WorldWideScience

Sample records for exciton radiative lifetime

  1. Short exciton radiative lifetime in submonolayer InGaAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Zhang, Yating; Tackeuchi, Atsuchi

    2008-01-01

    is a key reason for the high performance of SML QD devices and can be explained by the theory of Andreani et al. [Phys. Rev. B 60, 13276 (1999)] calculating the radiative lifetime of QDs formed at the interface fluctuations of a quantum well, as the SML QDs are 20–30 nm in diameter and embedded within......The exciton radiative lifetime in submonolayer (SML) InGaAs/GaAs quantum dots (QDs) grown at 500 °C was measured by using time-resolved photoluminescence from 10 to 260 K. The radiative lifetime is around 90 ps and is independent of temperature below 50 K. The observed short radiative lifetime...

  2. Exciton radiative lifetime in sub-monlayer and stranskii-Krastanow grown InGaAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Zhang, Yating; Tackeuchi, Atsushi

    bandwidth [3]. The superior performance of SML QD lasers has usually been attributed to the high density and uniformity of SML QDs [2]. However, another important parameter governing the maximum modal gain from optical transitions in QDs is the oscillator strength, inversely proportional to the exciton...

  3. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Stoichko D. Dimitrov

    2016-01-01

    Full Text Available The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  4. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  5. Spatial mapping of exciton lifetimes in single ZnO nanowires

    Directory of Open Access Journals (Sweden)

    J. S. Reparaz

    2013-07-01

    Full Text Available We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.

  6. Radiative lifetimes of neutral gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, E A; Bilty, K A; Lawler, J E, E-mail: eadenhar@wisc.edu, E-mail: biltyka@uwec.edu, E-mail: jelawler@wisc.edu [Department of Physics, University of Wisconsin, 1150 University Ave, Madison, WI 53706 (United States)

    2011-03-14

    The current work is part of an ongoing study of radiative properties of rare earth neutral atoms motivated by research needs in several disparate fields including astrophysics, laser chemistry and lighting technology. Time-resolved laser-induced fluorescence on a slow atomic beam has been used to measure radiative lifetimes, accurate to {+-}5%, for 136 levels of neutral gadolinium. Of the 136 levels, 6 are odd parity ranging in energy from 32 929 to 36 654 cm{sup -1}, and the remaining 130 are even parity ranging from 17 750 to 34 175 cm{sup -1}. This set of Gd i lifetimes represents a significant extension to the available published data, with 93 of the 136 level lifetimes measured for the first time. These lifetimes will provide the absolute normalization for a large set of measured Gd i transition probabilities.

  7. Radiative lifetimes of neutral erbium

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, E A; Chisholm, J P; Lawler, J E, E-mail: eadenhar@wisc.ed, E-mail: chisholm@astro.wisc.ed, E-mail: jelawler@wisc.ed [Department of Physics, University of Wisconsin, 1150 University Ave., Madison, WI 53706 (United States)

    2010-08-14

    Radiative lifetimes have been measured for 123 levels of neutral erbium using time-resolved laser-induced fluorescence on a slow beam of erbium atoms. Of the 123 levels, 56 are even parity and range in energy from 26 993 to 40 440 cm{sup -1} and 67 are odd parity ranging from 16 070 to 38 401 cm{sup -1}. This set of Er i lifetimes is much more extensive than others published to date, with 90 of the 123 level lifetimes measured for the first time. These lifetimes will provide the absolute calibration for a large set of measured Er i transition probabilities. Spectroscopic studies of rare earth elements including erbium are motivated by research needs in both the astrophysics and lighting communities.

  8. Radiative lifetimes of neutral cerium

    Science.gov (United States)

    Den Hartog, E. A.; Buettner, K. P.; Lawler, J. E.

    2009-04-01

    Radiative lifetimes, accurate to ±5%, have been measured for 153 levels of neutral cerium using time-resolved laser-induced fluorescence (TRLIF) on a slow beam of cerium atoms. Of the 153 levels studied, 150 are even parity and 3 are odd parity. The levels range in energy from 16 869 to 28 557 cm-1. This set of Ce I lifetimes is much more extensive than others published to date, and will provide the absolute calibration for a very large set of measured Ce I transition probabilities. Accurate transition probabilities for lines in the visible and ultraviolet are needed both in astrophysics, for the determination of elemental abundances, and by the lighting community, for research and development of metal halide high-intensity discharge lamps.

  9. Radiative lifetimes of neutral cerium

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, E A; Buettner, K P; Lawler, J E [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: eadenhar@wisc.edu, E-mail: Kevin.Buettner@usma.edu, E-mail: jelawler@wisc.edu

    2009-04-28

    Radiative lifetimes, accurate to {+-}5%, have been measured for 153 levels of neutral cerium using time-resolved laser-induced fluorescence (TRLIF) on a slow beam of cerium atoms. Of the 153 levels studied, 150 are even parity and 3 are odd parity. The levels range in energy from 16 869 to 28 557 cm{sup -1}. This set of Ce I lifetimes is much more extensive than others published to date, and will provide the absolute calibration for a very large set of measured Ce I transition probabilities. Accurate transition probabilities for lines in the visible and ultraviolet are needed both in astrophysics, for the determination of elemental abundances, and by the lighting community, for research and development of metal halide high-intensity discharge lamps.

  10. Binding Energy and Lifetime of Excitons in InxGa1-xAs/GaAs Quantum Wells

    DEFF Research Database (Denmark)

    Orani, D.; Polimeni, A.; Patane, A.

    1997-01-01

    We report a systematic study of exciton binding energies and lifetimes in InGaAs/GaAs quantum wells. The experimental binding energies have been deduced from photoluminescence excitation measurements taking into account the contribution of the 2s state of the exciton and the line broadening....... The experimental results have been compared with accurate calculations in a four-band model, where exciton energies take into account the polaron correction. The theory accounts for all the experimental observations and provides a good quantitative agreement with the experimental values....

  11. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

    Science.gov (United States)

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B.

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate 6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  12. Exciton-polaron quenching in organic thin-film transistors studied by fluorescence lifetime imaging microscopy

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Leißner, Till; Osadnik, Andreas

    Organic semiconductors show great potential in electronic and optical applications. However, a major challenge is the degradation of the semiconductor materials that cause a reduction in device performance. Here, we present our investigations of Organic Thin Film Transistors (OTFT) based on the m......Organic semiconductors show great potential in electronic and optical applications. However, a major challenge is the degradation of the semiconductor materials that cause a reduction in device performance. Here, we present our investigations of Organic Thin Film Transistors (OTFT) based...... on the material 5,5-bis(naphthyl)-2,20-bithiophene (NaT2). These types of OTFT have previously been shown to have light emitting properties. Fluorescence Lifetime Imaging Microscopy (FLIM) has been used to investigate the exciton-polaron quenching in biased OTFTs. A clear reduction in fluorescence lifetime...

  13. Radiative lifetimes of singly ionized cerium

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, E A Den; Lawler, J E [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: eadenhar@wisc.edu, E-mail: jelawler@wisc.edu

    2008-02-28

    Radiative lifetimes accurate to {+-}5% have been measured for 74 levels in Ce II using time-resolved laser-induced fluorescence on a slow beam of cerium ions. The 17 odd-parity and 57 even-parity levels studied here lie in the energy range 24 000-36 000 cm{sup -1}. This new set of lifetimes in Ce II is substantially more extensive than previously published sets, to which a detailed comparison is made. The present lifetime results will provide the absolute calibration for a very large set of measured transition probabilities for Ce II. These are needed for research in astrophysics and lighting.

  14. Core exciton migration in Rb{sub 0.82}Cs{sub 0.18}Cl under excitation with synchrotron radiation and laser light

    Energy Technology Data Exchange (ETDEWEB)

    Tsujibayashi, Toru [Department of Physics, Osaka Dental University, 8-1 Kuzuha-hanazono, Hirakata, Osaka 573-1121 (Japan)]. E-mail: toru-t@cc.osaka-dent.ac.jp; Azuma, Junpei [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Inabe, Yoshiyuki [Department of Electrical and Electronic Engineering, Shinshu University, Nagano 380-8553 (Japan); Toyoda, Koichi [Department of Physics, Osaka Dental University, 8-1 Kuzuha-hanazono, Hirakata, Osaka 573-1121 (Japan); Kamada, Masao [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Itoh, Minoru [Department of Electrical and Electronic Engineering, Shinshu University, Nagano 380-8553 (Japan)

    2007-01-15

    The migration of the core exciton in a mixed crystal of Rb{sub 0.82}Cs{sub 0.18}Cl is investigated through time-resolved measurement under excitation with synchrotron radiation (SR) and laser. The photon energy of SR is tuned to the absorption band due to the exciton composed of a conduction electron and the hole originated from the outermost core state of the Rb ion (Rb-core exciton). The time-integrated intensity of Auger-free luminescence (AFL) due to the outermost core state of the Cs ion is increased by the laser irradiation. The lifetime of the laser-induced AFL depends on the photon energy of SR. The experimental result suggests the difference between the migration length of the Rb-core exciton and that of the Cs-core hole.

  15. Generation of Rabi frequency radiation using exciton-polaritons

    CERN Document Server

    Barachati, Fábio; Kéna-Cohen, Stéphane

    2015-01-01

    We study the use of exciton-polaritons in semiconductor microcavities to generate radiation spanning the infrared to terahertz regions of the spectrum by exploiting transitions between upper and lower polariton branches. The process, which is analogous to difference-frequency generation (DFG), relies on the use of semiconductors with a nonvanishing second-order susceptibility. For an organic microcavity composed of a nonlinear optical polymer, we predict a DFG irradiance enhancement of $2.8\\cdot10^2$, as compared to a bare nonlinear polymer film, when triple resonance with the fundamental cavity mode is satisfied. In the case of an inorganic microcavity composed of (111) GaAs, an enhancement of $8.8\\cdot10^3$ is found, as compared to a bare GaAs slab. Both structures show high wavelength tunability and relaxed design constraints due to the high modal overlap of polariton modes.

  16. Radiative energy transfer from MoS2 excitons to surface plasmons

    Science.gov (United States)

    Kang, Yimin; Li, Bowen; Fang, Zheyu

    2017-12-01

    In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.

  17. Excitation and temperature dependent exciton-carrier transport in CVD diamond: Diffusion coefficient, recombination lifetime and diffusion length

    Energy Technology Data Exchange (ETDEWEB)

    Ščajev, Patrik, E-mail: patrik.scajev@ff.vu.lt

    2017-04-01

    Time-resolved induced absorption (IA) and light induced transient grating (LITG) techniques were applied for the investigation of nonequilibrium exciton-carrier diffusion and recombination processes in a high-purity CVD diamond. Injection range from 10{sup 15} to 10{sup 20} cm{sup −3} carrier density was achieved by combining one photon and two photon excitations. The measurements were performed in the 10–750 K temperature range. The LITG diffusion coefficient peaked at 44 cm{sup 2}/s value at room temperature under low injection conditions. At lower temperatures it transferred to much lower exciton diffusion coefficient. A strong decrease of diffusion coefficient under higher injection conditions was explained by exciton formation with a low diffusion coefficient and many body effects, as polyexciton and electron-hole droplet formation. High temperature phonon-limited diffusion coefficient was weakly injection dependent. Low excitation carrier lifetime was about 700 ns above 200 K. At lower temperatures, the decay time reduced by two orders of magnitude, which was explained by the formation of biexcitons. At lowest temperatures, an increase of the carrier recombination rate at high injection was attributed to Auger recombinations of polyexcitons and electron-hole droplets. While at high temperatures, the increase of the recombination rate with 490 meV activation energy was observed. The combination of IA and LITG measurements provided effective diffusion lengths in a 0.3–50 µm range, being strongly dependent on the excess carrier density and temperature.

  18. Decoupling degradation in exciton formation and recombination during lifetime testing of organic light-emitting devices

    Science.gov (United States)

    Hershey, Kyle W.; Suddard-Bangsund, John; Qian, Gang; Holmes, Russell J.

    2017-09-01

    The analysis of organic light-emitting device degradation is typically restricted to fitting the overall luminance loss as a function of time or the characterization of fully degraded devices. To develop a more complete understanding of degradation, additional specific data are needed as a function of luminance loss. The overall degradation in luminance during testing can be decoupled into a loss in emitter photoluminescence efficiency and a reduction in the exciton formation efficiency. Here, we demonstrate a method that permits separation of these component efficiencies, yielding the time evolution of two additional specific device parameters that can be used in interpreting and modeling degradation without modification to the device architecture or introduction of any additional post-degradation characterization steps. Here, devices based on the phosphor tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) are characterized as a function of initial luminance and emissive layer thickness. The overall loss in device luminance is found to originate primarily from a reduction in the exciton formation efficiency which is exacerbated in devices with thinner emissive layers. Interestingly, the contribution to overall degradation from a reduction in the efficiency of exciton recombination (i.e., photoluminescence) is unaffected by thickness, suggesting a fixed exciton recombination zone width and degradation at an interface.

  19. Cavity-controlled radiative recombination of excitons in thin-film solar cells

    OpenAIRE

    Vuong, Luat T.; Kozyreff, Gregory; Betancur; Martorell, Jordi

    2009-01-01

    The following article appeared in Vuong, Luat T. ...[et al.]. Cavity-controlled radiative recombination of excitons in thin-film solar cells. Applied physics letters [en línia]. 2009, vol. 95 [Consulta 29/06/2010]. p. 233106-1/233106-3 and may be found at http://apl.aip.org/applab/v95/i23/p233107_s1?view=fulltext We study the performance of photovoltaic devices when controlling the exciton radiative recombination time. We demonstrate that when high-quantum-yield fluorescent photovoltaic ma...

  20. How to avoid non-radiative escape of excitons from quantum dots?

    Science.gov (United States)

    Robin, I. C.; André, R.; Dang, Le Si; Mariette, H.; Tatarenko, S.; Gérard, J. M.; Kheng, K.; Tinjod, F.; Bartels, M.; Lischka, K.; Schikora, D.

    2004-02-01

    We investigated the transition between two different exciton recombination regime in quantum dots depending on temperature. When temperature is raised above a threshold value that we determine experimentally non-radiative recombination channels, characterized by their activation energy, dominate over radiative recombination. The analyses of time resolved photoluminescence spectroscopy versus temperature shows that the maximum temperature for dominant radiative recombination scales linearly with the activation energy of the non-radiative channels over a large range of values (10-60 meV) measured for various kind of II-VI-based quantum dots: CdTe/ZnTe, CdTe/ZnMgTe, CdSe/ZnSe.

  1. Bosonic cascades of indirect excitons

    Science.gov (United States)

    Nalitov, A. V.; De Liberato, S.; Lagoudakis, P.; Savvidis, P. G.; Kavokin, A. V.

    2017-08-01

    Recently, the concept of the terahertz bosonic cascade laser (BCL) based on a parabolic quantum well (PQW) embedded in a microcavity was proposed. We refine this proposal by suggesting transitions between indirect exciton (IX) states as a source of terahertz emission. We explicitly propose a structure containing a narrow-square QW and a wide-parabolic QW for the realisation of a bosonic cascade. Advantages of this type of structures are in large dipole matrix elements for terahertz transitions and in long exciton radiative lifetimes which are crucial for realisation of threshold and quantum efficiency BCLs.

  2. RADIATIVE LIFETIMES OF V I AND V II

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, E. A.; Lawler, J. E.; Wood, M. P., E-mail: eadenhar@wisc.edu, E-mail: jelawler@wisc.edu, E-mail: mpwood@wisc.edu [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2014-11-01

    New radiative lifetimes are reported for 168 levels of V I ranging in energy from 18086 cm{sup –1} to 47702 cm{sup –1}, and for 31 levels of V II ranging in energy from 34593 cm{sup –1} to 47420 cm{sup –1}. These lifetimes are measured using time-resolved laser-induced fluorescence on a slow atomic/ionic beam as part of an ongoing study of the radiative properties of the iron group elements. All but two of the V II lifetimes have been measured before using modern laser-based methods, but a large fraction of the V I lifetimes are reported here for the first time. Comparison to earlier measurements is discussed. These new lifetimes are, for the most part, accurate to ±5%. They will be combined with branching fraction measurements to produce a large set of transition probabilities for V I and V II which are needed by the astrophysics community for stellar abundance determinations.

  3. Radiative lifetimes for 80 levels of singly ionized erbium

    Energy Technology Data Exchange (ETDEWEB)

    Stockett, M H; Hartog, E A den; Lawler, J E [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2007-12-14

    Radiative lifetimes, accurate to {+-}5%, have been measured for 8 even-parity and 72 odd-parity levels of singly ionized erbium using time-resolved laser-induced fluorescence (LIF) on Er ions in a beam. This new set of measurements is more extensive than earlier LIF sets, and is in good agreement with those sets where they overlap. These lifetimes provide an absolute scale for a large, accurate set of Er{sup II} atomic transition probabilities. Basic spectroscopic data on rare earth transition probabilities are needed for astrophysical research and for research on lighting products.

  4. Spatially indirect excitons in coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)2 were

  5. Positron annihilation lifetime study of radiation-damaged natural zircons

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Gaugliardo, P. [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia (Australia); Farnan, I.; Zhang, M. [Department of Earth Sciences, University of Cambridge (United Kingdom); Vance, E.R.; Davis, J.; Karatchevtseva, I.; Knott, R.B. [Australian Nuclear Science and Technology Organisation (Australia); Mudie, S. [The Australian Synchrotron, Victoria (Australia); Buckman, S.J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Institute for Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Sullivan, J.P., E-mail: james.sullivan@anu.edu.au [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia)

    2016-04-01

    Zircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼10{sup 19} α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter. - Highlights: • Study of a range of naturally occurring zircons damaged by alpha radiation. • Characterised using a range of techniques, including PALS spectroscopy. • Effects on hydrous material appear important, rather than direct radiation damage. • Annealing is shown to remove the observed voids.

  6. Energy levels, lifetimes and radiative data of W LV

    Science.gov (United States)

    Ding, Xiao-bin; Sun, Rui; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Nakamura, Nobuyuki; Dong, Chen-zhong

    2018-01-01

    Calculations of energy levels, radiative data and lifetimes are reported for tungsten Ca-like ion (W LV) by using multi-configuration Dirac-Fock (MCDF) method. The GRASP2K package is adopted to carry out a large-scale systematic computation with a restricted active space treatment; the Breit interaction and QED effects are included in subsequent relativistic configuration interaction calculations. The energies and lifetimes of the lowest 119 levels are listed; the main leading configuration of the levels is of the ground state configuration [Ne]3s23p63d2 and the first excited configuration [Ne]3s23p53d3. The wavelengths, radiative rates and oscillator strengths for relatively strong E1, E2, M1, and M2 transitions are listed. Comparisons with earlier experimental and theoretical values are made. The average relative deviations of energy levels from the NIST results and E1 transition wavelengths from the EBIT experimental results have turned to be only 0.20% and 0.13%, respectively. The other present results are in reasonable agreement with available data. These agreements confirm the reliability and accuracy of the current results. The present datasets may help us with the investigation of the electron-electron correlation effects in complex multi-electron highly charged heavy ions and of the diagnosis of tungsten impurity plasmas in fusion science.

  7. Excitonic processes at organic heterojunctions

    Science.gov (United States)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  8. Measurement of radiative lifetime in atomic samarium using ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... In this paper, we report the investigations of lifetime measurement of odd-parity energy level 19009.52 cm. −1 .... introduced by an electronic delay generator between the two Q-switch pulses of Nd-YAG laser. The slope of the .... Our values of the lifetimes are free from the common systematic errors. Thus ...

  9. Room-temperature fluorescence lifetime of pseudoisocyanine (PIC) J excitons with various aggregate morphologies in relation to microcavity polariton formation.

    Science.gov (United States)

    Obara, Yuki; Saitoh, Keita; Oda, Masaru; Tani, Toshiro

    2012-01-01

    The results of room-temperature fluorescence lifetime measurements are reported for the excitation of J aggregates (Js) of pseudoisocyanine chloride (PIC-Cl) prepared in potassium polyvinyl sulfate (PVS) polymer thin films, their aqueous solutions, and NaCl aqueous solutions. Variations of the microscopic morphologies of the aggregates were investigated. The results show that fluorescence decay features correlated to the morphology change. The observed fluorescence lifetime and quantum efficiency of PIC J aggregates (PIC-Js) in a NaCl aqueous solution were 310 ps and 28%, respectively. The lifetime of the fibril-shaped macroaggregates prepared in PVS thin films was below the instrumental time resolution of 5 ps, and the efficiency decreased to below 3%. The results indicate that PIC-Js prepared with PVS polymers have an increased nonradiative contribution to the excitation deactivation process. In particular, macro-Js with isolated fibril-shaped structures revealed nonradiative pathway(s) that are closely associated to the specific packaging morphology of the constituent meso-Js. The possibility of a destructive effect on the formation of cavity-polaritons is also discussed.

  10. Room-Temperature Fluorescence Lifetime of Pseudoisocyanine (PIC J Excitons with Various Aggregate Morphologies in Relation to Microcavity Polariton Formation

    Directory of Open Access Journals (Sweden)

    Yuki Obara

    2012-05-01

    Full Text Available The results of room-temperature fluorescence lifetime measurements are reported for the excitation of J aggregates (Js of pseudoisocyanine chloride (PIC-Cl prepared in potassium polyvinyl sulfate (PVS polymer thin films, their aqueous solutions, and NaCl aqueous solutions. Variations of the microscopic morphologies of the aggregates were investigated. The results show that fluorescence decay features correlated to the morphology change. The observed fluorescence lifetime and quantum efficiency of PIC J aggregates (PIC-Js in a NaCl aqueous solution were 310 ps and 28%, respectively. The lifetime of the fibril-shaped macroaggregates prepared in PVS thin films was below the instrumental time resolution of 5 ps, and the efficiency decreased to below 3%. The results indicate that PIC-Js prepared with PVS polymers have an increased nonradiative contribution to the excitation deactivation process. In particular, macro-Js with isolated fibril-shaped structures revealed nonradiative pathway(s that are closely associated to the specific packaging morphology of the constituent meso-Js. The possibility of a destructive effect on the formation of cavity-polaritons is also discussed.

  11. Magnetic field effects on the Rabi splitting and radiative decay rates of the exciton-polariton states in a semiconductor microcavity

    Science.gov (United States)

    Fenniche, H.; Jaziri, S.; Bennaceur, R.

    1998-12-01

    We study theoretically a particular type of semiconductor microcavity formed by a quantum well embedded inside it and the distributed Bragg reflectors presenting a gradual structure. We apply to this structure a static magnetic field along the growth direction. In the strong coupling regime between the confined exciton and cavity modes, we evaluate the polariton Rabi splitting corresponding to the two lowest lying exciton states: HH1-CB1 and HH2-CB2 as a function of the applied magnetic field. In high magnetic field and for distinct reflectivities, we find that the Rabi splitting magnitude of the HH2-CB2 exciton is close to the fundamental one (HH1-CB1). In the presence of the magnetic field, the polariton Rabi splitting can be obtained even in low reflectivity. The dispersion polariton radiative decay rates related to the two lowest lying exciton states: HH1-CB1 and HH2-CB2 are calculated for different magnetic field values. At k //=0 and in the weak coupling regime, the polariton radiative decay rates are evaluated for both the HH1-CB1 and HH2-CB2 excitons. We show that for the fundamental excitonic state, the magnetic field value which determines the transition from the weak to the strong coupling regime is different from the HH2-CB2 exciton state.

  12. Transition probabilities and radiative lifetimes of levels in F I

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Gueltekin, E-mail: gultekin@selcuk.edu.tr; Dogan, Duygu; Ates, Sule; Taser, Mehmet

    2012-07-15

    The electric dipole transition probabilities and the lifetimes of excited levels have been calculated using the weakest bound electron potential model theory (WBEPMT) and the quantum defect orbital theory (QDOT) in atomic fluorine. In the calculations, many of transition arrays included both multiplet and fine-structure transitions are considered. We employed Numerical Coulomb Approximation (NCA) wave functions and numerical non-relativistic Hartree-Fock (NRHF) wave functions for expectation values of radii in determination of parameters. The necessary energy values have been taken from experimental energy data in the literature. The calculated transition probabilities and lifetimes have been compared with available theoretical and experimental results. A good agreement with results in literature has been obtained. Moreover, some transition probability and the lifetime values not existing in the literature for some highly excited levels have been obtained using these methods.

  13. Low temperature exciton-exciton annihilation in amphi-PIPE J-aggregates

    Directory of Open Access Journals (Sweden)

    C. Spitz

    2006-01-01

    Full Text Available The mobility of optically excited excitons on J-aggregates can be demonstrated by the phenomena of exciton-exciton annihilation. In this intensity-dependent process the collision of two excitons results in their annihilation and hence in a shortening of the mean excitation lifetime. By measuring the intensity-dependent fluorescent lifetime in contrast to the predicted immobilization of the excitons at low temperature we could prove the excellent mobility of the excitons at a temperature (4K, which is far below their expected freezing point.

  14. Probing long-lived dark excitons in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Julsgaard, Brian; Stobbe, Søren

    2010-01-01

    size. The energy dependence is compared to a recent model from the literature, in which the spin flip is due to the combined action of short-range exchange interaction and acoustic phonons. We furthermore observe a pronounced enhancement of the spin-flip rate close to semiconductor-air interfaces......Long-lived dark exciton states are formed in self-assembled quantum dots due to the combination of the angular momentum of electrons and holes. The lifetime of dark excitons are determined by spin-flip processes that transfer dark excitons into radiative bright excitons. We employ time......-resolved spontaneous emission measurements in a modified local density of optical states to unambiguously record the spin-flip rate. Pronounced variations in the spin-flip rate with the quantum dot emission energy are observed demonstrating that the exciton storage time can be extended by controlling the quantum dot...

  15. Dynamic properties of excitons in ZnO/AlGaN/GaN hybrid nanostructures.

    Science.gov (United States)

    Forsberg, Mathias; Hemmingsson, Carl; Amano, Hiroshi; Pozina, Galia

    2015-01-20

    Hybrid samples based on ZnO colloidal nanocrystals (NCs) deposited on AlGaN/GaN quantum well (QW) structures with different top barrier thickness d = 3, 6 and 9 nm are studied by time-resolved photoluminescence. Thermal behavior of the QW exciton lifetime in the hybrids and in the bare QW structures has been compared and it has been found that the QW exciton recombination rate increases in the hybrid having d = 3 nm and decreases in the hybrid with d = 6 nm, while no change has been observed for the structure with d = 9 nm. It is suggested that non-radiative resonance energy transfer from the QW excitons to the ZnO NCs and a variation of the surface potential can both influence the QW exciton lifetime in the hybrids.

  16. Radiative lifetime measurements and oscillator strengths of astrophysical interest in HoIII

    OpenAIRE

    Zhang, Zhiguo; Somesfalean, Gabriel; Svanberg, Sune; Palmeri, P.; Quinet, P.; Biemont, E.

    2002-01-01

    Radiative lifetimes of three long-lived levels belonging to the 4f(10)5d configuration of Ho III have been measured, for the first time, using the time-resolved laser-induced fluorescence technique. A good agreement between the experimental lifetimes and theoretical results obtained within a multiconfigurational pseudo-relativistic Hartree-Fock (HFR) approach including core-polarization (CP) effects is observed provided an adequate scaling factor is applied to the <4f&VERBAR;r&VERB...

  17. Lifetime attributable risk for cancer from occupational radiation exposure among radiologic technologists

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Medical radiation workers were among the earliest occupational groups exposed to external ionizing radiation due to their administration of a range of medical diagnostic procedures. Ionizing radiation is a confirmed human carcinogen for most organ sites. This study, therefore, was aimed to estimate lifetime cancer risk from occupational exposure among radiologic technologists that has been recruited in 2012-2013. Our findings showed a small increased cancer risk in radiologic technologists from their occupational radiation exposure in Korea. However, continuous dose monitoring and strict regulation on occupational safety at the government level should be emphasized to prevent any additional health hazards from occupational radiation exposure. Our findings showed a small increased cancer risk in radiologic technologists from their occupational radiation exposure in Korea. However, continuous dose monitoring and strict regulation on occupational safety at the government level should be emphasized to prevent any additional health hazards from occupational radiation exposure.

  18. Radiation hardness and lifetime studies of the VCSELs for the ATLAS SemiConductor Tracker

    CERN Document Server

    Teng, P K; Chu, M L; Duh, T S; Gregor, I M; Hou, L S; Lee, S C; Song, P S; Su, D S

    2003-01-01

    Studies have been performed on the radiation hardness of the type of VCSELs**2 Vertical Cavity Surface Emitting Lasers. that will be used in the ATLAS SemicConductor Tracker. The measurements were made using 30 MeV proton beams, 24 GeV/c proton beams and a gamma source. The lifetime of the devices after irradiation was studied.

  19. The Measurement of Radiative Lifetimes Using Laser-Induced Fluorescence: Experimental Review and Astrophysical Application

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, E.A. den; Lawler, J.E. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Sneden, C. [Univ. of Texas, Austin, TX (United States). Dept. of Astronomy and McDonald Observatory

    2005-10-01

    One of the standard methods for determining atomic transition probabilities is to combine branching fractions measured using Fourier-transform spectrometry with radiative lifetimes measurements using laser-induced fluorescence (LIF). This combination of techniques provides an efficient method for measuring large sets of accurate, absolute transition probabilities. The radiative lifetimes, which provide the overall scaling for the transition probabilities, can be measured routinely to {+-}5% accuracy using time-resolved LIF. Although the time-resolved LIF technique we use does not achieve the accuracy of fast-beam LIF, the time-resolved technique does enable us to make measurements at a far greater rate (hundreds of level lifetimes per year). Care must be taken, however, to understand and control the systematic effects in time-resolved LIF measurements to maintain {+-}5% accuracy over a wide dynamic range and hundreds of lifetime measurements. Over the last 25 years, we have measured lifetimes for 47 spectra using time resolved LIF. Our atomic beam source can produce a slow beam of neutral and singly ionized atoms of nearly any element. Lifetimes from 2 ns to {approx}2{mu}s can be measured for energy levels ranging from 15,000 to {approx}60,000/cm. In this review we will describe our method of measuring radiative lifetimes with an emphasis on possible errors and techniques used for controlling them. The electronic bandwidth, linearity, and overall fidelity of the fast photomultiplier, cable connections, and transient waveform digitizer are concerns. Possible errors from atomic collisions, radiation trapping, Zeeman quantum beats, hyperfine quantum beats, atoms/ions escaping from the observation region before radiating, and from radiative cascade through lower levels must be understood and controlled. We will then present a recent example of the application of our transition probability data to abundance determinations in the sun and in metal-poor halo stars. Our

  20. Radiative Lifetimes and Atomic Transition Probabilities for Rare-Earth Elements

    Science.gov (United States)

    den Hartog, E. A.; Curry, J. J.; Anderson, Heidi M.; Wickliffe, M. E.; Lawler, J. E.

    1997-10-01

    Interest in rare-earth elements has been on the rise in recent years in both the lighting and astrophysics communities. The lighting industry is increasingly using rare-earths in high-intensity discharge (HID) lamps and require comprehensive sets of accurate oscillator strengths for the modelling of these lamps. Spectroscopic data on rare-earths is also needed in astrophysical studies such as those dealing with the evolution of chemically-peculiar stars. The present work is addressing this need with extensive radiative lifetime and branching fraction measurements, which when combined will yield a large database of absolute transition probabilities of the elements thulium, dysprosium, and holmium. Radiative lifetimes are measured using laser-induced fluorescence of a slow atomic/ionic beam. Branching fractions are determined from spectra recorded using the 1.0 meter Fourier-transform spectrometer at the National Solar Observatory. Lifetimes for 298 levels of Tm I and Tm II and 440 levels of Dy I and Dy II are complete. Branching fractions have been measured for 522 transitions of Tm I and Tm II. Work is underway on lifetimes of Ho and branching fractions of Dy. Representative lifetime and branching fraction data will be presented and discussed.

  1. Exciton dynamics in cuprous oxide

    NARCIS (Netherlands)

    Fishman, D. A.; Revcolevschi, A.; van Loosdrecht, P. H. M.; Stutzmann, M

    2006-01-01

    This work addresses the mid-infrared properties of cuprous oxide and in particular induced absorption due to the presence of excitons. We probe the population of the non-radiative ground state of para-excitons via laser-induced changes of the transmission in the "hydrogenic" 1s-2p/1s-3p transition

  2. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes

    Science.gov (United States)

    Wang, Xu; Alexander-Webber, Jack A.; Jia, Wei; Reid, Benjamin P. L.; Stranks, Samuel D.; Holmes, Mark J.; Chan, Christopher C. S.; Deng, Chaoyong; Nicholas, Robin J.; Taylor, Robert A.

    2016-11-01

    Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states.

  3. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes.

    Science.gov (United States)

    Wang, Xu; Alexander-Webber, Jack A; Jia, Wei; Reid, Benjamin P L; Stranks, Samuel D; Holmes, Mark J; Chan, Christopher C S; Deng, Chaoyong; Nicholas, Robin J; Taylor, Robert A

    2016-11-16

    Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states.

  4. Radiative lifetimes, branching fractions, and transition probabilities for Lu I, Lu II, and Lu III

    Science.gov (United States)

    Fedchak, J. A.; den Hartog, E. A.; Lawler, J. E.; Biemont, E.; Palmeri, P.; Quinet, P.

    2000-06-01

    In astrophysics, rare-earth abundances are particularly relevant to the study of chemically peculiar stars, stellar nucleosynthesis, and other problems. Accurate oscillator strengths are required to disentangle blends and obtain reliable abundance values. Rare-earth salts are also used in many commercial metal-halide high intensity discharge lamps. Accurate transition probabilities are required in the models used for lamp design and for diagnostics. We have determined accurate radiative lifetimes for the first three spectra of Lu using time-resolved laser-induced fluorescence on a slow beam of Lu ions and atoms. Lu I branching fractions have been determined from an emission spectra taken with a 1.0 m Fourier transform spectrometer at the National Solar Observatory (NSO). These are combined with the radiative lifetimes to produce 38 accurate transition probabilities for Lu I. The Lu I measurements are compared to new relativistic Hartree-Fock calculations.

  5. Electrons, holes, and excitons in GaAs polytype quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Climente, Juan I.; Segarra, Carlos; Rajadell, Fernando; Planelles, Josep, E-mail: josep.planelles@uji.es [Departament de Química Física i Analítica, Universitat Jaume I, E-12080 Castelló (Spain)

    2016-03-28

    Single and multi-band k⋅p Hamiltonians for GaAs crystal phase quantum dots are used to assess ongoing experimental activity on the role of such factors as quantum confinement, spontaneous polarization, valence band mixing, and exciton Coulomb interaction. Spontaneous polarization is found to be a dominating term. Together with the control of dot thickness [Vainorius et al., Nano Lett. 15, 2652 (2015)], it enables wide exciton wavelength and lifetime tunability. Several new phenomena are predicted for small diameter dots [Loitsch et al., Adv. Mater. 27, 2195 (2015)], including non-heavy hole ground state, strong hole spin admixture, and a type-II to type-I exciton transition, which can be used to improve the absorption strength and reduce the radiative lifetime of GaAs polytypes.

  6. Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-04-01

    Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.

  7. Bright, long-lived and coherent excitons in carbon nanotube quantum dots.

    Science.gov (United States)

    Hofmann, Matthias S; Glückert, Jan T; Noé, Jonathan; Bourjau, Christian; Dehmel, Raphael; Högele, Alexander

    2013-07-01

    Carbon nanotubes exhibit a wealth of unique physical properties. By virtue of their exceptionally low mass and extreme stiffness they provide ultrahigh-quality mechanical resonances, promise long electron spin coherence times in a nuclear-spin free lattice for quantum information processing and spintronics, and feature unprecedented tunability of optical transitions for optoelectronic applications. Excitons in semiconducting single-walled carbon nanotubes could facilitate the upconversion of spin, mechanical or hybrid spin-mechanical degrees of freedom to optical frequencies for efficient manipulation and detection. However, successful implementation of such schemes with carbon nanotubes has been impeded by rapid exciton decoherence at non-radiative quenching sites, environmental dephasing and emission intermittence. Here we demonstrate that these limitations may be overcome by exciton localization in suspended carbon nanotubes. For excitons localized in nanotube quantum dots we found narrow optical lines free of spectral wandering, radiative exciton lifetimes and effectively suppressed blinking. Our findings identify the great potential of localized excitons for efficient and spectrally precise interfacing of photons, phonons and spins in novel carbon nanotube-based quantum devices.

  8. Radiative lifetimes, branching fractions and oscillator strengths in Pd I and the solar palladium abundance

    Science.gov (United States)

    Xu, H. L.; Sun, Z. W.; Dai, Z. W.; Jiang, Z. K.; Palmeri, P.; Quinet, P.; Biémont, É.

    2006-06-01

    Transition probabilities have been derived for 20 5s-5p transitions of Pd I from a combination of radiative lifetime measurements for 6 odd-parity levels with time-resolved laser-induced fluorescence spectroscopy and of branching fraction determination using a hollow cathode discharge lamp. Additional oscillator strengths for 18 transitions have been determined from measured lifetimes and theoretical branching fractions obtained from configuration interaction calculations with core-polarization effects included. These new results have allowed us to refine the palladium abundance in the solar photosphere: A_Pd = 1.66 ± 0.04, in the usual logarithmic scale, a result in close agreement with the meteoritic value.

  9. Bound Exciton Complexes

    Science.gov (United States)

    Meyer, B. K.

    In the preceding chapter, we concentrated on the properties of free excitons. These free excitons may move through the sample and hit a trap, a nonradiative or a radiative recombination center. At low temperatures, the latter case gives rise to either deep center luminescence, mentioned in Sect. 7.1 and discussed in detail in Chap. 9, or to the luminescence of bound exciton complexes (BE or BEC). The chapter continues with the most prominent of these BECs, namely A-excitons bound to neutral donors. The next aspects are the more weakly BEs at ionized donors. The Sect. 7.4 treats the binding or localization energies of BEC from a theoretical point of view, while Sect. 7.5 is dedicated to excited states of BECs, which contain either holes from deeper valence bands or an envelope function with higher quantum numbers. The last section is devoted to donor-acceptor pair transitions. There is no section devoted specifically to excitons bound to neutral acceptors, because this topic is still partly controversially discussed. Instead, information on these A0X complexes is scattered over the whole chapter, however, with some special emphasis seen in Sects. 7.1, 7.4, and 7.5.

  10. Lower thresholds for lifetime health effects in mammals from high-LET radiation - Comparison with chronic low-LET radiation.

    Science.gov (United States)

    Sazykina, Tatiana G; Kryshev, Alexander I

    2016-12-01

    Lower threshold dose rates and confidence limits are quantified for lifetime radiation effects in mammalian animals from internally deposited alpha-emitting radionuclides. Extensive datasets on effects from internal alpha-emitters are compiled from the International Radiobiological Archives. In total, the compiled database includes 257 records, which are analyzed by means of non-parametric order statistics. The generic lower threshold for alpha-emitters in mammalian animals (combined datasets) is 6.6·10(-5) Gy day(-1). Thresholds for individual alpha-emitting elements differ considerably: plutonium and americium - 2.0·10(-5) Gy day(-1); radium - 2.1·10(-4) Gy day(-1). Threshold for chronic low-LET radiation is previously estimated at 1·10(-3) Gy day(-1). For low exposures, the following values of alpha radiation weighting factor wR for internally deposited alpha-emitters in mammals are quantified: wR(α) = 15 as a generic value for the whole group of alpha-emitters; wR(Pu) = 50 for plutonium; wR(Am) = 50 for americium; wR(Ra) = 5 for radium. These values are proposed to serve as radiation weighting factors in calculations of equivalent doses to non-human biota. The lower threshold dose rate for long-lived mammals (dogs) is significantly lower than comparing with the threshold for short-lived mammals (mice): 2.7·10(-5) Gy day(-1), and 2.0·10(-4) Gy day(-1), respectively. The difference in thresholds is exactly reflecting the relationship between the natural longevity of these two species. Graded scale of severity in lifetime radiation effects in mammals is developed, based on compiled datasets. Being placed on the severity scale, the effects of internal alpha-emitters are situated in the zones of considerably lower dose rates than effects of the same severity caused by low-LET radiation. RBE values, calculated for effects of equal severity, are found to depend on the intensity of chronic exposure: different RBE values are characteristic for low

  11. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B. [CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23238 (United States)

    2014-09-07

    Optical properties of GaN/Al{sub 0.2}Ga{sub 0.8}N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 10{sup 12} cm{sup −2} and a radiative recombination time of τ{sub loc} = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.

  12. Information bias and lifetime mortality risks of radiation-induced cancer: Low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, L.E.; Schull, W.J.; Davis, B.R. [Texas Univ., Houston, TX (United States). Health Science Center; Buffler, P.A. [California Univ., Berkeley, CA (United States). School of Public Health

    1994-04-01

    Additive and multiplicative models of relative risk were used to measure the effect of cancer misclassification and DS86 random errors on lifetime risk projections in the Life Span Study (LSS) of Hiroshima and Nagasaki atomic bomb survivors. The true number of cancer deaths in each stratum of the cancer mortality cross-classification was estimated using sufficient statistics from the EM algorithm. Average survivor doses in the strata were corrected for DS86 random error ({sigma}=0.45) by use of reduction factors. Poisson regression was used to model the corrected and uncorrected mortality rates with risks in RERF Report 11 (Part 2) and the BEIR-V Report. Bias due to DS86 random error typically ranged from {minus}15% to {minus}30% for both sexes, and all sites and models. The total bias, including diagnostic misclassification, of excess risk of nonleukemia for exposure to 1 Sv from age 18 to 65 under the non-constant relative project model was {minus}37.1% for males and {minus}23.3% for females. Total excess risks of leukemia under the relative projection model were biased {minus}27.1% for males and {minus}43.4% for females. Thus, nonleukemia risks for 1 Sv from ages 18 to 65 (DRREF=2) increased from 1.91%/Sv to 2.68%/Sv among males and from 3.23%/Sv to 4.92%/Sv among females. Leukemia excess risk increased from 0.87%/Sv to 1.10/Sv among males and from 0.73%/Sv to 1.04/Sv among females. Bias was dependent on the gender, site, correction method, exposure profile and projection model considered. Future studies that use LSS data for US nuclear workers may be downwardly biased if lifetime risk projections are not adjusted for random and systematic errors.

  13. Spatial Mapping of the Mobility-Lifetime (microtau) Production in Cadmium Zinc Telluride Nuclear Radiation Detectors Using Transport Imaging

    Science.gov (United States)

    2013-06-01

    its good electron transport. However, CdZnTe crystals are susceptible to growth defects such as grain boundaries, twin boundaries, and tellurium (Te...good electron transport. However, CdZnTe crystals are susceptible to growth defects such as grain boundaries, twin boundaries, and tellurium (Te...lifetime (left) or non-radiative lifetime (right). ..............63 Figure 49. Gettering of excess tellurium towards a point defect within the CdZnTe

  14. Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: Experiment and theory

    DEFF Research Database (Denmark)

    Stobbe, Søren; Johansen, Jeppe; Kristensen, Philip Trøst

    2009-01-01

    of the exciton wave function on quantum dot size. We derive the quantum optics theory of a solid-state emitter in an inhomogeneous environment and compare this theory to our experimental results. Using this model, we extract the frequency dependence of the overlap between the electron and hole wave functions. We......We analyze time-resolved spontaneous emission from excitons confined in self-assembled InAs quantum dots placed at various distances to a semiconductor-air interface. The modification of the local density of optical states due to the proximity of the interface enables unambiguous determination...

  15. Exciton quantum confinement in nanocones formed on a surface of CdZnTe solid solution by laser radiation.

    Science.gov (United States)

    Medvid', Artur; Litovchenko, Natalia; Mychko, Aleksandr; Naseka, Yuriy

    2012-09-20

    The investigation of surface morphology using atomic force microscope has shown self-organizing of the nanocones on the surface of CdZnTe crystal after irradiation by strongly absorbed Nd:YAG laser irradiation at an intensity of 12.0 MW/cm2. The formation of nanocones is explained by the presence of a thermogradient effect in the semiconductor. The appearance of a new exciton band has been observed after irradiation by the laser which is explained by the exciton quantum confinement effect in nanocones.

  16. Lateral excitonic switching in vertically stacked quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Galbraith, Ian [Institute of Photonics and Quantum Sciences, SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Shumway, John [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-06-14

    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are also discussed.

  17. Calculation of energy levels, lifetimes and radiative data for La XXIX to Sm XXXIV

    Science.gov (United States)

    Goyal, Arun; Khatri, Indu; Aggarwal, Sunny; Singh, A. K.; Mohan, Man

    2016-01-01

    We present the most comprehensive atomic data for La XXIX to Sm XXXIV with single electron excitation from M-shell to N-shell and N-shell to higher shells. We have presented energy levels, lifetimes and radiative data using Multi-configuration Dirac-Fock (MCDF) method for the lowest 27 states belonging to the configuration 3d104l (l = 0 , 1 , 2 , 3), 3d105l (l = 0 , 1 , 2 , 3 , 4), 3d106l (l = 0 , 1 , 2 , 3 , 4) and 3d94s2. We have also considered relativistic effects by incorporating quantum electrodynamics (QED) and Breit corrections. We have made comparisons of our presented results with available theoretical as well as experimental results and a good agreement is achieved. Further, we have also reported energy levels by performing distorted wave calculations with fully relativistic flexible atomic code (FAC). The calculations match well with MCDF results. Additionally, we have investigated the effect of nuclear charge on transition wavelength and radiative rates for strong Extreme Ultraviolet (EUV) transitions from n = 4 → 4. We believe that our reported data in this work may be useful in various applications of lanthanide ions related to broad area of research such as applied physics, laser physics and astrophysics etc.

  18. Constraints to the radiative lifetime of a light neutral fermion in the galactic halo from IUE

    Energy Technology Data Exchange (ETDEWEB)

    Auriemma, G.; Bochicchio, F.; Frenkel, A.; Massa, F.

    We present the negative result of a search for the radiative decay of a light neutral fermion, that might be the neutrino (if massive) or the photino, gravitationally bounded to our Galaxy. The limit obtained for the radiative lifetime of a particle of mass between 12.5 and 21.5 eV is proportional10/sup 18/ years. These new data on UV background in the range (1250/2000) A show the presence of continuum emission and diffuse lines emission at high galactic latitude (vertical strokebsup(II)vertical stroke>45/sup 0/). The lines are identifiable with C IV, lambda=1549 A and N III, lambda=1749 A. The continuum level sharply rises at 1680 A to the level of (314+-136) photons/(cm/sup 2/ s sr A) and remains nearly constant up to 2000 A. Below 1680 A we found no emission with an upper limit of proportional100 units. These new data are briefly discussed in comparison with the results of previous experiments and theoretical expectations.

  19. Atomistic model for excitons: Capturing Strongly Bound Excitons in Monolayer Transition-Metal Dichalcogenides

    Science.gov (United States)

    Tseng, Frank; Simsek, Ergun; Gunlycke, Daniel

    2015-03-01

    Monolayer transition-metal dichalcogenides form a direct bandgap predicted in the visible regime making them attractive host materials for various electronic and optoelectronic applications. Due to a weak dielectric screening in these materials, strongly bound electron-hole pairs or excitons have binding energies up to at least several hundred meV's. While the conventional wisdom is to think of excitons as hydrogen-like quasi-particles, we show that the hydrogen model breaks down for these experimentally observed strongly bound, room-temperature excitons. To capture these non-hydrogen-like photo-excitations, we introduce an atomistic model for excitons that predicts both bright excitons and dark excitons, and their broken degeneracy in these two-dimensional materials. For strongly bound exciton states, the lattice potential significantly distorts the envelope wave functions, which affects predicted exciton peak energies. The combination of large binding energies and non-degeneracy of exciton states in monolayer transition metal dichalogendies may furthermore be exploited in room temperature applications where prolonged exciton lifetimes are necessary. This work has been funded by the Office of Naval Research (ONR), directly and through the Naval Research Laboratory (NRL). F.T and E.S acknowledge support from NRL through the NRC Research Associateship Program and ONR Summer Faculty Program, respectively.

  20. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    Science.gov (United States)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  1. Numerical simulation of exciton dynamics in Cu2O at ultra-low temperatures within a potential trap.

    Science.gov (United States)

    Som, Sunipa; Kieseling, Frank; Stolz, Heinrich

    2012-08-22

    We have studied theoretically the relaxation behaviour of excitons in cuprous oxide (Cu(2)O) at ultra-low temperatures when excitons are confined within a potential trap by solving numerically the Boltzmann equation. As relaxation processes, we have included in this paper deformation potential phonon scattering, radiative and non-radiative decay and Auger decay. The relaxation kinetics has been analysed for temperatures in the range between 0.3 and 5 K. Under the action of deformation potential phonon scattering only, we find for temperatures above 0.5 K that the excitons reach local equilibrium with the lattice, i.e. that the effective local temperature is coming down to the bath temperature, while below 0.5 K a non-thermal energy distribution remains. Interestingly, for all temperatures the global spatial distribution of excitons does not reach the equilibrium distribution, but stays at a much higher effective temperature. If we include further a finite lifetime of the excitons and the two-particle Auger decay, we find that both the local and the global effective temperature do not come down to the bath temperature. In the first case we find that a Bose-Einstein condensation (BEC) occurs for all temperatures in the investigated range. Comparing our results with the thermal equilibrium case, we find that BEC occurs for a significantly higher number of excitons in the trap. This effect could be related to the higher global temperature, which requires an increased number of excitons within the trap to observe the BEC. In the case of Auger decay, we do not find a BEC at any temperature due to the local heating of the exciton gas.

  2. Quenching of the luminescence intensity of GaN nanowires under electron beam exposure: impact of C adsorption on the exciton lifetime

    Science.gov (United States)

    Lähnemann, Jonas; Flissikowski, Timur; Wölz, Martin; Geelhaar, Lutz; Grahn, Holger T.; Brandt, Oliver; Jahn, Uwe

    2016-11-01

    Electron irradiation of GaN nanowires in a scanning electron microscope strongly reduces their luminous efficiency as shown by cathodoluminescence imaging and spectroscopy. We demonstrate that this luminescence quenching originates from a combination of charge trapping at already existing surface states and the formation of new surface states induced by the adsorption of C on the nanowire sidewalls. The interplay of these effects leads to a complex temporal evolution of the quenching, which strongly depends on the incident electron dose per area. Time-resolved photoluminescence measurements on electron-irradiated samples reveal that the carbonaceous adlayer affects both the nonradiative and the radiative recombination dynamics.

  3. Photonic Crystal Architecture for Room-Temperature Equilibrium Bose-Einstein Condensation of Exciton Polaritons

    Science.gov (United States)

    Jiang, Jian-Hua; John, Sajeev

    2014-07-01

    We describe photonic crystal microcavities with very strong light-matter interaction to realize room-temperature, equilibrium, exciton-polariton Bose-Einstein condensation (BEC). This goal is achieved through a careful balance between strong light trapping in a photonic band gap (PBG) and large exciton density enabled by a multiple quantum-well (QW) structure with a moderate dielectric constant. This approach enables the formation of a long-lived, dense 10-μm-1-cm- scale cloud of exciton polaritons with vacuum Rabi splitting that is roughly 7% of the bare exciton-recombination energy. We introduce a woodpile photonic crystal made of Cd0.6 Mg0.4Te with a 3D PBG of 9.2% (gap-to-central-frequency ratio) that strongly focuses a planar guided optical field on CdTe QWs in the cavity. For 3-nm QWs with 5-nm barrier width, the exciton-photon coupling can be as large as ℏΩ=55 meV (i.e., a vacuum Rabi splitting of 2ℏΩ=110 meV). The exciton-recombination energy of 1.65 eV corresponds to an optical wavelength of 750 nm. For N =106 QWs embedded in the cavity, the collective exciton-photon coupling per QW (ℏΩ/√N =5.4 meV) is much larger than the state-of-the-art value of 3.3 meV, for the CdTe Fabry-Pérot microcavity. The maximum BEC temperature is limited by the depth of the dispersion minimum for the lower polariton branch, over which the polariton has a small effective mass of approximately 10-5m0, where m0 is the electron mass in vacuum. By detuning the bare exciton-recombination energy above the planar guided optical mode, a larger dispersion depth is achieved, enabling room-temperature BEC. The BEC transition temperature ranges as high as 500 K when the polariton density per QW is increased to (11aB)-2, where aB≃3.5 nm is the exciton Bohr radius and the exciton-cavity detuning is increased to 30 meV. A high-quality PBG can suppress exciton radiative decay and enhance the polariton lifetime to beyond 150 ps at room temperature, sufficient for thermal

  4. Photonic Crystal Architecture for Room-Temperature Equilibrium Bose-Einstein Condensation of Exciton Polaritons

    Directory of Open Access Journals (Sweden)

    Jian-Hua Jiang

    2014-08-01

    Full Text Available We describe photonic crystal microcavities with very strong light-matter interaction to realize room-temperature, equilibrium, exciton-polariton Bose-Einstein condensation (BEC. This goal is achieved through a careful balance between strong light trapping in a photonic band gap (PBG and large exciton density enabled by a multiple quantum-well (QW structure with a moderate dielectric constant. This approach enables the formation of a long-lived, dense 10-μm-1-cm- scale cloud of exciton polaritons with vacuum Rabi splitting that is roughly 7% of the bare exciton-recombination energy. We introduce a woodpile photonic crystal made of Cd_{0.6}  Mg_{0.4}Te with a 3D PBG of 9.2% (gap-to-central-frequency ratio that strongly focuses a planar guided optical field on CdTe QWs in the cavity. For 3-nm QWs with 5-nm barrier width, the exciton-photon coupling can be as large as ℏΩ=55  meV (i.e., a vacuum Rabi splitting of 2ℏΩ=110  meV. The exciton-recombination energy of 1.65 eV corresponds to an optical wavelength of 750 nm. For N=106 QWs embedded in the cavity, the collective exciton-photon coupling per QW (ℏΩ/sqrt[N]=5.4  meV is much larger than the state-of-the-art value of 3.3 meV, for the CdTe Fabry-Pérot microcavity. The maximum BEC temperature is limited by the depth of the dispersion minimum for the lower polariton branch, over which the polariton has a small effective mass of approximately 10^{−5}m_{0}, where m_{0} is the electron mass in vacuum. By detuning the bare exciton-recombination energy above the planar guided optical mode, a larger dispersion depth is achieved, enabling room-temperature BEC. The BEC transition temperature ranges as high as 500 K when the polariton density per QW is increased to (11a_{B}^{−2}, where a_{B}≃3.5  nm is the exciton Bohr radius and the exciton-cavity detuning is increased to 30 meV. A high-quality PBG can suppress exciton radiative decay and enhance the polariton

  5. Theoretical oscillator strengths, transition probabilities, and radiative lifetimes of levels in Pb V

    Energy Technology Data Exchange (ETDEWEB)

    Colón, C., E-mail: cristobal.colon@upm.es [Dpto. Física Aplicada. E.U.I.T. Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Alonso-Medina, A. [Dpto. Física Aplicada. E.U.I.T. Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Porcher, P. [Laboratoire de Chimie Appliquée de l’Etat Solide, CNRS-UMR 7574, Paris (France)

    2014-01-15

    Theoretical values of oscillator strengths and transition probabilities for 306 spectral lines arising from the 5d{sup 9}ns(n=7,8,9),5d{sup 9}np(n=6,7),5d{sup 9}6d, and 5d{sup 9} 5f configurations, and radiative lifetimes of 9 levels, of Pb V have been obtained. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree–Fock calculations including core-polarization effects. We use for the IC calculations the standard method of least squares fitting of experimental energy levels by means of computer codes from Cowan. We included in these calculations the 5d{sup 8}6s6p and 5d{sup 8}6s{sup 2} configurations. These calculations have facilitated the identification of the 214.25, 216.79, and 227.66 nm spectral lines of Pb V. In the absence of experimental results of oscillator strengths and transition probabilities, we could not make a direct comparison with our results. However, the Stark broadening parameters calculated from these values are in excellent agreement with experimental widening found in the literature. -- Highlights: •Theoretical values of transition probabilities of Pb V have been obtained. •We use for the IC calculations the standard method of least square. •The parameters calculated from these values are in agreement with the experimental values.

  6. Excitons in core-only, core-shell and core-crown CdSe nanoplatelets: Interplay between in-plane electron-hole correlation, spatial confinement, and dielectric confinement

    Science.gov (United States)

    Rajadell, Fernando; Climente, Juan I.; Planelles, Josep

    2017-07-01

    Using semianalytical models we calculate the energy, effective Bohr radius, and radiative lifetime of neutral excitons confined in CdSe colloidal nanoplatelets (NPLs). The excitonic properties are largely governed by the electron-hole in-plane correlation, which in NPLs is enhanced by the quasi-two-dimensional motion and the dielectric mismatch with the organic environment. In NPLs with lateral size L ≳20 nm the exciton behavior is essentially that in a quantum well, with super-radiance leading to exciton lifetimes of 1 ps or less, only limited by the NPL area. However, for L crown configurations. In the former, the strong vertical confinement limits separation of electrons and holes even for type-II band alignment. The exciton behavior is then similar to that in core-only NPL, albeit with weakened dielectric effects. In the latter, charge separation is also inefficient if band alignment is quasi-type-II (e.g., in CdSe/CdS), because electron-hole interaction drives both carriers into the core. However, it becomes very efficient for type-II alignment, for which we predict exciton lifetimes reaching microseconds.

  7. Leakage radiation spectroscopy of organic/dielectric/metal systems: influence of SiO2 on exciton-surface plasmon polariton interaction

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Kawalec, Tomasz; Kostiučenko, Oksana

    excitons and surface plasmon polaritons (SPPs) of the metal/dielectric boundary. The presence of the SiO2 layer considerably changes the dispersion curve in comparison to the one of the Ag/p-6P/air system. However, the Ag/SiO2/p-6P/air stack forms a stable structure allowing construction of organic......Leakage radiation spectroscopy of organic para-Hexaphenylene (p-6P) molecules has been performed in the spectral range 420-675 nm which overlaps with the p-6P photoluminescence band. The p-6P was deposited on 40 nm silver (Ag) films on BK7 glass, covered with SiO2 layers. The SiO2 layer thickness...

  8. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, L.E. [Chronic Disease Prevention and Control Research Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, ST-924 Houston, TX (United States); Cucinotta, F.A. [Space and Life Sciences Directorate, Lyndon B. Johnson Space Center, National Aeronautics and Space Administration, Houston, TX (United States)

    1999-12-06

    Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/{mu}m), 1 MeV {alpha}-particles (LET=100 keV/{mu}m), and 600 MeV iron particles (LET=180 keV/{mu}m) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 {mu}m{sup 2}. Lifetime risk per proton was 2.68x10{sup -2}% (90% confidence limit, 0.79x10{sup -3}%-0.514x10{sup -2}%). For {alpha}-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence

  9. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station

    Science.gov (United States)

    Peterson, L. E.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1999-01-01

    Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/micrometer), 1 MeV alpha-particles (LET=100 keV/micrometer), and 600 MeV iron particles (LET=180 keV/micrometer) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 micrometer(2). Lifetime risk per proton was 2.68x10(-2)% (90% confidence limit, 0.79x10(-3)%-0. 514x10(-2)%). For alpha-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence

  10. Plasmon-Exciton-Polariton Lasing

    CERN Document Server

    Ramezani, Mohammad; Fernández-Domínguez, Antonio I; Feist, Johannes; Rodriguez, Said Rahimzadeh-Kalaleh; Garcia-Vidal, Francisco J; Gómez-Rivas, Jaime

    2016-01-01

    Strong coupling of Frenkel excitons with surface plasmons leads to the formation of bosonic quasi-particles known as plasmon-exciton-polaritons (PEPs).Localized surface plasmons in nanoparticles are lossy due to radiative and nonradiative decays, which has hampered the realization of polariton lasing in a plasmonic system, i.e., PEP lasing. These losses can be reduced in collective plasmonic resonances supported by arrays of nanoparticles. Here we demonstrate PEP lasing in arrays of silver nanoparticles by showing the emergence of a threshold in the photoluminescence accompanied by both a superlinear increase of the emission and spectral narrowing. We also observe a reduction of the threshold by increasing the coupling between the molecular excitons and the resonances supported by the array despite the reduction of the quantum efficiency of the emitters. The coexistence of bright and dark collective modes in this plasmonic system allows for a 90?-change of polarization in the emission beyond the threshold.

  11. Estimating the excess lifetime risk of radiation induced secondary malignancy (SMN) in pediatric patients treated with craniospinal irradiation (CSI): Conventional radiation therapy versus helical intensity modulated radiation therapy.

    Science.gov (United States)

    Holmes, Jordan A; Chera, Bhishamjit S; Brenner, David J; Shuryak, Igor; Wilson, Adam K; Lehman-Davis, Misty; Fried, David V; Somasundaram, Vivek; Lian, Jun; Cullip, Tim; Marks, Lawrence B

    To quantify the risk of radiation-induced second malignancies (SMN) in pediatric patients receiving craniospinal irradiation (CSI) either with 3-dimensional conformal radiation therapy (Conv CSI) or tomotherapy helical intensity modulated radiation therapy (Tomo CSI). A novel predictive model that accounts for short- and long-term carcinogenesis was incorporated into our institutional treatment planning system to quantify the lifetime risk of SMN in incidentally irradiated organs. Five pediatric patients previously treated with CSI were studied. For each case, Conv CSI and Tomo CSI plans were computed. The excess absolute number of SMN was computed for each plan for each patient. For female patients, age was varied to assess its impact. Tomo CSI has a much higher risk than Conv CSI for breast cancer. Tomo has a slightly increased risk for the lung, and conventional has a slightly higher risk for the thyroid. Both techniques have intermediate risks to the pancreas and stomach, and lesser risks to the bladder and rectum. For the breast, the magnitude of the absolute risks varied with age: 14.2% versus 7.4% (Tomo vs Conv) age 5; 16.9% versus 7.6% age 10, and 18.6% versus 8.0% age 15. Tomo has a higher risk for inducing breast and lung second cancers, and when using Tomo-based intensity modulated radiation therapy, care should be taken to avoid incidental radiation to the breast. When planning CSI, one needs to balance these cancer risks against other normal tissue effects. Copyright © 2016. Published by Elsevier Inc.

  12. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  13. Radiation hardness and lifetime studies of LEDs and VCSELs for the optical readout of the ATLAS SCT

    CERN Document Server

    Beringer, J; Mommsen, R K; Nickerson, R B; Weidberg, A R; Monnier, E; Hou, H Q; Lear, K L

    1999-01-01

    We study the radiation hardness and the lifetime of Light Emitting Diodes (LEDs) and Vertical Cavity Surface Emitting Laser diodes (VCSELs) in the context of the development of the optical readout for the ATLAS SemiConductor Tracker (SCT) at LHC. About 170 LEDs from two different manufacturers and about 130 VCSELs were irradiated with neutron and proton fluences equivalent to (and in some cases more than twice as high as) the combined neutral and charged particle fluence of about 5x10 sup 1 sup 4 n (1 MeV eq. in GaAs)/cm sup 2 expected in the ATLAS inner detector. We report on the radiation damage and the conditions required for its partial annealing under forward bias, we calculate radiation damage constants, and we present post-irradiation failure rates for LEDs and VCSELs. The lifetime after irradiation was investigated by operating the diodes at an elevated temperature of 50 degree sign C for several months, resulting in operating times corresponding to up to 70 years of operation in the ATLAS SCT. From o...

  14. Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits.

    Science.gov (United States)

    Foell, Charles A; Schelew, Ellen; Qiao, Haijun; Abel, Keith A; Hughes, Stephen; van Veggel, Frank C J M; Young, Jeff F

    2012-05-07

    We report coupling of the excitonic photon emission from photoexcited PbSe colloidal quantum dots (QDs) into an optical circuit that was fabricated in a silicon-on-insulator wafer using a CMOS-compatible process. The coupling between excitons and sub-μm sized silicon channel waveguides was mediated by a photonic crystal microcavity. The intensity of the coupled light saturates rapidly with the optical excitation power. The saturation behaviour was quantitatively studied using an isolated photonic crystal cavity with PbSe QDs site-selectively located at the cavity mode antinode position. Saturation occurs when a few μW of continuous wave HeNe pump power excites the QDs with a Gaussian spot size of 2 μm. By comparing the results with a master equation analysis that rigorously accounts for the complex dielectric environment of the QD excitons, the saturation is attributed to ground state depletion due to a non-radiative exciton decay channel with a trap state lifetime ~ 3 μs.

  15. Thermal degradation kinetics and estimation of lifetime of radiation grafted polypropylene films

    Science.gov (United States)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Bhalla, Vinod Kumar

    2017-07-01

    In this research work, thermal stability and degradation behavior of acrylic acid grafted polypropylene (PP-g-PAAc) films were investigated by using thermogravimetric (TGA) analysis at four different heating rates 5, 10, 15 and 20 °C/min over a temperature range of 40-550 °C in nitrogen atmosphere. The kinetic parameters namely activation energy (Ea), reaction order (n) and frequency factor (Z) were calculated by three multiple heating rate methods. The thermal stability of PP-g-PAAc films is found to decrease with increase in degree of grafting. The TGA data and thermal kinetic parameters were also used to predict the lifetime of grafted PP films. The estimated lifetime of neat PP as well as grafted PP decreased with increase in temperature by all the three methods. Studies also indicated that Ea and lifetime of PP-g-PAAc films decreased with increase in degree of grafting, which may also be helpful in biodegradation of grafted PP films.

  16. Mapping the exciton diffusion in semiconductor nanocrystal solids.

    Science.gov (United States)

    Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail

    2015-03-24

    Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling.

  17. The determination of minority carrier lifetimes in direct band-gap semiconductors by monitoring intensity-modulated luminescence radiation

    Science.gov (United States)

    Von Roos, O.

    1985-01-01

    When an extrinsic, direct band-gap semiconductor sample is irradiated by photons of an energy higher than the energy of the band gap between valence and conduction bands, excess electron-hole pairs are generated which, while diffusing through the sample, produce luminescence via radiative recombination. If, furthermore, the intensity of the impinging beam of photons is modulated sinusoidally, the luminescence radiation escaping from the sample will be phase shifted with respect to the original photon beam in a characteristic way. It will be shown that by measuring the phase shift at different modulation frequencies, the Shockley-Read-Hall lifetime of minority carriers may be ascertained. The method is nondestructive inasmuch as there is no need to fabricate p-n junctions or Ohmic contacts, nor is it necessary to remove already existing Ohmic contacts of angle lap the surface, etc., procedures often needed when determining lifetimes with the scanning electron microscope (in which case a p-n junction must be present).

  18. Leakage radiation spectroscopy of organic nanofibers on metal films: evidence for exciton-surface plasmon polariton interaction

    DEFF Research Database (Denmark)

    Jozefowski, Leszek; Fiutowski, Jacek; Bordo, Vladimir

    2012-01-01

    technqiue, domains of mutually parallel oriented organic nanofibers were initially grown under high-vacuum conditions by molecularbeam epitaxy onto a cleaved muscovite mica substrate and afterwards transferred onto a silver film prepared on the glass carrier. The sample placed on a flat side of a hemisphere...... prism with an index matching liquid was illuminated by either a He-Cd 325 nm laser or by white light from a bulb. In the case of laser excitation two orthogonal linear polarizations and two different configurations of p-6P nanofibers were applied, both parallel and perpendicular to the plane...... of detection. The leakage radiation was observed on the opposite side of the Ag film at the phase matching angle. The spectrally resolved intensity of the scattered radiation has been measured as a function of scattering angle at normally incident light. The spectrum contains a distinct peak at an wavelength...

  19. Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules.

    Science.gov (United States)

    Kwak, Kyuju; Thanthirige, Viraj Dhanushka; Pyo, Kyunglim; Lee, Dongil; Ramakrishna, Guda

    2017-10-05

    The energy gap law relates the nonradiative decay rate to the energy gap separating the ground and excited states. Here we report that the energy gap law can be applied to exciton dynamics in gold cluster molecules. Size-dependent electrochemical and optical properties were investigated for a series of n-hexanethiolate-protected gold clusters ranging from Au25 to Au333. Voltammetric studies reveal that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of these clusters decrease with increasing cluster size. Combined femtosecond and nanosecond time-resolved transient absorption measurements show that the exciton lifetimes decrease with increasing cluster size. Comparison of the size-dependent exciton lifetimes with the HOMO-LUMO gaps shows that they are linearly correlated, demonstrating the energy gap law for excitons in these gold cluster molecules.

  20. Two-Year and Lifetime Cost-Effectiveness of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Head-and-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Racquel E. [Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Sheets, Nathan C. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Wheeler, Stephanie B. [Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Nutting, Chris [Royal Marsden Hospital, London, United Kindom (United Kingdom); Hall, Emma [Clinical Trials and Statistics Unit, Division of Clinical Studies, Institute of Cancer Research, London (United Kingdom); Chera, Bhishamjit S., E-mail: bchera@med.unc.edu [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States)

    2013-11-15

    Purpose: To assess the cost-effectiveness of intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of head-and neck-cancer (HNC). Methods and Materials: We used a Markov model to simulate radiation therapy-induced xerostomia and dysphagia in a hypothetical cohort of 65-year-old HNC patients. Model input parameters were derived from PARSPORT (CRUK/03/005) patient-level trial data and quality-of-life and Medicare cost data from published literature. We calculated average incremental cost-effectiveness ratios (ICERs) from the US health care perspective as cost per quality-adjusted life-year (QALY) gained and compared our ICERs with current cost-effectiveness standards whereby treatment comparators less than $50,000 per QALY gained are considered cost-effective. Results: In the first 2 years after initial treatment, IMRT is not cost-effective compared with 3D-CRT, given an average ICER of $101,100 per QALY gained. However, over 15 years (remaining lifetime on the basis of average life expectancy of a 65-year-old), IMRT is more cost-effective at $34,523 per QALY gained. Conclusion: Although HNC patients receiving IMRT will likely experience reduced xerostomia and dysphagia symptoms, the small quality-of-life benefit associated with IMRT is not cost-effective in the short term but may be cost-effective over a patient's lifetime, assuming benefits persist over time and patients are healthy and likely to live for a sustained period. Additional data quantifying the long-term benefits of IMRT, however, are needed.

  1. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    Directory of Open Access Journals (Sweden)

    Medvid Artur

    2011-01-01

    Full Text Available Abstract On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity.

  2. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    Science.gov (United States)

    2011-01-01

    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity. PMID:22060172

  3. Storing excitons in transition-metal dichalcogenides using dark states

    Science.gov (United States)

    Gunlycke, Daniel; Tseng, Frank; Simsek, Ergun

    Monolayer transition-metal dichalcogenides exhibit strongly bound excitons confined to two dimensions. One challenge in exploiting these excitons is that they have a finite life time and collapse through electron-hole recombination. We propose that the exciton life time could be extended by transitioning the exciton population into dark states. The symmetry of these dark states require the electron and hole to be spatially separated, which not only causes these states to be optically inactive but also inhibits electron-hole recombination. Based on an atomistic model we call the Triangular Lattice Exciton (3ALE) model, we derive transition matrix elements and approximate selection rules showing that excitons could be transitioned into and out of dark states using a pulsed infrared laser. For illustration, we also present exciton population scenarios based on different recombination decay constants. Longer exciton lifetimes could make these materials candidates for applications in energy management and quantum information processing. This work was supported by the Office of Naval Research, directly and through the Naval Research Laboratory.

  4. Exciton laser rate equations

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.

    2011-08-01

    Full Text Available The rate equations of the exciton laser in the system of interacting excitons have been obtained and the inverted population conditions and generation have been derived. The possibility of creating radically new gamma-ray laser has been shown.

  5. Estimate of thermal fatigue lifetime for the INCONEL 625lCF plate while exposed to concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Morin, A.; Fernandez-Reche, J.

    2011-07-01

    A system for testing the thermal cycling of materials and components has been developed and installed at the DISTAL-I parabolic dish facility located at the Plataforma Solar de Almeria (PSA) in Spain. This system allows us to perform abrupt heating/cooling tests by exposing central solar receiver materials to concentrated solar radiation. These tests are performed to simulate both the normal and critical operational conditions of the central solar receiver. The thermal fatigue life for the INCONEL 625LCF plate when subjected to concentrated solar radiation has been estimated with this system. We have also developed a numerical model that evaluates the thermal behavior of the plate material; additionally, the model yields the tensile-compressive stresses on the plate, which allow the estimation of the Stress-Life (S-N) fatigue curves. These curves show that the lifetime of the plate is within the High Cycle Fatigue (HCF) region at the operational temperatures of both 650 degree centigrade and 900 degree centigrade. (Author) 20 refs.

  6. Reactions of electronically excited boron atoms. Quenching rate constants and the radiative lifetime of the 4p 2P state

    Science.gov (United States)

    Yang, Xuefeng; Dagdigian, Paul J.

    1992-12-01

    Collisional quenching and radiative decay of the 4p 2P level of the boron atom has been studied in a cell experiment, in which B atoms are prepared by 266 nm multiphoton dissociation of BBr 3 and the 4p 2P level is prepared by sequential 2-photon absorption through the 3s 2S level. A radiative lifetime of 360 ± 50 ns is derived for B (4p 2P) by extrapolation of the measured decay rates versus BBr 3 partial pressure in several Torr helium buffer gas. Bimolecular quenching rate constants were also determined for a number of atomic and molecular species from the dependence of the B (4p 2P) decay rate on the quencher gas partial pressure. The quenching rate constants for the molecular species were quite large (≈(1-2)×10 -9 molecule -1 cm 3 s -1), presumably reflecting the small B (4p 2P) ionization potential and the rapid removal of the excited state by chemical reaction.

  7. Assessment of excess lifetime cancer risk from gamma radiation levels in Effurun and Warri city of Delta state, Nigeria

    Directory of Open Access Journals (Sweden)

    Agbalagba O. Ezekiel

    2017-05-01

    Full Text Available A study of the terrestrial BIR levels to estimate the excess lifetime cancer risk in Warri city has been carried out, using a Digilert 100 nuclear radiation monitor and a geographical positioning system (GPS for GIS mapping. Monitoring of the terrestrial BIR levels was carried out between May 2014 and June 2015, and the city was delineated into eight zones. The measured average exposure rates ranged from 0.006 mRh−1 (0.51 mSvy−1 to 0.029 mRh−1 (2.49 mSvy−1 with an overall mean value of 0.016 ± 0.006 mRh−1 (1.37 ± 0.47 mSvy−1. The estimated mean outdoor absorbed dose rate for each zone ranged from 121.90 ± 25.32 nGyh−1 in the Ajamogha zone to 190.16 ± 51.60 nGyh−1 in the industrial zone, with a mean value of 141.30 ± 31.31 nGyh−1. The mean annual effective dose equivalent (AEDE calculated was 0.17 ± 0.04 mSvy−1, while the mean excess lifetime cancer risk (ELCR was (0.61 ± 0.14 × 10−3 mSvy−1. The calculated dose to organs showed that the testes have the highest organ dose of 0.11 mSvy−1, while the liver has the lowest organ dose of 0.06 mSvy−1. The GIS maps of the study area revealed that exposure levels at 64 of the 94 sampling locations (68.1% exceeded the world ambient standard levels of 0.013 mRh−1 (1.0 mSvy−1. recommended by UNSCEAR; these values are higher than the values reported in the literature. However, these values may not constitute any immediate health risk to the residents of Warri city. The calculated excess lifetime cancer risk values indicate that the chance of contracting cancer for residents of the study area is low and at the effective dose from the present exposure rate to the adult organs investigated is insignificant.

  8. Ultrafast dynamics of excitons in delafossite CuScO2 thin films

    Science.gov (United States)

    Liu, Fucai; Makino, T.; Hiraga, H.; Fukumura, T.; Kong, Yongfa; Kawasaki, M.

    2010-05-01

    Ultrafast carrier dynamics were investigated in a delafossite CuScO2, a material with a remarkably large binding energy of exciton (˜0.4 eV), using femtosecond transient transmission spectroscopy. Differential transmission spectra showed dispersive structures in the excitonic resonance energies. We have observed a delayed rise-up on a time scale of 10 ps, suggesting slow carrier cooling. It is followed by a slower decay, time constant of which corresponds to the lifetime of exciton (approximately 0.75 ns). These results were analyzed in terms of the generalized many-body Elliott model, accounting for a screening effect of excitons.

  9. Interwell excitons in GaAs superlattices

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Sanders, G.

    1996-01-01

    The formation of spatially indirect excitons in superlattices with narrow minibands is theoretically and experimentally investigated. We identify the experimental conditions for the observation of interwell excitons and find a distinct excitonic state energetically located between the Is exciton ...

  10. Estimate of thermal fatigue lifetime for the INCONEL 625lCF plate while exposed to concentrated solar radiation

    Directory of Open Access Journals (Sweden)

    Rojas-Morín, A.

    2011-04-01

    Full Text Available A system for testing the thermal cycling of materials and components has been developed and installed at the DISTAL-I parabolic dish facility located at the Plataforma Solar de Almería (PSA in Spain. This system allows us to perform abrupt heating/cooling tests by exposing central solar receiver materials to concentrated solar radiation. These tests are performed to simulate both the normal and critical operational conditions of the central solar receiver. The thermal fatigue life for the INCONEL 625LCF® plate when subjected to concentrated solar radiation has been estimated with this system. We have also developed a numerical model that evaluates the thermal behavior of the plate material; additionally, the model yields the tensile-compressive stresses on the plate, which allow the estimation of the Stress-Life (S-N fatigue curves. These curves show that the lifetime of the plate is within the High Cycle Fatigue (HCF region at the operational temperatures of both 650 °C and 900 °C.

    En el concentrador solar de disco parabólico DISTAL-I, situado en la Plataforma Solar de Almería (PSA, en España, se ha instalado un sistema para pruebas de ciclado térmico de materiales. Este sistema permite realizar pruebas abruptas de calentamiento y enfriamiento, en materiales para receptores solares de torre central, al exponerlos a radiación solar concentrada. Estas pruebas se realizan para simular las condiciones de operación de un receptor solar, las condiciones críticas y las condiciones normales. Con este sistema se ha estimado el tiempo de vida bajo fatiga térmica, en una placa de INCONEL 626LCF®, cuando es sometida a radiación solar concentrada. Asimismo, hemos desarrollado un modelo numérico que evalúa el desarrollo térmico en el material de la placa: adicionalmente, el modelo obtiene los esfuerzos de tensión-compresión en la placa, los cuales permiten la estimaciónde las curvas de fatiga vidaesfuerzo (S-N. Estas curvas

  11. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction.

    Science.gov (United States)

    Ross, Jason S; Rivera, Pasqual; Schaibley, John; Lee-Wong, Eric; Yu, Hongyi; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jiaqiang; Mandrus, David; Cobden, David; Yao, Wang; Xu, Xiaodong

    2017-02-08

    Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe 2 -WSe 2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.

  12. Empirical Study of the Disparity in Radiation Tolerance of the Minority-Carrier Lifetime Between II-VI and III-V MWIR Detector Technologies for Space Applications

    Science.gov (United States)

    Jenkins, Geoffrey D.; Morath, Christian P.; Cowan, Vincent M.

    2017-09-01

    The degradation of the minority-carrier recombination lifetime of various III-V nB n and II-VI HgCdTe midwave-infrared space detector materials under stepwise 63-MeV proton irradiation up to fluence of 7.5 × 1011 cm-2 and above has been measured using time-resolved photoluminescence while samples were held at 120 K to limit thermal annealing. As expected, the recombination rate of each sample was found to increase with proton fluence at a nearly constant rate, implying a near-linear increase in defect concentration. The rate of change of the carrier recombination rate, herein called the minority-carrier lifetime damage factor, was then plotted as a function of the initial recombination rate for each sample. Juxtaposing the III-V and II-VI results revealed a distinct disparity, with the incumbent detector material HgCdTe being roughly an order of magnitude more radiation tolerant to displacement damage from proton irradiation than any of the nB n materials. The results for the latter also suggest some degree of interrelation between the damage factor and initial lifetime. The behavior of the lifetime of each material under annealing revealed that HgCdTe exhibited nearly 100% recovery at 295 K whereas III-V materials recovered to only about 50% under the same conditions.

  13. Exciton multiplication from first principles.

    Science.gov (United States)

    Jaeger, Heather M; Hyeon-Deuk, Kim; Prezhdo, Oleg V

    2013-06-18

    Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron

  14. Machine learning exciton dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Häse, Florian [Harvard Univ., Cambridge, MA (United States); Technische Univ. Munchen, Garching (Germany). Dept. Physik; Valleau, Stéphanie [Harvard Univ., Cambridge, MA (United States); Pyzer-Knapp, Edward [Harvard Univ., Cambridge, MA (United States); Aspuru-Guzik, Alán [Harvard Univ., Cambridge, MA (United States)

    2016-04-01

    Obtaining the exciton dynamics of large photosynthetic complexes by using mixed quantum mechanics/molecular mechanics (QM/MM) is computationally demanding. We propose a machine learning technique, multi-layer perceptrons, as a tool to reduce the time required to compute excited state energies. With this approach we predict time-dependent density functional theory (TDDFT) excited state energies of bacteriochlorophylls in the Fenna–Matthews–Olson (FMO) complex. Additionally we compute spectral densities and exciton populations from the predictions. Different methods to determine multi-layer perceptron training sets are introduced, leading to several initial data selections. In addition, we compute spectral densities and exciton populations. Once multi-layer perceptrons are trained, predicting excited state energies was found to be significantly faster than the corresponding QM/MM calculations. We showed that multi-layer perceptrons can successfully reproduce the energies of QM/MM calculations to a high degree of accuracy with prediction errors contained within 0.01 eV (0.5%). Spectral densities and exciton dynamics are also in agreement with the TDDFT results. The acceleration and accurate prediction of dynamics strongly encourage the combination of machine learning techniques with ab initio methods.

  15. Lasing in organic semiconductors - time-resolved studies of non-radiative decay processes

    CERN Document Server

    Zenz, C R

    2000-01-01

    Based on the demonstration of optical gain in an organic single crystal of a soluble oligo-phenylene-vinylene with gain values higher than 60 cm-1 and optically pumped lasing in a longitudinal adjustable microcavity based on laddertype polyparaphenylene, the realization of an organic laserdiode is discussed. The output characteristics of the microcavity can be modeled using classical rate equations, however the obtained threshold values are limited by the short excited state lifetime. A comparison with the lifetime measured on isolated molecules shows, that non-radiative decay processes in the solid state are determining the excited state lifetime. Using conventional and a novel field-assisted differential transmission spectroscopy with femtosecond time resolution, two main decay mechanism could be identified. (i) Triplet exciton in para-hexaphenyl is formed by non-geminate recombination of photo-generated polarons. (ii) Dissociation of the luminescent singlet excitons into polarons is important for two reaso...

  16. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115

    Directory of Open Access Journals (Sweden)

    A. Totterdill

    2016-09-01

    Full Text Available Fluorinated compounds such as NF3 and C2F5Cl (CFC-115 are characterised by very large global warming potentials (GWPs, which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21 years and (492 ± 22 years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  17. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)

    Science.gov (United States)

    Totterdill, Anna; Kovács, Tamás; Feng, Wuhu; Dhomse, Sandip; Smith, Christopher J.; Gómez-Martín, Juan Carlos; Chipperfield, Martyn P.; Forster, Piers M.; Plane, John M. C.

    2016-09-01

    Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  18. Analytic 1D pn junction diode photocurrent solutions following ionizing radiation and including time-dependent changes in the carrier lifetime.

    Energy Technology Data Exchange (ETDEWEB)

    Axness, Carl L.; Keiter, Eric Richard; Kerr, Bert (New Mexico Tech, Socorro, NM)

    2011-04-01

    Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits in radiation environments. These codes are often employed to study the effect of many thousands of devices under transient current conditions. Device-scale simulation tools (e.g., MEDICI) are commonly used in the design of individual semiconductor components, but require computing resources that make their incorporation into a circuit code impossible for large-scale circuits. Analytic solutions to the ambipolar diffusion equation, an approximation to the carrier transport equations, may be used to characterize the transient currents at nodes within a circuit simulator. We present new transient 1D excess carrier density and photocurrent density solutions to the ambipolar diffusion equation for low-level radiation pulses that take into account a finite device geometry, ohmic fields outside the depleted region, and an arbitrary change in the carrier lifetime due to neutron irradiation or other effects. The solutions are specifically evaluated for the case of an abrupt change in the carrier lifetime during or after, a step, square, or piecewise linear radiation pulse. Noting slow convergence of the raw Fourier series for certain parameter sets, we use closed-form formulas for some of the infinite sums to produce 'partial closed-form' solutions for the above three cases. These 'partial closed-form' solutions converge with only a few tens of terms, which enables efficient large-scale circuit simulations.

  19. Interaction of Rayleigh waves with 2D dipolar exciton gas: impact of Bose–Einstein condensation

    Science.gov (United States)

    Boev, M. V.; Chaplik, A. V.; Kovalev, V. M.

    2017-12-01

    The theory of the interaction of a two-dimensional gas of indirect dipolar excitons with Rayleigh surface elastic waves has been developed. The absorption and renormalization of the phase velocity of a surface wave, as well as the drag of excitons by the surface acoustic wave and the generation of bulk acoustic waves by a two dimensional gas of dipolar excitons irradiated by external electromagnetic radiation, have been considered. These effects have been studied both in a normal phase at high temperatures and in a condensed phase of the exciton gas. The calculations have been performed in the ballistic and diffusion limits for both phases.

  20. Soft x-ray excitonics

    Science.gov (United States)

    Moulet, A.; Bertrand, J. B.; Klostermann, T.; Guggenmos, A.; Karpowicz, N.; Goulielmakis, E.

    2017-09-01

    The dynamic response of excitons in solids is central to modern condensed-phase physics, material sciences, and photonic technologies. However, study and control have hitherto been limited to photon energies lower than the fundamental band gap. Here we report application of attosecond soft x-ray and attosecond optical pulses to study the dynamics of core-excitons at the L2,3 edge of Si in silicon dioxide (SiO2). This attosecond x-ray absorption near-edge spectroscopy (AXANES) technique enables direct probing of the excitons’ quasiparticle character, tracking of their subfemtosecond relaxation, the measurement of excitonic polarizability, and observation of dark core-excitonic states. Direct measurement and control of core-excitons in solids lay the foundation of x-ray excitonics.

  1. Tunable excitons in bilayer graphene

    Science.gov (United States)

    Ju, Long; Wang, Lei; Cao, Ting; Taniguchi, Takashi; Watanabe, Kenji; Louie, Steven G.; Rana, Farhan; Park, Jiwoong; Hone, James; Wang, Feng; McEuen, Paul L.

    2017-11-01

    Excitons, the bound states of an electron and a hole in a solid material, play a key role in the optical properties of insulators and semiconductors. Here, we report the observation of excitons in bilayer graphene (BLG) using photocurrent spectroscopy of high-quality BLG encapsulated in hexagonal boron nitride. We observed two prominent excitonic resonances with narrow line widths that are tunable from the mid-infrared to the terahertz range. These excitons obey optical selection rules distinct from those in conventional semiconductors and feature an electron pseudospin winding number of 2. An external magnetic field induces a large splitting of the valley excitons, corresponding to a g-factor of about 20. These findings open up opportunities to explore exciton physics with pseudospin texture in electrically tunable graphene systems​.

  2. Ultrafast transient absorption studies of hematite nanoparticles: the effect of particle shape on exciton dynamics.

    Science.gov (United States)

    Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z

    2013-10-01

    Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Role of impurities in determining the exciton diffusion length in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Ian J.; Holmes, Russell J. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Blaylock, D. Wayne [Engineering and Process Sciences, Core R& D, The Dow Chemical Company, Midland, Michigan 48674 (United States)

    2016-04-18

    The design and performance of organic photovoltaic cells is dictated, in part, by the magnitude of the exciton diffusion length (L{sub D}). Despite the importance of this parameter, there have been few investigations connecting L{sub D} and materials purity. Here, we investigate L{sub D} for the organic small molecule N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine as native impurities are systematically removed from the material. Thin films deposited from the as-synthesized material yield a value for L{sub D}, as measured by photoluminescence quenching, of (3.9 ± 0.5) nm with a corresponding photoluminescence efficiency (η{sub PL}) of (25 ± 1)% and thin film purity of (97.1 ± 1.2)%, measured by high performance liquid chromatography. After purification by thermal gradient sublimation, the value of L{sub D} is increased to (4.7 ± 0.5) nm with a corresponding η{sub PL} of (33 ± 1)% and purity of (98.3 ± 0.8)%. Interestingly, a similar behavior is also observed as a function of the deposition boat temperature. Films deposited from the purified material at a high temperature give L{sub D} = (5.3 ± 0.8) nm with η{sub PL} = (37 ± 1)% for films with a purity of (99.0 ± 0.3)% purity. Using a model of diffusion by Förster energy transfer, the variation of L{sub D} with purity is predicted as a function of η{sub PL} and is in good agreement with measurements. The removal of impurities acts to decrease the non-radiative exciton decay rate and increase the radiative decay rate, leading to increases in both the diffusivity and exciton lifetime. The results of this work highlight the role of impurities in determining L{sub D}, while also providing insight into the degree of materials purification necessary to achieve optimized exciton transport.

  4. Self-trapped exciton and core-valence luminescence in BaF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vistovskyy, V. V., E-mail: vistvv@gmail.com; Zhyshkovych, A. V.; Chornodolskyy, Ya. M.; Voloshinovskii, A. S. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya, 79005 Lviv (Ukraine); Myagkota, O. S. [Lviv Polytechnic National University, 12S. Bandera, 79013 Lviv (Ukraine); Gloskovskii, A. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Gektin, A. V. [Institute for Scintillation Materials, NAS of Ukraine 60 Lenina Ave, 61001 Kharkiv (Ukraine); Vasil' ev, A. N. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Rodnyi, P. A. [Saint-Petersburg State Polytechnical University, 29, Polytekhnicheskaya, 195251 Saint-Petersburg (Russian Federation)

    2013-11-21

    The influence of the BaF{sub 2} nanoparticle size on the intensity of the self-trapped exciton luminescence and the radiative core-valence transitions is studied by the luminescence spectroscopy methods using synchrotron radiation. The decrease of the self-trapped exciton emission intensity at energies of exciting photons in the range of optical exciton creation (hν ≤ E{sub g}) is less sensitive to the reduction of the nanoparticle sizes than in the case of band-to-band excitation, where excitons are formed by the recombination way. The intensity of the core-valence luminescence shows considerably weaker dependence on the nanoparticle sizes in comparison with the intensity of self-trapped exciton luminescence. The revealed regularities are explained by considering the relationship between nanoparticle size and photoelectron or photohole thermalization length as well as the size of electronic excitations.

  5. Excitonic Coherence in Semiconductor Nanostructures Measured by Speckle Analysis

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    are determined separately, thus distinguishing lifetime from pure dephasing. In particular, the secondary emission of excitons in semiconductor quantum wells is investigated. Here, the combination of static disorder and inelastic scattering leads to a partially coherent emission. The temperature dependence...... is well explained by phonon scattering. Spin-relaxation is found to be dominated by disorder, and is preserving the coherence, while phonon-assisted energy-relaxation is foundto destroy the coherence....

  6. Exciton Formation in Disordered Semiconductors

    DEFF Research Database (Denmark)

    Klochikhin, A.; Reznitsky, A.; Permogorov, S.

    1999-01-01

    Stationary luminescence spectra of disordered solid solutions can be accounted by the model of localized excitons. Detailed analysis of the long time decay kinetics of luminescence shows that exciton formation in these systems is in great extent due to the bimolecular reaction of separated carrie...

  7. Excitons in solid C60

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, Eric L.; Benedict, Lorin X.; Louie, Steven G.

    1995-10-01

    Exciton levels in undoped, solid C60 are calculated using a model Hamiltonian. We find excitation energies of 1.58 and 1.30 eV for the lowest singlet and triplet exciton, respectively, in comparison with the measured energies of 1.83 and 1.55 eV. Singlet and triplet states have similar energy diagrams, wherein exciton states having T{sub 2g}, T{sub 1g},G{sub g}, and H{sub g} symmetries are separated by up to several tenths of an electron volt. As a function of crystal momentum, exciton energies exhibit dispersion from 20 to 40 meV. Theoretical pressure derivatives of exciton energies are presented.

  8. Radiation hazards and lifetime risk assessment of tap water using liquid scintillation counting and high-resolution gamma spectrometry.

    Science.gov (United States)

    Al-Shboul, K F; Alali, A E; Batayneh, I M; Al-Khodire, H Y

    2017-11-01

    In this work, two complementary techniques, viz. liquid scintillation counting and high-resolution gamma spectrometry are utilized to analyze radionuclides concentrations in tap water of Irbid governorate, Jordan, and study their correlation. Gross alpha and gross beta concentrations, in the tap water samples collected from the nine districts of Irbid governorate, ranged from natural radionuclides with no trace of artificial radioactivity. In addition, the results of both techniques show that storing tap water in drilled wells leads to higher levels of radioactivity concentrations beyond the international permissible limits. Furthermore, the average lifetime risk and annual effective dose received by age-grouped inhabitants due to direct and indirect tap water consumption are evaluated, where most of the received dose is attributed to (226)Ra. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Exciton condensation in strongly correlated electron bilayers

    NARCIS (Netherlands)

    Rademaker, Louk; van den Brink, J.; Zaanen, Jan; Hilgenkamp, H.

    2013-01-01

    We studied the possibility of exciton condensation in Mott insulating bilayers. In these strongly correlated systems, an exciton is the bound state of a double occupied and empty site. In the strong coupling limit, the exciton acts as a hard-core boson. Its physics is captured by the exciton t -J

  10. Editorial on indirect excitons: Physics and applications

    Science.gov (United States)

    2017-08-01

    This special issue contains 9 original review papers, research papers and discussion papers on indirect excitons. An exciton is a Coulomb-correlated electron-hole pair. Frenkel excitons dominate optical properties of organic semiconductors, while Wannier-Mott excitons are responsible for the hydrogen-like absorption spectra of inorganic semiconductors at low temperatures. The interest to the physics of excitons has strongly increased in the new century. This interest is motivated by unique bosonic properties of excitons that lead to the phenomena of exciton-polariton lasing and stimulated scattering, build-up of the spontaneous coherence and polarisation in cold exciton gases. In addition to the rich fundamental physics, excitons offer the perspective of applications in opto-electronic devices such as exciton transistors, switches, optical integrated circuits, etc.

  11. Exciton dynamics in solid-state green fluorescent protein

    Science.gov (United States)

    Dietrich, Christof P.; Siegert, Marie; Betzold, Simon; Ohmer, Jürgen; Fischer, Utz; Höfling, Sven

    2017-01-01

    We study the decay characteristics of Frenkel excitons in solid-state enhanced green fluorescent protein (eGFP) dried from solution. We further monitor the changes of the radiative exciton decay over time by crossing the phase transition from the solved to the solid state. Complex interactions between protonated and deprotonated states in solid-state eGFP can be identified from temperature-dependent and time-resolved fluorescence experiments that further allow the determination of activation energies for each identified process.

  12. Carbon nanotubes as excitonic insulators.

    Science.gov (United States)

    Varsano, Daniele; Sorella, Sandro; Sangalli, Davide; Barborini, Matteo; Corni, Stefano; Molinari, Elisa; Rontani, Massimo

    2017-11-13

    Fifty years ago Walter Kohn speculated that a zero-gap semiconductor might be unstable against the spontaneous generation of excitons-electron-hole pairs bound together by Coulomb attraction. The reconstructed ground state would then open a gap breaking the symmetry of the underlying lattice, a genuine consequence of electronic correlations. Here we show that this excitonic insulator is realized in zero-gap carbon nanotubes by performing first-principles calculations through many-body perturbation theory as well as quantum Monte Carlo. The excitonic order modulates the charge between the two carbon sublattices opening an experimentally observable gap, which scales as the inverse of the tube radius and weakly depends on the axial magnetic field. Our findings call into question the Luttinger liquid paradigm for nanotubes and provide tests to experimentally discriminate between excitonic and Mott insulators.

  13. Radiation Risk from Chronic Low Dose-Rate Radiation Exposures: The Role of Life-Time Animal Studies - Workshop October 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gayle Woloschak

    2009-12-16

    As a part of Radiation research conference, a workshop was held on life-long exposure studies conducted in the course of irradiation experiements done at Argonne National Laboratory between 1952-1992. A recent review article documents many of the issues discussed at that workshop.

  14. Sensitivity Analysis of Median Lifetime on Radiation Risks Estimates for Cancer and Circulatory Disease amongst Never-Smokers

    Science.gov (United States)

    Chappell, Lori J.; Cucinotta, Francis A.

    2011-01-01

    Radiation risks are estimated in a competing risk formalism where age or time after exposure estimates of increased risks for cancer and circulatory diseases are folded with a probability to survive to a given age. The survival function, also called the life-table, changes with calendar year, gender, smoking status and other demographic variables. An outstanding problem in risk estimation is the method of risk transfer between exposed populations and a second population where risks are to be estimated. Approaches used to transfer risks are based on: 1) Multiplicative risk transfer models -proportional to background disease rates. 2) Additive risk transfer model -risks independent of background rates. In addition, a Mixture model is often considered where the multiplicative and additive transfer assumptions are given weighted contributions. We studied the influence of the survival probability on the risk of exposure induced cancer and circulatory disease morbidity and mortality in the Multiplicative transfer model and the Mixture model. Risks for never-smokers (NS) compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for NS, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity, esophagus, colon, a portion of the solid cancer remainder, and leukemia. Greater improvements in risk estimates for NS s are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).

  15. Excitons and polaritons in planar heterostructures in external electric and magnetic fields: A multi-sub-level approach

    Science.gov (United States)

    Wilkes, J.; Muljarov, E. A.

    2017-08-01

    Excitons and microcavity polaritons that possess a macroscopic dipole alignment are attractive systems to study. This is due to an enhancement of collective many body effects and an ability to electrostatically control their transport and internal structure. Here, we present an overview of a rigorous calculation of spatially-indirect exciton states in semiconductor coupled quantum wells in externally applied electric and magnetic fields. We also treat dipolaritons that form when such structures are positioned at the antinode of a resonant cavity mode. Our approach is general and can be applied to various planar solid state heterostructures inside optical resonators. It offers a thorough description of the properties of excitons and polaritons that are important for modelling their respective fluids. In particular, we calculate the exciton Bohr radius, binding energy, optical lifetime and magnetic field induced enhancement of the effective mass. We also describe electric and magnetic field control of the exciton and polariton dipole moment and brightness.

  16. Scaling laws of Rydberg excitons

    Science.gov (United States)

    Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.

    2017-09-01

    Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to

  17. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

    Science.gov (United States)

    Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.

    2016-03-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

  18. Temperature dependence of exciton-surface plasmon polariton coupling in Ag, Au, and Al films on In{sub x}Ga{sub 1−x}N/GaN quantum wells studied with time-resolved cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Estrin, Y.; Rich, D. H., E-mail: danrich@bgu.ac.il [Department of Physics and The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B 653, Beer-Sheva 84105 (Israel); Keller, S.; DenBaars, S. P. [Electrical and Computer Engineering and Materials Departments, University of California, Santa Barbara, California 93111 (United States)

    2015-01-28

    The optical properties and coupling of excitons to surface plasmon polaritons (SPPs) in Ag, Au, and Al-coated In{sub x}Ga{sub 1−x}N/GaN multiple and single quantum wells (SQWs) were probed with time-resolved cathodoluminescence. Excitons were generated in the metal coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (F{sub p}) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the SQW exciton-SPP coupling. Three chosen plasmonic metals of Al, Ag, and Au facilitate an interesting comparison of the exciton-SPP coupling for energy ranges in which the SP energy is greater than, approximately equal to, and less than the excitonic transition energy for the InGaN/GaN QW emitter. A modeling of the temperature dependence of the Purcell enhancement factor, F{sub p}, included the effects of ohmic losses of the metals and changes in the dielectric properties due to the temperature dependence of (i) the intraband behavior in the Drude model and (ii) the interband critical point transition energies which involve the d-bands of Au and Ag. We show that an inclusion of both intraband and interband effects is essential when calculating the ω vs k SPP dispersion relation, plasmon density of states (DOS), and the dependence of F{sub p} on frequency and temperature. Moreover, the “back bending” in the SPP dispersion relation when including ohmic losses can cause a finite DOS above ω{sub sp} and lead to a measurable F{sub p} in a limited energy range above ω{sub sp}, which can potentially be exploited in plasmonic devices utilizing Ag and Au.

  19. Optics of exciton-plasmon nanomaterials

    Science.gov (United States)

    Sukharev, Maxim; Nitzan, Abraham

    2017-11-01

    This review provides a brief introduction to the physics of coupled exciton-plasmon systems, the theoretical description and experimental manifestation of such phenomena, followed by an account of the state-of-the-art methodology for the numerical simulations of such phenomena and supplemented by a number of FORTRAN codes, by which the interested reader can introduce himself/herself to the practice of such simulations. Applications to CW light scattering as well as transient response and relaxation are described. Particular attention is given to so-called strong coupling limit, where the hybrid exciton-plasmon nature of the system response is strongly expressed. While traditional descriptions of such phenomena usually rely on analysis of the electromagnetic response of inhomogeneous dielectric environments that individually support plasmon and exciton excitations, here we explore also the consequences of a more detailed description of the molecular environment in terms of its quantum density matrix (applied in a mean field approximation level). Such a description makes it possible to account for characteristics that cannot be described by the dielectric response model: the effects of dephasing on the molecular response on one hand, and nonlinear response on the other. It also highlights the still missing important ingredients in the numerical approach, in particular its limitation to a classical description of the radiation field and its reliance on a mean field description of the many-body molecular system. We end our review with an outlook to the near future, where these limitations will be addressed and new novel applications of the numerical approach will be pursued.

  20. A method for determining weights for excess relative risk and excess absolute risk when applied in the calculation of lifetime risk of cancer from radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department of Radiation Protection and Health, Oberschleissheim (Germany); University of Manchester, The Faculty of Medical and Human Sciences, Manchester (United Kingdom); Schneider, Uwe [University of Zurich, Vetsuisse Faculty, Zurich (Switzerland); Radiotherapy Hirslanden AG, Aarau (Switzerland)

    2013-03-15

    Radiation-related risks of cancer can be transported from one population to another population at risk, for the purpose of calculating lifetime risks from radiation exposure. Transfer via excess relative risks (ERR) or excess absolute risks (EAR) or a mixture of both (i.e., from the life span study (LSS) of Japanese atomic bomb survivors) has been done in the past based on qualitative weighting. Consequently, the values of the weights applied and the method of application of the weights (i.e., as additive or geometric weighted means) have varied both between reports produced at different times by the same regulatory body and also between reports produced at similar times by different regulatory bodies. Since the gender and age patterns are often markedly different between EAR and ERR models, it is useful to have an evidence-based method for determining the relative goodness of fit of such models to the data. This paper identifies a method, using Akaike model weights, which could aid expert judgment and be applied to help to achieve consistency of approach and quantitative evidence-based results in future health risk assessments. The results of applying this method to recent LSS cancer incidence models are that the relative EAR weighting by cancer solid cancer site, on a scale of 0-1, is zero for breast and colon, 0.02 for all solid, 0.03 for lung, 0.08 for liver, 0.15 for thyroid, 0.18 for bladder and 0.93 for stomach. The EAR weighting for female breast cancer increases from 0 to 0.3, if a generally observed change in the trend between female age-specific breast cancer incidence rates and attained age, associated with menopause, is accounted for in the EAR model. Application of this method to preferred models from a study of multi-model inference from many models fitted to the LSS leukemia mortality data, results in an EAR weighting of 0. From these results it can be seen that lifetime risk transfer is most highly weighted by EAR only for stomach cancer. However

  1. Interwell excitons in GaAs superlattices

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Sanders, G.

    1997-01-01

    The formation of spatially indirect excitons in superlattices with narrow minibands is investigated experimentally. The interwell exciton is similar to the first Wannier-Stark localized exciton of an electrically biased superlattice. However, in the present case the localization is mediated by th...

  2. Exciton dynamics of luminescent defects in aging organic light-emitting diodes

    Science.gov (United States)

    Ingram, Grayson L.; Zhao, Yong-Biao; Lu, Zheng-Hong

    2017-12-01

    Fundamental device physics of exciton dynamics is crucial to the design and fabrication of organic light-emitting diodes (OLEDs) with a long lifetime at high brightness. In this paper, we report a set of analytical equations which describe how and where defects form during exciton-driven degradation of an OLED and their impact on device operation. This set of equations allows us to quantify changes in the exciton and defect populations as a function of time in neat layers of 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) in simple bilayer OLEDs. CBP produces luminescent defects which present a unique opportunity to quantify the exciton capturing dynamics of the defects. Through modeling of the time and current density dependence of both the CBP and defect emission, we clearly identify CBP singlet excitons as the source of OLED degradation. Further analysis of experimental data on devices with precisely positioned exciton capturing layers suggests that defects are formed near organic heterojunctions.

  3. Magnetic brightening and control of dark excitons in monolayer WSe2.

    Science.gov (United States)

    Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C; Robinson, Joshua A; Smirnov, Dmitry; Louie, Steven G; Heinz, Tony F

    2017-09-01

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe 2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.

  4. Excitons into one-axis crystals of zinc phosphide (Zn3P2

    Directory of Open Access Journals (Sweden)

    D.M. Stepanchikov

    2009-01-01

    Full Text Available Theoretical study of excitons spectra is offered in this report as for Zn3P2 crystals. Spectra are got in the zero approach of the theory of perturbations with consideration of both the anisotropy of the dispersion law and the selection rules. The existence of two exciton series was found, which corresponds to two valence bands (hh, lh and the conductivity band (c. It is noteworthy that anisotropy of the dispersion law plus the existence of crystalline packets (layers normal to the main optical axis, both will permit the consideration of two-dimensional excitons too. The high temperature displaying of these 2D-exciton effects is not eliminated even into bulk crystals. The calculated values of the binding energies as well as the oscillator's strength for the optical transitions are given for a volume (3D and for two-dimensional (2D excitons. The model of energy exciton transitions and four-level scheme of stimulated exciton radiation for receiving laser effect are offered.

  5. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2015-09-18

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.

  6. FDTD and transfer matrix methods for evaluating the performance of photonic crystal based microcavities for exciton-polaritons

    Science.gov (United States)

    Liu, Yi-Cheng; Byrnes, Tim

    2016-11-01

    We investigate alternative microcavity structures for exciton-polaritons consisting of photonic crystals instead of distributed Bragg reflectors. Finite-difference time-domain simulations and scattering transfer matrix methods are used to evaluate the cavity performance. The results are compared with conventional distributed Bragg reflectors. We find that in terms of the photon lifetime, the photonic crystal based microcavities are competitive, with typical lifetimes in the region of ∼20 ps being achieved. The photonic crystal microcavities have the advantage that they are compact and are frequency adjustable, showing that they are viable to investigate exciton-polariton condensation physics.

  7. Exciton size and quantum transport in nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, Kenley M., E-mail: kpelzer@anl.gov; Gray, Stephen K. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Darling, Seth B. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637 (United States); Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States)

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.

  8. Exciton dynamics in molecular aggregates

    NARCIS (Netherlands)

    Augulis, R.; Pugžlys, A.; Loosdrecht, P.H.M. van; Pugzlys, A

    2006-01-01

    The fundamental aspects of exciton dynamics in double-wall cylindrical aggregates of cyanine dyes are studied by means of frequency resolved femtosecond pump-probe spectroscopy. The collective excitations of the aggregates, resulting from intermolecular dipole-dipole interactions have the

  9. Magnetic exciton dispersion in praseodymium

    DEFF Research Database (Denmark)

    Rainford, B. D.; Houmann, Jens Christian Gylden

    1971-01-01

    Measurements of the dispersion of magnetic excitons have been made in a single crystal of praseodymium metal using inelastic neutron scattering. A preliminary analysis of the data yields the first detailed information about the exchange interactions and the crystal field splittings in the light...

  10. Excitons in tubular molecular aggregates

    NARCIS (Netherlands)

    Didraga, C; Knoester, J

    2004-01-01

    We present a brief overview of recent work on the optical properties of molecular aggregates with a tubular (cylindrical) shape. The exciton states responsible for these properties can be distinguished with regard to a transverse wave number, which directly relates to optical selection rules and

  11. Intrinsic dynamics of weakly and strongly confined excitons in nonpolar nitride-based heterostructures

    OpenAIRE

    Corfdir, Pierre; Levrat, Jacques; Dussaigne, Amélie; Lefebvre, Pierre; Teisseyre, Henryk; Grzegory, Izabella; Suski, Tadeusz; Ganière, Jean-Daniel; Grandjean, Nicolas; Deveaud-Plédran, Benoît

    2011-01-01

    Both weakly and strongly confined excitons are studied by time-resolved photoluminescence in a nonpolar nitride-based heterostructure grown by molecular beam epitaxy on the a-facet of a bulk GaN crystal, with an ultralow dislocation density of 2 × 105 cm-2. Strong confinement is obtained in a 4 nm thick Al0.06Ga0.94N/GaN quantum well (QW), whereas weakly confined exciton-polaritons are observed in a 200 nm thick GaN epilayer. Thanks to the low dislocation density, the effective lifetime of st...

  12. FIR Induced Intrinsic Exciton Transitions in GaAs/AlGaAs Superlattices

    DEFF Research Database (Denmark)

    Dremin, A. A.; Timofeev, V. B.; Birkedal, Dan

    1997-01-01

    Intrinsic transitions of confined excitons in GaAs/AlGaAs superlattices with different barrier widths have been studied with the use of resonant far-infrared absorption under variation of magnetic field perpendicular and tilted with respect to the growth directions. Few resonances have been obser...... observed in spectra induced by FIR radiation by monitoring the changes of the ground state excitonic photoluminescence. The dominant resonances are the electron cyclotron resonance and the intrinsic 1s --> 2p. intrawell transitions of the heavy-hole excitons.......Intrinsic transitions of confined excitons in GaAs/AlGaAs superlattices with different barrier widths have been studied with the use of resonant far-infrared absorption under variation of magnetic field perpendicular and tilted with respect to the growth directions. Few resonances have been...

  13. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals.

    Science.gov (United States)

    Kriegel, Ilka; Jiang, Chengyang; Rodríguez-Fernández, Jessica; Schaller, Richard D; Talapin, Dmitri V; da Como, Enrico; Feldmann, Jochen

    2012-01-25

    The optical properties of stoichiometric copper chalcogenide nanocrystals (NCs) are characterized by strong interband transitions in the blue part of the spectral range and a weaker absorption onset up to ~1000 nm, with negligible absorption in the near-infrared (NIR). Oxygen exposure leads to a gradual transformation of stoichiometric copper chalcogenide NCs (namely, Cu(2-x)S and Cu(2-x)Se, x = 0) into their nonstoichiometric counterparts (Cu(2-x)S and Cu(2-x)Se, x > 0), entailing the appearance and evolution of an intense localized surface plasmon (LSP) band in the NIR. We also show that well-defined copper telluride NCs (Cu(2-x)Te, x > 0) display a NIR LSP, in analogy to nonstoichiometric copper sulfide and selenide NCs. The LSP band in copper chalcogenide NCs can be tuned by actively controlling their degree of copper deficiency via oxidation and reduction experiments. We show that this controlled LSP tuning affects the excitonic transitions in the NCs, resulting in photoluminescence (PL) quenching upon oxidation and PL recovery upon subsequent reduction. Time-resolved PL spectroscopy reveals a decrease in exciton lifetime correlated to the PL quenching upon LSP evolution. Finally, we report on the dynamics of LSPs in nonstoichiometric copper chalcogenide NCs. Through pump-probe experiments, we determined the time constants for carrier-phonon scattering involved in LSP cooling. Our results demonstrate that copper chalcogenide NCs offer the unique property of holding excitons and highly tunable LSPs on demand, and hence they are envisaged as a unique platform for the evaluation of exciton/LSP interactions. © 2011 American Chemical Society

  14. Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip

    Science.gov (United States)

    Mancini, L.; Moyon, F.; Houard, J.; Blum, I.; Lefebvre, W.; Vurpillot, F.; Das, A.; Monroy, E.; Rigutti, L.

    2017-12-01

    Single-dot time-resolved micro-photoluminescence spectroscopy and correlated electron tomography (ET) have been performed on self-assembled GaN/AlN quantum dots isolated within a field-emission nanoscale tip by focused ion beam (FIB). Despite the effect of the FIB, the system conserves the capability of emitting light through multi-excitonic complexes. The optical spectroscopy data have then been correlated with the electronic structure and lifetime parameters that could be extracted using the structural parameters obtained by ET via a 6 band k.p model. A biexciton-exciton cascade could be identified and thoroughly analysed. The biexciton-exciton states exhibit a non-negligible polarization component along the [0001] polar crystal axis, indicating a significant valence band mixing, while the relationship between exciton energy and biexciton binding energy is consistent with a hybrid character of the biexciton.

  15. Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures

    Science.gov (United States)

    Miller, Bastian; Steinhoff, Alexander; Pano, Borja; Klein, Julian; Jahnke, Frank; Holleitner, Alexander; Wurstbauer, Ursula

    2017-09-01

    We investigate the photoluminescence of interlayer excitons in heterostructures consisting of monolayer MoSe2 and WSe2 at low temperatures. Surprisingly, we find a doublet structure for such interlayer excitons. Both peaks exhibit long photoluminescence lifetimes of several ten nanoseconds up to 100 ns at low temperatures, which verifies the interlayer nature of both. The peak energy and linewidth of both show unusual temperature and power dependences. In particular, we observe a blue-shift of their emission energy for increasing excitation powers. At a low excitation power and low temperatures, the energetically higher peak shows several spikes. We explain the findings by two sorts of interlayer excitons; one that is indirect in real space but direct in reciprocal space, and the other one being indirect in both spaces. Our results provide fundamental insights into long-lived interlayer states in van der Waals heterostructures with possible bosonic many-body interactions

  16. Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures.

    Science.gov (United States)

    Miller, Bastian; Steinhoff, Alexander; Pano, Borja; Klein, Julian; Jahnke, Frank; Holleitner, Alexander; Wurstbauer, Ursula

    2017-09-13

    We report the observation of a doublet structure in the low-temperature photoluminescence of interlayer excitons in heterostructures consisting of monolayer MoSe 2 and WSe 2 . Both peaks exhibit long photoluminescence lifetimes of several tens of nanoseconds up to 100 ns verifying the interlayer nature of the excitons. The energy and line width of both peaks show unusual temperature and power dependences. While the low-energy peak dominates the spectra at low power and low temperatures, the high-energy peak dominates for high power and temperature. We explain the findings by two kinds of interlayer excitons being either indirect or quasi-direct in reciprocal space. Our results provide fundamental insights into long-lived interlayer states in van der Waals heterostructures with possible bosonic many-body interactions.

  17. Coherent exciton-polariton devices

    Science.gov (United States)

    Fraser, Michael D.

    2017-09-01

    The Bose-Einstein condensate of exciton-polaritons has emerged as a unique, coherent system for the study of non-equilibrium, macroscopically coherent Bose gases, while the full confinement of this coherent state to a semiconductor chip has also generated considerable interest in developing novel applications employing the polariton condensate, possibly even at room temperature. Such devices include low-threshold lasers, precision inertial sensors, and circuits based on superfluidity with ultra-fast non-linear elements. While the demonstration and development of such devices are at an early stage, rapid progress is being made. In this review, an overview of the exciton-polariton condensate system and the established and emerging material systems and fabrication techniques are presented, followed by a critical, in-depth assessment of the ability of the coherent polariton system to deliver on its promise of devices offering either new functionality and/or room-temperature operation.

  18. Exciton Seebeck effect in molecular systems.

    Science.gov (United States)

    Yan, Yun-An; Cai, Shaohong

    2014-08-07

    We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.

  19. Exciton circular dichroism in channelrhodopsin.

    Science.gov (United States)

    Pescitelli, Gennaro; Kato, Hideaki E; Oishi, Satomi; Ito, Jumpei; Maturana, Andrés Daniel; Nureki, Osamu; Woody, Robert W

    2014-10-16

    Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant

  20. Excitons in tunnel coupled CdTe and (Cd,Mn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Terletskii, Oleg; Ryabchenko, Sergiy; Tereshchenko, Oleksandr [Institute of Physics NASU, pr. Nauki 46, 03680 Kyiv (Ukraine); Sugakov, Volodymyr; Vertsimakha, Ganna [Institute for Nuclear Research NASU, pr. Nauki 47, 03680 Kyiv (Ukraine); Karczewski, Grzegorz [Institute of Physics PAS, Al. Lotnikow 32/46, PL-02-668 Warsaw (Poland)

    2017-05-15

    The photoluminescence (PL) from structures containing Cd{sub 0.95}Mn{sub 0.05}Te and CdTe quantum wells (QWs) separated by a narrow (1.94 nm) barrier was studied. The PL lines of comparable intensities from several possible exciton states were observed simultaneously at energy distances substantially exceeding kT. This means that the energy transfer in the studied systems is slower than the radiative recombination of the confined excitons. For the CdTe QW width of about 8.7-9 nm, indirect excitons with the electron and heavy hole chiefly localized in the CdTe and Cd{sub 1-x}Mn{sub x}Te QWs, respectively, were detected in the magnetic field. These indirect excitons have PL energy of about 10-20 meV above the PL line of the direct excitons in the CdTe QW. The observation of the PL from the indirect excitons which are not the lowest excitations in the structure is a distinctive feature of the system. Photoluminescence intensity dependence on the energy and the magnetic field. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Influence of exciton-phonons coupling on the exciton binding energy in monolayer transition metal dichalcogenides

    Science.gov (United States)

    Wang, Zi-Wu; Li, Wei-Ping; Xiao, Yao; Li, Run-Ze; Li, Zhi-Qing

    2017-06-01

    We theoretically investigate the correction of exciton binding energy arising from the exciton-optical phonon coupling in monolayer transition metal dichalcogenides (TMDs) using the linear operator and Lee-Low-Pines unitary transformation methods. We take into account not only the exciton coupling with intrinsic longitudinal optical phonon modes but also the surface optical phonon modes induced by polar substrates supporting monolayer TMDs. We find that the exciton binding energies are corrected on a large scale due to these exciton-optical phonon couplings. We discuss the dependences of exciton binding energy on the cut-off wave vector of optical phonon modes, the polarization strength of substrate materials, and the distance between polar substrates and TMDs. These results provide potential explanations for the divergence of the exciton binding energy between the experiment and theory in TMDs.

  2. Excitonic magnetism in d6 perovskites

    Science.gov (United States)

    Afonso, J. Fernández; Kuneš, J.

    2017-03-01

    We use the LDA+U method to study the possibility of exciton condensation in perovskites of transition metals with the d6 electronic configuration such as LaCoO3. For realistic interaction parameters we find several distinct solutions exhibiting a spin-triplet exciton condensate, which gives rise to a local spin density distribution while the ordered moments are vanishingly small. Rhombohedral distortion from the ideal cubic structure suppresses the ordered state, contrary to the spin-orbit coupling which enhances the excitonic condensation energy. We explain the trends observed in the numerical simulations with the help of a simplified strong-coupling model. Our results indicate that LaCoO3 is close to the excitonic instability and suggest ways how to achieve the exciton condensation.

  3. Manic Episode after Ventricular-Peritoneal Shunt Replacement in a Patient with Radiation-Induced Hydrocephalus: The Role of Lifetime Subthreshold Bipolar Features

    Directory of Open Access Journals (Sweden)

    Antonio Callari

    2014-01-01

    Full Text Available We present a case report of a woman hospitalized for a ventricular-peritoneal shunting replacement, who developed a manic episode with psychotic symptoms after hydrocephalus resolution. We have no knowledge of cases of manic episodes due to hydrocephalus resolution by ventricular-peritoneal shunt replacement, although previous case reports have suggested that hydrocephalus might induce rapid-onset affective episodes or mood cycles. The patient’s history revealed the lifetime presence of signs and features belonging to the subthreshold bipolar spectrum, in absence of previous full-blown episodes of a bipolar disorder. Our hypothesis is that such lifetime sub-threshold bipolar features represented precursors of the subsequent full-blown manic episode, triggered by an upregulated binding of striatum D2 receptors after the ventricular-peritoneal shunt replacement.

  4. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation

    KAUST Repository

    Sun, Jingya

    2014-02-20

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag 2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices. © 2014 American Chemical Society.

  5. Gate controlled Aharonov-Bohm-type oscillations from single neutral excitons in quantum rings

    NARCIS (Netherlands)

    Ding, F.; Akopian, N.; Li, B.; Perinetti, U.; Govorov, A.; Peeters, F.M.; Bof Bufon, C.C.; Deneke, C.; Chen, Y.H.; Rastelli, A.; Schmidt, O.G.; Zwiller, V.

    2010-01-01

    We report on a magnetophotoluminescence study of single self-assembled semiconductor nanorings which are fabricated by molecular-beam epitaxy combined with AsBr3 in situ etching. Oscillations in the neutral exciton radiative recombination energy and in the emission intensity are observed under an

  6. Dark excitons in transition metal dichalcogenides

    Science.gov (United States)

    Malic, Ermin; Selig, Malte; Feierabend, Maja; Brem, Samuel; Christiansen, Dominik; Wendler, Florian; Knorr, Andreas; Berghäuser, Gunnar

    2018-01-01

    Monolayer transition metal dichalcogenides (TMDs) exhibit a remarkably strong Coulomb interaction that manifests in tightly bound excitons. Due to the complex electronic band structure exhibiting several spin-split valleys in the conduction and valence band, dark excitonic states can be formed. They are inaccessibly by light due to the required spin-flip and/or momentum transfer. The relative position of these dark states with respect to the optically accessible bright excitons has a crucial impact on the emission efficiency of these materials and thus on their technological potential. Based on the solution of the Wannier equation, we present the excitonic landscape of the most studied TMD materials including the spectral position of momentum- and spin-forbidden excitonic states. We show that the knowledge of the electronic dispersion does not allow to conclude about the nature of the material's band gap since excitonic effects can give rise to significant changes. Furthermore, we reveal that an exponentially reduced photoluminescence yield does not necessarily reflect a transition from a direct to a nondirect gap material, but can be ascribed in most cases to a change of the relative spectral distance between bright and dark excitonic states.

  7. Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films.

    Science.gov (United States)

    Fang, Hong-Hua; Protesescu, Loredana; Balazs, Daniel M; Adjokatse, Sampson; Kovalenko, Maksym V; Loi, Maria Antonietta

    2017-08-01

    The optical properties of the newly developed near-infrared emitting formamidinium lead triiodide (FAPbI 3 ) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady-state and time-resolved photoluminescence. The excitonic emission is dominant in NC ensemble because of the localization of electron-hole pairs. A promisingly high quantum yield above 70%, and a large absorption cross-section (5.2 × 10 -13 cm -2 ) are measured. At high pump fluence, biexcitonic recombination is observed, featuring a slow recombination lifetime of 0.4 ns. In polycrystalline thin films, the quantum efficiency is limited by nonradiative trap-assisted recombination that turns to bimolecular at high pump fluences. From the temperature-dependent photoluminescence (PL) spectra, a phase transition is clearly observed in both NC ensemble and polycrystalline thin film. It is interesting to note that NC ensemble shows PL temperature antiquenching, in contrast to the strong PL quenching displayed by polycrystalline thin films. This difference is explained in terms of thermal activation of trapped carriers at the nanocrystal's surface, as opposed to the exciton thermal dissociation and trap-mediated recombination, which occur in thin films at higher temperatures. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Collective Behavior of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Timofeev, V. B.; Hvam, Jørn Märcher

    2000-01-01

    Photoluminescence spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated (an interwell excition in these systems is an electron-hole pair spatially separated by a narrow AlAs barrier). Under resonance excitation by circular polarized light......, the luminescence line of interwell excitions exhibits a significant narrowing and a drastic increase in the degree of circular polarization of photoluminescence with increasing exciton concentration. It is found that the radiative recombination rate significantly increases under these conditions. This phenomenon...

  9. Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Amir; Ahmed, Musahid

    2012-01-25

    The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.

  10. Dark-bright exciton spin-flip rates of quantum dots determined by a modified local density of optical states

    DEFF Research Database (Denmark)

    Lodahl, Peter; Johansen, Jeppe; Julsgaard, Brian

    2009-01-01

    on time-resolved detection of spontaneous emission. Using the modified local density of optical states of a GaAs-air interface and its known dependence on distance (z), it was recently shown that the bright exciton radiative and non-radiative processes could be fully unravelled. Hence, the spin-flip rate...

  11. Properties of Excitons Bound to Ionized Donors

    DEFF Research Database (Denmark)

    Skettrup, Torben; Suffczynski, M.; Gorzkowski, W.

    1971-01-01

    Binding energies, interparticle distances, oscillator strengths, and exchange corrections are calculated for the three-particle complex corresponding to an exciton bound to an ionized donor. The results are given as functions of the mass ratio of the electron and hole. Binding of the complex...... is obtained for mass ratios up to 0.426. The interparticle distances are up to 50 times larger than the corresponding exciton radius. The oscillator strengths are about 104 times greater than those of free excitons, while the exchange corrections for the complex are comparable to those of free excitions...

  12. Excitonic quasimolecules in nanosystems of quantum dots

    Science.gov (United States)

    Pokutnyi, Sergey I.

    2017-09-01

    The theory of excitonic quasimolecules (biexcitons) (formed of spatially separated electrons and holes) in a nanosystem that consists of semiconductor quantum dots synthesized in a borosilicate glass matrix is presented. It is shown that exciton quasimolecule formation is of a threshold character and is possible in nanosystem, if the spacing between the quantum dots surfaces is larger than a certain critical spacing. It was found that the binding energy of the singlet ground state of an exciton quasimolecule, consisting of two semiconductor quantum dots is a significant large values, larger than the binding energy of the biexciton in a semiconductor single crystal by almost two orders of magnitude.

  13. Exciton in closed and opened quantum dot

    Directory of Open Access Journals (Sweden)

    M.V.Tkach

    2007-01-01

    Full Text Available The theory of exciton spectrum in spherically symmetric states for the three- shell closed spherical quantum dot is proposed. The evolution of the exciton spectrum while varying the outer well thickness from zero (stationary spectrum of single closed spherical quantum dot to infinity (quasistationary spectrum of a single open spherical quantum dot is investigated. The mechanism of damping (semiwidth of quasistationary states due to the redistribution over the energy levels of probability of exciton location in the space of two inner shells of nanosystem is studied. It is shown that the three shell closed spherical quantum dot of a rather big thickness of the outer well quite sufficiently and exactly reflects the basic properties of the quasistationary exciton spectrum in a single open spherical quantum dot.

  14. Exciton absorption in narrow armchair graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S. [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St. Petersburg (Russian Federation); Schmelcher, P., E-mail: pschmelc@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-11-01

    We develop an analytical approach to the exciton optical absorption for narrow gap armchair graphene nanoribbons (AGNR). We focus on the regime of dominant size quantization in combination with the attractive electron–hole interaction. An adiabatic separation of slow and fast motions leads via the two-body Dirac equation to the isolated and coupled subband approximations. Discrete and continuous exciton states are in general coupled and form quasi-Rydberg series of purely discrete and resonance type character. The corresponding oscillator strengths and widths are derived. We show that the exciton peaks are blue-shifted, become broader and increase in magnitude upon narrowing the ribbon. At the edge of a subband the singularity related to the 1D density of states is transformed into finite absorption via the presence of the exciton. Our analytical results are in good agreement with those obtained by other methods including numerical approaches. Estimates of the expected experimental values are provided for realistic AGNR.

  15. Excitonic physics in a Dirac quantum dot

    Science.gov (United States)

    Raca, V.; Milovanović, M. V.

    2017-11-01

    We present a description of vacuum polarization in a circular Dirac quantum dot in two spatial dimensions assuming α —the relative strength of the Coulomb interaction small enough to render an approximation with a single electron (hole) lowest energy level relevant. Applying this approximation, we find that for αc≈1.05 the lowest level is half filled irrespective of the number of flavors that are present. The ground state can be represented as a superposition of particular (even number) excitonic states which constitute an excitonic cloud that evolves in a crossover manner. The ground state is degenerate with an intervalley excitonic state at αc≈1.05 , a critical strength, that in our approximation marks a point with single electron and exciton resonances.

  16. Atomic lattice excitons: from condensates to crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kantian, A [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Daley, A J [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Toermae, P [Nanoscience Center, Department of Physics, University of Jyvaeskylae, PO Box 35, FIN-40014 (Finland); Zoller, P [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria)

    2007-11-15

    We discuss atomic lattice excitons (ALEs), bound particle-hole pairs formed by fermionic atoms in two bands of an optical lattice. Such a system provides a clean set-up, with tunable masses and interactions, to study fundamental properties of excitons including exciton condensation. We also find that for a large effective mass ratio between particles and holes, effective long-range interactions can mediate the formation of an exciton crystal, for which superfluidity is suppressed. Using a combination of mean-field treatments, bosonized theory based on a Born-Oppenheimer approximation, and one-dimensional (1D) numerical computation, we discuss the properties of ALEs under varying conditions, and discuss in particular their preparation and measurement.

  17. Spin-polarized exciton quantum beating in hybrid organic-inorganic perovskites

    Science.gov (United States)

    Odenthal, Patrick; Talmadge, William; Gundlach, Nathan; Wang, Ruizhi; Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Valy Vardeny, Z.; Li, Yan S.

    2017-09-01

    Hybrid organic-inorganic perovskites have emerged as a new class of semiconductors that exhibit excellent performance as active layers in photovoltaic solar cells. These compounds are also highly promising materials for the field of spintronics due to their large and tunable spin-orbit coupling, spin-dependent optical selection rules, and their predicted electrically tunable Rashba spin splitting. Here we demonstrate the optical orientation of excitons and optical detection of spin-polarized exciton quantum beating in polycrystalline films of the hybrid perovskite CH3NH3PbClxI3-x. Time-resolved Faraday rotation measurement in zero magnetic field reveals unexpectedly long spin lifetimes exceeding 1 ns at 4 K, despite the large spin-orbit couplings of the heavy lead and iodine atoms. The quantum beating of exciton states in transverse magnetic fields shows two distinct frequencies, corresponding to two g-factors of 2.63 and -0.33, which we assign to electrons and holes, respectively. These results provide a basic picture of the exciton states in hybrid perovskites, and suggest they hold potential for spintronic applications.

  18. Lifetime measurement of excited atomic and ionic states of some ...

    Indian Academy of Sciences (India)

    Abstract. High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have ...

  19. Lifetime measurement of excited atomic and ionic states of some ...

    Indian Academy of Sciences (India)

    High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have been ...

  20. Exciton-polariton wakefields in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Terças, H., E-mail: hugo.tercas@uibk.ac.at [Physics of Information Group, Instituto de Telecomunicações, Lisbon (Portugal); Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck (Austria); Mendonça, J.T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de São Paulo, São Paulo SP, 05508-090 Brazil (Brazil); IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal)

    2016-02-22

    We consider the excitation of polariton wakefields due to a propagating light pulse in a semiconductor microcavity. We show that two kinds of wakes are possible, depending on the constituents fraction (either exciton or photon) of the polariton wavefunction. The nature of the wakefields (pure excitonic or polaritonic) can be controlled by changing the speed of propagation of the external pump. This process could be used as a diagnostic for the internal parameters of the microcavity.

  1. Ultrafast exciton dynamics at molecular surfaces

    Science.gov (United States)

    Monahan, Nicholas R.

    Further improvements to device performance are necessary to make solar energy conversion a compelling alternative to fossil fuels. Singlet exciton fission and charge separation are two processes that can heavily influence the power conversion efficiency of a solar cell. During exciton fission one singlet excitation converts into two triplet excitons, potentially doubling the photocurrent generated by higher energy photons. There is significant discord over the singlet fission mechanism and of particular interest is whether the process involves a multiexciton intermediate state. I used time-resolved two-photon photoemission to investigate singlet fission in hexacene thin films, a model system with strong electronic coupling. My results indicate that a multiexciton state forms within 40 fs of photoexcitation and loses singlet character on a 280 fs timescale, creating two triplet excitons. This is concordant with the transient absorption spectra of hexacene single crystals and definitively proves that exciton fission in hexacene proceeds through a multiexciton state. This state is likely common to all strongly-coupled systems and my results suggest that a reassessment of the generally-accepted singlet fission mechanism is required. Charge separation is the process of splitting neutral excitons into carriers that occurs at donor-acceptor heterojunctions in organic solar cells. Although this process is essential for device functionality, there are few compelling explanations for why it is highly efficient in certain organic photovoltaic systems. To investigate the charge separation process, I used the model system of charge transfer excitons at hexacene surfaces and time-resolved two-photon photoemission. Charge transfer excitons with sufficient energy spontaneously delocalize, growing from about 14 nm to over 50 nm within 200 fs. Entropy drives this delocalization, as the density of states within the Coulomb potential increases significantly with energy. This charge

  2. Time Resolved Fluorescence Lifetime Imaging Analysis of MoS2/Graphene Heterostructures

    Science.gov (United States)

    Sar, Huseyin; Ozden, Ayberk; Sevik, Cem; Kosku Perkgoz, Nihan; Ay, Feridun

    For high-performance optoelectronic device applications, the lifetime of excitons of MoS2/Graphene (M/G) structures is aimed to be high in order to diminish any exciton recombination processes. The M/G structures were obtained by first transferring CVD grown MoS2 flakes on graphene film, and second by direct growth of the MoS2 flakes onto graphene. The excitonic and interface effects were studied using Raman Scattering, PL and fluorescence lifetime (FL) imaging (FLIM). FLIM of MoS2 flakes on SiO2/Si substrate shows that the FL is varying in the range of 0.3-0.45 ns, throughout a single flake, with higher lifetime at the edges. Contrarily, for M/G structures the PL intensity was observed to be quenched by a factor of 10, with a blue shift of 40 meV for the A-exciton. An important outcome was the throughout-the-flake uniform exciton lifetime on the transferred structures with a value of 0.33 ns. This is caused by charge transfer between MoS2 and graphene (2D peak shift in the graphene Raman spectra) and stress relaxation of MoS2 on graphene after the transfer process (significant downshift of E Raman peak of MoS2). As a result, the lifetime of the transferred MoS2 is uniform through all the flake surface and graphene does not decrease the FL of MoS2.

  3. Exciton Resonances in Novel Silicon Carbide Polymers

    Science.gov (United States)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  4. Excitonic nonlinearities in single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D.T.; Voisin, C.; Roussignol, P. [Laboratoire Pierre Aigrain, Ecole Normale Superieure, UPMC, Universite Paris Diderot, CNRS UMR8551, Paris (France); Roquelet, C.; Lauret, J.S. [Laboratoire de Photonique Quantique et Moleculaire de l' Ecole Normale Superieure de Cachan (France); Cassabois, G. [Laboratoire Pierre Aigrain, Ecole Normale Superieure, UPMC, Universite Paris Diderot, CNRS UMR8551, Paris (France); Laboratoire Charles Coulomb, UMR5221, Universite Montpellier 2, Montpellier (France); CNRS, Laboratoire Charles Coulomb, UMR5221, Montpellier (France)

    2012-05-15

    Excitons are composite bosons that allow a fair description of the optical properties in solid state systems. The quantum confinement in nanostructures enhances the excitonic effects and impacts the exciton-exciton interactions, which tailor the performances of classical and quantum optoelectronic devices, such as lasers or single-photon emitters. The excitonic nonlinearities exhibit significant differences between organic and inorganic compounds. Tightly bound Frenkel excitons in molecular crystals are for instance affected by an efficient exciton-exciton annihilation (EEA). This Auger process also governs the population relaxation dynamics in carbon nanotubes that share many physical properties with organic materials. Here, we show that this similarity breaks down for the excitonic decoherence in carbon nanotubes. Original nonlinear spectral-hole burning experiments bring evidence of pure dephasing induced by exciton-exciton scattering (EES) in the k-space. This mechanism controls the exciton collision-induced broadening, as for Wannier excitons in inorganic semiconductors. We demonstrate that this singular behavior originates from the intrinsic one-dimensionality of excitons in carbon nanotubes, which display unique hybrid features of organic and inorganic systems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B. [CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Zhang, F.; Okur, S.; Monavarian, M.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23238 (United States); Leach, J. H. [Kyma Technologies, Raleigh, North Carolina 27617 (United States)

    2014-02-21

    The optical properties of GaN/Al{sub 0.15}Ga{sub 0.85}N multiple quantum wells are examined in 8 K–300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells.

  6. Femtosecond spectroscopy study of the exciton relaxation dynamics in silicon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kryschi, Carola; Kuntermann, Volker; Cimpean, Carla [Institut fuer Physikalische Chemie I, FAU, Erlangen (Germany); Haarer, Dietrich [BIMF, Universitaet Bayreuth (Germany)

    2008-07-01

    This contribution is targeted to the development of surface-modified silicon quantum dots (Siqdots) with tailored luminescence properties. The surface modification of Siqdots with sizes between 1 and 5 nm has been successfully achieved via two different synthesis routes, first, by controlled oxidation followed from silanization and second, by thermal hydrosilylation with chromophores. The luminescence properties of ethanolic Siqdots dispersions were characterized using stationary and time-resolved luminescence spectroscopy techniques, whereas the ultrashort exciton relaxation dynamics were examined using femtosecond transient absorption spectroscopy. Silanized Siqdots were observed to exhibit two species of photoluminescence (PL): the blue emission at 380 nm is assigned to localized surface states, whereas radiative recombination of quantum confined excitons gives rise to a broad PL band around 800 nm. Whereas the latter is ascribed to Siqdots with sizes larger than 3 nm, for Siqdots smaller than 1.5 nm exciton relaxation dynamics is understood to occur predominantly by trapping due to lower-lying surface states which may radiatively decay. Siqdots terminated with suited chromophores were observed to exhibit only one PL band in the visible that is ascribed to exciton states involving resonant couplings to the conjugated electron system of the chromophores.

  7. NIR Laser Radiation Induced Conformational Changes and Tunneling Lifetimes of High-Energy Conformers of Amino Acids in Low-Temperature Matrices

    Science.gov (United States)

    Bazso, Gabor; Najbauer, Eszter E.; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2013-06-01

    We review our recent results on combined matrix isolation FT-IR and NIR laser irradiation studies on glycine alanine, and cysteine. The OH and the NH stretching overtones of the low-energy conformers of these amino acids deposited in Ar, Kr, Xe, and N_{2} matrices were irradiated. At the expense of the irradiated conformer, other conformers were enriched and new, high-energy, formerly unobserved conformers were formed in the matrices. This enabled the separation and unambiguous assignment of the vibrational transitions of the different conformers. The main conversion paths and their efficiencies are described qualitatively showing that there are significant differences in different matrices. It was shown that the high-energy conformer decays in the matrix by H-atom tunneling. The lifetimes of the high-energy conformers in different matrices were measured. Based on our results we conclude that some theoretically predicted low-energy conformers of amino acids are likely even absent in low-energy matrices due to fast H-atom tunneling. G. Bazso, G. Magyarfalvi, G. Tarczay J. Mol. Struct. 1025 (Light-Induced Processes in Cryogenic Matrices Special Issue) 33-42 (2012). G. Bazso, G. Magyarfalvi, G. Tarczay J. Phys. Chem. A 116 (43) 10539-10547 (2012). G. Bazso, E. E. Najbauer, G. Magyarfalvi, G. Tarczay J. Phys. Chem. A in press, DOI: 10.1021/jp400196b. E. E. Najbauer, G. Bazso, G. Magyarfalvi, G. Tarczay in preparation.

  8. Life-Time Dosimetric Assessment for Mice and Rats Exposed in Reverberation Chambers of the 2-Year NTP Cancer Bioassay Study on Cell Phone Radiation.

    Science.gov (United States)

    Gong, Yijian; Capstick, Myles; Kuehn, Sven; Wilson, Perry; Ladbury, John; Koepke, Galen; McCormick, David L; Melnick, Ronald L; Kuster, Niels

    2017-12-01

    In this paper, we present the detailed life-time dosimetry analysis for rodents exposed in the reverberation exposure system designed for the two-year cancer bioassay study conducted by the National Toxicology Program of the National Institute of Environmental Health Sciences. The study required the well-controlled and characterized exposure of individually housed, unrestrained mice at 1900 MHz and rats at 900 MHz, frequencies chosen to give best uniformity exposure of organs and tissues. The wbSAR, the peak spatial SAR and the organ specific SAR as well as the uncertainty and variation due to the exposure environment, differences in the growth rates, and animal posture were assessed. Compared to the wbSAR, the average exposure of the high-water-content tissues (blood, heart, lung) were higher by ~4 dB, while the low-loss tissues (bone and fat) were less by ~9 dB. The maximum uncertainty over the exposure period for the SAR was estimated to be <49% (k=2) for the rodents whereas the relative uncertainty between the group was <14% (k=1). The instantaneous variation (averaged over 1 min) was <13% (k=1), which is small compared to other long term exposure research projects. These detailed dosimetric results empowers comparison with other studies and provides a reference for studies of long-term biological effects of exposure of rodents to RF energy.

  9. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  10. Stark shift and electric-field-induced dissociation of excitons in monolayer MoS2 and h BN /MoS2 heterostructures

    Science.gov (United States)

    Haastrup, Sten; Latini, Simone; Bolotin, Kirill; Thygesen, Kristian S.

    2016-07-01

    Efficient conversion of photons into electrical current in two-dimensional semiconductors requires, as a first step, the dissociation of the strongly bound excitons into free electrons and holes. Here we calculate the dissociation rates and energy shift of excitons in monolayer MoS2 as a function of an applied in-plane electric field. The dissociation rates are obtained as the inverse lifetime of the resonant states of a two-dimensional hydrogenic Hamiltonian which describes the exciton within the Mott-Wannier model. The resonances are computed using complex scaling, and the effective masses and screened electron-hole interaction defining the hydrogenic Hamiltonian are computed from first principles. For field strengths above 0.1 V/nm the dissociation lifetime is shorter than 1 ps, which is below the lifetime associated with competing decay mechanisms. Interestingly, encapsulation of the MoS2 layer in just two layers of hexagonal boron nitride (h BN ), enhances the dissociation rate by around one order of magnitude due to the increased screening. This shows that dielectric engineering is an effective way to control exciton lifetimes in two-dimensional materials.

  11. Exciton Spectroscopy and Absorption Cross-section of Individual Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Cognet, Laurent

    2009-03-01

    Semiconducting Single-Walled Carbon Nanotubes (SWNTs) display intrinsic exciton luminescence which is highly sensitive to the nanotubes environment. For instance single-molecule chemical reactions with individual SWNTs could be observed through the stepwise changes of the luminescence intensity within submicrometer segments of single nanotubes. Analysis of the step amplitudes revealed an exciton diffusion range of ˜90 nm. Each exciton thus visits approximately 10^4 atomic sites during its lifetime, providing highly efficient sensing of local chemical and physical perturbations [1]. SWNT luminescence decays are also sensitive to extrinsic factors. Using highly luminescent individual (6,5) SWNTs, time-resolved spectroscopy revealed however systematic biexponential luminescence decays, with short and long lifetimes around 45 and 250 ps. This intrinsic behavior is attributed to the band-edge exciton fine structure with a dark level lying a few meV below a bright one. Combining such time-resolved studies with cw luminescence ones, the absorption cross-section of individual SWNTs was determined. A mean value of ˜1.10-17 cm^2 per carbon atom is obtained for (6, 5) tubes excited at their second optical transition [2]. This was further corroborated by independent photothermal heterodyne measurements. Because this highly sensitive method relies only on light absorption, it readily detects metallic nanotubes as well as the emissive semiconducting species in various environments and allowed recording for the first time images and absorption spectra of individual SWNTs of both types [3]. [4pt] [1] Cognet et al Science 316, 1465 (2007) [0pt] [2] Berciaud et al Phys.Rev.Lett. 101, 077402 (2008) [0pt] [3] Berciaud et al Nanoletters 7, 1203 (2007)

  12. Plasmon-excitonic polaritons in superlattices

    Science.gov (United States)

    Kosobukin, V. A.

    2017-05-01

    A theory for propagation of polaritons in superlattices with resonant plasmon-exciton coupling is presented. A periodical superlattice consists of a finite number of cells with closely located a quantum well and a monolayer of metal nanoparticles. Under study is the spectrum of hybrid modes formed of the quasitwo- dimensional excitons of quantum wells and the dipole plasmons of metal particles. The problem of electrodynamics is solved by the method of Green's functions with taking account of the resonant polarization of quantum wells and nanoparticles in a self-consistent approximation. The effective polarizability of spheroidal particles occupying a square lattice is calculated with taking into consideration the local-field effect of dipole plasmons of the layer and their images caused by the excitonic polarization of nearest quantum well. Optical reflection spectra of superlattices with GaAs/AlGaAs quantum wells and silver particles are numerically analyzed. Special attention is paid to the superradiant regime originated in the Bragg diffraction of polaritons in superlattice. Superradiance is investigated separately for plasmons and excitons, and then for hybrid plasmonexcitonic polaritons. It is demonstrated that the broad spectrum of reflectance associated with plasmons depends on the number of cells in superlattice, and it has a narrow spectral dip in the range of plasmon-excitonic Rabi splitting.

  13. Bose-Einstein condensation and indirect excitons: a review.

    Science.gov (United States)

    Combescot, Monique; Combescot, Roland; Dubin, François

    2017-06-01

    We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath

  14. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, L.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  15. Excitonic superfluid phase in double bilayer graphene

    Science.gov (United States)

    Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R.

    2017-08-01

    A spatially indirect exciton is created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite boson. Such excitons are long-lived, and in the limit of strong interactions are predicted to undergo a Bose-Einstein condensate-like phase transition into a superfluid ground state. Here, we report evidence of an exciton condensate in the quantum Hall effect regime of double-layer structures of bilayer graphene. Interlayer correlation is identified by quantized Hall drag at matched layer densities, and the dissipationless nature of the phase is confirmed in the counterflow geometry. A selection rule for the condensate phase is observed involving both the orbital and valley indices of bilayer graphene. Our results establish double bilayer graphene as an ideal system for studying the rich phase diagram of strongly interacting bosonic particles in the solid state.

  16. Exciton diffusion and dissociation in conjugated polymer/fullerene heterostructures

    NARCIS (Netherlands)

    Markov, D.E.; Amsterdam, E.; Blom, P.W.M.; Sieval, A.B.; Hummelen, J.C.; Heremans, PL; Muccini, M; Hofstraat, H

    2004-01-01

    Time-resolved luminescence spectroscopy has been used to investigate exciton diffusion in thin films of poly(p-phenylene vinylene) (PPV) based derivatives. Exciton density distribution upon photoexcitation in polymer/fullerene heterostructures has been modeled and exciton diffusion length values of

  17. Transition from spin-orbit to hyperfine interaction dominated spin relaxation in a cold fluid of dipolar excitons

    Science.gov (United States)

    Finkelstein, Ran; Cohen, Kobi; Jouault, Benoit; West, Ken; Pfeiffer, Loren N.; Vladimirova, Masha; Rapaport, Ronen

    2017-08-01

    We measure the spin-resolved transport of dipolar excitons in a biased GaAs double quantum well structure. From these measurements we extract both spin lifetime and mobility of the excitons. We find that below a temperature of 4.8 K there is a sharp increase in the spin lifetime of the excitons, together with a sharp reduction in their mobility. Below a critical power the spin lifetime increases with increasing mobility and density, while above the critical power the opposite trend is observed. We interpret this transition as evidence of the interplay between two different spin dephasing mechanisms: at low mobility the dephasing is dominated by the hyperfine interaction with the lattice nuclei spins, while at higher mobility the spin-orbit interaction dominates and a Dyakonov-Perel spin relaxation takes over. The excitation power and temperature regime where the hyperfine interaction induced spin dephasing is observed correlates with the regime where a dark dipolar quantum liquid was reported recently on a similar sample.

  18. Excitonic dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Nordstrøm, K.B.; Johnsen, Kristinn; Allen, S.J.

    1998-01-01

    The dynamical Franz-Keldysh effect is exposed by exploring near-band-gap absorption in the presence of intense THz electric fields. It bridges the gap between the de Franz-Keldysh effect and multiphoton absorption and competes with the THz ac Stark effect in shifting the energy of the excitonic...... resonance. A theoretical model which includes the strong THz field nonperturbatively via a nonequilibrium Green functions technique is able to describe the dynamical Franz-Keldysh effect in the presence of excitonic absorption....

  19. Exciton dynamics in perturbed vibronic molecular aggregates

    Directory of Open Access Journals (Sweden)

    C. Brüning

    2016-07-01

    Full Text Available A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states.

  20. Exciton broadening in WS2/graphene heterostructures

    Science.gov (United States)

    Hill, Heather M.; Rigosi, Albert F.; Raja, Archana; Chernikov, Alexey; Roquelet, Cyrielle; Heinz, Tony F.

    2017-11-01

    We have used optical spectroscopy to observe spectral broadening of WS2 exciton reflectance peaks in heterostructures of monolayer WS2 capped with mono- to few-layer graphene. The broadening is found to be similar for the A and B excitons and on the order of 5-10 meV. No strong dependence on the number of graphene layers was observed within experimental uncertainty. The broadening can be attributed to charge- and energy-transfer processes between the two materials, providing an observed lower bound for the corresponding time scales of 65 fs.

  1. Lifetime tests for MAC vertex chamber

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)

  2. Anatomy of an Exciton : Vibrational Distortion and Exciton Coherence in H- and J-Aggregates

    NARCIS (Netherlands)

    Tempelaar, Roel; Stradomska, Anna; Knoester, Jasper; Spano, Frank C.

    2013-01-01

    In organic materials, coupling of electronic excitations to vibrational degrees of freedom results in polaronic excited states. Through numerical calculations, we demonstrate that the vibrational distortion field accompanying such a polaron scales as the product of the excitonic interaction field

  3. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Spano, F. C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-05-14

    The properties of polaritons in J-aggregate microcavities are explored using a Hamiltonian which treats exciton-vibrational coupling and exciton-photon coupling on equal footing. When the cavity mode is resonant with the lowest-energy (0-0) transition in the J-aggregate, two polaritons are formed, the lowest-energy polariton (LP) and its higher-energy partner (P{sub 1}), separated by the Rabi splitting. Strong coupling between the material and cavity modes leads to a decoupling of the exciton and vibrational degrees of freedom and an overall reduction of disorder within the LP. Such effects lead to an expanded material coherence length in the LP which leads to enhanced radiative decay rates. Additional spectral signatures include an amplification of the 0-0 peak coincident with a reduction in the 0-1 peak in the photoluminescence spectrum. It is also shown that the same cavity photon responsible for the LP/P{sub 1} splitting causes comparable splittings in the higher vibronic bands due to additional resonances between vibrationally excited states in the electronic ground state manifold and higher energy vibronic excitons.

  4. The atmospheric lifetime of black carbon

    Science.gov (United States)

    Cape, J. N.; Coyle, M.; Dumitrean, P.

    2012-11-01

    Black carbon (BC) in the atmosphere contributes to the human health effects of particulate matter and contributes to radiative forcing of climate. The lifetime of BC, particularly the smaller particle sizes (PM2.5) which can be transported over long distances, is therefore an important factor in determining the range of such effects, and the spatial footprint of emission controls. Theory and models suggest that the typical lifetime of BC is around one week. The frequency distributions of measurements of a range of hydrocarbons at a remote rural site in southern Scotland (Auchencorth Moss) between 2007 and 2010 have been used to quantify the relationship between atmospheric lifetime and the geometric standard deviation of observed concentration. The analysis relies on an assumed common major emission source for hydrocarbons and BC, namely diesel-engined vehicles. The logarithm of the standard deviation of the log-transformed concentration data is linearly related to hydrocarbon lifetime, and the same statistic for BC can be used to assess the lifetime of BC relative to the hydrocarbons. Annual average data show BC lifetimes in the range 4-12 days, for an assumed OH concentration of 7 × 105 cm-3. At this site there is little difference in BC lifetime between winter and summer, despite a 3-fold difference in relative hydrocarbon lifetimes. This observation confirms the role of wet deposition as an important removal process for BC, as there is no difference in precipitation between winter and summer at this site. BC lifetime was significantly greater in 2010, which had 23% less rainfall than the preceding 3 years.

  5. Exciton diffusion length in narrow bandgap polymers

    NARCIS (Netherlands)

    Mikhnenko, Oleksandr V.; Azimi, Hamed; Scharber, Markus; Morana, Mauro; Blom, Paul W. M.; Loi, Maria Antonietta

    We developed a new method to accurately extract the singlet exciton diffusion length in organic semiconductors by blending them with a low concentration of methanofullerene[6,6]-phenyl-C-61-butyric acid methyl ester (PCBM). The dependence of photoluminescence (PL) decay time on the fullerene

  6. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  7. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  8. Optical second harmonic generation from Wannier excitons

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Cornean, Horia

    2007-01-01

    , a simplified three-band Wannier exciton model of cubic semiconductors is applied and a closed form expression for the complex second harmonic response function including broadening is derived. Our calculated spectra are found to be in excellent agreement with the measured response near the band edge...

  9. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Matthew S. [Department; Ding, Wendu [Department; Li, Yuxiu [Center; College; Chapman, Craig T. [Department; Lei, Aiwen [College; Lin, Xiao-Min [Center; Chen, Lin X. [Department; Chemical; Schatz, George C. [Department; Schaller, Richard D. [Department; Center

    2017-12-08

    We demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result, change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.

  10. Excitons in van der Waals heterostructures

    DEFF Research Database (Denmark)

    Latini, Simone; Olsen, Thomas; Thygesen, Kristian Sommer

    2015-01-01

    The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semiconductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions, a systematic investigation of the role of screening on two...

  11. Nonlocal excitonic-mechanical interaction in a nanosystem

    Science.gov (United States)

    Zabolotskii, A. A.

    2016-11-01

    The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic-mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic-mechanical interaction has been demonstrated.

  12. Exciton dynamics at the heteromolecular interface between N,N′-dioctyl-3,4,9,10-perylenedicarboximide and quaterrylene, studied using time-resolved photoluminescence

    Directory of Open Access Journals (Sweden)

    Nobuya Hiroshiba

    2014-06-01

    Full Text Available To elucidate the exciton dynamics at the heteromolecular interface, the temperature dependence of time-resolved photoluminescence (TRPL spectra of neat-N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8 and PTCDI-C8/Quaterrylene (QT heteromolecular thin films was investigated. The lifetimes of excitons were evaluated to identify the Frenkel (FE, high energy charge-transfer (CTEhigh, low energy charge-transfer (CTElow, and excimer exciton states. The thermal activation energy (Δact of CTElow in PTCDI-C8 thin film was evaluated as 25 meV, which is 1/5 of that of FE, indicating that CTElow is more thermally sensitive than FE in PTCDI-C8 thin film. We investigated the exciton transport length (l along the vertical direction against the substrate surface in PTCDI-C8/QT thin film at 30 K, and demonstrated that lFE = 9.9 nm, lCTElow = 4.2 nm, lCTEhigh = 4.3 nm, and lexcimer = 11.9 nm. To elucidate the difference in l among these excitons, the activation energies (Ea for quenching at the heteromolecular interface were investigated. Ea values were estimated to be 13.1 meV for CTElow and 18.6 meV for CTEhigh. These values agree with the thermal sensitivity of CTEs as reported in a previous static PL study. This latter situation is different from the case of FE and excimer excitons, which are transported via a resonant process and have no temperature dependence. The small Ea values of CTEs suggest that exciton transport takes place via a thermal hopping process in CTEs. The present experimental study provides information on nano-scaled exciton dynamics in a well-defined PTCDI-C8 (2 ML/QT (2 ML system.

  13. Self-trapped exciton configurations in Beryllium Oxide

    Science.gov (United States)

    Botov, M. A.; Kuznetsov, A. Yu; Sobolev, A. B.

    2017-05-01

    The modern radiation technology, nuclear engineering, non-linear optics are associated with radiation-resistant optical material study. Evolution of electronic excitations in these materials is a complex multichannel process which currently has no integrated model. A special role belongs to the low-symmetry single crystals, such as beryllium oxide (BeO). We present theoretical results that advance our understanding of exciton-based channel of electronic excitations relaxation. The four possible self-trapped exciton (STE) configurations in beryllia single crystal have been investigated by using a quantum mechanical approach (Hartree-Fock and B3LYP HF-DFT hybrid functional, as implemented in the CRYSTAL09 code). B3LYP DFT functional with 30% of exact exchange was used (B3LYP30). All calculations were performed using periodic boundary conditions and full SC geometry relaxation. The lattice distortion and charge density distribution for considered defect configurations were obtained. STE-A1 luminescence energy was found to be 6.0 eV for HF and 6.5 eV for B3LYP30; STE-A2 luminescence energy was found to be 9.2 eV for HF and 7.8 eV for B3LYP30. STE-B1 luminescence energy was found to be 5.5 eV for HF, 6.2 eV for B3LYP30; STE-B2 luminescence energy was found to be 4.7 eV for HF.

  14. Peculiarities of the determination of shallow impurity concentrations in semiconductors from the analysis of exciton luminescence spectra

    CERN Document Server

    Glinchuk, K D

    2002-01-01

    An analysis was made of the applicability limits of the method for the determination of the content of shallow acceptors and donors in semiconductors from the ratio of the low-temperature (T = 1.8-4.2 K) luminescence intensities of exciton bands, in particular, induces by radiative annihilation of excitons bound to acceptors (donors) and free excitons. It is shown that correct data about the concentrations of shallow acceptors and donors as well as data on changes in their content as a result of various treatments may be obtained if the occupancy of the defects in question by holes and electrons does not depend on the excitation intensity or external treatments. A way to check the fulfillment of criteria for the method application is suggested. An example is given is given of the method application for determination of thermally stimulated changes in the concentration of shallow acceptors and donors in gallium arsenide

  15. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S., E-mail: borismonozon@mail.ru [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St.Petersburg (Russian Federation); Schmelcher, P. [Zentrum für Optische Quantentechnologien, The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-02-15

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  16. Relaxation of nonthermal hh and lh excitons in ZnSe quantum wells

    DEFF Research Database (Denmark)

    Kalt, H.; Hoffmann, J.; Umlauff, M.

    1998-01-01

    The strong exciton-LO phonon coupling in ZnSe QWs gives a direct access to the relaxation dynamics of nonthermal, free heavy-hole and light-hole excitons. Narrow hot-exciton distributions can be generated by LO-phonon assisted exciton formation. The thermalization of these excitons is monitored b...

  17. The temperature behavior and mechanism of exciton luminescence in quantum dots.

    Science.gov (United States)

    Zatsepin, A F; Biryukov, D Yu

    2017-07-19

    The processes of direct and indirect optical excitation of spatially confined excitons in quantum dots (QDs) embedded in a silica thin-film matrix have been reported and discussed. A generalized scheme for the electronic transitions is employed for a detailed description of luminescence temperature behavior using various excitation methods. This scheme considers three different models of exciton relaxation and substantiates the occupation of the triplet radiative states as a result of singlet-triplet intersystem crossing or excitation energy transfer from free excitons of the matrix. Analytical expressions describing five types of different temperature curves were derived. It is established that their shapes are exactly defined by the excitation mechanism and the parameters involved in the numerical model. The conditions allowing the estimation of the energy and kinetic characteristics of QD photoluminescence are formulated. We have shown that the confinement effect causes a decrease in the thermal activation barriers and frequency characteristics for non-radiative transitions. An application of the developed concepts allows predicting and estimating the temperature dependences for direct and indirect optically excited QD luminescence employing silicon nanoclusters in a silica thin-film matrix as an example.

  18. Direct Imaging of Frenkel Exciton Transport by Ultrafast Microscopy.

    Science.gov (United States)

    Zhu, Tong; Wan, Yan; Huang, Libai

    2017-07-18

    Long-range transport of Frenkel excitons is crucial for achieving efficient molecular-based solar energy harvesting. Understanding of exciton transport mechanisms is important for designing materials for solar energy applications. One major bottleneck in unraveling of exciton transport mechanisms is the lack of direct measurements to provide information in both spatial and temporal domains, imposed by the combination of fast energy transfer (typically ≤1 ps) and short exciton diffusion lengths (typically ≤100 nm). This challenge requires developing experimental tools to directly characterize excitation energy transport, and thus facilitate the elucidation of mechanisms. To address this challenge, we have employed ultrafast transient absorption microscopy (TAM) as a means to directly image exciton transport with ∼200 fs time resolution and ∼50 nm spatial precision. By mapping population in spatial and temporal domains, such approach has unraveled otherwise obscured information and provided important parameters for testing exciton transport models. In this Account, we discuss the recent progress in imaging Frenkel exciton migration in molecular crystals and aggregates by ultrafast microscopy. First, we establish the validity of the TAM methods by imaging singlet and triplet exciton transport in a series of polyacene single crystals that undergo singlet fission. A new singlet-mediated triplet transport pathway has been revealed by TAM, resulting from the equilibrium between triplet and singlet exciton populations. Such enhancement of triplet exciton transport enables triplet excitons to migrate as singlet excitons and leads to orders of magnitude faster apparent triplet exciton diffusion rate in the picosecond and nanosecond time scales, favorable for solar cell applications. Next we discuss how information obtained by ultrafast microscopy can evaluate coherent effects in exciton transport. We use tubular molecular aggregates that could support large exciton

  19. Multiple Exciton Generation in Colloidal Nanocrystals

    Directory of Open Access Journals (Sweden)

    Charles Smith

    2013-12-01

    Full Text Available In a conventional solar cell, the energy of an absorbed photon in excess of the band gap is rapidly lost as heat, and this is one of the main reasons that the theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton generation (MEG, can occur in colloidal quantum dots. Here, some or all of the excess energy is instead used to promote one or more additional electrons to the conduction band, potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This review will describe the development of this field over the decade since the first experimental demonstration of multiple exciton generation, including the controversies over experimental artefacts, comparison with similar effects in bulk materials, and the underlying mechanisms. We will also describe the current state-of-the-art and outline promising directions for further development.

  20. Exciton Polaritons in Microcavities New Frontiers

    CERN Document Server

    Sanvitto, Daniele

    2012-01-01

    In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.

  1. Excitonic and photonic processes in materials

    CERN Document Server

    Williams, Richard

    2015-01-01

    This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic.  Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators, and materials with novel optical properties.  Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics,  border security, and nuclear nonproliferation.  Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.

  2. Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)

    DEFF Research Database (Denmark)

    Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.

    2013-01-01

    A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...... times slower in the lateral direction between aggregates. Exciton hopping between aggregates is found to show a subtle dependence on interchain coupling, aggregate size, and Boltzmann statistics. Additionally, a clear correlation is observed between the effective exciton diffusion coefficient......, the degree of aggregation of chromophores, and exciton delocalization along the polymer chain, which suggests that exciton diffusion length can be enhanced by tailored synthesis and processing conditions....

  3. Excitons in atomically thin 2D semiconductors and their applications

    Directory of Open Access Journals (Sweden)

    Xiao Jun

    2017-06-01

    Full Text Available The research on emerging layered two-dimensional (2D semiconductors, such as molybdenum disulfide (MoS2, reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  4. Chiral topological excitons in a Chern band insulator

    Science.gov (United States)

    Chen, Ke; Shindou, Ryuichi

    2017-10-01

    A family of semiconductors called Chern band insulators are shown to host exciton bands with nonzero topological Chern integers and chiral exciton edge modes. Using a prototypical two-band Chern insulator model, we calculate a cross-correlation function to obtain the exciton bands and their Chern integers. The lowest exciton band acquires Chern integers such as ±1 and ±2 in the electronic Chern insulator phase. The nontrivial topology can be experimentally observed both by a nonlocal optoelectronic response of exciton edge modes and by a phase shift in the cross-correlation response due to the bulk mode. Our result suggests that magnetically doped HgTe, InAs/GaSb quantum wells, and (Bi,Sb)2Te3 thin films are promising candidates for a platform of topological excitonics.

  5. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials

    KAUST Repository

    Tizei, Luiz H. G.

    2015-03-01

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.

  6. Engineering and manipulating exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Montangero, Simone; Carr, Lincoln D.; Lusk, Mark T.

    2017-05-01

    When a semiconductor absorbs light, the resulting electron-hole superposition amounts to a uncontrolled quantum ripple that eventually degenerates into diffusion. If the conformation of these excitonic superpositions could be engineered, though, they would constitute a new means of transporting information and energy. We show that properly designed laser pulses can be used to create such excitonic wave packets. They can be formed with a prescribed speed, direction, and spectral make-up that allows them to be selectively passed, rejected, or even dissociated using superlattices. Their coherence also provides a handle for manipulation using active, external controls. Energy and information can be conveniently processed and subsequently removed at a distant site by reversing the original procedure to produce a stimulated emission. The ability to create, manage, and remove structured excitons comprises the foundation for optoexcitonic circuits with application to a wide range of quantum information, energy, and light-flow technologies. The paradigm is demonstrated using both tight-binding and time-domain density functional theory simulations.

  7. Different emissive states in the bulk and at the surface of methylammonium lead bromide perovskite revealed by two-photon micro-spectroscopy and lifetime measurements

    Directory of Open Access Journals (Sweden)

    Khadga Jung Karki

    2016-07-01

    Full Text Available Two photon photoluminescence (2PPL from single crystals of methyl ammonium lead bromide (CH3NH3PbBr3, MAPbBr3 is studied. We observe two components in the 2PPL spectra, which we assign to the photoluminescence (PL from the carrier recombination at the band edge and the recombination due to self-trapping of excitons. The PL Stokes shift of self-trapped excitons is about 100 meV from the band-gap energy. Our measurements show that about 15% of the total PL from regions about 40 μm deep inside the crystal is due to the emission from self-trapped exciton. This contribution increases to about 20% in the PL from the regions close to the surface. Time resolved measurements of 2PPL show that the PL due to band-edge recombination has a life time of about 8 ns while the PL lifetime of self-trapped excitons is in the order of 100 ns. Quantification of self-trapped excitons in the materials used in photovoltaics is important as such excitons hinder charge separation. As our results also show that an appreciable fraction of photo-generated carriers get trapped, the results are important in rational design of photovoltaics. On the other hand, our results also show that the self-trapped excitons broaden the emission spectrum, which may be useful in designing broadband light emitting devices.

  8. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering......-one-dimensional system, enhancing the repulsive interaction between excitons due to Pauli blocking....

  9. Study of exciton transfer in dense quantum dot nanocomposites

    Science.gov (United States)

    Guzelturk, Burak; Hernandez-Martinez, Pedro Ludwig; Sharma, Vijay Kumar; Coskun, Yasemin; Ibrahimova, Vusala; Tuncel, Donus; Govorov, Alexander O.; Sun, Xiao Wei; Xiong, Qihua; Demir, Hilmi Volkan

    2014-09-01

    Nanocomposites of colloidal quantum dots (QDs) integrated into conjugated polymers (CPs) are key to hybrid optoelectronics, where engineering the excitonic interactions at the nanoscale is crucial. For such excitonic operation, it was believed that exciton diffusion is essential to realize nonradiative energy transfer from CPs to QDs. In this study, contrary to the previous literature, efficient exciton transfer is demonstrated in the nanocomposites of dense QDs, where exciton transfer can be as efficient as 80% without requiring the assistance of exciton diffusion. This is enabled by uniform dispersion of QDs at high density (up to ~70 wt%) in the nanocomposite while avoiding phase segregation. Theoretical modeling supports the experimental observation of weakly temperature dependent nonradiative energy transfer dynamics. This new finding provides the ability to design hybrid light-emitting diodes that show an order of magnitude enhanced external quantum efficiencies.Nanocomposites of colloidal quantum dots (QDs) integrated into conjugated polymers (CPs) are key to hybrid optoelectronics, where engineering the excitonic interactions at the nanoscale is crucial. For such excitonic operation, it was believed that exciton diffusion is essential to realize nonradiative energy transfer from CPs to QDs. In this study, contrary to the previous literature, efficient exciton transfer is demonstrated in the nanocomposites of dense QDs, where exciton transfer can be as efficient as 80% without requiring the assistance of exciton diffusion. This is enabled by uniform dispersion of QDs at high density (up to ~70 wt%) in the nanocomposite while avoiding phase segregation. Theoretical modeling supports the experimental observation of weakly temperature dependent nonradiative energy transfer dynamics. This new finding provides the ability to design hybrid light-emitting diodes that show an order of magnitude enhanced external quantum efficiencies. Electronic supplementary

  10. Excitons confined in quantum dots spheroidal prolate; Excitones confinados en puntos cuanticos esferoidales prolatos

    Energy Technology Data Exchange (ETDEWEB)

    Corella M, A.; Rosas, R.A.; Marin, J.L.; Riera, R. [Depto. de Fisica, Universidad de Sonora, A.P. 1626, Hermosillo, Sonora (Mexico)

    2004-07-01

    The variational method is used to solve in approximately way the Schroedinger wave equation associated to a Wannier-Mott exciton confined within a spheroidal quantum dot. The confinement effect on the ground-state energy of the electron-hole pair trapped inside a crystallite with this geometry, and with soft or hard walls, is analyzed. The walls can be modeled as finite or infinite potential barriers with suitable border conditions, which will depend on the considered case. The results of this work are compared with those obtained by other authors through more sophisticated methods. A comparison with experimental data of CdS crystallites embedded in materials of different composition is made, too. For a finite potential barrier, a critical size of the crystallite from which the exciton escapes of the quantum dot, is predicted. This is in opposition with the infinite potential barrier model where the exciton never can leave the region where it is confined. (Author)

  11. Lifetime of fluorescence from light-harvesting chlorophyll a/b proteins: excitation intensity dependence

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, T.M. (Univ. of Rochester, NY); Knox, W.H.

    1981-10-01

    The fluorescence from a purified, aggregate form of the light-harvesting chlorophyll a/b protein has a lifetime of 1.2 +/- 0.5 ns at low excitation intensity, but the lifetime decreases significantly when the intensity of the 20-ps, 5300nm excitation pulse is increased above about 10/sup 16/ photons/cm/sup 2/. A solubilized, monomeric form of the protein, on the other hand, has a fluorescence lifetime of 3.1 +/- 0.3 ns independent of excitation intensity from 10/sup 14/-10/sup 18/ photons/cm/sup 2//pulse. We interpret the lifetime shortening in the aggregates and the lack of shortening in monomers in terms of exciton annihilation, facilitated in the aggregate by the larger population of interacting chlorophylls.

  12. Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure

    Science.gov (United States)

    Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D.; Kis, A.; Plochocka, P.

    2017-10-01

    Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of inter-layer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe$_2$/WSe$_2$ heterostructures. Here we report on the observation of long lived inter-layer exciton emission in a MoS$_2$/MoSe$_2$/MoS$_2$ trilayer van der Waals heterostructure. The inter-layer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power and temperature dependence of the inter-layer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long lived valley polarization of inter-layer exciton. Intriguingly, the inter-layer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the inter-layer exciton emission.

  13. Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2van der Waals Heterostructure.

    Science.gov (United States)

    Baranowski, M; Surrente, A; Klopotowski, L; Urban, J M; Zhang, N; Maude, D K; Wiwatowski, K; Mackowski, S; Kung, Y C; Dumcenco, D; Kis, A; Plochocka, P

    2017-10-11

    Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of interlayer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe 2 /WSe 2 heterostructures. Here we report on the observation of long-lived interlayer exciton emission in a MoS 2 /MoSe 2 /MoS 2 trilayer van der Waals heterostructure. The interlayer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power, and temperature dependence of the interlayer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long-lived valley polarization of interlayer exciton. Intriguingly, the interlayer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the interlayer exciton emission.

  14. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures

    National Research Council Canada - National Science Library

    Rivera, Pasqual; Schaibley, John R; Jones, Aaron M; Ross, Jason S; Wu, Sanfeng; Aivazian, Grant; Klement, Philip; Seyler, Kyle; Clark, Genevieve; Ghimire, Nirmal J; Yan, Jiaqiang; Mandrus, D G; Yao, Wang; Xu, Xiaodong

    2015-01-01

    ..., that is, interlayer excitons. Here, we report the observation of interlayer excitons in monolayer MoSe2-WSe2 heterostructures by photoluminescence and photoluminescence excitation spectroscopy...

  15. Charm lifetimes and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Harry W.K. Cheung

    2001-11-28

    A review of the latest results on charm lifetimes and D-mixing is presented. The e{sup +}e{sup -} collider experiments are now able to measure charm lifetimes quite precisely, however comparisons with the latest results from fixed-target experiments show that possible systematic effects could be evident. The new D-mixing results from the B-factories have changed the picture that is emerging. Although the new world averaged value of y{sub CP} is now consistent with zero, there is still a very interesting and favored scenario if the strong phase difference between the Doubly-Cabibbo-suppressed and the Cabibbo-flavored D{sup 0} {yields} K{pi} decay is large.

  16. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  17. The convergence of longitudinal excitons onto the Γ5 transverse exciton in GaN and the thermal activation energy of longitudinal excitons.

    Science.gov (United States)

    Elgawadi, Amal; Gainer, Gordon; Krasinski, Jerzy

    2013-08-21

    The crystal orientation dependence of GaN excitons was investigated via the photoluminescence (PL) technique. The PL emissions at a temperature of 10 K were obtained from two experimental configurations where the emission K vector (the propagation vector) was either parallel (K ∥ c) or perpendicular (K ∥ c) to the crystal c-axis. Longitudinal, transverse and donor-bound excitons were observed in the two configurations. However, the longitudinal excitons converged onto the transverse free exciton Γ5 in the K⊥c emission. This behavior was discussed in terms of electron screening due to the scattering of electrons moving perpendicular to charged dislocation lines. Additionally, the thermal activation energy of the longitudinal excitons was calculated from the temperature dependent PL measurements collected from the K ∥ c emission, and was found to be 5 to 6 times as high as the binding energy of the free excitons. This high energy was interpreted tentatively in view of the creation of polaritons in strong exciton-photon coupling regimes. These findings present fundamental concepts for applications such as vertical cavity surface-emitting lasers (VCSELs) and polariton lasers.

  18. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    Science.gov (United States)

    Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-03-01

    The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be

  19. Fluorescence lifetime imaging microscopy (FLIM).

    NARCIS (Netherlands)

    van Munster, E.B.; Gadella, Th.W.J.; Rietdorf, J.

    2005-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is a technique to map the spatial distribution of nanosecond excited state lifetimes within microscopic images. FLIM systems have been implemented both in the frequency domain, using sinusoidally intensity-modulated excitation light and modulated

  20. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.

    Science.gov (United States)

    Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J

    2015-04-28

    Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.

  1. Anisotropy of exciton migration in poly(p-phenylene vinylene)

    NARCIS (Netherlands)

    Markov, D. E.; Blom, P. W. M.

    The dynamics of the exciton transport in poly(p-phenylene vinylene) (PPV) blended with a low concentration of fullerene molecules is monitored by time-resolved photoluminescence measurements. The diffusion driven motion of excitons toward these scavengers is modeled using a theory based on a random

  2. Temperature dependence of exciton diffusion in conjugated polymers

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Cordella, F.; Sieval, A.B.; Hummelen, J.C.; Blom, P.W.M.; Loi, M.A.

    2008-01-01

    The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a ID diffusion

  3. Bose Condensation of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Timofeev, V. B.; Ni, P. A.

    2002-01-01

    in the domain. With a rise in temperature, this line disappears from the spectrum (Tc 3.4 K). The observed phenomenon is attributed to Bose–Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature range studied (1.5–3.4 K), the critical exciton density and temperature...

  4. Imaging the motion of excitonic complexes in semiconductor quantum wells

    NARCIS (Netherlands)

    Pulizzi, Fabio

    2003-01-01

    The low temperature optical properties of semiconductor quantum wells are dominated by excitonic complexes, i.e. a few charges bound together by the mutual Coulomb interaction. Excitonic complexes have been widely studied in the past not only for their importance in the physics of semiconductors,

  5. Optical properties of localized excitons in semiconductor nanostructures

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Hvam, Jørn Märcher; Langbein, Wolfgang Werner

    2002-01-01

    Denne afhandling beskriver optiske undersøgelser af lokaliserede excitoner i III-V halvleder nanostrukturer. Det drejer sig især om tredimensional lokalisering af excitoner i to typer af selvorganiserede systemer, nemlig kvantebrønde med fluktuerende lagtykkelse og såkaldte selv-dannede kvantepun...

  6. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    , dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  7. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  8. Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher

    1998-01-01

    The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms ...

  9. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  10. Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures

    Science.gov (United States)

    Sakr, G.; Sartel, C.; Sallet, V.; Lusson, A.; Patriarche, G.; Galtier, P.; Barjon, J.

    2017-12-01

    The diffusion of excitons injected in ZnO/Zn0.92Mg0.08O quantum well heterostructures grown by metal-organic-vapor-phase-epitaxy on non-polar ZnO substrates is investigated at room temperature. Cathodoluminescence linescans in a field-emission-gun scanning-electron-microscope are performed across cleaved cross-sections. A 55 nm diffusion length is assessed for excitons in bulk ZnMgO. When prepared as small angle bevels using focused ion beam (FIB), the effective diffusion length of excitons is shown to decrease down to 8 nm in the thinner part of the slab. This effect is attributed to non-radiative surface recombinations, with a 7  ×  104 cm s‑1 recombination velocity estimated at the FIB-machined ZnMgO surface. The strong reduction of the diffusion extent in such thin lamellae usually used for transmission electron microscopy could be use improve the spatial resolution of cathodoluminescence images, often limited by diffusion processes.

  11. Bistable Topological Insulator with Exciton-Polaritons

    Science.gov (United States)

    Kartashov, Yaroslav V.; Skryabin, Dmitry V.

    2017-12-01

    The functionality of many nonlinear and quantum optical devices relies on the effect of optical bistability. Using microcavity exciton-polaritons in a honeycomb arrangement of microcavity pillars, we report the resonance response and bistability of topological edge states. A balance between the pump, loss, and nonlinearity ensures a broad range of dynamical stability and controls the distribution of power between counterpropagating states on the opposite edges of the honeycomb lattice stripe. Tuning energy and polarization of the pump photons, while keeping their momentum constant, we demonstrate control of the propagation direction of the dominant edge state. Our results facilitate the development of practical applications of topological photonics.

  12. Single-photon source based on Rydberg exciton blockade

    Science.gov (United States)

    Khazali, Mohammadsadegh; Heshami, Khabat; Simon, Christoph

    2017-11-01

    Bound states of electron–hole pairs in semiconductors demonstrate a hydrogen-like behavior in their high-lying excited states that are also known as Rydberg exciton states. The strong interaction between excitons in levels with high principal quantum numbers prevents the creation of more than one exciton in a small crystal; resulting in the Rydberg blockade effect. Here, we propose a new kind of solid-state single-photon source based on the recently observed Rydberg blockade effect for excitons in cuprous oxide. Our quantitative estimates based on single and double excitation probability dynamics indicate that GHz rates and values of the second-order correlation function {g}2(0) below the percent level can be simultaneously achievable. These results should pave the way to explore applications of Rydberg excitons in photonic quantum information processing.

  13. Extended lifetime biofuel cells.

    Science.gov (United States)

    Moehlenbrock, Michael J; Minteer, Shelley D

    2008-06-01

    Over the last 40 years, researchers have been studying and improving enzymatic biofuel cells, but until the last five years, the technology was plagued by short active lifetimes (typically 8 hours to 7 days) that prohibited the commercial use of this technology. This tutorial review introduces the topic of enzymatic biofuel cells and discusses the recent work done to stabilize and immobilize enzymes at bioanodes and biocathodes of biofuel cells. This review covers a wide variety of fuel systems from sugar to alcohols and covers both direct electron transfer (DET) systems and mediated electron transfer (MET) systems.

  14. Lifetime of organic photovoltaics

    DEFF Research Database (Denmark)

    Corazza, Michael; Krebs, Frederik C; Gevorgyan, Suren A.

    2015-01-01

    A comprehensive outdoor study of polymer solar cells and modules for duration of one year was conducted. Different sample geometries and encapsulations were employed in order to study the spread in the lifetimes. The study is a complimentary report to previous work that focused on indoor ageing...... tests. Acceleration factors were determined using the ISOS-protocols, which enabled reproducible data acquisition between different laboratories and operators within the OPV community. A semi-automatic filtering method was employed for processing data acquired in outdoor tests. It was found...

  15. Radiative and nonradiative pathways in multiexciton recombination in giant nanocrystal quantum dots

    Science.gov (United States)

    Malko, Anton; Sampat, Siddharth; Htoon, Han; Vela-Becerra, Javier; Chen, Yongfen; Hollingsworth, Jennifer; Klimov, Victor

    2010-03-01

    Recently,footnotetextY. Chen et al., JACS 130, 5026 (2008) we developed ``giant'' nanocrystal quantum dots (g-NQDs), in which a small emitting core of CdSe is overcoated with a thick shell of a wider-gap CdS. We conduct room-temp measurements of photoluminescence (PL) lifetimes in such g-NQDs as a function of excitation power and a number of shell monolayers. At low pump levels, corresponding to excitation of less than 1 exciton per dot on average (>1, fast (˜1ns) PL component appeared, accompanied by a transition to a sub-linear scaling of PL intensity with . Our findings indicate that while g-NQDs indeed produce suppression of nonradiative Auger recombination,footnotetextF. Garcia-Santamaria et al., Nanoletters 9, 3482 (2009) this suppression is incomplete. We conduct systematic studies of relative efficiencies of nonradiative and radiative processes in these nanostructures.

  16. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2009-11-11

    We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.

  17. Fluorescence lifetime based bioassays

    Science.gov (United States)

    Meyer-Almes, Franz-Josef

    2017-12-01

    Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.

  18. Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Lindvold, Lars René; Andersen, Claus Erik

    2011-01-01

    of experiments performed using two organic scintillators, one commercially available and one custom made. The luminescent lifetimes of the scintillators have been measured using i) optical excitation by pulsed UV light, and ii) irradiative excitation using high-energy X-rays from a linac. A luminescent lifetime......Organic scintillators with long luminescent lifetimes can theoretically be used to temporally filter out radiation-induced luminescence and Cerenkov light (the so-called stem signal) when used as fibre-coupled radiotherapy dosimeters. Since the medical linear accelerators (linacs1) used...

  19. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    KAUST Repository

    Andernach, Rolf

    2015-07-22

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple timescales and investigated the mechanism of triplet exciton formation. During sensitization, single exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and find that 60% of the complex triplet excitons are transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and up-conversion layers.

  20. Positron lifetime study in dilute electron irradiated lead based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moya, G. [Lab. de Physique des Materiaux, 13 Marseille (France); Li, X.H. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France); Menai, A. [Lab. de Physique des Materiaux, 13 Marseille (France); Kherraz, M. [Lab. de Physique des Materiaux, 13 Marseille (France); Amenzou, H. [Lab. de Physique des Materiaux, 13 Marseille (France); Bernardini, J. [Lab. de Metallurgie, 13 Marseille (France); Moser, P. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France)

    1995-06-01

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centred at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (orig.)

  1. Condensation to a strongly correlated dark fluid of two dimensional dipolar excitons

    Science.gov (United States)

    Mazuz-Harpaz, Yotam; Cohen, Kobi; Rapaport, Ronen

    2017-08-01

    Recently we reported on the condensation of cold, electrostatically trapped dipolar excitons in GaAs bilayer heterostructure into a new, dense and dark collective phase. Here we analyze and discuss in detail the experimental findings and the emerging evident properties of this collective liquid-like phase. We show that the phase transition is characterized by a sharp increase of the number of non-emitting dipoles, by a clear contraction of the fluid spatial extent into the bottom of the parabolic-like trap, and by spectral narrowing. We extract the total density of the condensed phase which we find to be consistent with the expected density regime of a quantum liquid. We show that there are clear critical temperature and excitation power onsets for the phase transition and that as the power further increases above the critical power, the strong darkening is reduced down until no clear darkening is observed. At this point another transition appears which we interpret as a transition to a strongly repulsive yet correlated e-h plasma. Based on the experimental findings, we suggest that the physical mechanism that may be responsible for the transition is a dynamical final-state stimulation of the dipolar excitons to their dark spin states, which have a long lifetime and thus support the observed sharp increase in density. Further experiments and modeling will hopefully be able to unambiguously identify the physical mechanism behind these recent observations.

  2. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.

    2010-05-12

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  3. Excitonic AND Logic Gates on DNA Brick Nanobreadboards

    Science.gov (United States)

    2015-01-01

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049

  4. Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Andrey A. Chernyuk

    2006-02-01

    Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.

  5. Hot exciton cooling and multiple exciton generation in PbSe quantum dots.

    Science.gov (United States)

    Kumar, Manoj; Vezzoli, Stefano; Wang, Zilong; Chaudhary, Varun; Ramanujan, Raju V; Gurzadyan, Gagik G; Bruno, Annalisa; Soci, Cesare

    2016-11-16

    Multiple exciton generation (MEG) is a promising process to improve the power conversion efficiency of solar cells. PbSe quantum dots (QDs) have shown reasonably high MEG quantum yield (QY), although the photon energy threshold for this process is still under debate. One of the reasons for this inconsistency is the complicated competition of MEG and hot exciton cooling, especially at higher excited states. Here, we investigate MEG QY and the origin of the photon energy threshold for MEG in PbSe QDs of three different sizes by studying the transient absorption (TA) spectra, both at the band gap (near infrared, NIR) and far from the band gap energy (visible range). The comparison of visible TA spectra and dynamics for different pump wavelengths, below, around and above the MEG threshold, provides evidence of the role of the Σ transition in slowing down the exciton cooling process that can help MEG to take over the phonon relaxation process. The universality of this behavior is confirmed by studying QDs of three different sizes. Moreover, our results suggest that MEG QY can be determined by pump-probe experiments probed above the band gap.

  6. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The

  7. Electrical Control of Excitons in Semiconductor Nanostructures

    DEFF Research Database (Denmark)

    Kirsanské, Gabija

    The scope of this thesis covers investigation of the exciton Mott transition in coupled quantum wells, fabrication of photonic-crystal structures with embedded self-assembled quantum dots, and tuning of their properties by means of an external electric field. In the first part of the thesis...... the focus is on quantum dots in photonic nanostructures. The fabrication process of reproducible high-quality photonic-crystal structures on electrically gated GaAs samples is presented. This process is employed to investigate light localization in short photonic-crystal waveguides with a dispersion...... relation facilitating a slow-light effect. The effect of the variations in the local density of optical states on electrically tuned quantum dots embedded in photonic structures is investigated. An electric field is employed to induce strain in suspended GaAs structures, where a bidirectional spectral...

  8. Ball lightning diameter-lifetime statistical analysis of SKB databank

    Science.gov (United States)

    Amirov, Anvar Kh; Bychkov, Vladimir L.

    1995-03-01

    Revelation of the significance of diameter as a factor for the lifetime as a parameter for different ways of Ball Lightning (BL) disappearance has been made. Methods for non-parametric regression analysis have been applied for pairs diameter - radiation losses in correspondence to BL disappearance. BL diameter as a factor turned out to be significant for BL life-time in the case of explosion and decay and insignificant in the case of extinction. Dependence logarithm of radiation losses - logarithm of BL volume obtained with the help of nonparametric regression treatment turned out to be different according to BL ways of disappearance.

  9. Energy Savings Lifetimes and Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  10. Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Mohamed El Kabbash

    2016-01-01

    Full Text Available The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.

  11. Excitons in ultrathin organic-inorganic perovskite crystals

    Science.gov (United States)

    Yaffe, Omer; Chernikov, Alexey; Norman, Zachariah M.; Zhong, Yu; Velauthapillai, Ajanthkrishna; van der Zande, Arend; Owen, Jonathan S.; Heinz, Tony F.

    2015-07-01

    We demonstrate the formation of large sheets of layered organic-inorganic perovskite (OIPC) crystals, as thin as a single unit cell, prepared by mechanical exfoliation. The resulting two-dimensional OIPC nanosheets of 2.4 nm thickness are direct semiconductors with an optical band gap of 2.4 eV. They exhibit unusually strong light-matter interaction with an optical absorption as high as 25% at the main excitonic resonance, as well as bright photoluminescence. We extract an exciton binding energy of 490 meV from measurement of the series of excited exciton states. The properties of the excitons are shown to be strongly influenced by the changes in the dielectric surroundings. The environmental sensitivity of these ultrathin OIPC sheets is further reflected in the strong suppression of a thermally driven phase transition present in the bulk crystals.

  12. Localized diabatization applied to excitons in molecular crystals

    Science.gov (United States)

    Jin, Zuxin; Subotnik, Joseph E.

    2017-06-01

    Traditional ab initio electronic structure calculations of periodic systems yield delocalized eigenstates that should be understood as adiabatic states. For example, excitons are bands of extended states which superimpose localized excitations on every lattice site. However, in general, in order to study the effects of nuclear motion on exciton transport, it is standard to work with a localized description of excitons, especially in a hopping regime; even in a band regime, a localized description can be helpful. To extract localized excitons from a band requires essentially a diabatization procedure. In this paper, three distinct methods are proposed for such localized diabatization: (i) a simple projection method, (ii) a more general Pipek-Mezey localization scheme, and (iii) a variant of Boys diabatization. Approaches (i) and (ii) require localized, single-particle Wannier orbitals, while approach (iii) has no such dependence. These methods should be very useful for studying energy transfer through solids with ab initio calculations.

  13. Spin-excitons in heavy-fermion semimetals

    Energy Technology Data Exchange (ETDEWEB)

    Riseborough, Peter S., E-mail: prisebor@temple.edu [Temple University, Philadelphia (United States); Magalhaes, S.G. [Univ. Federal, Fluminense, Niteroi, Rio de Janeiro (Brazil)

    2016-02-15

    Spin-excitons are sharp and dispersive magnetic fluctuations in paramagnetic semiconductors where the dispersion relation lies within the semiconducting gap. Spin-excitons are found in the vicinity of magnetic quantum critical points in semiconductors, much the same as antiparamagnons are precursor fluctuations for quantum critical points in metals. Here we show that this concept of spin-exciton excitations can be extended to heavy-fermion semimetals and provides a natural explanation of the magnetic modes found by inelastic neutron scattering experiments on paramagnetic CeFe{sub 2}Al{sub 10}. - Highlights: • We discuss the theory of spin excitons in heavy-fermion semiconductors as precritical fluctuations. • We show that relatively sharp magnetic in-gap excitations can also occur in semiconductors. • The magnetic excitations are only sharp for a restricted range of center of mass momenta. • They may merge with the quasi-elastic peak associated with incommensurate nesting of electron and hole pockets.

  14. Excitonic giant-dipole potentials in cuprous oxide

    Science.gov (United States)

    Kurz, Markus; Grünwald, Peter; Scheel, Stefan

    2017-06-01

    In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers and depths up to 380 μ eV , leading to possible permanent excitonic electric dipole moments of around 3 ×106 D.

  15. How bilayer excitons can greatly enhance thermoelectric efficiency

    Science.gov (United States)

    Wu, Kai; Rademaker, Louk; Zaanen, Jan

    2015-03-01

    Presently, a major nanotechnological challenge is to design thermoelectric devices that have a high figure of merit. To that end, we propose to use bilayer excitons in two-dimensional nanostructures. Bilayer exciton systems are shown to have an improved thermopower and an enhanced electric counterflow and thermal conductivity, with respect to regular semiconductor-based thermoelectrics. We suggest an experimental realization of a bilayer exciton thermocouple. Based on current experimental parameters, a bilayer exciton heterostructures of p- and n-doped Bi2Te3 can enhance the figure of merit an order of magnitude compared to bulk Bi2Te3. Another material suggestion is to make a bilayer out of electron-doped SrTiO3 and hole-doped Ca3Co4O9.

  16. Exciton spectrum in multi-shell hexagonal semiconductor nanotube

    Directory of Open Access Journals (Sweden)

    O.M. Makhanets

    2012-10-01

    Full Text Available The theory of exciton spectrum in multi-shell hexagonal semiconductor nanotube is developed within the effective masses and rectangular potentials approximations using the method of effective potential. It is shown that the exciton binding energy for all states non-monotonously depends on the inner wire diameter, approaching several minimal and maximal magnitudes. The obtained theoretical results explain well the experimental positions of luminescence peaks for GaAs/Al0.4Ga0.6As nanotubes.

  17. Optical absorption of charged excitons in semiconducting carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2012-01-01

    In this article we examine the absorption coefficient of charged excitons in carbon nanotubes. We investigate the temperature and damping dependence of the absorption spectra. We show that the trion peak in the spectrum is asymmetric for temperatures greater than approximately 1 K whereas...... the absorption peak arising from excitons is symmetric. We expect the positive and negative trion absorption line shapes to be identical, independently of the chiral index (n,m)....

  18. One dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, P.; Pedersen, Thomas Garm

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  19. Alternative approaches to electronic damage by ion-beam irradiation: Exciton models

    Energy Technology Data Exchange (ETDEWEB)

    Agullo-Lopez, F.; Munoz-Martin, A.; Zucchiatti, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Climent-Font, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, 28049, Madrid (Spain)

    2016-11-15

    The paper briefly describes the main features of the damage produced by swift heavy ion (SHI) irradiation. After a short revision of the widely used thermal spike concept, it focuses on cumulative mechanisms of track formation which are alternative to those based on lattice melting (thermal spike models). These cumulative mechanisms rely on the production of point defects around the ion trajectory, and their accumulation up to a final lattice collapse or amorphization. As to the formation of point defects, the paper considers those mechanisms relying on direct local conversion of the excitation energy into atomic displacements (exciton models). A particular attention is given to processes based on the non-radiative recombination of excitons that have become self-trapped as a consequence of a strong electron-phonon interaction (STEs). These mechanisms, although operative under purely ionizing radiation in some dielectric materials, have been rarely invoked, so far, to discuss SHI damage. They are discussed in this paper together with relevant examples to materials such as Cu{sub 3}N, alkali halides, SiO{sub 2}, and LiNbO{sub 3}. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Exciton-plasmon coupling interactions: from principle to applications

    Directory of Open Access Journals (Sweden)

    Cao En

    2018-01-01

    Full Text Available The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

  1. Bose condensation of interwell excitons in double quantum wells

    CERN Document Server

    Larionov, A V; Ni, P A; Dubonos, S V; Hvam, I; Soerensen, K

    2002-01-01

    The luminescence of the interwell excitons in the GaAs/AlGaAs double quantum wells, containing large-scale fluctuations of the random potential in the heteroboundary planes, is studied. The properties of the excitons, wherein the excited electron and hole are spatially separated between the neighboring quantum wells by the density and temperature variation within the domain limits of the scale below one micron, are investigated. The interwell excitons by low pumping (below 50 mW) are strongly localized due to the small-scale fluctuations of the random potential. The localized excitons line grows by increase in the resonance excitation capacity through the threshold method. With the temperature growth this line disappears in the spectrum (T sub c <= 3.4 K). The above phenomenon is related to the Bose-Einstein condensation in the quasi-two-dimensional system of the interwell excitons. The critical values of the exciton density and temperature in the studied temperature range (1.5-3.4 K) grow according to the...

  2. Exciton band structure in bacterial peripheral light-harvesting complexes.

    Science.gov (United States)

    Trinkunas, Gediminas; Zerlauskiene, Oksana; Urbonienė, Vidita; Chmeliov, Jevgenij; Gall, Andrew; Robert, Bruno; Valkunas, Leonas

    2012-05-03

    The variability of the exciton spectra of bacteriochlorophyll molecules in light-harvesting (LH) complexes of photosynthetic bacteria ensures the excitation energy funneling trend toward the reaction center. The decisive shift of the energies is achieved due to exciton spectra formation caused by the resonance interaction between the pigments. The possibility to resolve the upper Davydov sub-band corresponding to the B850 ring and, thus, to estimate the exciton bandwidth by analyzing the temperature dependence of the steady-state absorption spectra of the LH2 complexes is demonstrated. For this purpose a self-modeling curve resolution approach was applied for analysis of the temperature dependence of the absorption spectra of LH2 complexes from the photosynthetic bacteria Rhodobacter (Rba.) sphaeroides and Rhodoblastus (Rbl.) acidophilus. Estimations of the intradimer resonance interaction values as follows directly from obtained estimations of the exciton bandwidths at room temperature give 385 and 397 cm(-1) for the LH2 complexes from the photosynthetic bacteria Rba. sphaeroides and Rhl. acidophilus, respectively. At 4 K the corresponding couplings are slightly higher (391 and 435 cm(-1), respectively). The retained exciton bandwidth at physiological conditions supports the decisive role of the exciton coherence determining light absorption in bacterial light-harvesting antenna complexes.

  3. Excitonic photoluminescence and photoresponse of ZnS nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jun, E-mail: daijun@just.edu.cn [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Song, Xing [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212003 (China); Zheng, Hongge [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Wu, Chunxia, E-mail: chxwu7771@yahoo.com.cn [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212003 (China)

    2016-05-01

    Single crystal ZnS nanowires are fabricated by vapor phase transport method on sapphire substrate in the presence of Au catalyst. The morphology, composition, and crystal structure are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM). XRD and HRTEM reveal that the ZnS nanowires have perfect single crystal wurtzite structure. The temperature-dependent photoluminescence spectra show that the ZnS nanowires present pure near-bandgap ultraviolet exciton recombination emission at 347 nm. The exciton-related optical properties, including exciton activation energy, temperature-dependent exciton energy and Varshni coefficients describing exciton energy variation, are systematically discussed. In addition, an individual ZnS nanowire-based ultraviolet photodetector is fabricated, which shows good photoresponse ability and fast response rate. The result shows that the ZnS nanowires are particularly suitable for UV photodetectors. - Highlights: • Single crystal ultrathin ZnS nanowires with diameter of 20–100 nm were fabricated by vapor phase transport method. • Exciton-related optical properties were fitted by temperature-dependent photoluminescence spectra. • Single ZnS nanowire ultraviolet photodetector with good photoswitch ability and high photocurrent was demonstrated.

  4. Exciton-plasmon coupling interactions: from principle to applications

    Science.gov (United States)

    Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi

    2018-01-01

    The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

  5. Quantum Hall drag of exciton condensate in graphene

    Science.gov (United States)

    Liu, Xiaomeng; Watanabe, Kenji; Taniguchi, Takashi; Halperin, Bertrand I.; Kim, Philip

    2017-08-01

    An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose-Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.

  6. Resolving ultrafast exciton migration in organic solids at the nanoscale

    Science.gov (United States)

    Penwell, Samuel B.; Ginsberg, Lucas D. S.; Noriega, Rodrigo; Ginsberg, Naomi S.

    2017-11-01

    Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.

  7. Exciton-plasmon coupling in monolayer molybdenum disulfide

    Science.gov (United States)

    Ziegler, Jed; Newaz, A. K. M.; Bolotin, Kirill; Haglund, Richard

    2013-03-01

    Two-dimensional materials such as monolayer molybdenum disulfide (MoS2) represent a unique platform for investigating the dynamics of exciton-plasmon coupling. We report on the generation and modulation of coherent and incoherent coupled states between excitons in monolayer MoS2 and plasmons in an array of gold nanoparticle deposited onto the surface of MoS2. We study the behavior of these coherent states, termed plexcitons using a combination of photoluminescence, extinction and ultrafast spectroscopies. The close proximity of the two characteristic exciton bands of MoS2 presents multiple coherent coupling configurations, including A-or-B exciton-plasmon, and A-and-B exciton-plasmon interactions. These configurations of plexciton formation that are shown to modulate both the extinction and photoluminescence spectra of the hybrid system. This includes broadband photoluminescence and Fano-type resonances. This behavior is distinct from the spectral response of the MoS2 and plasmonic components of the system. Incoherent exciton-plasmon coupling, achieved by detuning from the plasmon extinction peaks, enhances the interaction of MoS2 with light by focusing the plasmon energy. Depending on which coupling configuration is chosen, our results show that the MoS2/plasmon hybrid systems can act as high efficiency light harvesters, broadband emitters and as tunable visible and NIR photodetectors. Support by Defense Threat Reduction Agency (HDTRA1-1-10-1-0047) and NSF DMR-1056859

  8. Exciton Band Structure in Two-Dimensional Materials.

    Science.gov (United States)

    Cudazzo, Pierluigi; Sponza, Lorenzo; Giorgetti, Christine; Reining, Lucia; Sottile, Francesco; Gatti, Matteo

    2016-02-12

    Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal boron nitride, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.

  9. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  10. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  11. Precision muon lifetime at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Mulhauser, Francoise [University of Illinois at Urbana-Champaign (United States) and Paul Scherrer Institute (Switzerland)

    2006-05-15

    The goal of MuLan, positive muon lifetime measurement, is the measurement of the positive muon lifetime to 1 ppm, which will in turn determine the Fermi coupling constant G {sub F} to 0.5 ppm precision. We will describe our experimental efforts and latest achievements.

  12. Acousto-exciton interaction in a gas of 2D indirect dipolar excitons in the presence of disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, V. M.; Chaplik, A. V., E-mail: chaplik@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2016-03-15

    A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose–Einstein condensation effects. The particle Green functions, the density–density correlation function, and the quadratic response function are calculated by the “cross” diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas drag by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.

  13. Enhanced Second-Order Nonlinearity for THz Generation by Resonant Interaction of Exciton-Polariton Rabi Oscillations with Optical Phonons

    Science.gov (United States)

    Rojan, Katharina; Léger, Yoan; Morigi, Giovanna; Richard, Maxime; Minguzzi, Anna

    2017-09-01

    Semiconductor microcavities in the strong-coupling regime exhibit an energy scale in the terahertz (THz) frequency range, which is fixed by the Rabi splitting between the upper and lower exciton-polariton states. While this range can be tuned by several orders of magnitude using different excitonic media, the transition between both polaritonic states is dipole forbidden. In this work, we show that, in cadmium telluride microcavities, the Rabi-oscillation-driven THz radiation is actually active without the need for any change in the microcavity design. This feature results from the unique resonance condition which is achieved between the Rabi splitting and the phonon-polariton states and leads to a giant enhancement of the second-order nonlinearity.

  14. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots.

    Science.gov (United States)

    Lim, Jaehoon; Park, Myeongjin; Bae, Wan Ki; Lee, Donggu; Lee, Seonghoon; Lee, Changhee; Char, Kookheon

    2013-10-22

    We demonstrate bright, efficient, and environmentally benign InP quantum dot (QD)-based light-emitting diodes (QLEDs) through the direct charge carrier injection into QDs and the efficient radiative exciton recombination within QDs. The direct exciton formation within QDs is facilitated by an adoption of a solution-processed, thin conjugated polyelectrolyte layer, which reduces the electron injection barrier between cathode and QDs via vacuum level shift and promotes the charge carrier balance within QDs. The efficient radiative recombination of these excitons is enabled in structurally engineered InP@ZnSeS heterostructured QDs, in which excitons in the InP domain are effectively passivated by thick ZnSeS composition-gradient shells. The resulting QLEDs record 3.46% of external quantum efficiency and 3900 cd m(-2) of maximum brightness, which represent 10-fold increase in device efficiency and 5-fold increase in brightness compared with previous reports. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of QDs provides a reasonable guideline for practical realization of environmentally benign, high-performance QLEDs in the future.

  15. Lifetime costs of cerebral palsy

    DEFF Research Database (Denmark)

    Kruse, Marie; Michelsen, Susan Ishøy; Flachs, Esben Meulengracht

    2009-01-01

    This study quantified the lifetime costs of cerebral palsy (CP) in a register-based setting. It was the first study outside the US to assess the lifetime costs of CP. The lifetime costs attributable to CP were divided into three categories: health care costs, productivity costs, and social costs....... The population analyzed was retrieved from the Danish Cerebral Palsy Register, which covers the eastern part of the country and has registered about half of the Danish population of individuals with CP since 1950. For this study we analyzed 2367 individuals with CP, who were born in 1930 to 2000 and were alive...

  16. Excitonically Coupled States in Crystalline Coordination Networks.

    Science.gov (United States)

    Haldar, Ritesh; Mazel, Antoine; Joseph, Reetu; Adams, Michael; Howard, Ian A; Richards, Bryce S; Tsotsalas, Manuel; Redel, Engelbert; Diring, Stéphane; Odobel, Fabrice; Wöll, Christof

    2017-10-12

    When chromophores are brought into close proximity, noncovalent interactions (π-π/CH-π) can lead to the formation of excitonically coupled states, which bestow new photophysical properties upon the aggregates. Because the properties of the new states not only depend on the strength of intermolecular interactions, but also on the relative orientation, supramolecular assemblies, where these parameters can be varied in a deliberate fashion, provide novel possibilities for the control of photophysical properties. This work reports that core-substituted naphthalene diimides (cNDIs) can be incorporated into surface-mounted metal- organic structures/frameworks (SURMOFs) to yield optical properties strikingly different from conventional aggregates of such molecules, for example, formed in solution or by crystallization. Organic linkers are used, based on cNDIs, well-known organic chromophores with numerous applications in different optoelectronic devices, to fabricate MOF thin films on transparent substrates. A thorough characterization of the properties of these highly ordered chromophoric assemblies reveals the presence of non-emissive excited states in the crystalline material. Structural modulations provide further insights into the nature of the coupling that gives rise to an excited-state energy level in the periodic structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dark High Density Dipolar Liquid of Excitons.

    Science.gov (United States)

    Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen

    2016-06-08

    The possible phases and the nanoscale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma, is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature Tc ≈ 4.8 K, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting condensed dark ground state.

  18. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  19. Measurement of b hadron lifetimes and effective lifetimes at LHCb

    CERN Document Server

    Eklund, E

    2013-01-01

    This paper presents two recent measurements of b-hadron lifetimes, using 1 fb$^{-1}$ of data collected by LHCb. The effective lifetime of the $B_{s} \\to J/\\Psi K_{S}$ decay is measured and found to be $\\tau_{B_{s} \\to J/\\Psi K_{S}}^{\\rm{eff}} = 1.75 \\pm 0.12~(\\rm{stat})~0.07~(\\rm{syst})~\\rm{ps}$. The result is compatible with the Standard Model prediction and is the first measurement of this quantity. The $\\Lambda_{b}$ lifetime is measured in the $\\Lambda_{b} \\to J/\\Psi p K$ decay using the same data set. The measured quantity is the difference in reciprocal lifetimes of the $B^0$ and $\\Lambda^0_b$ hadrons and found to be $1/\\tau_{\\Lambda_{b}} - 1/\\tau_{B_{d}}= 16.4 \\pm 8.2 \\pm 4.4~\\rm{ns^{-1}}$. Using the world average of the $B^0$ lifetime, this translates into a lifetime ratio of $\\tau_{\\Lambda_{b}}/\\tau_{B_{d}} = 0.976 \\pm 0.012 \\pm 0.006$, which is the precise measurement of this quantity to date.

  20. On sunspot and starspot lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J.; Hartigan, P., E-mail: stephen.bradshaw@rice.edu, E-mail: hartigan@sparky.rice.edu [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2014-11-01

    We consider the lifetimes of spots on the Sun and other stars from the standpoint of magnetic diffusion. While normal magnetic diffusivity predicts lifetimes of sunspots that are too large by at least two orders of magnitude, turbulent magnetic diffusivity accounts for both the functional form of the solar empirical spot-lifetime relation and for the observed sunspot lifetimes, provided that the relevant diffusion length is the supergranule size. Applying this relation to other stars, the value of turbulent diffusivity depends almost entirely on supergranule size, with very weak dependence on other variables such as magnetic field strength and density. Overall, the best observational data for other stars is consistent with the extension of the solar relation, provided that stellar supergranule sizes for some stars are significantly larger than they are on the Sun.

  1. Excitons in InP/InAs inhomogeneous quantum dots

    CERN Document Server

    Assaid, E; Khamkhami, J E; Dujardin, F

    2003-01-01

    Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD) have been studied theoretically in the framework of the effective mass approximation. A finite-depth potential well has been used to describe the effect of the quantum confinement in the InAs layer. The exciton binding energy has been determined using the Ritz variational method. The spatial correlation between the electron and the hole has been taken into account in the expression for the wavefunction. It has been shown that for a fixed size b of the IQD, the exciton binding energy depends strongly on the core radius a. Moreover, it became apparent that there are two critical values of the core radius, a sub c sub r sub i sub t and a sub 2 sub D , for which important changes of the exciton binding occur. The former critical value, a sub c sub r sub i sub t , corresponds to a minimum of the exciton binding energy and may be used to distinguish between tridimensional confinement and bidimensional confinement. The latter critical value, a ...

  2. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  3. Exciton Effects in Optical Absorption of Boron-Nitride Nanotubes

    CERN Document Server

    Harigaya, Kikuo

    2007-01-01

    Exciton effects are studied in single-wall boron-nitride (BN) nanotubes. Linear absorption spectra are calculated with changing the chiral index of the zigzag nanotubes. We consider the extended Hubbard model with atomic energies at the boron and nitrogen sites. Exciton effects are calculated using the configuration interaction technique. The Coulomb interaction dependence of the band gap, the lowest exciton energy, and the binding energy of the exciton are discussed. The optical gap of the (5,0) nanotube is about 6 eV at the onsite interaction U=2t with the hopping integral t=1.2 eV. The binding energy of the exciton is 0.50 eV for these parameters. This energy agrees well with that of other theoretical investigations. We find that the energy gap and the binding energy are almost independent of the geometries of the nanotubes. This novel property is in contrast with that of the carbon nanotubes which show metallic and semiconducting properties depending on the chiral index.

  4. Phonon-assisted absorption of excitons in Cu2O

    Science.gov (United States)

    Schöne, Florian; Stolz, Heinrich; Naka, Nobuko

    2017-09-01

    The basic theoretical foundation for the modeling of phonon-assisted absorption spectra in direct band-gap semiconductors, introduced by Elliott 60 years ago [R. J. Elliott, Phys. Rev. 108, 1384 (1957), 10.1103/PhysRev.108.1384] using second order perturbation theory, results in a square root shaped dependency close to the absorption edge. A careful analysis of the experiments [N. Naka et al., Jpn. J. Appl. Phys. 44, 5096 (2005), 10.1143/JJAP.44.5096] reveals that for the yellow S excitons in Cu2O the lineshape does not follow that square root dependence. The reexamination of the theory shows that the basic assumptions of constant matrix elements and constant energy denominators is invalid for semiconductors with dominant exciton effects like Cu2O , where the phonon-assisted absorption proceeds via intermediate exciton states. The overlap between these and the final exciton states strongly determines the dependence of the absorption on the photon energy. To describe the experimental observed line shape of the indirect absorption of the yellow S exciton states we find it necessary to assume a momentum dependent deformation potential for the optical phonons.

  5. Spectral properties of excitons in the bilayer graphene

    Science.gov (United States)

    Apinyan, V.; Kopeć, T. K.

    2018-01-01

    In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.

  6. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.

    Science.gov (United States)

    Yu, Hongyi; Liu, Gui-Bin; Gong, Pu; Xu, Xiaodong; Yao, Wang

    2014-05-12

    In monolayer transition metal dichalcogenides, tightly bound excitons have been discovered with a valley pseudospin optically addressable through polarization selection rules. Here, we show that this valley pseudospin is strongly coupled to the exciton centre-of-mass motion through electron-hole exchange. This coupling realizes a massless Dirac cone with chirality index I = 2 for excitons inside the light cone, that is, bright excitons. Under moderate strain, the I = 2 Dirac cone splits into two degenerate I = 1 Dirac cones, and saddle points with a linear Dirac spectrum emerge. After binding an extra electron, the charged exciton becomes a massive Dirac particle associated with a large valley Hall effect protected from intervalley scattering. Our results point to unique opportunities to study Dirac physics, with exciton's optical addressability at specifiable momentum, energy and pseudospin. The strain-tunable valley-orbit coupling also implies new structures of exciton condensates, new functionalities of excitonic circuits and mechanical control of valley pseudospin.

  7. Photonic-band-gap architectures for long-lifetime room-temperature polariton condensation in GaAs quantum wells

    Science.gov (United States)

    Jiang, Jian-Hua; Vasudev, Pranai; John, Sajeev

    2017-10-01

    We describe AlGaAs photonic-crystal architectures that simultaneously realize strong exciton-photon coupling, long polariton lifetime, and room-temperature polariton Bose-Einstein condensation (BEC). Strong light trapping, induced by a 3D photonic band gap (PBG), leads to peak field intensity 20 times as large as that in an AlGaAs Fabry-Pérot microcavity and exciton-photon coupling as large as 20 meV (i.e., vacuum Rabi splitting 40 meV). The strong exciton-photon coupling, small polariton effective mass, and long polariton lifetime lead to possible realizations of equilibrium room-temperature BEC. We also consider the influence of polarization degeneracy and symmetry breaking in the ground state on the BEC-onset temperature and condensate fraction. Woodpile and slanted-pore PBG structures that break X-Y symmetry facilitate larger condensate fractions at moderate temperatures. The effects of electronic and photonic disorder are marginal, thanks to the 3D photonic band gap.

  8. Dephasing in the quasi-two-dimensional exciton-biexciton system

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    2000-01-01

    The polarization decay in the exciton-biexciton system of a homogeneously broadened single quantum well is studied by transient four-wave mixing. All three decay rates in the exciton-biexciton three-level system are deduced. The relation between the rates unravels correlations between scattering...... excitons and biexcitons are mutually uncorrelated. In contrast, the biexciton phonon scattering is twice as fast and correlated to exciton-phonon scattering, indicating the interaction with similar phonon modes....

  9. A steady-state analysis of the temperature responses of water vapor and aerosol lifetimes

    NARCIS (Netherlands)

    Roelofs, G.J.H.|info:eu-repo/dai/nl/100925375

    2013-01-01

    The dominant removal mechanism of soluble aerosol is wet deposition. The atmospheric lifetime of aerosol, relevant for aerosol radiative forcing, is therefore coupled to the atmospheric cycling time of water vapor. This study investigates the coupling between water vapor and aerosol lifetimes in a

  10. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.

    Science.gov (United States)

    Hughes, Stephen; Agarwal, Girish S

    2017-02-10

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  11. Alloying effect on bright-dark exciton states in ternary monolayer Mo x W1-x Se2

    Science.gov (United States)

    Liu, Yanping; Tom, Kyle; Zhang, Xiaowei; Lou, Shuai; Liu, Yin; Yao, Jie

    2017-07-01

    Binary transition metal dichalcogenides (TMDCs) in the class MX2 (M = Mo, W; X = S, Se) have been widely investigated for potential applications in optoelectronics and nanoelectronics. Recently, alloy-based monolayers of TMDCs have provided a stable and versatile technique to tune the physical properties and optimize them for potential applications. Here, we present experimental evidence for the existence of an intermediate alloy state between the MoSe2-like and the WSe2-like behavior of the neutral exciton (X 0) using temperature-dependent photoluminescence (PL) of the monolayer Mo x W1-x Se2 alloy. The existence of a maximum PL intensity around 120 K can be explained by the competition between the thermally activated bright states and the non-radiative quenching of the bright states. Moreover, we also measured localized exciton (XB ) PL peak in the alloy and the observed behavior agrees well with a model previously proposed for the 3D case, which indicates the theory also applies to 2D systems. Our results not only shed light on bright-dark states and localized exciton physics of 2D semiconductors, but also offer a new route toward the control of the bright-dark transition and tailoring optical properties of 2D semiconductors through defect engineering.

  12. On the relation between local and charge-transfer exciton bindingenergies in organic photovoltaic materials

    NARCIS (Netherlands)

    de Gier, Hilde Dorothea; Braam, Henderika; Havenith, Remco

    2015-01-01

    In organic photovoltaic devices two types of excitons can be generated for which different binding energies can be defined: the binding energy of the local exciton generated immediately after light absorption on the polymer and the binding energy of the charge-transfer exciton generated through the

  13. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    KAUST Repository

    Burkhard, George F.

    2009-12-09

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  14. Exciton localization-delocalization transition in an extended dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Pouthier, Vincent, E-mail: vincent.pouthier@univ-fcomte.fr [Institut UTINAM, Université de Franche-Comté, CNRS UMR 6213, 25030 Besançon Cedex (France)

    2013-12-21

    Exciton-mediated quantum state transfer between the periphery and the core of an extended dendrimer is investigated numerically. By mapping the dynamics onto that of a linear chain, it is shown that a localization-delocalization transition arises for a critical value of the generation number G{sub c} ≈ 5. This transition originates in the quantum interferences experienced by the excitonic wave due to the multiple scatterings that arise each time the wave tunnels from one generation to another. These results suggest that only small-size dendrimers could be used for designing an efficient quantum communication protocol.

  15. Defect Structure of Localized Excitons in a WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai

    2017-07-26

    The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.

  16. Excitonic surface polaritons in luminescence from ZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G. (AN Ukrainskoj SSR, Kiev. Inst. Fiziki)

    1984-10-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ..delta..E/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated.

  17. One-dimensional models of excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Duclos, Pierre; Pedersen, Thomas Garm

    2004-01-01

    Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable.......Excitons in carbon nanotubes may be modeled by two oppositely charged particles living on the surface of a cylinder. We derive three one-dimensional effective Hamiltonians which become exact as the radius of the cylinder vanishes. Two of them are solvable....

  18. Realization of an all optical exciton-polariton router

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Bloch, Jacqueline, E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Physics Department, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)

    2015-11-16

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  19. Charm lifetimes and semileptonic decays

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, S. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1995-12-01

    The study of lifetimes and semileptonic (SL) decays of charmed mesons and baryons is currently the goal of several experiments all around the world. This paper is focussed on giving an overview of current status and open questions, and on reviewing new results by E687 and CLEO presented as contributed papers at the 1995 international europhysics conference on high energy physics, held at Brussel (Belgium), July 27-August 2, 1995. A wealth of detailed reviews exists on both charm lifetime up-to-date, which the reader can refer to for details.

  20. Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes.

    Science.gov (United States)

    Fofang, Nche T; Park, Tae-Ho; Neumann, Oara; Mirin, Nikolay A; Nordlander, Peter; Halas, Naomi J

    2008-10-01

    Stable Au nanoshell-J-aggregate complexes are formed that exhibit coherent coupling between the localized plasmons of a nanoshell and the excitons of molecular J-aggregates adsorbed on its surface. By tuning the nanoshell plasmon energies across the exciton line of the J-aggregate, plasmon-exciton coupling energies for these complexes are obtained. The strength of this interaction is dependent on the specific plasmon mode of the nanoparticle coupled to the J-aggregate exciton. From a model based on Gans theory, we obtain an expression for the plasmon-exciton hybridized states of the complex.

  1. Coherent dynamics of interwell excitons in GaAs/AlxGa1-xAs superlattices

    DEFF Research Database (Denmark)

    Mizeikis, V.; Birkedal, Dan; Langbein, Wolfgang Werner

    1997-01-01

    Coherent exciton dynamics in a GaAs/AlxGa1-xAs narrow-miniband superlattice is studied by spectrally resolved transient four-wave mixing. Coherent optical properties of the investigated structure are found to be strongly affected by the existence of two different heavy-hole excitonic states. One...... of them, the Is heavy-hole exciton, is almost identical to the same state in noninteracting quantum wells, while the other, the heavy-hole interwell exciton, is composed of an electron and a heavy hole in adjacent wells. The interwell exciton leads to a resonant enhancement in the four-wave mixing spectra...

  2. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon

    Science.gov (United States)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-01

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn2+-Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  3. Radiation physics, biophysics, and radiation biology

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  4. The physics of exciton-polariton condensates

    CERN Document Server

    Lagoudakis, Konstantinos

    2013-01-01

    In 2006 researchers created the first polariton Bose-Einstein condensate at 19K in the solid state. Being inherently open quantum systems, polariton condensates open a window into the unpredictable world of physics beyond the “fifth state of matter”: the limited lifetime of polaritons renders polariton condensates out-of-equilibrium and provides a fertile test-bed for non-equilibrium physics. This book presents an experimental investigation into exciting features arising from this non-equilibrium behavior. Through careful experimentation, the author demonstrates the ability of polaritons to synchronize and create a single energy delocalized condensate. Under certain disorder and excitation conditions the complete opposite case of coexisting spatially overlapping condensates may be observed. The author provides the first demonstration of quantized vortices in polariton condensates and the first observation of fractional vortices with full phase and amplitude characterization. Finally, this book investigate...

  5. Applications of fluorescence lifetime imaging in clinical medicine

    Directory of Open Access Journals (Sweden)

    Zhanwen Wang

    2018-01-01

    Full Text Available Fluorescence lifetime is not only associated with the molecular structure of fluorophores, but also strongly depends on the environment around them, which allows fluorescence lifetime imaging microscopy (FLIM to be used as a tool for precise measurement of the cell or tissue microenvironment. This review introduces the basic principle of fluorescence lifetime imaging technology and its application in clinical medicine, including research and diagnosis of diseases in skin, brain, eyes, mouth, bone, blood vessels and cavity organs, and drug evaluation. As a noninvasive, nontoxic and nonionizing radiation technique, FLIM demonstrates excellent performance with high sensitivity and specificity, which allows to determine precise position of the lesion and, thus, has good potential for application in biomedical research and clinical diagnosis.

  6. Wannier-Mott Excitons in Nanoscale Molecular Ices

    Science.gov (United States)

    Chen, Y.-J.; Muñoz Caro, G. M.; Aparicio, S.; Jiménez-Escobar, A.; Lasne, J.; Rosu-Finsen, A.; McCoustra, M. R. S.; Cassidy, A. M.; Field, D.

    2017-10-01

    The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low band gap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a change of a few degrees K in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 ×107 V m-1 , are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts based on the Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of vacuum ultraviolet spectra to the deposition temperature.

  7. Subdiffusive exciton motion in systems with heavy-tailed disorder

    NARCIS (Netherlands)

    Vlaming, S. M.; Malyshev, V.A.; Eisfeld, A.; Knoester, J.

    2013-01-01

    We study the transport of collective excitations (Frenkel excitons) in systems with static disorder in the transition energies, not limiting ourselves to Gaussian transition energy distributions. Instead, we generalize this model to the wider class of Levy stable distributions, characterized by

  8. Nonmonotonic energy harvesting efficiency in biased exciton chains

    NARCIS (Netherlands)

    Vlaming, S.M.; Malyshev, V.A.; Knoester, J.

    2007-01-01

    We theoretically study the efficiency of energy harvesting in linear exciton chains with an energy bias, where the initial excitation is taking place at the high-energy end of the chain and the energy is harvested (trapped) at the other end. The efficiency is characterized by means of the average

  9. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    Science.gov (United States)

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  10. Enhancement of spin propagation due to interlayer exciton condensation

    NARCIS (Netherlands)

    Rademaker, Louk; van den Brink, J.; Hilgenkamp, H.; Zaanen, Jan

    2013-01-01

    We show that an interlayer exciton condensate doped into a strongly correlated Mott insulator exhibits a remarkable enhancement of the bandwidth of the magnetic excitations (triplons). This triplon is visible in the dynamical magnetic susceptibility and can be measured using resonant inelastic x-ray

  11. Spatial inhomogeneity in spectra and exciton dynamics in porphyrin ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... ... Journal of Chemical Sciences; Volume 128; Issue 11. Spatial inhomogeneity in spectra and exciton dynamics in porphyrin micro-rods and micro-brushes: Confocal microscopy. SHYAMTANU CHATTORAJ KANKAN BHATTACHARYYA. Regular Article Volume 128 Issue 11 November 2016 pp 1717-1724 ...

  12. Exciton Recombination in Formamidinium Lead Triiodide : Nanocrystals versus Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Protesescu, Loredana; Balazs, Daniel M.; Adjokatse, Sampson; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2017-01-01

    The optical properties of the newly developed near-infrared emitting formamidinium lead triiodide (FAPbI(3)) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady-state and time-resolved photoluminescence. The excitonic emission is

  13. Charged excitons in doped extended Hubbard model systems

    NARCIS (Netherlands)

    van den Brink, J.; Eder, R; Sawatzky, G.A

    1997-01-01

    We show that the charge transfer excitons in a Hubbard model system including nearest-neighbor Coulomb interactions effectively attain some charge in doped systems and become visible in photoelectron and inverse photoelectron spectroscopies. This shows that the description of a doped system by an

  14. Excitonic insulator transition in the conjugated polymer polyacene

    NARCIS (Netherlands)

    Rice, MJ; Gartstein, YN

    2004-01-01

    According to molecular orbital theory, the symmetrically positioned one-dimensional (I-D) conduction and valence bands of polyacene touch at the X point. Clearly, the exciton binding energy of this semimetal exceeds the band gap so that polyacene should be a textbook case of a semimetal undergoing a

  15. Observation of exciton-polariton ultrafast dynamic Stark effect

    Directory of Open Access Journals (Sweden)

    Snoke David W.

    2013-03-01

    Full Text Available We demonstrate ultrafast phase control of exciton-polaritons in a GaAs/AlGaAs strongly coupled microcavity exploiting the ac Stark effect. Our approach yields meV-scale shifts without carrier generation, providing a powerful tool towards control of polariton BECs.

  16. Continuum contribution to excitonic four-wave mixing

    DEFF Research Database (Denmark)

    Birkedal, Dan; Sayed, Karim El; Vadim, Lyssenko

    1996-01-01

    Summary form only given. We present an experimental and theoretical investigation of ultrafast transient four-wave mixing (TFWM) of GaAs-AlGaAs quantum wells for simultaneous excitation of exciton and continuum states. Recent TFWM experiments on semiconductors have shown unexpected results when b...

  17. Creation of Excitons Excited by Light with a Spatial Mode

    Science.gov (United States)

    Syouji, Atsushi; Saito, Shingo; Otomo, Akira

    2017-12-01

    When light is absorbed into matter, its degrees of freedom (i.e., energy, polarization, and phase) are transferred to the matter and conserved. In this study, we demonstrate that elementary excitations in matter, which are one-photon-forbidden transition states, become allowed states because of the phase conservation across the entire cross section of excitation light. In particular, when 1S orthoexcitons of the yellow series in the semiconductor cuprous oxide (Cu2O) were resonantly excited by light with a spatial mode, an increase in the Γ 3 - -phonon-emission peak intensity of the excitons was detected depending on the spatial mode. Using group-theory-based analysis, we show that the irreducible representation of a one-photon-forbidden exciton, which is one of the orthoexcitons, can be transmuted to an allowed state by taking the direct product with the polar vector produced from the spatial mode of the light. Although the transition process of the exciton is locally characterized by the usual quadrupole interaction, the phase conservation at each position at which the sample is irradiated causes the exciton to be in the same spatial-mode state. That causes a change in the transition selection rule. The selection rule relaxation due to the spatial mode of the light was also applied for paraexciton creation.

  18. Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.

    Science.gov (United States)

    Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V

    2016-01-21

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.

  19. Multi-exciton emission from solitary dopant states of carbon nanotubes.

    Science.gov (United States)

    Ma, Xuedan; Hartmann, Nicolai F; Velizhanin, Kirill A; Baldwin, Jon K S; Adamska, Lyudmyla; Tretiak, Sergei; Doorn, Stephen K; Htoon, Han

    2017-11-02

    By separating the photons from slow and fast decays of single and multi-exciton states in a time gated 2nd order photon correlation experiment, we show that solitary oxygen dopant states of single-walled carbon nanotubes (SWCNTs) allow emission of photon pairs with efficiencies as high as 44% of single exciton emission. Our pump dependent time resolved photoluminescence (PL) studies further reveal diffusion-limited exciton-exciton annihilation as the key process that limits the emission of multi-excitons at high pump fluences. We further postulate that creation of additional permanent exciton quenching sites occurring under intense laser irradiation leads to permanent PL quenching. With this work, we bring out multi-excitonic processes of solitary dopant states as a new area to be explored for potential applications in lasing and entangled photon generation.

  20. The Work of a Lifetime

    Science.gov (United States)

    Olson, Cathy Applefeld

    2012-01-01

    If there's one message that Joan Hillsman wants to get across to music directors, it's this: Teaching is a lifetime commitment. Hillsman is a longtime music educator, African-American music historian, author, consultant, music producer, clinician, radio show host, and current member of the Academic Board of the James Cleveland Gospel Music…

  1. Personality, IQ, and Lifetime Earnings

    DEFF Research Database (Denmark)

    Gensowski, Miriam

    2018-01-01

    This paper estimates the effects of personality traits and IQ on lifetime earnings of the men and women of the Terman study, a high-IQ U.S. sample. Age-by-age earnings profiles allow a study of when personality traits affect earnings most, and for whom the effects are strongest. I document...

  2. Lifetime value in business process

    Directory of Open Access Journals (Sweden)

    Martin Souček

    2011-01-01

    Full Text Available The paper focuses on lifetime value assessment and its implementation and application in business processes. The lifetime value is closely connected to customer relationship management. The paper presents results of three consecutive researches devoted to issues of customer relationship management. The first two from 2008 and 2010 were conducted as quantitative ones; the one from 2009 had qualitative nature. The respondents were representatives of particular companies. The means for data collection was provided by ReLa system. We will focus on individual attributes of lifetime value of a customer, and relate them to approaches of authors mentioned in introduction. Based on the qualitative research data, the paper focuses on individual customer lifetime value parameters. These parameters include: the cost to the customer relationship acquisition and maintenance, profit generated from a particular customer, customer awareness value, the level of preparedness to adopt new products, the value of references and customer loyalty level. For each of these parameters, the paper provides specific recommendations. Moreover, it is possible to learn about the nature of these parameter assessments in the Czech environment.

  3. Imaging heterogeneous ultrafast exciton dynamics in organic semiconducting thin films

    Science.gov (United States)

    Ginsberg, Naomi S.

    2013-03-01

    In solid state semiconducting molecular materials used in electro-optical applications, relatively long exciton diffusion lengths hold the promise to boost device performance by relaxing proximity constraints on the locations for light absorption and interfacial charge separation. The architecture of such materials determines their optical and electronic properties as a result of spacing- and orientation-dependent Coulomb couplings between adjacent molecules. Exciton character and dynamics are generally inferred from bulk optical measurements, which can present a severe limitation on our understanding of these films because their constituent molecules are not perfectly ordered. Rather, films of small organic molecules are composed of multiple microcrystalline domains, and this deposition-dependent microstructure can have profound impacts on transport properties. Using ultrafast transient absorption microscopy, we track the time evolution of excitons, domain by domain, in solid state thin films of TIPS-pentacene, a small soluble molecule that has recently been used in organic semiconducting devices because of its high hole mobility. The results from this spatially-resolved nonlinear optical spectroscopy support our hypothesis that bulk optical measurements deleteriously average over heterogeneities in both spatial and electronic structure; we have revealed significant inhomogeneity in exciton dynamics. Domains that appear homogeneous in linear optical microscopy are shown to have spatial variation and defects, and notable differences in exciton character and behavior are observed at domain boundaries. To interpret the contrast we observe with ultrafast dynamics, we correlate our data to local linear absorption, polarization analysis, profilometry, and atomic force microscopy. With this combined approach, we aim to ultimately understand fundamental structure-function relationship in molecular materials to provide predictive power to material development and device

  4. Lifetime Risks of Cardiovascular Disease

    Science.gov (United States)

    Berry, Jarett D.; Dyer, Alan; Cai, Xuan; Garside, Daniel B.; Ning, Hongyan; Thomas, Avis; Greenland, Philip; Van Horn, Linda; Tracy, Russell P.; Lloyd-Jones, Donald M.

    2012-01-01

    BACKGROUND The lifetime risks of cardiovascular disease have not been reported across the age spectrum in black adults and white adults. METHODS We conducted a meta-analysis at the individual level using data from 18 cohort studies involving a total of 257,384 black men and women and white men and women whose risk factors for cardiovascular disease were measured at the ages of 45, 55, 65, and 75 years. Blood pressure, cholesterol level, smoking status, and diabetes status were used to stratify participants according to risk factors into five mutually exclusive categories. The remaining lifetime risks of cardiovascular events were estimated for participants in each category at each age, with death free of cardiovascular disease treated as a competing event. RESULTS We observed marked differences in the lifetime risks of cardiovascular disease across risk-factor strata. Among participants who were 55 years of age, those with an optimal risk-factor profile (total cholesterol level, risks of death from cardiovascular disease through the age of 80 years than participants with two or more major risk factors (4.7% vs. 29.6% among men, 6.4% vs. 20.5% among women). Those with an optimal risk-factor profile also had lower lifetime risks of fatal coronary heart disease or nonfatal myocardial infarction (3.6% vs. 37.5% among men, risk-factor strata were observed among blacks and whites and across diverse birth cohorts. CONCLUSIONS Differences in risk-factor burden translate into marked differences in the lifetime risk of cardiovascular disease, and these differences are consistent across race and birth cohorts. (Funded by the National Heart, Lung, and Blood Institute.) PMID:22276822

  5. Is there any Exciton (bottleneck) in an Excitonic Solar Cell: Revisiting the Prospects of Single-Semiconductor OPV

    Science.gov (United States)

    Alam, Muhammad

    2014-03-01

    The discovery dye sensitized and bulk heterojunction (BHJ) solar cells in early 1990s introduced a new class of PV technology that rely on (i) distributed photogeneration of excitons, (ii) dissociation of excitons into free carriers by the heterojunction between two organic semiconductors (OSC), and (iii) collection of free carriers through electron and hole transport layers. The success of the approach is undisputed: the highest efficiency OPV cells have all relied on variants of BHJ approach. Yet, three concerns related to the use of a pair of OSCs, namely, low Voc, process sensitivity, and reliability, suggest that the technology may never achieve efficiency-variability-reliability metrics comparable to inorganic solar cells. This encourages a reconsideration of the prospects of Single semiconductor OPV (SS-OPV), a system presumably doomed by the exciton bottleneck. In this talk, we use an inverted SS-OPV to demonstrate how the historical SS-OPV experiments may have been misinterpreted. No one disputes the signature of excitons in polymer under narrowband excitation, but our experiments show that exciton dissociation need not be a bottleneck for OPV under broadband solar illumination. We demonstrate that an alternate collection-limited theory consistently interprets the classical and new experiments, resolves puzzles such as efficiency loss with increasing light intensity, and voltage-dependent reverse photo-current, etc. The theory and experiments suggest a new ``perovskite-like'' strategy to efficiency-variability-reliability of organic solar cells. The work was supported by the Columbia DOE-EFRC (DE-SC0001085) and NSF-NCN (EEC-0228390).

  6. Coherent optical nonlinearities and phase relaxation of quasi-three-dimensional and quasi-two-dimensional excitons in ZnSxSe1 - x/ZnSe structures

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Maier, R.

    1997-01-01

    signal is attributed to the response of spin-coupled exciton states, with a decay time given by the inhomogeneous broadening. The photon echo is due to a distribution of localized, noninteracting excitons. We determine the exciton-exciton and exciton-phonon scattering cross sections for different...

  7. Lifetime of MCP-PMTs

    Science.gov (United States)

    Lehmann, A.; Britting, A.; Eyrich, W.; Pfaffinger, M.; Uhlig, F.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2016-05-01

    The hadron identification in the PANDA experiment at FAIR will be done with DIRC detectors. Because of design and space reasons the sensors of the DIRCs have to be placed inside the strong magnetic field of the solenoid. As the favored photon sensors microchannel-plate photomultipliers (MCP-PMTs) were identified. However, these devices showed serious aging problems until very recently, which manifest themselves by a fast degrading quantum efficiency (QE) of the photo cathode (PC). This is mainly due to feedback ions from the residual gas. In this paper we discuss the recently accomplished huge improvements in the lifetime of MCP-PMTs. With innovative countermeasures applied to the MCP-PMTs in the attempt to reduce the aging effects the manufacturers were able to increase the lifetime of MCP-PMT prototypes by almost two orders of magnitude compared to the former commercially available devices. Our group has studied the aging of MCP-PMTs for more than four years by simultaneously illuminating different types of lifetime-enhanced MCP-PMTs at the same photon rate. Gain, dark count rate, and QE as a function of the wavelength and the PC surface were measured in regular time intervals and studied in dependence of the integrated anode charge. We observe that MCP-PMTs treated with an atomic layer deposition (ALD) technique are by far the best devices available now. A lifetime of up to 10 C/cm2 integrated anode charge was reached with these sensors. This is sufficient for both PANDA DIRCs.

  8. Bottom Production, Spectroscopy and Lifetimes

    CERN Document Server

    Argiro, Stefano

    2013-01-01

    In this contribution, I give a brief overview of the latest results related to the production, spectroscopy and lifetimes of bottom and charm hadrons. Several interesting experimental results were presented in this field in 2012. The focus will be on the findings of experiments performed at hadron colliders, since the LHC is taking up most of the stage this year, with a brief mention about electron-proton collider results.

  9. Exciton-polariton dynamics in quantum dot-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica

    2012-07-01

    Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum

  10. Lifetime Extension Report: Progress on the SAVY-4000 Lifetime Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Process Infrastructure; Weis, Eric M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Blair, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Process Infrastructure; Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Manufacturing Engineering and Technology; Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Process Infrastructure; Karns, Tristan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Process Infrastructure; Oka, Jude M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Process Infrastructure; Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Meincke, Linda Jeanne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Torres, Joseph Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Herman, Matthew Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Weaver, Brian Phillip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences. Statistical Sciences; Adams, Jillian Cathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials; Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology. Engineered Materials

    2016-09-20

    The 3-year accelerated aging study of the SAVY-4000 O-ring shows very little evidence of significant degradation to samples subjected to aggressive elevated temperature and radiation conditions. Whole container thermal aging studies followed by helium leakage testing and compression set measurements were used to establish an estimate for a failure criterion for O-ring compression set of ≥65 %. The whole container aging studies further show that the air flow and efficiency functions of the filter do not degrade significantly after thermal aging. However, the degradation of the water-resistant function leads to water penetration failure after four months at 210°C, but does not cause failure after 10 months at 120°C (130°C is the maximum operating temperature for the PTFE membrane). The thermal aging data for O-ring compression set do not meet the assumptions of standard time-temperature superposition analysis for accelerated aging studies. Instead, the data suggest that multiple degradation mechanisms are operative, with a reversible mechanism operative at low aging temperatures and an irreversible mechanism dominating at high aging temperatures. To distinguish between these mechanisms, we have measured compression set after allowing the sample to physically relax, thereby minimizing the effect of the reversible mechanism. The resulting data were analyzed using two distinct mathematical methods to obtain a lifetime estimate based on chemical degradation alone. Both methods support a lifetime estimate of greater than 150 years at 80°C. Although the role of the reversible mechanism is not fully understood, it is clear that the contribution to the total compression set is small in comparison to that due to the chemical degradation mechanism. To better understand the chemical degradation mechanism, thermally aged O-ring samples have been characterized by Fourier Transform Infrared (FTIR), Electron Paramagnetic Resonance (EPR), Gel Permeation Chromatography (GPC

  11. Optical and Exciton Dynamical Properties of a Screw-Dislocation-Driven ZnO:Sn Microstructure.

    Science.gov (United States)

    Dai, Jun; Lu, Junfeng; Wang, Fang; Guo, Jiyuan; Gu, Ning; Xu, Chunxiang

    2015-06-17

    Screw dislocation plays a critical role in crystal growth and significantly affects the carrier dynamics process of luminescent semiconductor materials. In this paper, we report a novel screw-dislocation-induced ZnO:Sn hillock microstructure. The detailed growth process and possible formation mechanism of screw dislocation are demonstrated. The temperature-dependent photoluminescence reveals the free exciton recombination emission mechanism of the ZnO:Sn hillock microstructure. By comparing time-resolved photoluminescence spectra with those of two other samples without screw dislocations, it is found that the screw dislocation in the ZnO:Sn microstructures effectively decreases the carrier lifetime. In addition, UV Fabry-Perot lasing action is observed from the ZnO:Sn hillock microstructure, and the numerical simulation of the standing wave pattern and light intensity distribution further confirm the Fabry-Perot lasing mechanism. Therefore, ZnO:Sn can be utilized as a UV laser gain medium, and its optical properties can be modulated by screw dislocation.

  12. Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2017-02-01

    We report on the radiative emission decay dynamics of a less known, γ-phase manganese selenide quantum dot system (MnSe QDs) subjected to bio-functionalization. A short-ligand thioglycolic acid (TGA), and a long-chain sodium dodecyl sulfate (SDS) surfactants were used as surface anchors prior bioconjugation with albumin proteins (BSA). Time resolved photoluminescence (TR-PL) spectra of the QDs have revealed bi-exponential decay trends with the fast (τ{sub 1}) and slow (τ{sub 2}) decay parameters assigned to the core state recombination and surface trapped excitons; respectively. The average lifetime (τ{sub avg}) was found to get shortened from a value of ∼0.87 ns–0.72 ns in unconjugated and BSA conjugated MnSe-TGA QDs; respectively. Conversely, MnSe-SDS QDs with BSA conjugation exhibited nearly four-fold enhancement of τ{sub avg} with respect to its unconjugated counterpart. Moreover, a considerable amount of Förster resonance energy transfer (FRET) was found to occur from the TGA coated MnSe QDs to BSA and with an ensuing efficiency of ∼61%. The origin of anomalous carrier life-time relaxation features has also been encountered through a simplified model as regards head group interaction experienced by the MnSe QDs with different surfactant types. Exploiting luminescence decay characteristics of a magneto-fluorescent candidate could find immense scope in diverse biological applications including assays, labeling and imaging. - Highlights: • Surface anchored manganese selenide quantum dots (MnSe QDs) have been synthesized via a physico-chemical reduction route. • Time resolved luminescence spectra of the QDs have displayed bi-exponential decay trend. • Thioglycolic acid (TGA) coated QDs exhibited shorter lifetime as compared to sodium dodecyl sulfo-succinate (SDS) coated ones. • Upon BSA conjugation, the average life time is four-fold enhanced in MnSe-SDS QDs. • An efficient FRET process has been revealed in BSA conjugated TGA coated MnSe QDs.

  13. Hole, impurity and exciton states in a spherical quantum dot

    Directory of Open Access Journals (Sweden)

    V.I. Boichuk

    2010-01-01

    Full Text Available The 3x3 kp hole Hamiltonian for the wave-function envelopes (effective mass Hamiltonian was used for calculation of discrete states of the hole and acceptor hydrogenic impurity in a spherical Si/SiO2 nanoheterostructure as a function of the quantum dot radius by neglecting the corrugation of constant-energy surfaces. A study was conducted in the case of finite potential well at the separation boundary of the nanoheterosystem. The dependence of the hole energy spectrum on polarization charges, which arise at the separation boundary of the media, and on the dielectric permittivity, was defined. Using the exact electron and hole solutions, the exciton wave-function was constructed and the exciton ground-state energy was defined. The theoretical results have been compared with experimental data.

  14. Linewidths in excitonic absorption spectra of cuprous oxide

    Science.gov (United States)

    Schweiner, Frank; Main, Jörg; Wunner, Günter

    2016-02-01

    We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.

  15. Non-Markovian quantum jumps in excitonic energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Rebentrost, Patrick; Chakraborty, Rupak; Aspuru-Guzik, Alan

    2009-01-01

    We utilize the novel non-Markovian quantum jump (NMQJ) approach to stochastically simulate exciton dynamics derived from a time-convolutionless master equation. For relevant parameters and time scales, the time-dependent, oscillatory decoherence rates can have negative regions, a signature of non-Markovian behavior and of the revival of coherences. This can lead to non-Markovian population beatings for a dimer system at room temperature. We show that strong exciton-phonon coupling to low frequency modes can considerably modify transport properties. We observe increased excitontransport, which can be seen as an extension of recent environment-assisted quantum transport concepts to the non-Markovian regime. Within the NMQJ method, the Fenna–Matthew–Olson protein is investigated as a prototype for larger photosynthetic complexes.

  16. Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells

    KAUST Repository

    Paz-Soldan, Daniel

    2013-04-10

    Recent advances in spectrally tuned, solution-processed plasmonic nanoparticles have provided unprecedented control over light\\'s propagation and absorption via engineering at the nanoscale. Simultaneous parallel progress in colloidal quantum dot photovoltaics offers the potential for low-cost, large-area solar power; however, these devices suffer from poor quantum efficiency in the more weakly absorbed infrared portion of the sun\\'s spectrum. Here, we report a plasmonic-excitonic solar cell that combines two classes of solution-processed infrared materials that we tune jointly. We show through experiment and theory that a plasmonic-excitonic design using gold nanoshells with optimized single particle scattering-to-absorption cross-section ratios leads to a strong enhancement in near-field absorption and a resultant 35% enhancement in photocurrent in the performance-limiting near-infrared spectral region. © 2013 American Chemical Society.

  17. Evaluation of defects in cuprous oxide through exciton luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Laszlo, E-mail: jl@laszlofrazer.com [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lenferink, Erik J. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chang, Kelvin B. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Poeppelmeier, Kenneth R. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Stern, Nathaniel P. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2015-03-15

    The various decay mechanisms of excitons in cuprous oxide (Cu{sub 2}O) are highly sensitive to defects which can relax selection rules. Here we report cryogenic hyperspectral imaging of exciton luminescence from cuprous oxide crystals grown via the floating zone method showing that the samples have few defects. Some locations, however, show strain splitting of the 1s orthoexciton triplet polariton luminescence. Strain is reduced by annealing. In addition, annealing causes annihilation of oxygen and copper vacancies, which leads to a negative correlation between luminescence of unlike vacancies. - Highlights: • We use luminescence to observe defects in high quality cuprous oxide crystals. • Strain is reduced by annealing. • Annealing causes annihilation of oxygen and copper vacancies.

  18. Plasmonic band gap engineering of plasmon-exciton coupling.

    Science.gov (United States)

    Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2014-10-01

    Controlling plasmon-exciton coupling through band gap engineering of plasmonic crystals is demonstrated in the Kretschmann configuration. When the flat metal surface is textured with a sinusoidal grating only in one direction, using laser interference lithography, it exhibits a plasmonic band gap because of the Bragg scattering of surface plasmon polaritons on the plasmonic crystals. The contrast of the grating profile determines the observed width of the plasmonic band gap and hence allows engineering of the plasmonic band gap. In this work, resonant coupling between the molecular resonance of a J-aggregate dye and the plasmonic resonance of a textured metal film is extensively studied through plasmonic band gap engineering. Polarization dependent spectroscopic reflection measurements probe the spectral overlap occurring between the molecular resonance and the plasmonic resonance. The results indicate that plasmon-exciton interaction is attenuated in the band gap region along the grating direction.

  19. Coherent secondary emission from resonantly excited two-exciton states

    DEFF Research Database (Denmark)

    Birkedal, Dan

    2000-01-01

    The coherent interaction of light and the electronic states of semiconductors near the fundamental bandgap has been a very active topic of research since the advent of ultrafast lasers. While many of the ultrafast nonlinear properties of semiconductors have been well explained within mean field...... to the nonlinear susceptibility. The method exploits that emission from two-exciton coherences can occur in non-specular directions, with the recoil momentum taken up by an exciton left behind in the sample. Using ultrafast spectral interferometry we demonstrate the presence of this new coherent component...... of the secondary emission from quantum wells following ultrafast resonant excitation and find that it provides information on not only the bound biexcitons but also the biexciton continuum. Due to the heterodyne nature of the experimental technique we obtain both amplitude and phase of the coherent emission...

  20. The formation of DNA photodamage: the role of exciton localization.

    Science.gov (United States)

    Rössle, Shaila; Friedrichs, Jana; Frank, Irmgard

    2010-06-21

    The electronic structure during the formation of a cyclobutane pyrimidine dimer (CPD) between two thymine bases is investigated using semi-empirical and first-principles approaches. The dimerization of two isolated thymine bases is found to have no barrier or a very small barrier in agreement with previous studies suggesting low photostability of DNA. The well-known high photostability of DNA can only be explained taking other factors into account. We investigate the role of the exciton location in the particular environment. Different model systems, from isolated thymine bases to an oligonucleotide in aqueous solution, are discussed. Analysis of the frontier orbitals allows one to understand the connection between the location of the exciton, the relative orientation of the thymine bases, and the observed reactivity.

  1. Triplet energy transfer and triplet exciton recycling in singlet fission sensitized organic heterojunctions

    Science.gov (United States)

    Hamid, Tasnuva; Yambem, Soniya D.; Crawford, Ross; Roberts, Jonathan; Pandey, Ajay K.

    2017-08-01

    Singlet exciton fission is a process where an excited singlet state splits into two triplets, thus leading to generation of multiple excitons per absorbed photon in organic semiconductors. Herein, we report a detailed exciton management approach for multiexciton harvesting over a broadband region of the solar spectrum in singlet fission sensitized organic photodiodes. Through systematic studies on the model cascade of pentacene/rubrene/C60, we found that efficient photocurrent generation from pentacene can still occur despite the presence of a >10nm thick interlayer of rubrene in between the pentacene/C60 heterojunction. Our results show that thin rubrene interlayers of thickness operation a rather interesting result. We discuss the role of rubrene interlayer film discontinuity, triplet exciton reflection from rubrene interlayer and triplet energy transfer from rubrene to pentacene layer followed by diffusion of triplet excitons through rubrene as plausible mechanisms that would enable triplet excitons from pentacene to generate significant photocurrent in a multilayer organic heterojunction.

  2. Multiple exciton generation in chiral carbon nanotubes: Density functional theory based computation

    Science.gov (United States)

    Kryjevski, Andrei; Mihaylov, Deyan; Kilina, Svetlana; Kilin, Dmitri

    2017-10-01

    We use a Boltzmann transport equation (BE) to study time evolution of a photo-excited state in a nanoparticle including phonon-mediated exciton relaxation and the multiple exciton generation (MEG) processes, such as exciton-to-biexciton multiplication and biexciton-to-exciton recombination. BE collision integrals are computed using Kadanoff-Baym-Keldysh many-body perturbation theory based on density functional theory simulations, including exciton effects. We compute internal quantum efficiency (QE), which is the number of excitons generated from an absorbed photon in the course of the relaxation. We apply this approach to chiral single-wall carbon nanotubes (SWCNTs), such as (6,2) and (6,5). We predict efficient MEG in the (6,2) and (6,5) SWCNTs within the solar spectrum range starting at the 2Eg energy threshold and with QE reaching ˜1.6 at about 3Eg, where Eg is the electronic gap.

  3. Ultrafast quantum beats of anisotropic excitons in atomically thin ReS2.

    Science.gov (United States)

    Sim, Sangwan; Lee, Doeon; Trifonov, Artur V; Kim, Taeyoung; Cha, Soonyoung; Sung, Ji Ho; Cho, Sungjun; Shim, Wooyoung; Jo, Moon-Ho; Choi, Hyunyong

    2018-01-24

    Quantum beats, periodic oscillations arising from coherent superposition states, have enabled exploration of novel coherent phenomena. Originating from strong Coulomb interactions and reduced dielectric screening, two-dimensional transition metal dichalcogenides exhibit strongly bound excitons either in a single structure or hetero-counterpart; however, quantum coherence between excitons is barely known to date. Here we observe exciton quantum beats in atomically thin ReS2 and further modulate the intensity of the quantum beats signal. Surprisingly, linearly polarized excitons behave like a coherently coupled three-level system exhibiting quantum beats, even though they exhibit anisotropic exciton orientations and optical selection rules. Theoretical studies are also provided to clarify that the observed quantum beats originate from pure quantum coherence, not from classical interference. Furthermore, we modulate on/off quantum beats only by laser polarization. This work provides an ideal laboratory toward polarization-controlled exciton quantum beats in two-dimensional materials.

  4. Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer

    Science.gov (United States)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2017-09-01

    We study formation and superfluidity of dipolar excitons in double layer heterostructures formed by two transition metal dichalcogenide (TMDC) atomically thin layers. Considering screening effects for an electron-hole interaction via the harmonic oscillator approximation for the Keldysh potential, the analytical expressions for the exciton energy spectrum and the mean field critical temperature Tc for the superfluidity are obtained. It is shown that binding energies of A excitons are larger than for B excitons. The mean field critical temperature for a two-component dilute exciton system in a TMDC double layer is analyzed and shown that the latter is an increasing function of the factor Q , determined by the effective masses of A and B excitons and their reduced mass. Comparison of the calculations for Tc performed by employing the Coulomb and Keldysh interactions demonstrates the importance of screening effects in TMDC.

  5. Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.

    Science.gov (United States)

    Caram, Justin R; Doria, Sandra; Eisele, Dörthe M; Freyria, Francesca S; Sinclair, Timothy S; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G

    2016-11-09

    We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm2/s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm2/s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.

  6. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  7. Excitonic transitions in MBE grown h-GaN with cubic inclusions

    Science.gov (United States)

    Strauf, Stefan; Michler, Peter; Gutowski, Jürgen; Selke, Hartmut; Birkle, Udo; Einfeldt, Sven; Hommel, Detlef

    1998-06-01

    Undoped and magnesium doped MBE grown GaN epilayers on sapphire substrates show a particular variety of near-bandgap luminescent transitions. Despite the large lattice mismatch to the substrate, pronounced free- and bound-exciton transitions allow for an estimation of the excitonic binding energies. For the given thickness range (about 1 μm), we find an almost strain-relaxed situation with the main exciton transition energies well corresponding to the bulk values. On their low-energy side, we identify lines having been tentatively assigned to stacking fault excitons, and interface-related exciton transitions correlated to extended defects and/or dislocations in this spatial region. Evidence of cubic inclusions of a size up to 500 nm is doubtless given by observing sharp c-GaN related donor-bound exciton emission and respective structures in transmission electron microscope investigations.

  8. Role of Strain on the Coherent Properties of GaAs Excitons and Biexcitons

    CERN Document Server

    Wilmer, Brian L; Ashley, Joseph M; Hall, Kimberley C; Bristow, Alan D

    2016-01-01

    Polarization-dependent two-dimensional Fourier-transform spectroscopy (2DFTS) is performed on excitons in strained bulk GaAs layers probing the coherent response for differing amounts of strain. Biaxial tensile strain lifts the degeneracy of heavy-hole (HH) and light-hole (LH) valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the HH/LH exciton peak splitting, induces an asymmetry in the off-diagonal coherences, increases the difference in the HH and LH exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound LH, HH, and mixed biexcitons.

  9. Band Gap, Excitons, and Coulomb Interaction in Solid C60

    NARCIS (Netherlands)

    Lof, R.W.; Veenendaal, M.A. van; Jonkman, H.T.; Sawatzky, G.A.; Koopmans, H.

    1992-01-01

    The band gap of solid C60 is found to be 2.3 ± 0.1 eV. The on-site molecular C60 Coulomb interaction (U) as determined from the KVV C60 Auger spectrum is found to be 1.6 ± 0.2 eV. This value of U is shown to lead to Frenkel-type molecular excitons in the 1.5-2 eV range. These results lead us to

  10. Excitonic condensation in quasi-two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, M. [Department of Theoretical Physics, University of Cluj, 400084 Cluj-Napoca (Romania)]. E-mail: mcrisan@phys.ubbcluj.ro; Tifrea, I. [Department of Theoretical Physics, University of Cluj, 400084 Cluj-Napoca (Romania); Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)

    2005-10-17

    We present a low energy model for the Bose-Einstein condensation in a quasi-two-dimensional excitonic gas. Using the flow equations of the renormalization group and a {phi}{sup 4} model with the dynamical critical exponent z=2 we calculate the temperature dependence of the critical density, coherence length, magnetic susceptibility, and specific heat. The model can be relevant for the macroscopic coherence observed in GaAs/AlGaAs coupled quantum wells.

  11. Unidirectional flow of lossless exciton-polariton signals

    Science.gov (United States)

    Tan, E. Z.; Liew, T. C. H.

    2018-02-01

    We consider the propagation of intensity signals in the discrete nonlinear driven-dissipative Schrodinger equation, well-known for the description of a variety of systems from coupled arrays of Kerr nonlinear cavities to exciton-polariton arrays. By periodic switching of a driving laser field, we find that the propagation can be engineered to be unidirectional, while the signals fully withstand dissipation and are resilient against disorder. We anticipate that such a mechanism would be relevant for use in photonic circuits.

  12. The nature of singlet excitons in oligoacene molecular crystals

    KAUST Repository

    Yamagata, H.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32cm-1, far smaller than the measured value of 631cm-1 and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport. © 2011 American Institute of Physics.

  13. Excitonic spectra in HgGa2Se4 crystals

    Science.gov (United States)

    Syrbu, N. N.; Zalamai, V. V.

    2018-02-01

    Ground and excited states of four excitonic series (A, B, C and D) were discovered in HgGa2Se4 crystals at 10 K. Parameters of excitons and bands were determined. An effective mass of electrons mc is equal to 0.26m0 and masses of holes mv1, mv2 and mv3 are equal to 2.48m0, 2.68m0 and 1.6m0 respectively in Γ point of Brilloin zone. Valence bands splitting by crystal field (Δcf = 70 meV) and spin-orbital interaction (Δso = 250 meV) were estimated in Brillouin zone center. Optical functions (n, ε1 and ε2) for polarizations E⊥c and E||c in electron transitions region (2-6 eV) were calculated by Kramers-Kronig method. The discovered features were discussed on a base of the existing theoretical energetical band structure calculations and excitonic bands symmetries in k = 0 Brillouin zone for chalcopyrite crystals. The resonance Raman scattering was investigated.

  14. Enhanced exciton diffusion length via cooperative quantum transport

    Science.gov (United States)

    Mohseni, Masoud; Abasto, Damian; Lloyd, Seth; Zanardi, Paolo

    2011-03-01

    The energy transfer rate in biomolecular systems is typically calculated from the transition probability of an excitation hopping from one molecule to another using Förster energy transfer based on dipole-dipole interaction of individual molecules in the perturbative regime. However, due to strong interactions of among a group of molecules the excitation can become highly delocalized leading to an effective large dipole moment with an enhanced oscillator strength. Under certain symmetries, this could lead to an enhancement in exicton transfer rate via cooperative donation or acceptance of an excitation. Here, we explore this phenomenon in various multichromophoric geometries, under different symmetries, initial conditions, and dynamics. We study the behavior of the exciton diffusion length under the effects of disorders and environmental fluctuations and quantify the crossover from ballistic to diffusive regimes. Specifically, for a quasi-1 D array of rings containing N chromophores interacting with a bosonic bath, an interplay of time scales dictates the exciton dynamics. In the ``far-field'' regime, environmental interactions are dominating and the system properties are approaching those of the incoherent equilibrium Gibbs state. However, in the ``near-field'' the coherent interactions among dipole aggregates dominate other time scales and exciton diffusion length is enhanced by a factor of √{ N } .

  15. Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher

    2005-01-01

    The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum well...... is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value....

  16. Picosecond spin relaxations of acceptor-bound exciton and A-band free exciton in wurtzite GaN

    Energy Technology Data Exchange (ETDEWEB)

    Tackeuchi, A.; Otake, H.; Fujita, T.; Kuroda, T. [Department of Applied Physics, Waseda University, Tokyo 169-8555 (Japan); Chinone, T.; Liang, J.H.; Kajikawa, M. [Stanley Electric Company, Ltd., Edanishi 1-3-1, Aoba, Yokohama 225-0014 (Japan)

    2006-07-01

    The spin relaxation process of acceptor-bound excitons in wurtzite GaN is observed by spin-dependent pump and probe reflectance measurement with subpicosecond time resolution. The time evolutions measured at 15-50 K have a single exponential component corresponding to the electron spin relaxation time of 1.40-1.14 ps. These spin relaxation times are slightly longer than those of the A-band free excitons of 0.47-0.25 ps in GaN at 150-225 K. The spin relaxation time is found to be proportional to T{sup -0.175}, where T is the temperature. This weak temperature dependence indicates that the main spin relaxation mechanism is the Bir-Aronov-Pikus process. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Interaction and Dephasing of Excitons in ZnSe Quantum Wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    We study the coherent formation of biexcitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm by transient degenerate four-wave mixing. We observe an increase of the biexciton binding energy with decreasing wire width reaching 30% energy enhancement in the smallest wire structure...... compared to the mesa structure which is attributed to a quenching of the exciton-exciton scattering efficiency by density dependent measurements. The exciton dephasing is found to increase with decreasing wire width which is assigned to an enhanced repulsive exchange interaction between excitons of equal...

  18. The excitonic insulator route through a dynamical phase transition induced by an optical pulse

    Energy Technology Data Exchange (ETDEWEB)

    Brazovskii, S., E-mail: brazov@lptms.u-psud.fr [Université Paris-Saclay, LPTMS, CNRS, Univ. Paris-sud (France); Kirova, N. [Université Paris-Saclay, LPS, CNRS, Univ. Paris-sud (France)

    2016-03-15

    We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.

  19. Tightly bound indirect exciton in single-layer hybrid organic-inorganic perovskite semiconductor

    Science.gov (United States)

    Li, Jing; Liu, Tao; Liew, Timothy C. H.

    2017-10-01

    We theoretically study the direct and indirect excitons (IXs) in a single-layer hybrid organic-inorganic perovskite (HOIP) semiconductor. Due to the 2D nature, the single-layer HOIP supports the large binding energy of IXs and direct excitons over a wide range of applied electric fields, which exceed the thermal energy of room temperature. Moreover, the ground-state IX has a lower energy than that of direct exciton, which will extend the coherence and relaxation time of IXs. This is beneficial to optoelectronic applications and excitonic information processing devices of IXs.

  20. Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sheng Hsiung Chang

    2014-01-01

    Full Text Available The refractive index and extinction coefficient of a triiodide perovskite absorber (TPA were obtained by fitting the transmittance spectra of TPA/PEDOT:PSS/ITO/glass using the transfer matrix method. Cu nanoplasmonic structures were designed to enhance the exciton generation in the TPA and to simultaneously reduce the film thickness of the TPA. Excitons were effectively generated at the interface between TPA and Cu nanoparticles, as observed through the 3D finite-difference time-domain method. The exciton distribution is advantageous for the exciton dissociation and carrier transport.

  1. Exciton dephasing and biexciton binding in CdSe/ZnSe islands

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Tranitz, H.-P.; Preis, H

    1999-01-01

    The dephasing of excitons and the formation of biexcitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of exciton-exciton scattering efficiencies and dephasing times in the range of 0.5-10 ps are obs...... energy slightly increases from 21.5 to 23 meV, while its broadening decreases from 5.5 to 3 meV. This is attributed to a strong three-dimensional confinement with improving shape uniformity for decreasing exciton energy. [S0163-1829(99)04739-6]....

  2. Coherent Exciton and Biexciton Nonlinearities in Semiconductor Nanostructures: Effects of Disorder

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Borri, Paola; Hvam, Jørn Märcher

    1999-01-01

    The coherent response of excitons in semiconductor nanostructures measured in four-wave mixing (FWM) depends strongly on the inhomogenous broadening of the exciton transition. We investigate InAs/Al0.3Ga0.7As single quantum wells (SQW) and AlxGa1-xAs mixed crystals. Additional to the usual phase...... rate difference between two subsystems within the inhomogeneous distribution is strongly dependent on their energy difference. BIF is strongly affecting the cross-linear polarized FWM response. The signal for positive delay is dominated by the transitions from the one-exciton state X to the two-exciton-states...

  3. Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

    Science.gov (United States)

    Lin, Kuen-Feng; Chiang, Chien-Hung; Wu, Chun-Guey

    2014-01-01

    The refractive index and extinction coefficient of a triiodide perovskite absorber (TPA) were obtained by fitting the transmittance spectra of TPA/PEDOT:PSS/ITO/glass using the transfer matrix method. Cu nanoplasmonic structures were designed to enhance the exciton generation in the TPA and to simultaneously reduce the film thickness of the TPA. Excitons were effectively generated at the interface between TPA and Cu nanoparticles, as observed through the 3D finite-difference time-domain method. The exciton distribution is advantageous for the exciton dissociation and carrier transport. PMID:25295290

  4. Can the exciton--polariton be defined by its quantum properties?

    Science.gov (United States)

    Fonseca-Romero, Karen; Cipagauta, Gustavo; Suárez-Forero, Daniel; Vinck-Posada, Herbert; Rey-González, Rafael; Herrera, William; Rodriguez, Boris

    2013-03-01

    We discuss the defining properties of a polariton in the framework of a microcavity-quantum dot system, described by a simple fully quantum model which takes into account loses and pumping. We show that even in the strong coupling regime, and provided that the emitted light exhibit subpoissonian statistics, the density operator of the system can be so mixed that quantum matter-radiation correlations are absent. We suggest the inclusion of matter-radiation entanglement as a defining property of the polariton. The weak-coupling, strong-coupling and lasing regimes, usually identified through the photoluminescence of the emitted light, can be understood in terms of quantum properties of the system state (entanglement, mixedness and light correlation functions). Our numerical anaylisis reveals the fundamental role of detuning on the coherence properties of the emitted light and on entanglement. In this sense, there is no polariton near resonance, even in the strong coupling regime. We show that the ``best'' polariton (maximally entangled matter-light state) is found when the exciton pumping rate is equal to the photon decay rate, and the detuning is of the order of three times the value of the coupling constant. The authors acknowledge partial financial support from Dirección de Investigación - Sede Bogotá, Universidad Nacional de Colombia (DIB-UNAL) under project 12584.

  5. [PLUTONIUM AND LIFETIME REDUCTION AMONG PROFESSIONAL WORKERS FSUE].

    Science.gov (United States)

    Tel'nov, V I

    2015-01-01

    The objective of the study is the assessment of lifetime in the cohort of Mayak PA workers employed in 1948-1958 and exposed to incorporated Pu-239. The decrease of age at death 5.2 years among males and 6.6 years among females, and after the start of work--6.9 years among males and 7.7 years among females, with the increase of Pu-239 incorporation was shown. The association of the raised mortality rate from tumour causes is shown both among males and females, mainly due to malignant neoplasms of lung and live; which are organs of Pu-239 main deposition. For the first time related to Pu-239 incorporation decrease of age at death from tumour and non-tumour causes of main and secondary organs of deposition both among males and females was revealed. To assess the reduction of lifetime Years of Potential Life Lost (YPLL) were calculated per 10(5) person-years of potential life based on European gender standard. The calculations based on the obtained estimations showed significant dependence of YPLL on the level of Pu-239 incorporation. At that the main contribution to the increase of YPLL, i.e. to lifetime reduction, was due to radiation-induced decrease of the age at death as compared to radiation-induced increase of mortality rates.

  6. Anomalously long lifetime of holes in silicon with nanoclusters of manganese atoms

    Energy Technology Data Exchange (ETDEWEB)

    Bakhadyrkhanov, M. K., E-mail: sobir-i@mail.ru; Isamov, S. B.; Iliev, Kh. M.; Kamalov, Kh. U. [Tashkent State Technical University (Uzbekistan)

    2015-10-15

    It is shown that it is possible to considerably increase the lifetime of holes (τ ≈ 10{sup 3} s) in silicon with multicharged nanoclusters of manganese atoms. It is established that the long lifetime of holes (τ ≈ 10{sup 0}–10{sup 3} s) is practically retained right up to T = 250 K. Such materials can be used in the development of more effective photoelements and photodetectors of infrared (IR) radiation.

  7. Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge

    2016-02-10

    It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs.

  8. Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline; Foster, Michael E.; El Gabaly Marquez, Farid; Leonard, Francois Leonard; Leong-Hau, Kirsty; Stavila, Vitalie; Talin, Albert Alec; Wong, Brian M.; Brumbach, Michael T.; Van Gough, D.; Lambert, Timothy N.; Rodriguez, Mark A.; Spoerke, Erik David; Wheeler, David Roger; Deaton, Joseph C.; Centrone, Andrea; Haney, Paul; Kinney, R.; Szalai, Veronika; Yoon, Heayoung P.

    2014-09-01

    Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible

  9. Direct observation of free-exciton thermalization in quantum-well structures

    DEFF Research Database (Denmark)

    Umlauff, M.; Hoffmann, J.; Kalt, H.

    1998-01-01

    . The subsequent relaxation dynamics within the 1s-exciton dispersion is directly monitored by time-resolved studies of the phonon-assisted photoluminescence. It is demonstrated that the free-exciton distribution remains nonthermal for some 100 ps. The observed dynamics is in reasonable agreement with numerical...

  10. Thermal effects in exciton harvesting in biased one-dimensional systems

    NARCIS (Netherlands)

    Vlaming, S. M.; Malyshev, V.A.; Knoester, J.

    2008-01-01

    The study of energy harvesting in chain-like structures is important due to its relevance to a variety of interesting physical systems. Harvesting is understood as the combination of exciton transport through intra-band exciton relaxation (via scattering on phonon modes) and subsequent quenching by

  11. Dynamics of exciton diffusion in poly(p-phenylene vinylene)/fullerene heterostructures

    NARCIS (Netherlands)

    Markov, D.E.; Hummelen, J.C.; Blom, P.W.M.; Sieval, A.B.

    The exciton diffusion process in a poly(p-phenylene vinylene)- (PPV-)based derivative is investigated using time-resolved photoluminescence in conjugated polymer/fullerene heterostructures. The decay of the luminescence in the polymer/fullerene heterostructures is governed by exciton diffusion and

  12. The dynamical frustration of interlayer excitons delocalizing in bilayer quantum antiferromagnets

    NARCIS (Netherlands)

    Rademaker, L.; Wu, K.; Hilgenkamp, H.; Zaanen, J.

    2012-01-01

    Using the self-consistent Born approximation we study the delocalization of interlayer excitons in the bilayer Heisenberg quantum antiferromagnet. Under realistic conditions we find that the coupling between the exciton motion and the spin system is strongly enhanced as compared to the case of a

  13. Real-Time Tracking of Singlet Exciton Diffusion in Organic Semiconductors

    NARCIS (Netherlands)

    Kozlov, Oleg V.; de Haan, Foppe; Kerner, Ross A.; Rand, Barry P.; Cheyns, David; Pshenichnikov, Maxim S.

    2016-01-01

    Exciton diffusion in organic materials provides the operational basis for functioning of such devices as organic solar cells and light-emitting diodes. Here we track the exciton diffusion process in organic semiconductors in real time with a novel technique based on femtosecond photoinduced

  14. Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe

    DEFF Research Database (Denmark)

    Mizeikis, V.; Vadim, Lyssenko; Østergaard, John Erland

    1995-01-01

    Dephasing and transient grating experiments in the direct excitonic absorption region of GaSe at low temperatures show that a fast relaxation within the one-dimensionally disordered excitonic band results in band filling being the dominant mechanism of the optical nonlinearity. Correspondingly, w...

  15. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    Science.gov (United States)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  16. Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials

    DEFF Research Database (Denmark)

    Olsen, Thomas; Latini, Simone; Rasmussen, Filip Anselm

    2016-01-01

    , the description of 2D excitons is complicated by the fact that the screening cannot be assumed to be local. We show that one can consistently define an effective 2D dielectric constant by averaging the screening over the extend of the exciton. For an ideal 2D semiconductor this leads to a simple expression for EB...

  17. The excitonic ground state of the half-filled Peierls insulator

    NARCIS (Netherlands)

    Rice, MJ; Gartstein, YN

    2005-01-01

    We point out that the half-filled Peierls insulator, celebrated for its soliton excitations and its application to trans(polyacetylene), is an excitonic insulator in which collectively bound electron-hole pair excitations (excitons) are mixed into the ground state. Unlike the bound electron pairs of

  18. Thermalization of Hot Free Excitons in ZnSe-Based Quantum Wells

    DEFF Research Database (Denmark)

    Hoffmann, J.; Umlauff, M.; Kalt, H.

    1997-01-01

    Thermalization of hot-exciton populations in ZnSe quantum wells occurs on a time scale of 100 ps. Strong exciton-phonon coupling in II-VI semiconductors leads to a direct access to the thermalization dynamics via time-resolved spectroscopy of phonon-assisted luminescence. The experimental spectra...

  19. Supersonic exciton gratings: coherent inter-polariton scattering in semiconductor microcavities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    2002-01-01

    We report on a coherent nonlinear phenomenon in a semiconductor microcavity (SMC), which has no parallel for QW excitons. When two different polariton modes of the SMC are impulsively excited they undergo normal mode oscillations (NMOs) with coherent energy exchange between the exciton and the ca...

  20. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    1996-01-01

    We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrally...

  1. Exciton formation and dissociation in mass-asymmetric electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fehske, H [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, Domstrasse 10a, D-17489 Greifswald (Germany); Filinov, V [Institute for High Energy Density, Russian Academy of Sciences, Izhorskay 13/19, Moscow 127412 (Russian Federation); Bonitz, M [Christian-Albrechts-Universitaet zu Kiel, Institut fuer Theoretische Physik und Astrophysik, Lehrstuhl Statistische Physik, Leibnizstrasse 15, 24098 Kiel (Germany); Fortov, V [Institute for High Energy Density, Russian Academy of Sciences, Izhorskay 13/19, Moscow 127412 (Russian Federation); Levashov, P [Institute for High Energy Density, Russian Academy of Sciences, Izhorskay 13/19, Moscow 127412 (Russian Federation)

    2005-01-01

    First-principle path integral Monte Carlo simulations were performed in order to analyze correlation effects in complex electron-hole plasmas, particularly with regard to the appearance of excitonic bound states. Results are discussed in relation to exciton formation in unconventional semiconductors with large electron hole mass asymmetry.

  2. Temperature dependence of excitonic emission in [(CH3)2NH2]3[BiI6] organic-inorganic natural self assembled bimodal quantum dots

    Science.gov (United States)

    Abid, Haitham; Samet, Amira; Mlayah, Adnen; Boughzala, Habib; Abid, Younes

    2017-11-01

    This paper reports on the optical properties of organic - inorganic natural self assembled bimodal quantum dots (dimetylammonium) hexa-iodobismuthate [(CH3)2NH2]3[BiI6]. The crystal structure consists of isolated BiI6 octahedra, as inorganic ions, surrounded by dimethylamine cations. At room temperature, we investigate the optical properties by: UV/Vis absorption, ellipsometry, diffuse reflectance and photoluminescence. A broad Gaussian-shape luminescence band with a large stokes shift is observed in the red spectral range at 2.15 eV, due to radiative recombination of confined excitons in BiI quantum dots, suggesting that excitons are self trapped. The temperature-dependence of the PL emission is investigated. The observed S-shaped emission behavior is explained by thermal escape occurring at lower temperatures for high-energy dots and carriers being recaptured by dots emitting on the low-energy side of the distribution. A rate equation model, showing agreement with the experimental results, is used to investigate the thermal redistribution of the charge carriers. Exciton binding energies of 149.125 and 295.086 meV were determined from the modified Arrhenius analysis.

  3. Lifetime of Organic Photovoltaics: Status and Predictions

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Madsen, Morten Vesterager; Roth, Bérenger

    2016-01-01

    The results of a meta-analysis conducted on organic photovoltaics (OPV) lifetime data reported in the literature is presented through the compilation of an extensive OPV lifetime database based on a large number of articles, followed by analysis of the large body of data. We fully reveal the prog......The results of a meta-analysis conducted on organic photovoltaics (OPV) lifetime data reported in the literature is presented through the compilation of an extensive OPV lifetime database based on a large number of articles, followed by analysis of the large body of data. We fully reveal...... the progress of reported OPV lifetimes. Furthermore, a generic lifetime marker has been defi ned, which helps with gauging and comparing the performance of different architectures and materials from the perspective of device stability. Based on the analysis, conclusions are drawn on the bottlenecks...

  4. Direct measurement of exciton dissociation energy in polymers

    Directory of Open Access Journals (Sweden)

    J. Toušek

    2017-01-01

    Full Text Available Exciton dissociation energy was obtained based on the comparison of thickness of the space charge region estimated from the measurement of capacitance of prepared Schottky diode and from the measurement of photovoltage spectra. While the capacitance measurements provide information about the total width of the space charge region (SCR the surface photovoltaic effect brings information only about the part of the SCR where electric field is sufficiently high to cause dissociation. For determination of the dissociation energy it is sufficient to find the electric potential in the SCR where the process starts.

  5. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  6. Self-trapping phenomenon in exciton-polariton dynamics

    Science.gov (United States)

    Vasilieva, O. F.; Khadzhi, P. I.

    2013-12-01

    The polariton dynamics in a microcavity in the parametric oscillator mode, when two pump polaritons are transformed into signal and idler polaritons and vice versa, has been studied. A nonlinear differential equation is obtained, which describes the temporal evolution of pump-polariton density, the solution of which is expressed in terms of the Jacobi elliptical functions. The amplitude and period of polaritondensity oscillations are determined by the initial polariton densities and the resonance detuning. The possibility of self-trapping in exciton-polariton dynamics is predicted.

  7. Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films

    OpenAIRE

    Fang, Hong-Hua; Protesescu, Loredana; Balazs, Daniel M.; Adjokatse, Sampson; Kovalenko, Maksym V.; Loi, Maria A.

    2017-01-01

    The optical properties of the newly developed near-infrared emitting formamidinium lead triiodide (FAPbI(3)) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady-state and time-resolved photoluminescence. The excitonic emission is dominant in NC ensemble because of the localization of electron-hole pairs. A promisingly high quantum yield above 70%, and a large absorption cross-section (5.2 x 10(-13) cm(-2)) are measured. At high ...

  8. Soliton physics with semiconductor exciton-polaritons in confined systems

    Science.gov (United States)

    Sich, Maksym; Skryabin, Dmitry V.; Krizhanovskii, Dmitry N.

    2016-10-01

    In the past decade, there has been a significant progress in the study of non-linear polariton phenomena in semiconductor microcavities. One of the key features of non-linear systems is the emergence of solitons. The complexity and the inherently strong nonlinearity of the polariton system made it a perfect sandpit for observing solitonic effects in half-light half-matter environment. This review focuses on the theory and the latest experimental elucidating physics as well as potential applications of conservative and dissipative solitons in exciton-polariton systems. xml:lang="fr"

  9. Exciton quenching close to polymer : vacuum interface of spin-coated films of poly(p-phenylenevinylene) derivative

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Cordella, F.; Sieval, A.B.; Hummelen, J.C.; Blom, P.W.M.; Loi, M.A.

    2009-01-01

    Polymer-fullerene bilayer heterostructures are suited to study excitonic processes in conjugated polymers. Excitons are efficiently quenched at the polymer-fullerene interface, whereas the polymer-vacuum interface is often considered as an exciton-reflecting interface. Here, we report about

  10. Phase Diagram of the Bose Condensation of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells

    DEFF Research Database (Denmark)

    Dremin, A. A.; Timofeev, V. B.; Larionov, A. V.

    2002-01-01

    observed in the experiment was attributed to Bose–Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature interval studied (0.5–3.6) K, the critical exciton density and temperature were determined and a phase diagram outlining the exciton condensate region...

  11. Coherent spin dynamics of an interwell excitonic gas in GaAs/AlGaAs coupled quantum wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bisti, V. E.; Bayer, M.

    2006-01-01

    The spin dynamics of an interwell exciton gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1s heavy-hole intrawell exciton, using a pulsed tunable laser...

  12. Measurement of the B hadron lifetime

    Science.gov (United States)

    Decamp, D.; Deschizeaux, B.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Alemany, R.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mato, P.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Pacheco, A.; Perlas, J. A.; Tubau, E.; Catanesi, M. G.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Gao, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Ruan, T.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Albrecht, H.; Atwood, W. B.; Bird, F.; Blucher, E.; Bonvicini, G.; Bossi, F.; Brown, D.; Burnett, T. H.; Drevermann, H.; Dydak, F.; Forty, R. W.; Grab, C.; Hagelberg, R.; Haywood, S.; Jost, B.; Kasemann, M.; Kellner, G.; Knobloch, J.; Lacourt, A.; Lehraus, I.; Lohse, T.; Lüke, D.; Marchioro, A.; Martinez, M.; May, J.; Menary, S.; Minten, A.; Miotto, A.; Nash, J.; Palazzi, P.; Ranjard, F.; Redlinger, G.; Roth, A.; Rothberg, J.; Rotscheidt, H.; von Rüden, W.; St. Denis, R.; Schlatter, D.; Takashima, M.; Talby, M.; Tejessy, W.; Wachsmuth, H.; Wasserbaech, S.; Wheeler, S.; Wiedenmann, W.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Falvard, A.; El Fellous, R.; Gay, P.; Harvey, J.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nielsen, E. R.; Nilsson, B. S.; Efthymiopoulos, I.; Simopoulou, E.; Vayaki, A.; Badier, J.; Blondel, A.; Bonneaud, G.; Bourotte, J.; Braems, F.; Brient, J. C.; Fouque, G.; Gamess, A.; Guirlet, R.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Videau, H.; Candlin, D. J.; Veitch, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Massimo-Brancaccio, F.; Murtas, F.; Murtas, G. P.; Nicoletti, G.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Zografou, P.; Altoon, B.; Boyle, O.; Halley, A. W.; Have, I. Ten; Hearns, J. L.; Lynch, J. G.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Taylor, G.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Keemer, N. R.; Nuttall, M.; Patel, A.; Rowlingson, B. S.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Barczewski, T.; Bauerdick, L. A. T.; Kleinknecht, K.; Renk, B.; Roehn, S.; Sander, H.-G.; Schmelling, M.; Schmidt, H.; Steeg, F.; Albanese, J.-P.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Courvoisier, D.; Etienne, F.; Papalexiou, S.; Payre, P.; Pietrzyk, B.; Qian, Z.; Blum, W.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Fernandez-Bosman, M.; Hansl-Kozanecka, T.; Jahn, A.; Kozanecki, W.; Lange, E.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Pan, Y.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Stierlin, U.; Thomas, J.; Wolf, G.; Bertin, V.; de Bouard, G.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Ganis, G.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Journé, V.; Kim, D. W.; Lefrançois, J.; Lutz, J.-M.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Moneta, L.; Palla, F.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini-Castaldi, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Medcalf, T.; Quazi, I. S.; Saich, M. R.; Strong, J. A.; Thomas, R. M.; West, L. R.; Wildish, T.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Klopfenstein, C.; Lançon, E.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Ashan, J. G.; Booth, C. N.; Buttar, C.; Carney, R.; Cartwright, S.; Combley, F.; Dinsdale, M.; Dogru, M.; Hatfield, F.; Martin, J.; Parker, D.; Reeves, P.; Thompson, L. F.; Brandt, S.; Burkhardt, H.; Grupen, C.; Meinhard, H.; Mirabito, L.; Neugebauer, E.; Schäfer, U.; Seywerd, H.; Apollinari, G.; Giannini, G.; Gobbo, B.; Liello, F.; Rolandi, L.; Stiegler, U.; Bellantoni, L.; Boudreau, J. F.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Deweerd, A. J.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hilgart, J.; Jacobsen, J. E.; Jared, R. C.; Johnson, R. P.; Leclaire, B. W.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Walsh, M. A.; Wear, J. A.; Weber, F. V.; Whitney, M. H.; Lan Wu, Sau Lan Wu; Zhou, Z. L.; Zobernig, G.; Aleph Collaboration

    1991-03-01

    The average lifetime of B hadrons has been measured by the ALEPH experiment at LEP. Events containing B hadrons are selected by the identification of leptons with high transverse momentum in hadronic Z decays, and the lifetime is extracted from a fit to the impact parameter distribution of the lepton tracks. From a sample of 1.7×10 5 hadronic Z decays a lifetime of 1.29±0.06±0.10 ps is measured.

  13. Combined fluorescence and phosphorescence lifetime imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V. I. [Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277 (Germany); Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod 603005 (Russian Federation); Neubauer, A.; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277 (Germany); Bukowiecki, R.; Dinter, F. [Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, Berlin 13092 (Germany)

    2016-02-29

    We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.

  14. Increasing applicability of slow light in molecular aggregate nanofilms with two-exciton dynamics.

    Science.gov (United States)

    Díaz, E; Martínez-Calzada, G C; Cabrera-Granado, E; Calderón, O G

    2016-06-01

    We study the slow-light performance in the presence of exciton-exciton interaction in films of linear molecular aggregates at the nanometer scale. In particular, we consider a four-level model to describe the creation/annihilation of two-exciton states that are relevant for high-intensity fields. Numerical simulations show delays comparable to those obtained for longer propagation distances in other media. Two-exciton dynamics could lead to larger fractional delays, even in presence of disorder, in comparison to the two-level approximation. We conclude that slow-light performance is a robust phenomenon in these systems under the increasing complexity of the two-exciton dynamics.

  15. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.

    Science.gov (United States)

    Li, Yong Jun; Hong, Yan; Peng, Qian; Yao, Jiannian; Zhao, Yong Sheng

    2017-10-24

    The excitation of surface plasmons by optical emitters based on exciton-plasmon coupling is important for plasmonic devices with active optical properties. It has been theoretically demonstrated that the orientation of exciton dipole can significantly influence the coupling strength, yet systematic study of the coupling process in nanostructures is still hindered by the lack of proper material systems. In this work, we have experimentally investigated the orientation-dependent exciton-plasmon coupling in a rationally designed organic/metal nanowire heterostructure system. The heterostructures were prepared by inserting silver nanowires into crystalline organic waveguides during the self-assembly of dye molecules. Structures with different exciton orientations exhibited varying coupling efficiencies. The near-field exciton-plasmon coupling facilitates the design of nanophotonic devices based on the directional surface plasmon polariton propagations.

  16. Dephasing and interaction of excitons CdSe/ZnSe islands

    DEFF Research Database (Denmark)

    Wagner, H. P.; Tranitz, H.-P.; Preis, H.

    2000-01-01

    The dephasing of excitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of dephasing times is observed, indicating the existence of localized excitons with different relaxation times at comparable tra...... transition energies. Polarization-dependent measurements identify the formation of biexcitons. The observed large biexciton binding energy of 22meV increases with decreasing exciton energy, which is attributed to an increasing three-dimensional confinement.......The dephasing of excitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of dephasing times is observed, indicating the existence of localized excitons with different relaxation times at comparable...

  17. An excitonic approach to the intraband THz response of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dignam, Marc M.; Sy, Fredrik; Parks, Andrew M. [Department of Physics, Engineering Physics and Astronomy, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Wang, Dawei [Electronic Materials Research Laboratory - Key Laboratory of the Ministry of Education, and International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-03-31

    Considerable effort has been devoted in recent years to developing an accurate and computationally-viable theoretical treatment of the THz response of semiconductor nanostructures that are excited by ultrashort optical pulses. Although most approaches, such as the semiconductor Bloch equations, employ an electron-hole basis, we have developed an excitonic approach that has significant advantages in many situations. Our approach includes the exchange interaction between excitons, the effects of the Pauli exclusion principle for the excitons (which are composite Bosons), and the dipole-dipole interactions between excitons. In this paper we review our excitonic formalism and apply it to examine the THz absorption of optically-excited CdSe nanorods and 2D GaAs quantum wells.

  18. Effect of periodic potential on exciton states in semiconductor carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Roslyak, Oleksiy, E-mail: oroslyak@fordham.edu [Department of Physics and Engineering Physics, Fordham University, Bronx, NY 10458 (United States); Piryatinski, Andrei, E-mail: apiryat@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    We develop a theoretical background to treat exciton states in semiconductor single-walled carbon nanotubes (SWCNTs) in the presence of a periodic potential induced by a surface acoustic wave (SAW) propagating along SWCNT. The formalism accounts for the electronic band splitting into the Floquet sub-bands induced by the Bragg scattering on the SAW potential. Optical transitions between the Floquet states and correlated electron–hole pairs (excitons) are numerically examined. Formation of new van Hove singularities within the edges of Floquet sub-bands and associated transfer of the exciton oscillator strengths resulting in the photoluminescence quenching are predicted. The simulations demonstrate the exciton energy red Stark shift and reduction in the exciton binding energy. Comparison of our results with reported theoretical and experimental studies is provided.

  19. Excitons in semiconducting quantum filaments of CdS and CdSe with dielectric barriers

    CERN Document Server

    Dneprovskij, V S; Shalygina, O A; Lyaskovskij, V L; Mulyarov, E A; Gavrilov, S A; Masumoto, I

    2002-01-01

    The peculiarities of the luminescence spectra obtained by different polarization and intensity of the pumping excitation and luminescence kinetics of the CdS and CdSe nanocrystals are explained by the exciton transitions in the semiconducting quantum threads with dielectric barriers. The exciton transition energies correspond to the calculated ones with an account of both their dimensional quantization and the effect of the excitons dielectric intensification. It is shown that the excitons transition energies do not change by the change in the quantum threads diameter within the wide range, while the increase in the one-dimensional forbidden zone width of quantum thread by the decrease in its diameter is compensated through the decrease in the excitons binding energy

  20. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multi-Layered Organic Epitaxial Nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Cadelano, Michele; Quochi, Francesco

    2015-01-01

    Multi-layered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials due to their well-defined morphology, high luminescence efficiencies, and color tunability. We resort to temperature-dependent cw and picosecond photoluminescence (PL......) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multi-layered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T), serving as exciton donor and acceptor material, respectively. The high probability for RET processes...... is confirmed by Quantum Chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P...

  1. Excitonic optical response of carbon chains confined in single-walled carbon nanotubes

    Science.gov (United States)

    Bonabi, Farzad; Brun, Søren J.; Pedersen, Thomas G.

    2017-10-01

    It has been recently shown that long linear carbon chains (carbyne) can be formed inside multiwalled carbon nanotubes (CNTs). Encapsulation of carbyne inside the CNT affects the electronic structure of the chain by the long-range Coulomb interaction. This introduces an indirect band gap in the combined CNT-chain system and results in a change in the optical band gap. We study the excitonic optical response of the combined system using the Bethe-Salpeter and Wannier equations based on density functional theory and tight-binding band structures. The optical properties of isolated CNTs and chains are strongly affected by excitonic effects and the CNT-chain system follows a similar trend. The interaction between the CNT and chain results in new bright excitons as well as charge transfer excitons, where electrons are localized on the CNT and holes on the chain, yielding new dark excitons in the combined system.

  2. Rate Equation Analysis of the Dynamics of First-order Exciton Mott Transition

    Science.gov (United States)

    Sekiguchi, Fumiya; Shimano, Ryo

    2017-10-01

    We perform a rate equation analysis of the dynamics of the exciton Mott transition (EMT) assuming a detailed balance between excitons and unbound electron-hole (e-h) pairs. Using the Saha equation and adopting an empirical expression for the band-gap renormalization effect caused by unbound e-h pairs, we show that the ionization ratio of excitons exhibits bistability as a function of the total e-h pair density at low temperatures. We demonstrate that an incubation time emerges in the dynamics of the EMT from the oversaturated exciton gas phase on the verge of the bistable region. The incubation time shows slowing down behavior when the pair density approaches saddle-node bifurcation of the hysteresis curve of the exciton ionization ratio.

  3. Spin dynamics of low-dimensional excitons due to acoustic phonons

    Energy Technology Data Exchange (ETDEWEB)

    Thilagam, A; Lohe, M A [Department of Physics, University of Adelaide, Adelaide 5005 (Australia)

    2006-03-29

    We investigate the spin dynamics of excitons interacting with acoustic phonons in quantum wells, quantum wires and quantum discs by employing a multiband model based on the 4 x 4 Luttinger Hamiltonian. We also use the Bir-Pikus Hamiltonian to model the coupling of excitons to both longitudinal acoustic phonons and transverse acoustic phonons, thereby providing us with a realistic framework in which to determine details of the spin dynamics of excitons. We use a fractional dimensional formulation to model the excitonic wavefunctions and we demonstrate explicitly the decrease of spin relaxation time with dimensionality. Our numerical results are consistent with experimental results of spin relaxation times for various configurations of the GaAs/Al{sub 0.3}Ga{sub 0.7}As material system. We find that longitudinal and transverse acoustic phonons are equally significant in processes of exciton spin relaxations involving acoustic phonons.

  4. Spin dynamics of low-dimensional excitons due to acoustic phonons

    Science.gov (United States)

    Thilagam, A.; Lohe, M. A.

    2006-03-01

    We investigate the spin dynamics of excitons interacting with acoustic phonons in quantum wells, quantum wires and quantum discs by employing a multiband model based on the 4 × 4 Luttinger Hamiltonian. We also use the Bir-Pikus Hamiltonian to model the coupling of excitons to both longitudinal acoustic phonons and transverse acoustic phonons, thereby providing us with a realistic framework in which to determine details of the spin dynamics of excitons. We use a fractional dimensional formulation to model the excitonic wavefunctions and we demonstrate explicitly the decrease of spin relaxation time with dimensionality. Our numerical results are consistent with experimental results of spin relaxation times for various configurations of the GaAs/Al0.3Ga0.7As material system. We find that longitudinal and transverse acoustic phonons are equally significant in processes of exciton spin relaxations involving acoustic phonons.

  5. Systems and methods for circuit lifetime evaluation

    Science.gov (United States)

    Heaps, Timothy L. (Inventor); Sheldon, Douglas J. (Inventor); Bowerman, Paul N. (Inventor); Everline, Chester J. (Inventor); Shalom, Eddy (Inventor); Rasmussen, Robert D. (Inventor)

    2013-01-01

    Systems and methods for estimating the lifetime of an electrical system in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes iteratively performing Worst Case Analysis (WCA) on a system design with respect to different system lifetimes using a computer to determine the lifetime at which the worst case performance of the system indicates the system will pass with zero margin or fail within a predetermined margin for error given the environment experienced by the system during its lifetime. In addition, performing WCA on a system with respect to a specific system lifetime includes identifying subcircuits within the system, performing Extreme Value Analysis (EVA) with respect to each subcircuit to determine whether the subcircuit fails EVA for the specific system lifetime, when the subcircuit passes EVA, determining that the subcircuit does not fail WCA for the specified system lifetime, when a subcircuit fails EVA performing at least one additional WCA process that provides a tighter bound on the WCA than EVA to determine whether the subcircuit fails WCA for the specified system lifetime, determining that the system passes WCA with respect to the specific system lifetime when all subcircuits pass WCA, and determining that the system fails WCA when at least one subcircuit fails WCA.

  6. Fluorescence lifetime imaging of skin cancer

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  7. Baselines for Lifetime of Organic Solar Cells

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Espinosa Martinez, Nieves; Ciammaruchi, Laura

    2016-01-01

    The process of accurately gauging lifetime improvements in organic photovoltaics (OPVs) or other similar emerging technologies, such as perovskites solar cells is still a major challenge. The presented work is part of a larger effort of developing a worldwide database of lifetimes that can help...... the baselines of lifetime for OPVs tested under different conditions. The work also provides the recent progress in stability of unencapsulated OPVs with different architectures, as well as presents the updated diagram of the reported record lifetimes of OPVs. The presented work is another step forward towards...

  8. Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium

    NARCIS (Netherlands)

    McAlexander, W.I.; Abraham, E.R.I.; Ritchie, N.W.M.; Williams, C.J.; Stoof, H.T.C.; Hulet, R.G.

    1995-01-01

    We have obtained spectra of the high-lying vibrational levels of the 13Σg+ state of 6Li2 via photoassociation of ultracold 6Li atoms confined in a magneto-optical trap. The 13Σg+ state of the diatomic molecule correlates to a 2S1/2 state atom plus a 2P1/2 state atom. The long-range part of the

  9. Sensitivity of Methane Lifetime and Transport to Sulfate Geoengineering

    Science.gov (United States)

    Aquila, V.; Pitari, G.; Tilmes, S.; Cionni, I.; de Luca, N.; Di Genova, G.; Iachetti, D.

    2014-12-01

    Sulfate geoengineering, made by sustained injection of SO2 in the tropical lower stratosphere, may impact the abundance of tropospheric methane through several photochemical mechanisms affecting the tropospheric OH abundance and hence the methane lifetime. Changes of the stratospheric Brewer-Dobson circulation also play a role in the upper tropospheric CH4 transport. Three mechanisms lead to lower OH concentrations and a longer CH4 lifetime: (a) solar radiation scattering increases the planetary albedo and cools the surface, with a tropospheric water vapor decrease as a response to this cooling. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extra-tropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-upper troposphere, thus reducing the amount of NOx and tropospheric O3 production. On the other hand, the tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rates perturbation are strongly latitude dependent, producing a significant change of the pole-to-equator temperature gradient and mean zonal wind distribution, with a net increase of tropical upwelling. A stronger meridional component of the Brewer-Dobson circulation increases the extra-tropical stratosphere to troposphere transport of CH4 poorer air, resulting in less CH4 transported in the UTLS. The net effect on tropospheric OH may be positive or negative depending on the net result of different superimposed species perturbations in the UTLS, i.e. CH4 (negative), NOy and O3 (positive). Three climate-chemistry coupled models are used here to explore the above radiative, chemical and dynamical mechanisms affecting the methane lifetime (ULAQ

  10. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  11. Nanophotonic interactions between organic excitons and plasmonic metasurfaces (Conference Presentation)

    Science.gov (United States)

    O'Carroll, Deirdre M.

    2016-09-01

    Thin-film organic semiconductor materials are emerging as energy-efficient, versatile alternatives to inorganic semiconductors for display and solid-state lighting applications. Additionally, thin-film organic laser and photovoltaic technologies, while not yet competitive with inorganic semiconductor-based analogues, can exhibit small device embodied energies (due to comparatively low temperature and low energy-use fabrication processes) which is of interest for reducing overall device cost. To improve energy conversion efficiency in thin-film organic optoelectronics, light management using nanophotonic structures is necessary. Here, our recent work on improving light trapping and light extraction in organic semiconductor thin films using nanostructured silver plasmonic metasurfaces will be presented [1,2]. Numerous optical phenomena, such as absorption induced scattering, out-of-plane waveguiding and morphology-dependent surface plasmon outcoupling, are identified due to exciton-plasmon coupling between the organic semiconductor and the metasurface. Interactions between localized and propagating surface plasmon polaritons and the excitonic transitions of a variety of organic conjugated polymer materials will be discussed and ways in which these interactions may be optimized for particular optoelectronic applications will be presented. [1] C. E. Petoukhoff, D. M. O'Carroll, Absorption-Induced Scattering and Surface Plasmon Out-Coupling from Absorber-Coated Plasmonic Metasurfaces. Nat. Commun. 6, 7899-1-13 (2015). [2] Z. Shen, D. M. O'Carroll, Nanoporous Silver Thin Films: Multifunctional Platforms for Influencing Chain Morphology and Optical Properties of Conjugated Polymers. Adv. Funct. Mater. 25, 3302-3313 (2015).

  12. Excitonic effects in ZnO nanowires and hollow nanotubes

    Science.gov (United States)

    Willander, M.; Lozovik, Y. E.; Zhao, Q. X.; Nur, O.; Hu, Q.-H.; Klason, P.

    2007-02-01

    Energy levels and wave functions of ground and excited states of an exciton are calculated by the method of imaginary time. Energy levels as functions of radius of single and double wall nanotube are studied. Asymptotic behavior of energy levels at large and small values of the radius using perturbation theory and adiabatic approximation is considered. Spatially indirect exciton in semiconductor nanowire is also investigated. Experimental result from high quality reproducible ZnO nanowires grown by low temperature chemical engineering is presented. State of the art high brightness white light emitting diodes (HB-LEDs) are demonstrated from the grown ZnO nano-wires. The color temperature and color rendering index (CRI) of the HB-LEDs values was found to be (3250 K, 82), and (14000 K, 93), for the best LEDs, which means that the quality of light is superior to one obtained from GaN LEDs available on the market today. The role of V Zn and V ° on the emission responsible for the white light band as well as the peak position of this important wide band is thoroughly investigated in a systematic way.

  13. Boosting the performance of red PHOLEDs by exciton harvesting

    Science.gov (United States)

    Chang, Y.-L.; Wang, Z. B.; Helander, M. G.; Qiu, J.; Lu, Z. H.

    2012-09-01

    Significant development has been made on phosphorescent organic light emitting diodes (PHOLEDs) over the past decade, which eventually resulted in the commercialization of widely distributed active-matrix organic light emitting diode displays for mobile phones. However, higher efficiency PHOLEDs are still needed to further reduce the cost and lower the power consumption for general lighting and LED backlight applications. In particular, red PHOLEDs currently have in general the lowest efficiencies among the three primary colors, due most likely to the energy-gap law. Therefore, a number of groups have of made use of various device configurations, including insertion of a carrier blocking or exciton confining layer, doping the transport layers, as well as employing multiple emissive zone structures to improve the device efficiency. However, these approaches are rather inconvenient for commercial applications. In this work, we have developed a simpler way to boost the performance of red PHOLEDs by incorporating an exciton harvesting green emitter, which transfers a large portion of the energy to the co-deposited red emitter. A high external quantum efficiency (EQE) of 20.6% was achieved, which is among the best performances for red PHOLEDs.

  14. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  15. Singlet oxygen phosphorescence lifetime imaging based on a fluorescence lifetime imaging microscope.

    Science.gov (United States)

    Tian, Wenming; Deng, Liezheng; Jin, Shengye; Yang, Heping; Cui, Rongrong; Zhang, Qing; Shi, Wenbo; Zhang, Chunlei; Yuan, Xiaolin; Sha, Guohe

    2015-04-09

    The feasibility of singlet oxygen phosphorescence (SOP) lifetime imaging microscope was studied on a modified fluorescence lifetime imaging microscope (FLIM). SOP results from the infrared radiative transition of O2(a(1)Δg → X(3)Σg(-)) and O2(a(1)Δg) was produced in a C60 powder sample via photosensitization process. To capture the very weak SOP signal, a dichroic mirror was placed between the objective and tube lens of the FLIM and used to divide the luminescence returning from the sample into two beams: the reflected SOP beam and the transmitted photoluminescence of C60 (C60-PL) beam. The C60-PL beam entered the scanner of the FLIM and followed the normal optical path of the FLIM, while the SOP steered clear of the scanner and directly entered a finely designed SOP detection channel. Confocal C60-PL images and nonconfocal SOP images were then simultaneously obtained by using laser-scanning mode. Experimental results show that (1) under laser-scanning mode, the obstacle to confocal SOP imaging is the infrared-incompatible scanner, which can be solved by using an infrared-compatible scanner. Confocal SOP imaging is also expected to be realized under stage-scanning mode when the laser beam is parked and meanwhile a pinhole is added into the SOP detection channel. (2) A great challenge to SOP imaging is its extraordinarily long imaging time, and selecting only a few interesting points from fluorescence images to measure their SOP time-dependent traces may be a correct compromise.

  16. Theory of radiation disordering and annealing semiconductors

    Science.gov (United States)

    Oksengendler, B. L.; Turaeva, N. N.

    A new model of radiation disordering of semiconductors is proposed. According to this model, disordering clusters capable of self-annealing are stabilized by auto-localized electronic excitations (electrons, holes and excitons). Impulse annealing of this medium takes place if the electron stoppers are annihilated so that the disordered clusters emerge. This model is in accordance with experimental data of amorphization and impulse annealing.

  17. Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation

    KAUST Repository

    Ji, Minbiao

    2009-03-11

    We have spectrally resolved the intraband transient absorption of photogenerated excitons to quantify the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited in a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally integrated. With spectral integration, we observe efficient multiple exciton generation In colloidal PbSe QDs. © 2009 American Chemical Society.

  18. Mean fluorescence lifetime and its error

    Energy Technology Data Exchange (ETDEWEB)

    Fiserova, Eva [Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University in Olomouc, tr. 17. listopadu 12, CZE-77146 Olomouc (Czech Republic); Kubala, Martin, E-mail: mkubala@prfnw.upol.cz [Department of Biophysics, Faculty of Science, Palacky University in Olomouc, tr. 17. listopadu 12, CZE-77146 Olomouc (Czech Republic)

    2012-08-15

    Mean excited-state lifetime is one of the fundamental fluorescence characteristics and enters as an important parameter into numerous calculations characterizing molecular interactions, such as e.g. FRET or fluorescence quenching. Our experiments demonstrated that the intensity-weighted mean fluorescence lifetime is very robust characteristic, in contrast to the amplitude-weighted one, which value is dependent on the data quality and particularly on the used fitting model. For the first time, we also report the procedure for the error estimation for both the intensity- and amplitude-weighted mean fluorescence lifetimes. Furthermore, we present a method for estimation of the mean fluorescence lifetime directly from the fluorescence-decay curve recorded by TCSPC (Time-Correlated Single-Photon Counting) method. For its simplicity and low computational demands, it could be a useful tool in the high-throughput applications, such as FACS, FLIM-FRET or HPLC detectors. - Highlights: Black-Right-Pointing-Pointer Intensity-weighted mean fluorescence lifetime is very robust characteristic. Black-Right-Pointing-Pointer The amplitude-weighted mean lifetime depends on the selection of fitting model. Black-Right-Pointing-Pointer Rigorous procedure for estimation of confidence intervals for mean lifetime. Black-Right-Pointing-Pointer The mean lifetime can be estimated directly from the TCSPC histogram.

  19. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  20. Maximizing System Lifetime by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the

  1. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure.

    Science.gov (United States)

    Rainò, Gabriele; Nedelcu, Georgian; Protesescu, Loredana; Bodnarchuk, Maryna I; Kovalenko, Maksym V; Mahrt, Rainer F; Stöferle, Thilo

    2016-02-23

    Metal-halide semiconductors with perovskite crystal structure are attractive due to their facile solution processability, and have recently been harnessed very successfully for high-efficiency photovoltaics and bright light sources. Here, we show that at low temperature single colloidal cesium lead halide (CsPbX3, where X = Cl/Br) nanocrystals exhibit stable, narrow-band emission with suppressed blinking and small spectral diffusion. Photon antibunching demonstrates unambiguously nonclassical single-photon emission with radiative decay on the order of 250 ps, representing a significant acceleration compared to other common quantum emitters. High-resolution spectroscopy provides insight into the complex nature of the emission process such as the fine structure and charged exciton dynamics.

  2. Modelling lifetime data with multivariate Tweedie distribution

    Science.gov (United States)

    Nor, Siti Rohani Mohd; Yusof, Fadhilah; Bahar, Arifah

    2017-05-01

    This study aims to measure the dependence between individual lifetimes by applying multivariate Tweedie distribution to the lifetime data. Dependence between lifetimes incorporated in the mortality model is a new form of idea that gives significant impact on the risk of the annuity portfolio which is actually against the idea of standard actuarial methods that assumes independent between lifetimes. Hence, this paper applies Tweedie family distribution to the portfolio of lifetimes to induce the dependence between lives. Tweedie distribution is chosen since it contains symmetric and non-symmetric, as well as light-tailed and heavy-tailed distributions. Parameter estimation is modified in order to fit the Tweedie distribution to the data. This procedure is developed by using method of moments. In addition, the comparison stage is made to check for the adequacy between the observed mortality and expected mortality. Finally, the importance of including systematic mortality risk in the model is justified by the Pearson's chi-squared test.

  3. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene

    Science.gov (United States)

    Morrison, Adrian F.; Herbert, John M.

    2017-06-01

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  4. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.

    Science.gov (United States)

    Morrison, Adrian F; Herbert, John M

    2017-06-14

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  5. External electric field effect on exciton binding energy in InGaAsP/InP cylindrical quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong, E-mail: hlwang@mail.qfnu.edu.cn [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Wang, Wenjuan [College of Physics and Engineering, Qufu Normal University, Qufu 273165 (China); Gong, Qian; Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-12-15

    Exciton binding energies in InGaAsP/InP cylindrical quantum wires are calculated through variational method under the framework of effective-mass envelope-function approximation. It is shown that the variation of exciton binding energy is highly dependent on radius of the wire, material composition and external electric field. Exciton binding energy is a non-monotonic function of wire radius. It increases until it reaches a maximum, and then decreases as the wire radius decreases. With the increase of In composition, the wire radius need increase to reach the maximum value of exciton binding energy. It is also found that the external electric field has little effect on exciton binding energy. However, the excitonic effect will be destroyed when external electric field is large enough. In addition, the Stark shift of exciton binding energy is also calculated.

  6. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2018-01-01

    We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moire pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moire Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moire potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moire pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.

  7. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory.

    Science.gov (United States)

    Leng, Xia; Yin, Huabing; Liang, Dongmei; Ma, Yuchen

    2015-09-21

    Organic semiconductors have promising and broad applications in optoelectronics. Understanding their electronic excited states is important to help us control their spectroscopic properties and performance of devices. There have been a large amount of experimental investigations on spectroscopies of organic semiconductors, but theoretical calculation from first principles on this respect is still limited. Here, we use density functional theory (DFT) and many-body Green's function theory, which includes the GW method and Bethe-Salpeter equation, to study the electronic excited-state properties and spectroscopies of one prototypical organic semiconductor, sexithiophene. The exciton energies of sexithiophene in both the gas and bulk crystalline phases are very sensitive to the exchange-correlation functionals used in DFT for ground-state structure relaxation. We investigated the influence of dynamical screening in the electron-hole interaction on exciton energies, which is found to be very pronounced for triplet excitons and has to be taken into account in first principles calculations. In the sexithiophene single crystal, the energy of the lowest triplet exciton is close to half the energy of the lowest singlet one. While lower-energy singlet and triplet excitons are intramolecular Frenkel excitons, higher-energy excitons are of intermolecular charge-transfer type. The calculated optical absorption spectra and Davydov splitting are in good agreement with experiments.

  8. Composite Boson Description of a Low-Density Gas of Excitons

    Science.gov (United States)

    Golomedov, A. E.; Lozovik, Yu. E.; Astrakharchik, G. E.; Boronat, J.

    2017-12-01

    Ground-state properties of a fermionic Coulomb gas are calculated using the fixed-node diffusion Monte Carlo method. The validity of the composite boson description is tested for different densities. We extract the exciton-exciton s-wave scattering length by solving the four-body problem in a harmonic trap and mapping the energy to that of two trapped bosons. The equation of state is consistent with the Bogoliubov theory for composite bosons interacting with the obtained s-wave scattering length. The perturbative expansion at low density has contributions physically coming from (a) exciton binding energy, (b) mean-field Gross-Pitaevskii interaction between excitons, and (c) quantum depletion of the excitonic condensate (Lee-Huang-Yang terms for composite bosons). In addition, for low densities we find a good agreement with the Bogoliubov bosonic theory for the condensate fraction of excitons. The equation of state in the opposite limit of large density is found to be well described by the perturbative theory including (a) mixture of two ideal Fermi gases and (b) exchange energy. We find that for low densities both energetic and coherent properties are correctly described by the picture of composite bosons (excitons).

  9. Strong excitonic interactions in the oxygen K-edge of perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Kota; Miyata, Tomohiro [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Olovsson, Weine [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2017-07-15

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO{sub 3}, SrTiO{sub 3}, and BaTiO{sub 3}, together with reference oxides, MgO, CaO, SrO, BaO, and TiO{sub 2}, were investigated using a first-principles Bethe–Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti–O–Ti bonds. - Highlights: • Excitonic interaction in oxygen-K edge is investigated. • Strong excitonic interaction is found in the oxygen-K edge of perovskite oxides. • The strong excitonic interaction is ascribed to the low-dimensional and confined electronic structure.

  10. A study of polaritonic transparency in couplers made from excitonic materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Racknor, Chris [Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used to calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.

  11. Minority-carrier lifetime in InP as a function of light bias

    Science.gov (United States)

    Yater, Jane A.; Weinberg, I.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    Minority-carrier lifetime in InP is studied as a function of doping level and laser intensity using time-resolved photoluminescence. A continuous wave diode laser illuminates bulk InP and acts as a light bias, injecting a steady-state concentration of carriers. A 200 ps laser pulse produces a small transient signal on top of the steady-state luminescence, allowing lifetime to be measured directly as a function of incident intensity. For p-InP, lifetime increases with light bias up to a maximum value. Bulk recombination centers are presumably filled to saturation, allowing minority carriers to live longer. The saturation bias scales with dopant concentration for a particular dopant species. As light bias is increased for n-InP, minority-carrier lifetime increases slightly but then decreases, suggesting radiative recombination as a dominant decay mechanism.

  12. Picosecond dynamics of internal exciton transitions in CdSe nanorods

    DEFF Research Database (Denmark)

    Cooke, D. G.; Jepsen, Peter Uhd; Lek, Jun Yan

    2013-01-01

    . The onset of exciton-LO phonon coupling appears as a bleach in the optical conductivity spectra at the LO phonon energy for times > 1 ps after excitation. Simulations show a suppressed exciton temperature due to thermally excited hole states being rapidly captured onto ligands or unpassivated surface states......The picosecond dynamics of excitons in colloidal CdSe nanorods are directly measured via their 1s to 2p-like internal transitions by ultrabroadband terahertz spectroscopy. Broadened absorption peaks from both the longitudinal and transverse states are observed at 8.5 and 11 THz, respectively...

  13. The exciton excitations and relaxation processes in low-dimensional semiconductor heterostructures with quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Aleshkin, V. Ya.; Gavrilenko, L. V.; Gaponova, D. M., E-mail: dmg@ipmras.ru; Krasil’nik, Z. F.; Kryzhkov, D. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    The processes associated with the transfer of excitonic excitations between tunnel-uncoupled quantum wells (QW) and the influence of the local electric field were investigated in AlGaAs/GaAs heterostructures by the method of photoluminescence excitation (PLE) spectroscopy at low (4.2 K) temperature. The variation in the intensity of photoluminescence (PL) from the wider QW under resonant excitation of excitonic transition in the adjacent narrow QW has been observed. The difference in the PL maximum position and intensity of the wider QW under resonance excitation of the narrow one is explained by the influence of quantum-confined Stark effect on the process of exciton recombination.

  14. Resonant exciton-phonon coupling in ZnO nanorods at room temperature

    Directory of Open Access Journals (Sweden)

    Soumee Chakraborty

    2011-09-01

    Full Text Available Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT for random and aligned ZnO nanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.

  15. Particle-in-a-bos model of one-dimensional excitons in conjugated polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.; Pedersen, H.C.

    2000-01-01

    A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as an electron-hole pair interacting via Coulomb forces and confined to the polymer...... of these cases an approximate solution for the general case is obtained. As an application of the model the influence of a static electric field on the electron-hole overlap integral and exciton energy is considered....

  16. Determination of the Exciton Binding Energy in CdSe Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, R; Lee, J; Wolcott, A; Zhang, J; Terminello, L; van Buuren, T

    2009-10-27

    The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using x-ray spectroscopy. Using x-ray absorption and photoemission spectroscopy, the conduction band (CB) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e. without and exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.

  17. Proposal of highly efficient photoemitter with strong photon-harvesting capability and exciton superradiance

    Science.gov (United States)

    Matsuda, Takuya; Ishihara, Hajime

    2017-08-01

    We propose a system of highly efficient photoemitters comprising metal-molecule multilayered structures. In the proposed structure, the absorption in the molecular layer is greatly enhanced through quantum interference between the split modes arising from the coupling of the layered excitons and the plasmons sustained by the metal layer. Furthermore, the large interaction volume between surface plasmons and excitons causes exciton superradiance, which results in the extremely efficient photoemission. This finding indicates the possibility of designing highly efficient photoemitters based on simple layered structures.

  18. Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells

    DEFF Research Database (Denmark)

    Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner

    2000-01-01

    A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...

  19. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Goldberg, David; Menon, Vinod M., E-mail: vmenon@qc.cuny.edu, E-mail: baldo@mit.edu [Department of Physics, Queens College and Graduate Center, The City University of New York, Flushing, New York 11367 (United States)

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  20. Dynamic Control of Plasmon-Exciton Coupling in Au Nanodisk–J-Aggregate Hybrid Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-01-01

    We report the dynamic control of plasmon-exciton coupling in Au nanodisk arrays adsorbed with J-aggregate molecules by incident angle of light. The angle-resolved spectra of an array of bare Au nanodisks exhibit continuous shifting of localized surface plasmon resonances. This characteristic enables the production of real-time, controllable spectral overlaps between molecular and plasmonic resonances, and the efficient measurement of plasmon-exciton coupling as a function of wavelength with one or fewer nanodisk arrays. Experimental observations of varying plasmon-exciton coupling match with coupled dipole approximation calculations.

  1. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  2. Orbit lifetime characteristics for Space Station

    Science.gov (United States)

    Deryder, L.; Kelly, G. M.; Heck, M.

    The factors that influence the orbital lifetime characteristics of the NASA Space Station are discussed. These include altitude, attitude, launch date, ballistic coefficient, and the presence of large articulating solar arrays. Examples from previous program systems studies are presented that illustrate how each factor affects Station orbit lifetime. The effect of atmospheric density models on orbit lifetime predictions is addressed along with the uncertainty of these predictions using current trajectory analysis of the Long Duration Exposure Facility spacecraft. Finally, nominal reboost altitude profiles and fuel requirement considerations are presented for implementing a reboost strategy based on planned Shuttle Orbiter rendezvous strategy and contingency considerations.

  3. Lifetime measurement of ATF damping ring

    Energy Technology Data Exchange (ETDEWEB)

    Okugi, T. [Tokyo Metropolitan Univ. (Japan); Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J. [High Energy Accelerator Research Organization, Tsukuba (Japan); Zimmermann, F. [Stanford Univ., CA (US). Stanford Linear Accelerator Center

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements.

  4. Statistical Models and Methods for Lifetime Data

    CERN Document Server

    Lawless, Jerald F

    2011-01-01

    Praise for the First Edition"An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ."-Choice"This is an important book, which will appeal to statisticians working on survival analysis problems."-Biometrics"A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook."-Statistics in MedicineThe statistical analysis of lifetime or response time data is a key tool in engineering,

  5. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  6. Improved value for the silicon free exciton binding energy

    Directory of Open Access Journals (Sweden)

    Martin A. Green

    2013-11-01

    Full Text Available The free exciton binding energy is a key parameter in silicon material and device physics. In particular, it provides the necessary link between the energy threshold for valence to conduction band optical absorption and the bandgap determining electronic properties. The long accepted low temperature binding energy value of 14.7 ± 0.4 meV is reassessed taking advantage of developments subsequent to its original determination, leading to the conclusion that this value is definitely an underestimate. Using three largely independent experimental data sets, an improved low temperature value of 15.01 ± 0.06 meV is deduced, in good agreement with the most comprehensive theoretical calculations to date.

  7. Multiple exciton generation in quantum dot-based solar cells

    Directory of Open Access Journals (Sweden)

    Goodwin Heather

    2018-01-01

    Full Text Available Multiple exciton generation (MEG in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  8. Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene

    Science.gov (United States)

    Ghosh, Barun; Kumar, Piyush; Thakur, Anmol; Chauhan, Yogesh Singh; Bhowmick, Somnath; Agarwal, Amit

    2017-07-01

    In this article, we explore the anisotropic electron energy loss spectrum (EELS) in monolayer phosphorene based on ab initio time-dependent density-functional-theory calculations. Similarly to black phosphorus, the EELS of undoped monolayer phosphorene is characterized by anisotropic excitonic peaks for energies in the vicinity of the band gap and by interband plasmon peaks for higher energies. On doping, an additional intraband plasmon peak also appears for energies within the band gap. Similarly to other two-dimensional systems, the intraband plasmon peak disperses as ωpl∝√{q } in both the zigzag and armchair directions in the long-wavelength limit and deviates for larger wave vectors. The anisotropy of the long-wavelength plasmon intraband dispersion is found to be inversely proportional to the square root of the ratio of the effective masses: ωpl(q y ̂) /ωpl(q x ̂) =√{mx/my } .

  9. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  10. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    . The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due......The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  11. Exciton-polariton flows in cross-dimensional junctions

    Science.gov (United States)

    Winkler, K.; Flayac, H.; Klembt, S.; Schade, A.; Nevinskiy, D.; Kamp, M.; Schneider, C.; Höfling, S.

    2017-05-01

    We study the nonequilibrium exciton-polariton condensation in 1D to 0D and 1D to quasi-2D junctions by means of non-resonant spectroscopy. The shape of our potential landscape allows to probe the resonant transmission of a propagating condensate between a quasi-1D waveguide and cylindrically symmetric states. We observe a distinct mode selection by varying the position of the non-resonant pump laser. Moreover, we study the the case of propagation from a localized trapped condensate state into a waveguide channel. Here, the choice of the position of the injection laser allows us to tune the output in the waveguide. Our measurements are supported by an accurate Ginzburg-Landau modeling of the system shining light on the underlying mechanisms.

  12. Ultrafast Electronic Band Gap Control in an Excitonic Insulator.

    Science.gov (United States)

    Mor, Selene; Herzog, Marc; Golež, Denis; Werner, Philipp; Eckstein, Martin; Katayama, Naoyuki; Nohara, Minoru; Takagi, Hide; Mizokawa, Takashi; Monney, Claude; Stähler, Julia

    2017-08-25

    We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta_{2}NiSe_{5} investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of F_{C}=0.2  mJ cm^{-2}, the band gap narrows transiently, while it is enhanced above F_{C}. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta_{2}NiSe_{5}, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta_{2}NiSe_{5} with light on the femtosecond time scale.

  13. True Bilayer Exciton Condensate of One-Dimensional Electrons.

    Science.gov (United States)

    Kantian, A; Abergel, D S L

    2017-07-21

    We theoretically predict that a true bilayer exciton condensate, characterized by off-diagonal long-range order and global phase coherence, can be created in one-dimensional solid state electron systems. The mechanism by which this happens is to introduce a single particle hybridization of electron and hole populations, which locks the phase of the relevant mode and hence invalidates the Mermin-Wagner theorem. Electron-hole interactions then amplify this tendency towards off-diagonal long-range order, enhancing the condensate properties by more than an order of magnitude over the noninteracting limit. We show that the temperatures below which a substantial condensate fraction would form could reach hundreds of Kelvin, a benefit of the weak screening in one-dimensional systems.

  14. Microscopic theory of singlet exciton fission. III. Crystalline pentacene

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Hybertsen, Mark S., E-mail: mhyberts@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2014-08-21

    We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

  15. Remote UV Fluorescence Lifetime Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  16. Disorder-induced exciton localization and violation of optical selection rules in supramolecular nanotubes

    NARCIS (Netherlands)

    Vlaming, S. M.; Bloemsma, E. A.; Nietiadi, M. Linggarsari; Knoester, J.

    2011-01-01

    Using numerical simulations, we study the effect of disorder on the optical properties of cylindrical aggregates of molecules with strong excitation transfer interactions. The exciton states and the energy transport properties of such molecular nanotubes attract considerable interest for application

  17. Efficient exciton transport in layers of self-assembled porphyrin derivatives

    NARCIS (Netherlands)

    Huijser, A.; Suijkerbuijk, B.M.J.M.; Klein Gebbink, R.J.M.; Savenije, T.J.; Siebbeles, D.A.

    2008-01-01

    The photosynthetic apparatus of green sulfur bacteria, the chlorosome, is generally considered as a highly efficient natural light-harvesting system. The efficient exciton transport through chlorosomes toward the reaction centers originates from self-assembly of the bacteriochlorophyll molecules.

  18. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers.

    Science.gov (United States)

    Ayzner, Alexander L; Mei, Jianguo; Appleton, Anthony; DeLongchamp, Dean; Nardes, Alexandre; Benight, Stephanie; Kopidakis, Nikos; Toney, Michael F; Bao, Zhenan

    2015-12-30

    Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  19. Energy scaling for multi-exciton complexes in semiconductor quantum dots

    Science.gov (United States)

    Ipatov, Andrey; Gerchikov, Leonid; Christiano, Jordan

    2017-08-01

    The ground state properties of an multi-exciton (ME) complex localized in a nanoscale semiconductor quantum dot (QD) have been studied. The calculations have been performed using the envelope function approximation for electron and hole motion in the QD. The many-body quantum mechanical treatment of the electron-hole dynamics was done within the Density Functional Theory approach. The ground state energy dependencies upon QD radius, number of electron-hole pairs, QD dielectric function and effective masses of electron and holes have been analyzed. It is demonstrated that when multi-exciton complex is strongly localized within the QD, the physical properties of the system are determined by a single parameter, the ratio of QD and free exciton radii, and its binding energy is given by the function of this parameter multiplied by the binding energy of an isolated exciton in bulk semiconductor.

  20. Particle-in-a-Box Model of Exciton Absorption and Electroabsorption in Conjugated Polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2001-01-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a ...... a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.......The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces...

  1. Phonon induced pure dephasing process of excitonic state in colloidal semiconductor quantum dots

    Science.gov (United States)

    Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan

    2016-04-01

    We present a theoretical study on the pure dephasing process of colloidal semiconductor quantum dots induced by lattice vibrations using continuum model calculations. By solving the time dependent Liouville-von Neumann equation, we present the ultrafast Rabi oscillations between excitonic state and virtual state via exciton-phonon interaction and obtain the pure dephasing time from the fast decayed envelope of the Rabi oscillations. The interaction between exciton and longitudinal optical phonon vibration is found to dominate the pure dephasing process and the dephasing time increases nonlinearly with the reduction of exciton-phonon coupling strength. We further find that the pure dephasing time of large quantum dots is more sensitive to temperature than small quantum dots.

  2. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers

    KAUST Repository

    Ayzner, Alexander L.

    2015-12-30

    © 2015 American Chemical Society. Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  3. Exciton Localization in Extended {\\pi}-electron Systems: Comparison of Linear and Cyclic Structures

    CERN Document Server

    Thiessen, Alexander; Jester, Stefan-S; Aggarwal, A Vikas; Idelson, Alissa; Bange, Sebastian; Vogelsang, Jan; Höger, Sigurd; Lupton, John M

    2015-01-01

    We employ five {\\pi}-conjugated model materials of different molecular shape --- oligomers and cyclic structures --- to investigate the extent of exciton self-trapping and torsional motion of the molecular framework following optical excitation. Our studies combine steady-state and transient fluorescence spectroscopy in the ensemble with measurements of polarization anisotropy on single molecules, supported by Monte Carlo simulations. The dimer exhibits a significant spectral red-shift within $\\sim$ 100 ps after photoexcitation which is attributed to torsional relaxation. This relaxation mechanism is inhibited in the structurally rigid macrocyclic analogue. However, both systems show a high degree of exciton localization but with very different consequences: while in the macrocycle the exciton localizes randomly on different parts of the ring, scrambling polarization memory, in the dimer, localization leads to a deterministic exciton position with luminescence characteristics of a dipole. Monte Carlo simulati...

  4. Unifying Optical Selection Rules for Excitons in Two Dimensions: Band Topology and Winding Numbers

    Science.gov (United States)

    Cao, Ting; Wu, Meng; Louie, Steven G.

    2018-02-01

    We show that band topology can dramatically change the photophysics of two-dimensional semiconductors. For systems in which states near the band extrema are of multicomponent character, the spinors describing these components (pseudospins) can pick up nonzero winding numbers around the extremal k point. In these systems, we find that the strength and required light polarization of an excitonic optical transition are dictated by the optical matrix element winding number, a unique and heretofore unrecognized topological characteristic. We illustrate these findings in three gapped graphene systems—monolayer graphene with inequivalent sublattices and biased bi- and trilayer graphene, where the pseudospin textures manifest into nontrivial optical matrix element winding numbers associated with different valley and photon circular polarization. This winding-number physics leads to novel exciton series and optical selection rules, with each valley hosting multiple bright excitons coupled to light of different circular polarization. This valley-exciton selective circular dichroism can be unambiguously detected using optical spectroscopy.

  5. Observation of Half-Quantum Vortices in an Exciton-Polariton Condensate

    National Research Council Canada - National Science Library

    K. G. Lagoudakis; T. Ostatnický; A. V. Kavokin; Y. G. Rubo; R. André; B. Deveaud-Plédran

    2009-01-01

    Singly quantized vortices have already been observed in many systems, including the superfluid helium, Bose-Einstein condensates of dilute atomic gases, and condensates of exciton-polaritons in the solid state...

  6. Bilayer Excitons in Two-Dimensional Nanostructures for Greatly Enhanced Thermoelectric Efficiency

    Science.gov (United States)

    Wu, Kai; Rademaker, Louk; Zaanen, Jan

    2014-11-01

    Currently, a major nanotechnological challenge is to design thermoelectric devices that have a high figure of merit. To that end, we propose to use bilayer excitons in two-dimensional nanostructures. Bilayer-exciton systems are shown to have an improved thermopower and an enhanced electric counterflow and thermal conductivity, with respect to regular semiconductor-based thermoelectrics. We suggest an experimental realization of a bilayer-exciton thermocouple. Based on current experimental parameters, a bilayer-exciton heterostructure of p - and n -doped Bi2Te3 can enhance the figure of merit an order of magnitude compared to bulk Bi2Te3 . Another material suggestion is to make a bilayer out of electron-doped SrTiO3 and hole-doped Ca3Co4O9 .

  7. The total lifetime costs of smoking

    DEFF Research Database (Denmark)

    Rasmussen, Gitte Susanne; Prescott, Eva; Sørensen, Thorkild I A

    2004-01-01

    Net costs of smoking in a lifetime perspective and, hence, the economic interests in antismoking policies have been questioned. It has been proposed that the health-related costs of smoking are balanced by smaller expenditure due to shorter life expectancy.......Net costs of smoking in a lifetime perspective and, hence, the economic interests in antismoking policies have been questioned. It has been proposed that the health-related costs of smoking are balanced by smaller expenditure due to shorter life expectancy....

  8. Lifetime modelling of lead acid batteries

    OpenAIRE

    Bindner, H.; Cronin, T.; Lundsager, P.; Manwell, J.F.; Abdulwahid, U.; Baring-Gould, I.

    2005-01-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole lifecycle costs. Poor prediction of lifetime can, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies ...

  9. Estimating the Reliability of Electronic Parts in High Radiation Fields

    Science.gov (United States)

    Everline, Chester; Clark, Karla; Man, Guy; Rasmussen, Robert; Johnston, Allan; Kohlhase, Charles; Paulos, Todd

    2008-01-01

    Radiation effects on materials and electronic parts constrain the lifetime of flight systems visiting Europa. Understanding mission lifetime limits is critical to the design and planning of such a mission. Therefore, the operational aspects of radiation dose are a mission success issue. To predict and manage mission lifetime in a high radiation environment, system engineers need capable tools to trade radiation design choices against system design and reliability, and science achievements. Conventional tools and approaches provided past missions with conservative designs without the ability to predict their lifetime beyond the baseline mission.This paper describes a more systematic approach to understanding spacecraft design margin, allowing better prediction of spacecraft lifetime. This is possible because of newly available electronic parts radiation effects statistics and an enhanced spacecraft system reliability methodology. This new approach can be used in conjunction with traditional approaches for mission design. This paper describes the fundamentals of the new methodology.

  10. Halogenation of SiC for band-gap engineering and excitonic functionalization

    OpenAIRE

    Drissi, L.B.; Ramadan, F. Z.; Lounis, S.

    2017-01-01

    The optical excitation spectra and excitonic resonances are investigated in systematically functionalized SiC with Fluorine and/or Chlorine utilizing density functional theory in combination with many-body perturbation theory. The latter is required for a realistic description of the energy band-gaps as well as for the theoretical realization of excitons. Structural, electronic and optical properties are scrutinized and show the high stability of the predicted two-dimensional materials. Their...

  11. Quantum exciton-polariton networks through inverse four-wave mixing

    Science.gov (United States)

    Liew, T. C. H.; Rubo, Y. G.

    2018-01-01

    We demonstrate the potential of quantum operation using lattices of exciton-polaritons in patterned semiconductor microcavities. By introducing an inverse four-wave mixing scheme acting on localized modes, we show that it is possible to develop nonclassical correlations between individual condensates. This allows a concept of quantum exciton-polariton networks, characterized by the appearance of multimode entanglement even in the presence of realistic levels of dissipation.

  12. Exciton-mediated Raman scattering in CdS quantum dot

    Science.gov (United States)

    Guo, Xiaotong; Liu, Cuihong

    2017-09-01

    A theoretical calculation of the differential cross section (DCS) is presented for the exciton-mediated Stokes Raman scattering in CdS quantum dot within the frame work of effective mass approximation at T = 0 K. Numerical calculations reveal that the excitonic effects cause blue shifts in Raman spectroscopy. The magnitude of the Raman shift depends on the quantum confinement, the Coulomb interaction, and the incident photon energy.

  13. Predicting Excitonic Gaps of Semiconducting Single Walled Carbon Nanotubes From a Field Theoretic Analysis

    OpenAIRE

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2014-01-01

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in t...

  14. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.; Reid, Obadiah G.; Blackburn, Jeffrey L.

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.

  15. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    Science.gov (United States)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  16. Effects of magnetic fields on free excitons in CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.W. [Department of Physics, Strathclyde University, Glasgow (United Kingdom); Babinski, A. [Institute of Experimental Physics, University of Warsaw (Poland); Mudryi, A.V. [Scientific-Practical Material Research Centre, National Academy of Science of Belarus, Minsk (Belarus); Yakushev, M.V.

    2009-05-15

    The effects of magnetic fields up to 20 T were studied in CuInSe{sub 2} single crystals using photoluminescence (PL) at 4.2 K. Diamagnetic shifts of the free A and B excitons measured in the PL spectra in CuInSe{sub 2} at 4.2 K under the magnetic fields were used to estimate the reduced masses (0.095m{sub 0} for the A and 0.098m{sub 0} for the B exciton), binding energies (7.0 meV for the A and 7.2 meV for the B exciton) and Bohr radii (7.6 nm for the A and 7.3 nm for the B exciton) of the free-excitons in CuInSe{sub 2} assuming that both excitons are isotropic and hydrogen-like. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules

    Science.gov (United States)

    Świderski, M.; Zieliński, M.

    2017-03-01

    Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.

  18. The interplay between excitons and trions in a monolayer of MoSe2

    Science.gov (United States)

    Lundt, N.; Cherotchenko, E.; Iff, O.; Fan, X.; Shen, Y.; Bigenwald, P.; Kavokin, A. V.; Höfling, S.; Schneider, C.

    2018-01-01

    The luminescence and absorption properties of transition metal dichalcogenide monolayers are widely determined by neutral and charged excitonic complexes. Here, we focus on the impact of a free carrier reservoir on the optical properties of excitonic and trionic complexes in a MoSe2 monolayer at cryogenic temperatures. By applying photodoping via a non-resonant pump laser, the electron density can be controlled in our sample, which is directly reflected in the contribution of excitons and trions to the luminescence signal. We find significant shifts of both the exciton and trion energies in the presence of an induced electron gas both in power- and in time evolution (on the second to minute scale) in our photoluminescence spectra. In particular, in the presence of the photo-doped carrier reservoir, we observe that the splitting between excitons and trions can be enhanced by up to 4 meV. This behaviour is phenomenologically explained by an interplay between an increased screening of excitons via electrons in our system and a modification of the Fermi level. We introduce a simple but still quantitative treatment of these effects within a variational approach that takes into account both screening and phase space filling effects.

  19. A minimal model for excitons within time-dependent density-functional theory.

    Science.gov (United States)

    Yang, Zeng-hui; Li, Yonghui; Ullrich, Carsten A

    2012-07-07

    The accurate description of the optical spectra of insulators and semiconductors remains an important challenge for time-dependent density-functional theory (TDDFT). Evidence has been given in the literature that TDDFT can produce bound as well as continuum excitons for specific systems, but there are still many unresolved basic questions concerning the role of dynamical exchange and correlation (xc). In particular, the roles of the long spatial range and the frequency dependence of the xc kernel f(xc) for excitonic binding are still not very well explored. We present a minimal model for excitons in TDDFT, consisting of two bands from a one-dimensional (1D) Kronig-Penney model and simple approximate xc kernels, providing an easily accessible model system for studying excitonic effects in TDDFT. For the 1D model system, it is found that adiabatic xc kernels can produce at most two bound excitons, confirming that the long spatial range of f(xc) is not a necessary condition. It is shown how the Wannier model, featuring an effective electron-hole interaction, emerges from TDDFT. The collective, many-body nature of excitons is explicitly demonstrated.

  20. A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes

    Science.gov (United States)

    Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.

    In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.

  1. Dynamical patterns of phase transformations from self-trapping of quantum excitons

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tianyou [South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Kirova, Natasha, E-mail: kirova@lps.u-psud.fr [CNRS, LPS, UMR 8626, Univeristé Paris-sud, Orsay 91405 (France); International Institute of Physics, UFRN, 59078-400 Natal, RN (Brazil); Brazovskii, Serguei [CNRS, LPTMS, UMR 8502, Univeristé Paris-sud, Orsay 91405 (France); International Institute of Physics, UFRN, 59078-400 Natal, RN (Brazil)

    2015-03-01

    Phase transitions induced by short optical pulses is a new mainstream in studies of cooperative electronic states. Its special realization in systems with neutral-ionic transformations stands out in a way that the optical pumping goes to excitons rather than to electronic bands. We present a semi-phenomenological modeling of spacio-temporal effects applicable to any system where the optical excitons are coupled to a symmetry breaking order parameter. In our scenario, after a short initial pulse of photons, a quasi-condensate of excitons appears as a macroscopic quantum state which then evolves interacting with other degrees of freedom prone to instability. This coupling leads to self-trapping of excitons; that locally enhances their density which can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains which evolve through dynamical phase transitions and may persist even after the initiating excitons have recombined. We recover dynamic interplays of fields such as the excitons' wave function, electronic charge transfer and polarization, lattice dimerization.

  2. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

    Science.gov (United States)

    Zhou, You; Scuri, Giovanni; Wild, Dominik S.; High, Alexander A.; Dibos, Alan; Jauregui, Luis A.; Shu, Chi; de Greve, Kristiaan; Pistunova, Kateryna; Joe, Andrew Y.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2017-09-01

    Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

  3. Optical Dynamics of Exciton and Polaron Formation in Molecular Aggregates

    NARCIS (Netherlands)

    de Boer, S.; Wiersma, Douwe A.

    1989-01-01

    Results of femtosecond accumulated photon echo, picosecond pump-probe and fluorescence lifetime measurements are reported on aggregates of the dyes pseudoisocyanine (PIC) and substituted thiapyrylium (TPY), embedded in a polycarbonate matrix. It is concluded that in the PIC aggregate, delocalized

  4. Quantum degenerate exciton-polaritons in thermal equilibrium.

    Science.gov (United States)

    Deng, Hui; Press, David; Götzinger, Stephan; Solomon, Glenn S; Hey, Rudolf; Ploog, Klaus H; Yamamoto, Yoshihisa

    2006-10-06

    We study the momentum distribution and relaxation dynamics of semiconductor microcavity polaritons by angle-resolved and time-resolved spectroscopy. Above a critical pump level, the thermalization time of polaritons at positive detunings becomes shorter than their lifetime, and the polaritons form a quantum degenerate Bose-Einstein distribution in thermal equilibrium with the lattice.

  5. Method and apparatus for measuring minority carrier lifetime in a direct band-gap semiconductor

    Science.gov (United States)

    Vonroos, Oldwig (Inventor)

    1987-01-01

    A direct band-gap semiconductor is exposed to intensity-modulated photon radiation having a characteristic energy at least as great as the energy gap of the semiconductor. This produces a time dependent concentration of excess charge carriers through the material, producing a luminescence signal modulated at the same frequency as the incident radiation but shifted in phase by an amount related to the lifetime of minority carriers. In a preferred embodiment, the phase shift of the luminescence signal is determined by transforming it to a modulated electrical signal and mixing the electrical signal with a reference signal modulated at the same frequency and having a phase which is known relative to the incident radiation. Minority carrier lifetime is calculated by integrating a direct current component of the mixed signal (F sub dc) over a 2 pi range in phase of the reference signal.

  6. Collective state of interwall excitons on GaAs/AlGaAs double quantum wells under pulse resonant excitation

    CERN Document Server

    Larionov, A V; Hvam, J; Soerensen, K

    2002-01-01

    The time evolution and kinetics of the photoluminescence (PL) spectra of the interwall excitons under the pulse resonant excitation of the interwall excitons are studied in the GaAs/AlGaAs binary quantum well. It is established, that the collective exciton phase originates with the time delay relative to the exciting pulse (several nanoseconds), which is conditioned by the density and temperature relaxation to the equilibrium values.The origination of the collective phase of the interwall excitons is accompanied by the strong narrowing of the corresponding photoluminescence line, the superlinear growth of its intensity and large time of change in the degree of the circular polarization.The collective exciton phase originates at the temperatures < 6 K and the interwall excitons densities 3 x 10 sup 1 sup 0 cm sup - sup 2

  7. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kaniber, M; Huck, M F; Mueller, K; Clark, E C; Bichler, M; Finley, J J [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching (Germany); Troiani, F [S3, Instituto Nanoscienze-CNR, 41125 Modena (Italy); Krenner, H J, E-mail: kaniber@wsi.tum.de [Lehrstuhl fuer Experimentalphysik 1 and Augsburg Center for Innovative Technologies (ACIT), Universitaet Augsburg, Universiaetsstr. 1, 86159 Augsburg (Germany)

    2011-08-12

    The authors demonstrate how lateral electric fields can be used to precisely control the exciton-biexciton splitting in InGaAs quantum dots. By defining split-gate electrodes on the sample surface, optical studies show how the exciton transition can be tuned into resonance with the biexciton by exploiting the characteristically dissimilar DC Stark shifts. The results are compared to model calculations of the relative energies of the exciton and biexciton, demonstrating that the tuning can be traced to a dominance of hole-hole repulsion in the presence of a lateral field. Cascaded decay of the exciton-biexciton system enables the generation of entangled photon pairs without the need to suppress the fine structure splitting of the exciton. Our results demonstrate how the exciton-biexciton system can be electrically controlled.

  8. The Taser Induced Fluorescence Spectra And Decay Lifetime Of NI2+ Doped Chrysoberyl

    Science.gov (United States)

    Hanting, Ji; Genwang, Wen; Jun, Oian; Zhende, Chen; Wenbin, Gao; Songhao, Lui

    1985-12-01

    This paper reports the experimental results on the fluorescence spectra and decay lifetime of 3T2---3A2 vibronic transition of NI2+ : BeAl204 with LIFM. The center wavelength of fluorescence spectra is 1.33u , the bandwidth (FWHM) is 0.14u (1.26 - 1.40u), and the center red-shift of fluorescence spectra in relative to absorption spectra is 0.225u at room temperature (300k). The radiation lifetime is 3T2 band is 198 us.

  9. Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires

    Science.gov (United States)

    Chen, Shula L.; Chen, Weimin M.; Ishikawa, Fumitaro; Buyanova, Irina A.

    2015-01-01

    III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device functionality via band-structure and lattice engineering. However, due to a large surface-to-volume ratio, III-V NWs suffer from severe non-radiative carrier recombination at/near NWs surfaces that significantly degrades optical quality. Here we show that increasing nitrogen composition in novel GaAs/GaNAs core/shell NWs can strongly suppress the detrimental surface recombination. This conclusion is based on our experimental finding that lifetimes of photo-generated free excitons and free carriers increase with increasing N composition, as revealed from our time-resolved photoluminescence (PL) studies. This is accompanied by a sizable enhancement in the PL intensity of the GaAs/GaNAs core/shell NWs at room temperature. The observed N-induced suppression of the surface recombination is concluded to be a result of an N-induced modification of the surface states that are responsible for the nonradiative recombination. Our results, therefore, demonstrate the great potential of incorporating GaNAs in III-V NWs to achieve efficient nano-scale light emitters. PMID:26100755

  10. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shize [International Center for Quantum Materials, School of Physics, Peking University and Collaborative Innovation Center of Quantum Matter, Beijing (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi, E-mail: xuzhi@iphy.ac.cn, E-mail: xdbai@iphy.ac.cn, E-mail: egwang@pku.edu.cn; Wang, Wenlong; Zhao, Jimin; Bai, Xuedong, E-mail: xuzhi@iphy.ac.cn, E-mail: xdbai@iphy.ac.cn, E-mail: egwang@pku.edu.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Enge, E-mail: xuzhi@iphy.ac.cn, E-mail: xdbai@iphy.ac.cn, E-mail: egwang@pku.edu.cn [International Center for Quantum Materials, School of Physics, Peking University and Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  11. Effect of exciton oscillator strength on upconversion photoluminescence in GaAs/AlAs multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Osamu, E-mail: kojima@phoenix.kobe-u.ac.jp; Okumura, Shouhei; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Akahane, Kouichi [National Institute of Information and Communications Technology, 4-2-1 Nukui-kitamachi, Koganei, Tokyo 184-8795 (Japan)

    2014-11-03

    We report upconversion photoluminescence (UCPL) in GaAs/AlAs multiple quantum wells. UCPL from the AlAs barrier is caused by the resonant excitation of the excitons in the GaAs well. When the quantum well has sufficient miniband width, UCPL is hardly observed because of the small exciton oscillator strength. The excitation-energy and excitation-density dependences of UCPL intensity show the exciton resonant profile and a linear increase, respectively. These results demonstrate that the observed UCPL caused by the saturated two-step excitation process requires a large number of excitons.

  12. Measurement of the $\\tau$ lepton lifetime

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The mean lifetime of the \\tau lepton is measured in a sample of 25700 \\tau pairs collected in 1992 with the ALEPH detector at LEP. A new analysis of the 1-1 topology events is introduced. In this analysis, the dependence of the impact parameter sum distribution on the daughter track momenta is taken into account, yielding improved precision compared to other impact parameter sum methods. Three other analyses of the one- and three-prong \\tau decays are updated with increased statistics. The measured lifetime is 293.5 \\pm 3.1 \\pm 1.7 \\fs. Including previous (1989--1991) ALEPH measurements, the combined \\tau lifetime is 293.7 \\pm 2.7 \\pm 1.6 \\fs.

  13. The neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, Wolfgang [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    The neutron lifetime τ{sub n}=880.3±1.1 s is an important parameter in the Standard Model of particle physics and in Big Bang cosmology. Several systematic corrections of previously published results reduced the PDG world average by several σ in the last years and call for a new experiment with complementary systematics. The experiment PENeLOPE, currently under construction at the Physik-Department of Technische Universitaet Muenchen, aims to determine the neutron lifetime with a precision of 0.1 s. It will trap ultra-cold neutrons in a magneto-gravitational trap using a large superconducting magnet and will measure their lifetime by both neutron counting and online proton detection. This presentation gives an overview over the latest developments of the experiment.

  14. The lifetime cost of a magnetic refrigerator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian R.H.; Nielsen, Kaspar Kirstein

    2016-01-01

    The total cost of a 25 W average load magnetic refrigerator using commercial grade Gd is calculated using a numerical model. The price of magnetocaloric material, magnet material and cost of operation are considered, and all influence the total cost. The lowest combined total cost with a device......, the optimal magnetic field is about 1.4 T, the particle size is 0.23 mm, the length of the regenerator is 40-50 mm and the utilization is about 0.2, for all device lifetimes and material and magnet prices, while the operating frequency vary as function of device lifetime. The considered performance...... lifetime of 15 years is found to be in the range $150-$400 depending on the price of the magnetocaloric and magnet material. The cost of the magnet is largest, followed closely by the cost of operation, while the cost of the magnetocaloric material is almost negligible. For the lowest cost device...

  15. Measuring Exciton Migration in Conjugated Polymer Films with Ultrafast Time Resolved Stimulated Emission Depletion Microscopy

    Science.gov (United States)

    Penwell, Samuel

    Conjugated polymers are highly tunable organic semiconductors, which can be solution processed to form thin films, making them prime candidates for organic photovoltaic devices. One of the most important parameters in a conjugated polymer solar cell is the exciton diffusion length, which depends on intermolecular couplings, and is typically on the order of 10 nm. This mean exciton migration can vary dramatically between films and within a single film due to heterogeneities in morphology on length scales of 10's to 100's nm. To study the variability of exciton diffusion and morphology within individual conjugated polymer films, we are adapting stimulated emission depletion (STED) microscopy. STED is typically used in biology with sparse well-engineered fluorescent labels or on NV-centers in diamond. I will, however, describe how we have demonstrated the extension of STED to conjugated polymer films and nanoparticles of MEH-PPV and CN-PPV, despite the presence of two photon absorption, by taking care to first understand the material's photophysical properties. We then further adapt this approach, by introducing a second ultrafast STED pulse at a variable delay. Excitons that migrate away from the initial subdiffraction excitation volume during the ps-ns time delay, are preferentially quenched by the second STED pulse, while those that remain in the initial volume survive. The resulting effect of the second STED pulse is modulated by the degree of migration over the ultrafast time delay, thus providing a new method to study exciton migration. Since this technique utilizes subdiffraction optical excitation and detection volumes with ultrafast time resolution, it provides a means of spatially and temporally resolving measurements of exciton migration on the native length and time scales. In this way, we will obtain a spatiotemporal map of exciton distributions and migration that will help to correlate the energetic landscape to film morphology at the nanoscale.

  16. Directional Control of Plasmon-Exciton interaction with Plexcitonic Crystals

    Science.gov (United States)

    Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun; Aydinli, Atilla

    2015-03-01

    Plexcitons are strongly coupled plasmon excitons modes. In this work, we developed a platform, consisting of one and two dimensional corrugated surface patterns coated with a thin metal film and a dye solution. This system shows a controlled coupling action based on the excitation direction of SPP modes. Our scheme is based on the control of wavelengths of the forbidden SPP modes. Three kinds of patterns have been tested; a one dimensional uniform, a triangular, and a square lattice type crystals. For all three cases, lowest wavelength of the band gap is observed in Γ to M direction. For triangular and square lattice cases, band gap center oscillates between two finite values for every 60° and 90°s, respectively. We utilized this behavior to control SPP and J-aggregate coupling. We observe directional dependence of Rabi splitting energy varying between 0 meV and 60 meV . Square lattice gives the ability to tune a larger band gap, whereas triangular lattice gives higher number of symmetry points. Simulations show that, an 80 nm deep triangular lattice with 280 nm periodicity can result in omnidirectional decoupling of plexcitons. TUBITAK, Grants 110T790, 110T589, and 112T091.

  17. Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor

    Science.gov (United States)

    Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.

    2017-10-01

    We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.

  18. Prompt Neutron Lifetime for the NBSR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Diamond, D.

    2012-06-24

    In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

  19. ANALYSIS OF NSLS-II TOUSCHEK LIFETIME

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Kramer, S.L.

    2011-03-28

    As scrapers are adopted for the loss control of NSLS-II storage ring, Touschek lifetime estimations for various cases are required to assure the stable operation. However, to estimate the Touschek lifetime, momentum apertures should be measured all along the ring and, if we want to estimate the lifetime in various situations, it can take extremely long time. Thus, rather than simulating for each case, a semi-analytic methods with the interpolations are used for the measurements of the momentum apertures. In this paper, we described the methods and showed the results. Having enough Touschek lifetime is important for synchrotron light source for the users to perform experiments with stable beams. In NSLS-II, the scrapers will be installed for the loss control. Especially, the horizontal scrapers will be installed where the dispersions are maximum. Therefore, we need to find the proper scraper gap values which do not reduce the lifetime too much for the stable beam operation. To estimate reliable Touschek lifetime, we should measure the momentum apertures at many positions along the ring. For the rough estimation of the Touschek lifetime, the RF momentum acceptance can be used and for a more detailed estimation, the linear approximation of synchrotron oscillation can be used. However, for the strong focussing synchrotrons, like NSLS-II, the linear approximation is not enough to obtain the reliable momentum apertures, and, in general, particle tracking simulations are used. However, for NSLS-II case, we need to track the particle about 400 turns at each point to make it a full synchrotron oscillation period and to obtain the reliable Touschek lifetime we need measure the momentum apertures at several hundred positions at least. Therefore, it can take quite a long time if we want to have the reasonable resolution for the measurements. Furthermore, at the simulation, if we want to measure the aperture inside a element, we should divide the element and this will make the

  20. An approach for longer lifetime MCFCs

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Masaru; Tatsumi, Masahiko; Hayano, Takuro [MCFC Research Association, Tokyo (Japan)] [and others

    1996-12-31

    For entering into commercialization of MCFC power plants in the beginning of the 21st century, we will devote to research for increasing lifetime as long as 40,000 hours with cell performance decay rate of 0.25 %/1000hrs as the target in FY 1999. This paper will discuss on our approach for longer lifetime MCFCs through electrolyte-loss management and NiO precipitation management as well as micro-structural control of electrodes and matrix plates. Cell voltage decay rate will be estimated by simulation through series of experiments on accelerated conditions.