified the evolutionary relationship between orthologous enzymes from various photosynthetic organisms across several divergent systematic groups, including dicots, a monocot, a moss and a green alga. Furthermore, we identified a “core set” of eight proteases shared by all organisms examined here that might provide all the proteolytic potential of Deg/HtrA proteases necessary for a hypothetical plant cell. Conclusions In our proposed nomenclature, the evolutionarily closest orthologs have the same protease name, simplifying scientific communication when comparing different plant species and allowing for more reliable inference of protease functions. Further, we proposed that the high number of Deg/HtrA proteases in plants is mainly due to gene duplications unique to the respective organism.

  7. Positive selection of digestive Cys proteases in herbivorous Coleoptera.

    Science.gov (United States)

    Vorster, Juan; Rasoolizadeh, Asieh; Goulet, Marie-Claire; Cloutier, Conrad; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A Subset of Membrane-Altering Agents and γ-Secretase Modulators Provoke Nonsubstrate Cleavage by Rhomboid Proteases

    Directory of Open Access Journals (Sweden)

    Siniša Urban

    2014-09-01

    Full Text Available Rhomboid proteases are integral membrane enzymes that regulate cell signaling, adhesion, and organelle homeostasis pathways, making substrate specificity a key feature of their function. Interestingly, we found that perturbing the membrane pharmacologically in living cells had little effect on substrate processing but induced inappropriate cleavage of nonsubstrates by rhomboid proteases. A subclass of drugs known to modulate γ-secretase activity acted on the membrane directly and induced nonsubstrate cleavage by rhomboid proteases but left true substrate cleavage sites unaltered. These observations highlight an active role for the membrane in guiding rhomboid selectivity and caution that membrane-targeted drugs should be evaluated for cross-activity against membrane-resident enzymes that are otherwise unrelated to the intended drug target. Furthermore, some γ-secretase-modulating activity or toxicity could partly result from global membrane effects.

  9. Inhibition of the growth of colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom.

    Science.gov (United States)

    Smid, Ida; Gruden, Kristina; Buh Gašparič, Meti; Koruza, Katarina; Petek, Marko; Pohleven, Jure; Brzin, Jože; Kos, Janko; Zel, Jana; Sabotič, Jerica

    2013-12-26

    Proteins from higher fungi have attracted interest because of their exceptional characteristics. Macrocypins, cysteine protease inhibitors from the parasol mushroom Macrolepiota procera , were evaluated for their adverse effects and their mode of action on the major potato pest Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). They were shown to reduce larval growth when expressed in potato or when their recombinant analogues were added to the diet. Macrocypins target a specific set of digestive cysteine proteases, intestains. Additionally, protein-protein interaction analysis revealed potential targets among other digestive enzymes and proteins related to development and primary metabolism. No effect of dietary macrocypins on gene expression of known adaptation-related digestive enzymes was observed in CPB guts. Macrocypins are the first fungal protease inhibitors to be reported as having a negative effect on growth and development of CPB larvae and could also be evaluated as control agents for other pests.

  10. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells.

    Science.gov (United States)

    Faucheu, C; Diu, A; Chan, A W; Blanchet, A M; Miossec, C; Hervé, F; Collard-Dutilleul, V; Gu, Y; Aldape, R A; Lippke, J A

    1995-05-01

    We have identified a novel cDNA encoding a protein (named TX) with > 50% overall sequence identity with the interleukin-1 beta converting enzyme (ICE) and approximately 30% sequence identity with the ICE homologs NEDD-2/ICH-1L and CED-3. A computer homology model of TX was constructed based on the X-ray coordinates of the ICE crystal recently published. This model suggests that TX is a cysteine protease, with the P1 aspartic acid substrate specificity retained. Transfection experiments demonstrate that TX is a protease which is able to cleave itself and the p30 ICE precursor, but not to generate mature IL-1 beta from pro-IL-1 beta. In addition, this protein induces apoptosis in transfected COS cells. TX therefore delineates a new member of the growing Ice/ced-3 gene family coding for proteases with cytokine processing activity or involved in programmed cell death.

  11. Leader Peptide-Free In Vitro Reconstitution of Microviridin Biosynthesis Enables Design of Synthetic Protease-Targeted Libraries.

    Science.gov (United States)

    Reyna-González, Emmanuel; Schmid, Bianca; Petras, Daniel; Süssmuth, Roderich D; Dittmann, Elke

    2016-08-01

    Microviridins are a family of ribosomally synthesized and post-translationally modified peptides with a highly unusual architecture featuring non-canonical lactone as well as lactam rings. Individual variants specifically inhibit different types of serine proteases. Here we have established an efficient in vitro reconstitution approach based on two ATP-grasp ligases that were constitutively activated using covalently attached leader peptides and a GNAT-type N-acetyltransferase. The method facilitates the efficient in vitro one-pot transformation of microviridin core peptides to mature microviridins. The engineering potential of the chemo-enzymatic technology was demonstrated for two synthetic peptide libraries that were used to screen and optimize microviridin variants targeting the serine proteases trypsin and subtilisin. Successive analysis of intermediates revealed distinct structure-activity relationships for respective target proteases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Peptide-based fluorescence resonance energy transfer protease substrates for the detection and diagnosis of Bacillus species

    NARCIS (Netherlands)

    Kaman, W.E.; Hulst, A.G.; Alphen, P.T.W. van; Roffel, S.; Schans, M.J. van der; Merkel, T.; Belkum, A. van; Bikker, F.J.

    2011-01-01

    We describe the development of a highly specific enzyme-based fluorescence resonance energy transfer (FRET) assay for easy and rapid detection both in vitro and in vivo of Bacillus spp., among which are the members of the B. cereus group. Synthetic substrates for B. anthracis proteases were designed

  13. The Processes of Inclusion and Exclusion in Physical Education

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Agergaard, Sine

    2015-01-01

    Existing research on inclusion and exclusion processes in physical education (PE) has particularly focused on exclusion from PE as something being done to students and attributed to specific social categories such as (female) gender, (low) physical skills or (minority) ethnic background....... This article aims to develop a social-relational perspective on inclusion and exclusion processes defined as students’ participation or non-participation in PE interpreted as a community of practice. In so doing, the article examines how students’ experiences of participation and non-participation in PE...... or non-participation is important not only in terms of how we talk about students as passive victims or active agents, but also in terms of future intervention aimed at promoting inclusion processes in PE....

  14. A Biocompatible “Split Luciferin” Reaction and its Application for Non-Invasive Bioluminescent Imaging of Protease Activity in Living Animals

    Science.gov (United States)

    Godinat, Aurélien; Budin, Ghyslain; Molares, Alma R.; Park, Hyo Min; Sanman, Laura E.; Bogyo, Matthew; Yu, Allen; Stahl, Andreas; Dubikovskaya, Elena A.

    2014-01-01

    The great complexity of many human pathologies such as cancer, diabetes, and neurodegenerative diseases requires new tools for studies of biological processes on the whole organism level. The discovery of novel biocompatible reactions has tremendously advanced our understanding of basic biology, however, no efficient tools exist for real-time non-invasive imaging of many human proteases that play very important roles in multiple human disorders. We recently reported that “split luciferin” biocompatible reaction represents a valuable tool for evaluation of protease activity directly in living animals using bioluminescence imaging (BLI). Since BLI is the most sensitive in vivo imaging modality known to date, this method can be widely applied for the evaluation of multiple proteases activity as well as identification of their new peptide-specific substrates. In this protocol we describe several applications of this “split luciferin” reaction for quantification of protease activities in test tube assays and living animals. PMID:25205565

  15. Neutral serine protease from Penicillium italicum. Purification, biochemical characterization, and use for antioxidative peptide preparation from Scorpaena notata muscle.

    Science.gov (United States)

    Abidi, Ferid; Aissaoui, Neyssene; Chobert, Jean-Marc; Haertlé, Thomas; Marzouki, Mohamed Nejib

    2014-09-01

    In the present study, purification and properties of an extracellular neutral serine protease from the fungus Penicillium italicum and its potential application as an antioxidant peptides producer are reported. The protease was purified to homogeneity using ammonium sulfate precipitation, Sephacryl S-200 gel filtration, diethylaminoethanol (DEAE)-Sepharose ion exchange chromatography, and TSK-HPLC gel filtration with a 10.2-fold increase in specific activity and 25.8 % recovery. The purified enzyme appeared as single protein band with a molecular mass of 24 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for the proteolytic activity were pH 7.0 and 50 °C, respectively. The enzyme was stable in the pH range of 6.0-9.0. The protease was activated by divalent cations such as Ca(2+) and Mg(2+). Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and relatively broad specificity. Scorpaena notata muscle protein hydrolysates prepared using purified serine protease (protease from P. italicum (Prot-Pen)) showed good in vitro antioxidative activities. The antioxidant activities of Scorpaena muscle protein hydrolyzed by Prot-Pen (SMPH-PP) were evaluated using various antioxidant assays: 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, ferrous chelating activity, and DNA nicking assay. SMPH-PP showed varying degrees of antioxidant activity and almost the same strongest protection against hydroxyl radical induced DNA breakage.

  16. The concept of the Economic Exclusive Zone

    Directory of Open Access Journals (Sweden)

    Dorina Patuzi

    2015-03-01

    Full Text Available The important and the new concept that brought the third UN Conference of the Law of the Sea was the Economic Exclusive Zone (EEZ, requested by countries whose coasts are bordering on the oceans, seas, but also in harmony with the interests of countries which have extensive coastline or those with specific geographical features, which have a very narrow coastal zone. On December 10, 1982, nearly 120 countries signed the new United Nations Convention on the Law of the Sea, as one of the most significant international conferences. Part V of that Convention (more precisely Articles 55 to 75 provides for an “Exclusive Economic Zone” extending 200 nautical miles seaward from the coast. If all coastal states thus exercised their jurisdiction over their own EEZ, some 38 million square nautical miles would become their “economic patrimony”. It should be mentioned that the ocean represents 71% of the total surface of the earth and that 32% of that falls under the jurisdiction of coastal states. Consequently inside these economic zones would lie 90% of global fishing, 87% of oil deposits and 10 % of polymetallic nodules. The EEZ provisions have received widespread support and have become an integral part of international practice especially when the Convention of 1982 entered into force, also articles 55 and 86 of the Convention make it clear that the EEZ is not a part of the territorial sea, but it is a zone sui generis, with a statute of its own. Some countries had claimed 200-mile EEZ and other have established a 200- mile Exclusive Fishing Zone (EFZ. The countries benefiting the most from the EEZ concept are in order of the size of their zones: USA, Australia, Indonesia, New Zealand, Canada and Russia. If this concept was to be applied by all coastal Mediterranean States, the entire sea would be covered by EEZs of the littoral countries. The countries of the Mediterranean that would most benefit from the EEZ are Greece, Cyprus, Italy and Malta

  17. Inhibition of Plasmodium falciparum cysteine proteases by the sugarcane cystatin CaneCPI-4.

    Science.gov (United States)

    Melo, Pollyana M S; El Chamy Maluf, Sarah; Azevedo, Mauro F; Paschoalin, Thaysa; Budu, Alexandre; Bagnaresi, Piero; Henrique-Silva, Flávio; Soares-Costa, Andrea; Gazarini, Marcos L; Carmona, Adriana K

    2017-12-27

    Malaria is a disease caused by Plasmodium parasites that affects hundreds of millions of people. Plasmodium proteases are involved in invasion, erythrocyte egress and degradation of host proteins. Falcipains are well-studied cysteine peptidases located in P. falciparum food vacuoles that participate in hemoglobin degradation. Cystatins are natural cysteine protease inhibitors that are implicated in a wide range of regulatory processes. Here, we report that a cystatin from sugarcane, CaneCPI-4, is selectively internalized into P. falciparum infected erythrocytes and is not processed by the parasite proteolytic machinery. Furthermore, we demonstrated the inhibition of P. falciparum cysteine proteases by CaneCPI-4, suggesting that it can exert inhibitory functions inside the parasites. The inhibition of the proteolytic activity of parasite cells is specific to this cystatin, as the addition of an anti-CaneCPI-4 antibody completely abolished the inhibition. We extended the studies to recombinant falcipain-2 and falcipain-3 and demonstrated that CaneCPI-4 strongly inhibits these enzymes, with IC50 values of 12nM and 42nM, respectively. We also demonstrated that CaneCPI-4 decreased the hemozoin formation in the parasites, affecting the parasitemia. Taken together, this study identified a natural molecule as a potential antimalarial that specifically targets falcipains and also contributes to a better understanding of macromolecule acquisition by Plasmodium falciparum infected RBCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening.

    Science.gov (United States)

    D'Andrea, Lucio; Simon-Moya, Miguel; Llorente, Briardo; Llamas, Ernesto; Marro, Mónica; Loza-Alvarez, Pablo; Li, Li; Rodriguez-Concepcion, Manuel; Vicente, Ariel

    2018-01-29

    Profound metabolic and structural changes are required for fleshy green fruits to ripen and become colorful and tasty. In tomato (Solanum lycopersicum), fruit ripening involves the differentiation of chromoplasts, specialized plastids that accumulate carotenoid pigments such as β-carotene (pro-vitamin A) and lycopene. Here, we explored the role of the plastidial Clp protease in chromoplast development and carotenoid accumulation. Ripening-specific silencing of one of the subunits of the Clp proteolytic complex resulted in β-carotene-enriched fruits that appeared orange instead of red when ripe. Clp-defective fruit displayed aberrant chromoplasts and up-regulated expression of nuclear genes encoding the tomato homologs of Orange (OR) and ClpB3 chaperones, most probably to deal with misfolded and aggregated proteins that could not be degraded by the Clp protease. ClpB3 and OR chaperones protect the carotenoid biosynthetic enzymes deoxyxylulose 5-phosphate synthase and phytoene synthase, respectively, from degradation, whereas OR chaperones additionally promote chromoplast differentiation by preventing the degradation of carotenoids such as β-carotene. We conclude that the Clp protease contributes to the differentiation of chloroplasts into chromoplasts during tomato fruit ripening, acting in co-ordination with specific chaperones that alleviate protein folding stress, promote enzyme stability and accumulation, and prevent carotenoid degradation. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. A drug discovery platform: a simplified immunoassay for analyzing HIV protease activity.

    Science.gov (United States)

    Kitidee, Kuntida; Nangola, Sawitree; Hadpech, Sudarat; Laopajon, Witida; Kasinrerk, Watchara; Tayapiwatana, Chatchai

    2012-12-01

    Although numerous methods for the determination of HIV protease (HIV-PR) activity have been described, new high-throughput assays are required for clinical and pharmaceutical applications due to the occurrence of resistant strains. In this study, a simple enzymatic immunoassay to identify HIV-PR activity was developed based on a Ni(2+)-immobilized His(6)-Matrix-Capsid substrate (H(6)MA-CA) is cleaved by HIV protease-His(6) (HIV-PRH(6)) which removes the CA domain and exposes the free C terminus of MA. Following this cleavage, two monoclonal antibodies specific for either the free C-terminal MA or CA epitope are used to quantify the proteolytic activity using a standard ELISA-based system. Specificity for detection of the HIV-PRH(6) activity was confirmed with addition of protease inhibitor (PI), lopinavir. In addition, the assay was able to detect an HIV-PR variant activity indicating that this assay is capable of assessing viral mutation affect HIV-PR activity. The efficacy of commercially available PIs and their 50% inhibitory concentration (IC(50)) were determined. This assay provides a high-throughput method for both validating the efficiency of new drugs in vitro and facilitating the discovery of new PIs. In addition, it could serve as a method for examining the influence of various mutations in HIV-PRs isolated from drug-resistant strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Multitasking in the mitochondrion by the ATP-dependent Lon protease.

    Science.gov (United States)

    Venkatesh, Sundararajan; Lee, Jae; Singh, Kamalendra; Lee, Irene; Suzuki, Carolyn K

    2012-01-01

    The AAA(+) Lon protease is a soluble single-ringed homo-oligomer, which represents the most streamlined operational unit mediating ATP-dependent proteolysis. Despite its simplicity, the architecture of Lon proteases exhibits a species-specific diversity. Homology modeling provides insights into the structural features that distinguish bacterial and human Lon proteases as hexameric complexes from yeast Lon, which is uniquely heptameric. The best-understood functions of mitochondrial Lon are linked to maintaining proteostasis under normal metabolic conditions, and preventing proteotoxicity during environmental and cellular stress. An intriguing property of human Lon is its specific binding to G-quadruplex DNA, and its association with the mitochondrial genome in cultured cells. A fraction of Lon preferentially binds to the control region of mitochondrial DNA where transcription and replication are initiated. Here, we present an overview of the diverse functions of mitochondrial Lon, as well as speculative perspectives on its role in protein and mtDNA quality control. Copyright © 2011 Elsevier B.V. All rights reserved.