WorldWideScience

Sample records for exciton annihilation studies

  1. Exciton dynamics and annihilation in WS2 2D semiconductors.

    Science.gov (United States)

    Yuan, Long; Huang, Libai

    2015-04-28

    We systematically investigate the exciton dynamics in monolayered, bilayered, and trilayered WS2 two-dimensional (2D) crystals by time-resolved photoluminescence (TRPL) spectroscopy. The exciton lifetime when free of exciton annihilation was determined to be 806 ± 37 ps, 401 ± 25 ps, and 332 ± 19 ps for WS2 monolayer, bilayer, and trilayer, respectively. By measuring the fluorescence quantum yields, we also establish the radiative and nonradiative lifetimes of the direct and indirect excitons. The exciton decay in monolayered WS2 exhibits a strong excitation density-dependence, which can be described using an exciton-exciton annihilation (two-particle Auger recombination) model. The exciton-exciton annihilation rate for monolayered, bilayered, and trilayered WS2 was determined to be 0.41 ± 0.02, (6.00 ± 1.09) × 10(-3) and (1.88 ± 0.47) × 10(-3) cm(2) s(-1), respectively. Notably, the exciton-exciton annihilation rate is two orders of magnitude faster in the monolayer than in the bilayer and trilayer. We attribute the much slower exciton-exciton annihilation rate in the bilayer and trilayer to reduced many-body interaction and phonon-assisted exciton-exciton annihilation of indirect excitons.

  2. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide.

    Science.gov (United States)

    Sun, Dezheng; Rao, Yi; Reider, Georg A; Chen, Gugang; You, Yumeng; Brézin, Louis; Harutyunyan, Avetik R; Heinz, Tony F

    2014-10-08

    Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.

  3. Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors.

    Science.gov (United States)

    Yuan, Long; Wang, Ti; Zhu, Tong; Zhou, Mingwei; Huang, Libai

    2017-07-20

    Large binding energy and unique exciton fine structure make the transition metal dichalcogenides (TMDCs) an ideal platform to study exciton behaviors in two-dimensional (2D) systems. While excitons in these systems have been extensively researched, there currently lacks a consensus on mechanisms that control dynamics. In this Perspective, we discuss extrinsic and intrinsic factors in exciton dynamics, transport, and annihilation in 2D TMDCs. Intrinsically, dark and bright exciton energy splitting is likely to play a key role in modulating the dynamics. Extrinsically, defect scattering is prevalent in single-layer TMDCs, which leads to rapid picosecond decay and limits exciton transport. The exciton-exciton annihilation process in single-layer TMDCs is highly efficient, playing an important role in the nonradiative recombination rate in the high exciton density regime. Future challenges and opportunities to control exciton dynamics are discussed.

  4. Exciton-Exciton Annihilation Is Coherently Suppressed in H-Aggregates, but Not in J-Aggregates.

    Science.gov (United States)

    Tempelaar, Roel; Jansen, Thomas L C; Knoester, Jasper

    2017-12-21

    We theoretically demonstrate a strong dependence of the annihilation rate between (singlet) excitons on the sign of dipole-dipole couplings between molecules. For molecular H-aggregates, where this sign is positive, the phase relation of the delocalized two-exciton wave functions causes a destructive interference in the annihilation probability. For J-aggregates, where this sign is negative, the interference is constructive instead; as a result, no such coherent suppression of the annihilation rate occurs. As a consequence, room temperature annihilation rates of typical H- and J-aggregates differ by a factor of ∼3, while an order of magnitude difference is found for low-temperature aggregates with a low degree of disorder. These findings, which explain experimental observations, reveal a fundamental principle underlying exciton-exciton annihilation, with major implications for technological devices and experimental studies involving high excitation densities.

  5. Annihilation of the triplet excitons in the nanoporous glass matrices

    International Nuclear Information System (INIS)

    Afanasyev, D.A.; Ibrayev, N.Kh.; Saletsky, A.M.; Starokurov, Y.V.; Gun'ko, V.M.; Mikhalovsky, S.V.

    2013-01-01

    The spectra and kinetics of fluorescence decay of 1,2-benzanthracene (1,2-BA) molecular clusters adsorbed in nanoporous borosilicate glasses were investigated. It has been shown that the type of the decay kinetics of delayed fluorescence is determined by the annihilation of triplet excitons in crystalline and percolation clusters. The influence of an external magnetic field on the annihilation rate constant of triplet excitons in the adsorbed 1,2-BA molecules has been studied. The response of the molecular clusters to the magnetic field strongly depends on temperature, pore size and time scale of the observation. Clusters with the crystal structure dominate in the decay kinetics of triplet–triplet annihilation (TTA) and delayed fluorescence in the initial microsecond period of time after excitation. Amorphous clusters determine the form of decay kinetics of delayed fluorescence in the millisecond range. The increase in the pore size and concentration of the adsorbate lead to the dominance of crystalline components. The results presented here can be used to develop techniques for probing the structure of the adsorbed layer in nanoporous systems examining the effect of an external magnetic field on the annihilation delayed fluorescence (ADF) kinetics. Highlights: ► Molecular clusters of 1,2-benzanthracene adsorbed in nanoporous borosilicate glasses. ► Form of decay kinetics of delayed fluorescence. ► Magnetic field effects depend on temperature, pore size and observation time range. ► Clusters with crystal structure and amorphous clusters form in porous glasses

  6. Two-exciton excited states of J-aggregates in the presence of exciton–exciton annihilation

    International Nuclear Information System (INIS)

    Levinsky, B.; Fainberg, B.D.; Nesterov, L.A.; Rosanov, N.N.

    2016-01-01

    We study decay of two-exciton states of a J-aggregate that is collective in nature. We use mathematical formalism based on effective non-Hermitian Hamiltonian suggested in nuclear theory. We show that decay of two-exciton states is strongly affected by the interference processes in the exciton–exciton annihilation. Our evaluations of the imaginary part of the effective Hamiltonian show that it exceeds the spacing between real energies of the two-exciton states that gives rise to the transition to the regime of overlapping resonances supplying the system by the new collectivity – the possibility of coherent decay in the annihilation channel. The decay of two-exciton states varies from twice bimolecular decay rate to the much smaller values that is associated with population trapping. We have also considered the corresponding experiment in the framework of our approach, the picture of which appears to be more complex and richer than it was reasoned before.

  7. Charge recombination and exciton annihilation reactions in conjugated polymer blends.

    Science.gov (United States)

    Howard, Ian A; Hodgkiss, Justin M; Zhang, Xinping; Kirov, Kiril R; Bronstein, Hugo A; Williams, Charlotte K; Friend, Richard H; Westenhoff, Sebastian; Greenham, Neil C

    2010-01-13

    Bimolecular interactions between excitations in conjugated polymer thin films are important because they influence the efficiency of many optoelectronic devices that require high excitation densities. Using time-resolved optical spectroscopy, we measure the bimolecular interactions of charges, singlet excitons, and triplet excitons in intimately mixed polyfluorene blends with band-edge offsets optimized for photoinduced electron transfer. Bimolecular charge recombination and triplet-triplet annihilation are negligible, but exciton-charge interactions are efficient. The annihilation of singlet excitons by charges occurs on picosecond time-scales and reaches a rate equivalent to that of charge transfer. Triplet exciton annihilation by charges occurs on nanosecond time-scales. The surprising absence of nongeminate charge recombination is shown to be due to the limited mobility of charge carriers at the heterojunction. Therefore, extremely high densities of charge pairs can be maintained in the blend. The absence of triplet-triplet annihilation is a consequence of restricted triplet diffusion in the blend morphology. We suggest that the rate and nature of bimolecular interactions are determined by the stochastic excitation distribution in the polymer blend and the limited connectivity between the polymer domains. A model based on these assumptions quantitatively explains the effects. Our findings provide a comprehensive framework for understanding bimolecular recombination and annihilation processes in nanostructured materials.

  8. Identification of effective exciton-exciton annihilation in squaraine-squaraine copolymers.

    Science.gov (United States)

    Hader, Kilian; May, Volkhard; Lambert, Christoph; Engel, Volker

    2016-05-11

    Ultrafast time-resolved transient absorption spectroscopy is able to monitor the fate of the excited state population in molecular aggregates or polymers. Due to many competing decay processes, the identification of exciton-exciton annihilation (EEA) is difficult. Here, we use a microscopic model to describe exciton annihilation processes in squaraine-squaraine copolymers. Transient absorption time traces measured at different laser powers exhibit an unusual time-dependence. The analysis points towards dynamics taking place on three time-scales. Immediately after laser-excitation a localization of excitons takes place within the femtosecond time-regime. This is followed by exciton-exciton annihilation which is responsible for a fast decay of the exciton population. At later times, excitations being localized on units which are not directly connected remain so that diffusion dominates the dynamics and leads to a slower decay. We thus provide evidence for EEA tracked by time-resolved spectroscopy which has not been reported that clearly before.

  9. Correlated Pair States Formed by Singlet Fission and Exciton-Exciton Annihilation.

    Science.gov (United States)

    Scholes, Gregory D

    2015-12-24

    Singlet fission to form a pair of triplet excitations on two neighboring molecules and the reverse process, triplet-triplet annihilation to upconvert excitation, have been extensively studied. Comparatively little work has sought to examine the properties of the intermediate state in both of these processes-the bimolecular pair state. Here, the eigenstates constituting the manifold of 16 bimolecular pair excitations and their relative energies in the weak-coupling regime are reported. The lowest-energy states obtained from the branching diagram method are the triplet pairs with overall singlet spin |X1⟩ ≈ (1)[TT] and quintet spin |Q⟩ ≈ (5)[TT]. It is shown that triplet pair states can be separated by a triplet-triplet energy-transfer mechanism to give a separated, yet entangled triplet pair (1)[T···T]. Independent triplets are produced by decoherence of the separated triplet pair. Recombination of independent triplets by exciton-exciton annihilation to form the correlated triplet pair (i.e., nongeminate recombination) happens with 1/3 of the rate of either triplet migration or recombination of the separated correlated triplet pair (geminate recombination).

  10. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes.

    Science.gov (United States)

    Chmeliov, Jevgenij; Narkeliunas, Jonas; Graham, Matt W; Fleming, Graham R; Valkunas, Leonas

    2016-01-21

    We present a thorough analysis of one- and two-color transient absorption measurements performed on single- and double-walled semiconducting carbon nanotubes. By combining the currently existing models describing exciton-exciton annihilation-the coherent and the diffusion-limited ones-we are able to simultaneously reproduce excitation kinetics following both E11 and E22 pump conditions. Our simulations revealed the fundamental photophysical behavior of one-dimensional coherent excitons and non-trivial excitation relaxation pathways. In particular, we found that after non-linear annihilation a doubly-excited exciton relaxes directly to its E11 state bypassing the intermediate E22 manifold, so that after excitation resonant with the E11 transition, the E22 state remains unpopulated. A quantitative explanation for the observed much faster excitation kinetics probed at E22 manifold, comparing to those probed at the E11 band, is also provided.

  11. Exciton–Exciton Annihilation Is Coherently Suppressed in H-Aggregates, but Not in J-Aggregates

    Science.gov (United States)

    2017-01-01

    We theoretically demonstrate a strong dependence of the annihilation rate between (singlet) excitons on the sign of dipole–dipole couplings between molecules. For molecular H-aggregates, where this sign is positive, the phase relation of the delocalized two-exciton wave functions causes a destructive interference in the annihilation probability. For J-aggregates, where this sign is negative, the interference is constructive instead; as a result, no such coherent suppression of the annihilation rate occurs. As a consequence, room temperature annihilation rates of typical H- and J-aggregates differ by a factor of ∼3, while an order of magnitude difference is found for low-temperature aggregates with a low degree of disorder. These findings, which explain experimental observations, reveal a fundamental principle underlying exciton–exciton annihilation, with major implications for technological devices and experimental studies involving high excitation densities. PMID:29190421

  12. Mapping of exciton-exciton annihilation in MEH-PPV by time-resolved spectroscopy: experiment and microscopic theory.

    Science.gov (United States)

    Hader, Kilian; Consani, Cristina; Brixner, Tobias; Engel, Volker

    2017-12-06

    Transient absorption traces taken on samples of the polymer MEH-PPV are measured as a function of the laser intensity. In increasing the laser power, different decay dynamics of the signal are obtained. This suggests that effective exciton-exciton annihilation takes place. The signals are interpreted using a microscopic quantum mechanical model. The analysis points at an ultrafast excitonic decay via interchain and intrachain annihilation, where the latter process is roughly thirty times slower. Afterwards, diffusion-induced annihilation and relaxation become effective and thus determine the long-time behavior of the excited-state decay.

  13. Exciton-Exciton Annihilation Is Coherently Suppressed in H-Aggregates, but Not in J-Aggregates

    NARCIS (Netherlands)

    Tempelaar, Roel; Jansen, Thomas L. C.; Knoester, Jasper

    2017-01-01

    We theoretically demonstrate a strong dependence of the annihilation rate between (singlet) excitons on the sign of dipole-dipole couplings between molecules. For molecular H-aggregates, where this sign is positive, the phase relation of the delocalized two-exciton wave functions causes a

  14. Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons

    Science.gov (United States)

    Soavi, Giancarlo; Dal Conte, Stefano; Manzoni, Cristian; Viola, Daniele; Narita, Akimitsu; Hu, Yunbin; Feng, Xinliang; Hohenester, Ulrich; Molinari, Elisa; Prezzi, Deborah; Müllen, Klaus; Cerullo, Giulio

    2016-01-01

    Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron–hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics. PMID:26984281

  15. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

  16. Probing triplet-triplet annihilation zone and determining triplet exciton diffusion length by using delayed electroluminescence

    Science.gov (United States)

    Luo, Yichun; Aziz, Hany

    2010-05-01

    The literature shows that triplet-triplet annihilation (TTA) can provide a substantial contribution to the electroluminescence (EL) of fluorescent organic light-emitting devices (OLEDs). In this study, we utilized delayed EL measurements to probe the TTA emission zone of archetypical 8-hydroxyquinoline aluminum (Alq3) based OLEDs. The results demonstrate that the TTA emission zone of these devices is much larger than the prompt emission zone of singlet states that are formed in the electron-hole recombination. The larger TTA emission zone is attributed to the longer diffusion length of the Alq3 triplet states (60 nm) than that of Alq3 singlet states (20 nm).

  17. Studies of defects and defect agglomerates by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1997-01-01

    A brief introduction to positron annihilation spectroscopy (PAS), and in particular lo its use for defect studies in metals is given. Positrons injected into a metal may become trapped in defects such as vacancies, vacancy clusters, voids, bubbles and dislocations and subsequently annihilate from...

  18. Positron annihilation studies of neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Brauer, G.; Liszkay, L.; Molnar, B.

    1988-01-01

    Several annealing studies by positron annihilation (Doppler broadening, lifetime) on neutron irradiated Cr-Mo-V reactor pressure vessel steels (Soviet type 15Kh2MFA) regarding the influences of irradiation temperature, fluence of fast neutrons as well as different impurity contents are presented and discussed. A possibility of explaining the positron annihilation data by irradiation induced carbide formation is proposed. (author)

  19. Study of radiation damage in metals by positron annihilation

    International Nuclear Information System (INIS)

    Gauster, W.B.

    1977-01-01

    Positron annihilation is a sensitive technique for probing defects in metals and it has recently been shown to be a valuable tool for the study of radiation damage. After an introduction to the three basic experimental methods (angular correlation, Doppler broadening, and lifetime measurements), the interaction of positrons with lattice defects is reviewed. Results for the annealing of damage after low temperature irradiation are used to show that positron annihilation has provided new information on annealing kinetics. The role of positron techniques in characterizing complex defect structures resulting from high-temperature neutron irradiation is reviewed and the possible utility of positron annihilation as a nondestructive monitor of property changes is pointed out

  20. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree of ...

  1. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  2. Polymerization of epoxy resins studied by positron annihilation

    International Nuclear Information System (INIS)

    Suzuki, T.; Hayashi, T.; Ito, Y.

    1999-01-01

    The polymerization process of epoxy resins (bisphenol-A dicyanate) was studied using positron-annihilation spectroscopy. The polymerization from monomer to polymer through a polymerization reaction was followed by positron-annihilation lifetime spectroscopy measurements. Resins kept at curing temperatures (120, 150 and 200 o C) changed form from of powder to a solid through a liquid. The size of the intermolecular spaces of the solid samples increased along with the progress of polymerization. (author)

  3. Many-body dynamics and exciton formation studied by time-resolved photoluminescence

    Science.gov (United States)

    Hoyer, W.; Ell, C.; Kira, M.; Koch, S. W.; Chatterjee, S.; Mosor, S.; Khitrova, G.; Gibbs, H. M.; Stolz, H.

    2005-08-01

    The dynamics of exciton and electron-hole plasma populations is studied via time-resolved photoluminescence after nonresonant excitation. By comparing the peak emission at the exciton resonance with the emission of the continuum, it is possible to experimentally identify regimes where the emission originates predominantly from exciton and/or plasma populations. The results are supported by a microscopic theory which allows one to extract the fraction of bright excitons as a function of time.

  4. Positron annihilation and tribological studies of nano-embedded Al ...

    Indian Academy of Sciences (India)

    Positron annihilation studies of aluminium alloys with nanodispersions of insoluble elements, i.e., In, Sn, Pb and Au were reported. The alloys were obtained using a rapid solidification process. For all alloys, except that with Au, the average diameter of nanoparticles in aluminium matrix was 100 nm, and variance of the size ...

  5. Multi-exciton emission from solitary dopant states of carbon nanotubes.

    Science.gov (United States)

    Ma, Xuedan; Hartmann, Nicolai F; Velizhanin, Kirill A; Baldwin, Jon K S; Adamska, Lyudmyla; Tretiak, Sergei; Doorn, Stephen K; Htoon, Han

    2017-11-02

    By separating the photons from slow and fast decays of single and multi-exciton states in a time gated 2 nd order photon correlation experiment, we show that solitary oxygen dopant states of single-walled carbon nanotubes (SWCNTs) allow emission of photon pairs with efficiencies as high as 44% of single exciton emission. Our pump dependent time resolved photoluminescence (PL) studies further reveal diffusion-limited exciton-exciton annihilation as the key process that limits the emission of multi-excitons at high pump fluences. We further postulate that creation of additional permanent exciton quenching sites occurring under intense laser irradiation leads to permanent PL quenching. With this work, we bring out multi-excitonic processes of solitary dopant states as a new area to be explored for potential applications in lasing and entangled photon generation.

  6. Positron annihilation study on defects in ion-implanted Si

    International Nuclear Information System (INIS)

    Akahane, T.; Fujinami, M.; Sawada, T.

    2003-01-01

    Two-detector coincidence measurements of the Doppler broadened annihilation spectra with a variable energy positron beam are carried out for the study of the annealing behavior of Si implanted with As, P, Cu and H ions. In P-implanted Si, growth of the defect complexes are observed in coincidence Doppler broadening spectra up to 400degC. In Cu-implanted Si, the formation of defect-Cu complexes is indicated. In H-implanted Si, the passivation effect of hydrogen on positron traps are observed in the low temperature region up to 400degC. (author)

  7. Positron annihilation lifetime spectroscopy study of roller burnished magnesium alloy

    Directory of Open Access Journals (Sweden)

    Zaleski Radosław

    2015-12-01

    Full Text Available The effect of roller burnishing on Vickers’ hardness and positron lifetimes in the AZ91HP magnesium alloy was studied. The microhardness increases with an increase in the burnishing force and with a decrease in the feed. The comparison of various methods of analysis of positron annihilation lifetime (PAL spectra allowed identification of two components, which are related to solute-vacancy complexes and vacancy clusters, respectively. It was found that the increase in microhardness was related to the increase in the concentration of vacancy clusters.

  8. Kinetic Monte Carlo study of triplet-triplet annihilation in organic phosphorescent emitters

    Science.gov (United States)

    van Eersel, H.; Bobbert, P. A.; Coehoorn, R.

    2015-03-01

    The triplet-triplet annihilation (TTA) rate in organic phosphorescent materials such as used in organic light-emitting diodes is determined predominantly either by the rate of single-step Förster-type triplet-triplet interactions, or by multi-step triplet diffusion. We show how kinetic Monte Carlo simulations may be used to analyze the role of both processes. Under steady state conditions, the effective triplet-triplet interaction rate coefficient, kTT, which is often regarded as a constant, is found to depend actually on the number of excitons lost upon a triplet-triplet interaction process and to show a significant higher-order dependence on the triplet volume density. Under the conditions encountered in transient photoluminescence (PL) studies, kTT is found to be effectively constant in the case of diffusion-dominated TTA. However, for the case of single-step TTA, a strongly different decay of the emission intensity is found, which also deviates from an analytic expression proposed in the literature. We discuss how the transient PL response may be used to make a distinction between both mechanisms. The simulations are applied to recently published work on the dye concentration dependence of the TTA rate in materials based on the archetypal green emitter tris[2-phenylpyridine]iridium (Ir(ppy)3).

  9. Study of double scattering effect in antiproton--deuteron annihilation

    International Nuclear Information System (INIS)

    Zemany, P.D.

    1975-01-01

    The double scattering process in the deuteron is investigated for the reaction anti pd → p/sub s/ + mesons. About 30 percent of the apparent anti pn annihilations are involved in double scattering. A model which describes the properties of protons emerging from apparent anti pn annihilations is presented

  10. Study of ion beam induced depolymerization using positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O. E-mail: opuglisi@dipchi.unict.it; Fragala, M.E.; Lynn, K.G.; Petkov, M.; Weber, M.; Somoza, A.; Dupasquier, A.; Quasso, F

    2001-04-01

    Ion beam induced depolymerization of polymers is a special class of ion beam induced chemical reaction which gives rise to catastrophic 'unzipping' of macromolecules with production of large amounts of the monomer, of the order of many hundreds monomer molecules per each macromolecule. The possible modification of the density at microscopic level prompted us to undertake a study of this effect utilizing positron annihilation techniques in Poly(methylmethacrylate) (PMMA) before and after bombardment with He{sup +} 300 keV ions at 200 deg. C. Preliminary results shown here indicate that before bombardment there is a reproducible dependence of nano-hole distribution on the sample history. Moreover at 200 deg. C we do not detect formation of new cavities as a consequence of the strong depolymerization that occurs under the ion beam. The possible correlation of these findings with transport properties of PMMA at temperature higher than the glass transition temperature will be discussed.

  11. Work station for low temperature positron annihilation studies

    International Nuclear Information System (INIS)

    Chaturvedi, T.P.; Venkiteswaran, S.; Pujari, P.K.

    1999-05-01

    This report describes the automation implemented in the low temperature Positron Annihilation Spectroscopy studies system. Temperature programmer and controller (Lakeshore 330) is interfaced to PC-AT through an IEEE-488 add-on card. Through this data can be read and written to the temperature controller and it can be handled remotely. The PC- AT also houses the PCA-II card. Software (TEMP330.EXE) was developed to communicate with the temperature controller. A master software is also developed under which TEMP330.EXE and PCAII.EXE should run. Another program DATASEG.EXE creates a user file to store the temperature points given by user over which data acquisition is required. This has not only widened the scope of the positron research, but also helps achieve result with better precision. (author)

  12. Positron annihilation studies on reactor irradiated and thermal annealed ferrocene

    International Nuclear Information System (INIS)

    Marques Netto, A.; Carvalho, R.S.; Magalhaes, W.F.; Sinisterra, R.D.

    1996-01-01

    Retention and thermal annealing following (n, γ) reaction in solid ferrocene, Fe(C 5 H 5 ) 2 , were studied by positron annihilation lifetime spectroscopy (PAL). Positronium (Ps) formation was observed in the non-irradiated compound with a probability or intensity (I 3 ) of 30%. Upon irradiation of the compound with thermal neutrons in a nuclear reactor, I 3 decreases with increasing irradiation time. Thermal treatment again increases I 3 values from 16% to 25%, revealing an important proportion of molecular reformation without variation of the ortho-positronium lifetime (τ 3 ). These results point out the major influence of the electronic structure as determining the Ps yields in the pure complex. In the irradiated and non irradiated complexes the results are satisfactorily explained on the basis of the spur model. (orig.)

  13. Excitons in van der Waals Heterostructures: A theoretical study

    DEFF Research Database (Denmark)

    Latini, Simone

    in a generalized hydrogenic model to compute exciton binding energies in isolated, supported, or encapsulated 2D semiconductors. The non-locality of the dielectric screening is inherently included in our method and we can successfully describe the non-hydrogenic Rydberg series of low-dimensional systems......)electronics devices, e.g. light emitting diodes, solar cells, ultra-fast photodetectors, transistors etc., have been successfully fabricated. It is well established that for isolated 2D semiconductors and vdWHs the optical response is governed by excitonic effects. While it is understood that the reduced amount...... limitations of standard ab-initio methods. In this thesis first-principles models that overcome the limitations of standard ab-initio techniques are developed for the description of dielectric, electronic and excitonic properties in isolated 2D materials and vdWHs. The main contribution is a multi...

  14. Ultrafast transient absorption studies of hematite nanoparticles: the effect of particle shape on exciton dynamics.

    Science.gov (United States)

    Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z

    2013-10-01

    Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Studying the recovery of as-received industrial Al alloys by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hady, E.E. [Physics Department, Faculty of Science, El-Minia University, BO 61519, El-Minia (Egypt)]. E-mail: esamhady@link.net; Ashry, A. [Faculty of Education, Ain Shams University, Cairo (Egypt); Ismail, H. [Faculty of Education, Ain Shams University, Cairo (Egypt); El-Gamal, S. [Faculty of Education, Ain Shams University, Cairo (Egypt)

    2006-02-28

    Positron annihilation lifetime (PAL) spectroscopy, Doppler broadening of annihilation radiation (DBAR) spectroscopy and Vickers microhardness (Hv) measurements were performed to study the micro- and macro-structure variations during isochronal annealing from room temperature (RT) to 500 deg. Cof commercial pure Al (1 1 0 0), Al-Mn-Mg (3 0 0 4) and Al-Mg-Si (6 2 0 1) alloys. Three annealing stages of microstructures have been identified as recovery, partial recrystallization and complete recrystallization followed by grain growth. A positive correlation between the macroscopic mechanical properties (Hv) and positron annihilation parameters has been achieved for the three samples under investigation.

  16. Study of wino pair production in e+e- annihilation

    International Nuclear Information System (INIS)

    Fukai, Tomoki; Kizukuri, Yoshiki; Oshimo, Noriyuki; Otake, Yoshie; Sugiyama, Naoshi

    1987-01-01

    We discuss wino pair production in e + e - annihilation and subsequent leptonic wino decay for various types of supersymmetric or supergravity models. Phenomenological predictions on this process depend considerably on a specific model. We analyze the energy distribution, forward-backward asymmetry and angular distribution of a charged lepton in the final state. (Author shortened by G.Q.)

  17. Intrinsic optical bistability of thin films of linear molecular aggregates : The two-exciton approximation

    NARCIS (Netherlands)

    Klugkist, Joost; Malyshev, Victor; Knoester, Jasper

    2008-01-01

    We generalize our recent work on the optical bistability of thin films of molecular aggregates [J. A. Klugkist et al., J. Chem. Phys. 127, 164705 (2007)] by accounting for the optical transitions from the one-exciton manifold to the two-exciton manifold as well as the exciton-exciton annihilation of

  18. Positron annihilation lifetime study of radiation-damaged natural zircons

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Gaugliardo, P. [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia (Australia); Farnan, I.; Zhang, M. [Department of Earth Sciences, University of Cambridge (United Kingdom); Vance, E.R.; Davis, J.; Karatchevtseva, I.; Knott, R.B. [Australian Nuclear Science and Technology Organisation (Australia); Mudie, S. [The Australian Synchrotron, Victoria (Australia); Buckman, S.J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Institute for Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Sullivan, J.P., E-mail: james.sullivan@anu.edu.au [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia)

    2016-04-01

    Zircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼10{sup 19} α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter. - Highlights: • Study of a range of naturally occurring zircons damaged by alpha radiation. • Characterised using a range of techniques, including PALS spectroscopy. • Effects on hydrous material appear important, rather than direct radiation damage. • Annealing is shown to remove the observed voids.

  19. Positron annihilation studies on chalcone chromophore doped PVA

    Energy Technology Data Exchange (ETDEWEB)

    Bhajantri, R.F.; Ravindrachary, V.; Harisha, A.; Ismayil [Department of Physics, Mangalore University, Mangalagangotri (India); Ranganathaiah, C. [Department of Studies in Physics, University of Mysore, Manasagangotri (India)

    2009-11-15

    A novel organic non-linear optical material 1-(4-methylphenyl)-3-(4- N, N dimethyl amino phenyl)-2-propen-1-one (MPDMAPP) chalcone chromophore has been synthesized by standard method. Pure and MPDMAPP doped Poly(vinyl alcohol) films are prepared using solution casting method and characterized using UV-Visible absorption and Positron Annihilation Lifetime Spectroscopy. The optical spectroscopic study shows three absorption bands, 196-202 nm assigned to localized n {yields}{pi}* transitions, 205-320 nm to n {yields}{pi} inter-band and 385-428 nm assigned to {pi} {yields}{pi}* transition and arises due to the charge transfer complex. Using observed UV-Vis spectra, three optical energy gaps, E{sub g1} (4.96-4.25 eV), E{sub g2} (3.47-3.32 eV) and E{sub g3} (2.33-2.24 eV) have been estimated. The observed change in E{sub g} upon doping is understood based on the formation of charge transfer complex arising from the -HC=CH- structure present in the composite and due to the interactions of dopant and OH group of PVA. The PALS results shows that the o-Ps lifetime decreases continuously as doping concentration increases and I{sub 3} initially increases (from 18.82% to 20.95%) from 0 wt% to 0.05 wt% and then decreases gradually up to 16.76% for higher dopant concentrations with decrease in optical band gaps. The variation of positron data with E{sub g} is understood by correlating the probability of Ps formation with the complex. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Positron annihilation studies of some charge transfer molecular complexes

    CERN Document Server

    El-Sayed, A; Boraei, A A A

    2000-01-01

    Positron annihilation lifetimes were measured for some solid charge transfer (CT) molecular complexes of quinoline compounds (2,6-dimethylquinoline, 6-methoxyquinoline, quinoline, 6-methylquinoline, 3-bromoquinoline and 2-chloro-4-methylquinoline) as electron donor and picric acid as an electron acceptor. The infrared spectra (IR) of the solid complexes clearly indicated the formation of the hydrogen-bonding CT-complexes. The annihilation spectra were analyzed into two lifetime components using PATFIT program. The values of the average and bulk lifetimes divide the complexes into two groups according to the non-bonding ionization potential of the donor (electron donating power) and the molecular weight of the complexes. Also, it is found that the ionization potential of the donors and molecular weight of the complexes have a conspicuous effect on the average and bulk lifetime values. The bulk lifetime values of the complexes are consistent with the formation of stable hydrogen-bonding CT-complexes as inferred...

  1. Positron Annihilation Spectroscopy study of minerals commonly found in shale

    Science.gov (United States)

    Alsleben, Helge; Ameena, Fnu; Bufkin, James; Chun, Joah; Quarles, C. A.

    2018-01-01

    Positron Annihilation Lifetime and Doppler Broadening spectroscopies are used to investigate twenty-three different rock-forming minerals that are commonly found in shale. Doppler Broadening provides information about the positron and positronium (Ps) trapping sites for comparison among the various minerals. Correlations of positron lifetime and Doppler Broadening are observed for different groups of minerals. Finally, Ps formation, or lack thereof, in the various minerals has been determined.

  2. Experimental study of jets in electron-positron-annihilation

    International Nuclear Information System (INIS)

    Bartel, W.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Haidt, D.; Krehbiel, H.; Naroska, B.; O'Neill, L.H.; Steffen, P.

    1981-02-01

    Data on hadron production by e + e - -annihilation at c.m. energies between 30 GeV and 36 GeV are presented and compared with two models both based on first order QCD but using different schemes for the fragmentation of quarks and gluons into hadrons. In one model the fragmentation proceeds along the parton momenta, in the other along the colour-anticolour axes. The data are reproduced better by fragmentation along the colour axes. (orig.)

  3. Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Vellayappan Dheivanayagam; Shen, Lei, E-mail: shenlei@nus.edu.sg [Engineering Science Programme, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Linghu, Jiajun; Zhang, Chun; Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2016-03-21

    Using the many-body perturbation GW theory, we study the quasiparticle conduction-band offsets of phosphorene, a two-dimensional atomic layer of black phosphorus, and transition-metal dichalcogenides (TMDs). The calculated large exciton binding energies of phosphorene and TMDs indicate that their type-II heterostructures are suitable for excitonic thin-film solar cell applications. Our results show that these heterojunctions have a potential maximum power conversion efficiency of up to 12%, which can be further enhanced up to 20% by strain engineering.

  4. Glass transition and relaxation processes of polymers studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science

    1996-10-01

    The glass transition and relaxation processes of polymers were studied by the positron annihilation technique. A positron implanted into polymers might annihilate from positronium (Ps) states in open spaces. Ps is a bound state between a positron and an electron, and its nonrelativistic quantum mechanics is practically identical to that of a hydrogen atom. The lifetime of Ps can be associated with the size of the open spaces, and the formation probability of Ps provides information of motions of molecules. Since the glass transition or relaxation processes affect behavior of open spaces, one can study these phenomena through the detection of the open spaces using the positron annihilation technique. In the present paper, we report studies of the glass transition and relaxation processes in polyethylene, polypropylene, and polystyrene by measurements of lifetime spectra of positrons and those of Doppler broadening profiles of the annihilation radiation. For these specimens, by measurements of the lifetime of Ps, {tau}{sub 3}, as a function of temperature, the glass transition temperature, T{sub g}, was determined as an onset temperature of the increase in the temperature coefficient of {tau}{sub 3}. Below T{sub g}, local motions of molecules were detected by measurements of the formation probability of Ps. The positron annihilation as a tool for the characterization of polymers was discussed. (author). 51 refs.

  5. Positron annihilation studies of vacancies in Ag-Zn alloys

    International Nuclear Information System (INIS)

    Chabik, S.

    1982-01-01

    The temperature dependence of annihilation rate, F(T), at the peak of angular correlation curve has been measured for Ag-29.2%at Zn and Ag-50%at Zn alloys. By applying the trapping model the vacancy formation energy for Ag-29.2%at Zn alloy has been found to be equal to 0.94+-0.06 eV. It has been found that the course of the F(T) curve for Ag-50%at Zn depends on the phase composition and thermal history of the investigated sample. For alloys containing not more than 50%at Zn, the concentration dependence of the vacancy formation energy for Ag-Zn alloys is very similar to that for Cu-Zn alloys. (Auth.)

  6. Positron-annihilation 2D-ACAR studies of disordered and defected alloys

    International Nuclear Information System (INIS)

    Bansil, A.; Prasad, R.; Smedskjaer, L.C.; Benedek, R.; Mijnarends, P.E.

    1987-09-01

    Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T/sub c/ ceramic superconductors, Heusler alloys, and transition-metal aluminides. 58 refs., 116 figs

  7. DLTS study of annihilation of oxidation induced deep-level defects ...

    Indian Academy of Sciences (India)

    This paper describes the fabrication of MOS capacitor and DLTS study of annihilation of deeplevel defects upon thermal annealing. Ni/SiO2/-Si MOS structures fabricated on -type Si wafers were investigated for process-induced deep-level defects. The deep-level traps in Si substrates induced during the processing of ...

  8. Some aspects of free volume studies in molecular substances using positron annihilation experiments

    International Nuclear Information System (INIS)

    Shantarovich, V.P.; Gustov, V.W.; Kevdina, I.B.; Suzuki, T.; Djourelov, N.; Shimazu, A.

    2005-01-01

    Positron annihilation lifetime spectroscopy is accepted now as a method for the studies of elementary free volumes (free volume holes) in solids, in polymers in particular. The aim of this paper is to discuss some problems, the difficulties on the way of this application and to illustrate them by several examples obtained by the authors. (author)

  9. DLTS study of annihilation of oxidation induced deep-level defects ...

    Indian Academy of Sciences (India)

    Administrator

    †Sensors and Nanotechnology Group, Central Electronics Engineering Research Institute, Pilani 333 031, India. ††Department of Physics, Bangalore University, Bangalore 560 056, India. MS received 31 May 2010. Abstract. This paper describes the fabrication of MOS capacitor and DLTS study of annihilation of deep-.

  10. The study of synthetic food dyes by positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Pivtsaev, A. A.; Razov, V. I.

    2015-06-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.

  11. The study of synthetic food dyes by positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Pivtsaev, A A; Razov, V I

    2015-01-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established. (paper)

  12. Positron Annihilation Study of Ion-irradiated Si

    International Nuclear Information System (INIS)

    Shin, Jung Ki; Kwon, Jun Hyun; Lee, Jong Yong

    2009-01-01

    Structural parts like a spaceship, satellite and solar cell are composed of metal alloy or semiconductor materials. Especially, Si is used as a primary candidate alloy. But, manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles. These natural radiations impose hazards to manned exploration. Irradiation of cosmic particle induces various changes in the mechanical and physical properties of device steels. It is, therefore, important to investigate radiation damage to the component materials in semiconductor. The evolution of radiation-induced defects leads to degradation of the mechanical properties. One of them includes irradiation embrittlement, which can cause a loss of ductility and further increase the probability of a brittle fracture. It can be more dangerous in the space. Positron annihilation lifetime spectroscopy(PALS) have been applied to investigate the production of vacancy-type defects for Ion-irradiated Si wafer penetrated by H, He, O and Fe ions. Then, we carried out a comparison with an un-irradiated Si wafer

  13. Optical studies of charged excitons in II-VI semiconductor quantum wells

    CERN Document Server

    Kossacki, P

    2003-01-01

    A brief review is given of optical studies of doped II-VI quantum wells. The properties of exciton states, neutral as well as positively and negatively charged, are discussed. A wide range of optical measurements is presented: CW as well as picosecond and femtosecond time-resolved absorption, photoluminescence (PL) and PL excitation. The experiments were performed at various carrier concentrations (> 10 sup 1 sup 1 cm sup - sup 2) and temperatures (up to a few tens of kelvins). This review is limited to zero or low magnetic fields, used only to polarize spins of carriers. We discuss the obtained values of various fundamental parameters of the excitonic states: energies, optical transition probabilities and characteristic times of their formation, thermalization and decay. (topical review)

  14. Application of positron annihilation techniques to the study of micels and microemulsions

    International Nuclear Information System (INIS)

    Olea C, O.

    1981-01-01

    The molecular auto-association mechanisms in sodium-oleate-alcohol-alkane-water systems were studied, applying positron and positronium annihilation techniques. The effects of the different component structures of these systems and of their concentrations on the swelled micel formation process which eventually produce microemulsions, were also investigated. The influences studied were: a) co-surfactant (alcohol) hydrocarbon chain lengths, b) alkane (oil) hydrocarbon chain lengths, c) surfactant concentrations, and d) surfactant double link alkylic chains. (author)

  15. The study of defects in metallic alloys by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Romero, R.; Salgueiro, W.; Somoza, A.

    1990-01-01

    Positron annihilation spectroscopy (PAS) has become in a very useful non destructive testing to the study of condensed matter. Specially, in the last two decades, with the advent of solid state detectors and high-resolution time spectrometers. The basic information obtained with PAS in solid-state physics is on electronic structure in free defect materials. However, positron annihilation techniques (lifetime, angular correlation and Doppler broadening) have been succesfully applied to study crystal lattice defects with lower-than-average electron density, such as vacancies, small vacancy clusters, etc.. In this sense, information about: vacancy formation and migration energies, dislocations, grain boundaries, solid-solid phase transformation and radiation damage was obtained. In this work the application of the positron lifetime technique to study the thermal effects on a fine-grained superplastic Al-Ca-Zn alloy and the quenched-in defects in monocrystals of β Cu-Zn-Al alloy for several quenching temperatures is shown. (Author) [es

  16. Characterization of zeolite Y pastilles for the ortho-positronium annihilation studies

    International Nuclear Information System (INIS)

    Alvarado D, E.; Garcia S, I.; Cabral P, A.

    2008-01-01

    This paper presents the characterization of zeolite Y pastilles prior to their study by the Positronium Annihilation Lifetimes Spectroscopy. The characterization is the estimation of porosity, the determination of its purity and crystal size for X-ray diffraction, the determination of its morphology and particle size by scanning electron microscopy and its specific area by the Brunauer-Emmett-Teller method. Presenting the first lifetimes measurements of positronium in zeolites LTA and Y. (Author)

  17. An undergraduate laboratory study of the polarisation of annihilation photons using Compton scattering

    OpenAIRE

    Knights, Patrick; Ryburn, Finlay; Tungate, Garry; Nikolopoulos, Konstantinos

    2018-01-01

    An experiment for the advanced undergraduate laboratory which allows students to study the effect of photon polarisation in Compton scattering and to explore q\\ uantum entanglement is described. The quantum entangled photons are produced through electron-positron annihilation in the $S$-state, and their polarisations a\\ re analysed using the Compton scattering cross-section dependence on the photon polarisation. The equipment necessary for this experiment is available at a typ\\ ical undergrad...

  18. Moessbauer and positron annihilation studies of structural modifications of hemoglobin in solution

    International Nuclear Information System (INIS)

    Oshtrakh, M.I.; Kopelyan, E.A.; Semionkin, V.A.

    1995-01-01

    Structural modifications of human adult oxyhemoglobin in concentrated solution were studied by Moessbauer and positron life-time spectroscopies. The effects of non-sterile degradation and irradiation by γ-rays were compared by both techniques. It was found that positron annihilation parameters were sensitive to the structural modifications of hemoglobin molecules in solution and could be related with the conformational states of hemoglobin. (author)15 refs.; 3 tabs

  19. Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers.

    Science.gov (United States)

    Kim, Sinheui; Bae, Hye Jin; Park, Sangho; Kim, Wook; Kim, Joonghyuk; Kim, Jong Soo; Jung, Yongsik; Sul, Soohwan; Ihn, Soo-Ghang; Noh, Changho; Kim, Sunghan; You, Youngmin

    2018-03-23

    Degradation of organic materials is responsible for the short operation lifetimes of organic light-emitting devices, but the mechanism by which such degradation is initiated has yet to be fully established. Here we report a new mechanism for degradation of emitting layers in blue-phosphorescent devices. We investigate binary mixtures of a wide bandgap host and a series of novel Ir(III) complex dopants having N-heterocyclocarbenic ligands. Our mechanistic study reveals the charge-neutral generation of polaron pairs (radical ion pairs) by electron transfer from the dopant to host excitons. Annihilation of the radical ion pair occurs by charge recombination, with such annihilation competing with bond scission. Device lifetime correlates linearly with the rate constant for the annihilation of the radical ion pair. Our findings demonstrate the importance of controlling exciton-induced electron transfer, and provide novel strategies to design materials for long-lifetime blue electrophosphorescence devices.

  20. Point defects and precipitation phenomena in Cu-Zn-Al alloys. A study by positrons annihilation

    International Nuclear Information System (INIS)

    Romero, R.; Salgueiro, W.; Somoza, A.; Ahlers, M.H.

    1990-01-01

    Monocrystalline phase Cu-Zn-Al samples in phase β (derived from a bcc structure) were treated with different homogenization thermal treatments, isothermal annealing, and tempering at different time intervals. In this way, point defects are fixed and gamma phase precipitation is induced. The evolution of this technique's characteristic parameters was followed with positron annihilation temporal spectroscopy at room temperature. Owing to the extreme sensitivity of positrons to defects like vacancies, it is possible to study the migration of these defects in detail. It can be seen that the presence of precipitates within the matrix phase modifies the annihilation parameters. Results are discussed as a function of the standard model for positron trapping by defects. (Author). 9 refs., 4 figs

  1. Defect evolution during annealing of deformed FeSi alloys studied by positron annihilation spectroscopy

    Science.gov (United States)

    Mostafa, K. M.; Cámara, F. González; Petrov, Roumen; Calvillo, P. Rodríguez; De Grave, E.; Segers, D.; Houbaert, Y.

    2011-04-01

    High silicon steel is widely used in electrical appliances. Alloying iron with silicon improves its magnetic performance. A silicon content up to 6.5 wt. % gives excellent magnetic properties such as high saturation magnetization, near zero magnetostriction and low iron loss in high frequencies. Their workability is greatly reduced by the appearance of ordered structures, namely B2 and D03, as soon as the Si content becomes higher than 3.5 wt. %. This limits the mass production by conventional rolling to this maximum percentage of Si. In this work a series of FeSi (7.5 wt. % Si) samples with different degrees of deformation are investigated with positron annihilation spectroscopy and optical microscopy (OM). The influence of annealing on the concentration of defects of different deformed FeSi alloys has been investigated by positron annihilation lifetime spectroscopy and Doppler broadening of the annihilation radiation. OM is used to investigate the microstructure of deformed samples before and after annealing. The values of the S parameter present a decrease for all studied FeSi alloys with the increase of the annealing temperature, being attributed to a decrease of the concentration of defects. A sudden increase of the S-parameter value at 600 °C was observed for all samples, which could be related to the change of the ordering of the FeSi alloys at that temperature. At 700 °C, the values of the S parameter decreased drastically and starting from 900 °C, they became constant. The microstructures of the alloys, investigated by OM, show that recrystallization is completed at 900 °C and the samples are mainly free of defects, which is in agreement with the positron annihilation lifetime data.

  2. Positron annihilation and tribological studies of nano-embedded Al ...

    Indian Academy of Sciences (India)

    Administrator

    There is growing interest in binary immiscible systems as potential objects of different studies and applications. Such systems have been applied as bearing materials long time ago (see the review in ref. 1). For instance Al–Sn system is used as bearing material, due to a good combi- nation of strength and surface properties ...

  3. J-PET detector system for studies of the electron-positron annihilations

    Directory of Open Access Journals (Sweden)

    Pawlik-Niedźwiecka M.

    2016-01-01

    Full Text Available Jagiellonian Positron Emission Tomograph (J-PET has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  4. Studies of martensitic transformation in Cu-Al alloys by positron annihilation

    International Nuclear Information System (INIS)

    Kojima, T.; Kuribayashi, K.; Doyama, M.

    1977-01-01

    The reverse martensitic transformations in Cu-23.5 at-%Al, and Cu-25.3 at-%Al have been studied by means of positron annihilation. The coincidence counting rates of angular correlation were measured as a function of the specimen temperature. The change of counting rates in heating run was rather different from that in cooling run due to the influence of tempering of martensitic structure. The results were interpreted by the change of the formation energy of a vacancy with phase transition. Influence of heating rate is also discussed. (orig.) [de

  5. Positron annihilation and electron microscopy study in the early stage of fatigue of polycrystalline copper

    International Nuclear Information System (INIS)

    Diaz, L.; Pareja, R.; Pedrosa, M.A.; Gonzalez, R.

    1985-01-01

    Positron annihilation and transmission electron microscopy are used to study the early stage of fatigue in polycrystalline copper cyclically deformed at various temperatures. The concentration of positron traps is correlated to the cumulative plastic strain and to the work done during deformation. The average lifetimes of the trapped positrons are (177 +- 4) and (186 +- 3) ps for samples fatigued at T 15 s -1 for the samples deformed at T <= 293 K. Vacancy clusters like small dislocation loops, are proposed as the main defects responsible for the positron trapping. (author)

  6. Positron annihilation studies of 4-n-butyl-4'-isothiocyanato-1,1'-biphenyl.

    Science.gov (United States)

    Dryzek, E; Juszyńska, E; Zaleski, R; Jasińska, B; Gorgol, M; Massalska-Arodź, M

    2013-08-01

    Positron annihilation lifetime spectroscopy (PALS) measurements were performed between 93 and 293 K in order to study the supercooled smectic-E (Sm-E) phase of 4-n-butyl-4'-isothiocyanato-1,1'-biphenyl (4TCB), the ordered molecular crystal of 4TCB, and the phase transition between the Sm-E phase and the ordered molecular crystal of 4TCB. The phase transition was well reflected in the abrupt increase of the ortho-positronium (o-Ps) lifetime and intensity. The value of the o-Ps lifetime in the Sm-E liquid crystalline phase of 4TCB, i.e., 2.21 ns at room temperature, was explained by the formation of bubbles induced by Ps atoms, which are created due to a liquidlike state of the butyl chains of 4TCB molecules in the Sm-E phase. The temperature dependence of the o-Ps intensity for the supercooled Sm-E phase can be explained by thermal generation of sites where bubbles are formed; an activation energy equal to 0.30±0.02 eV was estimated. This value was compared with the activation energies of molecular motions. The o-Ps lifetime in the ordered molecular crystal was interpreted as originating from the annihilation of o-Ps confined in molecular vacancy-type imperfections in the crystal lattice. The value of the o-Ps pickoff annihilation between 1.8 and 1.9 ns is in accordance with the size of the molecular vacancy for the 4TCB crystal lattice. Its intensity is lower than 5%. The isothermal crystallization of the 4TCB Sm-E phase was observed by PALS. The low-dimensional crystal growth was concluded from the Avrami equation fitted to the time dependence of the o-Ps intensity, which resulted in an Avrami exponent equal to 1.73.

  7. Free volume modifications in chalcone chromophore doped PMMA films by electron irradiation: Positron annihilation study

    Science.gov (United States)

    Ismayil; Ravindrachary, V.; Praveena, S. D.; Mahesha, M. G.

    2018-03-01

    The free volume related fluorescence behaviour in electron beam irradiated chalcone chromophore doped Poly(methyl methacrylate) (PMMA) composite films have been studied using FTIR, UV-Visible, XRD and Positron Annihilation techniques. From the FTIR spectral study it is found that the formation of polarons and bipolaron takes place due to cross linking as well as chain scission processes at lower and higher doses respectively. It reveals that the formation of various polaronic defect levels upon irradiation is responsible for the creation of three optical energy band gaps within the polymer films as obtained from UV-Visible spectra. The crosslinking process at lower doses increases the distance between the pendant groups to reduce the interchain distance and chain scission process at higher doses decreases interchain separation to enhance the number of polarons in the polymer composites as suggested by XRD studies. The fluorescence studies show the enhancement of fluorescence emission at lower doses and reduction at higher doses under electron irradiation. The positron annihilation study suggests that the low radiation doses induce crosslinking which affect the free volume properties and in turn hinders the chalcone molecular rotation within the polymer composite. At higher doses chain scission process support polymer matrix relaxation and facilitates non-radiative transition of the chromophore upon excitation. This study shows that fluorescence enhancement and mobility of chromophore within the polymer matrix is directly related to the free volume around it.

  8. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Shimazu, A; Shintani, T; Hirose, M; Goto, H; Suzuki, R; Kobayashi, Y

    2013-01-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na + and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na + compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na + that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  9. Influence of excitons interaction with charge carriers on photovoltaic parameters in organic solar cells

    Science.gov (United States)

    Głowienka, Damian; Szmytkowski, Jędrzej

    2018-03-01

    We report on theoretical analysis of excitons annihilation on charge carriers in organic solar cells. Numerical calculations based on transient one-dimensional drift-diffusion model have been carried out. An impact of three quantities (an annihilation rate constant, an exciton mobility and a recombination reduction factor) on current density and concentrations of charge carriers and excitons is investigated. Finally, we discuss the influence of excitons interaction with electrons and holes on four photovoltaic parameters (a short-circuit current, an open-circuit voltage, a fill factor and a power conversion efficiency). The conclusion is that the annihilation process visibly decreases the efficiency of organic photocells, if the annihilation rate constant is greater than 10-15m3s-1 .

  10. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.

    Science.gov (United States)

    Raišys, Steponas; Kazlauskas, Karolis; Juršėnas, Saulius; Simon, Yoan C

    2016-06-22

    Light upconversion (UC) via triplet-triplet annihilation (TTA) by using noncoherent photoexcitation at subsolar irradiance power densities is extremely attractive, particularly for enhanced solar energy harvesting. Unfortunately, practical TTA-UC application is hampered by low UC efficiency of upconverting polymer glasses, which is commonly attributed to poor exciton diffusion of the triplet excitons across emitter molecules. The present study addresses this issue by systematically evaluating triplet exciton diffusion coefficients and diffusion lengths (LD) in a UC model system based on platinum-octaethylporphyrin-sensitized poly(methyl methacrylate)/diphenylanthracene (emitter) films as a function of emitter concentration (15-40 wt %). For this evaluation time-resolved photoluminescence bulk-quenching technique followed by Stern-Volmer-type quenching analysis of experimental data was employed. The key finding is that although increasing emitter concentration in the disordered PMMA/DPA/PtOEP films improves triplet exciton diffusion, and thus LD, this does not result in enhanced UC quantum yield. Conversely, improved LD accompanied by the accelerated decay of UC intensity on millisecond time scale degrades TTA-UC performance at high emitter loadings (>25 wt %) and suggests that diffusion-enhanced nonradiative decay of triplet excitons is the major limiting factor.

  11. Structural study of polymer hydrogel contact lenses by means of positron annihilation lifetime spectroscopy and UV-vis-NIR methods.

    Science.gov (United States)

    Filipecki, J; Kocela, A; Korzekwa, P; Miedzinski, R; Filipecka, K; Golis, E; Korzekwa, W

    2013-08-01

    A study has been conducted in order to determine presence of free volume gaps in the structure of structure of polymer hydrogel contact lenses made in phosphoryl choline technology and of the degree of defect of its structure. The study was made by means of positron annihilation lifetime spectroscopy. As a result of the conducted measurements, curves were obtained, which described numbers of counts of the acts of annihilation in the time function. The conducted studies revealed existence of three components τ(1), τ(2) and τ(3). The τ(3) component is attributed to the pick-off annihilation of o-Ps orthopositronium trapping by free volume gaps and provides information about geometrical parameters of the volumes. At the same time, the UV-vis-NIR spectrometry examination was conducted on the same samples in the spectral range 200-1,000 nm.

  12. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Wechsler, Risa H.

    2018-03-01

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z ≲0.03 ), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, these extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N -body cosmological simulation and demonstrate that the limits are robust, at O (1 ) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.

  13. A theoretical study of exciton energy levels in laterally coupled quantum dots

    International Nuclear Information System (INIS)

    Barticevic, Z; Pacheco, M; Duque, C A; Oliveira, L E

    2009-01-01

    A theoretical study of the electronic and optical properties of laterally coupled quantum dots, under applied magnetic fields perpendicular to the plane of the dots, is presented. The exciton energy levels of such laterally coupled quantum-dot systems, together with the corresponding wavefunctions and eigenvalues, are obtained in the effective-mass approximation by using an extended variational approach in which the magnetoexciton states are simultaneously obtained. One achieves the expected limits of one single quantum dot, when the distance between the dots is zero, and of two uncoupled quantum dots, when the distance between the dots is large enough. Moreover, present calculations-with appropriate structural dimensions of the two-dot system-are shown to be in agreement with measurements in self-assembled laterally aligned GaAs quantum-dot pairs and naturally/accidentally occurring coupled quantum dots in GaAs/GaAlAs quantum wells.

  14. Surface modification and multiple exciton generation studies of lead(II) sulfide nanoparticles

    Science.gov (United States)

    Zemke, Jennifer M.

    2011-12-01

    Solar energy is a green alternative to fossil fuels but solar technologies to date have been plagued by low conversion efficiencies and high input costs making solar power inaccessible to much of the developing world. Semiconductor nanoparticles (NPs) may provide a route to efficient, economical solar devices through a phenomenon called multiple exciton generation (MEG). Through MEG, semiconductor NPs use a high-energy input photon to create more than one exciton (electron-hole pair) per photon absorbed, thereby exhibiting large photoconversion efficiencies. While MEG has been studied in many NP systems, and we understand some of the factors that affect MEG, a rigorous analysis of the NP-ligand interface with respect to MEG is missing. This dissertation describes how the NP ligand shell directly affects MEG and subsequent charge carrier recombination. Chapter I describes the motivation for studying MEG with respect to NP surface chemistry. Chapter II provides an in-depth overview of the transient absorption experiment used to measure MEG in the NP samples. Chapter III highlights the effect of oleic acid and sodium 2, 3-dimercaptopropane sulfonate on MEG in PbS NPs. The differences in carrier recombination were accounted for by two differences between these ligands: the coordinating atom and/or the secondary structure of the ligand. Because of these hypotheses, experiments were designed to elucidate the origin of these effects by controlling the NP ligand shell. Chapter IV details a viable synthetic route to thiol and amine-capped PbS NPs using sodium 3-mercaptopropane sulfonate as an intermediate ligand. With the versatile ligand exchange described in Chapter IV, the MEG yield and carrier recombination was investigated for ligands with varying headgroups but the same secondary structure. The correlation of ligand donor atom to MEG is outlined in Chapter V. Finally, Chapter VI discusses the conclusions and future outlook of the research reported in this dissertation

  15. A Position Annihilation Study of Defect Recovery in Electron-Irradiated alpha-Zr

    DEFF Research Database (Denmark)

    Hood, G. M.; Eldrup, Morten Mostgaard; Mogensen, O. E.

    1977-01-01

    The presence of vacancy defects in α-Zr, irradiated at 320 > T > 290 K with 1.5 MeV electrons, has been indicated by positron annihilation measurements. It was found that positron lifetimes associated with annihilation in well-annealed α-Zr, fell in the range 173 to 181 psec, with no obvious...

  16. Instantaneous Rayleigh scattering from excitons localized in monolayer islands

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis

    2000-01-01

    We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...

  17. Theoretical study of excitonic complexes in semiconductors quantum wells; Estudo teorico de complexos excitonicos em pocos quanticos de semicondutores

    Energy Technology Data Exchange (ETDEWEB)

    Dacal, Luis Carlos Ogando

    2001-08-01

    A physical system where indistinguishable particles interact with each other creates the possibility of studying correlation and exchange effect. The simplest system is that one with only two indistinguishable particles. In condensed matter physics, these complexes are represented by charged excitons, donors and acceptors. In quantum wells, the valence band is not parabolic, therefore, the negatively charged excitons and donors are theoretically described in a simpler way. Despite the fact that the stability of charged excitons (trions) is known since the late 50s, the first experimental observation occurred only at the early 90s in quantum well samples, where their binding energies are one order of magnitude larger due to the one dimensional carriers confinement. After this, these complexes became the subject of an intense research because the intrinsic screening of electrical interactions in semiconductor materials allows that magnetic fields that are usual in laboratories have strong effects on the trion binding energy. Another rich possibility is the study of trions as an intermediate state between the neutral exciton and the Fermi edge singularity when the excess of doping carriers is increased. In this thesis, we present a theoretical study of charged excitons and negatively charged donors in GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum wells considering the effects of external electric and magnetic fields. We use a simple, accurate and physically clear method to describe these systems in contrast with the few and complex treatments s available in the literature. Our results show that the QW interface defects have an important role in the trion dynamics. This is in agreement with some experimental works, but it disagrees with other ones. (author)

  18. Study of the ortho-positron annihilation process in zeolite Y

    International Nuclear Information System (INIS)

    Alvarado D, M. E.

    2010-01-01

    For several years a great interest has existed for the study of the natural and synthetic zeolites due to its properties. The porosity, one of their main characteristics allows that these materials are used as molecular sieves, catalysts, gases drying, etc. In order to investigating the porosity and other zeolite properties one carries out the study of the process of positron annihilation lifetime spectroscopy (Pals). This is a technique that provides information about the size and the pores form since is highly sensitive to the free volume and the superficial area of those porous materials as the zeolites. The study began with the elaboration of zeolite Y tablets in a hydraulic press where different pressures (from 0 to 1.26 GPa) and masses (70, 80 and 100 mg) were proven to obtain the estimate porosity of each tablet. A graph was elaborated and the effect of the mass and pressure with regard to the zeolite porosity was analyzed. Later on, the powder and tablets of 70 mg were characterized by means of X-ray diffraction (the glass size, interplanar distance, length and the volume of the unitary cell); scanning electron microscopy (the particles size and morphology); thermo gravimetric analysis (dehydration temperature and the stability up to 700 C) and the Brunauer Emmett Teller method (specific area). After the zeolite Y tablets characterization was carried out the positron annihilation process by means of Pals where its free volume of zeolite Y was analyzed, which includes to the structural cavities and the interparticle volume. The powdered zeolite was analyzed to different experimental conditions (preparation of the sample and the Pals equipment) to obtain the optimal conditions (a window with a time of 400 ns and a enlarged energy window) of analysis. On the other hand, the tablets were analyzed under optimal conditions to obtain the four components of time and intensity (τ, Ι), result of the different ways of positrons annihilation in the zeolite. These

  19. Quasienergy Spectroscopy of Excitons

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1999-01-01

    We theoretically study nonlinear optics of excitons under intense THz irradiation. In particular, the linear near-infrared absorption and resonantly enhanced nonlinear sideband generation are described. We predict a rich structure in the spectra which an be interpreted in terms of the quasienergy...

  20. Positron annihilation spectroscopy studies of bronze exposed to sandblasting at different pressure

    Science.gov (United States)

    Kurdyumov, S.; Siemek, K.; Horodek, P.

    2017-11-01

    An application of Doppler broadening of annihilation line spectroscopy to samples of beryllium bronze DIN-CuBe2 exposed to sandblasting is presented in performed studies. It is familiar that sandblasting introduces open-volume defects. Samples were sandblasted under different pressure for 1 minute using 110 μm particles of Al2O3. For a non-defected sample the constant value of S-parameter was detected. In the cases of sandblasted samples, S-parameter decreased when the depth enhanced. In our studies the thicknesses of defected zones were determined (it was c.a. 30 μm for a sample blasted under pressure of 1 bar and 110 μm – for 5 bar), and it was also observed that if sandblasting pressure is higher the defected zone is larger.

  1. 3D-AP and positron annihilation study of precipitation behavior in Cu-Cr-Zr alloy

    DEFF Research Database (Denmark)

    Hatakeyama, M.; Toyama, T.; Yang, J.

    2009-01-01

    Precipitation behavior in a Cu-0.78%Cr-0.13%Zr alloy during aging and reaging has been studied by laser-assisted local electrode three-dimensional atom probe (Laser-LEAP) and positron annihilation spectroscopy (PAS). After the prime aging at 460 degrees C, Cr clusters enriched with Zr were observed...

  2. Chemical environment in halogenated styrene polymers studied by using positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Zhang, R.; Wu, Y.C.; Chen, H.; Zhang, J.; Li, Y.; Sandreczki, T.C.; Jean, Y.C.

    2003-01-01

    Polystyrene samples, incorporated with halogen elements (F, Cl, Br, I) on the para-position of the benzene ring, were studied using positron annihilation lifetime spectroscopy. It was found that the free-volume hole size is significantly affected by the internal Coulombic interaction of the halogen group, and is mainly related to the electronegativity of halogen-carbon bonds. In addition, it is found that the free-volume is secondarily modified by the steric effect of the side groups. The intensity of o-Ps has a linear relationship with the strength of the C-X bond and is strongly affected by the chemical environment in a halogenated styrene polymer system

  3. Fe-Cr alloys studied by positron annihilation lifetime technique after helium implantation

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir; Krsjak, Vladimir; Petriska, Martin; Sojak, Stanislav [Slovak Univ. of Technology, Bratislava (Slovakia). Dept. of Nuclear Physics and Technology; Egger, Werner [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. fuer Angewandte Physik und Messtechnik

    2009-07-01

    The present work demonstrates that conventional positron annihilation lifetime spectroscopy can provide valuable information about the microstructure of helium implanted Fe-Cr alloys. At the same time the connection between results from this technique and the PLEPS lifetime measurements has been studied. Positron lifetime experiments show that chromium plays an important role in the formation of the microstructure under radiation treatment. In particular, higher chromium content in FeCr alloys leads to a higher density of uniformly distributed small defects. Depth profiles of defects, obtained with PLEPS, in the helium implanted region reflect the helium implantation profiles and show the creation of small vacancy clusters and large voids. These defects cannot be observed by any other technique in a non-destructive way. (orig.)

  4. Triplet exciton dynamics

    International Nuclear Information System (INIS)

    Strien, A.J. van.

    1981-01-01

    Results are presented of electron spin echo experiments combined with laser flash excitation on triplet states of aromatic molecules. Some of the theoretical and experimental aspects of the photoexcited triplet state are discussed in detail and the electron spin echo spectrometers and laser systems are described. All the experiments described in this thesis were performed at liquid helium temperatures. An account is given of the ESE experiments performed on the photoexcited, non-radiative, triplet state of pentacene in napthalene. This is an example of the ESE technique being used to ascertain the zero-field splitting parameters, the populating and depopulating rates, and the orientation of the pentacene molecules in the naphthalene host. A combination of high resolution laser flash excitation and electron-spin echoes in zero-magnetic field allowed the author to observe directly k(vector)→k(vector)' exciton scattering processes in the one-dimensional triplet excitons in tetrachlorobenzene for the first time. Additional experimental data about exciton scattering is provided and a study of the orientational dependence of the spin-lattice relaxation of the triplet excitons in an external magnetic field is described. (Auth.)

  5. Development of a pico-second life-time spectrometer for positron annihilation studies

    International Nuclear Information System (INIS)

    Pujari, P.K.; Datta, T.; Tomar, B.S.; Das, S.K.

    1992-01-01

    Positron annihilation technique is a sensitive probe to investigate various physico-chemical phenomena due to the ability to provide information about the electron momentum and density in any medium. While measurements on the Doppler broadening and angular correlation of annihilation photons provide information about the electron momentum, the electron density at the annihilation site is obtained, by the positron life-time measurement. This report describes the development, optimization and calibration of a high resolution life-time spectrometer (FWHM=230 ps), based on fast-fast coincidence technique, a relatively new concept in nuclear timing spectroscopy. (author). 4 refs., 9 figs., 1 tab

  6. Studies of the subsurface zone created in aluminium and its alloys by means of positron annihilation and complementary methods

    International Nuclear Information System (INIS)

    Dryzek, E.

    2008-01-01

    There are presented the results of the studies of the subsurface zone created in aluminium and its alloys during sliding or other surface modification treatments. The application of the positron annihilation techniques due to their high sensitivity to crystal lattice defects enabled to determine defects profiles in the subsurface zone. The positron annihilation studies were correlated with other conventional measurements applied in tribology, i.e. microhardness measurements, scanning electron microscopy, X-ray diffraction and in a special case stress distribution calculated theoretically. It was shown that the positron annihilation spectroscopy is a useful tool for profiling of the subsurface zone created during sliding even for light metals their alloys and composites. The total range of the subsurface zone detected by the positron annihilation extends from 50 μm to 450 μm depending on the material studied and surface modification treatment. Additionally, the type of the main defects can be determined. The studies of the pure aluminium samples after dry sliding enabled to find the defect concentration of vacancy type in the depth less then 1 μm and to correlate its value with the size of crystallites. It supports the conclusion on recovery processes taking place in this layer. There was made the attempt to apply the Doppler broadening coincidence spectroscopy to the studies of aluminium alloy and composite. In view of the interdisciplinary character the present thesis enclose also the review of the basic issues of tribology, measurement methods applied to the subsurface zone studies and positron annihilation experimental techniques. (author)

  7. Application of the theory of excitons to study the formation of positronium and optical transition in matter

    Science.gov (United States)

    Pietrow, M.

    2018-04-01

    Considerable similarity between a positronium atom and an exciton in a quantum dot is indicated. Following this, we apply the calculation regime from the theory of excitons to describe an electron - positron pair near a free volume in matter where the positronium is created. It is shown that, in general, this actual confined state cannot be equated to a classical atom in vacuum. Besides the release of the energy of the pair in the phononic way during the Ps formation, we analyse the possibility of photonic deexcitation and show the way of calculation of its probability. The optical transitions speculated here are dependent on the electronic properties of the matter and, if detected, could allow improving experimental studies of solid matter properties with positron techniques.

  8. Theoretical study on the cooperative exciton dissociation process based on dimensional and hot charge-transfer state effects in an organic photocell

    International Nuclear Information System (INIS)

    Shimazaki, Tomomi; Nakajima, Takahito

    2016-01-01

    This paper discusses the exciton dissociation process at the donor–acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron–hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behavior between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.

  9. Positron Annihilation in Carbon Nanotubes Studied by Coincidence Doppler Broadening Spectroscopy

    Science.gov (United States)

    Murakami, H.; Sato, K.; Kanazawa, I.; Sano, M.

    2008-05-01

    In order to assign the sites of positron annihilation, coincidence Doppler broadening spectra were measured for a highly oriented pyrolytic graphite crystal, graphite powder, multi-walled carbon nanotubes (MNTs) and cup-stacked carbon nanotubes (CNTs). The spectrum for graphite powder normalized to that for highly oriented pyrolytic graphite (HOPG) is almost flat in the momentum region from 7×10-3 to 13×10-3 mec, having a ratio close to unity. The flat spectrum demonstrates that positrons injected into graphite powder annihilate in the interlayer spaces of piled graphite sheets, in the same manner as positrons in highly oriented pyrolytic graphite annihilate in the bulk. The coincidence Doppler broadening spectra for MNTs and CNTs are quite different from that for highly oriented pyrolytic graphite, which indicates that positrons injected into MNTs and CYTs annihilate not in the bulk, but on surface. The positron lifetime spectrum for multi-walled carbon nanotubes is analyzed in terms of a single component due to surface-trapped positrons, while that for CNTs is decomposed into three components attributable to para-positronium surface-trapped positrons and ortho-positronium. The difference between the coincidence Doppler broadening spectrum for CNTs and that for MNTs is explained in terms of positron annihilation on zigzag surfaces of CNTs which are composed of both graphite-sheet and graphite-edge planes.

  10. Exciton dynamics at the heteromolecular interface between N,N′-dioctyl-3,4,9,10-perylenedicarboximide and quaterrylene, studied using time-resolved photoluminescence

    Directory of Open Access Journals (Sweden)

    Nobuya Hiroshiba

    2014-06-01

    Full Text Available To elucidate the exciton dynamics at the heteromolecular interface, the temperature dependence of time-resolved photoluminescence (TRPL spectra of neat-N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8 and PTCDI-C8/Quaterrylene (QT heteromolecular thin films was investigated. The lifetimes of excitons were evaluated to identify the Frenkel (FE, high energy charge-transfer (CTEhigh, low energy charge-transfer (CTElow, and excimer exciton states. The thermal activation energy (Δact of CTElow in PTCDI-C8 thin film was evaluated as 25 meV, which is 1/5 of that of FE, indicating that CTElow is more thermally sensitive than FE in PTCDI-C8 thin film. We investigated the exciton transport length (l along the vertical direction against the substrate surface in PTCDI-C8/QT thin film at 30 K, and demonstrated that lFE = 9.9 nm, lCTElow = 4.2 nm, lCTEhigh = 4.3 nm, and lexcimer = 11.9 nm. To elucidate the difference in l among these excitons, the activation energies (Ea for quenching at the heteromolecular interface were investigated. Ea values were estimated to be 13.1 meV for CTElow and 18.6 meV for CTEhigh. These values agree with the thermal sensitivity of CTEs as reported in a previous static PL study. This latter situation is different from the case of FE and excimer excitons, which are transported via a resonant process and have no temperature dependence. The small Ea values of CTEs suggest that exciton transport takes place via a thermal hopping process in CTEs. The present experimental study provides information on nano-scaled exciton dynamics in a well-defined PTCDI-C8 (2 ML/QT (2 ML system.

  11. Ion implantation induced defects in Fe-Cr alloys studied by conventional positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, V [Joint Research Centre, Institute for Energy, European Commission, PO Box 2, 1755 ZG Petten (Netherlands); Sojak, S; Slugen, V; Petriska, M, E-mail: vladimir.krsjak@ec.europa.eu [Department of Nuclear Physics and Technology, FEI, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2011-01-10

    The influence of chromium on the radiation damage resistance of the iron based alloys has been studied using conventional positron annihilation lifetime spectroscopy (PALS). Experimental data evaluation has been supported by the former theoretical calculation of positron lifetimes in the studied materials and well-defined types of defects. For this purpose, density functional theory (DFT) computation method has been applied. The spectrum of used {sup 22}Na positron source was decomposed into discrete fractions to better calculate efficiency of near surface layers study. For the experimental simulation of a-radiation and obtaining of defined cascade collisions in the materials, helium implantation was used. Different level of the implanted dose (6.24x10{sup 17} - 3.12x10{sup 18} cm{sup -2}) corresponds to local damage up to 90 DPA acquired in thin <1 {mu}m region. Experimental measurement has been performed using the PALS technique on the four different Fe-Cr binary alloys (2.36; 4.62; 8.39; 11.62 wt% of Cr). The results showed that chromium has a significant effect on the size and density of the implanted defects and specific Cr content should prevent the vacancy clusters formation.

  12. Study of microstructure of modified polyethylene films with acrylic and methacrylic acids, by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Lopez C, R.

    1995-09-01

    Low density polyethylene (LDPE) was preirradiated with γ -rays and after some contact time with the monomers AA and MAA, suitable graft copolymers were obtained at different grafting grades. After their physical-chemistry characterization, the copolymers were studied using the Positron Annihilation Lifetime Spectroscopy (PALS). Owing to its sensitive and non-destructive nature PALS has proven to be very useful in studying free-volume properties -at the molecular level- during phase transitions in molecular solids, such as the graft copolymers of LDPE/AA and LDPE/MAA. Using PALS it was possible to detect the changes in the melting point of the LDPE as a function of the grafting degree, obtaining thus, valuable information about the microstructure of this kind of copolymers. The increase in the values of the o-Ps lifetime, was interpreted as suggesting that the melting transition is followed by a free-volume cavity expansion as the temperature increased. The o-Ps intensity of formation behavior is in accord with the distortions occurring in the electronic density surrounding the o-Ps as well as the changes in the number of cavities available to the formation of o-Ps. (Author)

  13. Irradiation-induced defects in InN and GaN studied with positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Reurings, Floris; Tuomisto, Filip [Department of Applied Physics, Aalto University, Espoo (Finland); Egger, Werner; Loewe, Benjamin [Institut fuer Angewandte Physik und Messtechnik, Universitaet der Bundeswehr Muenchen, Neubiberg (Germany); Ravelli, Luca [Dipartimento di Fisica, Universita degli studi di Trento, Povo (Italy); Sojak, Stanislav [Department of Nuclear Physics and Technology, Slovak University of Technology in Bratislava (Slovakia); Liliental-Weber, Zuzanna; Jones, Rebecca E.; Yu, Kin M.; Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Schaff, William J. [Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY (United States)

    2010-05-15

    We use positron annihilation to study 2-MeV {sup 4}He{sup +} irradiated and subsequently rapid-thermal-annealed InN grown by molecular-beam epitaxy and GaN grown by metal-organic chemical-vapour deposition. The irradiation fluences were in the range 5 x 10{sup 14}-2 x 10{sup 16}cm{sup -2}. In vacancies are introduced in the irradiation at a low rate of 100 cm{sup -1}, with their concentration saturating in the mid-10{sup 17} cm{sup -3} range at an irradiation fluence of 2 x 10{sup 15} cm{sup -2}. The annealing, performed at temperatures between 425 and 475 C, is observed to result in an inhomogeneous redistribution of the In vacancies. The behaviour is opposite to GaN, where Ga vacancies are introduced at a much higher rate of 3600 cm{sup -1} showing no detectable saturation. About half of the Ga vacancies are found to recover in the annealing, in agreement with previous studies, while the remaining Ga vacancies undergo no spatial redistribution. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Positron annihilation studies of mesoporous silica films using a slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi; Ito, Kenji; Kabayashi, Yoshinori

    2006-01-01

    Positron annihilation lifetime spectra were measured for mesoporous silica films, which were synthesized using triblock copolymer (EO 106 PO 70 EO 106 ) as a structure-directing agent. Different positron lifetime spectra for the deposited and calcined films indicated the formation of meso-structure after calcination, which was confirmed by Fourier transform infrared (FTIR) spectra and field emission-scanning electron microscopy (FE-SEM) observation. Open porosity or pore interconnectivity of a silica film might be evaluated by a two-dimensional positron annihilation lifetime spectrum of an uncapped film. Pore sizes and their distributions in the silica films were found to be affected by thermal treatments

  15. Studies of Phase Transformation in Molecular Crystals Using the Positron Annihilation Technique

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Lightbody, David; Sherwood, John N.

    1980-01-01

    An examination has been made of the brittle/plastic phase transformation in the molecular crystals cyclohexane, DL-camphene and succinonitrile using the positron annihilation technique. In each material, the transition is characterized by a distinct increase in ortho-positronium lifetime. The inf......An examination has been made of the brittle/plastic phase transformation in the molecular crystals cyclohexane, DL-camphene and succinonitrile using the positron annihilation technique. In each material, the transition is characterized by a distinct increase in ortho-positronium lifetime...

  16. Experimental studies of unbiased gluon jets from $e^{+}e^{-}$ annihilations using the jet boost algorithm

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2004-01-01

    We present the first experimental results based on the jet boost algorithm, a technique to select unbiased samples of gluon jets in e+e- annihilations, i.e. gluon jets free of biases introduced by event selection or jet finding criteria. Our results are derived from hadronic Z0 decays observed with the OPAL detector at the LEP e+e- collider at CERN. First, we test the boost algorithm through studies with Herwig Monte Carlo events and find that it provides accurate measurements of the charged particle multiplicity distributions of unbiased gluon jets for jet energies larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive unbiased measurements of the gluon jet multiplicity distribution for energies between about 5 and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with our earlier results at 40 GeV, we then test QCD calculations for the en...

  17. Effect of Hydrogen on Vacancy Formation in Sputtered Cu Films Studied by Positron Annihilation Spectroscopy

    Science.gov (United States)

    Yabuuchi, Atsushi; Kihara, Teruo; Kubo, Daichi; Mizuno, Masataka; Araki, Hideki; Onishi, Takashi; Shirai, Yasuharu

    2013-04-01

    As a part of the LSI interconnect fabrication process, a post-deposition high-pressure annealing process is proposed for embedding copper into trench structures. The embedding property of sputtered Cu films has been recognized to be improved by adding hydrogen to the sputtering argon gas. In this study, to elucidate the effect of hydrogen on vacancy formation in sputtered Cu films, normal argon-sputtered and argon-hydrogen-sputtered Cu films were evaluated by positron annihilation spectroscopy. As a result, monovacancies with a concentration of more than 10-4 were observed in the argon-hydrogen-sputtered Cu films, whereas only one positron lifetime component corresponding to the grain boundary was detected in the normal argon-sputtered Cu films. This result means monovacancies are stabilized by adding hydrogen to sputtering gas. In the annealing process, the stabilized monovacancies began clustering at around 300 °C, which indicates the dissociation of monovacancy-hydrogen bonds. The introduced monovacancies may promote creep deformation during high-pressure annealing.

  18. Exciton formation and stability in semiconductor heterostructures

    Science.gov (United States)

    Siggelkow, S.; Hoyer, W.; Kira, M.; Koch, S. W.

    2004-02-01

    The formation and stability of excitons in semiconductors is studied on the basis of a microscopic model that includes Coulomb interacting fermionic electrons and holes as well as phonons. Whereas quasiequilibrium calculations predict substantial exciton fractions coexisting with an electron-hole plasma at low temperatures and densities, dynamic calculations reveal that the exciton formation times under these conditions exceed the characteristic lifetimes. At elevated densities, good agreement between dynamical and quasiequilibrium calculations is obtained.

  19. Positron annihilation lifetime studies of changes in free volume on some biorelevant nitrogen heterocyclic compounds and their S-glycosylation

    International Nuclear Information System (INIS)

    Mahmoud, K.R.; Khodair, A.I.; Shaban, S.Y.

    2015-01-01

    A series of N-heterocyclic compounds was investigated by positron annihilation lifetime spectroscopy as well as Doppler broadening of annihilation radiation (DBAR) at room temperature. The results showed that the formation probability and life time of ortho-positronium in this series are structure and electron-donation character dependent, and can give more information about the structure. The DBAR provides direct information about the change of core and valance electrons as well as the number of defect types present in these compounds. - Highlights: • N-heterocyclic compounds were studied by PALS and DBAR at room temperature. • These compounds contain thiohydantoins which have wide applications as anticarcinogenic, antiviral, human immunodeficiency virus (HIV) and antimicrobial activity. • The DBAR provides direct information about the change of core and valance electrons as well as the number of defect types present in these compounds.

  20. Scaling laws of Rydberg excitons

    Science.gov (United States)

    Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.

    2017-09-01

    Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to

  1. Exciton Splitting of Adsorbed and Free 4-Nitroazobenzene Dimers: A Quantum Chemical Study.

    Science.gov (United States)

    Titov, Evgenii; Saalfrank, Peter

    2016-05-19

    Molecular photoswitches such as azobenzenes, which undergo photochemical trans ↔ cis isomerizations, are often mounted for possible applications on a surface and/or surrounded by other switches, for example, in self-assembled monolayers. This may suppress the isomerization cross section due to possible steric reasons, or, as recently speculated, by exciton coupling to neighboring switches, leading to ultrafast electronic quenching (Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831). The presence of exciton coupling has been anticipated from a blue shift of the optical absorption band, compared to molecules in solution. From the theory side the need arises to properly analyze and quantify the change of absorption spectra of interacting and adsorbed switches. In particular, suitable methods should be identified, and effects of intermolecule and molecule-surface interactions on spectra should be disentangled. In this paper by means of time-dependent Hartree-Fock (TD-HF), various flavors of time-dependent density functional theory (TD-DFT), and the correlated wave function based coupled-cluster (CC2) method we investigated the 4-nitroazobenzene molecule as an example: The low-lying singlet excited states in the isolated trans monomer and dimer as well as their composites with a silicon pentamantane nanocluster, which serves also as a crude model for a silicon surface, were determined. As most important results we found that (i) HF, CC2, range-separated density functionals, or global hybrids with large amount of exact exchange are able to describe exciton (Davydov) splitting properly, while hybrids with small amount of exact exchange fail producing spurious charge transfer. (ii) The exciton splitting in a free dimer would lead to a blue shift of the absorption signal; however, this effect is almost nullified or even overcompensated by the shift arising from van der Waals interactions between the two molecules. (iii) Adsorption on the Si "surface" leads to a further

  2. A study of Two Photon Decays of Charmonium Resonances Formed in Proton Anti-Proton Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Pedlar, Todd Kristofer [Northwestern Univ., Evanston, IL (United States)

    1999-06-01

    In this dissertation we describe the results of an investigation of the production of charmonium states (ηc, η'c, χ0 and χ2) in Fermilab experiment E835 via antiproton-proton annihilation and their detection via their decay into two photons.

  3. Contribution for study on positron annihilation in tris (dipivaloilmethanates) lanthanides (III)

    International Nuclear Information System (INIS)

    Ribeiro e Silva, M.E.S.

    1988-01-01

    Some data on life time of positron and annihilation by Doppler effect in tris (dipivaloilmethanates) lanthanides (III), Ln (dpm) 3 , and Ln = Eu, Gd, Dy, Ho, Er, Tm and Yb are shown. Some results from positronium (Ps) in complexes except Eu (dpm) 3 , chemical aspects and properties of positron and positronium are evaluated. (M.J.C.) [pt

  4. A study on lead myristate (LM) soap film crystal by positron annihilation life spectroscopy

    International Nuclear Information System (INIS)

    Shi Zikang; Yu xianchun

    1992-01-01

    The quality of the LM soap film crystal is determined by means of the positron annihilation life spectroscopy. It is found that the technology to be used to make soap film will influence the film quality and the film quality can be improved by a reasonable heat treatment

  5. Positron annihilation study on Y-Ba-Cu-O high Tc superconductors

    International Nuclear Information System (INIS)

    Balogh, A.G.; Liszkay, L.; Molnar, B.; Puff, W.

    1987-08-01

    First positron annihilation measurements are reported on high T c superconductor YBa 2 Cu 3 O 7-x . The lifetime and Doppler broadening spectra show a slight but significant change about 240K suggesting a deviation from the normal structure far above 90K where the resistance falls to zero. (author)

  6. A Positron Annihilation Study of Copper Containing a High Concentration of Krypton

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Evans, John H.

    1982-01-01

    Bulk Cu samples containing up to 4 at.% Kr have been produced by the Harwell combined ion implantation and sputtering method at temperatures near ambient, and then examined by the positron annihilation technique. Both angular correlation and lifetime measurements were made and, in addition...

  7. Positron annihilation lifetime studies of SrTiO.sub.3./sub. crystal and ceramic materials

    Czech Academy of Sciences Publication Activity Database

    Keeble, D.J.; McGuire, R.; Singh, S.; Su, B.; Button, T.W.; Petzelt, Jan

    2005-01-01

    Roč. 128, - (2005), s. 111-114 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z10100520 Keywords : positron annihilation * SrTiO 3 crystal * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.389, year: 2005

  8. Miscibility and Crystallization Behavior of Poly (3- Hydroxybutyrate) and Poly (Ethylene Glycol) Blends Studied by Positron Annihilation Spectroscopy

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Hammam, A.M.

    2010-01-01

    Poly (3-hydroxybutyrate) (PHB) is linear stereo regular aliphatic polyester synthesized by some bacteria as a store of carbon and energy. Because of its high biocompatibility and the ability to be fully biodegraded, PHB is of special interest in medicine. To improve the physiochemical properties of PHB, Polyethylene glycol (PEG) was used for modifications of PHB. By using the chloroform as co-solvent a series of (PHB/PEG) blend with different ratio ranging from 100:0.0 (wt %) to 50:50 (wt %) was prepared by solution casting-technique. Positron Annihilation Lifetime (PAL) technique has been applied to study the effect of addition PEG on the structure of PHB. The positron annihilation lifetime measurements were performed with a conventional fast-fast coincidence system. The lifetime parameter, ι3 which represents the ortho-positronium atom (o-Ps) lifetime and I 3 which reflects the (o-Ps) intensity, give indication of the free-volume size and concentration respectively. Positron annihilation lifetime measurements showed that, ι3 increases by increasing PEG ratio until the concentration (80:20 wt %) then start to decrease by increasing PEG ratio. The obtained results are in agreement with the results of X-ray diffraction.

  9. Bi donor hyperfine state populations studied by optical transitions of donor bound excitons in enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Ilkhchy, K. Saeedi; Steger, M.; Thewalt, M. L. W. [Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Abrosimov, N.; Riemann, H. [Leibniz-Institut für Kristallzüchtung, 12489 Berlin (Germany); Becker, P. [PTB Braunschweig, 38116 Braunschweig (Germany); Pohl, H.-J. [Vitcon Projectconsult GmbH, 07745 Jena (Germany)

    2013-12-04

    We report on the first optical studies of Bi donor bound excitons in {sup 28}Si, using absorption rather than emission spectroscopy, and a new noncontact photoconductivity method which has much higher sensitivity and spectral resolution than photoluminescence spectroscopy. Individual hyperfine components of this potential semiconductor qubit can be resolved under an applied magnetic field, and we find that strong nonresonant optical hyperpolarization towards both the I{sub z} = +9/2 and −9/2 hyperfine states can be observed, depending on the intensity of the above-gap excitation.

  10. Deuterium trapping at vacancy clusters in electron/neutron-irradiated tungsten studied by positron annihilation spectroscopy

    Science.gov (United States)

    Toyama, T.; Ami, K.; Inoue, K.; Nagai, Y.; Sato, K.; Xu, Q.; Hatano, Y.

    2018-02-01

    Deuterium trapping at irradiation-induced defects in tungsten, a candidate material for plasma facing components in fusion reactors, was revealed by positron annihilation spectroscopy. Pure tungsten was electron-irradiated (8.5 MeV at ∼373 K and to a dose of ∼1 × 10-3 dpa) or neutron-irradiated (at 573 K to a dose of ∼0.3 dpa), followed by post-irradiation annealing at 573 K for 100 h in deuterium gas of ∼0.1 MPa. In both cases of electron- or neutron-irradiation, vacancy clusters were found by positron lifetime measurements. In addition, positron annihilation with deuterium electrons was demonstrated by coincidence Doppler broadening measurements, directly indicating deuterium trapping at vacancy-type defects. This is expected to cause significant increase in deuterium retention in irradiated-tungsten.

  11. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures

    Directory of Open Access Journals (Sweden)

    Paweł Horodek

    2017-11-01

    Full Text Available Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples.

  12. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures.

    Science.gov (United States)

    Horodek, Paweł; Siemek, Krzysztof; Dryzek, Jerzy; Wróbel, Mirosław

    2017-11-23

    Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples.

  13. A study of some properties for substituted Li-ferrite using positron annihilation lifetime technique

    Directory of Open Access Journals (Sweden)

    E. Hassan Aly

    2015-01-01

    Full Text Available Positron annihilation lifetime spectroscopy (PALS is used to investigate polycrystalline substituted Li-ferrite samples. The dray ceramic technique was used to prepare all investigated samples. The variation of positron annihilation parameters I1%, I2%, τ1, and τ2 has been demonstrated with porosity and the initial permeability against the ionic radii of substituted ions for Li ferrite. The grain size (G.S. increased with increasing the ionic radii of the substituted ions for Li-ferrite. The correlation between I2 and τ2 has opposite behavior with the ionic radii of the substituted ions. Whereas the correlation between I1 and τ1; has nearly the same behavior with the ionic radii of the substituted ions except for V and Gd samples. There is mostly a direct correlation between the electrical resistivity and I2 values except for Sm sample with increasing the ionic radii of substituted ions.

  14. Characterization of lacunar defects by positrons annihilation

    CERN Document Server

    Barthe, M F; Blondiaux, G

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spec...

  15. Positron annihilation in the interstellar medium

    Science.gov (United States)

    Guessoum, Nidhal; Ramaty, Reuven; Lingenfelter, Richard E.

    1991-01-01

    Positronium formation and annihilation are studied in a model for the interstellar medium consisting of cold cloud cores, warm partially ionized cloud envelopes, and hot intercloud gas. The gamma-ray spectra resulting from positron annihilation in these components of the interstellar medium are calculated. The spectra from the individual components are then combined, using two limiting assumptions for the propagation of the positrons, namely, that the positrons propagate freely throughout the interstellar medium, and that the positrons are excluded from the cold cloud cores. In the first case, the bulk of the positrons annihilate in the cloud cores and the annihilation line exhibits broad wings resulting from the annihilation of positronium formed by charge exchange in flight. In the second case, the positrons annihilate mainly in the warm envelopes, and the line wings are suppressed.

  16. Evolution of porosity in a Portland cement paste studied through positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Consolati, G.; Quasso, F.

    2003-01-01

    Positron annihilation lifetime spectroscopy experiments were carried out in an ordinary Portland cement paste characterized by a water-to-cement ratio w/c=0.8, in order to monitor the porosity of the paste. It was found that ortho-positronium intensity is a suitable quantity to this purpose, being sensitive to the amount of water contained in the pores. The experimental data show good agreement with the porosity calculated according to the Powers' thin filmsodel

  17. Positron annihilation lifetime study of extended defects in semiconductor glasses and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Boyko, Olha [Department of Pediatric Dentistry, Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010 Lviv (Ukraine); Shpotyuk, Yaroslav [Department of Optoelectronics and Information Technologies, Ivan Franko National University of Lviv, Dragomanova str. 50, 79005 Lviv (Ukraine); Lviv Scientific Research Institute of Materials, Scientific Research Company ' ' Carat' ' , Stryjska str. 202, 79031 Lviv (Ukraine); Filipecki, Jacek [Institute of Physics, Jan Dlugosz University in Czestochowa, Armii Krajowej al. 13/15, 42200 Czestochowa (Poland)

    2013-01-15

    The processes of atomic shrinkage in network-forming solids initiated by external influences are tested using technique of positron annihilation lifetime spectroscopy at the example of chalcogenide vitreous semiconductors of arsenic sulphide type and acrylic polymers for dental application. Two state positron trapping is shown to be responsible for atomic shrinkage in chalcogenide glasses, while mixed trapping and ortho-positronium decaying is character for volumetric densification and stress propagation in acrylic dental polymers. At the basis of the obtained results it is concluded that correct analysis of externally-induced shrinkage in polymer networks under consideration can be developed by using original positron lifetime data treatment algorithms to compensate defect-free bulk annihilation channel within two-state positron trapping model and account for an interbalance between simultaneously co-existing positron trapping and orth-positronium related decaying channels within mixed three-state positron annihilation model (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Positron annihilation lifetime study of extended defects in semiconductor glasses and polymers

    International Nuclear Information System (INIS)

    Boyko, Olha; Shpotyuk, Yaroslav; Filipecki, Jacek

    2013-01-01

    The processes of atomic shrinkage in network-forming solids initiated by external influences are tested using technique of positron annihilation lifetime spectroscopy at the example of chalcogenide vitreous semiconductors of arsenic sulphide type and acrylic polymers for dental application. Two state positron trapping is shown to be responsible for atomic shrinkage in chalcogenide glasses, while mixed trapping and ortho-positronium decaying is character for volumetric densification and stress propagation in acrylic dental polymers. At the basis of the obtained results it is concluded that correct analysis of externally-induced shrinkage in polymer networks under consideration can be developed by using original positron lifetime data treatment algorithms to compensate defect-free bulk annihilation channel within two-state positron trapping model and account for an interbalance between simultaneously co-existing positron trapping and orth-positronium related decaying channels within mixed three-state positron annihilation model (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Key Laboratory of Nuclear Solid State Physics, Wuhan University (WHU), Wuhan (China)

    2016-03-15

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V{sub Cu}, V{sub O}) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V{sup −}{sub Cu} - V{sup +}{sub O} complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  20. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    Science.gov (United States)

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    KAUST Repository

    Andernach, Rolf

    2015-07-22

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple timescales and investigated the mechanism of triplet exciton formation. During sensitization, single exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and find that 60% of the complex triplet excitons are transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and up-conversion layers.

  2. [Study of exciton generation region of phosphorescent light emitting devices based on the changing electric field].

    Science.gov (United States)

    Liu, Xu-dong; Zhao, Su-ling; Song, Dan-dan; Zhan, Hong-ming; Yuan, Guang-cai; Xu, Zheng

    2009-09-01

    The changes of exciton generation region are influenced by varying electric field, which affect the color and efficiency performance of devices. Firstly, The authors fabricated two types of phosphorescent light emitting devices, device 1:ITO/PEDOT : PSS/PVK : Ir(ppy)s : DCJTB (100:2:1 wt)/BCP(10 nm)/Alq3 (15 nm)/Al, and device 2: ITO/PEDOT : PSS/ PVK : Ir(ppy)3 (100:2 wt)/BCP (10 nm)/Alq3(15 nm)/Al. The authors investigated the influences of electric field on exciton generation region in single-layer and multi-doped structure devices. Analysis of the electroluminescence spectrum under different voltages indicates that the emitting of Ir(ppy)3, PVK and DCJTB was enhanced with the increase in applied voltages. Compared to Ir(ppy)3, the emitting of PVK and DCJTB was prominently enhanced. This is because under high electric field it is easier high energy carrier to generate high energy exciton, and the emitting of wide-band-gap material PVK is stronger; on the other hand, the authors investigated the results from the aspect of energy band gap. DCJTB is narrow-band-gap material, which can capture carrier comparatively easily and emit stronger light. At the same time, we obtained a new emission peak located at 460 nm, which becomes comparatively weak with increasing voltage. In order to explore the reason, we fabricated the device: ITO/ PEDOT: PSS/PVK : BCP : Ir(ppy)3 (x:y:2 wt)/Alq3 (15 nm)/Al. The 460 nm emission peak doesn't disappear by changing the mass ratio of x and y. The authors speculate that the emission peak relates to PVK and BCP.

  3. Bimolecular Recombination Kinetics of an Exciton-Trion Gas

    Science.gov (United States)

    2015-07-01

    particles are created and annihilated in pairs so that there is no accumulation of charge. However, this approach is rigorously correct only for a...8 ~ ( )22 23.75 10 photons/ cm s× ⋅ . A quantum yield for electron-hole pair creation of 0.004 would create a generation flux G within the...hole pairs , magenta—excitons, and blue—trions. The final parameter of interest is Q, which controls the creation of excitons by electron–hole

  4. Study of the $\\chi_1$ and $\\chi_2$ States Produced in $\\overline{p}p$ Annihilations in Fermilab EXPERIMENT 760

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Jose Laurencio [Univ. of California, Irvine, CA (United States)

    1992-01-01

    A study of the $\\chi_1(^3P_1$) and the $\\chi_2(^3P_2$) states of charmonium formed in antiproton- proton annihilations is reported in this dissertation. Performed at Fermi National Accelerator Laboratory, Experiment 760 used an internal molecular hydrogen jet target and circulating beam of momentum cooled antiprotons to conduct energy scans of the two resonances. The small momentum spread of the antiproton beam allowed very precise measurements of both the resonance mass and total width to be made.

  5. Study of the K Kπ meson resonances produced in antiproton proton annihilations at 750 MeV/c

    International Nuclear Information System (INIS)

    Gil Lopez, E.

    1977-01-01

    In this work we present an analysis of the antiproton proton annihilations into strange particles at 700 and 750 MeV/c, restricted to the four and five body final states. We study in detail the resonances decaying into the K Kπ; system, in particular the D and E mesons. For the D meson we present a determination of i ts mass, width, isospin, G-parity, C-parity and spin. For the E meson we present parametrizations of the complete final state which decrease its statistical significance in this type of production. (Author)

  6. Study of the point defect creation and of the excitonic luminescence in alkali halides irradiated by swift heavy ions

    International Nuclear Information System (INIS)

    Protin, L.

    1994-01-01

    The aim of this experimental thesis is to study the excitonic mechanisms and of the defect creation, in NaCl and KBr, under dense electronic excitations induced by swift heavy ion irradiations. In the first part, we present the main features of the interaction of swift heavy ions with solid targets, and after we review the well known radiolytic processes of the defect creation during X-ray irradiation. In the second chapter, we describe our experimental set-up. In the chapter III, we present our results of the in-situ optical absorption measurements. This results show that defect creation is less sensitive to the temperature than during a classical irradiation. Besides, we observe new mechanisms concerning the defect aggregation. In the chapter IV, we present the results of excitonic luminescence induced by swift by swift heavy ions. We observe that the luminescence yields only change with the highest electronic stopping power. In the chapter V, we perform thermal spike and luminescence yields calculations and we compare the numerical results to the experiments presented in the chapter IV. (author). 121 refs., 65 figs., 30 tabs

  7. Study of the electron-positron annihilation in the galactic center region with the Integral/SPI spectrometer; Etude de l'annihilation electron-positon dans la region du centre galactique avec le spectrometre INTEGRAL/SPI

    Energy Technology Data Exchange (ETDEWEB)

    Sizun, P

    2007-04-15

    A spectral feature was detected in 1970 in the gamma-ray emission from the central regions of the Milky Way, during balloon flight observations. Located near 511 keV, this feature was soon attributed to the gamma-ray line tracing the annihilation of electrons with their anti-particles, positrons. However, none of the multiple astrophysical scenarios contemplated to explain the production of positrons in the Galactic bulge has been able to reproduce the high injection rate deduced from the flux of the 511 keV line, close to 10{sup 43} positrons per second. Launched in 2002, the European gamma-ray satellite INTEGRAL was provided with a spectrometer, SPI, whose unprecedented imaging and spectral capabilities in this energy range enable us to further study the source of the 511 keV line detected in the Galactic centre region. Indeed, a better determination of the spatial extent of the source, the intrinsic width of the line and the fraction of positrons annihilating in-flight, directly or via the formation of ortho-Positronium atoms would improve our knowledge of both the annihilation medium and the initial source of positrons, and could allow us to discriminate between the various explanatory scenarios. The first part of this thesis deals with a key ingredient in the extraction of the annihilation spectrum: the optimization of the instrumental background model. New data screening and tracer selection procedures are presented. Classical multi-linear models are compared to neural and Bayesian networks. Finally, three years of observation are used to constrain the width of the source and derive its spectrum. The second part of the thesis focuses on one of the possible scenarios explaining the high positron injection rate deduced from the flux of the 511 keV line: the annihilation of light dark matter particles into electron-positron pairs. The various radiation mechanisms involved are modeled and confronted to observations in order to set an upper limit on the injection

  8. Positron annihilation in polypropylene studied by lifetime and coincidence Doppler-broadening spectroscopy

    Science.gov (United States)

    Djourelov, N.; He, C.; Suzuki, T.; Shantarovich, V. P.; Ito, Y.; Kondo, K.; Ito, Y.

    2003-12-01

    The momentum density distributions (MDDs) of electrons taking part in the annihilation processes in polypropylene (PP) have been measured by coincidence Doppler-broadening spectroscopy. MDDs at the beginning of measurements to those at the saturation level of Ps formation have been compared in order to follow the possible changes in concentration of carbonyl groups (CG). A high initial CG concentration in PP has been observed, while for antioxidant-containing PP no significant presence of CG has been detected, and no changes have been observed during positron irradiation.

  9. Confined exciton spectroscopy

    International Nuclear Information System (INIS)

    Torres, Clivia M.S.

    1998-01-01

    Full text: In this work, the exciton is considered as a sensor of the electronic and optical properties of materials such as semiconductors, which have size compared to the exciton De Broglie wavelength, approximately 20 nm, depending on the semiconductor. Examples of electron-phonon, electron-electron, photon-electron, exciton-polariton, phonon-plasmon, are presented, under different confinement conditions such as quantum wells, superlattices

  10. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    DEFF Research Database (Denmark)

    Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko

    1997-01-01

    of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of similar to 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange...

  11. Positron annihilation study of graphite, glassy carbon and C60/C70 fullerene

    International Nuclear Information System (INIS)

    Hasegawa, Masayuki; Kajino, Masahiro; Yamaguchi, Sadae; Iwata, Tadao; Kuramoto, Eiichi; Takenaka, Minoru.

    1992-01-01

    ACAR (Angular Correlation of Annihilation Radiation) and positron lifetime measurements have been made on, HOPG (Highly Oriented Pyrolytic Graphite), isotropic fine-grained graphite, glassy carbons and C 60 /C 70 powder. HOPG showed marked bimodality along the c-axis and anisotropy in ACAR momentum distribution, which stem from characteristic annihilation between 'interlayer' positrons and π-electrons in graphite. ACAR curves of the isotropic graphite and glassy carbons are even narrower than that of HOPG perpendicular to the c-axis. Positron lifetime of 420 and 390 - 480 psec, much longer than that of 221 psec in HOPG, were observed for the isotropic graphite and glassy carbons respectively, which are due to positron trapping in structural voids in them. Positron lifetime and ACAR width (FWHM) can be well correlated to void sizes (1.7 to 5.0 nm) of glassy carbons which have been determined by small angle neutron (SAN) scattering measurements. ACAR curves and positron lifetime of C 60 /C 70 powder agree well with those of glassy carbons. This shows that positron wave functions extend, as in the voids of glassy carbons, much wider than open spaces of the octahedral interstices of the face-centered cubic (FCC) structure of C 60 crystal and strongly suggests positron trapping in the 'soccer ball' vacancy. Possible positron states in the carbon materials are discussed with a simple model of void volume-trapping. Preliminary results on neutron irradiation damage in HOPG are also presented. (author)

  12. The Effect of Temperature on the Free Volume in Polytetrafluoroethylene Studied by Positron Annihilation Spectroscopy

    International Nuclear Information System (INIS)

    Abdel-Latif, R.M.; Mohamed, H.F.M.; Abdel-Hady, E.E.; Mohamed, S.S.

    2005-01-01

    The positron annihilation techniques have been applied to investigate the free volume holes in pure and doped polytetrafluoroethylene (PTFE) with glass as a function of temperature. The measurements were performed from room temperature up to 250 degree C. The lifetime spectra were analyzed using two methods; 1) Finite-term analysis to determine the average values of the orthopositronium (o-Ps) lifetime and its intensity using PATFIT program, 2) Continuous lifetime analysis to obtain the o-Ps lifetime and o-Ps hole volume distributions using MELT program. The ortho-positronium (o-Ps) lifetimes, (T3 and T4) are found to be vary depending upon the phase of the polymer. Within the temperature range two transitions can be observed. The first one is related to the glass transition temperature, T g (at 130 degree C for pure PTFE and at 110 degree C for doped PTFE with glass). The second one is the crystalline temperature at 210 degree C for the two samples. It was found that, T g is shifted toward the lower values (110 degree C) for doped PTFE with glass, which could be attributed to the increase in the degree of crystallinity. This is in consistent with the wide-angle x-ray scattering data. A correlation between the positron annihilation parameters and the electrical conductivity was achieved

  13. Gamma Irradiation Effect on Biodegradable Poly (Hydroxybutyrate) Studied by Positron Annihilation Technique

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Mohamed, S.S.

    2010-01-01

    -Bacterial polyesters have attracted much attention as biodegradable polymers. An ecofriendly alternative to this biodegradable material is poly-3-hydroxybutyrate (PHB) which has attracted industrial attention as an environmentally degradable plastic for a wide range of medical applications. Free volume holes in polymers play a crucial role in determining its physical properties. The Positron Annihilation Lifetime (PAL) technique has been established as a powerful probe for microstructures of polymers, in particular, angstrom-sized free volume holes. The PHB samples were irradiated using 60 Co source at room temperature with doss ranging from 5 to 300 kGy. The PAL spectra for all the samples have been measured at room temperature as a function of gamma-irradiation dose. The free volume hole size decreases with increasing the irradiation dose up to 25 kGy followed by slowly increases up to 200 kGy, then decreases at higher doses. On the other hand, the free volume content decreases with increasing the gamma-irradiation dose which is due to the increase of the degree of crystallinity. The variations in the free volume with the irradiation dose will be discussed in the frame of free volume model. A correlation between the macroscopic mechanical properties Hv and positron annihilation parameters has been done

  14. A Study of Vacancy Related Defects in PbTiO3 and Related Thin Films using Positron Annihilation

    Science.gov (United States)

    Friessnegg, T.; Nielsen, B.; Keeble, D. J.; Madhukar, S.; Aggarwal, S.; Ramesh, R.; Poindexter, E. H.

    1998-03-01

    Variable energy positron beam (VEPB) experiments on La_0.5Sr_0.5CoO_3/Pb_0.9La_0.1Zr_0.2Ti_0.8O_3/La_0.5Sr _0.5CoO3 capacitors and on thin film Pb_1-yLa_yZr_1-xTi_xO_3-d (PLZT) have been performed. Positron annihilation was measured using the Doppler broadening of the annihilation radiation technique. The method is sensitive to open volume, i.e. vacancy related, defects. Changes in defect concentration and type can be inferred from the lineshape parameter, the S-parameter. All films studied were grown by laser ablation. The oxygen deficiency was adjusted by changing the oxygen partial pressure in the growth chamber, after deposition. Capacitors processed in different oxygen partial pressure atmospheres showed markedly different S-parameter profiles. Similar studies on thin film PLZT, PZT and PT are reported. The results show sensitivity to vacancy related defects generated by the reduction of oxygen content, however, the technique should not be sensitive to the uncomplexed oxygen monovacancy.

  15. WIMP Annihilation and Cooling of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2007-01-01

    We study the effect of WIMP annihilation on the temperature of a neutron star. We shall argue that the released energy due to WIMP annihilation inside the neutron stars, might affect the temperature of stars older than 10 million years, flattening out the temperature at $\\sim 10^4$ K for a typical...

  16. Scanning electrochemical microscopy study of ion annihilation electrogenerated chemiluminescence of rubrene and [Ru(bpy)3]2+.

    Science.gov (United States)

    Rodríguez-López, Joaquín; Shen, Mei; Nepomnyashchii, Alexander B; Bard, Allen J

    2012-06-06

    Scanning electrochemical microscopy (SECM) was used for the study of electrogenerated chemiluminescence (ECL) in the radical annihilation mode. The concurrent steady-state generation of radical ions in the microgap formed between a SECM probe and a transparent microsubstrate provides a distance-dependent ECL signal that can provide information about the kinetics, stability, and mechanism of the light emission process. In the present study, the ECL emission from rubrene and [Ru(bpy)(3)](2+) was used to model the system by carrying out experiments with the SECM and light-detecting apparatus inside an inert atmosphere box. We studied the influence of the distance between the two electrodes, d, and the annihilation kinetics on the ECL light emission profiles under steady-state conditions, as well as the ECL profiles when carrying out cyclic voltammetry (CV) at a fixed d. Experimental results are compared to simulated results obtained through commercial finite element method software. The light produced by annihilation of the ions was a function of d; stronger light was observed at smaller d. The distance dependence of the ECL emission allows the construction of light approach curves in a similar fashion as with the tip currents in the feedback mode of SECM. These ECL approach curves provide an additional channel to describe the reaction kinetics that lead to ECL; good agreement was found between the ECL approach curve emission profile and the simulated results for a fast, diffusion-limited second-order annihilation process (k(ann) > 10(7) M(-1) s(-1)). In the CV mode at fixed distance, the ECL emission of rubrene showed two distinct signals at different potentials when fixing the substrate to generate the radical cation and scanning the tip to generate the radical anion. The first signal (pre-emission) corresponded to an emission well before reaching the generation of the radical anion and was more intense on Au than on Pt. The second ECL signal showed the expected

  17. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  18. Effect of electron-irradiation on the free volume of PEEK studied by positron annihilation

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Haraya, K.; Hattori, S.; Sasuga, T.

    1994-01-01

    A good linear correlation was found between the size of a cavity where ortho-positronium (o-Ps) annihilates by the pick-off mechanism and the total free volume of molecular liquids and polymers. Based on the correlation, the free volume of poly(aryl ether-ether ketone) (PEEK) was evaluated as a function of electron irradiation dose and the result was compared with that obtained from gas diffusivity measurements. It was found that the effect of irradiation on the free volume of PEEK was rather small; the free volume was decreased only by a few percent (relative value) when the samples were irradiated with a dose of 50 MGy in air. ((orig.))

  19. Evidence for confinement induced phase separation in ethanol-water mixture: a positron annihilation study.

    Science.gov (United States)

    Muthulakshmi, T; Dutta, D; Maheshwari, Priya; Pujari, P K

    2018-01-17

    We report an experimental evidence for the phase separation of ethanol-water mixture confined in mesoporous silica with different pore size using positron annihilation lifetime spectroscopy (PALS). A bulk-like liquid in the core of the pore and a distinct interfacial region near the pore surface have been identified based on ortho-positronium lifetime components. The lifetime corresponding to the core liquid shows similar behavior to the bulk liquid mixture while the interfacial lifetime shows an abrupt rise within a particular range of ethanol concentration depending on the pore size. This abrupt increase is attributed to the appearance of excess free-volume near the interfacial region. The excess free-volume is originated due to microphase separation of confined ethanol-water primarily at the vicinity of the pore wall. We envisage that probing free-volume changes at the interface using PALS is a sensitive way to investigate microphase separation under nanoconfinement.

  20. Dark excitons in transition metal dichalcogenides

    Science.gov (United States)

    Malic, Ermin; Selig, Malte; Feierabend, Maja; Brem, Samuel; Christiansen, Dominik; Wendler, Florian; Knorr, Andreas; Berghäuser, Gunnar

    2018-01-01

    Monolayer transition metal dichalcogenides (TMDs) exhibit a remarkably strong Coulomb interaction that manifests in tightly bound excitons. Due to the complex electronic band structure exhibiting several spin-split valleys in the conduction and valence band, dark excitonic states can be formed. They are inaccessibly by light due to the required spin-flip and/or momentum transfer. The relative position of these dark states with respect to the optically accessible bright excitons has a crucial impact on the emission efficiency of these materials and thus on their technological potential. Based on the solution of the Wannier equation, we present the excitonic landscape of the most studied TMD materials including the spectral position of momentum- and spin-forbidden excitonic states. We show that the knowledge of the electronic dispersion does not allow to conclude about the nature of the material's band gap since excitonic effects can give rise to significant changes. Furthermore, we reveal that an exponentially reduced photoluminescence yield does not necessarily reflect a transition from a direct to a nondirect gap material, but can be ascribed in most cases to a change of the relative spectral distance between bright and dark excitonic states.

  1. Study on triplet exciton diffusion length of mCP in phosphorescent organic light-emitting devices using electroluminescent spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng, E-mail: jsyu@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wen Wen; Jiang Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2011-07-15

    Electroluminescent (EL) spectra was employed to probe the triplet exciton diffusion length (L{sub T}) of a commonly used host material of N,N'-dicarbazolyl-3,5-benzene (mCP) in phosphorescent organic light-emitting devices (OLEDs). By varying the film thickness of bis [2-(4-tertbutylphenyl) benzothiazolato-N,C{sup 2}], iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] phosphor doped layer within 30 nm thick mCP layer, a series of devices were fabricated to investigate the EL characteristics. The results showed that with the increasing doped layer thickness (d), both (t-bt){sub 2}Ir(acac) emission peaks at 562 nm and mCP emission centered at 403 nm were observed. Moreover, the relationship between mCP EL intensity and d was detected. The L{sub T} was induced by an abrupt decrease in variation of mCP EL intensity when d is increased from 10 to 15 nm, and the reason to cause this phenomenon was investigated. The L{sub T} of mCP approximately to 15 nm was perfectly consistent to the result of 16{+-}1 nm, which was calculated by the traditional steady-state diffusion model. - Highlights: {yields} EL spectra were employed to probe triplet exciton diffusion length (L{sub T}). {yields} The relationship between mCP EL intensity and doped layer thickness was studied. {yields} The L{sub T} ({approx}15 nm) was induced by an abrupt decrease in variation of mCP EL intensity.

  2. Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry

    Science.gov (United States)

    Hu, Lilei; Mandelis, Andreas; Melnikov, Alexander; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Solution-processed colloidal quantum dots (CQDs) are promising materials for realizing low-cost, large-area, and flexible photovoltaic devices. The study of charge carrier transport in quantum dot solids is essential for understanding energy conversion mechanisms. Recently, solution-processed two-layer oleic-acid-capped PbS CQD solar cells with one layer treated with tetrabutylammonium iodide (TBAI) serving as the main light-absorbing layer and the other treated with 1,2-ethanedithiol (EDT) acting as an electron-blocking/hole-extraction layer were reported. These solar cells demonstrated a significant improvement in power conversion efficiency of 8.55% and long-term air stability. Coupled with photocarrier radiometry measurements, this work used a new trap-state mediated exciton hopping transport model, specifically for CQD thin films, to unveil and quantify exciton transport mechanisms through the extraction of hopping transport parameters including exciton lifetimes, hopping diffusivity, exciton detrapping time, and trap-state density. It is shown that PbS-TBAI has higher trap-state density than PbS-EDT that results in higher PbS-EDT exciton lifetimes. Hopping diffusivities of both CQD thin film types show similar temperature dependence, particularly higher temperatures yield higher hopping diffusivity. The higher diffusivity of PbS-TBAI compared with PbS-EDT indicates that PbS-TBAI is a much better photovoltaic material than PbS-EDT. Furthermore, PCR temperature spectra and deep-level photothermal spectroscopy provided additional insights to CQD surface trap states: PbS-TBAI thin films exhibit a single dominant trap level, while PbS-EDT films with lower trap-state densities show multiple trap levels.

  3. Excitonic processes at organic heterojunctions

    Science.gov (United States)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  4. Study of $ \\bar{p} $ and $ \\bar{n} $ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer

    CERN Multimedia

    2002-01-01

    % PS201 Study of $\\bar{p}$ and $\\bar{n}$ annihilations at LEAR with OBELIX, a large acceptance and high resolution detector based on the Open Axial Field Spectrometer \\\\ \\\\OBELIX is designed to study exclusive final states of antiproton and antineutron annihilations at low energies with protons and nuclei. \\\\ \\\\The physics motivations of the experiment are:\\\\ \\\\\\begin{itemize} \\item (gg, ggg), hybrids ($ q \\bar{q} g $), multiquarks ($ q q \\bar{q} \\bar{q} $) and light mesons ($ q \\bar{q} $) produced in $ N \\bar{N} $ annihilations and study of their spectroscopy and decays. Also broad structures will be searched for by comparing identical decay modes in exclusive final states of the same type occuring from initial states with different angular momentum or isospin. \\item Study of the dynamics of $ N \\bar{N} $ interactions and of the dependence of the final and intermediate resonant states of annihilation upon the quantum numbers of the initial $ N \\bar{N} $ state (angular momentum: S and P-wave in $\\bar{p}p $ at...

  5. Thermal and thermomechanical effects on the Al-Ca-Zn superplastic alloy studied on the positrons annihilation

    International Nuclear Information System (INIS)

    Romero, R.; Somoza, A.; Silvetti, S.P.

    1990-01-01

    Superplastic metallic materials are characterized by the presence of an unusual plastic behaviour, within a certain temperature range, with high ductility and low flow stress. This makes them suitable for their shaping with compressed air, for instance. On the other hand they behave similarly to any other metallic alloy at room temperature. One of the main problems found in superplastic alloys during deformation is the formation of cavities that may deteriorate the properties of a piece which was manufactured with this method. As an attempt to understand the origin of the cavitation, the effect of thermal and thermo-mechanical treatments was studied on superplastic alloy Al-5%wtCa-5%wtZn using a measurement technique based on positron annihilation. (Author). 3 refs., 5 figs

  6. Phenomenological study of exclusive binary light particle production from antiproton-proton annihilation at FAIR/PANDA

    Science.gov (United States)

    Ying, Wang

    2016-08-01

    Exclusive binary annihilation reactions induced by antiprotons of momentum from 1.5 to 15 GeV/c can be extensively investigated at FAIR/PANDA [1]. We are especially interested in the channel of charged pion pairs. Whereas this very probable channel constitutes the major background for other processes of interest in the PANDA experiment, it carries unique physical information on the quark content of proton, allowing to test different models (quark counting rules, statistical models,..). To study the binary reactions of light meson formation, we are developing an effective Lagrangian model based on Feynman diagrams which takes into account the virtuality of the exchanged particles. Regge factors [2] and form factors are introduced with parameters which may be adjusted on the existing data. We present preliminary results of our formalism for different reactions of light meson production leading to reliable predictions of cross sections, energy and angular dependencies in the PANDA kinematical range.

  7. Flavoured co-annihilation

    Indian Academy of Sciences (India)

    2012-10-06

    annihilating part- ners of the neutralino is the lightest stau, ˜τ1. In the presence of flavour violation in the right-handed sector, the co-annihilating partner would be a flavour mixed state. The flavour effect is two-fold: (a) It changes the ...

  8. Positron annihilation method for α self radiation effect studies in doped actinide UO2 samples

    International Nuclear Information System (INIS)

    Roudil, D.; Vella, F.; Bonnal, M.; Broudic, V.; Barthe, M.F.; Gentils, A.; Moineau, V.; Jolly, L.

    2008-01-01

    Towards disposal problematic, fine understanding of the α aging of UO 2 and (U, Pu)O 2 remains a fundamental challenge for the prediction of the potential increase of the radionuclide source terms with presence of water. The intrinsic evolution of the matrix is closely related to the behavior of radiogenic helium produced by actinide decay. Interactions between helium atoms and vacancy defects are involved in these mechanisms. Positron Annihilation Spectroscopy is also an appropriated method owing to its sensitivity to the vacancy type defects in solid materials. It is a non destructive technique with a remote acquiring data possibility. Because positron implanted in the material is sensitive to the electronic density, the positron lifetime method allows the characterization of the vacancy defects, namely size and concentration. Such equipment has been implemented in the L30 laboratory of the DHA facility in Atalante and will be applied on doped actinides samples, simulating α aging. This article presents, the analytical protocols and validation results on depleted UO 2 samples and highlights the perspectives on (U, Pu)O 2 for the investigation of different stages of self irradiation matrices and helium behavior. (authors)

  9. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    International Nuclear Information System (INIS)

    Umlor, M.T.; Keeble, D.J.; Cooke, P.W.

    1994-01-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al 0.32 Ga 0.68 As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al 0.32 Ga 0.68 :Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700 degrees C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450 degrees C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500 degrees C. The nature of the defect was shown to be different for material grown at 350 and 230 degrees C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230 degrees C, respectively

  10. Excitonic properties of graphene-based materials.

    Science.gov (United States)

    Wang, Min; Li, Chang Ming

    2012-02-21

    First-principle density functional theory (DFT) calculations with quasiparticle corrections and many body effects are performed to study the electronic and optical properties of graphene-based materials. This review summarizes the excitonic properties including optical transition spectra and the distribution of exciton wavefunctions, thus providing the theoretical knowledge and predictions for promising optical applications of graphene materials. This journal is © The Royal Society of Chemistry 2012

  11. Atomic lattice excitons: from condensates to crystals

    International Nuclear Information System (INIS)

    Kantian, A; Daley, A J; Toermae, P; Zoller, P

    2007-01-01

    We discuss atomic lattice excitons (ALEs), bound particle-hole pairs formed by fermionic atoms in two bands of an optical lattice. Such a system provides a clean set-up, with tunable masses and interactions, to study fundamental properties of excitons including exciton condensation. We also find that for a large effective mass ratio between particles and holes, effective long-range interactions can mediate the formation of an exciton crystal, for which superfluidity is suppressed. Using a combination of mean-field treatments, bosonized theory based on a Born-Oppenheimer approximation, and one-dimensional (1D) numerical computation, we discuss the properties of ALEs under varying conditions, and discuss in particular their preparation and measurement

  12. Atomic lattice excitons: from condensates to crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kantian, A [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Daley, A J [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Toermae, P [Nanoscience Center, Department of Physics, University of Jyvaeskylae, PO Box 35, FIN-40014 (Finland); Zoller, P [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria)

    2007-11-15

    We discuss atomic lattice excitons (ALEs), bound particle-hole pairs formed by fermionic atoms in two bands of an optical lattice. Such a system provides a clean set-up, with tunable masses and interactions, to study fundamental properties of excitons including exciton condensation. We also find that for a large effective mass ratio between particles and holes, effective long-range interactions can mediate the formation of an exciton crystal, for which superfluidity is suppressed. Using a combination of mean-field treatments, bosonized theory based on a Born-Oppenheimer approximation, and one-dimensional (1D) numerical computation, we discuss the properties of ALEs under varying conditions, and discuss in particular their preparation and measurement.

  13. The half-metallic ferromagnet NiMnSb; a positron-annihilation study

    International Nuclear Information System (INIS)

    Hanssen, K.

    1988-04-01

    The electronic structure of NiMnSb is investigated by means of spin-polarized measurements of the angular correlation of annihilation radiation. NiMnSb is predicted to be a half-metallic ferromagnet. The experimental set-up and the application of the Korringa-Kohn-Rostoker (KKR) method to the calculation of the two-photon momentum density are discussed. To interpret the experimental data, the electronic structure, the Fermi surface and the two-photon momentum density have been calculated according to the KKR method. The calculations, based on self-consistent potentials evaluated according to the augmented-spherical-wave method, were performed scalar-relativistically. From the measured distribution the sum and difference of the spin-dependent momentum densities are obtained once integrated along three different directions in p(over→) space, namely , and . The distributions show a clear impression of the majority-spin Fermi-surface. A good quantitative agreement between theory and experiment is established. From this analysis a value for the 'three-photon-difference effect' in NiMnSb is established of (8.4±0.1).10 -3 . To test in particular the half-metallic nature of the band structure the experimental distributions are compared with theoretical ones obtained from modelled band structures in which small numbers of electrons near the Fermi level are transferred from one spin population to the other. The best agreement is obtained for a band occupation in which no electrons are transferred, i.e. for the half-metallic state

  14. The half-metallic ferromagnet NiMnSb a positron-annihilation study

    International Nuclear Information System (INIS)

    Hanssen, K.E.H.M.

    1988-01-01

    The electronic structure of NiMnSb is investigated by means of spin-polarized measurements of the angular correlation of annihilation radiation. NiMnSb is predicted to be a half metallic ferromagnet: the electrons of one spin direction are metallic, whereas the electrons of the opposite spin direction are semiconducting. The key question underlying this thesis was whether this is indeed true. After a general introduction the angular correlation set-up is described. The measurements are performed in a two-dimensional geometry, so that both angles in the angular correlation could be resolved. The measured distributions correspond to once-integrated two-photon momentum densities. By making use of the inherent partial polarization of the position beam and by aligning the electron-spin populations in the sample by means of an external magnetic field spin-polarized results can be obtained. After a short summary of the treatment of the (raw) angular-correlation data. The application of the Knorringa-Kohn-Rostoker (KKR) formalism to the calculation of the two-photon momentum density is discussed. To interpret the NiMnSb data, the electronic structure, the Fermi surface and the two-photon momentum densities have been obtained once integrated along three different directions inimpulse space. The difference distributions show a clear impression of the majority-spin Fermi surface. A good quantitative overall agreement between theory and experiment is established. From this analysis a value for the three-photon difference effect in NiMnSb has been obtained. To test the half-metallic nature of the band structure the experimental distributions are compared with theoretical ones obtained from modelled band structures in which small numbers of electrons near the Fermi level are transported from one spin population to the other. 167 refs.; 27 figs.; 7 tabs

  15. Brane annihilations during inflation

    International Nuclear Information System (INIS)

    Battefeld, Diana; Battefeld, Thorsten; Firouzjahi, Hassan; Khosravi, Nima

    2010-01-01

    We investigate brane inflation driven by two stacks of mobile branes in a throat. The stack closest to the bottom of the throat annihilates first with antibranes, resulting in particle production and a change of the equation of state parameter w. We calculate analytically some observable signatures of the collision; related decays are common in multi-field inflation, providing the motivation for this case study. The discontinuity in w enters the matching conditions relating perturbations in the remaining degree of freedom before and after the collision, affecting the power-spectrum of curvature perturbations. We find an oscillatory modulation of the power-spectrum for scales within the horizon at the time of the collision, and a slightly redder spectrum on super-horizon scales. We comment on implications for staggered inflation

  16. Diffuse galactic annihilation radiation

    Science.gov (United States)

    Ramaty, R.; Lingenfelter, R. E.

    1993-01-01

    The study reports observations of positron annihilation radiation from the inner region of the Galaxy which show that there are two components of the radiation: a steady, diffuse Galactic component and a variable component from discrete, presumably compact sources. The existence of the variable component is supported by the ensemble of all narrow FOV 511 keV line observations, including recent detections with OSSE. The fit of this ensemble to a time-independent source distribution can be excluded at the approximately 3-sigma level. The same ensemble, combined with the broad FOV SMM observations of Galactic 511 keV line emission, sets constraints on the Galactic distribution of the diffuse component.

  17. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    International Nuclear Information System (INIS)

    Guessoum, N.; Jean, P.; Gillard, W.

    2006-01-01

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM

  18. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    Science.gov (United States)

    El Sayed, K.; Birkedal, D.; Lyssenko, V. G.; Hvam, J. M.

    1997-01-01

    We present a theoretical investigation of ultrafast transient four-wave mixing (FWM) of GaAs quantum wells for coherent excitation of excitons and a large number of continuum states. It is shown that in this case the line shape of the FWM signal is drastically altered due to an interaction-induced coupling of the exciton to all the excited continuum states. The signal is dominantly emitted at the spectral position of the exciton and decays, as a function of delay, on a time scale set by the duration of the laser pulse rather than by the intrinsic dephasing time. Nevertheless, the spectral width of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of ~ 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange interaction, while for even shorter pulses this behavior is dominantly caused by nonlinear polarization decay.

  19. Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons

    Science.gov (United States)

    Chatterjee, S.; Ell, C.; Mosor, S.; Khitrova, G.; Gibbs, H. M.; Hoyer, W.; Kira, M.; Koch, S. W.; Prineas, J. P.; Stolz, H.

    2004-02-01

    Time-resolved photoluminescence spectra after nonresonant excitation show a distinct 1s resonance, independent of the existence of bound excitons. A microscopic analysis identifies exciton and electron-hole plasma contributions. For low temperatures and low densities, the excitonic emission is extremely sensitive to details of the electron-hole-pair population making it possible to identify even minute fractions of optically active excitons.

  20. Bound Exciton Complexes

    Science.gov (United States)

    Meyer, B. K.

    In the preceding chapter, we concentrated on the properties of free excitons. These free excitons may move through the sample and hit a trap, a nonradiative or a radiative recombination center. At low temperatures, the latter case gives rise to either deep center luminescence, mentioned in Sect. 7.1 and discussed in detail in Chap. 9, or to the luminescence of bound exciton complexes (BE or BEC). The chapter continues with the most prominent of these BECs, namely A-excitons bound to neutral donors. The next aspects are the more weakly BEs at ionized donors. The Sect. 7.4 treats the binding or localization energies of BEC from a theoretical point of view, while Sect. 7.5 is dedicated to excited states of BECs, which contain either holes from deeper valence bands or an envelope function with higher quantum numbers. The last section is devoted to donor-acceptor pair transitions. There is no section devoted specifically to excitons bound to neutral acceptors, because this topic is still partly controversially discussed. Instead, information on these A0X complexes is scattered over the whole chapter, however, with some special emphasis seen in Sects. 7.1, 7.4, and 7.5.

  1. Excitons and trions in monolayer transition metal dichalcogenides: A comparative study between the multiband model and the quadratic single-band model

    Science.gov (United States)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.

    2017-07-01

    The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single-band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single-band model when (interband) interactions are strong.

  2. An experimental study on the molecular organization and exciton diffusion in a bilayer of a porphyrin and poly(3-hexylthiophene)

    NARCIS (Netherlands)

    Huijser, A.; Savenije, T.J.; Shalav, A.; Siebbeles, L.D.A.

    2008-01-01

    The exciton root-mean-square displacement (?D) in regioregular poly(3-hexylthiophene) (P3HT) deposited onto meso-tetrakis (n-methyl-4-pyridyl) porphyrin tetrachloride (H2TMPyP) has been determined from the photovoltaic response of a device based on these materials in a bilayer configuration.

  3. Positron annihilation lifetime and Doppler broadening study in 50 MeV Li{sup 3+} ion irradiated polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Asad Ali, S., E-mail: asadapd@yahoo.co [Department of Applied Physics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002 (India); Kumar, Rajesh [Department of Physics, University School of Basic and Applied Sciences, G.G.S.I.P University, New Delhi 110403 (India); Nambissan, P.M.G. [Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata 700064 (India); Singh, F. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Prasad, Rajendra [Department of Applied Physics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002 (India); Vivekananda College of Technology and Management, Aligarh 202002 (India)

    2010-06-15

    Swift heavy ion (SHI) irradiation of polymeric materials results in the change of their free volume properties which have strong correlation with their macroscopic properties. The modification depends on the polymer and ion beam parameters, namely ion energy, fluence and ion species. Polystyrene films were irradiated with Li{sup 3+} ions of energy 50 MeV from 15 UD Pelletron accelerators at Inter University Accelerator Centre (IUAC), New Delhi, India to the fluences of 10{sup 11}, 10{sup 12} and 10{sup 13} ions/cm{sup 2}. Nanosized free volume parameters in the polymer have been studied by positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS). From o-Ps lifetime {tau}{sub 3,} free volume hole radius, mean free volume of microvoids and fractional free volume are computed and modification in free volume with the fluence is studied. Free volume parameters change slowly with ion fluence with a decrease at the highest fluence of 10{sup 13} ions/cm{sup 2}. The decrease in {tau}{sub 3} and I{sub 3} (reflecting the number of free volume holes) may be interpreted on the process of cross-linking. S parameter obtained from DBS measurements showed a minor decrease with increasing fluence.

  4. The positron annihilation technique applied to the study of inhomogeneous solids: aluminium alloys, layered compound 1T-TaS2

    International Nuclear Information System (INIS)

    Boileau, F.

    1983-01-01

    This thesis is an experimental investigation of inhomogeneous solids using the standard positron annihilation techniques (angular correlation of annihilation γ-rays, Doppler broadening, lifetime). The investigations are concerned with different types of more or less extended defects. The effect of impurities on the migration properties of the vacancy-type defects is first studied in electron irradiated and quenched aluminium alloys. The affinity of the positron for precipitates formed in supersatured aluminium alloys is shown experimentally and explained. The effects of low dimensionality on the behaviour of the positron are then studied in the layered dichalcogenide 1T-TaS 2 where the presence of charge density waves modifies the electronic properties. An experimental and theoretical insight on the Fermi surface of this compound has been successfully undertaken [fr

  5. The effect of electron irradiation on high-density polyethylene: Positron annihilation lifetime spectroscopy, differential scanning calorimetry and X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Zaydouri, A. [Laboratoire de Chimie-Physique et Rayonnement-Alain Chambaudet, UMR CEA E4, Universite de Franche Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: zaydouri@hotmail.com; Grivet, M. [Laboratoire de Chimie-Physique et Rayonnement-Alain Chambaudet, UMR CEA E4, Universite de Franche Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: manuel.grivet@univ-fcomte.fr

    2009-09-15

    Electron irradiation effects in HDPE have been studied using positron annihilation lifetime spectroscopy. In the four-component analysis of a spectrum, two long-lived states are ascribed to ortho-positronium (o-Ps) annihilation in the crystalline phase and in the amorphous phase. The study of the o-Ps parameters highlights the different behaviour of the two phases. From the o-Ps lifetime in the crystalline phase, it is shown that the effect of irradiation is larger at 250 kGy. Thermal analysis (DSC) reveals two different melting temperatures and also an increase in the fusion enthalpy, at 250 kGy. This phenomenon induced by an electron beam is erased by thermal treatment: fusion and re-crystallisation. However, before and after thermal treatment no changes are observed in the crystallite size and in the crystalline rate using wide-angle X-ray scattering.

  6. Exciton emissions in alkali cyanides

    International Nuclear Information System (INIS)

    Weid, J.P. von der.

    1979-10-01

    The emissions of Alkali Cyanides X irradiated at low temperature were measured. In addition to the molecular (Frenkel Type) exciton emissions, another emitting centre was found and tentatively assigned to a charge transfer self trapped exciton. The nature of the molecular exciton emitting state is discussed. (Author) [pt

  7. Exciton circular dichroism in channelrhodopsin.

    Science.gov (United States)

    Pescitelli, Gennaro; Kato, Hideaki E; Oishi, Satomi; Ito, Jumpei; Maturana, Andrés Daniel; Nureki, Osamu; Woody, Robert W

    2014-10-16

    Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant

  8. Electrical properties of MOS structures on nitrogen-doped Czochralski-grown silicon: A positron annihilation study

    International Nuclear Information System (INIS)

    Slugen, V.; Harmatha, L.; Tapajna, M.; Ballo, P.; Pisecny, P.; Sik, J.; Koegel, G.; Krsjak, V.

    2006-01-01

    Measurements of interface trap density, effective generation lifetime (GL) and effective surface generation velocity have been performed using different methods on selected MOS structures prepared on nitrogen-doped Czochralski-grown (NCz) silicon. The application of the positron annihilation technique using a pulsed low energy positron system (PLEPS) focused on the detection of nitrogen-related defects in NCz silicon in the near surface region. In the case of p-type Cz silicon, all the results could be used for the testing of homogeneity. In n-type Cz silicon, positron annihilation was found insensitive to nitrogen doping

  9. Positron annihilation lifetime studies of changes in free volume on some biorelevant nitrogen heterocyclic compounds and their S-glycosylation.

    Science.gov (United States)

    Mahmoud, K R; Khodair, A I; Shaban, S Y

    2015-11-01

    A series of N-heterocyclic compounds was investigated by positron annihilation lifetime spectroscopy as well as Doppler broadening of annihilation radiation (DBAR) at room temperature. The results showed that the formation probability and life time of ortho-positronium in this series are structure and electron-donation character dependent, and can give more information about the structure. The DBAR provides direct information about the change of core and valance electrons as well as the number of defect types present in these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Engineering Multi-scale Electrospun Structure for Integration into Architected 3-D Nanofibers for Cimex Annihilation: Fabrication and Mechanism Study

    Science.gov (United States)

    He, Shan; Zhang, Linxi; Liu, Ying; Rafailovich, Miriam; Garcia CenterPolymers at Engineered Interfaces Team

    In this study, engineered electrospun scaffolds with fibers oriented with designed curvature in three dimensions (3D) including the looped structure were developed based on the principle of electrostatic repulsion. Here we illustrate that 3D electrospun recycled polystyrene fibers could closely mimic the unique architectures of multi-direction and multi-layer nano-spiderweb. In contrast to virgin PS, the recycled PS (Dart Styrofoam) are known to contain zinc stearate which acts as a surfactant resulting in higher electrical charge and larger fiber curvature, hence, lower modulus. The surfactant, which is known to decrease the surface tension, may have also been effective at decreasing the confinement of the PS, where chain stretching was shown to occur, in response to the high surface tension at the air interface. Three dimensional flexible architecture with complex structures are shown to be necessary in order to block the motion of Cimex lectularius. Here we show how an engineered electrospun network of surfactant modified polymer fibers with calculated dimensions can be used to immobilize the insects. The mechanical response of the fibers has to be specifically tailored so that it is elastically deformed, without fracturing or flowing. Carefully controlling and tailoring the electrospinning parameters we can now utilize architected 3D nanofiber to create an environmental-friendly Cimex immobilization device which can lead to annihilation solution for all the other harmful insects.

  11. Free volume evolution in 50 MeV Li3+ ion-irradiated polymers studied by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Singh, Paramjit; Kumar, Rajesh; Prasad, Rajendra

    2013-02-01

    This article is aimed at studying the effect of ion irradiation on free volume of polyethersulphone (PES) and polyamide nylon-6 (PN-6) polymers by positron annihilation lifetime spectroscopy (PALS). Free volume properties of polymeric materials change with swift heavy ion irradiation. Free volume is found to have a strong correlation with the macroscopic properties of the polymer. PALS has recently emerged as a unique non-destructive and non-interfering nano-probe, capable of measuring the free volume hole size in polymers with high detection efficiency. PES and PN-6 polymer films of thickness of 250 μm were irradiated with Li3+ ions of energy 50 MeV from the 15 UD Pelletron accelerator at the Inter University Accelerator Centre, New Delhi, India. PES films were irradiated to the fluences of 1011, 1012, 1013 and 1014 ions/cm2, whereas PN-6 films were irradiated to the fluences of 1011, 1012 and 1013 ions/cm2. The average free volume and fractional free volume obtained from the long-lived component, attributed to ortho-positronium lifetime, are found to vary with the variation of fluence in both the cases.

  12. Homo- or Hetero- Triplet-Triplet Annihilation? A Case Study with Perylene-Bodipy Dyads/Triads

    KAUST Repository

    Cui, Xiaoneng

    2017-07-06

    The photophysical processes of intramolecular ‘ping-pong’ energy transfers in the iodinated reference dyad BDP-I2-Py, as well as the uniodinated dyad BDP-Py and triad BDP-2Py, were studied. For BDP-I2-Py, a forward Förster resonance energy transfer (FRET) from the perylene (Py) unit to the diiodoBDP unit (7 ps) and a backward triplet energy transfer (TTET, 3 ns) from the diiodoBDP unit to the Py unit were observed. For the BDP-Py and BDP-2Py systems, a FRET (5 ~ 8 ps) and a photo-induced electron transfer (PET) (1-1.5 ns) were observed in acetonitrile. The uniodinated dyad and triad were used as the triplet energy acceptor and emitter for a TTA upconversion with palladium tetraphenyltetrabenzoporphyrin as the triplet photosensitizer. A maximum upconversion quantum yield of 12.6 % was measured. Given that the dyad (BDP-Py) contains one BDP unit and one Py unit, while the triad (BDP-2Py) contains two Py units and one BDP unit, and based on the results from steady-state femtosecond and nanosecond transient optical spectroscopies, it is concluded that neither intramolecular homo- triplet-triplet annihilation (TTA) nor intramolecular hetero-TTA is possible during a TTA upconversion for those upconversion systems.

  13. Study of color-octet matrix elements through J/ψ production in e{sup +}e{sup -} annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi-Jie; Xu, Guang-Zhi; Zhang, Pan-Pan; Liu, Kui-Yong [Liaoning University, Department of Physics, Shenyang (China); Zhang, Yu-Jie [Beihang University, School of Physics, Beijing (China); CAS Center for Excellence in Particle Physics, Beijing (China)

    2017-09-15

    In this paper, the color-octet long distance matrix elements are studied through the inclusive J/ψ production in e{sup +}e{sup -} annihilation within the framework of non-relativistic QCD factorization. The calculations are up-to next-to-leading order with the radiative and relativistic corrections in the energy region of the B-factory and the near-threshold region of 4.6-5.6 GeV. A constraint of the long distance matrix elements (left angle {sup 1}S{sub 0}{sup 8} right angle, left angle {sup 3}P{sub 0}{sup 8} right angle) is obtained. Through our estimation, the P-wave color-octet matrix element (left angle 0 vertical stroke {sup 3}P{sup 8}{sub 0} vertical stroke 0 right angle) should be of the order of 0.008m{sub c}{sup 2} GeV{sup 3} or less. The constrained region is not compatible with the values of the long distance matrix elements fitted at hadron colliders. (orig.)

  14. Study of the density of electrons in momentum space in the Al-Li-Cu icosahedral phase by means of positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshikazu; Nanao, Susumu [Institute of Industrial Science, The University of Tokyo, Roppongi, Minato, Tokyo 106 (Japan); Tanigawa, Shoichiro [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305 (Japan)

    1997-12-15

    The three-dimensional momentum density of annihilating electron - positron pairs has been studied for a single Al-Li-Cu icosahedral quasicrystal. A direct Fourier transform method is employed to reconstruct the three-dimensional momentum density from measurements of the two-dimensional angular correlation of positron annihilation radiation (2 D-ACAR). The crystallographic anisotropy in the momentum density is observed to be very small. The asphericity of the Fermi surface is not found explicitly within the experimental resolution in the momentum space. The features of the three-dimensional electron - positron momentum density agree with those obtained by means of Compton profile measurement. It is suggested that a strong lattice - electron interaction at the Fermi level occurs in this icosahedral phase. (author)

  15. Exciton multiplication from first principles.

    Science.gov (United States)

    Jaeger, Heather M; Hyeon-Deuk, Kim; Prezhdo, Oleg V

    2013-06-18

    Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron

  16. Electronic structure and vacancy formation in photochromic yttrium oxy-hydride thin films studied by positron annihilation

    NARCIS (Netherlands)

    Plokker, M.P.; Eijt, S.W.H.; Naziris, F.; Schut, H.; Nafezarefi, F.; Schreuders, H.; Cornelius, S.; Dam, B.

    2018-01-01

    In order to investigate the mechanism of the photochromic effect in yttrium oxy-hydride (YOxHy) thin films, Doppler broadening positron annihilation spectroscopy (PAS) was applied to probe the electronic structure and the presence of vacancies in YOxHy

  17. Positron annihilation lifetime spectroscopy study on the structural relaxation of phenylmethylsiloxane-modified epoxy hybrids at different aging temperatures

    International Nuclear Information System (INIS)

    Hsu, Chia-Wen; Ma, Chen-Chi M.; Tan, Chung-Sung; Li, Hsun-Tien

    2015-01-01

    The cured network conformations and structural relaxation behaviours of the diglycidyl ether of bisphenol A (DGEBA)-methylhexahydrophthalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) at different aging temperatures were studied using dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS). The DMA results revealed that the cured PMSE network can insert into the cured DGEBA network to form interpenetrating polymer networks (IPNs). The structural relaxation behaviours of DGEBA–PMSE-0.4 produced using DGEBA, PMSE, and MHHPA at a ratio of 0.6:0.4:1 by equivalent weight were studied using PALS at 150 °C and 55 °C. The aging-induced free volume relaxation parameters of DGEBA–PMSE-0.4 at 150 °C and 55 °C were investigated using the double additive exponential model and the Kohlrausch–Williams–Watts exponential model. For double additive exponential model, only one relaxation time (ζ) of 584.5 h was found at 150 °C; By contrast, there were two separate relaxation times of 37.4 h (ζ 1 ) and 753.6 h (ζ 2 ) at 55 °C. The ζ 1 of the IPNs hybrid can be attributed to the network relaxation of PMSE, and the ζ 2 can be attributed to the network relaxation of DGEBA at 55 °C. The results suggested the double additive exponential model can effectively predict DGEBA–PMSE hybrid relaxation behaviours. - Highlights: • The cured network conformations of DGEBA–PMSE hybrids were studied using DMA. • The structural relaxation behaviours of DGEBA–PMSE hybrids were studied using PALS. • The cured DGEBA–PMSE hybrids were interpenetrating polymer networks (IPNs). • PALS studies provided a quantitative demonstration of relaxation behaviours. • Double additive exponential model effectively predicted the relaxation times of hybrids

  18. Positron annihilation lifetime spectroscopy study on the structural relaxation of phenylmethylsiloxane-modified epoxy hybrids at different aging temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chia-Wen [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Ma, Chen-Chi M., E-mail: ccma@che.nthu.edu.tw [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Tan, Chung-Sung [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Li, Hsun-Tien [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China)

    2015-07-15

    The cured network conformations and structural relaxation behaviours of the diglycidyl ether of bisphenol A (DGEBA)-methylhexahydrophthalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) at different aging temperatures were studied using dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS). The DMA results revealed that the cured PMSE network can insert into the cured DGEBA network to form interpenetrating polymer networks (IPNs). The structural relaxation behaviours of DGEBA–PMSE-0.4 produced using DGEBA, PMSE, and MHHPA at a ratio of 0.6:0.4:1 by equivalent weight were studied using PALS at 150 °C and 55 °C. The aging-induced free volume relaxation parameters of DGEBA–PMSE-0.4 at 150 °C and 55 °C were investigated using the double additive exponential model and the Kohlrausch–Williams–Watts exponential model. For double additive exponential model, only one relaxation time (ζ) of 584.5 h was found at 150 °C; By contrast, there were two separate relaxation times of 37.4 h (ζ{sub 1}) and 753.6 h (ζ{sub 2}) at 55 °C. The ζ{sub 1} of the IPNs hybrid can be attributed to the network relaxation of PMSE, and the ζ{sub 2} can be attributed to the network relaxation of DGEBA at 55 °C. The results suggested the double additive exponential model can effectively predict DGEBA–PMSE hybrid relaxation behaviours. - Highlights: • The cured network conformations of DGEBA–PMSE hybrids were studied using DMA. • The structural relaxation behaviours of DGEBA–PMSE hybrids were studied using PALS. • The cured DGEBA–PMSE hybrids were interpenetrating polymer networks (IPNs). • PALS studies provided a quantitative demonstration of relaxation behaviours. • Double additive exponential model effectively predicted the relaxation times of hybrids.

  19. Role of vibrational dynamics in resonant positron annihilation on molecules.

    Science.gov (United States)

    Jones, A C L; Danielson, J R; Natisin, M R; Surko, C M

    2013-05-31

    Vibrational Feshbach resonances are dominant features of positron annihilation for incident positron energies in the range of the molecular vibrations. Studies in relatively small molecules are described that elucidate the role of intramolecular vibrational energy redistribution into near-resonant multimode states, and the subsequent coupling of these modes to the positron continuum, in suppressing or enhancing these resonances. The implications for annihilation in other molecular species, and the necessary ingredients of a more complete theory of resonant positron annihilation, are discussed.

  20. Plasmon-excitonic polaritons in superlattices

    Science.gov (United States)

    Kosobukin, V. A.

    2017-05-01

    A theory for propagation of polaritons in superlattices with resonant plasmon-exciton coupling is presented. A periodical superlattice consists of a finite number of cells with closely located a quantum well and a monolayer of metal nanoparticles. Under study is the spectrum of hybrid modes formed of the quasitwo- dimensional excitons of quantum wells and the dipole plasmons of metal particles. The problem of electrodynamics is solved by the method of Green's functions with taking account of the resonant polarization of quantum wells and nanoparticles in a self-consistent approximation. The effective polarizability of spheroidal particles occupying a square lattice is calculated with taking into consideration the local-field effect of dipole plasmons of the layer and their images caused by the excitonic polarization of nearest quantum well. Optical reflection spectra of superlattices with GaAs/AlGaAs quantum wells and silver particles are numerically analyzed. Special attention is paid to the superradiant regime originated in the Bragg diffraction of polaritons in superlattice. Superradiance is investigated separately for plasmons and excitons, and then for hybrid plasmonexcitonic polaritons. It is demonstrated that the broad spectrum of reflectance associated with plasmons depends on the number of cells in superlattice, and it has a narrow spectral dip in the range of plasmon-excitonic Rabi splitting.

  1. Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)

    DEFF Research Database (Denmark)

    Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.

    2013-01-01

    A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...

  2. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  3. Bose Condensation of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Timofeev, V. B.; Ni, P. A.

    2002-01-01

    in the domain. With a rise in temperature, this line disappears from the spectrum (Tc 3.4 K). The observed phenomenon is attributed to Bose–Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature range studied (1.5–3.4 K), the critical exciton density and temperature...

  4. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  5. Study of the effect of ionizing radiation on the structure of natural rubber latex by positron annihilation technique

    International Nuclear Information System (INIS)

    Lopez Saldana, I.R.

    1993-01-01

    At the present research, were studied the changes in natural rubber latex structure, due to electron beam by a 3 MeV, 25 m A Dynamitron electron accelerator. The natural rubber latex was irradiated at 30, 40 and 50 kGy/s dose rate, over a total dose range from 150 to 250 kGy, for each dose rate used. From natural rubber latex irradiated films were prepared by casting with 0.7 mm. thickness. In the main part, the study was made by positron annihilation lifetime (PAL), this technique is unique in the determination of free-volume properties due to the fact that positronium atom (Ps) is found to be preferentially localized in the free-volume region of polymeric materials. The positron lifetime measurements were performing using a gamma-gamma coincidence system. These results were analyzed by PATFIT-88 program computer into three components, the long-lived component for orthopositronium (o-Ps) with parameters lifetime (τ 3 ) and formation intensity (I 3 ), were plotted and analyzed for each dose rate and total dose used. Besides with τ 3 were calculated the mean free-volume size based on the spherical model for the free-volume bubble, found that the free-volume decrease slightly with the total dose due to the crosslinking of natural rubber latex. Besides was studied the effect of dose rate on tensile strength, the tensile strength is increased with the total dose although there was not a clear effect due to the dose rate. Also the films were subjected to aging in order to determined the thermal stability of natural rubber latex irradiated, the results show that the films have good stability. Besides was used the infrared spectroscopy to determine the changes due to the crosslinking by variations in the characteristically absorption bands for cis 1,4-polyisoprene. (Author)

  6. Diabolo creation and annihilation.

    Science.gov (United States)

    Freund, Isaac; Soskin, Marat S; Egorov, Roman I; Denisenko, Vladimir

    2006-08-15

    A point of circular polarization embedded in a paraxial field of elliptical polarization is a polarization singularity called a C point. At such a point the major axis a and minor axis b of the ellipse become degenerate. Away from the C point this degeneracy is lifted such that surfaces a and b form nonanalytic cones that are joined at their apex (the C point) to produce a double cone called a diabolo. Typically, during propagation diabolo pairs are created or annihilated. We present rules based on geometry and topology that govern these events, provide initial experimental confirmation, and enumerate the allowed configurations in which diabolos can be created or annihilated.

  7. Controlling excitons. Concepts for phosphorescent organic LEDs at high brightness

    Energy Technology Data Exchange (ETDEWEB)

    Reineke, Sebastian

    2009-11-15

    This work focusses on the high brightness performance of phosphorescent organic light-emitting diodes (OLEDs). The use of phosphorescent emitter molecules in OLEDs is essential to realize internal electron-photon conversion efficiencies of 100 %. However, due to their molecular nature, the excited triplet states have orders of magnitude longer time constants compared to their fluorescent counterparts which, in turn, strongly increases the probability of bimolecular annihilation. As a consequence, the efficiencies of phosphorescent OLEDs decline at high brightness - an effect known as efficiency roll-off, for which it has been shown to be dominated by triplet-triplet annihilation (TTA). In this work, TTA of the archetype phosphorescent emitter Ir(ppy){sub 3} is investigated in time-resolved photoluminescence experiments. For the widely used mixed system CBP:Ir(ppy){sub 3}, host-guest TTA - an additional unwanted TTA channel - is experimentally observed at high excitation levels. By using matrix materials with higher triplet energies, this effect is efficiently suppressed, however further studies show that the efficiency roll-off of Ir(ppy)3 is much more pronounced than predicted by a model based on Foerster-type energy transfer, which marks the intrinsic limit for TTA. These results suggest that the emitter molecules show a strong tendency to form aggregates in the mixed film as the origin for enhanced TTA. Transmission electron microscopy images of Ir(ppy){sub 3} doped mixed films give direct proof of emitter aggregates. Based on these results, two concepts are developed that improve the high brightness performance of OLEDs. In a first approach, thin intrinsic matrix interlayers are incorporated in the emission layer leading to a one-dimensional exciton confinement that suppresses exciton migration and, consequently, TTA. The second concept reduces the efficiency roll-off by using an emitter molecule with slightly different chemical structure, i.e. Ir(ppy){sub 2

  8. Study by the positron annihilation technique of Graft copolimerization of methyl methacrylate in polyethylene induced by gamma radiation

    International Nuclear Information System (INIS)

    Zaldivar Gonzalez, M.E.

    1992-01-01

    Radiation initiated grafting is a very broad field which has attracted considerable interest over the last two decades. Graft copolymers may combine suitable properties of two polymeric components. Radiation methods are particulary appropiate for the production of a large variety of graft copolymers having interesting properties. Ionizing radiation has provided a convenient and clean method to activate a sustrate polymer and undoubtedly, it has added impetus to this field of research. In the present work, graft polymerization of methyl methacrylate (MMA) onto low density polyethylene (LDPE) was carried out. The effect of gamma ray irradiation dose on the grafting degree was investigated for two different methods: direct and preirradiation. The best method to prepare the copolymer for the LDPE film thickness studied: 0.05 and 0.2 mm., was direct method. In both polyethylene thickness, the grafting degree increased as a function of the reaction time. However, grafting for LDPE 0.2 mm. it is better, because the copolymer with that thickness conserve the main physical-chemistry properties of the LDPE along the different grafting degrees obtained, which it is important for practical purposes. Infrared spectroscopy was used to probe the changes ocurred in the LDPE structure with the graft of MMA, first spectrum showed typical bands for LDPE structure, while in the second spectrum new bands appeared which corresponded to PMMA structure grafted onto LDPE. Positron annihilation lifetime technique was applied to study the copolymer microstructure according to increase of grafting degree. O-PS lifetime and intensity tend to decrease. This behavior could be due to the diminution of free volume in the original LDPE matrix as grafting proceeds. Copolymer morphology was observed using optical microscopy (Author)

  9. Positron annihilation microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Canter, K.F. [Brandeis Univ., Waltham, MA (United States)

    1997-03-01

    Advances in positron annihilation microprobe development are reviewed. The present resolution achievable is 3 {mu}m. The ultimate resolution is expected to be 0.1 {mu}m which will enable the positron microprobe to be a valuable tool in the development of 0.1 {mu}m scale electronic devices in the future. (author)

  10. Positron annihilation processes update

    Science.gov (United States)

    Guessoum, Nidhal; Skibo, Jeffrey G.; Ramaty, Reuven

    1997-01-01

    The present knowledge concerning the positron annihilation processes is reviewed, with emphasis on the data of the cross sections of the various processes of interest in astrophysical applications. Recent results are presented including results on reaction rates and line widths, the validity of which is verified.

  11. Excitons in single-walled carbon nanotubes: environmental effect

    International Nuclear Information System (INIS)

    Smyrnov, O.A.

    2010-01-01

    The properties of excitons in semiconducting single-walled carbon nanotubes (SWCNTs) isolated in vacuum or a medium and their contributions to the optical spectra of nanotubes are studied within the elementary potential model, in which an exciton is represented as a bound state of two oppositely charged quasiparticles confined to the nanotube surface. The emphasis is given on the influence of the dielectric environment surrounding a nanotube on the exciton spectra. For nanotubes in the environment with a permittivity less than ∼ 1:8; the ground-state exciton binding energies exceed the respective energy gaps, whereas the obtained binding energies of excitons in nanotubes in a medium with permittivity greater than ∼ 4 are in good accordance with the corresponding experimental data and consistent with the known scaling relation for the environmental effect. The stabilization of a single-electron spectrum in SWCNTs in media with rather low permittivities is discussed.

  12. Tunable excitons in bilayer graphene

    Science.gov (United States)

    Ju, Long; Wang, Lei; Cao, Ting; Taniguchi, Takashi; Watanabe, Kenji; Louie, Steven G.; Rana, Farhan; Park, Jiwoong; Hone, James; Wang, Feng; McEuen, Paul L.

    2017-11-01

    Excitons, the bound states of an electron and a hole in a solid material, play a key role in the optical properties of insulators and semiconductors. Here, we report the observation of excitons in bilayer graphene (BLG) using photocurrent spectroscopy of high-quality BLG encapsulated in hexagonal boron nitride. We observed two prominent excitonic resonances with narrow line widths that are tunable from the mid-infrared to the terahertz range. These excitons obey optical selection rules distinct from those in conventional semiconductors and feature an electron pseudospin winding number of 2. An external magnetic field induces a large splitting of the valley excitons, corresponding to a g-factor of about 20. These findings open up opportunities to explore exciton physics with pseudospin texture in electrically tunable graphene systems​.

  13. Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

    Science.gov (United States)

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-03-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlOx films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlOx films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlOx/SiOx/Si interface with positron trapping and annihilation occurring in the Si side of the SiOx/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 ± 2%) before annealing which is increased to 47 ± 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiOx interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  14. Study by positron annihilation of defects in metals, crystalline or amorphous alloys and in semiconductors

    International Nuclear Information System (INIS)

    Moumene, M.

    1984-07-01

    In this work lifetime of positron is used to study vacancies in different systems irradiated by electrons: pure metals (Fe, Zn), diluted (FeCo, FeAu) and concentrated (Cu 3 Au) alloys, semiconductors (CdTe, ZnTe) and amorphous alloys. Results on vacancy migration temperature and of the formation of two or three-dimensional vacancy clusters are given [fr

  15. Local vacancies in optical modulation polymers studied by positron annihilation lifetime measurements

    International Nuclear Information System (INIS)

    Shimazu, Akira

    2009-01-01

    The ability of a slow positron beam to prove vacancies at the surface and in bulk regions of optical modulation polymers was demonstrated. A slow positron beam system was found to be a powerful tool to study the change in the microstructure driven by photopolymerization of novel optical modulation polymers. (author)

  16. Positron annihilation spectroscopic study of high performance semi-interpenetrating network polyimids

    Science.gov (United States)

    Ray, Asit K.

    1995-01-01

    Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if it were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.

  17. Clarifying the mechanism of triplet-triplet annihilation in phosphorescent organic host-guest systems: A combined experimental and simulation study

    Science.gov (United States)

    Zhang, L.; van Eersel, H.; Bobbert, P. A.; Coehoorn, R.

    2016-05-01

    At high brightness, triplet-triplet annihilation (TTA) reduces the efficiency of organic light-emitting diodes. Triplet diffusion may considerably enhance this effect, which is otherwise limited by the rate of long-range interactions. Although its role can be clarified by studying the emissive dye concentration dependence of the TTA loss, we demonstrate here the practical applicability of a more direct method, requiring a study for only a single dye concentration. The method uses transient photoluminescence yield measurements, for a wide initial excitation density range. The analysis is applied to an iridium complex and is supported by the results of kinetic Monte Carlo simulations.

  18. Studies of muon-pair production in e+e- annihilations at the LEP collider

    CERN Document Server

    Crosland, N

    1991-01-01

    Studies of the reaction e+e--μ+ μ- ('muon-pair production') using tbe DELPHI experiment at the LEP Collider are presented. The design and performance of the DELPHI Barrel Muon Detector are described, and some elements of the associated software are discussed. The methods for selecting muon-pair events and for the calculation of backgrounds and efficiencies are described in detail. Results are presented for data coming from a scan around the zo peak at seven centre-of-mass energies from 88.22 GeV to 94.22 GeV. A sample of 1322 muon-pair events is selected in the polar angular range 43° =::; 8 =::; 137°. From a fit to the measured muon-pair cross-sections the square root of the product of the z0-e+e- and the z0-μ+μ- partial widths is determined to be (feef μμ) 1' 2 = 83.8 ± 1.2(sta.t) ± 1.l(sys) MeV. Tbe ratio of the hadronic to muon-pair partial widths is found to be fh/f "'"' = 19.97 ± 0.56(stat) ± 0.45(sys). The forward-backward asymmetry at the centre-of-mass energy nearest the zo peak ,fi = 91....

  19. Free volumes in bulk nanocrystalline metals studied by the complementary techniques of positron annihilation and dilatometry

    Science.gov (United States)

    Würschum, Roland; Oberdorfer, Bernd; Steyskal, Eva-Maria; Sprengel, Wolfgang; Puff, Werner; Pikart, Philip; Hugenschmidt, Christoph; Pippan, Reinhard

    2012-01-01

    Free-volume type defects, such as vacancies, vacancy-agglomerates, dislocations, and grain boundaries represent a key parameter in the properties of ultrafine-grained and nanocrystalline materials. Such free-volume type defects are introduced in high excess concentration during the processes of structural refinement by severe plastic deformation. The direct method of time-differential dilatometry is applied in the present work to determine the total amount and the kinetics of free volume by measuring the irreversible length change upon annealing of bulk nanocrystalline metals (Fe, Cu, Ni) prepared by high-pressure torsion (HPT). In the case of HPT-deformed Ni and Cu, distinct substages of the length change upon linear heating occur due to the loss of grain boundaries in the wake of crystallite growth. The data on dilatometric length change can be directly related to the fast annealing of free-volume type defects studied by in situ Doppler broadening measurements performed at the high-intensity positron beam of the FRM II (Garching, Munich, Germany). PMID:23471443

  20. Phenomenal changes in isotactic polypropylene due to proton irradiation - a positron annihilation study

    International Nuclear Information System (INIS)

    Ravi Chandran, T.S.G.; Lobo, Blaise; Ranganath, M.R.; Gopal, S.; Padma, Gopalan

    1997-01-01

    Full text: Isotactic polypropylene has a higher softening point, rigidity and hardness but is of low density. Due to its acceptability, it is widely used in medical appliances. It would have been highly inert, but for its tertiary carbon atoms, which are reactive sites for oxidation. Hence antioxidants play a dominant role in it as a stabiliser. Besides it is observed that crosslinking and bond cleavage compete with each other and their relative domination seem to depend on the energy and rate of the irradiation beam. Commercial grade polypropylene was irradiated with a 10 MeV degraded to 3 MeV, proton beam at the Variable Energy Cyclotron Centre, Calcutta, to a dose of 1.2 X 10 15 ions/cm 2 in vacuum ( 10 -9 torr ) at a low current rate of 45 nA. Positron lifetime measurements were performed after 1 year of irradiation to study the effect of long lived radicals and the spectra analysed for a four component free fit successfully. The longest lived lifetime (τ 4 ) and intensity ( I 4 )components which indicate changes in the amorphous region is shown in the figures for both irradiated and as-received samples, and the results obtained are prominently different. Intensity I 4 of the unirradiated sample though varies in a small way, that of the irradiated sample drops rapidly to a very low value at about 110 degC implying an increase in crystallinity. Interestingly, beyond 140 degC all components of positron lifetime parameters become similar for the two samples. These observations in proton irradiated polypropylene are quite different from the earlier observations, while those of unirradiated are similar

  1. Study of the radiative decay of the φ vector meson through e+e- annihilation

    International Nuclear Information System (INIS)

    Roy, P.

    1978-01-01

    This work is dedicated to the M2N (Neutral Modes Mesons) experiment whose main aim has been to measure the decay radiative modes of the φ meson. We have studied the 2 decay channels: φ → ηγ and φ → π 0 γ in the electron-positron collider of Orsay (ACO). This work is divided into 4 parts, the first part presents a theoretical background on the radiative decay of the φ meson including kinematics, the production cross-section, the quark model and the SU 3 symmetry group. The second part describes the experiment with its detection system based on spark chambers and scintillation counters. The principles of data acquisition and data processing are presented, about 10 6 photos have been taken during the experiment. The third part deals with data analysis, the determination of the detection efficiency is made through a Monte-Carlo simulation of 3 γ events. About 1721 events releasing 3 γ have been measured, they correspond to the 4 following reactions: e + e - → φ → K S 0 K l 0 ; e + e - → 3γ; e + e - → φ → ηγ → 3γ; and e + e - → φ → π 0 γ → 3γ. In order to extract the signal due only to the last 2 reactions, 3 new selection criteria have been set based on position, energy and angle limit. The last part presents the experimental results, we have got: σ(φ → ηγ) = (66 ± 15) nb and σ(φ → π 0 γ) = (6.2 ± 1.6) nb

  2. Resonantly excited exciton dynamics in two-dimensional MoSe2 monolayers

    Science.gov (United States)

    Scarpelli, L.; Masia, F.; Alexeev, E. M.; Withers, F.; Tartakovskii, A. I.; Novoselov, K. S.; Langbein, W.

    2017-07-01

    We report on the exciton and trion density dynamics in a single layer of MoSe2, resonantly excited and probed using three-pulse four-wave mixing (FWM), at temperatures from 300 K to 77 K. A multiexponential third-order response function for amplitude and phase of the heterodyne-detected FWM signal including four decay processes is used to model the data. We provide a consistent interpretation within the intrinsic band structure, not requiring the inclusion of extrinsic effects. We find an exciton radiative lifetime in the subpicosecond range consistent to what has been recently reported by Jakubczyk et al. [Nano Lett. 16, 5333 (2016), 10.1021/acs.nanolett.6b01060]. After the dominating radiative decay, the remaining exciton density, which has been scattered from the initially excited direct spin-allowed radiative state into dark states of different nature by exciton-phonon scattering or disorder scattering, shows a slower dynamics, covering 10-ps to 10-ns time scales. This includes direct spin-allowed transitions with larger in-plane momentum, as well as indirect and spin-forbidden exciton states. We find that exciton-exciton annihilation is not relevant in the observed dynamics, in variance from previous finding under nonresonant excitation. The trion density at 77 K reveals a decay of the order of 1 ps, similar to what is observed for the exciton. After few tens of picoseconds, the trion dynamics resembles the one of the exciton, indicating that trion ionization occurs on this time scale.

  3. Temperature-dependent exciton recombination in asymmetrical ZnCdSe/ZnSe double quantum wells

    CERN Document Server

    Yu Guang You; Zhang, J Y; Zheng, Z H; Yang, B J; Zhao Xiao Wei; Shen De Zhen; Kong Xiang Gui

    1999-01-01

    Temperature-dependent exciton recombination in asymmetrical ZnCdSe/ZnSe double quantum wells is studied by recording photoluminescence spectra and photoluminescence decay spectra. The exciton tunnelling from the wide well to the narrow well and the thermal dissociation of excitons are two factors that influence the exciton recombination in this structure. In the narrow well, both of the two processes decrease the emission intensity, whereas, in the wide well, these two processes have contrary influences on the exciton density. The change of the emission intensity depends on which is the stronger one. (author)

  4. A study of 3-jet events in e+e- annihilation into hadrons at 34.6 c.m. energy

    International Nuclear Information System (INIS)

    Althoff, M.; Braunschweig, W.; Kirschfink, F.J.; Martyn, H.U.; Rosskamp, R.; Schmitz, D.; Siebke, H.; Wallraff, W.; Hilger, E.; Kracht, T.; Krasemann, H.L.; Lohrmann, E.; Pandoulas, D.; Poelz, G.; Poesnecker, K.U.; Bowler, M.G.; Bull, P.; Cashmore, R.J.; Dauncey, P.; Devenish, R.; Hawkes, C.M.; Heath, G.; Mellor, D.J.; Duchovni, E.; Montag, A.; Mir, R.; Revel, D.; Ronat, E.; Yekutieli, G.; Shapira, A.; Baranko, G.; Caldwell, A.; Cherney, M.; Hildebrandt, M.; Izen, J.M.; Mermikides, M.; Ritz, S.; Rudolph, G.; Strom, D.; Takashiba, M.; Venkataramania, H.; Wicklung, E.; Sau Lanwu; Zobernig, G.

    1985-01-01

    Three-jet events produced by e + e - annihilation into hadrons at 34.6 GeV c.m. energy were studied by comparing them with 2nd order QCD and two different models of fragmentation. The distribution of low energy particles in the 3-jet plane is found to be better described by the LUND color string model than by the independent jet model. The opposite is true for more energetic particles flowing between the 3 jets. The average transverse momenta in jets can be described with values of sigmasub(q) between 350 and 500 MeV/c for the gluon jet. (orig.)

  5. Study on the effect of atmospheric gases adsorbed in MnFe2O4/MCM-41 nanocomposite on ortho-positronium annihilation

    Directory of Open Access Journals (Sweden)

    Wiertel Marek

    2015-12-01

    Full Text Available In this paper, results of positron annihilation lifetime spectroscopy (PALS studies of MnFe2O4/MCM-41 nanocomposites in N2 and O2 atmosphere have been presented. In particular, the influence of manganese ferrite loading and gas filling on pick-off ortho-positronium (o-Ps annihilation processes in the investigated samples was a point of interest. Disappearance of the longest-lived o-Ps component with τ5 present in the PAL spectrum of initial MCM-41 mesoporous material in the PAL spectra of MnFe2O4-impregnated MCM-41 measured in vacuum is a result of either a strong chemical o-Ps quenching or the Ps inhibition effects. The intensity I4 of the medium-lived component initially increases, reaching a maximum value for the sample with minimum manganese ferrite content, and then decreases monotonically. Analogous dependence for the intensity I3 of the shortest-lived component shows a maximum at higher MnFe2O4 content. Filling of open pores present in the studied nanocomposites by N2 or O2 at ambient pressure causes partial reappearance of the τ4 and τ5 components, except a sample with maximum ferrite content. The lifetimes of these components measured in O2 are shortened in comparison to that observed in N2 because of paramagnetic quenching. Anti-inhibition and anti-quenching effects of atmospheric gases observed in the MnFe2O4/MCM-41 samples are a result of neutralization of some surface active centers acting as inhibitors and weakening of pick-off annihilation mechanism, respectively.

  6. Near-infrared magneto-optical study of excitonic states in single-walled carbon nanotubes under ultra-high magnetic fields

    International Nuclear Information System (INIS)

    Yokoi, H; Effendi, Mukhtar; Minami, N; Takeyama, S

    2011-01-01

    Singlet excitonic states at the first subband-edge in single-walled carbon nanotubes (SWCNTs) have been studied through near-infrared magneto-absorption spectroscopy under magnetic fields to 105.9 T. Well-resolved absorption spectra of stretch-aligned SWCNT(CoMoCAT)-gelatin films were obtained above 100 T. By the application of magnetic fields in parallel to the alignment of SWCNTs, peak shift toward the lower energy was observed for (8, 4) and (7, 6) tubes and the opposite behavior was observed for (7, 5) and (6, 5) tubes. Above 28.8 T, new peaks emerged at the higher energy side of the peak for the (8, 4) and (7, 6) tubes, and at the lower energy side of the peaks for the (7, 5) and (6, 5) tubes. The magnetic splitting between the existing peak and the new peak was symmetric for every tube, which is in line with the energy splitting due to the Aharonov-Bohm effect. Judging from the energetic positions where the new peaks emerged, the singlet dark excitonic state locates at the lower energy than the singlet bright one in the (7, 5) and (6, 5) tubes while it is suggested strongly that the bright one locates at the lower energy in the (8, 4) and (7, 6) tubes.

  7. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  8. Exciton Formation in Disordered Semiconductors

    DEFF Research Database (Denmark)

    Klochikhin, A.; Reznitsky, A.; Permogorov, S.

    1999-01-01

    Stationary luminescence spectra of disordered solid solutions can be accounted by the model of localized excitons. Detailed analysis of the long time decay kinetics of luminescence shows that exciton formation in these systems is in great extent due to the bimolecular reaction of separated carrie...

  9. Exciton dynamics in cuprous oxide

    NARCIS (Netherlands)

    Fishman, D. A.; Revcolevschi, A.; van Loosdrecht, P. H. M.; Stutzmann, M

    2006-01-01

    This work addresses the mid-infrared properties of cuprous oxide and in particular induced absorption due to the presence of excitons. We probe the population of the non-radiative ground state of para-excitons via laser-induced changes of the transmission in the "hydrogenic" 1s-2p/1s-3p transition

  10. Study of free volumes of polymer hydrogel and -silicone-hydrogel contact lenses by means of the positron annihilation lifetime spectroscopy method.

    Science.gov (United States)

    Filipecki, Jacek; Kocela, Agnieszka; Korzekwa, Witold

    2014-01-01

    Polymer materials based on hydrogel and silicone-hydrogel materials are commonly used in ophthalmology. It is important to research the structure of these materials, mainly the prevalence of free volumes. The study has been conducted in order to determine the presence of free volume gaps in the structure of polymer hydrogel and silicone-hydrogel contact lenses. In addition, to demonstrate differences in the occurrence of free volumes between types of represented contact lenses. Three different hydrogel and three different silicone-hydrogel polymer contact lenses were used as research material. The study was done by means of positron annihilation lifetime spectroscopy (PALS). As a result of the performed measurements, a graphical curve resulted which describes the relationship between the number of the annihilation acts in the time function. The study revealed the existence of three τ1, τ2 and τ3 components. Significant changes were observed in the ortho-positronium long life component τ3 and their intensities between the examined polymer contact lenses. The conducted study using the Tao-Eldrup model indicates the presence of free volume holes in all research materials. The results lead to the following connection: contact lenses of higher oxygen permeability coefficient (silicone-hydrogel contact lenses) have more and larger free volumes than contact lenses of less oxygen permeability coefficient (hydrogel contact lenses).

  11. Exciton Transfer in Carbon Nanotube Aggregates for Energy Harvesting Applications

    Science.gov (United States)

    Davoody, Amirhossein; Karimi, Farhad; Knezevic, Irena

    Carbon nanotubes (CNTs) are promising building blocks for organic photovoltaic devices, owing to their tunable band gap, mechanical and chemical stability. We study intertube excitonic energy transfer between pairs of CNTs with different orientations and band gaps. The optically bright and dark excitonic states in CNTs are calculated by solving the Bethe-Salpeter equation. We calculate the exciton transfer rates due to the direct and exchange Coulomb interactions, as well as the second-order phonon-assisted processes. We show the importance of phonons in calculating the transfer rates that match the measurements. In addition, we discuss the contribution of optically inactive excited states in the exciton transfer process, which is difficult to determine experimentally. Furthermore, we study the effects of sample inhomogeneity, impurities, and temperature on the exciton transfer rate. The inhomogeneity in the CNT sample dielectric function can increase the transfer rate by about a factor of two. We show that the exciton confinement by impurities has a detrimental effect on the transfer rate between pairs of similar CNTs. The exciton transfer rate increases monotonically with increasing temperature. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  12. Energy-resolved positron annihilation for molecules

    International Nuclear Information System (INIS)

    Barnes, L.D.; Gilbert, S.J.; Surko, C.M.

    2003-01-01

    This paper presents an experimental study designed to address the long-standing question regarding the origin of very large positron annihilation rates observed for many molecules. We report a study of the annihilation, resolved as a function of positron energy (ΔE∼25 meV, full width at half maximum) for positron energies from 50 meV to several eV. Annihilation measurements are presented for a range of hydrocarbon molecules, including a detailed study of alkanes, C n H 2n+2 , for n=1-9 and 12. Data for other molecules are also presented: C 2 H 2 , C 2 H 4 ; CD 4 ; isopentane; partially fluorinated and fluorinated methane (CH x F 4-x ); 1-fluorohexane (C 6 H 13 F) and 1-fluorononane (C 9 H 19 F). A key feature of the results is very large enhancements in the annihilation rates at positron energies corresponding to the excitation of molecular vibrations in larger alkane molecules. These enhancements are believed to be responsible for the large annihilation rates observed for Maxwellian distributions of positrons in molecular gases. In alkane molecules larger than ethane (C 2 H 6 ), the position of these peaks is shifted downward by an amount ∼20 meV per carbon. The results presented here are generally consistent with a physical picture recently considered in detail by Gribakin [Phys. Rev. A 61, 022720 (2000)]. In this model, the incoming positron excites a vibrational Feshbach resonance and is temporarily trapped on the molecule, greatly enhancing the probability of annihilation. The applicability of this model and the resulting enhancement in annihilation rate relies on the existence of positron-molecule bound states. In accord with this reasoning, the experimental results presented here provide the most direct evidence to date that positrons bind to neutral molecules. The shift in the position of the resonances is interpreted as a measure of the binding energy of the positron to the molecule. Other features of the results are also discussed, including large

  13. Triplet exciton formation in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xudong; Westenhoff, Sebastian; Howard, Ian; Ford, Thomas; Friend, Richard; Hodgkiss, Justin; Greenham, Neil [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-07-01

    We have recently found that the formation of triplet excitons can be an important loss mechanism in organic photovoltaics, particularly in donor-acceptor blends designed to have high open-circuit voltages. This can occur when the intrachain triplet state lies lower in energy than the charge-transfer state formed at the heterojunction. We find that in a blend based on the polyfluorene derivatives F8BT and PFB, triplet excitons are formed after photoexcitation with much higher efficiency than in the component polymers. We use transient absorption spectroscopy to study the dynamics of charges and triplet excitons on timescales from picoseconds to microseconds. This allows us to determine a characteristic time of {proportional_to} 40 ns for intersystem crossing in the charge-separated state, and to estimate that as many as 75% of photoexcitations lead to the formation of triplet states. To avoid losses to triplet excitons in photovoltaic devices, it is necessary to separate charge pairs before intersystem crossing can occur. We also present photophysical measurements of saturation and relaxation of the triplet excited state absorption used to quantify triplet populations.

  14. Constraining annihilating dark matter by radio data of M33

    Science.gov (United States)

    Chan, Man Ho

    2017-08-01

    Recent studies of radio data put strong constraints on annihilation cross sections for dark matter. In this article, we provide the first analysis of using M33 radio data in constraining annihilating dark matter. The resulting constraints of annihilation cross sections for some channels are more stringent than that obtained from six years of Fermi Large Area Telescope (Fermi-LAT) gamma-ray observations of the Milky Way dwarf spheroidal satellite galaxies. In particular, the conservative lower limits of dark matter mass annihilating via e+e-, μ+μ- and τ+τ- channels are 190, 120 and 70 GeV, respectively, with the thermal relic annihilation cross section. These results are in significant tension with some of the recent quantitative analyses of the AMS-02 and Fermi-LAT data of the Milky Way center.

  15. Excitons in InP/InAs inhomogeneous quantum dots

    International Nuclear Information System (INIS)

    Assaid, E; Feddi, E; Khamkhami, J El; Dujardin, F

    2003-01-01

    Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD) have been studied theoretically in the framework of the effective mass approximation. A finite-depth potential well has been used to describe the effect of the quantum confinement in the InAs layer. The exciton binding energy has been determined using the Ritz variational method. The spatial correlation between the electron and the hole has been taken into account in the expression for the wavefunction. It has been shown that for a fixed size b of the IQD, the exciton binding energy depends strongly on the core radius a. Moreover, it became apparent that there are two critical values of the core radius, a crit and a 2D , for which important changes of the exciton binding occur. The former critical value, a crit , corresponds to a minimum of the exciton binding energy and may be used to distinguish between tridimensional confinement and bidimensional confinement. The latter critical value, a 2D , corresponds to a maximum of the exciton binding energy and to the most pronounced bidimensional character of the exciton

  16. Transport of Indirect Excitons in High Magnetic Fields

    Science.gov (United States)

    Dorow, C. J.; Kuznetsova, Y. Y.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    Spatially- and spectrally-resolved photoluminescence measurements of indirect excitons in high magnetic fields are presented. The high magnetic field regime for excitons is realized when the cyclotron splitting compares to the exciton binding energy. Due to small mass and binding energy, the high magnetic field regime for excitons is achievable in lab, requiring a few Tesla. Long indirect exciton lifetimes allow large exciton transport distances before recombination, giving an opportunity to study transport and relaxation kinetics of indirect magnetoexcitons via optical imaging. Indirect excitons in several Landau level states are realized. 0e -0h indirect magnetoexcitons (formed from electrons and holes at zeroth Landau levels) travel over large distances and form an emission ring around the excitation spot. In contrast, the 1e -1h and 2e -2h states do not exhibit long transport distances, and the spatial profiles of the emission closely follow the laser excitation. The 0e -0h indirect magnetoexciton transport distance reduces with increasing magnetic field. Accompanying theoretical work explains these effects in terms of magnetoexciton energy relaxation and effective mass enhancement. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.

  17. Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Andrey A. Chernyuk

    2006-02-01

    Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.

  18. PAES: Positron annihilation induced Auger electron spectrometer

    Directory of Open Access Journals (Sweden)

    Christoph Hugenschmidt

    2015-08-01

    Full Text Available Positron annihilation induced Auger electron spectroscopy (PAES is a newly developed application for surface studies with high elemental selectivity and exceptional surface sensitivity. The instrument is operated by the Technische Universität München and is located at NEPOMUC.

  19. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria

  20. Biological Effectiveness of Antiproton Annihilation

    DEFF Research Database (Denmark)

    Maggiore, C.; Agazaryan, N.; Bassler, N.

    2004-01-01

    from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The background, description, and status...

  1. Free volume study on the miscibility of PEEK/PEI blend using positron annihilation and dynamic mechanical thermal analysis

    International Nuclear Information System (INIS)

    Ramani, R; Alam, S

    2015-01-01

    High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature T o and the WLF coefficients c 0 1 and c 0 2 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends. (paper)

  2. Synthesis and studies of axial chiral bisbenzocoumarins: Aggregation-induced emission enhancement properties and aggregation-annihilation circular dichroism effects

    Science.gov (United States)

    Chen, Shaojin; Liu, Wei; Ge, Zhaohai; Zhang, Wenxuan; Wang, Kunpeng; Hu, Zhiqiang

    2018-03-01

    Axial chiral bisbenzocoumarins were synthesized for the first time by converting naphthanol units in 1,1‧-binaphthol (BINOL) molecule to the benzocoumarin rings. The substitute groups on 3,3‧-positions of bisbenzocoumarins showed significant influence on their aggregation-induced emission enhancement (AEE) properties. It was also found that BBzC1 with ester groups on 3,3‧-positions exhibit an abnormal aggregation-annihilation circular dichroism (AACD) phenomenon, which could be caused by the decrease of the dihedral angle between adjacent benzocoumarin rings in the aggregation state. The single crystal structure of BBzC1 showed that the large dihedral angle in molecule prohibited the strong π-π stacking interactions, which could be main factors for its AEE properties.

  3. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  4. Study of charged multiplicities and double scattering in anti pd interactions between 3 and 15 GeV/c incident momentum. General aspects of annihilation reactions

    International Nuclear Information System (INIS)

    Michalon-Mentzer, Marie-Eve.

    1979-01-01

    From a study of the charged multiplicity distributions, antipd and antipn interactions in the range of incident momentum going from 3 to 15 GeV/c have been analysed. The antipd and antipn topological cross sections have been calculated. The behavior of the different statistical moments obtained from the charged multiplicities as function of the incident momentum have been studied. We have analysed rescattering phenomena inside the deuteron and the rescattering fraction per antipd collisions was found to be of the order of 20%. Data are in good agreement with the predictions of the energy flux cascade model and the coherent tube model. General features of the antipn annihilation processes have been also studied in particular by means of collective variables like sphericity and thrust which describe jets properties or alignment effects of interactions [fr

  5. Study of the ortho-positron annihilation process in zeolite Y; Estudio del proceso de aniquilacion de ortopositronio en zeolita Y

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado D, M. E.

    2010-07-01

    For several years a great interest has existed for the study of the natural and synthetic zeolites due to its properties. The porosity, one of their main characteristics allows that these materials are used as molecular sieves, catalysts, gases drying, etc. In order to investigating the porosity and other zeolite properties one carries out the study of the process of positron annihilation lifetime spectroscopy (Pals). This is a technique that provides information about the size and the pores form since is highly sensitive to the free volume and the superficial area of those porous materials as the zeolites. The study began with the elaboration of zeolite Y tablets in a hydraulic press where different pressures (from 0 to 1.26 GPa) and masses (70, 80 and 100 mg) were proven to obtain the estimate porosity of each tablet. A graph was elaborated and the effect of the mass and pressure with regard to the zeolite porosity was analyzed. Later on, the powder and tablets of 70 mg were characterized by means of X-ray diffraction (the glass size, interplanar distance, length and the volume of the unitary cell); scanning electron microscopy (the particles size and morphology); thermo gravimetric analysis (dehydration temperature and the stability up to 700 C) and the Brunauer Emmett Teller method (specific area). After the zeolite Y tablets characterization was carried out the positron annihilation process by means of Pals where its free volume of zeolite Y was analyzed, which includes to the structural cavities and the interparticle volume. The powdered zeolite was analyzed to different experimental conditions (preparation of the sample and the Pals equipment) to obtain the optimal conditions (a window with a time of 400 ns and a enlarged energy window) of analysis. On the other hand, the tablets were analyzed under optimal conditions to obtain the four components of time and intensity ({tau}, {Iota}), result of the different ways of positrons annihilation in the zeolite

  6. Positron annihilation in polypropylene studied by lifetime and coincidence Doppler-broadening spectroscopy[Positron annihilation; Doppler broadening; Coincidence Doppler system; PP; Antioxidant; Carbonyl group; Irradiation effect; Core electrons

    Energy Technology Data Exchange (ETDEWEB)

    Djourelov, N. E-mail: nikdjour@post.kek.jp; He, C.; Suzuki, T.; Shantarovich, V.P.; Ito, Y.; Kondo, K.; Ito, Y

    2003-12-01

    The momentum density distributions (MDDs) of electrons taking part in the annihilation processes in polypropylene (PP) have been measured by coincidence Doppler-broadening spectroscopy. MDDs at the beginning of measurements to those at the saturation level of Ps formation have been compared in order to follow the possible changes in concentration of carbonyl groups (CG). A high initial CG concentration in PP has been observed, while for antioxidant-containing PP no significant presence of CG has been detected, and no changes have been observed during positron irradiation.

  7. Exciton center-of-mass localization and dielectric environment effect in monolayer WS2

    Science.gov (United States)

    Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem

    2017-06-01

    The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.

  8. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Gillard, W.

    2008-01-01

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  9. Bose condensation of interwell excitons in double quantum wells

    CERN Document Server

    Larionov, A V; Ni, P A; Dubonos, S V; Hvam, I; Soerensen, K

    2002-01-01

    The luminescence of the interwell excitons in the GaAs/AlGaAs double quantum wells, containing large-scale fluctuations of the random potential in the heteroboundary planes, is studied. The properties of the excitons, wherein the excited electron and hole are spatially separated between the neighboring quantum wells by the density and temperature variation within the domain limits of the scale below one micron, are investigated. The interwell excitons by low pumping (below 50 mW) are strongly localized due to the small-scale fluctuations of the random potential. The localized excitons line grows by increase in the resonance excitation capacity through the threshold method. With the temperature growth this line disappears in the spectrum (T sub c <= 3.4 K). The above phenomenon is related to the Bose-Einstein condensation in the quasi-two-dimensional system of the interwell excitons. The critical values of the exciton density and temperature in the studied temperature range (1.5-3.4 K) grow according to the...

  10. Study of the antiproton-proton annihilations into six body final states at 750 MeV/c and channels with associated production of K K

    International Nuclear Information System (INIS)

    Adeva, B.; Duran, I.

    1980-01-01

    In this work we present an analysis of the antiproton-proton annihilations into six body final states with strange particle production at 750 HeV/c. It is shown that these final states are dominated at this energy by resonance production in quasi-three body Intermediate states. We determine the scattering length of the resonanceδ+ (970) which is found to be compatible with earlier determinations. fe also study the production of the resonance ω(783) associated to the system K 0 K 0 in the five body final state and determine Its polarization, which 1s not compatible with that obtained for the p 0 (770) in the final state K 0 K 0 p 0 . The amplitudes should be equal in a quark rearrangement model. (Author) 11 refs

  11. Impact of oxygen diffusion on superconductivity in YBa2Cu3O7 -δ thin films studied by positron annihilation spectroscopy

    Science.gov (United States)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2018-04-01

    The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.

  12. Exciton-plasmon coupling interactions: from principle to applications

    Science.gov (United States)

    Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi

    2018-01-01

    The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

  13. Excitonic effects in the luminescence of quantum wells

    International Nuclear Information System (INIS)

    Deveaud, B.; Kappei, L.; Berney, J.; Morier-Genoud, F.; Portella-Oberli, M.T.; Szczytko, J.; Piermarocchi, C.

    2005-01-01

    We report on the origin of the excitonic luminescence in quantum wells. This study is carried out by time-resolved photoluminescence experiments performed on a very high-quality InGaAs quantum well sample in which the photoluminescence contributions at the energy of the exciton and at the band edge can be clearly separated and traced over a broad range of times and densities. This allows us to compare the two conflicting theoretical approaches to the question of the origin of the excitonic luminescence in quantum wells: the model of the exciton population and the model of the Coulomb correlated plasma. We measure the exciton formation time and we show the fast exciton formation and its dependence with carrier density. We are also able to give the boundaries of the Mott transition in our system, and to show the absence of observable renormalization of the gap below the onset of this transition. We detail the characteristics of the trion formation and evidence the possible formation of both positive and negative trions in the absence of any resident free carrier populations

  14. Electronic structures and excitonic transitions in nanocrystalline iron-doped tin dioxide diluted magnetic semiconductor films: an optical spectroscopic study.

    Science.gov (United States)

    Yu, Wenlei; Jiang, Kai; Wu, Jiada; Gan, Jie; Zhu, Min; Hu, Zhigao; Chu, Junhao

    2011-04-07

    Nanocrystalline iron-doped tin dioxide (Sn(1-x)Fe(x)O(2)) films with x from 0 to 0.2 were prepared on c-sapphire substrates by pulsed laser deposition. X-ray diffraction and Raman scattering analysis show that the films are of the rutile structure at low compositions and an impurity phase related to Fe(2)O(3) appears until the x is up to 0.2, suggesting the general change of lattice structure due to the Fe ion substitution. The dielectric functions are successfully determined from 0.0248 to 6.5 eV using the Lorentz multi-oscillator and Tauc-Lorentz dispersion models in the low and high photon energy regions, respectively. With increasing Fe composition, the highest-frequency transverse optical phonons E(u) shifts towards a lower energy side and can be well described by (608 - 178x) cm(-1). From the transmittance spectra, the fundamental absorption edge is found to be decreased with the Fe composition due to the joint contributions from SnO(2) and Fe(2)O(3). It can be observed that the doped films exhibit evident excitonic excitation features, which are strongly related to the Fe doping. Among them, the 6A(1g)→ 4T(2g) transition contributes to the onset of optical absorption. Moreover, the remarkable intensity reduction and a red-shift trend with the doping composition, except for the pure film, can be testified by the photoluminescence spectra. It can be concluded that the replacement of Sn with the Fe ion could induce the 2p-3d hybridization and result in the electronic band structure modification of the Sn(1-x)Fe(x)O(2) films.

  15. A positron annihilation study on the microstructure of the interpenetration polymer networks of cyanate ester resin/epoxy resin

    International Nuclear Information System (INIS)

    Qi Chenze; Li Chunqing; Zeng Minfeng; Zhang Jian; Wang Baoyi

    2010-01-01

    Cyanate ester (CE) resin was blended with epoxy resin (EP) at different mass ratios (CE/EP: 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, 0/100). The free volume size of CE/EP IPNs has been determined by positron annihilation lifetime spectroscopy (PALS). The size decreased as the epoxy resin content increased. The PALS results are consistent with the chemical structure changes for the copolymerizing between CE and EP. The crosslinking units of curing products (oxazoline, oxazolidinone, and polyether network) of the blends are all smaller in size than those of triazine ring structure from neat CE. Therefore, the free volume size of the blends decreases with increase of EP content. Examination of the mechanical properties, thermal stability, and morphology of the blend systems showed that addition of epoxy resin resulted in improved toughness but a little sacrifice in thermal stability when compared with pure CE. The correlations between the free volume properties and physical properties (thermal stability and mechanical properties) have been discussed.

  16. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

    Science.gov (United States)

    Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.

    2016-03-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

  17. Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields

    Science.gov (United States)

    Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    2017-06-01

    We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.

  18. Ultrafast quantum beats of anisotropic excitons in atomically thin ReS2.

    Science.gov (United States)

    Sim, Sangwan; Lee, Doeon; Trifonov, Artur V; Kim, Taeyoung; Cha, Soonyoung; Sung, Ji Ho; Cho, Sungjun; Shim, Wooyoung; Jo, Moon-Ho; Choi, Hyunyong

    2018-01-24

    Quantum beats, periodic oscillations arising from coherent superposition states, have enabled exploration of novel coherent phenomena. Originating from strong Coulomb interactions and reduced dielectric screening, two-dimensional transition metal dichalcogenides exhibit strongly bound excitons either in a single structure or hetero-counterpart; however, quantum coherence between excitons is barely known to date. Here we observe exciton quantum beats in atomically thin ReS 2 and further modulate the intensity of the quantum beats signal. Surprisingly, linearly polarized excitons behave like a coherently coupled three-level system exhibiting quantum beats, even though they exhibit anisotropic exciton orientations and optical selection rules. Theoretical studies are also provided to clarify that the observed quantum beats originate from pure quantum coherence, not from classical interference. Furthermore, we modulate on/off quantum beats only by laser polarization. This work provides an ideal laboratory toward polarization-controlled exciton quantum beats in two-dimensional materials.

  19. Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher

    2005-01-01

    The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum well...... is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value....

  20. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  1. Annihilation in Gases and Galaxies

    Science.gov (United States)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  2. ATHENA: an actual antihydrogen annihilation

    CERN Document Server

    2002-01-01

    This is an image of an actual matter-antimatter annihilation due to an atom of antihydrogen in the ATHENA experiment, located on the Antiproton Decelerator (AD) at CERN since 2001. The antiproton produces four charged pions (yellow) whose positions are given by silicon microstrips (pink) before depositing energy in CsI crystals (yellow cubes). The positron also annihilates to produce back-to-back gamma rays (red).

  3. The influence of positron trapping at vacancies on a pattern of the Fermi surface of #betta#-brass studied by positron annihilation

    International Nuclear Information System (INIS)

    Rozenfeld, B.; Chabik, S.; Pajak, J.

    1982-01-01

    Angular correlations of positron annihilation quanta (ACPAQ) have been measured for differently oriented monocrystalline samples of the ordered #betta#-brass under conditions permitting the neglecting of the trapping of positrons at vacancies as well as in the case when almost all the positrons annihilate being trapped at vacancies. It has been shown that trapping of positrons at vacancies can make the observation of the directional anisotropy in electron momentum distribution impossible. (Auth.)

  4. LOCAL ENERGETIC DISORDER IN MOLECULAR AGGREGATES PROBED BY THE ONE-EXCITON TO 2-EXCITON TRANSITION

    NARCIS (Netherlands)

    DURRANT, [No Value; KNOESTER, J; WIERSMA, DA

    1994-01-01

    We demonstrate a novel approach to probing the magnitude and degree of spatial correlation of local (molecular or atomic) energetic disorder in delocalized exciton systems. The approach is based on measuring the correlation between the ground state to one-exciton and the one-exciton to two-exciton

  5. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  6. Binding energy of the barbell exciton

    Science.gov (United States)

    Peeters, F. M.; Golub, J. E.

    1991-02-01

    The exciton binding energy in asymmetric coupled double quantum wells is calculated. As the system is electrically tuned from type I to type II, the exciton binding energy decreases from that of a two-dimensional exciton to the binding energy of a spatially separated electron-hole pair, i.e., the barbell exciton.$-- We compare our theoretical results with a recent experiment and find good agreement.

  7. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.

    Science.gov (United States)

    Roslyak, Oleksiy; Cherqui, Charles; Dunlap, David H; Piryatinski, Andrei

    2014-07-17

    We report on a general theoretical approach to study exciton transport and emission in a single-walled carbon nanotube (SWNT) in the presence of a localized surface-plasmon (SP) mode within a metal nanoparticle interacting via near-field coupling. We derive a set of quantum mechanical equations of motion and approximate rate equations that account for the exciton, SP, and the environmental degrees of freedom. The material equations are complemented by an expression for the radiated power that depends on the exciton and SP populations and coherences, allowing for an examination of the angular distribution of the emitted radiation that would be measured in experiment. Numerical simulations for a (6,5) SWNT and cone-shaped Ag metal tip (MT) have been performed using this methodology. Comparison with physical parameters shows that the near-field interaction between the exciton-SP occurs in a weak coupling regime, with the diffusion processes being much faster than the exciton-SP population exchange. In such a case, the effect of the exciton population transfer to the MT with its subsequent dissipation (i.e., the Förster energy transfer) is to modify the exciton steady state distribution while reducing the equilibration time for excitons to reach a steady sate distribution. We find that the radiation distribution is dominated by SP emission for a SWNT-MT separation of a few tens of nanometers due to the fast SP emission rate, whereas the exciton-SP coherences can cause its rotation.

  8. Multiphonon resonant Raman scattering in the semimagnetic semiconductor Cd sub 1 sub - sub x Mn sub x Te: Froehlich and deformation potential exciton-phonon interaction

    CERN Document Server

    Riera, R; Marin, J L; Bergues, J M; Campoy, G

    2003-01-01

    A theory describing multiphonon resonant Raman scattering (MPRRS) processes in wide-gap diluted magnetic semiconductors is presented, with Cd sub 1 sub - sub x Mn sub x Te as an example. The incident radiation frequency omega sub l is taken above the fundamental absorption region. The photoexcited electron and hole make real transitions through the LO phonon, when one considers Froehlich (F) and deformation potential (DP) interactions. The strong exchange interaction, typical of these materials, leads to a large spin splitting of the exciton states in the magnetic field. Neglecting Landau quantization, this Zeeman splitting gives rise to the formation of eight bands (two conduction and six valence ones) and ten different exciton states according to the polarization of the incident light. Explicit expressions for the MPRRS intensity of second and third order, the indirect creation and annihilation probabilities, the exciton lifetime, and the probabilities of transition between different exciton states and diff...

  9. Two-dimensional electronic structure and multiple excitonic states in layered oxychalcogenide semiconductors, LaCuOCh (Ch=S, Se, Te): Optical properties and relativistic ab initio study

    International Nuclear Information System (INIS)

    Kamiya, Toshio; Ueda, Kazushige; Hiramatsu, Hidenori; Kamioka, Hayato; Ohta, Hiromichi; Hirano, Masahiro; Hosono, Hideo

    2005-01-01

    Electronic structures of layered oxychalcogenides LaCuOCh (Ch=S, Se, Te) were studied using relativistic ab initio band calculations to understand their optical and electronic properties. Step-like structures terminated with one or two sharp peaks were observed in low-temperature (10 K) optical absorption spectra. Third optical nonlinearity measurements supported that the sharp peaks came from split excitonic levels. The ab initio calculations reproduced well these characteristic structures in the spectra and proved that the step-like optical absorption structures originated from two-dimensional nature of the electronic structures associated with the layered crystal structure of LaCuOCh. The split energies of the excitonic levels were quantitatively explained by spin-orbit interaction in the chalcogen ions

  10. Peculiarities of the determination of shallow impurity concentrations in semiconductors from the analysis of exciton luminescence spectra

    CERN Document Server

    Glinchuk, K D

    2002-01-01

    An analysis was made of the applicability limits of the method for the determination of the content of shallow acceptors and donors in semiconductors from the ratio of the low-temperature (T = 1.8-4.2 K) luminescence intensities of exciton bands, in particular, induces by radiative annihilation of excitons bound to acceptors (donors) and free excitons. It is shown that correct data about the concentrations of shallow acceptors and donors as well as data on changes in their content as a result of various treatments may be obtained if the occupancy of the defects in question by holes and electrons does not depend on the excitation intensity or external treatments. A way to check the fulfillment of criteria for the method application is suggested. An example is given is given of the method application for determination of thermally stimulated changes in the concentration of shallow acceptors and donors in gallium arsenide

  11. Structure formation constraints on Sommerfeld-enhanced dark matter annihilation

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2012-01-01

    We study the growth of cosmic structure in a ΛCDM universe under the assumption that dark matter self-annihilates with an averaged cross section times relative velocity that grows with the scale factor, an increase known as Sommerfeld-enhancement. Such an evolution is expected in models in which a light force carrier in the dark sector enhances the annihilation cross section of dark matter particles, and has been invoked, for instance, to explain anomalies in cosmic ray spectra reported in the past. In order to make our results as general as possible, we assume that dark matter annihilates into a relativistic species that only interacts gravitationally with the standard model. This assumption also allows us to test whether the additional relativistic species mildly favored by cosmic-microwave background data could originate from dark matter annihilation. We do not find evidence for Sommerfeld-enhanced dark matter annihilation and derive the corresponding upper limits on the annihilation cross-section

  12. Positron annihilation spectroscopy in condensed matter

    International Nuclear Information System (INIS)

    Brauer, G.

    1982-09-01

    The topic of positron annihilation spectroscopy (PAS) is the investigation of all aspects connected with the annihilation of slow positrons. This work deals with the application of PAS to different problems of materials science. The first chapter is an introduction to fundamental aspects of positron annihilation, as far as they are important to the different experimental techniques of PAS. Chapter 2 is concerned with the information obtainable by PAS. The three main experimental techniques of PAS (2γ-angular correlation, positron lifetime and Doppler broadening) are explained and problems in the application of these methods are discussed. Chapter 3 contains experimental results. According to the different fields of application it was subgrouped into: 1. Investigations of crystalline solids. Detection of structural defects in Cu, estimation of defect concentrations, study of the sintering of Cu powders as well as lattice defects in V 3 Si. 2. Chemical investigations. Structure of mixed solvents, selective solvation of mixed solvents by electrolytes as well as the micellization of sodium dodecylsulphate in aqueous solutions. 3. Investigations of glasses. Influence of heat treatment and production technology on the preorder of X-amorphous silica glass as well as preliminary measurements of pyrocerams. 4. Investigations of metallic glasses. Demonstration of the influence of production technology on parameters measurable by PAS. Chapter 4 contains a summary as well as an outlook of further applications of PAS to surface physics, medicine, biology and astrophysics. (author)

  13. Magnetic exciton dispersion in praseodymium

    DEFF Research Database (Denmark)

    Rainford, B. D.; Houmann, Jens Christian Gylden

    1971-01-01

    Measurements of the dispersion of magnetic excitons have been made in a single crystal of praseodymium metal using inelastic neutron scattering. A preliminary analysis of the data yields the first detailed information about the exchange interactions and the crystal field splittings in the light...

  14. Exciton size and quantum transport in nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, Kenley M., E-mail: kpelzer@anl.gov; Gray, Stephen K. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Darling, Seth B. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637 (United States); Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States)

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.

  15. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  16. Localized excitons and defects in PbWO.sub.4./sub. single crystals: a luminiscence and photo-termally stimulated desintegration study

    Czech Academy of Sciences Publication Activity Database

    Krasnikov, A.; Nikl, Martin; Zazubovich, N.

    2006-01-01

    Roč. 243, č. 8 (2006), s. 1727-1743 ISSN 0370-1972 Institutional research plan: CEZ:AV0Z10100521 Keywords : exciton * defects * single crystals * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.967, year: 2006

  17. Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Lee A. [Center; Sykes, Matthew E. [Center; Wu, Yimin A. [Center; Schaller, Richard D. [Center; Department; Wiederrecht, Gary P. [Center; Fry, H. Christopher [Center

    2017-08-29

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.

  18. Excitons in InP/InAs inhomogeneous quantum dots

    CERN Document Server

    Assaid, E; Khamkhami, J E; Dujardin, F

    2003-01-01

    Wannier excitons confined in an InP/InAs inhomogeneous quantum dot (IQD) have been studied theoretically in the framework of the effective mass approximation. A finite-depth potential well has been used to describe the effect of the quantum confinement in the InAs layer. The exciton binding energy has been determined using the Ritz variational method. The spatial correlation between the electron and the hole has been taken into account in the expression for the wavefunction. It has been shown that for a fixed size b of the IQD, the exciton binding energy depends strongly on the core radius a. Moreover, it became apparent that there are two critical values of the core radius, a sub c sub r sub i sub t and a sub 2 sub D , for which important changes of the exciton binding occur. The former critical value, a sub c sub r sub i sub t , corresponds to a minimum of the exciton binding energy and may be used to distinguish between tridimensional confinement and bidimensional confinement. The latter critical value, a ...

  19. Inverse Funnel Effect of Excitons in Strained Black Phosphorus

    Directory of Open Access Journals (Sweden)

    Pablo San-Jose

    2016-09-01

    Full Text Available We study the effects of strain on the properties and dynamics of Wannier excitons in monolayer (phosphorene and few-layer black phosphorus (BP, a promising two-dimensional material for optoelectronic applications due to its high mobility, mechanical strength, and strain-tunable direct band gap. We compare the results to the case of molybdenum disulphide (MoS_{2} monolayers. We find that the so-called funnel effect, i.e., the possibility of controlling exciton motion by means of inhomogeneous strains, is much stronger in few-layer BP than in MoS_{2} monolayers and, crucially, is of opposite sign. Instead of excitons accumulating isotropically around regions of high tensile strain like in MoS_{2}, excitons in BP are pushed away from said regions. This inverse funnel effect is moreover highly anisotropic, with much larger funnel distances along the armchair crystallographic direction, leading to a directional focusing of exciton flow. A strong inverse funnel effect could enable simpler designs of funnel solar cells and offer new possibilities for the manipulation and harvesting of light.

  20. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  1. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...... measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current...

  2. The dynamical frustration of interlayer excitons delocalizing in bilayer quantum antiferromagnets

    NARCIS (Netherlands)

    Rademaker, L.; Wu, K.; Hilgenkamp, H.; Zaanen, J.

    2012-01-01

    Using the self-consistent Born approximation we study the delocalization of interlayer excitons in the bilayer Heisenberg quantum antiferromagnet. Under realistic conditions we find that the coupling between the exciton motion and the spin system is strongly enhanced as compared to the case of a

  3. A study of the reaction $e^+ e^- \\rightarrow \\mu^+ \\mu^-\\gamma_{ISR}$ at LEP and search for new physics at annihilation energies near 80 GeV

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hilke, Hans Jürgen; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1997-01-01

    A study of the channel $e^{+}e^{-}~\\rightarrow~\\mu^{+}\\mu^{-}\\gamma_{\\ sc ISR}$, where $\\gamma_{\\sc ISR}$ is an initial state radiation photon, is presented using data collected by the DELPHI experiment from 1991 to 1994. The total cross-section at effective annihilation energies ($\\sqrt{s'}$) below the $Z^0$ peak is obtained by using the events with relatively hard initial state radiative photon(s) ($E_{\\gamma}~>~$~1~GeV). The differential cross-section as a function of the muon polar production angle is also determined in order to extract the forward-backward asymmetries for the reaction $e^+ e^- \\rightarrow \\mu^+ \\mu^-$ at energies $\\sqrt{s'}$ between 20 and 87~GeV. The ratio of the helicity cross-sections $\\frac{\\sigma_{LL}+\\sigma_{RR}}{\\sigma_{RL}+\\sigma_{LR}}$, where the two subscripts stand for the helicities of the incoming $e^-$ and outgoing $\\mu^-$ respectively, is extracted from the differential cross-sections in order to test the Standard Model and to look for new physics near 80 GeV. No deviation...

  4. Spatially indirect excitons in coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)2 were

  5. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    Science.gov (United States)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  6. Magneto-optical quantum interferences in a system of spinor excitons

    Science.gov (United States)

    Kuan, Wen-Hsuan; Gudmundsson, Vidar

    2018-04-01

    In this work we investigate magneto-optical properties of two-dimensional semiconductor quantum-ring excitons with Rashba and Dresselhaus spin-orbit interactions threaded by a magnetic flux perpendicular to the plane of the ring. By calculating the excitonic Aharonov-Bohm spectrum, we study the Coulomb and spin-orbit effects on the Aharonov-Bohm features. From the light-matter interactions of the excitons, we find that for scalar excitons, there are open channels for spontaneous recombination resulting in a bright photoluminescence spectrum, whereas the forbidden recombination of dipolar excitons results in a dark photoluminescence spectrum. We investigate the generation of persistent charge and spin currents. The exploration of spin orientations manifests that by adjusting the strength of the spin-orbit interactions, the exciton can be constructed as a squeezed complex with specific spin polarization. Moreover, a coherently moving dipolar exciton acquires a nontrivial dual Aharonov-Casher phase, creating the possibility to generate persistent dipole currents and spin dipole currents. Our study reveals that in the presence of certain spin-orbit generated fields, the manipulation of the magnetic field provides a potential application for quantum-ring spinor excitons to be utilized in nano-scaled magneto-optical switches.

  7. Exciton absorption of entangled photons in semiconductor quantum wells

    Science.gov (United States)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  8. Exciton-dopant and exciton-charge interactions in electronically doped OLEDs

    International Nuclear Information System (INIS)

    Williams, Christopher; Lee, Sergey; Ferraris, John; Zakhidov, A. Anvar

    2004-01-01

    The electronic dopants, like tetrafluorocyanoquinodimethane (F 4 -TCNQ) molecules, used for p-doping of hole transport layers in organic light-emitting diodes (OLEDs) are found to quench the electroluminescence (EL) if they diffuse into the emissive layer. We observed EL quenching in OLED with F 4 -TCNQ doped N,N'-diphenyl-N'N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine hole transport layer at large dopant concentrations, >5%. To separate the effects of exciton-dopant quenching, from exciton-polaron quenching we have intentionally doped the emissive layer of (8-tris-hydroxyquinoline) with three acceptors (A) of different electron affinities: F 4 -TCNQ, TCNQ, and C 60 , and found that C 60 is the strongest EL-quencher, while F 4 -TCNQ is the weakest, contrary to intuitive expectations. The new effects of charge transfer and usually considered energy transfer from exciton to neutral (A) and charged acceptors (A - ) are compared as channels for non-radiative Ex-A decay. At high current loads the EL quenching is observed, which is due to decay of Ex on free charge carriers, hole polarons P + . We consider contributions to Ex-P + interaction by short-range charge transfer and describe the structure of microscopic charge transfer (CT)-processes responsible for it. The formation of metastable states of 'charged excitons' (predicted and studied by Agranovich et al. Chem. Phys. 272 (2001) 159) by electron transfer from a P to an Ex is pointed out, and ways to suppress non-radiative Ex-P decay are suggested

  9. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  10. Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers.

    Science.gov (United States)

    Jahan, K Luhluh; Boda, A; Shankar, I V; Raju, Ch Narasimha; Chatterjee, Ashok

    2018-03-22

    The problem of an exciton trapped in a Gaussian quantum dot (QD) of GaAs is studied in both two and three dimensions in the presence of an external magnetic field using the Ritz variational method, the 1/N expansion method and the shifted 1/N expansion method. The ground state energy and the binding energy of the exciton are obtained as a function of the quantum dot size, confinement strength and the magnetic field and compared with those available in the literature. While the variational method gives the upper bound to the ground state energy, the 1/N expansion method gives the lower bound. The results obtained from the shifted 1/N expansion method are shown to match very well with those obtained from the exact diagonalization technique. The variation of the exciton size and the oscillator strength of the exciton are also studied as a function of the size of the quantum dot. The excited states of the exciton are computed using the shifted 1/N expansion method and it is suggested that a given number of stable excitonic bound states can be realized in a quantum dot by tuning the quantum dot parameters. This can open up the possibility of having quantum dot lasers using excitonic states.

  11. Radiation effects from first principles : the role of excitons in electronic-excited processes.

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bryan Matthew

    2009-09-01

    Electron-hole pairs, or excitons, are created within materials upon optical excitation or irradiation with X-rays/charged particles. The ability to control and predict the role of excitons in these energetically-induced processes would have a tremendous impact on understanding the effects of radiation on materials. In this report, the excitonic effects in large cycloparaphenylene carbon structures are investigated using various first-principles methods. These structures are particularly interesting since they allow a study of size-scaling properties of excitons in a prototypical semi-conducting material. In order to understand these properties, electron-hole transition density matrices and exciton binding energies were analyzed as a function of size. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in these structures. Based on overall trends in exciton binding energies and their spatial delocalization, we find that excitonic effects play a vital role in understanding the unique photoinduced dynamics in these systems.

  12. Selection Rule for Enhanced Dark Matter Annihilation.

    Science.gov (United States)

    Das, Anirban; Dasgupta, Basudeb

    2017-06-23

    We point out a selection rule for enhancement (suppression) of odd (even) partial waves of dark matter coannihilation or annihilation using the Sommerfeld effect. Using this, the usually velocity-suppressed p-wave annihilation can dominate the annihilation signals in the present Universe. The selection mechanism is a manifestation of the exchange symmetry of identical incoming particles, and generic for multistate DM with off-diagonal long-range interactions. As a consequence, the relic and late-time annihilation rates are parametrically different and a distinctive phenomenology, with large but strongly velocity-dependent annihilation rates, is predicted.

  13. Positron annihilation characterization of Fe-Y2O3 composite powder after mechanical alloying and heat treatment.

    Science.gov (United States)

    Lee, Jae Hoon

    2012-02-01

    Fe-1 wt% Y2O3 composite powders were mechanically alloyed for 12 hr and then heat-treated at 1050 degrees C for 1 hr. Positron annihilation lifetime and coincidence Doppler broadening measurements are in qualitative agreement with X-ray diffraction studies, indicating that in the as-mixed Fe-1Y2O3 composite, up to approximately equal to 70% of the annihilations occur at vacancy clusters; a small fraction annihilates in its matrix. In the case of mechanically alloyed composite, up to approximately equal to 60% of the positrons annihilate at vacancy clusters. Some annihilations also occur in dislocations. In the heat-treated Fe-1Y2O3, positrons primarily annihilate at yttria precipitates, while a small fraction annihilates in the matrix.

  14. THE EFFECTS OF DARK MATTER ANNIHILATION ON COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2016-12-20

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons which ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM might, however, have begun to efficiently annihilate with the formation of primordial microhalos at z  ∼ 100–200, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval z  ∼ 20–100, it could leave a significant imprint on the global optical depth, τ . Moreover, we show that cosmic microwave background polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. We show that future measurements could make it possible to place constraints on the DM’s annihilation cross-sections, which are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic-ray measurements, and studies of recombination.

  15. A study of e+e- annihilation in the 1400-2250 MeV energy range with the magnetic detector DM2 at DCI

    International Nuclear Information System (INIS)

    Augustin, J.E.; Ayach, L.; Calcaterra, S.

    1983-07-01

    We present here the results obtained with the magnetic detector DM2 on the Orsay e + e - colliding beams DCI for 1400 -1 over the whole energy range. Cross sections are given for e + e - annihilation into pantip, π + π - π 0 , π + π - π + π - and K + K -

  16. Study of the φ meson in the pp→φK10K20π+π- annihilations at 700-750 MeV/c

    International Nuclear Information System (INIS)

    Gil Lopez, E.

    1976-01-01

    We have measured the mass and width of the φ meson using the pp →π + π - K 1 0 K 2 0 annihilations at 700-750 MeV/c.- The values obtained are In good agreement with proceeding measurements. The mass has been measured with a high accuracy. (Author) 3 refs

  17. Exciton dynamics in solid-state green fluorescent protein

    Science.gov (United States)

    Dietrich, Christof P.; Siegert, Marie; Betzold, Simon; Ohmer, Jürgen; Fischer, Utz; Höfling, Sven

    2017-01-01

    We study the decay characteristics of Frenkel excitons in solid-state enhanced green fluorescent protein (eGFP) dried from solution. We further monitor the changes of the radiative exciton decay over time by crossing the phase transition from the solved to the solid state. Complex interactions between protonated and deprotonated states in solid-state eGFP can be identified from temperature-dependent and time-resolved fluorescence experiments that further allow the determination of activation energies for each identified process.

  18. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.

    Science.gov (United States)

    Li, Yong Jun; Hong, Yan; Peng, Qian; Yao, Jiannian; Zhao, Yong Sheng

    2017-10-24

    The excitation of surface plasmons by optical emitters based on exciton-plasmon coupling is important for plasmonic devices with active optical properties. It has been theoretically demonstrated that the orientation of exciton dipole can significantly influence the coupling strength, yet systematic study of the coupling process in nanostructures is still hindered by the lack of proper material systems. In this work, we have experimentally investigated the orientation-dependent exciton-plasmon coupling in a rationally designed organic/metal nanowire heterostructure system. The heterostructures were prepared by inserting silver nanowires into crystalline organic waveguides during the self-assembly of dye molecules. Structures with different exciton orientations exhibited varying coupling efficiencies. The near-field exciton-plasmon coupling facilitates the design of nanophotonic devices based on the directional surface plasmon polariton propagations.

  19. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  20. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  1. New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy

    NARCIS (Netherlands)

    Eijt, S.W.H.; Shi, W.; Mannheim, A.; Butterling, M.; Schut, H.; Egger, W; Dickmann, M.; Hugenschmidt, C; Shakeri, B.; Meulenberg, R; Callewaert, V.; Saniz, R; Partoens, B; Barbiellini, B; Bansil, A; Melskens, J.; Zeman, M.; Smets, A.H.M.; Kulbak, M.; Hodes, G.; Cahen, D.; Brück, E.H.

    2017-01-01

    Recent studies showed that positron annihilation methods can provide key insights into the nanostructure and electronic structure of thin film solar cells. In this study, positron annihilation lifetime spectroscopy (PALS) is applied to investigate CdSe quantum dot (QD) light absorbing layers,

  2. Mn-Doping in NiO Nanoparticles: Defects-Modifications and Associated Effects Investigated Through Positron Annihilation Spectroscopy.

    Science.gov (United States)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Nambissan, P M G

    2016-04-01

    Manganese-doped nickel oxide (Ni1-xMnxO) nanoparticulate samples with x in the range 0 (undoped sample) to 0.35 were synthesized by sol-gel method involving chemical reactions between the solutions of nickel nitrate hexahydrate and manganese acetate tetrahydrate. The nanocrystallites obtained after annealing of the precipitates for different durations were characterized by X-ray diffraction and high resolution transmission electron microscopy. The samples showed high degree of purity with no secondary phase up to 35 at.% (x = 0.35) of Mn-doping. At the initial doping concentrations, the crystallite sizes increased due to vacancy type defects being recombined with some of the doped Mn2+ ions. However, substitution-induced strain soon overtook the crystallite dynamics and the sizes rapidly started reducing again as an indirect consequence of the necessity to accommodate majority of the doped cations on the surfaces of the nanocrystallites. There was conspicuous changes in the lattice parameter too which could again be attributed to the strain and charge effects. The average sizes of the crystallites were obtained in the range 5.5 nm to 13.1 nm for the different samples. UV-Vis absorption studies indicated the formation of excitonic states in NiO on Mn-doping. The band gap energy (Eg) derived from the optical absorption spectra showed a continuous increase with increase of Mn-doping of the samples. Positron lifetime and Doppler broadening spectroscopic studies were carried out on those samples to characterize the vacancy type defects and defect clusters/complexes. There were also indications to suggest positron annihilation at the crystallite surfaces owing to their sizes of nanometer order. Positron lifetimes decreased upon increase of Mn-doping. The coincidence Doppler broadened ratio curves indicated definite shifts of the prominent oxygen-electron-annihilation peak and the variation of the lineshape parameter S also indicated clearly the effects of Mn-doping.

  3. On baryogenesis from dark matter annihilation

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Colucci, Stefano; Ubaldi, Lorenzo; Josse-Michaux, François-Xavier; Racker, J.

    2013-01-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses

  4. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  5. Study of hadronization using energy flow from e/sup +/e/sup -/ annihilation into quarks and gluons at. sqrt. s of 29 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, L.J.

    1985-11-01

    We have made a high statistics study of QCD jets produced in e/sup +/e/sup -/ annihilations at ..sqrt..s of 29 GeV and observed in the MAC detector located at the PEP storage ring at SLAC. The MAC detector uses calorimetry and provides a homogeneous response over much of its 98% . 4..pi.. sr instrumented solid angle. A data sample of well reconstructed hadronic events was selected by requiring that E/sub vis/ in the calorimeters be near ..sqrt..s, and almost all the energy be deposited in the central calorimeters. Fits of the jet transverse energy flow are made to the data using String (STR) model and several types of Independent Jet (IJM) model hypotheses, where ..alpha../sub s/, the strong coupling constant, and sigma/sub q/, the width of the secondary quark P/sub perpendicular/ distribution, are free parameters. The fits to O(..alpha../sub s//sup 2/ using MS-bar renormalization yield ..alpha../sub s/ approx.0.17 with the STR hypothesis, and ..alpha../sub s/ approx.0.12 with the various IJM hypotheses. The correlations between ..alpha../sub s/ and sigma/sub q/ are examined. Detailed comparisons were made with other experimental results. The energy flow projected onto the event plane of 3-jet events selected from the above data sample was studied. The data shows an asymmetric energy flow around the thin jet. Such an asymmetry was predicted by the STR model, and a cluster model (Webber) incorporating soft gluon interference. The various IJM models show no such asymmetry. We associate this asymmetry with coherence effects during hadronization. 106 refs., 58 figs., 18 tabs.

  6. Study of hadronization using energy flow from e+e- annihilation into quarks and gluons at √s of 29 GeV

    International Nuclear Information System (INIS)

    Rosenberg, L.J.

    1985-11-01

    We have made a high statistics study of QCD jets produced in e + e - annihilations at √s of 29 GeV and observed in the MAC detector located at the PEP storage ring at SLAC. The MAC detector uses calorimetry and provides a homogeneous response over much of its 98% . 4π sr instrumented solid angle. A data sample of well reconstructed hadronic events was selected by requiring that E/sub vis/ in the calorimeters be near √s, and almost all the energy be deposited in the central calorimeters. Fits of the jet transverse energy flow are made to the data using String (STR) model and several types of Independent Jet (IJM) model hypotheses, where α/sub s/, the strong coupling constant, and sigma/sub q/, the width of the secondary quark P/sub perpendicular/ distribution, are free parameters. The fits to O(α/sub s/ 2 using MS-bar renormalization yield α/sub s/ approx.0.17 with the STR hypothesis, and α/sub s/ approx.0.12 with the various IJM hypotheses. The correlations between α/sub s/ and sigma/sub q/ are examined. Detailed comparisons were made with other experimental results. The energy flow projected onto the event plane of 3-jet events selected from the above data sample was studied. The data shows an asymmetric energy flow around the thin jet. Such an asymmetry was predicted by the STR model, and a cluster model (Webber) incorporating soft gluon interference. The various IJM models show no such asymmetry. We associate this asymmetry with coherence effects during hadronization. 106 refs., 58 figs., 18 tabs

  7. Study of the jet rates in the e+e- annihilation at the c.m. energies 14, 22, 35, and 44 GeV

    International Nuclear Information System (INIS)

    Smolik, L.

    1989-01-01

    The object of this thesis was the study of the hadronic final state in the e + e - -annihilation. By means of the Monte-Carlo simulation calculation could be detected that the effects of the parton fragmentation as well at the photon bremsstrahlung and the influence of the detector cause a not negligible change of the original parton kinematics. Especially the fragmentation effects together with the systematic uncertainty in the jet definition a strong c.m. dependent shift of the parton rates. Only the regardment of all these influences on the measured jet rates allowed a senseful analysis of the QCD parameters. For this a procedure was developed, which allows a direct comparison of the experimental jet rates with the theoretical parton rates and regards the correlations of the jet rates in a correct way. Under giving of a scale μ the corresponding Λ MS could be determined, by which the best agreement with data at the four studied c.m. energies could be simultaneously reached. This choice of the scale μ 2 =Q 2 leads only to an incomplete description of the jet rates. Especially the 4-jet rate of the 35- and 44-GeV data set exhibits a very distinct deviation in comparison to the theoretical prediction. The results of the analysis showed a unique trend; parton rates calculated with essentially smaller scales μ opt 2 , y.Q 2 , and x.Q 2 can reproduce the jet rates essentially better. The application of the scale x.Q 2 with x in the range 0.01 to 0.003 yielded the best fit. The experiment jet rates could be described between √s=14 and 44 GeV with a common QCD parameter Λ MS . The Lund string model was applied for the description of the fragmentation, the partons were recombined according to the KL' scheme. (orig./HSI) [de

  8. The influence of antioxidant on positron annihilation in polypropylene

    International Nuclear Information System (INIS)

    Djourelov, N.; He, C.; Suzuki, T.; Ito, Y; Kondo, K.; Ito, Y.; Shantarovich, V.P.

    2003-01-01

    The purpose of this report is to check the influence of the carbonyl groups (CG), created by oxygen naturally dissolved in a polymer matrix and by the source irradiation, on annihilation characteristics of free positrons using the positron annihilation lifetime spectroscopy (PALS) and coincidence Doppler-broadening spectroscopy (CDBS). Positron annihilation in a pure polypropylene (PP) and in an antioxidant-containing polypropylene (PPA) sample at room and low temperatures has been studied by CDBS. PALS has been used as an o-Ps (orth-positronium) formation monitor. The momentum density distributions of electrons obtained by CDBS at the beginning of measurements have been compared to that at the o-Ps intensity saturation level. It has been shown that the initial concentration of carbonyl groups in a PP sample is high, while for an antioxidant-containing sample, PPA, carbonyl groups are not detected by CDBS. CDBS spectra for a PP can be explained by annihilation of free positrons with the oxygen contained in the carbonyl groups. For a PPA sample, no significant contribution of annihilation with oxygen core electrons can be concluded. (Y. Kazumata)

  9. Exciton liquid in coupled quantum wells.

    Science.gov (United States)

    Stern, Michael; Umansky, Vladimir; Bar-Joseph, Israel

    2014-01-03

    Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.

  10. ESR, thermoelectrical and positron annihilation Doppler broadening studies of CuZnFe2O4-BaTiO3 composite

    International Nuclear Information System (INIS)

    Hemeda, O.M.; Mahmoud, K.R.; Sharshar, T.; Elsheshtawy, M.; Hamad, Mahmoud A.

    2017-01-01

    Composite materials of Cu 0.6 Zn 0.4 Fe 2 O 4 (CZF) and barium titanate (BT) with different concentrations were prepared by high energy ball milling method. The composite samples of CZF and BT were studied using Infrared, ESR and positron annihilation Doppler broadening (PADB) spectroscopy techniques as well as thermo-electric power measurements. The results confirm formation of the composite, and presence of two ferrimagnetic and ferroelectric phases, simultaneously. In addition, Fe–O bond for both tetrahedral and octahedral sites, population and distribution of cations at A and B sites are varied with BT content. The values of resonance field, line width of ESR spectrum and charge carrier concentration increase by increasing BT content. The value of the g factor for our samples with low BT content is greater than g-factor value of the isolated free electron. On the contrary, the g-factor values for samples with high BT content are smaller than the free isolated electron. PADB line-shape S-parameter suggests that there are increases of the density of the delocalized electrons, defect size and concentration caused by highly adding BT phase. In addition, PADB results confirm the homogeneity of composite phases and same structure of defects in BT-CZF composite samples. - Highlights: • Composite materials of Cu 0.6 Zn 0.4 Fe 2 O 4 (CZF) and barium titanate (BT) were prepared. • The resonance field and charge carrier concentration increase by increasing BT. • there is increase of the density of delocalized electrons by highly adding BT. • In addition, PADB results confirm the homogeneity of composite phases.

  11. Collective state of interwall excitons on GaAs/AlGaAs double quantum wells under pulse resonant excitation

    CERN Document Server

    Larionov, A V; Hvam, J; Soerensen, K

    2002-01-01

    The time evolution and kinetics of the photoluminescence (PL) spectra of the interwall excitons under the pulse resonant excitation of the interwall excitons are studied in the GaAs/AlGaAs binary quantum well. It is established, that the collective exciton phase originates with the time delay relative to the exciting pulse (several nanoseconds), which is conditioned by the density and temperature relaxation to the equilibrium values.The origination of the collective phase of the interwall excitons is accompanied by the strong narrowing of the corresponding photoluminescence line, the superlinear growth of its intensity and large time of change in the degree of the circular polarization.The collective exciton phase originates at the temperatures < 6 K and the interwall excitons densities 3 x 10 sup 1 sup 0 cm sup - sup 2

  12. Jets in e+e- annihilation

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1978-05-01

    The latest results on R, the ratio of the total cross section for production of multihadronic events to the muon pair production cross section, and inclusive distributions of hadrons from e + e - annihilation in the center-of-mass energy range from 2.6 to 7.8 GeV are presented. The evidence for jet structure is reviewed. Inclusive distributions of hadrons in Feynman x, rapidity, and transverse momentum relative to the jet direction are studied. Particular emphasis is placed on the method used to measure these inclusive distributions and the biases which might result from this method

  13. Particle-antiparticle asymmetries from annihilations.

    Science.gov (United States)

    Baldes, Iason; Bell, Nicole F; Petraki, Kalliopi; Volkas, Raymond R

    2014-10-31

    An extensively studied mechanism to create particle-antiparticle asymmetries is the out-of-equilibrium and CP violating decay of a heavy particle. We, instead, examine how asymmetries can arise purely from 2→2 annihilations rather than from the usual 1→2 decays and inverse decays. We review the general conditions on the reaction rates that arise from S-matrix unitarity and CPT invariance, and show how these are implemented in the context of a simple toy model. We formulate the Boltzmann equations for this model, and present an example solution.

  14. Positron annihilation in disordered regions in neutron-irradiated Ge and Si

    International Nuclear Information System (INIS)

    Pustovoit, A.K.; Konopleva, R.F.; Kupchishin, A.I.; Mukashev, K.M.

    1989-01-01

    The method of angular distribution of annihilation photons was used to investigate the formation and annealing of radiation defects in Ge and Si irradiated with reactor neutrons. These effects were studied as a function of the type of conduction of the dopant concentration. The nature of annealing demonstrated positron annihilation at multivacancy complexes located within disordered regions

  15. Multiple gamma lines from semi-annihilation

    International Nuclear Information System (INIS)

    D'Eramo, Francesco; McCullough, Matthew; Thaler, Jesse

    2013-01-01

    Hints in the Fermi data for a 130 GeV gamma line from the galactic center have ignited interest in potential gamma line signatures of dark matter. Explanations of this line based on dark matter annihilation face a parametric tension since they often rely on large enhancements of loop-suppressed cross sections. In this paper, we pursue an alternative possibility that dark matter gamma lines could arise from ''semi-annihilation'' among multiple dark sector states. The semi-annihilation reaction ψ i ψ j → ψ k γ with a single final state photon is typically enhanced relative to ordinary annihilation ψ i ψ-bar i → γγ into photon pairs. Semi-annihilation allows for a wide range of dark matter masses compared to the fixed mass value required by annihilation, opening the possibility to explain potential dark matter signatures at higher energies. The most striking prediction of semi-annihilation is the presence of multiple gamma lines, with as many as order N 3 lines possible for N dark sector states, allowing for dark sector spectroscopy. A smoking gun signature arises in the simplest case of degenerate dark matter, where a strong semi-annihilation line at 130 GeV would be accompanied by a weaker annihilation line at 173 GeV. As a proof of principle, we construct two explicit models of dark matter semi-annihilation, one based on non-Abelian vector dark matter and the other based on retrofitting Rayleigh dark matter

  16. Models of pair annihilation in 1E 1740.7-2942 and the HEAO 1 A-4 annihilation source

    Science.gov (United States)

    Maciolek-Niedzwiecki, Andrzej; Zdziarski, Andrzej

    1994-01-01

    We study possible models of two Galactic sources of transient pair annihilation radiation, 1E 1740.7-2942 and a source observed by High Energy Astronomy Observatory (HEAO) 1 A-4. We fit the observed spectral features by thermal annihilation spectra and find that the redshifts obtained by us are much larger than those obtained from fitting Caussian lines centered on 511 keV. This effect, which is due to the net blueshift (with respect to 511 keV) of the annihilation spectrum due to the thermal energies of pairs, puts strong constraints on models of sources. We consider those constraints first without considering the mechanism of positron production. From the shape of the observed spectra, we are able to rule out both spherical clouds and layers above cold matter as possible source geometries. The observed spectra are compatible with two source geometries: (1) a nearly face-on disk in the Kerr metric and (2) a jet close to a black hole. We consider, then, the origin of the pairs. Theories of both thermal and nonthermal pair equilibria predict that photon-pair production is unable to produce annihilation features that contain as much as half of the bolometric luminosity, which is observed. A possible solution to this problem is obscuration of a nonthermal source (in which pairs are produced by photon-photon collisions) and an outflow of pairs to an unobscured region. This makes annihilation in a jet the most likely model of the considered sources.

  17. Features of exciton dynamics in molecular nanoclusters (J-aggregates): Exciton self-trapping (Review Article)

    Science.gov (United States)

    Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.

    2016-06-01

    We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.

  18. Investigation of highly activated materials by conventional positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sabelova, V.; Petriska, M.; Slugen, V.; Krsjak, V.

    2013-01-01

    Positron annihilation process is helpful tool for material microstructure study. Many useful methods for detecting vacancies and their clusters in various alloys use its principle. Experimental procedure of positron source preparation (radioactive 22 Na) for these methods is difficult task. The unusual small sample dimensions of studied irradiated Eurofer 97 alloy form difficult conditions for its manufacturing. The unique sodium positron source proper preparation is confirmed by positron annihilation lifetime spectroscopy (PALS) and coincidence Doppler broadening spectroscopy (CDBS) in Paul Scherrer Institute in Switzerland. (authors)

  19. Application of positron annihilation technique to reverse osmosis membrane materials

    International Nuclear Information System (INIS)

    Shimazu, A.; Ikeda, K.; Miyazaki, T.; Ito, Y.

    2000-01-01

    Positron annihilation lifetime spectroscopy has been adopted as a new approach for studying vacancies of reverse osmosis membrane materials composed of cellulose acetate films and aromatic polyamide resins. The intensity of the ortho-positronium (o-Ps) lifetime increased with the amount of vacancies determined using N 2 isotherm at -195 deg. C. Changes of vacancy profiles induced by heat treatment in the cellulose acetate films were detected using o-Ps. It was found that the positron annihilation technique is applicable to the study of vacancy profiles associated with salt selectivity in typical reverse osmosis membranes.

  20. Nonmonotonic energy harvesting efficiency in biased exciton chains

    NARCIS (Netherlands)

    Vlaming, S.M.; Malyshev, V.A.; Knoester, J.

    2007-01-01

    We theoretically study the efficiency of energy harvesting in linear exciton chains with an energy bias, where the initial excitation is taking place at the high-energy end of the chain and the energy is harvested (trapped) at the other end. The efficiency is characterized by means of the average

  1. Antinucleon-nucleon annihilation dynamics

    International Nuclear Information System (INIS)

    Myhrer, F.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    The antinucleon-nucleon annihilation is predominantly described by a hot-fireball process where the many final quantum numbers are distributed in a statistical fashion. It is argued that caution must be used in employing the long-range meson-exchange forces to describe the protonium atomic states. The simplest processes of two final mesons do show puzzling behavior which might be a reflection of quark dynamics, but no guiding principles for these quark calculations have been established yet. (orig.)

  2. Notes on symmetric and exterior depth and annihilator numbers

    Directory of Open Access Journals (Sweden)

    Gesa Kampf

    2008-11-01

    Full Text Available We survey and compare invariants of modules over the polynomial ring and the exterior algebra. In our considerations, we focus on the depth. The exterior analogue of depth was first introduced by Aramova, Avramov and Herzog. We state similarities between the two notion of depth and exhibit their relation in the case of squarefree modules. Work of Conca, Herzog and Hibi and Trung, respectively, shows that annihilator numbers are a meaningful generalization of depth over the polynomial ring. We introduce and study annihilator numbers over the exterior algebra. Despite some minor differences in the definition, those invariants show common behavior. In both situations a positive linear combination of the annihilator numbers can be used to bound the symmetric and exterior graded Betti numbers, respectively, from above.

  3. Positron annihilation in germanium in thermal equilibrium at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Komuro, Naoyuki; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi

    1996-09-01

    Annihilation characteristics of positrons in Ge in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Precise measurements of Doppler broadening profiles of annihilation radiation were performed in the temperature range between 300 K and 1211 K. The line shape parameters of Doppler broadening profiles were found to be almost constant at 300-600 K. The changes in these parameters were observed to start above 600 K. This was attributed to both the decrease in the fraction of positrons annihilating with core electrons and the lowering of the crystal symmetry around the region detected by positron-electron pairs. This suggests that behaviors of positrons are dominated by some form of positron-lattice coupling in Ge at high temperatures. The temperature dependence of the diffusion length of positrons was also discussed. (author)

  4. Positron annihilation studies in high-Tc superconductors RBa2Cu3Oy, R: La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er

    International Nuclear Information System (INIS)

    Lagouri, T.; Dedoussis, S.; Chardalas, M.; Liolios, A.

    1997-01-01

    Positron lifetime and Doppler broadening of the annihilation line measurements have been performed at room temperature in high-T c superconductors RBa 2 Cu 3 O y , where R: La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er and 6.9 c superconducting samples RBa 2 Cu 3 O y , where R: Nd, Sm, Eu, Ho, Y, Er as a function of temperature between 14 K and 293 K. It was observed that the positron lifetime and the S parameter values at room temperature have no obvious trend in their variation from the yttrium substitution by a rare-earth element. It was also observed that the temperature dependence of the positron annihilation parameters is similar in the high-T c superconducting samples. (orig.)

  5. Positron annihilation study of the electronic structure of URu.sub.2./sub.Si.sub.2./sub.: Fermi surface and hidden order parameter

    Czech Academy of Sciences Publication Activity Database

    Biasini, M.; Rusz, Ján; Mills, A.

    2009-01-01

    Roč. 79, č. 8 (2009), 085115/1-085115/10 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100520 Keywords : positron annihilation * 2D-ACAR * URu 2 Si 2 * density functional theory * hidden order * Fermi surface Subject RIV: BE - Theoretical Physics Impact factor: 3.475, year: 2009 http://prb.aps.org/abstract/PRB/v79/i8/e085115

  6. Application of the Positron Annihilation Technique to the study of vapors absorption process in polyethylene (LDPE) and in imide polymer (6FDA-TMPD PI)

    International Nuclear Information System (INIS)

    Sanchez Mendieta, V.

    1992-01-01

    It is well recognized that positron annihilation lifetime (PAL) spectra in polymers have a long-lived component that can be ascribed to ortho-positronium (o-Ps). The lifetime, τ 3 , is considered to be a measure of the size of the micro-vacancies in which o-Ps is trapped and is annihilated through pick-off annihilation with the rate which depends on the size of the vacancy. Positron lifetime measurements were performed for two different kinds of polymers (low density polyethylene and a polyimide (6FDA-TMPD) during sorption of various vapors (hexane, cyclohexane, benzene, acrylic acid, methyl acrylate, water and oxygen). The vapor sorption affected the long-lived component (ortho-positronium component) in a systematic way regardless of the kind of the vapor molecules, i.e. for the polyethylene both the lifetime and the intensity of the long-lived component were enhanced, while for the polyimide they were decreased significantly. These different effects are interpreted in terms of different states of sorbed molecules in rubbery (the polyethylene) and in glassy (the polyimide) polymers. (Author)

  7. Excitons in van der Waals heterostructures

    DEFF Research Database (Denmark)

    Latini, Simone; Olsen, Thomas; Thygesen, Kristian Sommer

    2015-01-01

    -dimensional (2D) excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model, which assumes a dielectric function of the form epsilon(q) = 1 + 2 pi alpha q, and we develop a quasi-2D model with a much broader applicability. Within the quasi-2D picture, electrons...

  8. Radiative recombination of excitons in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments

  9. Production bias and cluster annihilation: Why necessary?

    DEFF Research Database (Denmark)

    Singh, B.N.; Trinkaus, H.; Woo, C.H.

    1994-01-01

    the primary cluster density is high. Therefore, a sustained high swelling rate driven by production bias must involve the annihilation of primary clusters at sinks. A number of experimental observations which are unexplainable in terms of the conventional dislocation bias for monointerstitials is considered....... It is found that the production bias and cluster annihilation are necessary to explain these observations, with, in many cases, the explicit consideration of the annihilation of the primary interstitial clusters....

  10. An experimental study of e+e- annihilation into four leptons at √S ≥ 35 GeV

    International Nuclear Information System (INIS)

    Behrend, H.J.; Criegee, L.; Dainton, J.B.; Field, H.J.; Franke, G.; Jung, H.; Meyer, J.; Schroeder, V.; Winter, G.G.; Bussey, P.J.; Buttar, C.; Campbell, A.J.; Hendry, D.; McCurrach, G.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Ahme, J.; Blobel, V.; Brehm, W.; Feindt, M.; Fenner, H.; Harjes, J.; Peters, J.H.; Podobrin, O.; Spitzer, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kroha, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Scholz, S.; Shooshtari, G.; Wiedenmann, W.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Janot, P.; Journe, V.; Kim, D.W.; Le Diberder, F.; Veillet, J.J.; Aleksan, R.; Cozzika, G.; Ducros, Y.; Pierre, F.; Alexander, G.; Beck, A.; Bella, G.; Grunhaus, J.; Klatchko, A.; Levy, A.; Milstene, C.

    1989-01-01

    The three reactions e + e - → e + e - e + e - , e + e - → e + e - μ + μ - and e + e - → μ + μ - μ + μ - have been studied using the CELLO detector at PETRA. The data correspond to 130 pb -1 collected at energies ranging from 35 GeV to 46.8 GeV. A detailed analysis of the distribution of the observed events in phase space shows good agreement with QED to order α 4 . (orig.)

  11. Singlet-triplet annihilation in single LHCII complexes.

    Science.gov (United States)

    Gruber, J Michael; Chmeliov, Jevgenij; Krüger, Tjaart P J; Valkunas, Leonas; van Grondelle, Rienk

    2015-08-14

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet-triplet (S-T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (∼7 μs) of the quenching species. Inspired by singlet-singlet (S-S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S-T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S-T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime.

  12. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  13. The Aharonov-Bohm effect for an exciton

    Science.gov (United States)

    Römer, R. A.; Raikh, M. E.

    2000-03-01

    We study theoretically the exciton absorption (luminescence) of a ring-like quantum dot shreded by a magnetic flux. We consider the limit when the width of the ring is smaller than the excitonic Bohr radius a_B. We demonstrate that, despite the electrical neutrality of the exciton, both the spectral position of the exciton peak in the absorption (luminescence), and the corresponding oscillator strength oscillate with magnetic flux with a period Φ0 --- the universal flux quantum. Assuming that the attraction between electron and hole is short-ranged we find analytically the functional form of these oscillations for both quantities.^1 This enables us to trace the magnitude of the effect with changing the ratio 2 π R/aB where R is the radius of the ring. Physically, the origin of the oscillations is the finite probability for electron and hole, created by a photon at the same point, to tunnel in the opposite directions and meet each other on the opposite side of the ring. Possible candidates for the experimental observation of the effect are recently discovered self-assembled quantum ring-like structures of InAs embedded in GaAs.^2,3 ^1R.A. Römer and M.E. Raikh, preprint cond-mat/9906314. ^2A. Lorke et al., Microelectronic Engeneering 47, 95 (1999). ^3H. Petterson et al., Proceedings of EP2DS-13, to be published in Physica E, (1999).

  14. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    Science.gov (United States)

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.; Heinz, Tony F.; Marie, Xavier; Amand, Thierry; Urbaszek, Bernhard

    2018-04-01

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.

  15. Multimode vibrational couplings in resonant positron annihilation.

    Science.gov (United States)

    d'A Sanchez, Sergio; Lima, Marco A P; Varella, Márcio T do N

    2011-09-02

    The mechanisms for multimode vibrational couplings in resonant positron annihilation are not well understood. We show that these resonances can arise from positron-induced distortions of the potential energy surface (target response to the positron field). Though these distortions can transfer energy into single- and multiquantum vibrations, they have so far been disregarded as a pathway to resonant annihilation. We also compare the existing annihilation theories and show that the currently accepted model can be cast as a special case of the Feshbach annihilation theory.

  16. Excitons and interconfigurational transitions in CaF{sub 2}:Yb{sup 2+} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes-Currie, Rosa B.; Salkeld, Alexander J. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); Ivanovskikh, Konstantin V. [ANK Service Ltd., PB 58, Novouralsk 624131, Sverdlovsk region (Russian Federation); Ural Federal University, 19 Mira st., Ekaterinburg 620002 (Russian Federation); Reid, Michael F., E-mail: mike.reid@canterbury.ac.nz [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); Wells, Jon-Paul R. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); Reeves, Roger J. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand)

    2015-02-15

    A time-resolved VUV spectroscopic study of emission and excitation spectra of CaF{sub 2}:Yb{sup 2+} has been performed to investigate excitation and relaxation mechanisms of both impurity-trapped excitons and intrinsic excitons in CaF{sub 2}. Host-to-impurity energy transfer mechanisms leading to formation of impurity-trapped excitons have been discussed. The change in free exciton excitation peak position with increasing lattice temperature has been measured and is well approximated by Viña's expression for the temperature shift of a semiconductor band gap. The 4f{sup 14}→4f{sup 13}5d CaF{sub 2}:Yb{sup 2+} absorption bands are successfully modeled with a semi-empirical effective Hamiltonian calculation. - Highlights: • We present VUV emission and excitation spectra of CaF{sub 2}:Yb{sup 2+}. • Formation of free excitons leads to emission from intrinsic and extrinsic excitons. • Temperature shifts of semiconductor band gaps apply to the intrinsic exciton peak. • 4f{sup 14}→4f{sup 13}5dYb{sup 2+} absorption is modeled by a semi-empirical Hamiltonian.

  17. Phonons spreading from laser-heated gold nanoparticle array accelerate diffusion of excitons in an underlying polythiophene thin film.

    Science.gov (United States)

    Rais, David; Menšík, Miroslav; Paruzel, Bartosz; Kurunthu, Dharmalingam; Pfleger, Jiří

    2017-04-19

    Localized surface plasmon (LSP) photophysical phenomena occurring in metal nanostructures are often presented as a method to effectively couple light into photovoltaic devices of sub-wavelength-scale thickness. However, the excitation of LSP is also associated with rapid energy dissipation leading to local heating, which affects the excitation energy pathway. We studied a system consisting of a planar gold nanoparticle (AuNP) array deposited at the surface of a semiconducting polymer thin film (P3HT). We observed heat transfer from laser pulse excited AuNPs into the P3HT, which was evidenced as a long-living thermochromic effect on transient optical absorption. By modeling of the ultrafast kinetics of exciton population evolution, we determined that their decay was caused by their mutual annihilation. The decay rate was controlled by a phonon-assisted one-dimensional diffusion mechanism with a diffusion constant of 2.2 nm 2 ps -1 . The transferred heat resulted in an increase of the diffusion constant by a factor of almost 2, compared to the control system of P3HT without AuNPs. These results are of practical use for the design of plasmon-enhanced optoelectronic devices.

  18. First positron annihilation lifetime measurement of Pu

    International Nuclear Information System (INIS)

    Colmenares, C.; Howell, R.H.; Ancheta, D.; Cowan, T.; Hanafee, J.; Sterne, P.

    1996-01-01

    We have made the first measurement of defects in an aged sample of δ phase, Ga stabilized Pu, using positron annihilation lifetime spectroscopy. This measurement validates the procedure necessary to perform measurements on this highly toxic material and obtain data representative of sample conditions. Comparison of the positron annihilation lifetime analysis of the data with calculated values suggests that He filled vacancies or vacancy clusters dominate the defect population. Such defects are the necessary precursor to void growth and swelling. The evolution of defects resulting from the radioactive decay of Pu during its life in the stockpile is one of the unknown quantities affecting our confidence in predictions of the limit on stockpile components. Radiation damage leads to changes in the size and strength of metals studied for reactor and accelerator use and similar effects may be expected in Pu. The evolution of radiation produced vacancies into larger void structures and accompanying macroscopic swelling may occur in Pu at some age. A detailed understanding of the defects in self irradiated Pu is required to predict the time scale of void swelling and related radiation effects. 1 fig

  19. Statistics, synergy, and mechanism of multiple photogeneration of excitons in quantum dots: Fundamental and applied aspects

    International Nuclear Information System (INIS)

    Oksengendler, B. L.; Turaeva, N. N.; Uralov, I.; Marasulov, M. B.

    2012-01-01

    The effect of multiple exciton generation is analyzed based on statistical physics, quantum mechanics, and synergetics. Statistical problems of the effect of multiple exciton generation (MEG) are broadened and take into account not only exciton generation, but also background excitation. The study of the role of surface states of quantum dots is based on the synergy of self-catalyzed electronic reactions. An analysis of the MEG mechanism is based on the idea of electronic shaking using the sudden perturbation method in quantum mechanics. All of the above-mentioned results are applied to the problem of calculating the limiting efficiency to transform solar energy into electric energy. (authors)

  20. Origin and annihilation physics of positrons in the Galaxy

    International Nuclear Information System (INIS)

    Alexis, Anthony

    2014-01-01

    A gamma radiation at 511 keV is observed since the early 1970's toward the Galactic bulge region. This emission is the signature of a large number of electron-positron annihilations, the positron being the electron's antiparticle. Unfortunately, the origin of the positrons responsible for this emission is still a mystery. Many positron-source candidates have been suggested but none of them can account for the galactic annihilation emission. The spatial distribution of this emission is indeed very atypical. Since 2002, the SPI spectrometer onboard the INTEGRAL space laboratory revealed an emission strongly concentrated toward the galactic bulge and a weaker emission from the galactic disk. This morphology is unusual because it does not correspond to any of the known galactic astrophysical-object or interstellar-matter distributions. The assumption that positrons annihilate close to their sources (i.e. the spatial distribution of the annihilation emission reflects the spatial distribution of the sources) has consequently been called into question. Recent studies suggest that positrons could propagate far away from their sources before annihilating. This physical aspect could be the key point to solve the riddle of the galactic positron origin. This thesis is devoted to the modelling of the propagation and annihilation of positrons in the Galaxy, in order to compare simulated spatial models of the annihilation emission with recent measurements provided by SPI/INTEGRAL. This method allows to put constraints on the origin of galactic positrons. We therefore developed a propagation Monte-Carlo code of positrons within the Galaxy in which we implemented all the theoretical and observational knowledge about positron physics (sources, transport modes, energy losses, annihilation modes) and the interstellar medium of our Galaxy (interstellar gas distributions, galactic magnetic fields, structures of the gaseous phases). Due to uncertainties in several physical parameters

  1. Inverse Compton Gamma Rays from Dark Matter Annihilation in the ...

    Indian Academy of Sciences (India)

    didates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino. (neutral χ particle) as predicted in the Minimal Supersymmetric Standard. Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming ...

  2. Phase behaviour in confined geometry via positronium annihilation spectroscopy

    International Nuclear Information System (INIS)

    Fretwell, H.M.; Duffy, J.A.; Clarke, A.P.; Dugdale, S.B.; Alam, M.A.; Evans, R.

    1997-01-01

    Positronium annihilation spectroscopy has recently been successfully applied to the study of phase behaviour of fluids confined in nano-pores. In this paper we provide a brief survey of the new technique in mapping out the phase diagram in confinement and in elucidating some intricate phase behaviour. (author). 12 refs, 3 figs

  3. The electroweak interaction in e+e- annihilations

    International Nuclear Information System (INIS)

    Marshall, R.

    1982-04-01

    The role of e + e - annihilation in studying the weak neutral current, at PETRA and PEP, is reviewed. The way in which the vector and axial vector couplings appear in the total cross sections, the angular distributions and the polarisation dependences are discussed. The dependence of external gauge models on the results of PETRA and PEP experiments is examined. (U.K.)

  4. Hidden strangeness production in two body nbarp annihilation in flight

    CERN Document Server

    Filippi, A

    1999-01-01

    The relative production rates of the final states phi pi sup + , omega pi sup + , eta pi sup + , eta'pi sup + in nbarp annihilation in flight are studied in order to check OZI rule violation effects in both the vectorial and pseudoscalar sectors.

  5. Positron Annihilation in a Rubber Modified Epoxy Resin

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Jacobsen, F. M.; Pethrick, R. A.

    1979-01-01

    Positron annihilation data is reported on a rubber-modified epoxy resin. Studies of the temperature dependence of the o-positronium lifetime indicated the existence of three distinct regions; the associated transition temperatures by comparison with dilatometric data can be ascribed respectively...

  6. A study of energy-energy correlations in e+e- annihilations at √s = 34.6 GeV

    International Nuclear Information System (INIS)

    Berger, C.; Genzel, H.; Lackas, W.; Pielorz, J.; Raupach, F.; Wagner, W.; Ferrarotto, F.; Gaspero, M.; Stella, B.; Zachara, M.; Bussey, P.J.; Cartwright, S.L.; Dainton, J.B.; King, B.T.; Raine, C.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Thomson, J.C.; Achterberg, O.; Blobel, V.; Burkart, D.; Diehlmann, K.; Feindt, M.; Kapitza, H.; Koppitz, B.; Krueger, M.; Poppe, M.; Spitzer, H.; Staa, R. van; Almeida, F.; Baecker, A.; Barreiro, F.; Brandt, S.; Derikum, K.; Grupen, C.; Meyer, H.J.; Mueller, H.; Neumann, B.; Rost, M.; Stupperich, K.; Zech, G.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.; Junge, H.; Kraski, K.; Maxeiner, C.; Maxeiner, H.; Meyer, H.; Schmidt, D.; Buerger, J.; Criegee, L.; Deuter, A.; Franke, G.; Gerke, C.; Knies, G.; Lewendel, B.; Meyer, J.; Michelsen, U.; Pape, K.H.; Timm, U.; Winter, G.G.; Zimmermann, W.

    1985-05-01

    We present high statistics measurements of the energy-energy correlation (EEC) and its related asymmetry (AEEC) in e + e - annihilation at a c.m. energy of 34.6 GeV. We find that the energy dependence as well as the large angle behaviour of the latter are well described by perturbative QCD calculations to O(αsub(s) 2 ). Non-pertubative effects are estimated with the help of fragmentation models in which different jet topologies are separated using (epsilon,delta) cuts, and found to be small. The extracted values of Δsub(MS) lie between 100 and 300 MeV. (orig.)

  7. Simple picture of the annihilation process

    International Nuclear Information System (INIS)

    Gotsman, E.; Nussinov, S.

    1980-01-01

    We propose a simple geometrical picture for B-barB annihilations, which is motivated by the electric-flux-tube model and is consistent with the quark-rearrangement model, as well as the nonplanar multiperipheral quark-exchange model. Within its framework we are able to explain all the salient features of the experimental annihilation data

  8. Positron annihilation in gamma-ray bursts

    Science.gov (United States)

    Harding, Alice K.

    1990-01-01

    Emission features appear at energies of 350 to 450 keV in the spectra of a number of gamma ray burst sources. These features were interpreted as electron-positron annihilation lines, redshifted by the gravitational field near the surface of a neutron star. Evidence that gamma ray bursts originate at neutron stars with magnetic field strengths of approx. 10(exp 12) Gauss came from recent observations of cyclotron scattering harmonics in the spectra of two bursts. Positrons could be produced in gamma ray burst sources either by photon-photon pair production or by one-photon pair production in a strong magnetic field. The annihilation of positrons is affected by the presence of a strong neutron star magnetic field in several ways. The relaxation of transverse momentum conservation causes an intrinsic broadening of the two-photon annihilation line and there is a decrease in the annihilation cross section below the free-space value. An additional channel for one-photon annihilation also becomes possible in high magnetic fields. The physics of pair production and annihilation near strongly magnetized neutron stars will be reviewed. Results from a self-consistent model for non-thermal synchrotron radiation and pair annihilation are beginning to identify the conditions required to produce observable annihilation features from strongly magnetized plasmas.

  9. Local energetic disorder in molecular aggregates probed by the one-exciton to two-exciton transition

    NARCIS (Netherlands)

    Durrant, James R.; Knoester, Jasper; Wiersma, Douwe A.

    1994-01-01

    We demonstrate a novel approach to probing the magnitude and degree of spatial correlation of local (molecular or atomic) energetic disorder in delocalized exciton systems. The approach is based on measuring the correlation between the ground state to one-exciton and the one-exciton to two-exciton

  10. Annihilation of Domain Walls in a Ferromagnetic Wire

    Science.gov (United States)

    Ghosh, Anirban; Huang, Kevin; Tchernyshyov, Oleg

    We study the annihilation of topological solitons in one of the simplest systems that support them: a one-dimensional ferromagnetic wire with an easy axis along its length. In the presence of energy dissipation due to viscous losses, two solitons (domain walls) on the wire, when released from afar, approach each other and eventually annihilate to create a uniformly magnetized state. Starting from a class of exact solutions for stationary two-domain-wall configurations in the absence of dissipation, we develop an effective theory that describes this annihilation in terms of four collective coordinates: a) the two zero modes corresponding to the location of the center and the average azimuthal angle of the full structure and b) their two conjugate momenta which describe the relative twist and the relative separation of the two domain walls respectively. Comparison with micromagnetic simulation on OOOMF confirms that this theory captures well the essential physics of the process. We believe this work will be a good starting point for studying the annihilation of more complicated topological solitons like vortices and skyrmions in ferromagnetic thin films. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER46544.

  11. Positron annihilation characterization of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Glade, S.C.; Wirth, B.D.; Odette, G.R.; Toyama, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    Nanostructured ferritic alloys (NFAs) were produced by mechanically alloying Fe-14Cr-3W-0.4Ti and 0.25Y 2 O 3 (wt%) powders followed by hot isostatic pressing consolidation at 850, 1000 and 1150 deg. C. Positron annihilation lifetime and orbital momentum spectroscopy measurements are in qualitative agreement with small angle neutron scattering, transmission electron microscopy and atom probe tomography observations, indicating that up to 50% of the annihilations occur at high densities of Y-Ti-O enriched nm-scale features (NFs). Some annihilations may also occur in small cavities. In Y-free control alloys, that do not contain NFs, positrons primarily annihilate in the Fe-Cr matrix and at features such as dislocations, while a small fraction annihilate in large cavities or Ar bubbles.

  12. Radiationless decay, fission and fusion of excitons in irradiated molecular crystals

    International Nuclear Information System (INIS)

    Klein, Gerard.

    1977-01-01

    The creation and evolution of excited states in ionizing particle tracks were investigated. The passage of high energy ionizing particles in molecular crystals results in the formation of highly excited states which energy is generally above the molecular ionization potential. The theory of non radiative transitions, which describes the transitions from the highly excited states to the lowest singlet and triplet excitons S 1 and T 1 is developed. Among these non radiative transitions, the fission of singlet excitons into two singlet or triplet excitons of lower energies is studied experimentally. These results and a kinematics study of the S 1 and T 1 excitons in ionizing particle tracks were used to get a complete description of the scintillation. These results are in good agreement with the experimental measurements on the scintillation [fr

  13. Study of b anti-b Production in e{sup +}e{sup -} Annihilation at S**(1/2) = 29-GeV with the Aid of Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.

    2003-12-19

    We present a measurement of {sigma}(b{bar b})/{sigma}(q{bar q}) in the annihilation process e{sup +}e{sup -} {yields} q{bar q} {yields} hadrons at {radical}s = 29 GeV. The analysis is based on 66 pb{sup -1} of data collected between 1984 and 1986 with the TPC/2{gamma} detector at PEP. To identify bottom events, we use a neural network with inputs that are computed from the 3-momenta of all of the observed charged hadrons in each event. We also present a study of bias in techniques for measuring inclusive {pi}{sup {+-}}, K{sup {+-}}, and p/{bar p} production in the annihilation process e{sup +}e{sup -} {yields} b{bar b} {yields} hadrons at {radical}s = 29 GeV, using a neural network to identify bottom-quark jets. In this study, charged particles are identified by a simultaneous measurement of momentum and ionization energy loss (dE/dx).

  14. Study of b$\\bar{b}$ production in e+e- annihilation at √s = 29 GeV with the aid of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, David Joel [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1994-11-01

    The author presents a measurement of σ(b$\\bar{b}$)/σ(q$\\bar{q}$) in the annihilation process e+e- → q$\\bar{q}$ → hadrons at √s = 29 GeV. The analysis is based on 66 pb-1 of data collected between 1984 and 1986 with the TPC/2γ detector at PEP. To identify bottom events, he uses a neural network with inputs that are computed from the 3-momenta of all of the observed charged hadrons in each event. He also presents a study of bias in techniques for measuring inclusive π±, K±, and p/$\\bar{p}$ production in the annihilation process e+e- → b$\\bar{b}$ → hadrons at √s = 29 GeV, using a neural network to identify bottom-quark jets. In this study, charged particles are identified by a simultaneous measurement of momentum and ionization energy loss (dE/dx).

  15. Study of effects of size and Ga mole content of In1-xGax As / GaAs quantum ring on excitonic properties using the variational calculation

    Science.gov (United States)

    Ben Mansour, Afef; Kehili, Mohamed Souhail; Melliti, Adnen; Maaref, Mohamed Ali

    2017-10-01

    This work aims to calculate the energy spectrum of semiconductor In1-xGax As / GaAs Quantum Ring (QR) using a three-dimensional model. The latter is modeled by a truncated torus residing on a thin In1-xWLGaxWL As wetting layer (WL). The main novelty of this work is to calculate electron and hole ground state energy using a variational method. The lattice-mismatch strain effect and the charge carrier confinement profile were considered in the calculation. For electron, the energy dependence of the effective mass was taken into account in solving the Schrödinger equation using the single band effective mass approximation. Moreover, variational estimate of the excitonic binding energy and the oscillator strength as a function of the QR radial width and Ga mole content were reported.

  16. Terahertz spectroscopy of two-dimensional electron-hole pairs: probing Mott physics of magneto-excitons

    Science.gov (United States)

    Zhang, Qi; Gao, Weilu; Watson, John; Manfra, Michael; Kono, Junichiro

    2015-03-01

    Density-dependent Coulomb interactions can drive electron-hole (e - h) pairs in semiconductors through an excitonic Mott transition from an excitonic gas into an e - h plasma. Theoretical studies suggest that these interactions can be strongly modified by an external magnetic field, including the absence of inter-exciton interactions in the high magnetic field limit in two dimensions, due to an e - h charge symmetry, which results in ultrastable magneto-excitons. Here, we present a systematic experimental study of e - h pairs in photo-excited undoped GaAs quantum wells in magnetic fields with ultrafast terahertz spectroscopy. We simultaneously monitored the dynamics of the intraexcitonic 1 s-2 p transition (which splits into 1 s-2p+ and 1 s-2p- transitions in a magnetic field) and the cyclotron resonance of unbound electrons and holes up to 10 Tesla. We found that the 1 s-2p- absorption feature is robust at high magnetic fields even under high excitation fluences, indicating magnetically enhanced stability of excitons. We will discuss the Mott physics of magneto-excitons as a function of temperature, e - h pair density, optical pump delay time, as well as magnetic field, and also compare two-dimensional excitons in GaAs quantum wells with three-dimensional excitons in bulk GaAs.

  17. Phonon induced pure dephasing process of excitonic state in colloidal semiconductor quantum dots

    Science.gov (United States)

    Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan

    2016-04-01

    We present a theoretical study on the pure dephasing process of colloidal semiconductor quantum dots induced by lattice vibrations using continuum model calculations. By solving the time dependent Liouville-von Neumann equation, we present the ultrafast Rabi oscillations between excitonic state and virtual state via exciton-phonon interaction and obtain the pure dephasing time from the fast decayed envelope of the Rabi oscillations. The interaction between exciton and longitudinal optical phonon vibration is found to dominate the pure dephasing process and the dephasing time increases nonlinearly with the reduction of exciton-phonon coupling strength. We further find that the pure dephasing time of large quantum dots is more sensitive to temperature than small quantum dots.

  18. Dipolar excitons indirect in real and momentum space in a GaAs/AlAs heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. V., E-mail: gorbunov@issp.ac.ru; Timofeev, V. B. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2015-01-15

    For a Schottky-diode structure containing two narrow GaAs (3.5 nm) and AlAs (5 nm) heterolayers, the photoluminescence properties of long-living dipolar excitons, indirect in both real and momentum space, are studied in perpendicular magnetic fields in the Faraday configuration of measurements. With an external perpendicular electric field, the lifetimes of such excitons can be extended to ∼1 μs. Nevertheless the exciton spin subsystem remains nonequilibrium: the exciton spin-relaxation time is even longer. The degree of circular polarization of the photoluminescence attains 80% in a field of 6 T. With an electric field, it is possible to control the degree and sign of the circular polarization.

  19. Exciton-polariton dynamics in quantum dot-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica

    2012-07-01

    Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum

  20. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    Science.gov (United States)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  1. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    Science.gov (United States)

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τ(i)) and their corresponding intensities (I(i)) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Optical spectroscopy and imaging of the higher energy excitons and bandgap of monolayer MoS2

    Science.gov (United States)

    Borys, Nicholas; Bao, Wei; Barnard, Edward; Ko, Changhyun; Tongay, Sefaatin; Wu, Junqiao; Yang, Li; Schuck, P. James

    Monolayer MoS2 (ML-MoS2) exhibits a rich manifold of excitons that dictate optoelectronic performance and functionality. Disentangling these states, which include the quasi-particle bandgap, is critical for developing 2D optoelectronic devices that operate beyond the optical bandgap. Whereas photoluminescence (PL) spectroscopy only probes the lowest-energy radiative state and absorption spectroscopy fails to discriminate energetically degenerate states, photoluminescence excitation (PLE) spectroscopy selectively probes only the excited states that thermalize to the emissive ground state exciton. Using PLE spectroscopy of ML-MoS2, we identify the Rydberg series of the exciton A and exciton B states as well as signatures of the quasi-particle bandgap and coupling between the indirect C exciton and the lowest-energy A exciton, which have eluded previous PLE studies. The assignment of these states is confirmed with density functional theory. Mapping the PLE spectrum reveals spatial variations of the higher-energy exciton manifold and quasi-particle bandgap which mirror the heterogeneity in the PL but also indicate variations in local exciton thermalization processes and chemical potentials.

  3. D-brane scattering and annihilation

    International Nuclear Information System (INIS)

    D’Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie

    2015-01-01

    We study the dynamics of parallel brane-brane and brane-antibrane scattering in string theory in flat spacetime, focusing on the pair production of open strings that stretch between the branes. We are particularly interested in the case of scattering at small impact parameter bannihilating, so long as g s is small and the relative velocity v is neither too small nor too close to 1. Our analysis is relevant also to the case of charged open string production in world-volume electric fields, and we make use of this T-dual scenario in our analysis. We briefly discuss the application of our results to a stringy model of inflation involving moving branes.

  4. Exciton spectroscopy using non-resonant X-ray Raman scattering

    Science.gov (United States)

    Feng, Yejun

    Core electron excitations in solids have long been of interest in condensed matter physics. The state of the low-energy photoelectron is dominated by many-body effects from screening by valence electrons and interactions with the core-hole. In some insulators, these interactions create a localized state for the photoelectron core-hole pair, namely a core-exciton. In this dissertation, we use q-dependent non-resonant x-ray Raman scattering together with ab initio simulations to extend exciton spectroscopy to probe the angular characteristics of the near-edge exciton. The transferred momentum q acts as an extra parameter and provides new information about the projected density of states which is inaccessible to traditional core-excitation spectroscopies, such as x-ray absorption spectroscopy and electron energy loss spectroscopy. In several cases, we find that the angular characteristics of the exciton are strongly connected with the local atomic structure and symmetry. This is illustrated by a study on hexagonal boron nitride, in which a dominantly Y10-type exciton was identified necessarily due to the reflection symmetry about the basal plane at every boron site. This new understanding of the relationship between the exciton type and local symmetry has helped solve a site-substitution disorder problem in the icosahedral boron carbide B4C system, where a p -type exciton was identified due to dominant boron occupation at the center of a three-atom chain in the unit cell, the only site with the inversion symmetry. This exciton spectroscopy using q-dependent x-ray Raman scattering may have wide applications in the future, such as in geophysical studies in high pressure diamond anvil cells.

  5. Coherent creation and annihilation of rotational wave packets in incoherent ensembles

    International Nuclear Information System (INIS)

    Lee, Kevin F.; Corkum, P. B.; Shapiro, E. A.; Villeneuve, D. M.

    2006-01-01

    Laser pulses can create rotational wave packets in molecules that periodically revive as field-free aligned distributions. These rotational wave packets can be approximately annihilated by applying another laser pulse during a half revival, an effect corresponding to quantum antiresonance in chaotic kicked rotor studies. We theoretically explore causes of deviation from perfect annihilation. We experimentally demonstrate rotational wave packet annihilation in nitrogen gas, measuring the evolution of alignment by Coulomb explosion imaging. As a test, we apply the pulse pair to an existing rotational wave packet and observe the restoration of the original revival structure after the zero-effect pulse pair

  6. Revisiting big-bang nucleosynthesis constraints on dark-matter annihilation

    Directory of Open Access Journals (Sweden)

    Masahiro Kawasaki

    2015-12-01

    Full Text Available We study the effects of dark-matter annihilation during the epoch of big-bang nucleosynthesis on the primordial abundances of light elements. We improve the calculation of the light-element abundances by taking into account the effects of anti-nucleons emitted by the annihilation of dark matter and the interconversion reactions of neutron and proton at inelastic scatterings of energetic nucleons. Comparing the theoretical prediction of the primordial light-element abundances with the latest observational constraints, we derive upper bounds on the dark-matter pair-annihilation cross section. Implication to some of particle-physics models are also discussed.

  7. Exciton Resonances in Novel Silicon Carbide Polymers

    Science.gov (United States)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  8. Physical theory of excitons in conducting polymers.

    Science.gov (United States)

    Brazovskii, Serguei; Kirova, Natasha

    2010-07-01

    In this tutorial review, we cover the solid state physics approach to electronic and optical properties of conducting polymers. We attempt to bring together languages and advantages of the solid state theory for polymers and of the quantum chemistry for monomers. We consider polymers as generic one-dimensional semiconductors with features of strongly correlated electronic systems. Our model combines the long range electron-hole Coulomb attraction with a specific effect of strong intra-monomer electronic correlations, which results in effective intra-monomer electron-hole repulsion. Our approach allows to go beyond the single-chain picture and to compare excitons for polymers in solutions and in films. The approach helps connecting such different questions as shallow singlet and deep triplet excitons, stronger binding of interchain excitons in films, crossings of excitons' branches, 1/N energies shifts in oligomers. We describe a strong suppression of the luminescence from free charge carriers by long-range Coulomb interactions. Main attention is devoted to the most requested in applications phenyl based polymers. The specifics of the benzene ring monomer give rise to existence of three possible types of excitons: Wannier-Mott, Frenkel and intermediate ones. We discuss experimental manifestations of various excitons and of their transformations. We touch effects of the time-resolved self-trapping by libron modes leading to formation of torsion polarons.

  9. Simulation calculations for the positron annihilation in aluminium alloys for the study of the segregate formation; Simulationsrechnungen zur Positronenannihilation in Aluminiumlegierungen zur Untersuchung der Ausscheidungsbildung

    Energy Technology Data Exchange (ETDEWEB)

    Korff, Bjoern

    2010-11-29

    Highly solid aluminium alloys owe their properties to small, finely distributed segregations of alloy atoms. For the better understanding of the temperature treatment, which is required in order to control the segregate formation, it is important, to determine informations on the first early stages from few atoms. In the positron-annihilation spectroscopy (PAS) positrons are trapped in the vacancies of a solid and yield at their annihilation with surrounding electrons informations from their direct environment. because the formation of segregates requires a diffusion of the extraneous atoms by means of the vacancies, the PAS represents one of the few examination methods, by which already the formation of smallest segregations can be observed. By the comparison of measurement quantities of the PAS with simulations for different possible arrangements of extraneous atoms around the vacancy the atomic environment of the vacancy can be identified. In order to make this possible also in aluminium alloys, in which the number of the possible defect types is relatively large, a good description of the measurement values by the simulation is especially important. In the framework of this thesis the program AB2D was developed, by which the Doppler shift of the annihilation radiation can be determined. Contrarily to already existing approaches here valence-electron wave functions are used, which were calculated with the program ABINIT. By this way the main uncertainty by the description of the valence electrons in atomic superposition is cancelled. Because ABINIT is based on pseudopotentials, the projector augmented-wave method is used in order to describe the higher momenta of the electrons near the nuclei more realistically. With AB2D simulations for vacancy-extraneous-atom complexes and segregation phases in the alloy systems Al-Cu, Al-Mg-Cu, and Al-Mg-Si were performed. A comparison with measurements on samples, which were only few minutes stored at room temperature

  10. Time resolved photoluminescence studies of long lived emissive specie in F8BT:PFB blends

    Science.gov (United States)

    Gélinas, Simon; Howard, Ian; Friend, Richard; Silva, Carlos

    2009-03-01

    Type-II heterojunctions play a crucial role in organic optoelectronic devices. We use donor-acceptor polyfluorene blends as a model system to understand excited-state dynamics at heterojunctions. These interfacial excitations are intrachain singlet and triplet excitons, geminate polaron pairs, and exciplexes (interfacial charge-transfer excitons). Time-resolved photoluminescence (PL) spectra were taken at 10,and room temperature to investigate the interconversion dynamics of these species. We observe delayed PL with sub-linear excitation fluence dependence. This implies that delayed singlet exciton generation involves a bimolecular annihilation mechanism. By means of kinetic modeling, we propose triplet-triplet exciton annihilation as a regeneration route to singlet excitons, and subsequently to exciplexes. This points to a significant (<15,%) yield of triplet excitons after interfacial charge separation, and to the central role of these species on the interfacial dynamics.

  11. Long-range transport in excitonic dark states in coupled quantum wells.

    Science.gov (United States)

    Snoke, D; Denev, S; Liu, Y; Pfeiffer, L; West, K

    2002-08-15

    During the past ten years, coupled quantum wells have emerged as a promising system for experiments on Bose condensation of excitons, with numerous theoretical and experimental studies aimed at the demonstration of this effect. One of the issues driving these studies is the possibility of long-range coherent transport of excitons. Excitons in quantum wells typically diffuse only a few micrometres from the spot where they are generated by a laser pulse; their diffusion is limited by their lifetime (typically a few nanoseconds) and by scattering due to disorder in the well structure. Here we report photoluminescence measurements of InGaAs quantum wells and the observation of an effect by which luminescence from excitons appears hundreds of micrometres away from the laser excitation spot. This luminescence appears as a ring around the laser spot; almost none appears in the region between the laser spot and the ring. This implies that the excitons must travel in a dark state until they reach some critical distance, at which they collectively revert to luminescing states. It is unclear whether this effect is related to macroscopic coherence caused by Bose condensation of excitons.

  12. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.

    Science.gov (United States)

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-08-15

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H(+) ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a 'hydrogen at oxygen vacancy' type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10(17) cm(-3) (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  13. Structure, electric properties and positron annihilation studies of CuZnFe2O4 doped with BaTiO3

    Science.gov (United States)

    Hemeda, O. M.; Mahmoud, K. R.; Sharshar, T.

    2014-08-01

    Composite materials of spinel CuZnFe2O4 ferrite (CZF) and barium titanate BaTiO3 (BT) were prepared by using the high-energy ball milling technique. The X-ray diffraction (XRD) patterns of the composite system confirmed the composite preparation with two piezomagnetic and piezoelectric phases. The results of scanning electron microscope (SEM) measurements show a nearly homogeneous microstructure with good dispersion of BT grains as well as the presence of some pores. The positron annihilation lifetime (PAL) is used to probe the defects and structural changes of the BT-CZF composites. The PAL parameters ( , I1, , I2 and mean lifetime) show that the doped BT content affects the size and concentration of the vacant type defects.

  14. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    Science.gov (United States)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  15. Magnetic brightening and control of dark excitons in monolayer WSe2.

    Science.gov (United States)

    Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C; Robinson, Joshua A; Smirnov, Dmitry; Louie, Steven G; Heinz, Tony F

    2017-09-01

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe 2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.

  16. Self-trapped excitonic green emission from layered semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  17. Self-trapped excitonic green emission from layered semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-08-15

    Crystals of layered semiconductor are grown by Bridgman technique and are studied them under two-photon excitation by a Q-switched 20-ns pulse laser. The photoluminescence (PL) emission spectra of the crystals are measured at various pumping powers and temperatures. The PL spectra appear broad and structureless emissions with their peaks in the green spectral region. The characteristic emissions are from self-trapped excitons of the crystals. An analysis of the spectra measured at various pumping powers shows a quadratic dependence of the PL peak intensity on the power, confirming a biphotonic process of the two-photon pumping. The temperature dependence shows an enhancement of the nonlinear response at low temperatures. The activation energy is estimated and found to be 2.4 meV. The roles of the bound excitons in the observed PL are discussed briefly.

  18. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  19. Positron annihilation at grain boundaries in metals

    Czech Academy of Sciences Publication Activity Database

    Kuriplach, J.; Melikhova, O.; Hou, M.; Van Petegem, S.; Zhurkin, E.; Šob, Mojmír

    2007-01-01

    Roč. 4, č. 10 (2007), s. 3461-3464 ISSN 1862-6351. [International Conference on Positron Annihilation /14./. Hamilton, Ontario, 23.07.2006-28.07.2006] R&D Projects: GA AV ČR IAA1041302; GA MŠk OC 147 Institutional research plan: CEZ:AV0Z20410507 Keywords : positron annihilation * grain boundaries * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Photoluminescence and Confinement of Excitons in Disordered Porous Films

    Energy Technology Data Exchange (ETDEWEB)

    Bondar, N. V., E-mail: jbond@iop.kiev.ua; Brodin, M. S. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine); Brodin, A. M. [National Technical University of Ukraine “KPI” (Ukraine); Matveevskaya, N. A. [National Academy of Sciences of Ukraine, Institute for Single Crystals (Ukraine)

    2016-03-15

    The exciton confinement effect in quantum dots at the surface of SiO{sub 2} spheres and the percolation phase transition in films based on a mixture of pure SiO{sub 2} spheres and spheres covered by CdS quantum dots (SiO{sub 2}/CdS nanoparticles) are studied. It is found that, due to the high surface energy of spheres, the quantum dots deposited onto their surface are distorted, which modifies the exciton confinement effect: the effect is retained only in one direction, the direction normal to the surface of the spheres. As a result, the energy of the exciton ground state exhibits a complex dependence on both the quantum-dot radius and sphere size. In the optical spectra of films based on this mixture, the clustering of small-sized nanoparticles and then, at a critical concentration of nanoparticles of ~60%, the formation of a percolation cluster are detected for the first time. The critical concentration is twice higher than the corresponding quantity given by the model of geometrical “colored percolation”, which is a consequence of interaction between submicrometer nanoparticles. The relation between the basic parameters of the percolation transition, such as the film porosity, coordination number, and the quantity defining the number of particles in the percolation cluster, is obtained and analyzed.

  1. Simulation of exciton effects in OLEDs based on the master equation

    Science.gov (United States)

    Zhou, Weifeng; Zimmermann, Christoph; Jungemann, Christoph

    2017-08-01

    Electroluminescence in organic light-emitting diodes is simulated by the master equations for free carriers and excitons. The IV characteristics of both unipolar and bipolar devices can be well reproduced. The luminous efficacies of the phosphorescent OLEDs, which are doped with Ir(ppy)3 in the emission layer, depend on both the triplet generation zone and the triplet transfer capability. Triplet diffusion into the hole-transport layer is primarily attributed to the decline in efficiencies of OLEDs with low emitter concentrations. Higher luminous efficacies can be obtained by graded doping profiles with the merits of broad triplet distribution within and confined to the emission layer. Moreover, triplet-polaron quenching plays a more significant role in the triplet loss than triplet-triplet annihilation does according to our simulations.

  2. Positron annihilation characteristics in multi-wall carbon nanotubes with different average diameters

    International Nuclear Information System (INIS)

    Tuyen, L A; Khiem, D D; Phuc, P T; Kajcsos, Zs; Lázár, K; Tap, T D

    2013-01-01

    Positron lifetime spectroscopy was used to study multi-wall carbon nanotubes. The measurements were performed in vacuum on the samples having different average diameters. The positron lifetime values depend on the nanotube diameter. The results also show an influence of the nanotube diameter on the positron annihilation intensity on the nanotube surface. The change in the annihilation probability is described and interpreted by the modified diffusion model introducing the positron escape rate from the nanotubes to their external surface.

  3. Bubble detector measurements of a mixed radiation field from antiproton annihilation

    DEFF Research Database (Denmark)

    Bassler, Niels; Knudsen, Helge; Møller, Søren Pape

    2006-01-01

    In the light of recent progress in the study of the biological potential of antiproton tumour treatment it is important to be able to characterize the neutron intensity arising from antiproton annihilation using simple, compact and reliable detectors. The intensity of fast neutrons from antiproton...... annihilation on polystyrene has been measured with bubble detectors and a multiplicity has been derived as well as an estimated neutron equivalent dose. Additionally the sensitivity of bubble detectors towards protons was measured....

  4. Kinetics of Schottky defect formation and annihilation in single crystal TlBr.

    Science.gov (United States)

    Bishop, Sean R; Tuller, Harry L; Kuhn, Melanie; Ciampi, Guido; Higgins, William; Shah, Kanai S

    2013-07-28

    The kinetics for Schottky defect (Tl and Br vacancy pair) formation and annihilation in ionically conducting TlBr are characterized through a temperature induced conductivity relaxation technique. Near room temperature, defect generation-annihilation was found to take on the order of hours before equilibrium was reached after a step change in temperature, and that mechanical damage imparted on the sample rapidly increases this rate. The rate limiting step to Schottky defect formation-annihilation is identified as being the migration of lower mobility Tl (versus Br), with an estimate for source-sink density derived from calculated diffusion lengths. This study represents one of the first investigations of Schottky defect generation-annihilation kinetics and demonstrates its utility in quantifying detrimental mechanical damage in radiation detector materials.

  5. Design of measurement system for Doppler broadening profiles of annihilation radiations as a function of controlled specimen temperature and its applications for a study of metals in the thermal equilibrium state

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao.

    1992-01-01

    The measurement system for Doppler broadening profiles of annihilation radiation was developed. This system reads out data for energies of γ-rays from an analog to digital converter and those for specimen temperature from a digital-voltmeter coupled to a thermocouple. These two types of digital-quantities were stored in a memory matrix of 512 channels (energy) x 128 channels (temperature) x 4 byte (count). For this purpose, a memory board of 256 kbyte with 32-dynamic RAMs (64 kbits) was used. The data acquisition was controlled by a microcomputer. Temperature of the specimen was controlled by a programmable temperature controller, thus it can be varied in a desired way. This was useful for measurements in repeated temperature cycles. A sample heater with a compact size was developed in order to obtain a homogeneous temperature distribution in the specimen. Application of this system for a study of thermal vacancies in Al-dilute alloys was also shown. (author)

  6. Study of the low energy proton-antiproton annihilation interaction leading to: π+ π-, K+K- and e+e-. Study of the proton form factors in the time region

    International Nuclear Information System (INIS)

    Zekri, N.

    1988-01-01

    The results of the PS170 experiments are reported. The proton form factors from proton-antiproton → positron-electron reaction and the cross sections of the proton-antiproton → pion plus - pion minus annihilation reaction are investigated. The performances of the measuring instruments concerning electron selectivity, geometrical acceptance, efficiency, reliability in the measurement of momenta and particle discrimination accuracy. Particular attention was given to the Cherenkov detector parameters. The experimental results are analyzed and radiative corrections are carried out for the proton-antiproton → positron-electron reactions. The reaction angular distribution is measured. The obtained results are in good agreement with VDM calculations. The proton-antiproton → pion plus - pion minus cross section between, 160 and 260 MeV/c is calculated and compared to the antiproton annihilation cross section calculated on the basis of the quark annihilation exchange process [fr

  7. Bose-Einstein condensation and indirect excitons: a review.

    Science.gov (United States)

    Combescot, Monique; Combescot, Roland; Dubin, François

    2017-06-01

    We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath

  8. Non-conservation of excitons in finite molecular chain

    International Nuclear Information System (INIS)

    Tosic, Bratislav; Sajfert, Vjekoslav; Maskovic, Ljiljana; Bednar, Nikola

    2010-01-01

    We have analyzed a linear molecular chain with exciton excitations when the number of excitons is not conserved. The dispersion law depends on two independent variables and it is surfaced in a 3D plot. The same conclusion is valid for the concentrations of excitons and exciton pairs. As it was expected, physical characteristics of the finite chain depend on spatial coordinates. All results are compared to the corresponding results of an infinite chain.

  9. Zero-Annihilation Periodic Control For Damping Vibrations

    Science.gov (United States)

    Bayard, David S.; Boussalis, Dhemetrios

    1995-01-01

    Report presents study on use of recently developed zero-annihilation periodic (ZAP) controller for active suppression of vibrations in flexible structures characterized by non-minimum-phase transfer functions. Non-minimum-phase situation occurs if certain kinds of vibration-sensor/vibration-actuator pairs (e.g., piezoelectric) used, and/or if vibration sensor(s) not colocated with vibration actuator(s).

  10. Investigation of corrosion defects in titanium by positron annihilation

    Directory of Open Access Journals (Sweden)

    Pietrzak Ryszard

    2015-12-01

    Full Text Available The positron annihilation method was used to study the formation of defects in titanium samples during their corrosion in the vapor of a 3% HCl solution. In particular, the distribution of defects depending on the distance from the corroding surface and the impact of an external magnetic field on the concentration of vacancies forming during the corrosion of titanium layers close to the surface were determined.

  11. Study of vacancy-type defects by positron annihilation in ultrafine-grained aluminum severely deformed at room and cryogenic temperatures

    International Nuclear Information System (INIS)

    Su, L.H.; Lu, C.; He, L.Z.; Zhang, L.C.; Guagliardo, P.; Tieu, A.K.; Samarin, S.N.; Williams, J.F.; Li, H.J.

    2012-01-01

    Commercial-purity aluminum was processed by equal-channel angular pressing (ECAP) at room temperature (RT-ECAP) and cryogenic temperature (CT-ECAP) with liquid nitrogen cooling between two successive passes. It was found that the RT-ECAPed samples showed equiaxed microstructure after 4 and 8 ECAP passes, while the CT-ECAPed samples displayed slightly elongated microstructure and slightly smaller grain size. Moreover, the CT-ECAPed samples had higher hardness values than the RT-ECAPed samples subjected to the same amount of deformation. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the evolution of vacancy-type defects during the ECAP deformation process. The results showed that three types of defects existed in the ECAPed samples: vacancies associated with dislocations, bulk monovacancies and bulk divacancies. The CT-ECAPed samples had a higher fraction of monovacancies and divacancies. These two types of defects are the major vacancy-type defects that can work as dislocation pinning centers and induce hardening, resulting in higher hardness values in the CT-ECAPed samples. A quantitative relationship between material hardness and the defect concentration and defect diffusion coefficient has been established.

  12. Excitonic dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Nordstrøm, K.B.; Johnsen, Kristinn; Allen, S.J.

    1998-01-01

    The dynamical Franz-Keldysh effect is exposed by exploring near-band-gap absorption in the presence of intense THz electric fields. It bridges the gap between the de Franz-Keldysh effect and multiphoton absorption and competes with the THz ac Stark effect in shifting the energy of the excitonic...... resonance. A theoretical model which includes the strong THz field nonperturbatively via a nonequilibrium Green functions technique is able to describe the dynamical Franz-Keldysh effect in the presence of excitonic absorption....

  13. Enormous excitonic effects in bulk, mono- and bi- layers of cuprous halides using many-body perturbation technique

    Science.gov (United States)

    Azhikodan, Dilna; Nautiyal, Tashi

    2017-10-01

    Cuprous halides (CuX with X = Cl, Br, I), intensely studied about four decades ago by experimentalists for excitons, are again drawing attention of researchers recently. Potential of cuprous halide systems for device applications has not yet been fully explored. We go beyond the one-particle picture to capture the two-particle physics (electron-hole interaction to form excitons). We have deployed the full tool kit of many-body perturbation technique, GW approximation + Bethe Salpeter equation, to unfurl the rich excitonic physics of the bulk as well as layers of CuX. The negative spin-orbit contribution at the valence band top in CuCl, compared to CuBr and CuI, is in good agreement with experiments. We note that CuX have exceptionally strong excitons, defying the linear fit (between the excitonic binding energy and band gap) encompassing many semiconductors. The mono- and bi- layers of cuprous halides are predicted to be rich in excitons, with exceptionally large binding energies and the resonance energies in UV/visible region. Hence this work projects CuX layers as good candidates for optoelectronic applications. With advancement of technology, we look forward to experimental realization of CuX layers and harnessing of their rich excitonic potential.

  14. Phosphor-doping enhanced efficiency in bilayer organic solar cells due to longer exciton diffusion length

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kang [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Hou, Lintao, E-mail: thlt@jnu.edu.cn [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Wang, Ping, E-mail: wangping996633@163.com [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Xia, Yuxin [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Chen, Dongcheng; Xiao, Biao [Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 (China)

    2014-07-01

    We fabricated bilayer organic solar cells (OSCs) in the structure glass/ITO/PEDOT:PSS/PtOEP:MEH-PPV/C{sub 70}/Al, where MEH-PPV was doped with platinum octaethylporphyrin (PtOEP). Enhanced exciton diffusion length (L{sub D}) is realized via converting generated singlet excitons to triplet excitons. Investigation based on transfer matrix simulations reveals that it is the extended exciton L{sub D} of the doping donor layer that leads to the short-circuit current density (J{sub sc}) and power conversion efficiency (PCE) improvement, when compared with those of the OSCs with a non-doping donor layer. As a result of the increased L{sub D}, J{sub sc} and PCE increase by 30% and 42% respectively for a device with 5 wt% PtOEP-doped 25 nm-thick donor layer. Meanwhile, by doping with phosphorescent bis(1-phenyl-isoquinoline)(acetylacetonato)iridium(III), the reduction in open-circuit voltage and the comparable J{sub sc} are shown due to its higher HOMO level and higher LUMO level, leading to the decrease of PCE. It demonstrates that doping a polymer with a suitable phosphorescent molecule is an important approach to be considered to increase the exciton L{sub D}. - Highlights: • Optical model based on transfer matrix method was used to study phosphor-doped organic planar hetero-junction solar cells. • The enhanced exciton diffusion length was experimentally investigated by absorption, PL, time-resolved transient PL, J–V and EQE curves. • Only suitable phosphor dyes can increase exciton diffusion length.

  15. Search for Dark Matter Annihilation in Galaxy Groups

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-03-01

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z ≲0.03 . We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O (1 ) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ˜30 GeV to 95% confidence in the b b ¯ annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  16. Search for Dark Matter Annihilation in Galaxy Groups.

    Science.gov (United States)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L; Safdi, Benjamin R

    2018-03-09

    We use 413 weeks of publicly available Fermi Pass 8 gamma-ray data combined with recently developed galaxy group catalogs to search for evidence of dark matter annihilation in extragalactic halos. In our study, we use luminosity-based mass estimates and mass-to-concentration relations to infer the J factors and associated uncertainties for hundreds of galaxy groups within a redshift range z≲0.03. We employ a conservative substructure boost factor model, which only enhances the sensitivity by an O(1) factor. No significant evidence for dark matter annihilation is found, and we exclude thermal relic cross sections for dark matter masses below ∼30  GeV to 95% confidence in the bb[over ¯] annihilation channel. These bounds are comparable to those from Milky Way dwarf spheroidal satellite galaxies. The results of our analysis increase the tension but do not rule out the dark matter interpretation of the Galactic Center excess. We provide a catalog of the galaxy groups used in this study and their inferred properties, which can be broadly applied to searches for extragalactic dark matter.

  17. Positron Cooling and Annihilation in Noble Gases.

    Science.gov (United States)

    Green, D G

    2017-11-17

    Positron cooling and annihilation in room temperature noble gases is simulated using accurate scattering and annihilation cross sections calculated with many-body theory, enabling the first simultaneous probing of the energy dependence of the scattering and annihilation cross sections. A strikingly small fraction of positrons is shown to survive to thermalization: ∼0.1 in He, ∼0 in Ne, ∼0.15 in Ar, ∼0.05 in Kr, and ∼0.01 in Xe. For Xe, the time-varying annihilation rate Z[over ¯]_{eff}(τ) is shown to be highly sensitive to the depletion of the momentum distribution due to annihilation, conclusively explaining the long-standing discrepancy between gas-cell and trap-based measurements. Overall, the use of the accurate atomic data gives Z[over ¯]_{eff}(τ) in close agreement with experiment for all noble gases except Ne, the experiment for which is proffered to have suffered from incomplete knowledge of the fraction of positrons surviving to thermalization and/or the presence of impurities.

  18. Excitonic optical bistability in n-type doped semiconductors

    International Nuclear Information System (INIS)

    Nguyen Ba An; Le Thi Cat Tuong

    1991-07-01

    A resonant monochromatic pump laser generates coherent excitons in an n-type doped semiconductor. Both exciton-exciton and exciton-donor interactions come into play. The former interaction can give rise to the appearance of optical bistability which is heavily influenced by the latter one. When optical bistability occurs at a fixed laser frequency both its holding intensity and hysteresis loop size are shown to decrease with increasing donor concentration. Two possibilities are suggested for experimentally determining one of the two parameters of the system - the exciton-donor coupling constant and the donor concentration, if the other parameter is known beforehand. (author). 36 refs, 2 figs

  19. Exciplex-Sensitized Triplet-Triplet Annihilation in Heterojunction Organic Thin-Film.

    Science.gov (United States)

    Lin, Bo-Yen; Easley, Connor J; Chen, Chia-Hsun; Tseng, Po-Chen; Lee, Ming-Zer; Sher, Pin-Hao; Wang, Juen-Kai; Chiu, Tien-Lung; Lin, Chi-Feng; Bardeen, Christopher J; Lee, Jiun-Haw

    2017-03-29

    A new concept for organic light-emitting diodes (OLEDs) is presented, which is called exciplex-sensitized triplet-triplet annihilation (ESTTA). The exciplex formed at the organic heterojunction interface of 4,4',4″-tris(N-3-methyphenyl-N-phenyl-amino) triphenylamine and 9,10-bis(2'-naphthyl) anthracene (ADN) is used to sensitize the triplet-triplet annihilation (TTA) process on the ADN molecules. This results in a turn-on voltage (2.2 V) of the blue emission from the OLED below the bandgap (2.9 eV). From the transient electroluminescence measurement, blue emission totally came from the TTA process without direct recombination on the ADN molecules. The blue singlet exciton from the TTA process can be quenched by energy transfer to the exciplex, as revealed by transient photoluminescence measurements. This can be prevented by blocking the energy transfer path and improving the radiative recombination rate of blue emission. With the insertion of the "triplet diffusion and singlet blocking (TDSB)" layer and the incorporation of the dopant material, an ESTTA-OLED with external quantum efficiency of 5.1% was achieved, which consists of yellow and blue emission coming from the exciplex and ESTTA process, respectively.

  20. Electrical Control of Excitons in Semiconductor Nanostructures

    DEFF Research Database (Denmark)

    Kirsanské, Gabija

    The scope of this thesis covers investigation of the exciton Mott transition in coupled quantum wells, fabrication of photonic-crystal structures with embedded self-assembled quantum dots, and tuning of their properties by means of an external electric field. In the first part of the thesis the f...

  1. Ultrafast exciton transport in organic nanotubes

    NARCIS (Netherlands)

    Pugzlys, A; Hania, R; Didraga, C; Malyshev, V.A.; Knoester, J; Duppen, K; Kobayashi, T; Okada, T; Kobayashi, T; Nelson, KA; DeSilvestri, S

    2005-01-01

    The dynamics of exciton transport between the inner and outer walls of double-layer cylindrical aggregates is measured. Downhill transport is fast (275 A) and excitation intensity independent. Uphill transport is much slower (3.5 ps), but this rate increases when the excitation density is raised.

  2. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Matthew S. [Department; Ding, Wendu [Department; Li, Yuxiu [Center; College; Chapman, Craig T. [Department; Lei, Aiwen [College; Lin, Xiao-Min [Center; Chen, Lin X. [Department; Chemical; Schatz, George C. [Department; Schaller, Richard D. [Department; Center

    2017-12-08

    We demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result, change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.

  3. Conjugated “Molecular Wire” for Excitons

    Energy Technology Data Exchange (ETDEWEB)

    Shibano, Y.; Miller, J.; Imahori, H.; Sreearunothai, P.; Cook, A.R.

    2010-05-06

    We have synthesized new conjugated, rigid rod oligomers of fluorene, F{sub n}(C{sub 60}){sub 2}, n = 4, 8, 12, and 16. These pure compounds have F{sub n} chains up to 140 {angstrom} long. The C{sub 60} groups covalently attached at both ends serve as traps for excitons created in the F{sub n} chains. Excitons created in the chains by photoexcitation reacted rapidly with the C{sub 60} groups with decays described well by the sum of two exponentials. Mean reaction times were 2.3, 5.5, and 10.4 ps for n = 8, 12, and 16. In F{sub 16}(C{sub 60}){sub 2}, the 10.4 ps reaction time was 40 times faster than that found in earlier reports on molecules of slightly longer length. The simplest possible model, that of one-dimensional diffusion of excitonic polarons that react whenever they encounter the end of a chain, fits the results to obtain diffusion coefficients. Deviations of those fits from the data may point to the need for alternative pictures or may just indicate that diffusion is not ideal. The definite lengths of these molecules enable a stringent test for theories. These results reveal that exciton transport can be much faster than previously believed, a finding that could, along with appropriate nanoassembly, enable new kinds of high-efficiency organic photovoltaics.

  4. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    determined the oscillator strength, quantum efficiency and spin-flip rates of QD excitons as well as their dependencies on emission wavelength and QD size. Enhancement and inhibition of QD spontaneous emission in photonic crystal membranes (PCMs) is observed. Efficient coupling to PCM waveguides...

  5. Quantum-dot excitons in nanostructured environments

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2011-01-01

    determined the oscillator strength, quantum efficiency and spin-flip rates of QD excitons as well as their dependencies on emission wavelength and QD size. Enhancement and inhibition of QD spontaneous emission in photonic crystal membranes (PCMs) is observed. Efficient coupling to PCM waveguides...

  6. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  7. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  8. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  9. Positron annihilation induced Auger electron spectroscopy

    Science.gov (United States)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  10. Radiative corrections to neutralino annihilation. Recent developments

    International Nuclear Information System (INIS)

    Herrmann, Bjoern

    2010-11-01

    Evaluating the relic density of dark matter is an interesting possibility to constrain the parameter space of new physics models. However, this calculation is affected by several sources of uncertainty. On the particle physics side, considerable progress has been made in the recent years concerning the calculation of the annihilation cross-section of dark matter, which is needed in this context. In particular, within the Minimal Supersymmetric Standard Model, the theoretical uncertainty has been reduced through the calculation of loop corrections. The present contribution gives an overview over the achievements that have been made in QCD corrections to neutralino pair annihilation. The numerical impact is illustrated for a few examples. (orig.)

  11. Porous silicon investigated by positron annihilation

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1989-01-01

    The effect of the anodic conversion in silicon single crystals is investigated by positron lifetime measurements. Anodization at constant current induces changes in the positron lifetime spectrum of monocrystalline silicon samples. It is found that theses changes are primarily dependent on the silicon resistivity. The annihilation parameter behaviour of anodized samples, treated at high temperature under reducing conditions, is also investigated. The results reveal that positron annihilation can be a useful technique to characterize porous silicon formed by anodizing as well as to investigate its thermal behaviour. (author)

  12. Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals.

    Science.gov (United States)

    Shi, Hongyan; Yan, Rusen; Bertolazzi, Simone; Brivio, Jacopo; Gao, Bo; Kis, Andras; Jena, Debdeep; Xing, Huili Grace; Huang, Libai

    2013-02-26

    Femtosecond transient absorption spectroscopy and microscopy were employed to study exciton dynamics in suspended and Si₃N₄ substrate-supported monolayer and few-layer MoS₂ 2D crystals. Exciton dynamics for the monolayer and few-layer structures were found to be remarkably different from those of thick crystals when probed at energies near that of the lowest energy direct exciton (A exciton). The intraband relaxation rate was enhanced by more than 40 fold in the monolayer in comparison to that observed in the thick crystals, which we attributed to defect assisted scattering. Faster electron-hole recombination was found in monolayer and few-layer structures due to quantum confinement effects that lead to an indirect-direct band gap crossover. Nonradiative rather than radiative relaxation pathways dominate the dynamics in the monolayer and few-layer MoS₂. Fast trapping of excitons by surface trap states was observed in monolayer and few-layer structures, pointing to the importance of controlling surface properties in atomically thin crystals such as MoS₂ along with controlling their dimensions.

  13. Inverse Compton Gamma Rays from Dark Matter Annihilation in the ...

    Indian Academy of Sciences (India)

    Electron spectrum as a function of electron energy for three different values of Mχ annihilating into b¯b final state. the annihilation cross sections are obtained from Ackermann et al. (2014). The DM annihilation takes place predominantly through some combination of the final states b¯b, tt, W. +. W. − or ZZ. The gamma ray ...

  14. Influence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence.

    Science.gov (United States)

    Estrin, Yevgeni; Rich, Daniel H; Kretinin, Andrey V; Shtrikman, Hadas

    2013-04-10

    The coupling of excitons to surface plasmon polaritons (SPPs) in Au- and Al-coated GaAs/AlAs/GaAs core-shell nanowires, possessing diameters of ~100 nm, was probed using time-resolved cathodoluminescence (CL). Excitons were generated in the metal coated nanowires by injecting a pulsed high-energy electron beam through the thin metal films. The Purcell enhancement factor (FP) was obtained by direct measurement of changes in the temperature-dependent radiative lifetime caused by the nanowire exciton-SPP coupling and compared with a model that takes into account the dependence of FP on the distance from the metal film and the thickness of the film covering the GaAs nanowires.

  15. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  16. Nondestructive examination using neutron activated positron annihilation

    Science.gov (United States)

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  17. Excitonic recombination in delta-doped GaAs/AlAs type-II superlattices

    CERN Document Server

    Zhuravlev, K S; Gilinskij, A M; Braginskij, L S; Toropov, A I; Bakarov, A K

    2002-01-01

    An experimental study of excitonic recombination in delta-doped GaAs/AlAs type-II superlattices has been carried out. t is found that the increase in the impurity density of delta-layers from 2 x 10 sup 1 sup 0 to 7.5 x 10 sup 1 sup 1 cm sup - sup 2 results in (4-6)-fold decline in the integral superlattice photoluminescence intensity and in a significant decrease of excitonic photoluminescence intensity (70-80 times as much) accompanied by an increase in the exciton radiative recombination rate. It is concluded that built-in electric fields induced by ionized impurities are the principle reason for quenching the impurity photoluminescence

  18. Biaxially stressed excitons in GaAs/AlGaAs quantum wells grown on Si substrates

    Science.gov (United States)

    Jagannath, C.; Zemon, S.; Norris, P.; Elman, B. S.

    1987-10-01

    Photoluminescence and photoluminescence excitation spectroscopies are utilized to study excitons in GaAs/AlGaAs quantum wells (QW's) fabricated by molecular beam epitaxy on a GaAs buffer layer grown on a Si substrate. The buffer layer was grown by metalorganic vapor phase epitaxy. The experimental results are understood in terms of a uniform biaxial tension of approximately 3 kbar present in the plane of growth for both the QW's and the GaAs buffer. An important consequence of the biaxial tension is that for QW's with well widths larger than about 15 nm the light-hole and heavy-hole subbands cross each other in energy, resulting in a light-hole exciton energy lower than that of the heavy-hole exciton, opposite to the case of QW's grown on GaAs substrates.

  19. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Velizhanin, Kirill A.; Saxena, Avadh

    2015-11-01

    One of the most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In the present work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexciton binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. The results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.

  20. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min

    2018-02-23

    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

  1. Spatially and Temperature Resolved Photoluminescence (PL) Of Excitons in Highly Oriented Phthalocyanine Films

    Science.gov (United States)

    Rawat, Naveen; Pan, Zhenwen; Manning, Lane; Wetherby, Anthony; Waterman, Rory; Headrick, Randy; Furis, Madalina

    2012-02-01

    Phthalocyanines and their derivatives are interesting alternative to polymer materials for the development of electronic devices such as organic thin field effect transistors, organic Light Emitting Diodes and photovoltaic cells. The present study focuses on spatially resolved, temperature-dependent PL of highly-oriented metal free and Zn -Octa-butoxy phthalocyanine (OBPc) polycrystalline thin films. Samples were fabricated using an in-house solution processing methodootnotetextR. L. Headrick et al, APL, 92, 063302 (2008) that results in mm-sized grains which can be individually probed using a focused laser beam. The experiments indicate the lowest optically active excitonic state which dominates the PL spectrum at 5K is optically-forbidden at room temperature. Linear Dichroism microscopy experiments indicate a reorientation of molecular planes below T˜200K which may favor a mixing of Frenkel and intermolecular excitons, changing the nature of excitonic ground state.

  2. Relaxation of nonthermal hh and lh excitons in ZnSe quantum wells

    DEFF Research Database (Denmark)

    Kalt, H.; Hoffmann, J.; Umlauff, M.

    1998-01-01

    The strong exciton-LO phonon coupling in ZnSe QWs gives a direct access to the relaxation dynamics of nonthermal, free heavy-hole and light-hole excitons. Narrow hot-exciton distributions can be generated by LO-phonon assisted exciton formation. The thermalization of these excitons is monitored...

  3. Measuring the Influence of Dielectric Environment on 2D Excitons in Monolayer Semiconductors: Insight from High Magnetic Fields1

    Science.gov (United States)

    Stier, Andreas

    The relatively heavy electrons and holes in monolayer semiconductors such as MoS2 form tightly-bound excitons with large binding energies, thus motivating magneto-optical studies in high magnetic fields. Because 2D excitons in these materials necessarily lie close to a surface, their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter - the exciton's optical transition energy - is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment can be revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe2 monolayers affixed to single-mode optical fibers, we tune the surrounding dielectric environment by encapsulating the monolayers with different materials, and perform polarization resolved low-temperature magneto-absorption studies to 65 tesla. The systematic increase of the exciton's size with dielectric screening, and concurrent two-fold reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models based on the Keldysh potential. These results demonstrate how exciton properties can be tuned in future 2D devices and van der Waals heterostructures. 1In collaboration with S.A. Crooker (NHMFL); J. Kono (Rice University); K.M. McCreary, B.T. Jonker (Naval Research Lab); N.P. Wilson, G. Clark, X. Xu (University of Washington).

  4. Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy.

    Science.gov (United States)

    Yarita, Naoki; Tahara, Hirokazu; Ihara, Toshiyuki; Kawawaki, Tokuhisa; Sato, Ryota; Saruyama, Masaki; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-04-06

    Metal-halide perovskite nanocrystals (NCs) are promising photonic materials for use in solar cells, light-emitting diodes, and lasers. The optoelectronic properties of these devices are determined by the excitons and exciton complexes confined in their NCs. In this study, we determined the relaxation dynamics of charged excitons and biexcitons in CsPbBr 3 NCs using femtosecond transient-absorption (TA), time-resolved photoluminescence (PL), and single-dot second-order photon correlation spectroscopy. Decay times of ∼40 and ∼200 ps were obtained from the TA and PL decay curves for biexcitons and charged excitons, respectively, in NCs with an average edge length of 7.7 nm. The existence of charged excitons even under weak photoexcitation was confirmed by the second-order photon correlation measurements. We found that charged excitons play a dominant role in luminescence processes of CsPbBr 3 NCs. Combining different spectroscopic techniques enabled us to clarify the dynamical behaviors of excitons, charged excitons, and biexcitons.

  5. Polarons and excitons in insulators: insight from computer simulations

    Science.gov (United States)

    Shluger, Alexander

    2010-03-01

    Localization of electrons and holes as well as excitons in insulators is a ubiquitous phenomenon which controls carrier mobility, luminescence and radiation damage of many materials. When such localization takes place in a perfect lattice it is called self-trapping, however in many cases it is facilitated by perturbation induced by intrinsic defects and impurities. Whatever the mechanism, it is hard to prove experimentally and especially theoretically. I will first review briefly the established models of self-trapped polarons and excitons (STE) in alkali halides and cubic oxides and will demonstrate how they are linked to the mechanisms of photo-induced desorption of these materials [1]. I will then discuss the results of our modeling, which extend these models further to more complex oxides forming so called electrides -- materials where electrons serve as anions [2], and to a qualitatively new type of electron trapping at grain boundaries in polycrystalline materials with negative electron affinity [3]. Combining periodic and embedded cluster methods we can explain and sometimes predict the properties of polarons and excitons in a range of insulators, such as amorphous SiO2 [4], and polycrystalline HfO2 [5] and HfSiO4. I will discuss the applicability of different techniques to studying localization problems in insulators and will compare the predictions of periodic plane wave and embedded cluster DFT calculations. [4pt] [1] W. P. Hess, et al. J. Phys. Chem. B, 109, 19563 (2005) [0pt] [2] P. V. Sushko et al. J. Amer. Chem. Soc., 129, 942 (2007) [0pt] [3] K. P. McKenna and A. L. Shluger, Nature Materials, 7, 859 (2008) [0pt] [4] A. V. Kimmel, et al. J. Non-Cryst. Sol., 353, 599 (2007) [0pt] [5] D. Munoz Ramo, et al. Phys. Rev. Lett. 99, 155504 (2007)

  6. Exciton valley dynamics in monolayer Mo1-xWxSe2 (x = 0, 0.5, 1)

    Science.gov (United States)

    Ye, Jialiang; Niu, Binghui; Li, Ying; Li, Ting; Zhang, Xinhui

    2017-10-01

    We study the exciton valley dynamics in monolayers MoSe2, Mo0.5W0.5Se2, and WSe2 by employing helicity-resolved two-color transient reflection spectroscopy. The valley depolarization dynamics as a function of the excitation laser energy is studied systematically at above-resonant excitation of excitons at 10 K. A longer intervalley scattering time is obtained as the excitation energy approaches the A exciton resonance for the three studied materials. The excitation energy dependence of exciton valley relaxation proves that the long-range electron-hole exchange interaction dominates the intervalley scattering in transition metal dichalcogenide monolayers. The longer valley scattering time and higher valley polarization degree commonly observed for WSe2 than for MoSe2 is discussed to result from the interplay between the intervalley electron-hole exchange interaction and dark-bright exciton scattering, where the existence of energetically lower lying dark excitonic states in monolayer WSe2 favors the suppression of the intervalley electron-hole exchange interaction.

  7. Impact of semi-annihilations on dark matter phenomenology - an example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Belanger, G.; Kannike, K.; Pukhov, A.; Raidal, M.

    2012-01-01

    We study the impact of semi-annihilations χχ ↔ χX; where χ is dark matter and X is any standard model particle, on dark matter phenomenology. We formulate scalar dark matter models with minimal field content that predict non-trivial dark matter phenomenology for different discrete Abelian symmetries Z N , N > 2, and contain semi-annihilation processes. We implement such an example model in micrOMEGAs and show that semi-annihilations modify the phenomenology of this type of models. (authors)

  8. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.; Kelley, Matthew S.; Chen, Lin X.; Schatz, George C.; Ratner, Mark A.

    2017-01-01

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to the excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.

  9. Positron annihilation radiation from the Galactic center region

    Science.gov (United States)

    Ramaty, R.; Lingenfelter, R. E.

    1991-01-01

    Observations show that there are two components of positron annihilation radiation from the region of the Galactic center: a variable component resulting from one or just a few compact sources at or near the Galactic center and a steady, diffuse component resulting from positron annihilation in the Galactic disk. The diffuse component is modeled using the observed longitude distributions of 70-150 MeV gamma rays, CO, and hot plasma revealed by Fe line emission. Recent results on positron annihilation in the interstellar medium are reviewed and the implications of the annihilation processes on the fraction of positrons annihilating via positronium and on the shape of the 511 keV annihilation line are discussed. The sources of diffuse Galactic positrons are also reviewed and the nature of the compact source of annihilation radiation near the Galactic center is discussed.

  10. Selective optical pumping of charged excitons in unintentionally doped InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Matutano, Guillermo; MartInez-Pastor, Juan [Instituto de Ciencias de los Materiales, Universitat de Valencia, PO Box 22085, 46071 Valencia (Spain); Alen, Benito [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Seravalli, Lucca; Frigeri, Paola; Franchi, Secondo [Istituto dei Materiali per l' Elettronica e il Magnetismo (CNR), Parco delle Scienze 37/a, I-43100 Parma (Italy)], E-mail: Guillermo.munoz@uv.es

    2008-04-09

    We have investigated the selective optical pumping of charged excitonic species in a sample containing quantum dots of different sizes and low areal density by photoluminescence and excitation of the photoluminescence microspectroscopy. We study the selective optical excitation of negatively charged excitons as an alternative to commonly used electrical methods. We demonstrate that under resonant excitation in impurity related bands, the selective pumping efficiency can be as high as 85% in small quantum dots having one electron shell and emitting at around 930 nm, and around 65% in big quantum dots having four electron shells and emitting at 1160 nm.

  11. Characteristics of exciton photoluminescence kinetics in low-dimensional silicon structures

    CERN Document Server

    Sachenko, A V; Manojlov, E G; Svechnikov, S V

    2001-01-01

    The time-resolved visible photoluminescence of porous nanocrystalline silicon films obtained by laser ablation have been measured within the temperature range 90-300 K. A study has been made of the interrelationship between photoluminescence characteristics (intensity, emission spectra, relaxation times, their temperature dependencies and structural and dielectric properties (size and shapes of Si nanocrystals, oxide phase of nanocrystal coating, porosity). A photoluminescence model is proposed that describes photon absorption and emission occurring in quantum-size Si nanocrystals while coupled subsystems of electron-hole pairs and excitons take part in the recombination. Possible excitonic Auger recombination mechanism in low-dimensional silicon structures is considered

  12. Excitonic and photonic processes in materials

    CERN Document Server

    Williams, Richard

    2015-01-01

    This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic.  Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators, and materials with novel optical properties.  Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics,  border security, and nuclear nonproliferation.  Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.

  13. Exciton Polaritons in Microcavities New Frontiers

    CERN Document Server

    Sanvitto, Daniele

    2012-01-01

    In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.

  14. Excitonic transitions in homoepitaxial GaN

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Criado, G.; Cros, A.; Cantarero, A. [Materials Science Inst. and Dept. of Applied Physics, Univ. of Valencia (Spain); Miskys, C.R.; Ambacher, O.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-11-08

    The photoluminescence spectrum of a high quality homoepitaxial GaN film has been measured as a function of temperature. As temperature increases the recombination of free excitons dominates the spectra. Their energy shift has successfully fitted in that temperature range by means of the Bose-Einstein expression instead of Varshni's relationship. Values for the parameters of both semi-empirical relations describing the energy shift are reported and compared with the literature. (orig.)

  15. Chiral topological excitons in a Chern band insulator

    Science.gov (United States)

    Chen, Ke; Shindou, Ryuichi

    2017-10-01

    A family of semiconductors called Chern band insulators are shown to host exciton bands with nonzero topological Chern integers and chiral exciton edge modes. Using a prototypical two-band Chern insulator model, we calculate a cross-correlation function to obtain the exciton bands and their Chern integers. The lowest exciton band acquires Chern integers such as ±1 and ±2 in the electronic Chern insulator phase. The nontrivial topology can be experimentally observed both by a nonlocal optoelectronic response of exciton edge modes and by a phase shift in the cross-correlation response due to the bulk mode. Our result suggests that magnetically doped HgTe, InAs/GaSb quantum wells, and (Bi,Sb)2Te3 thin films are promising candidates for a platform of topological excitonics.

  16. Excitons in atomically thin 2D semiconductors and their applications

    Directory of Open Access Journals (Sweden)

    Xiao Jun

    2017-06-01

    Full Text Available The research on emerging layered two-dimensional (2D semiconductors, such as molybdenum disulfide (MoS2, reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  17. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials

    KAUST Repository

    Tizei, Luiz H. G.

    2015-03-01

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius.

  18. Radiative production of scalar neutrinos in e+e- annihilation

    International Nuclear Information System (INIS)

    Aliev, T.M.; Mustafaev, Kh.A.; Khalil-Zade, F.T.

    1987-01-01

    Radiative production of scalar neutrino pairs in e + e - annihilation is studied in detail in the framework of the R-invariant N=1 supergravity. The doubly differential (with respect to energy and photon emission angle) cross section is calculated. The energy-angular distribution, the photon energy spectra and the total cross section were studied in detail to fit the available experimental conditions. Possibilities of experimental identification of the process under consideration are presented. Restraints vino mass are imposed comparing comparing the obtained results with the data

  19. Absorbed dose in polymers during a positron annihilation experiment

    International Nuclear Information System (INIS)

    Suzuki, T.; Namito, Y.; Oki, Y.; Numajiri, M.; Miura, T.; Hirayama, H.; Kondo, K.; Ito, Y.

    1994-01-01

    A positron annihilation lifetime (PAL) technique has been recognized as being a useful method to study the characteristics of polymers. However, radiation effects due to positrons used as a probe have been raised as being a problem, since positrons emitted from 22 Na have sufficient energy to induce radiation damage in polymers. In this study, the radiation dose induced by positrons emitted from 22 Na was estimated for such polymers like polyethylenes and polypropylenes using the EGS4 code. The radiation damage during PAL measurements is also discussed. It has been shown that the calculated dose is consistent with that estimated from an empirical equation of the mass-attenuation coefficient. (author)

  20. Investigation of the crystal lattice defects by means of the positrons annihilations; Badania defektow sieci krystalicznej metoda anihilacji pozytonow

    Energy Technology Data Exchange (ETDEWEB)

    Dryzek, J. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    In this report the positrons annihilation methods as a tool for the crystal defects studies is presented. The short description of the positron - crystal interactions and different positron capture models are discussed. 192 refs, 67 figs, 6 tabs.

  1. Excitons confined in quantum dots spheroidal prolate; Excitones confinados en puntos cuanticos esferoidales prolatos

    Energy Technology Data Exchange (ETDEWEB)

    Corella M, A.; Rosas, R.A.; Marin, J.L.; Riera, R. [Depto. de Fisica, Universidad de Sonora, A.P. 1626, Hermosillo, Sonora (Mexico)

    2004-07-01

    The variational method is used to solve in approximately way the Schroedinger wave equation associated to a Wannier-Mott exciton confined within a spheroidal quantum dot. The confinement effect on the ground-state energy of the electron-hole pair trapped inside a crystallite with this geometry, and with soft or hard walls, is analyzed. The walls can be modeled as finite or infinite potential barriers with suitable border conditions, which will depend on the considered case. The results of this work are compared with those obtained by other authors through more sophisticated methods. A comparison with experimental data of CdS crystallites embedded in materials of different composition is made, too. For a finite potential barrier, a critical size of the crystallite from which the exciton escapes of the quantum dot, is predicted. This is in opposition with the infinite potential barrier model where the exciton never can leave the region where it is confined. (Author)

  2. Exciton-related nonlinear optical response and photoluminescence in dilute nitrogen InxGa1−xNyAs1−y/GaAs cylindrically shaped quantum dots

    International Nuclear Information System (INIS)

    Duque, C.M.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    An investigation of the effects of the dilute nitrogen contents in the exciton states of cylindrical In x Ga 1−x N y As 1−y /GaAs quantum dots is presented. The exciton states in the system are obtained within the effective mass theory and the band anti-crossing model. Exciton-related nonlinear optical absorption and refractive index change, as well as excitonic photoluminescence are studied with the help of the calculated exciton states. - Highlights: • Theoretical study of excitons in cylindrical In x Ga 1−x N y As 1−y /GaAs quantum dots. • Calculations of binding energy for different configurations of electron-hole pairs. • Nonlinear optical absorption and refractive index changes. • Dependence of photoluminescence energy transitions with several inputs

  3. Correlation between ferromagnetism and the concentration of interfacial defects in multiferroic Bi{sub 7}Fe{sub 2.75}Co{sub 0.25}Ti{sub 3}O{sub 21} studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ge, W.N. [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Li, X.N. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Xu, J.P. [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Huang, S.J. [Zhejiang University of Water Resources and Electric Power, Hangzhou 310018 (China); Liu, J.D. [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhu, Z.; Fu, Z.P. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Lu, Y.L., E-mail: yllu@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ye, B.J., E-mail: bjye@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2017-03-01

    Highlights: • Interfacial defects and magnetization of Bi{sub 7}Fe{sub 2.75}Co{sub 0.25}Ti{sub 3}O{sub 21} were studied. • Interfacial defects disappear slowly with the increase of annealing temperature. • Saturation magnetization decreased with increasing the annealing temperature. • Higher concentration of interfacial defects bring higher saturation magnetization. - Abstract: This paper investigated the effect of the annealing temperature on the interfacial defects and the magnetization of a single-phase multiferroic Bi{sub 7}Fe{sub 2.75}Co{sub 0.25}Ti{sub 3}O{sub 21.} With the increase of annealing temperature, the average thickness of the nonaplates increased from 80 to 180 nm. But the magnetic property measurement shows that the saturation magnetization gradually decreases with the increase of the annealing temperature correspondingly. Positron annihilation measurements reveal that the interfacial defects disappear obviously when the annealing temperature increased, which is found to agree well with the variation of saturation magnetization. The results suggest that with the higher concentration of interfacial defects may bring about higher saturation magnetization for the Aurivillius phase material, opening a window to improve the magnetic performance through controlling the concentration of interfacial defects.

  4. A systematic effective operator analysis of semi-annihilating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yi [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Melbourne,Melbourne, Victoria 3010 (Australia); Spray, Andrew [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of)

    2017-02-23

    Semi-annihilation is a generic feature of dark matter theories stabilized by symmetries larger than a ℤ{sub 2}. It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to 2→2 semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable “dark partner” states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray searches and astrophysical observations. We find that for semi-annihilation to electrons and light quarks, the thermal relic cross sections can be excluded for dark matter masses up to 100 GeV. However, significant model space for semi-annihilating dark matter remains.

  5. A systematic effective operator analysis of semi-annihilating dark matter

    International Nuclear Information System (INIS)

    Cai, Yi; Spray, Andrew

    2017-01-01

    Semi-annihilation is a generic feature of dark matter theories stabilized by symmetries larger than a ℤ 2 . It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to 2→2 semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable “dark partner” states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray searches and astrophysical observations. We find that for semi-annihilation to electrons and light quarks, the thermal relic cross sections can be excluded for dark matter masses up to 100 GeV. However, significant model space for semi-annihilating dark matter remains.

  6. Assessment of positron annihilation as a potential non-destructive examination technique

    International Nuclear Information System (INIS)

    Jones, W.B.; Van Den Avyle, J.A.; Gauster, W.B.; Wampler, W.R.

    1979-01-01

    The positron annihilation technique can provide a sensitive measure of defect density in metals. In this program the technique has been used to monitor defects generated during plastic deformation by cold work or fatigue cycling. The primary goals have been: (1) to assess the degree of sensitivity of the technique; (2) to correlate positron annihilation readings with observed microstructural changes to better understand the physical basis for these readings; and (3) to determine correlations between positron annihilation measurements and number of fatigue cycles. Examination of fatigued samples by transmission electron microscopy indicates some correlation between dislocation density and positron annihilation lineshape parameter (determined by the Doppler broadening technique). However, annealing studies of deformed samples indicate that positron annihilation response in 316 stainless steel is sensitive primarily to excess vacancies generated during the deformation and is less sensitive to dislocation density. Data on deformed nickel show sensitivity to both vacancies and dislocations. In general, lineshape parameter values tend to achieve a constant level at approximately 10% of fatigue life

  7. Compton backscattered annihilation line emission: A new diagnostic of accreting compact sources

    Science.gov (United States)

    Lingenfelter, Richard E.; Hua, Xin-Min

    1992-01-01

    It is shown that Compton scattering of 511 keV electron-positron annihilation radiation produces a line like feature at approx. 170 keV from backscattered photons. Assuming a simple model of an accretion disk around a compact source, the spectrum is explored of the spectrum of Compton scattered annihilation line emission for a range of conditions. It is further shown that such Compton baskscattering of annihilation line emission from the inner edge of an accretion disk could account for the previously unidentified 170 keV line emission and high energy continuum observed from a variable, compact source, or sources, of annihilation radiation near the Galactic Center. Identification of the observed 170 keV line as an annihilation line reflection feature provides strong new evidence that the source of the emission is an accreting compact object. Further study of these features in existing spectra and in forthcoming GRO observation of these and other sources can provide unique new diagnostics of the innermost regions of accretion disks around compact objects.

  8. Exciton management in organic photovoltaic multidonor energy cascades.

    Science.gov (United States)

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  9. Measurement of Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  10. Exciton transport phenomena in monolayer MoS2

    Science.gov (United States)

    Onga, Masaru; Zhang, Yijin; Ideue, Toshiya; Iwasa, Yoshihiro

    Monolayer transition metal dichalcogenides exhibit unique optical phenomena owing to the two-dimensional structure and valley degree of freedom. Many researchers have revealed that excitonic states play an important role in optical response, and have observed the diffusion transport of excitons in this system at room temperature. Here we report exciton transport phenomena in monolayer MoS2 at low temperature through photoluminescence mapping. Our results can provide us a new platform for exciton-based optoelectronics with valley degrees of freedom.

  11. Formation of charmonium states in antiproton-proton annihilation

    International Nuclear Information System (INIS)

    Cester, R.

    1984-01-01

    Experiment R704 at the CERN ISR studies charmonium states formed directly in antiproton-proton annihilations. A high luminosity and good centre of mass energy definition are obtained by intersecting a low-energy antiproton beam circulating in ring II at the ISR, with a molecular H 2 jet target. During two test runs, for an integrated luminosity of 265 nb -1 , we have observed formation of psi and chi 2 . Taking the known psi mass as reference, we have checked that the nominal ISR momentum is correct and reproducible to 2.0 MeV/c

  12. Morphology of Thermoset Polyimides by Positron Annihilation Spectroscopy

    Science.gov (United States)

    Ranganathaiah, C.; Pater, R. H.; Sprinkle, D. R.; Baugher, A. H.; Eftekhari, A.; Singh, J. J.

    1994-01-01

    Thermoset polyimides have great potential for successfully meeting tough stress and temperature challenges in the advanced aircraft development program. However, studies of structure/property relationships in these materials have not been very successful so far. Positron annihilation spectroscopy has been used to investigate free volumes and associated parameters. It has been noted that the free volume correlates well with the molecular weight, cross-link density and thermal coefficient of expansion of these materials. Currently no other techniques are available for direct measurement of these parameters. Experimental results and their interpretations will be discussed.

  13. Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy

    DEFF Research Database (Denmark)

    Wiinberg, P.; Eldrup, Morten Mostgaard; Maurer, F.H.J.

    2004-01-01

    Positron annihilation lifetime spectroscopy (PALS) was performed on a series of polydimethylsiloxane (PDMS)/fumed silicon dioxide (SiO2) composites at temperatures between -185 and 100degreesC to study the effect of filler content and filler particle size on the free volume properties and the pos......Positron annihilation lifetime spectroscopy (PALS) was performed on a series of polydimethylsiloxane (PDMS)/fumed silicon dioxide (SiO2) composites at temperatures between -185 and 100degreesC to study the effect of filler content and filler particle size on the free volume properties...... and the positron annihilation characteristics. The glass transition behavior of the PDMS/SiO2 composites was determined with differential scanning calorimetry. A clear influence on the o-Ps lifetime (73) in the polymer upon addition of nano-sized fumed SiO2 was observed at all temperatures. The observed o...

  14. Excitonic effects in ZnO nanowires and hollow nanotubes

    Science.gov (United States)

    Willander, M.; Lozovik, Y. E.; Zhao, Q. X.; Nur, O.; Hu, Q.-H.; Klason, P.

    2007-02-01

    Energy levels and wave functions of ground and excited states of an exciton are calculated by the method of imaginary time. Energy levels as functions of radius of single and double wall nanotube are studied. Asymptotic behavior of energy levels at large and small values of the radius using perturbation theory and adiabatic approximation is considered. Spatially indirect exciton in semiconductor nanowire is also investigated. Experimental result from high quality reproducible ZnO nanowires grown by low temperature chemical engineering is presented. State of the art high brightness white light emitting diodes (HB-LEDs) are demonstrated from the grown ZnO nano-wires. The color temperature and color rendering index (CRI) of the HB-LEDs values was found to be (3250 K, 82), and (14000 K, 93), for the best LEDs, which means that the quality of light is superior to one obtained from GaN LEDs available on the market today. The role of V Zn and V ° on the emission responsible for the white light band as well as the peak position of this important wide band is thoroughly investigated in a systematic way.

  15. Bright monolayer tungsten disulfide via exciton and trion chemical modulations.

    Science.gov (United States)

    Tao, Ye; Yu, Xuechao; Li, Jiewei; Liang, Houkun; Zhang, Ying; Huang, Wei; Wang, Qi Jie

    2018-04-05

    Atomically thin transition metal dichalcogenides (TMDCs) with exceptional electrical and optical properties have drawn tremendous attention for use in novel optoelectronic applications as photodetectors, transistors, light emitters, etc. However, electron bound trions formed through the combination of neutral excitons and electrons significantly decrease the photoluminescence (PL) efficiency of TMDCs. In this study, we report a simple yet efficient chemical doping strategy to modulate the optical properties of monolayer tungsten disulfide (WS2). As a demonstrative example, a chemically doped monolayer of WS2 exhibits remarkable PL enhancement of about one order of magnitude higher than that of pristine WS2. This outstanding PL enhancement is attributed to the fact that excess electrons, which promote the formation of electron-bound trions, are reduced in number through charge transfer from WS2 to the chemical dopant. Furthermore, an improved degree of circular polarization from ∼9.0% to ∼41.5% was also observed in the chemically doped WS2 monolayer. This work describes a feasible strategy to manipulate the optical properties of TMDCs via exciton modulation, making TMDCs promising candidates for versatile semiconductor-based photonic devices.

  16. Positron Annihilation in the Undergraduate Laboratory

    Science.gov (United States)

    Engbrecht, Jason

    2017-04-01

    While there are a variety of undergraduate laboratory experiments in the literature, they tend to focus on specific positron experiments and use specialized equipment that limit their flexibility. Here we present a positron spectroscopy experimental apparatus designed for the undergraduate lab. Rather than specialized pulse processing the apparatus utilizes a PC oscilloscope as its primary data acquisition utility with pulse processing happening in software instead of hardware. This allows the apparatus to explore a variety of physical phenomena with the positron annihilation including material science, 2 and 3 gamma annihilation properties, polarimetry via Compton scattering, QED tests, and local hidden variable theories. The supporting software is flexible and allows students to pursue these experiments through exploration rather than simply supporting data acquisition. St. Olaf College.

  17. Positron scattering and annihilation from hydrogenlike ions

    International Nuclear Information System (INIS)

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-01-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z eff for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z eff are small and do not exceed unity for any of the momenta considered. At thermal energies Z eff is minute with a value of order 10 -50 occurring for He + at k=0.05a 0 -1 . In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions

  18. Two photon annihilation operators and squeezed vacuum

    Science.gov (United States)

    Roy, Anil K.; Mehta, C. L.; Saxena, G. M.

    1993-01-01

    Inverses of the harmonic oscillator creation and annihilation operators by their actions on the number states are introduced. Three of the two photon annihilation operators, viz., a(sup +/-1)a, aa(sup +/-1), and a(sup 2), have normalizable right eigenstates with nonvanishing eigenvalues. The eigenvalue equation of these operators are discussed and their normalized eigenstates are obtained. The Fock state representation in each case separates into two sets of states, one involving only the even number states while the other involving only the odd number states. It is shown that the even set of eigenstates of the operator a(sup +/-1)a is the customary squeezed vacuum S(sigma) O greater than.

  19. Method for photon activation positron annihilation analysis

    Science.gov (United States)

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  20. A possible signature of annihilating dark matter

    Science.gov (United States)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  1. Controlling Positronium Annihilation with Electric Fields.

    Science.gov (United States)

    Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Cassidy, D B

    2015-10-30

    We show that the annihilation dynamics of excited positronium (Ps) atoms can be controlled using parallel electric and magnetic fields. To achieve this, Ps atoms were optically excited to n=2 sublevels in fields that were adjusted to control the amount of short-lived and long-lived character of the resulting mixed states. Inclusion of the former offers a practical approach to detection via annihilation radiation, whereas the increased lifetimes due to the latter can be exploited to optimize resonance-enhanced two-photon excitation processes (e.g., 1^{3}S→2^{3}P→nS/nD), either by minimizing losses through intermediate state decay, or by making it possible to separate the excitation laser pulses in time. In addition, photoexcitation of mixed states with a 2^{3}S_{1} component represents an efficient route to producing long-lived pure 2^{3}S_{1} atoms via single-photon excitation.

  2. Soliton creation, propagation, and annihilation in aeromechanical arrays of one-way coupled bistable elements

    Science.gov (United States)

    Rosenberger, Tessa; Lindner, John F.

    We study the dynamics of mechanical arrays of bistable elements coupled one-way by wind. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Soliton-like waves propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in even arrays where adjacent elements are attracted to opposite stable states. Solitons propagate indefinitely in odd arrays where pairing is frustrated. Large noise spontaneously creates soliton- antisoliton pairs, as predicted by prior computer simulations. Soliton annihilation times increase quadratically with initial separations, as expected for random walk models of soliton collisions.

  3. Overlapping resonances in e+e- annihilation

    International Nuclear Information System (INIS)

    Dothan, Y.; Horn, D.

    1976-06-01

    The application of the general formalism of two overlapping resonances to the inclusive process of hadron production in e + e - annihilation is discussed. The strong dip observed near 4 GeV can be fitted by three different classes of solutions, all of which have to use an overlap close to its maximal value. This suggests that both resonances have one common main decay channel. The implications of this conclusion are briefly discussed

  4. Systems of branching, annihilating, and coalescing particles

    Czech Academy of Sciences Publication Activity Database

    Athreya, S. R.; Swart, Jan M.

    2012-01-01

    Roč. 17, č. 80 (2012), s. 1-32 ISSN 1083-6489 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : reaction-diffusion process * branching * coalescence * annihilation * thinning * Poissonization Subject RIV: BA - General Mathematics Impact factor: 0.785, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/swart-0381108.pdf

  5. Development of positron annihilation spectroscopy to test accelerated weathering of protective polymer coatings

    CERN Document Server

    Zhang, R; Chen, H M; Mallon, P; Sandreczki, T C; Richardson, J R; Jean, Y C; Nielsen, B; Suzuki, R; Ohdaira, T

    2000-01-01

    A variable mono-energetic positron beam with a computer-controlled system has recently been constructed at the University of Missouri-Kansas City for weathering studies of polymeric coatings. The beam is designed to measure the S-parameter from Doppler-broadening energy spectra and the sub-nanometer defect properties from positron annihilation lifetimes (PAL). Significant variations of S-parameter and ortho-positronium intensity in coatings, as obtained from the newly built beam and from the Electrotechnical Laboratory's beam, respectively, are observed as a function of depth and exposure time due to the Xe-light irradiation. A high sensitivity of positron annihilation signal response to the early stage of degradation is observed. Development of positron annihilation spectroscopy to test accelerated weathering of polymeric coatings is discussed.

  6. Surface investigations by means of positrons annihilation; Badania warstwy wierzchniej metoda anihilacji pozytonow

    Energy Technology Data Exchange (ETDEWEB)

    Dryzek, J. [Institute of Nuclear Physics, Cracow (Poland); Stegemann, T.; Cleff, B. [Muenster Univ. (Germany). Inst. fuer Kernphysik

    1996-12-31

    The aim of the report is a presentation of the positron annihilation studies performed on the Cu samples that surface was exposed to the friction and wear processes. Using the measurement of Doppler broadening of annihilation line, we were able to detect the profile of vacancies in the top layers of the defected metals. It was established that one could describe the profile by a simple exponential function of the depth in all cases. The range of vacancies concentration depth depends on the load, time and the speed of the defects creation processes on the surface of a sample. The outline of the positron annihilation method is also given. (author). 10 refs, 16 figs, 5 tabs.

  7. The annihilation of positrons in the cold phase of the interstellar medium revisited

    Science.gov (United States)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  8. Terahertz signatures of the exciton formation dynamics in non-resonantly excited semiconductors

    Science.gov (United States)

    Kira, M.; Hoyer, W.; Koch, S. W.

    2004-03-01

    A microscopic theory for the induced terahertz (THz) absorption of semiconductors is applied to study the time-dependent system response after non-resonant optical excitation. The formation of excitonic populations from an interacting electron-hole plasma is analyzed and the characteristic THz signatures are computed. Good qualitative agreement with recent experiments is obtained.

  9. Anomalous behavior of the excited state of the A exciton in bulk WS2

    DEFF Research Database (Denmark)

    Jindal, Vishwas; Bhuyan, Sumi; Deilmann, Thorsten

    2018-01-01

    Results of optical spectroscopy studies on bulk 2H-WS2 at energies close to its direct band gap are presented. Reflectance and absorption measurements at low temperature show only one dominant feature due to the A exciton of bulk WS2 at similar to 2.02 eV. However, a laser-modulated photoreflecta...

  10. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    KAUST Repository

    Vlach, Martin

    2015-01-29

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible. © 2015, The Minerals, Metals & Materials Society and ASM International.

  11. Initial angular momentum state in pp annihilation at rest

    CERN Document Server

    Bizzarri, R

    1972-01-01

    The author shows that no quantitative statement on the relative importance of initial P-states in pp annihilation can be made. Annihilations in flight indicate that P-wave annihilation into K/sub 1 //sup 0/K/sub 1//sup 0/ is inhibited while annihilation into pi pi is enhanced and might suggest a P-wave contamination approximately 10%. The observatory of the final state K/sub 1//sup 0/K/sub 1//sup 0/n from annihilations at rest indicates that the depression of the K/sub 1//sup 0/K/sub 1//sup 0/ final state is not so important and suggests a P-wave contamination smaller than 4%. Furthermore the successes obtained in the analysis of various final states on the assumption of S-wave annihilation are hard to reconcile with a P-wave contribution bigger than approximately 5%. (20 refs).

  12. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    Science.gov (United States)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  13. Optics of exciton-plasmon nanomaterials

    Science.gov (United States)

    Sukharev, Maxim; Nitzan, Abraham

    2017-11-01

    This review provides a brief introduction to the physics of coupled exciton-plasmon systems, the theoretical description and experimental manifestation of such phenomena, followed by an account of the state-of-the-art methodology for the numerical simulations of such phenomena and supplemented by a number of FORTRAN codes, by which the interested reader can introduce himself/herself to the practice of such simulations. Applications to CW light scattering as well as transient response and relaxation are described. Particular attention is given to so-called strong coupling limit, where the hybrid exciton-plasmon nature of the system response is strongly expressed. While traditional descriptions of such phenomena usually rely on analysis of the electromagnetic response of inhomogeneous dielectric environments that individually support plasmon and exciton excitations, here we explore also the consequences of a more detailed description of the molecular environment in terms of its quantum density matrix (applied in a mean field approximation level). Such a description makes it possible to account for characteristics that cannot be described by the dielectric response model: the effects of dephasing on the molecular response on one hand, and nonlinear response on the other. It also highlights the still missing important ingredients in the numerical approach, in particular its limitation to a classical description of the radiation field and its reliance on a mean field description of the many-body molecular system. We end our review with an outlook to the near future, where these limitations will be addressed and new novel applications of the numerical approach will be pursued.

  14. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.

    Science.gov (United States)

    Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J

    2015-04-28

    Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.

  15. Bistable Topological Insulator with Exciton-Polaritons

    Science.gov (United States)

    Kartashov, Yaroslav V.; Skryabin, Dmitry V.

    2017-12-01

    The functionality of many nonlinear and quantum optical devices relies on the effect of optical bistability. Using microcavity exciton-polaritons in a honeycomb arrangement of microcavity pillars, we report the resonance response and bistability of topological edge states. A balance between the pump, loss, and nonlinearity ensures a broad range of dynamical stability and controls the distribution of power between counterpropagating states on the opposite edges of the honeycomb lattice stripe. Tuning energy and polarization of the pump photons, while keeping their momentum constant, we demonstrate control of the propagation direction of the dominant edge state. Our results facilitate the development of practical applications of topological photonics.

  16. Biexciton formation and exciton coherent coupling in layered GaSe

    Science.gov (United States)

    Dey, P.; Paul, J.; Moody, G.; Stevens, C. E.; Glikin, N.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Karaiskaj, D.

    2015-06-01

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ˜2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with "ab initio" theoretical calculations of the phonon spectra, indicate strong interaction with the A1 ' phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

  17. Biexciton formation and exciton coherent coupling in layered GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P.; Paul, J.; Stevens, C. E.; Glikin, N.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Moody, G. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colarado 80305 (United States); Kovalyuk, Z. D.; Kudrynskyi, Z. R. [Chernivtsi Department, Frantsevich Institute of Material Sciences Problems, The National Academy of Sciences of Ukraine, 5, Iryna Vilde St., 58001 Chernivtsi (Ukraine); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Cantarero, A. [Materials Science Institute, University of Valencia, P.O. Box 2205, 46071 Valencia (Spain); Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States)

    2015-06-07

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with “ab initio” theoretical calculations of the phonon spectra, indicate strong interaction with the A{sub 1}{sup ′} phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

  18. Biexciton formation and exciton coherent coupling in layered GaSe

    International Nuclear Information System (INIS)

    Dey, P.; Paul, J.; Stevens, C. E.; Glikin, N.; Karaiskaj, D.; Moody, G.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.

    2015-01-01

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with “ab initio” theoretical calculations of the phonon spectra, indicate strong interaction with the A 1 ′ phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal

  19. Superfluidity of indirect excitons and biexcitons in coupled quantum wells and superlattices

    CERN Document Server

    Lozovik, Yu E; Willander, M

    2002-01-01

    The collective properties of indirect excitons in coupled quantum wells (CQWs) are considered. The energy of the ground state of the exciton liquid as a function of the density of electrons e and holes h at different separations D between e and h layers is analysed. The quantum gas-liquid transition as D decreases is studied. The superfluidity appearance temperatures in the system (Kosterlitz-Thouless transition temperatures) have been estimated at different separations D between e and h layers. For the anisotropic two-dimensional e-h system in CQWs the Mott metal-insulator quantum transition is considered. The instability of the ground state of the system of interacting two-dimensional indirect excitons in a slab of superlattice with alternating e and h layers is established. The stable system of indirect quasi-two-dimensional biexcitons, consisting of indirect excitons with opposite directed dipole moments, is considered. The radius and the binding energy of the indirect biexciton are calculated. The collec...

  20. The influence of morphology on excitons in single conjugated molecules

    Science.gov (United States)

    Thiessen, Alexander

    The electronic properties of pi-conjugated molecules are strongly related to their molecular shape and morphology of assembly in three-dimensional space. Understanding the various structure-property relationships is relevant to the applications of these materials in optoelectronic devices such as organic light-emitting diodes, field effect transistors and photovoltaic cells. The fact that conjugated systems interact with visible light opens these materials to a plethora of noninvasive spectroscopic investigation techniques. In this work, electronic properties of different pi-conjugated systems are studied spectroscopically on the ensemble and the single molecule levels. Single molecule spectroscopy is advantageous in that it allows the investigation of the individual nuclear building blocks that contribute to the properties of the ensemble. Additionally, transient photoluminescence spectroscopy methods can provide useful insight into the temporal evolution of the emissive states. In combination with these methods, novel pi-conjugated model molecules are used to probe processes related to exciton dynamics. For the first time, the spatial localization of excited states is probed experimentally in a molecule with a circular chromophoric structure. In addition, a set of model molecules with different geometries is employed to study exciton relaxation in pi-conjugated systems. The molecular morphology is utilized to distinguish between processes such as nuclear reorganization and torsional relaxation. Furthermore, single molecule spectroscopy is used to study the electronic structure of individual polymer chains in the photovoltaic cell material poly-(3-hexylthiophene). Optical spectra of this polymer are known to change with the morphology of the bulk film. Single molecule studies reveal that individual polymer chains exhibit similar behavior and indicate that spectral diversity is an intrinsic property of single P3HT molecules. The main results of this work are the

  1. Computer Simulation of Electron Positron Annihilation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, y

    2003-10-02

    With the launching of the Next Linear Collider coming closer and closer, there is a pressing need for physicists to develop a fully-integrated computer simulation of e{sup +}e{sup -} annihilation process at center-of-mass energy of 1TeV. A simulation program acts as the template for future experiments. Either new physics will be discovered, or current theoretical uncertainties will shrink due to more accurate higher-order radiative correction calculations. The existence of an efficient and accurate simulation will help us understand the new data and validate (or veto) some of the theoretical models developed to explain new physics. It should handle well interfaces between different sectors of physics, e.g., interactions happening at parton levels well above the QCD scale which are described by perturbative QCD, and interactions happening at much lower energy scale, which combine partons into hadrons. Also it should achieve competitive speed in real time when the complexity of the simulation increases. This thesis contributes some tools that will be useful for the development of such simulation programs. We begin our study by the development of a new Monte Carlo algorithm intended to perform efficiently in selecting weight-1 events when multiple parameter dimensions are strongly correlated. The algorithm first seeks to model the peaks of the distribution by features, adapting these features to the function using the EM algorithm. The representation of the distribution provided by these features is then improved using the VEGAS algorithm for the Monte Carlo integration. The two strategies mesh neatly into an effective multi-channel adaptive representation. We then present a new algorithm for the simulation of parton shower processes in high energy QCD. We want to find an algorithm which is free of negative weights, produces its output as a set of exclusive events, and whose total rate exactly matches the full Feynman amplitude calculation. Our strategy is to create

  2. Extinction and survival in two-species annihilation

    Science.gov (United States)

    Amar, J. G.; Ben-Naim, E.; Davis, S. M.; Krapivsky, P. L.

    2018-02-01

    We study diffusion-controlled two-species annihilation with a finite number of particles. In this stochastic process, particles move diffusively, and when two particles of opposite type come into contact, the two annihilate. We focus on the behavior in three spatial dimensions and for initial conditions where particles are confined to a compact domain. Generally, one species outnumbers the other, and we find that the difference between the number of majority and minority species, which is a conserved quantity, controls the behavior. When the number difference exceeds a critical value, the minority becomes extinct and a finite number of majority particles survive, while below this critical difference, a finite number of particles of both species survive. The critical difference Δc grows algebraically with the total initial number of particles N , and when N ≫1 , the critical difference scales as Δc˜N1 /3 . Furthermore, when the initial concentrations of the two species are equal, the average number of surviving majority and minority particles, M+ and M-, exhibit two distinct scaling behaviors, M+˜N1 /2 and M-˜N1 /6 . In contrast, when the initial populations are equal, these two quantities are comparable M+˜M-˜N1 /3 .

  3. Positron annihilation in polymers and permeability of gases

    International Nuclear Information System (INIS)

    Buriova, E.

    2001-05-01

    An analysis of positron annihilation spectroscopy (PAS) results for different substituted polyacetylenes samples under vacuum and in air is presented with the aim to investigate the influence of the external atmosphere on the experimental PAS measurements and to determine correctly the size and the number of the free volume holes. The existence of special structure elements in polymers is responsible for the appearance of the fourth component of the time spectrum. The latter is formed at the expense of free volume elements in disordered regions of the polymer. A study of a number of glassy polymers with widely varying free volume and gas permeability showed that a bimodal size distribution of free volume elements is not an exception in some polymers but is a typical feature of the microstructure of amorphous glassy polymers. Oxygen-induced quenching of positronium lifetimes is demonstrated for all polymer samples. Good correlation of permeability of polymers with the size of free volume elements is demonstrated. This correlation can be used for a fast assessment of gas permeation properties of novel polymers using positron annihilation data (author)

  4. Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design.

    Science.gov (United States)

    Jiang, Xinpeng; Guo, Xinyan; Peng, Jiang; Zhao, Dahui; Ma, Yuguo

    2016-05-11

    Efficient visible-to-UV photon upconversion via triplet-triplet annihilation (TTA) is accomplished in polyurethane (PU) films by developing new, powerful photosensitizers fully functional in the solid-state matrix. These rationally designed triplet sensitizers feature a bichromophoric scaffold comprising a tris-cyclometalated iridium(III) complex covalently tethered to a suitable organic small molecule. The very rapid intramolecular triplet energy transfer from the former to the latter is pivotal for achieving the potent sensitizing ability, because this process out-competes the radiative and nonradiative decays inherent to the metal complex and produces long-lived triplet excitons localized with the acceptor moiety readily available for intermolecular transfer and TTA. Nonetheless, compared to the solution state, the molecular diffusion is greatly limited in solid matrices, which even creates difficulty for the Dexter-type intramolecular energy transfer. This is proven by the experimental results showing that the sensitizing performance of the bichromophoric molecules strongly depends on the spatial distance separating the donor (D) and acceptor (A) units and that incorporating a longer linker between the D and A evidently curbs the TTA upconversion efficiency in PU films. Using a rationally optimized sensitizer structure in combination with 2,7-di-tert-butylpyrene as the annihilator/emitter, the doped polyurethane (PU) films demonstrate effective visible-to-UV upconverted emission signal under noncoherent-light irradiation, attaining an upconversion quantum yield of 2.6%. Such quantum efficiency is the highest value so far reported for the visible-to-UV TTA systems in solid matrices.

  5. Dynamics of excitonic complexes bound to isoelectronic centers: Toward the realization of optically addressable qubits

    Science.gov (United States)

    St-Jean, Philippe

    The realization of qubits that can be efficiently coupled to optical fields is necessary for long distance transmission of quantum information, e.g. inside quantum networks. The principal hurdle preventing the realization of such optically addressable qubits arises from the challenging task of finding a platform that offers as well high optical homogeneity and strong light-matter coupling. In regard to this challenge, isoelectronic centers (ICs), which are isovalent impurities in a semiconductor host, represent a very promising alternative to the well-studied epitaxial quantum dots and NV centers in diamond which suffer, respectively,from a large inhomogeneous broadening and a less effective coupling to optical fields than ICs. Indeed, the atomic nature of ICs insures an optical homogeneity comparable to NV centers, and their ability to bind excitonic complexes with strong electric dipole moments allows them to offer an optical coupling similar to quantum dots. The aim of the work presented in this thesis is to evaluate the potential of different excitonic complexes bound to these ICs for building optically addressable qubits. This thesis by articles, is separated in two parts. In the first part, corresponding to Article 1 and 2, I study the physics of exciton qubits bound to N ICs in GaP (Article 1) and in GaAas (Article 2). More precisely, these articles present an analysis combining time-resolve PL measurements and balance of population models, allowing to identify and quantify the different mechanisms involved in the exciton recombination dynamics. In the second part, I demonstrate the initialization of a hole-spin qubit bound to a Te IC in ZnSe. Contrary to exciton qubits the coherence time of spin qubit is not limited by their spontaneous emission, allowing to preserve coherence on a much more significant timescale. (Abstract shortened by ProQuest.).

  6. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2009-11-11

    We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.

  7. Exciton coherence in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Sasaki, Masahide; Kujiraoka, Mamiko; Ema, Kazuhiro

    2009-01-01

    The coherent dynamics of excitons in InAs quantum dots (QDs) was investigated in the telecommunication wavelength range using a transient four-wave mixing technique. The sample was fabricated on an InP(311)B substrate using strain compensation to control the emission wavelength. This technique also enabled us to fabricate a 150-layer stacked QD structure for obtaining a high S/N in the four-wave mixing measurements, although no high-sensitive heterodyne detection was carried out. The dephasing time and transition dipole moment were precisely estimated from the polarization dependence of signals, taking into account their anisotropic properties. The population lifetimes of the excitons were also measured by using a polarization-dependent pumpprobe technique. A quantitative comparison of these anisotropies demonstrates that in our QDs, non-radiative population relaxation, polarization relaxation and pure dephasing are considerably smaller than the radiative relaxation. A comparison of the results of the four-wave mixing and pump-probe measurements revealed that the pure dephasing could be directly estimated with an accuracy of greater than 0.1 meV by comparing the results of four-wave mixing and pump-probe measurements. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Exciton interaction: its possible role in high temperature superconductivity

    International Nuclear Information System (INIS)

    Little, W.A.

    1987-01-01

    The recent remarkable developments in superconductivity has forced the group of physicists in the main stream of superconductivity research to re-examine the possible role of what has been referred to in the conference as novel mechanisms of superconductivity. The exciton mechanism is one such. While the many studies and developments in this subject are relatively well known to those involved in studies of organic superconductors and superconductors of reduced dimension, it appears that it is not well known to that large body of physicists involved in the more conventional mainstream of superconductivity. The salient features of the mechanism are reviewed and what it can and cannot do is discussed. Remarks are based on the most recent and most comprehensive review of the subject published in 1979, plus a few key papers since that time

  9. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  10. Experimental results on QCD [Quantum Chromodynamics] from e+e- annihilation

    International Nuclear Information System (INIS)

    de Boer, W.

    1987-09-01

    A review is given on QCD results from studying e + e - annihilation with the PEP and PETRA storage rings with special emphasis on jet physics and the determination of the strong coupling constant α/sub s/. 92 refs., 28 figs., 3 tabs

  11. Experimental results on QCD (Quantum Chromodynamics) from e/sup +/e/sup -/ annihilation

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, W.

    1987-09-01

    A review is given on QCD results from studying e/sup +/e/sup -/ annihilation with the PEP and PETRA storage rings with special emphasis on jet physics and the determination of the strong coupling constant ..cap alpha../sub s/. 92 refs., 28 figs., 3 tabs.

  12. Reflection, transmutation, annihilation, and resonance in two-component kink collisions

    Science.gov (United States)

    Alonso-Izquierdo, A.

    2018-02-01

    In this paper, the study of collisions between kinks arising in the family of MSTB models is addressed. Phenomena such as elastic kink reflection, mutual annihilation, kink-antikink transmutation and inelastic reflection are found and depend on the impact velocity.

  13. Annihilation model of the Tormac sheath

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1979-02-01

    A one-dimensional, steady state fluid model is developed to describe the boundary layer between plasma and magnetic field that occurs in the Tormac sheath. Similar systems which may be treatable by the same model are tokamaks with divertors and reversed field mirrors. The model includes transport across the magnetic field as well as mirror losses along the field, the latter being represented as annihilation terms in the one-dimensional equations. The model equations are derived from the two-dimensional, time dependent hierarchy of equations generated by taking velocity moments of the kinetic equation including collisions

  14. From creation and annihilation operators to statistics

    Science.gov (United States)

    Hoyuelos, M.

    2018-01-01

    A procedure to derive the partition function of non-interacting particles with exotic or intermediate statistics is presented. The partition function is directly related to the associated creation and annihilation operators that obey some specific commutation or anti-commutation relations. The cases of Gentile statistics, quons, Polychronakos statistics, and ewkons are considered. Ewkons statistics was recently derived from the assumption of free diffusion in energy space (Hoyuelos and Sisterna, 2016); an ideal gas of ewkons has negative pressure, a feature that makes them suitable for the description of dark energy.

  15. Apparatus for photon activation positron annihilation analysis

    Science.gov (United States)

    Akers, Douglas W [Idaho Falls, ID

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  16. Exciton spectra and energy band structure of Cu{sub 2}ZnSiSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Guc, M., E-mail: gmax@phys.asm.md [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Levcenko, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Dermenji, L. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Gurieva, G. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Schorr, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Syrbu, N.N. [Technical University of Moldova, Chisinau MD-2004, Republic of Moldova (Moldova, Republic of); Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of)

    2014-02-25

    Highlights: • Reflection spectra of Cu{sub 2}ZnSiSe{sub 4} were studied for E ⊥ c and E || c light polarizations. • Four excitonic series are revealed in the reflection spectra at 10 K. • Model of exciton dispersion and the presence of a dead-layer. • Exciton Rydberg energies and free carriers effective masses were calculated. • Reflectivity for E ⊥ c and E || c were analyzed in the region 3–6 eV at 300 K. -- Abstract: Exciton spectra are studied in Cu{sub 2}ZnSiSe{sub 4} single crystals at 10 and 300 K by means of reflection spectroscopy. The exciton parameters, dielectric constant and free carriers effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The structure found in the reflectivity was analyzed and related to the theoretical electronic band structure of close related Cu{sub 2}ZnSiS{sub 4} semiconductor.

  17. Polaronic exciton behavior in gas-phase water

    Science.gov (United States)

    Udal'tsov, Alexander V.

    2018-03-01

    Features of the absorption spectrum of gas-phase water in the energy range 7-10 eV have been considered applying polaronic exciton theory. The interaction of the incident photon generating polaronic exciton in water is described taking into account angular momentum of the electron so that polaronic exciton radii have been estimated in dependence on spin-orbit coupling under proton sharing. The suggested approach admits an estimate of kinetic and rotation energies of the polaronic exciton. As a result sixteen steps of half Compton wavelength, λC/2 = h/(2mec) changing polaronic exciton radius were found consistent with local maxima and shoulders in the spectrum. Thus, the absorption of gas-phase water in the energy range 8.5-10 eV has been interpreted in terms of polaronic exciton rotation mainly coupled with the proton sharing. The incident photon interaction with water is also considered in terms of Compton interaction, when the rotation energy plays a role like the energy loss of the incident photon under Compton scattering. The found symmetry and the other evidence allowed to conclude about polaronic exciton migration under the interaction angle 90°.

  18. Exciton binding energy in a pyramidal quantum dot

    Science.gov (United States)

    Anitha, A.; Arulmozhi, M.

    2018-05-01

    The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area a× a and height of the pyramid H=a/2. The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.

  19. Studies of Hadronic Event Structure in $e^+ e^-$ Annihilation from 30 GeV to 209 GeV with the L3 Detector

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Romeo, G.Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.

    2004-01-01

    In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \\alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

  20. Generalized event shape and energy flow studies in $e^+ e^-$ annihilation at $\\sqrt{s}$ = 91.2-208.0 GeV

    CERN Document Server

    Achard, P; Aguilar-Benitez, M; Alcaraz, J; Alemanni, G; Allaby, J; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefiev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillere, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Bohm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Romeo, G Cara; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cruz, B; Cucciarelli, S; de Asmundis, R; Deglon, P; Debreczeni, J; Degre, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; DeNotaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El Hage, A; Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagan, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Yu; Ganguli, S N; Garcia-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Gruenewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Herve, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Jin, B N; Jindal, P; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, J; Kittel, W; Klimentov, A; Konig, A C; Kopal, M; Koutsenko, V; Kraber, M; Kraemer, R W; Kruger, A; Kunin, A; Ladron de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levtchenko, P; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, F L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Malgeri, L; Malinin, A; Mana, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novak, T; Nowak, H; Ofierzynski, R; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroue, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pojidaev, V; Pothier, J; Prokofiev, D; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A; Razis, P; Rembeczki, S; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sanchez, E; Schafer, C; Schegelsky, V; Schopper, H; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Straessner, A; Sudhakar, K; Sultanov, G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillasi, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Toth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vasquez, R; Vesztergombi, G; Vetlitsky, I; Viertel, G; Vivargent, M; Vlachos, S; Vodopianov, I; Vogel, H; Vogt, H; Vorobiev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, An; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zoller, M

    2011-01-01

    We present results from a study of hadronic event structure in high energy e(+)e(-') interactions using the L3 detector at LEP. A new class of event shape distributions are measured at and above the Z boson pole for light quark (u, d, s, c) flavours. Energy flow correlations are studied for all hadronic events. Next-to-leading-log QCD calculations and QCD models with improved leading-log approximations are compared to data and good agreement is found at the Z-pole whereas some discrepancies are observed at higher centre-of-mass energies.

  1. Studies of hadronic event structure in e(+)e(-) annihilation from 30 to 209 GeV with the L3 detector

    OpenAIRE

    Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.

    2004-01-01

    In this Report, QCD results obtained from a study of hadronic event structure in high energy e(+)e(-) interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, as, from hadronic event shapes and the study of effects of soft gluon coherence i...

  2. New particles produced in electron--positron annihilation

    International Nuclear Information System (INIS)

    Perl, M.L.

    1975-01-01

    The main properties of the new particles produced in e + e - annihilation are reviewed. Included are properties of the continuum region, the 4.1-GeV enhancement, the psi and psi', radiative decays of the psi and psi', singly charmed particle searches in e + - e - annihilation, and the e/sub μ/ events

  3. Soliton annihilation in the perturbed sine-Gordon system

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Welner, D.

    1984-01-01

    Fluxon-antifluxon annihilation in the perturbed sine-Gordon equation with loss and driving terms is investigated. For the infinite line we find a simple analytic expression for the threshold driving term corresponding to annihilation. With the application of the results to a Josephson junction of...

  4. Impact of dark matter decays and annihilations on structure formation

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.

    2007-01-01

    Abstract: We derived the evolution of the energy deposition in the intergalactic medium (IGM) by different decaying (or annihilating) dark matter (DM) candidates. Heavy annihilating DM particles (with mass larger than a few GeV) have no influence on reionization and heating, even if we assume that

  5. CMB constraint on dark matter annihilation after Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sekiguchi, Toyokazu [Institute for Basic Science, Center for Theoretical Physics of the Universe, Daejeon 34051 (Korea, Republic of)

    2016-05-10

    We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.

  6. Nucleon-antinucleon annihilation in chiral soliton model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.; Tashkentskij Gosudarstvennyj Univ., Tashkent; Musatov, I.V.

    1991-01-01

    We investigate annihilation process of nucleons in the chiral soliton model by the path integral method. A soliton-antisoliton pair is shown to decay into mesons at range of about 1fm, defined by the S bar S potential. Contribution of the annihilation channel to the elastic scattering is discussed

  7. CMB constraint on dark matter annihilation after Planck 2015

    Directory of Open Access Journals (Sweden)

    Masahiro Kawasaki

    2016-05-01

    Full Text Available We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.

  8. Direct evidence for positron annihilation from shallow traps

    DEFF Research Database (Denmark)

    Linderoth, Søren; Hidalgo, C.

    1987-01-01

    For deformed Ag the temperature dependence of the positron lifetime parameters is followed between 12 and 300 K. Clear direct evidence for positron trapping and annihilation at shallow traps, with a positron binding energy of 9±2 meV and annihilation characteristics very similar to those...

  9. The Antiproton-Nucleon Annihilation Process (Antiproton Collaboration Experiment)

    Science.gov (United States)

    Barkas, W. H.; Birge, R. W.; Chupp, W. W.; Ekspong, A. G.; Goldhaber, G.; Goldhaber, S.; Heckman, H. H.; Perkins, D. H.; Sandweiss, J.; Segre, E.; Smith, F. M.; Stork, D. H.; Rossum, L. Van; Amaldi, E.; Baroni, G.; Castagnoli, C.; Franzinetti, C.; Manfredini, A.

    1956-09-10

    In the exposure to a 700-MeV/c negative particle beam, 35 antiproton stars have been found. Of these antiprotons, 21 annihilate in flight and three give large-angle scatters ({Theta} > 15 , T{sub P-} > 50 Mev), while 14 annihilate at rest. From the interactions in flight we obtain the total cross section for antiproton interaction.

  10. Positron annihilation and transmission electron microscopy study of the evolution of microstructure in cold-rolled and nitrided FeNiTi foils

    NARCIS (Netherlands)

    Chechenin, N.G.; Veen, A. van; Escobar Galindo, R.; Schut, H.; Chezan, A.R.; Bronsveld, P.M.; Hosson, J.Th.M. de; Boerma, D.O.

    2001-01-01

    Positron beam analysis (PBA) and transmission electron microscopy (TEM) were applied to study structural transformations in cold-rolled Fe0.94Ni0.04Ti0.02 foils, which were subjected to different thermal treatments in an atmosphere of a gas mixture of NH3 + H2 (nitriding). Positrons proved to be

  11. Bright triplet excitons in caesium lead halide perovskites

    Science.gov (United States)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin–orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  12. The kinetics of formation and growth of TiC precipitates in Ti-modified stainless steel studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Gopalan, P.; Rajaraman, R.; Viswanathan, B.; Venkadesan, S.

    1998-01-01

    The formation and growth of TiC precipitates in Ti-modified austenitic stainless steel (D-9 alloy) is monitored by positron lifetime spectroscopy. From isochronal annealing studies various recovery stages are identified. TiC precipitates are found to be more stable in 20% cold worked alloy than in a 17.5% cold worked sample. From the isothermal annealing studies, it is found that TiC precipitation is controlled by dislocations. The limited temperature dependence of dislocation controlled TiC precipitation is governed by an apparent activation energy of 1.6 eV. In 20% cold worked alloy, TiC precipitates are found to be stable against growth even after 1000 h of annealing at 923 K. For higher annealing temperatures, TiC precipitate coarsening occurs due to recrystallisation. (orig.)

  13. Positron annihilation study of Sr Doping in La{sub 2-x}Sr{sub x}CuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Sterne, P.A. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Davis, CA (United States); Howell, R.H.; Fluss, M.J. [Lawrence Livermore National Lab., CA (United States); Kaiser, J.H. [Texas Univ., Arlington, TX (United States); Kitazawa, K. [Tokyo Univ. (Japan); Kojima, H. [Yamanashi Univ., Kofu (Japan)

    1993-04-22

    We present a combined experimental and threshold study of effects of Sr doping on electronic structure of La{sub 2-x}Sr{sub x}CuO{sub 4}. Electron-positron momentum distributions have been measured to high statistical precision (> 4 {times} 10{sup 8} counts) at room temperature for samples with Sr concentrations of x = 0.0, 0.1, 0.13 and 0.2. Analysis of all four spectra reveal strong features due to electron-positron wavefunction overlap, in quantitative agreement with theoretical calculations. The Sr doped samples show discontinuities consistent with presence of a Fermi surface. The form and position of these features are in general agreement with the predictions of band theory. Correspondence between theory and experiment, as well as some differences, are revealed by a detailed study of the changes in electron-position momentum density with increasing Sr doping.

  14. A positron annihilation spectroscopic investigation of europium-doped cerium oxide nanoparticles.

    Science.gov (United States)

    Thorat, Atul V; Ghoshal, Tandra; Holmes, Justin D; Nambissan, P M G; Morris, Michael A

    2014-01-07

    Doping in ceria (CeO2) nanoparticles with europium (Eu) of varying concentrations (0, 0.1, 0.5, …, 50 atom%) is studied using complementary experimental techniques and novel observations were made during the investigation. The immediate observable effect was a distinct reduction in particle sizes with increasing Eu concentration attributed to the relaxation of strain introduced due to the replacement of Ce(4+) ions by Eu(3+) ions of larger radius. However, this general trend was reversed in the doping concentration range of 0.1-1 atom% due to the reduction of Ce(4+) to Ce(3+) and the formation of anion vacancies. Quantum confinement effects became evident with the increase of band gap energy when the particle sizes reduced below 7-8 nm. Positron annihilation studies indicated the presence of vacancy type defects in the form of vacancy clusters within the nanoparticles. Some positron annihilation was also seen on the surface of crystallites as a result of diffusion of thermalized positrons before annihilation. Coincidence Doppler broadening measurements indicated the annihilation of positrons with electrons of different species of atoms and the characteristic S-W plot showed a kink-like feature at the particle sizes where quantum confinement effects began.

  15. Thermal equilibrium defects in anthracene probed by positron annihilation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Tachibana, Masaru; Shimizu, Mikio; Satoh, Masaaki; Kojima, Kenichi; Ishibashi, Shoji; Kawano, Takao.

    1996-01-01

    Defects in anthracene were investigated by the positron annihilation technique. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured in the temperature range between 305 K and 516 K. The lifetime of positrons annihilated from the delocalized state was determined to be 0.306 ns around room temperature. Below the melting point, the observed temperature dependence of the line shape parameter S was explained assuming the formation energy of thermal equilibrium defects was 1 eV. Above the melting point, the pick-off annihilation of ortho-positronium in open spaces was observed, where the size of these spaces was estimated to be 0.2 nm 3 . The annihilation of positrons from the self-trapped state was also discussed. (author)

  16. Thermal equilibrium defects in anthracene probed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Tachibana, Masaru; Shimizu, Mikio; Satoh, Masaaki; Kojima, Kenichi; Ishibashi, Shoji; Kawano, Takao

    1996-06-01

    Defects in anthracene were investigated by the positron annihilation technique. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured in the temperature range between 305 K and 516 K. The lifetime of positrons annihilated from the delocalized state was determined to be 0.306 ns around room temperature. Below the melting point, the observed temperature dependence of the line shape parameter S was explained assuming the formation energy of thermal equilibrium defects was 1 eV. Above the melting point, the pick-off annihilation of ortho-positronium in open spaces was observed, where the size of these spaces was estimated to be 0.2 nm{sup 3}. The annihilation of positrons from the self-trapped state was also discussed. (author)

  17. Positron annihilation in the nuclear outflows of the Milky Way

    Science.gov (United States)

    Panther, Fiona H.; Crocker, Roland M.; Birnboim, Yuval; Seitenzahl, Ivo R.; Ruiter, Ashley J.

    2018-02-01

    Observations of soft gamma rays emanating from the Milky Way from SPI/INTEGRAL reveal the annihilation of ˜2 × 1043 positrons every second in the Galactic bulge. The origin of these positrons, which annihilate to produce a prominent emission line centred at 511 keV, has remained mysterious since their discovery almost 50 yr ago. A plausible origin for the positrons is in association with the intense star formation ongoing in the Galactic centre. Moreover, there is strong evidence for a nuclear outflow in the Milky Way. We find that advective transport and subsequent annihilation of positrons in such an outflow cannot simultaneously replicate the observed morphology of positron annihilation in the Galactic bulge and satisfy the requirement that 90 per cent of positrons annihilate once the outflow has cooled to 104 K.

  18. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla

    Science.gov (United States)

    Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; Kono, Junichiro; Crooker, Scott A.

    2016-02-01

    In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 μeV T-1 (g-factor ~=-4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of ~1.53 and ~1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials.

  19. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Exciton states in asymmetric GaInNAs/GaAs coupled quantum wells in an applied electric field

    Science.gov (United States)

    Poopanya, P.; Sivalertporn, K.

    2018-03-01

    The electronic and optical properties of exciton states in GaInNAs/GaAs coupled quantum well (CQW) structure have been theoretically investigated by solving the Schrödinger equation in real space. The effect of well width on the exciton states has been also studied by varying the well width from 5 nm to 10 nm in asymmetric structures. The electron, hole and exciton states are calculated in the presence of an applied electric field. It is found that there are two direct (bright) exciton states with the largest oscillator strengths. Their energies weakly depend on the electric field due to the compensation between the blue shift and red shift of the electron-hole pair states. In addition, these two states are overlap in the case of symmetric CQWs and one of them is then shifted to higher energy in asymmetric CQWs. The ground state exciton has the binding energy of approximately 7.3 meV and decrease to around 3.0 meV showing the direct to indirect transition of the ground state. The direct-indirect crossover is observed at different electric field for different structure. It happens at the electric field when the e1-e2 electron anticrossing or h1-h2 hole anticrossings is observed, so that the crossover can be controlled by the well width of CQWs structure.