WorldWideScience

Sample records for excited-state laser spectroscopy

  1. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  2. Picosecond excited state spectroscopy of organic bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Gieseking, Bjoern; Jaeck, Berthold; Deibel, Carsten [Experimental Physics VI, Faculty of Physics and Astronomy, Julius- Maximilians-University Wuerzburg, D-97074 Wuerzburg (Germany); Dyakonov, Vladimir [Experimental Physics VI, Faculty of Physics and Astronomy, Julius- Maximilians-University Wuerzburg, D-97074 Wuerzburg (Germany); Bavarian Centre for Applied Energy Research (ZAE Bayern), D-97074 Wuerzburg (Germany)

    2011-07-01

    Bulk heterojunction solar cells comprised of conjugated polymers and fullerene derivatives approach efficiencies of 8 % making this composite system a promising candidate for the application in organic photovoltaics. Different approaches for improving the device performance aim at the physical properties of the material system itself, but a further optimization requires a deeper insight into the elementary processes following the photoexcitation of these blends. Here we present recent time-resolved spectroscopic studies on the conjugated Polymer P3HT blended with different fullerene derivatives employing femtosecond transient absorption (TA) and photoluminescence (PL) spectroscopy. For both methods we use an Ti:sapphire-based femtosecond laser system together with two optical parametric amplifiers and a streak camera providing a time resolution in the sub picosecond (TA) and picosecond (PL) regime, respectively. Applying these techniques we studied the recombination dynamics of singlet excitons and polarons after photoexcitation. We discuss our results in terms of performance optimisation of organic solar cells.

  3. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    Science.gov (United States)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  4. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  5. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shelby, Megan L. [Chemical; Department; Lestrange, Patrick J. [Department; Jackson, Nicholas E. [Department; Haldrup, Kristoffer [Physics; Mara, Michael W. [Chemical; Department; Stickrath, Andrew B. [Chemical; Zhu, Diling [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Lemke, Henrik T. [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Chollet, Matthieu [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Hoffman, Brian M. [Department; Li, Xiaosong [Department; Chen, Lin X. [Chemical; Department

    2016-07-06

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  6. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    Science.gov (United States)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  7. Efficient enhancement of below-threshold harmonic generation by laser-driven excited states of Cs atom

    Science.gov (United States)

    Guo, Qiao-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin; Chu, Shih-I.

    2018-03-01

    We propose an efficient method for the enhancement of below-threshold harmonic generation (BTHG) by mid-infrared laser-driven excited states of a Cs atom. The BTHG is calculated by solving three-dimensional time-dependent Schrödinger equation accurately and efficiently using the time-dependent generalized pseudospectral method. We adopt an excited state as the initial state of a Cs atom. As a result, the BTHG is significantly enhanced by two orders of magnitude compared with the case of the initial ground state. Furthermore, we find that a single vacuum-ultraviolet pulse can be generated by mid-infrared laser-driven excited states by superposing several below-threshold harmonics of a Cs atom. Our finding suggests that the generation of below-threshold harmonics by laser-driven excited states of an atom can provide a powerful methodology for the production of intense vacuum-ultraviolet pulses.

  8. Symmetry-resolved spectroscopy by detection of a metastable hydrogen atom for investigating the doubly excited states of molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Takeshi; Kumagai, Yoshiaki; Tanabe, Takehiko; Nakano, Motoyoshi; Kouchi, Noriyuki [Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Suzuki, Isao H, E-mail: joe@chem.titech.ac.j [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-11-01

    Symmetry-resolved spectroscopy for investigating the doubly excited states of molecular hydrogen has been newly developed, where a metastable hydrogen atom dissociating in a direction parallel and perpendicular to the electric vector of the linearly polarized incident light is detected.

  9. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  10. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  11. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  12. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature...... of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic...

  13. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  14. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  15. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  16. Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, Juergen; Buckup, Tiago [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany); Motzkus, Marcus [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany)], E-mail: motzkus@staff.uni-marburg.de

    2008-06-23

    Quantum control spectroscopy (QCS) is used as a tool to study, address selectively and enhance vibrational wavepacket motion in large solvated molecules. By contrasting the application of Fourier-limited and phase-modulated excitation on different electronic states, the interplay between the controllability of vibrational coherence and electronic resonance is revealed. We contrast control on electronic ground and excited state by introducing an additional pump beam prior to a DFWM-sequence (Pump-DFWM). Via phase modulation of this initial pump pulse, coherent control is extended to structural evolution on the vibrationally hot ground state (hot-S{sub 0}) and lowest lying excited state (S{sub 1}) of {beta}-carotene. In an open loop setup, the control scenarios for these different electronic states are compared in their effectiveness and mechanism.

  17. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    CERN Document Server

    Padmanath, M; Mathur, Nilmani; Peardon, Michael

    2013-01-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)$\\otimes$O(3) symmetry.

  18. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  19. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  20. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically......), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d...

  1. The Microwave Spectroscopy of HCOO^{13}CH_3 in the Second Torsional Excited State

    Science.gov (United States)

    Kobayashi, Kaori; Kuwahara, Takuro; Urata, Yuki; Ohashi, Nobukimi; Fujitake, Masaharu

    2017-06-01

    Methyl formate (HCOOCH_3) is an abundant interstellar molecule, found almost everywhere in the star-forming region. The interstellar abundance of the ^{13}C is about 1/50 of ^{12}C. The ^{13}C substituted methyl formate in the ground and first excited states were already found toward massive star-forming regions including Orion KL. With the aid of the state-of-the-art telescope like ALMA, the pure rotational transitions in the second torsional excited may be identified in the near future and laboratory data are necessary. We recorded the spectra of HCOOCH_3 below 340 GHz by using conventional source-modulation microwave spectrometer. The assignment of the pure rotational spectra in the second torsional excited state and the analysis by using pseudo-PAM Hamiltonian, which was effective to analyze the normal species, will be reported. C. Favre, M. Carvajal, D. Field, J. K. Jørgensen, S. E. Bisschop, N. Brouillet, D. Despois, A. Baudry, I. Kleiner, E. A. Bergin, N. R. Crockett, J. L. Neill, L. Marguès, T. R. Huet, and J. Demaison, Astrophys. J. Suppl. Ser. 215, 25 (2014).

  2. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  3. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  4. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Energy Technology Data Exchange (ETDEWEB)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Yang, Ji-Ping [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); School of Sciences, Hefei University of Technology, Hefei 230009 (China); Vonderach, Matthias [Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Huang, Dao-Ling; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Kruppa, Sebastian; Riehn, Christoph [Fachbereich Chemie und Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Kappes, Manfred M., E-mail: manfred.kappes@kit.edu [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  5. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    Science.gov (United States)

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E. H.

    2015-11-01

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ˜1.7 eV, values that are lower than the RCB of the uncomplexed PtCl62- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl62- ṡ thymine and PtCl62- ṡ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)42- ṡ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl62- ṡ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)42- ṡ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  6. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  7. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Syed Hamad

    2015-12-01

    Full Text Available We report results from our studies on the fabrication and characterization of silicon (Si nanoparticles (NPs and nanostructures (NSs achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED, high resolution transmission microscopy (HRTEM, Raman spectroscopic techniques and Photoluminescence (PL studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO2 NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz and ∼70 fs (1 kHz laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (1 ps. Large third order optical nonlinearities (∼10−14 e.s.u. for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm suggesting that the colloidal Si NPs find

  8. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Syed; Nageswara Rao, S. V. S.; Pathak, A. P. [School of Physics, University of Hyderabad, Hyderabad 500046, Telangana (India); Krishna Podagatlapalli, G.; Mounika, R.; Venugopal Rao, S., E-mail: soma-venu@yahoo.com, E-mail: soma-venu@uohyd.ac.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana (India)

    2015-12-15

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED), high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO{sub 2} NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10{sup −14} e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm

  9. Delay of the excited state lasing of 1310 nm InAs/GaAs quantum dot lasers by facet coating

    Science.gov (United States)

    Cao, Yu-Lian; Yang, Tao; Xu, Peng-Fei; Ji, Hai-Ming; Gu, Yong-Xian; Wang, Xiao-Dong; Wang, Qing; Ma, Wen-Quan; Chen, Liang-Hui

    2010-04-01

    In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 °C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T0) of the laser diodes is also improved.

  10. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy.

    Science.gov (United States)

    Tan, Eric M M; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Zerbetto, Francesco; Buma, Wybren Jan

    2015-01-06

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol(-1). This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy.

  11. Two-Color Laser Resonance Ionization Spectroscopy of Zirconium Atoms

    Science.gov (United States)

    Hasegawa, Shuichi; Nagamoto, Daisuke

    2017-10-01

    We have performed two-color laser resonance ionization spectroscopy of zirconium atoms to measure the energies of excited states below the third ionization limit. The number of intermediate states that we observed is 19, and energies deduced from the experiments agree with previous data. Complex ionization spectra of the excited states were observed through the intermediate states. The values of the first, second, and third ionization limits were derived from the Rydberg series of the spectra with quantum defect theory.

  12. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy.

    Science.gov (United States)

    Oscar, Breland G; Chen, Cheng; Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2017-07-27

    Tracking molecular motions in real time remains a formidable challenge in science and engineering fields because the experimental methodology requires simultaneously high spatial and temporal resolutions. Building on early successes and future potential of femtosecond stimulated Raman spectroscopy (FSRS) as a structural dynamics technique, we present a comprehensive study of stimulated Raman line shapes of a photosensitive molecule in solution with tunable Raman pump and probe pulses. Following femtosecond 400 nm electronic excitation, the model photoacid pyranine exhibits dynamic and mode-dependent Raman line shapes when the Raman pump is tuned from the red side toward and across the excited-state absorption (ESA) band (e.g., from S1) with varying resonance conditions. On the anti-Stokes FSRS side, low-frequency modes below ∼1000 cm-1 exhibit a line shape change from gain to dispersive to loss, whereas the dispersive intermediate is much less notable for high-frequency modes. The characteristic mode frequency blue shift involving vibrationally hot states in S1 with time constants of ∼9.6 and 58.6 ps reveals the sensitivity of anti-Stokes FSRS to vibrational cooling and solvation. This work lays the foundation for expanding tunable FSRS technology on both the Stokes and anti-Stokes sides to investigate a variety of photoinduced processes in solution with sufficient resolution to expose functional motions and increased sensitivity to monitor vibrational cooling.

  13. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer.

    Science.gov (United States)

    Zhang, Wei; Yan, Yongli; Gu, Jianmin; Yao, Jiannian; Zhao, Yong Sheng

    2015-06-08

    Coherent light signals generated at the nanoscale are crucial to the realization of photonic integrated circuits. Self-assembled nanowires from organic dyes can provide both a gain medium and an effective resonant cavity, which have been utilized for fulfilling miniaturized lasers. Excited-state intramolecular proton transfer (ESIPT), a classical molecular photoisomerization process, can be used to build a typical four-level system, which is more favorable for population inversion. Low-power driven lasing in proton-transfer molecular nanowires with an optimized ESIPT energy-level process has been achieved. With high gain and low loss from the ESIPT, the wires can be applied as effective FP-type resonators, which generated single-mode lasing with a very low threshold. The lasing wavelength can be reversibly switched based on a conformation conversion of the excited keto form in the ESIPT process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Vibrational Spectrum of an Excited State and Huang-Rhys Factors by Coherent Wave Packets in Time-Resolved Fluorescence Spectroscopy.

    Science.gov (United States)

    Lee, Gyeongjin; Kim, Junwoo; Kim, So Young; Kim, Dong Eon; Joo, Taiha

    2017-03-17

    Coherent nuclear wave packet motions in an electronic excited state of a molecule are measured directly by time-resolved spontaneous fluorescence spectroscopy with an unprecedented time resolution by using two-photon absorption excitation and fluorescence upconversion by noncollinear sum frequency generation. With an estimated time resolution of approximately 25 fs, wave packet motions of vibrational modes up to 1600 cm(-1) are recorded for coumarin 153 in ethanol. Two-color transient absorption at 13 fs time resolution are measured to confirm the result. Vibrational displacements between the ground and excited states and Huang-Rhys factors (HRFs) are calculated by quantum mechanical methods and are compared with the experimental results. HRFs calculated by density functional theory (DFT) and time-dependent DFT reproduce the experiment adequately. This fluorescence-based method provides a unique and direct way to obtain the vibrational spectrum of a molecule in an electronic excited state and the HRFs, as well as the dynamics of excited states, and it might provide information on the structure of an excited state through the HRFs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Observation of structural relaxation during exciton self-trapping via excited-state resonant impulsive stimulated Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mance, J. G.; Felver, J. J.; Dexheimer, S. L., E-mail: dexheimer@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-02-28

    We detect the change in vibrational frequency associated with the transition from a delocalized to a localized electronic state using femtosecond vibrational wavepacket techniques. The experiments are carried out in the mixed-valence linear chain material [Pt(en){sub 2}][Pt(en){sub 2}Cl{sub 2}]⋅(ClO{sub 4}){sub 4} (en = ethylenediamine, C{sub 2}H{sub 8}N{sub 2}), a quasi-one-dimensional system with strong electron-phonon coupling. Vibrational spectroscopy of the equilibrated self-trapped exciton is carried out using a multiple pulse excitation technique: an initial pump pulse creates a population of delocalized excitons that self-trap and equilibrate, and a time-delayed second pump pulse tuned to the red-shifted absorption band of the self-trapped exciton impulsively excites vibrational wavepacket oscillations at the characteristic vibrational frequencies of the equilibrated self-trapped exciton state by the resonant impulsive stimulated Raman mechanism, acting on the excited state. The measurements yield oscillations at a frequency of 160 cm{sup −1} corresponding to a Raman-active mode of the equilibrated self-trapped exciton with Pt-Cl stretching character. The 160 cm{sup −1} frequency is shifted from the previously observed wavepacket frequency of 185 cm{sup −1} associated with the initially generated exciton and from the 312 cm{sup −1} Raman-active symmetric stretching mode of the ground electronic state. We relate the frequency shifts to the changes in charge distribution and local structure that create the potential that stabilizes the self-trapped state.

  16. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  17. Effective Strategy for Conformer-Selective Detection of Short-Lived Excited State Species: Application to the IR Spectroscopy of the N1H Keto Tautomer of Guanine.

    Science.gov (United States)

    Asami, Hiroya; Tokugawa, Munefumi; Masaki, Yoshiaki; Ishiuchi, Shun-Ichi; Gloaguen, Eric; Seio, Kohji; Saigusa, Hiroyuki; Fujii, Masaaki; Sekine, Mitsuo; Mons, Michel

    2016-04-14

    The ultrafast deactivation processes in the excited state of biomolecules, such as the most stable tautomers of guanine, forbid any state-of-the-art gas phase spectroscopic studies on these species with nanosecond lasers. This drawback can be overcome by grafting a chromophore having a long-lived excited state to the molecule of interest, allowing thus a mass-selective detection by nanosecond R2PI and therefore double resonance IR/UV conformer-selective spectroscopic studies. The principle is presently demonstrated on the keto form of a modified 9-methylguanine, for which the IR/UV double resonance spectrum in the C═O stretch region, reported for the first time, provides evidence for extensive vibrational couplings within the guanine moiety. Such a successful strategy opens up a route to mass-selective IR/UV spectroscopic investigations on molecules exhibiting natural chromophores having ultrashort-lived excited states, such as DNA bases, their complexes as well as peptides containing short-lived aromatic residues.

  18. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...... iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  19. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  20. Lasers for Frontier Spectroscopy

    Science.gov (United States)

    Baldacchini, Giuseppe

    The first laser has been invented in 1960 by using the red light from a ruby crystal, and since then the laser field exploded almost exponentially, and thousands of different materials, in the state of solids, liquids, vapors, gases, plasmas, and elementary particles have lased up to now from less than I Å to more than 1 mm. Many of them have been used with outstanding results both in basic science, and in industrial and commercial applications, by changing for ever the same lifestyle of humankind. As far as spectroscopy is concerned, the laser light has started an unprecedented revolution because of its unique properties as monochromaticity, coherence, power, brightness and short-pulse regime, unrivaled by any other natural and artificial light source. Spectroscopy applications increased qualitatively and quantitatively with the laser sources themselves, and they are still proceeding in parallel with the moving of the laser field towards new territories. Apart the opening up of new regions of the electromagnetic spectrum, like the terahertz gap, and the outstanding increase of the output power which is giving rise to completely new spectroscopic effects, the improvement of laser sources and auxiliary equipment is producing a growth of traditional laser spectroscopy with superior resolution and sensitivity. Moreover, spectroscopic techniques and laser light contributed to the development of new chemical and physical processes which have been used to fabricate photonic materials with new spectroscopic properties enriching the laser field itself, in a virtuous cycle spectroscopy→aser→material and back to spectroscopy with no end in sight.

  1. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  2. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  3. Head-to-tail interactions in tyrosine/benzophenone dyads in the ground and the excited state: NMR and laser flash photolysis studies.

    Science.gov (United States)

    Hörner, Gerald; Hug, Gordon L; Pogocki, Dariusz; Filipiak, Piotr; Bauer, Walter; Grohmann, Andreas; Lämmermann, Anica; Pedzinski, Tomasz; Marciniak, Bronislaw

    2008-01-01

    The formation of head-to-tail contacts in de novo synthesized benzophenone/tyrosine dyads, bp logical sum Tyr, was probed in the ground and excited triplet state by NMR techniques and laser flash photolysis, respectively. The high affinity of triplet-excited ketones towards phenols was used to trace the geometric demands for high reactivity in the excited state. A retardation effect on the rates with increasing hydrogen-bond-acceptor ability of the solvent is correlated with ground-state masking of the phenol. In a given solvent the efficiencies of the intramolecular hydrogen-atom-transfer reaction depend strongly on the properties of the linker: rate constants for the intramolecular quenching of the triplet state cover the range of 10(5) to 10(8) s(-1). The observed order of reactivity correlates to a) the probability of close contacts (from molecular-dynamics simulations) and b) the extent of the electronic overlap between the pi systems of the donor and acceptor moieties (from NMR). A broad survey of the NMR spectra in nine different solvents showed that head-to-tail interactions between the aromatic moieties of the bp logical sum Tyr dyads already exist in the ground state. Favourable aromatic-aromatic interactions in the ground state appear to correspond to high excited-state reactivity.

  4. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  5. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  6. Interatomic potentials, electric properties and spectroscopy of the ground and excited states of the Rb2 molecule: ab initio calculations and effect of a non-resonant field*

    Science.gov (United States)

    Tomza, Michał; Skomorowski, Wojciech; Musiał, Monika; González-Férez, Rosario; Koch, Christiane P.; Moszynski, Robert

    2013-07-01

    We formulate the theory for a diatomic molecule in a spatially degenerate electronic state interacting with a non-resonant laser field and investigate its rovibrational structure in the presence of the field. We report on ab initio calculations employing the double electron attachment intermediate Hamiltonian Fock space coupled cluster method restricted to single and double excitations for all electronic states of the Rb2 molecule up to 5s+5d dissociation limit of about 26,000 cm-1. In order to correctly predict the spectroscopic behaviour of Rb2, we have also calculated the electric transition dipole moments, non-adiabatic coupling and spin-orbit coupling matrix elements, and static dipole polarisabilities, using the multireference configuration interaction method. When a molecule is exposed to strong non-resonant light, its rovibrational levels get hybridised. We study the spectroscopic signatures of this effect for transitions between the X1Σ+ g electronic ground state and the A1Σ+ u and b3Π u excited state manifold. The latter is characterised by strong perturbations due to the spin-orbit interaction. We find that for non-resonant field strengths of the order 109 W/cm2, the spin-orbit interaction and coupling to the non-resonant field become comparable. The non-resonant field can then be used to control the singlet-triplet character of a rovibrational level.

  7. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.; Haldrup, Kristoffer; Mara, Michael W.; Stickrath, Andrew B.; Zhu, Diling; Lemke, Henrik; Chollet, Matthieu; Hoffman, Brian M.; Li, Xiaosong

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.

  8. Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by shpol'skii spectroscopy: The influence of redistribution of electron density

    NARCIS (Netherlands)

    Bader, A.N.; Pivovarenko, V.; Demchenko, A.P.; Ariese, F.; Gooijer, C.

    2004-01-01

    We studied the mechanisms of excited-state intramolecular proton transfer (ESIPT) and ground-state back proton transfer (BPT) in 3-hydroxyflavone (3HF) at cryogenic temperatures. The focus was on substituents that change the distribution of electronic density on the chromophore and their influence

  9. Laser Physics and Laser Spectroscopy.

    Science.gov (United States)

    1983-06-01

    Introduction A basic idea for achieving short wavelength lasers is to work with multiply-ionized atoms. Such ions generally have larger energy differences... generacion , characterization and applications over the next graduate student generation. - 71- *1* . . . . . . - o - - ° ... VII. PUBLICATIONS AND

  10. Chirped-pulse Fourier transform millimeter-wave spectroscopy of ten vibrationally excited states of i-propyl cyanide: exploring the far-infrared region.

    Science.gov (United States)

    Arenas, Benjamin E; Gruet, Sébastien; Steber, Amanda L; Giuliano, Barbara M; Schnell, Melanie

    2017-01-18

    We report here further spectroscopic investigation of the astrochemically relevant molecule i-propyl cyanide. We observed and analysed the rotational spectra of the ground state of the molecule and ten vibrationally excited states with energies between 180-500 cm(-1). For this, we used a segmented W-band spectrometer (75-110 GHz) and performed the experiments under room temperature conditions. This approach thus provides access to high-resolution, pure rotational data of vibrational modes that occur in the far-infrared fingerprint region, and that can be difficult to access with other techniques. The obtained, extensive data set will support further astronomical searches and identifications, such as in warmer regions of the interstellar space where contributions from vibrationally excited states become increasingly relevant.

  11. Photochemistry of excited-state species in natural waters: a role for particulate organic matter.

    Science.gov (United States)

    Cottrell, Barbara A; Timko, Stephen A; Devera, Lianne; Robinson, Alice K; Gonsior, Michael; Vizenor, Ashley E; Simpson, André J; Cooper, William J

    2013-09-15

    Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Excited state dynamics of liquid water near the surface

    Directory of Open Access Journals (Sweden)

    Schultz Thomas

    2013-03-01

    Full Text Available Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.

  13. Laser Spectroscopy : XII International Conference

    CERN Document Server

    Allegrini, Maria; Sasso, Antonio

    1996-01-01

    This text includes all the recent advances in the field of laser spectroscopy. Major results span from the control of matter by electromagnetic fields (trapping and coding) to high precision measurements on simple atomic systems and to quantum optics with single atoms. It includes a report of the Bose-Einstein condensation achieved by laser-cooling of rubidium atoms. Achievements in the technology of tunable sources, in particular of miniaturized solid state devices, are also reported. Most recent advances in molecular spectroscopy are illustrated with emphasis on "cooled" spectra, clusters and high accuracy frequency references. Topics such as atomic interferometry and microcavity quantum optics are also covered.

  14. Search for excited states in 25O

    Science.gov (United States)

    Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.

    2017-11-01

    Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.

  15. Laser spectroscopy studies on nobelium

    Science.gov (United States)

    Block, Michael

    2017-11-01

    Laser spectroscopy of the heaviest elements provides high-precision data on their atomic and nuclear properties. For example, atomic level energies and ionization potentials allow us to probe the influence of relativistic effects on their atomic structure and to benchmark state-of-the-art atomic structure calculations. In addition, it offers an alternative route to determine nuclear properties like spins, magnetic moments and quadrupole moments in a nuclear model-independent way. Recently, a sensitive method based on resonant laser ionization has been applied to nobelium isotopes around N = 152 at GSI Darmstadt. In pioneering experiments, several atomic states have been identified extending the reach of laser spectroscopy beyond fermium. In this contribution, the main achievements and future perspectives are briefly summarized.

  16. Tracking the charge and spin dynamics of electronic excited states in inorganic complexes

    Science.gov (United States)

    Gaffney, Kelly

    2015-03-01

    Inorganic complexes have many advantageous properties for solar energy applications, including strong visible absorption and photocatalytic activity. Whether used as a photocatalyst or a photosensitizer, the lifetime of electronic excited states and the earth abundance of the molecular components represent a key property for solar energy applications. These dual needs have undermined the usefulness of many coordination compounds. Isoelectronic iron and ruthenium based complexes represent a clear example. Ru-polypyridal based molecules have been the workhorse of solar energy related research and dye sensitized solar cells for decades, but the replacement of low abundance Ru with Fe leads to million-fold reductions in metal to ligand charge transfer (MLCT) excited state lifetimes. Understanding the origin of this million-fold reduction in lifetime and how to control excited state relaxation in 3d-metal complexes motivates the work I will discuss. We have used the spin sensitivity of hard x-ray fluorescence spectroscopy and the intense femtosecond duration pulses generated by the LCLS x-ray laser to probe the spin dynamics in a series of electronically excited [Fe(CN)6-2N(2,2'-bipyridine)N]2 N - 4 complexes, with N = 1-3. These femtosecond resolution measurements demonstrate that modification of the solvent and ligand environment can lengthen the MLCT excited state lifetime by more than two orders of magnitude. They also verify the role of triplet ligand field excited states in the spin crossover dynamics from singlet to quintet spin configurations. Work supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  17. Tunable diode laser Stark modulation spectroscopy for rotational assignment of the HNO3 7.5-micron band

    Science.gov (United States)

    Webster, C. R.; May, R. D.; Gunson, M. R.

    1985-01-01

    The technique of Stark modulation spectroscopy for unraveling and assigning rotationally resolved dense molecular spectra has been employed using a tunable diode laser (TDL) source. Doppler-limited absorption and Stark modulation spectra of the HNO3 7.5-micron band near the 1326/cm band origin are presented with preliminary values of the excited-state rovibrational constants derived from both TDL and Bomem Fourier transform IR spectra.

  18. Laser Spectroscopy for Atmospheric and Environmental Sensing

    Directory of Open Access Journals (Sweden)

    Solomon Bililign

    2009-12-01

    Full Text Available Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF, cavity ring-down spectroscopy (CRDS, and photoluminescence (PL techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs.

  19. Vibronic energy map and excited state vibrational characteristics of magnesium myoglobin determined by energy-selective fluorescence.

    OpenAIRE

    Kaposi, A D; Vanderkooi, J. M.

    1992-01-01

    The vibrational frequencies of the singlet excited state of Mg-substituted myoglobin and relative absorption probabilities were determined by fluorescence line-narrowing spectroscopy. These spectra contain information on the structure of the excited state species, and the availability of vibrationally resolved spectra from excited state biomolecules should aid in elucidating their structure and reactivity.

  20. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...... orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could...

  1. Laser spectroscopy on neutron rich sodium isotopes

    CERN Document Server

    Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pinard, J; Thibault, C; Vialle, J L

    1976-01-01

    The authors describe results with single-mode dye lasers in high- resolution atomic line spectroscopy. Optical pumping and magnetic resonance detection of Na D-lines provide values of static nuclear groundstate properties.

  2. Direct observation of photoinduced bent nitrosyl excited-state complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  3. Excited-state Wigner crystals

    Science.gov (United States)

    Rogers, Fergus J. M.; Loos, Pierre-François

    2017-01-01

    Wigner crystals (WCs) are electronic phases peculiar to low-density systems, particularly in the uniform electron gas. Since its introduction in the early twentieth century, this model has remained essential to many aspects of electronic structure theory and condensed-matter physics. Although the (lowest-energy) ground-state WC (GSWC) has been thoroughly studied, the properties of excited-state WCs (ESWCs) are basically unknown. To bridge this gap, we present a well-defined procedure to obtain an entire family of ESWCs in a one-dimensional electron gas using a symmetry-broken mean-field approach. While the GSWC is a commensurate crystal (i.e., the number of density maxima equals the number of electrons), these ESWCs are incommensurate crystals exhibiting more or less maxima. Interestingly, they are lower in energy than the (uniform) Fermi fluid state. For some of these ESWCs, we have found asymmetrical band gaps, which would lead to anisotropic conductivity. These properties are associated with unusual characteristics in their electronic structure.

  4. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  5. Laser induced breakdown spectroscopy in water | Boudjemai ...

    African Journals Online (AJOL)

    Sparks were generated in water by the focused beam of a Q-switched Nd:YAG laser Na and Cu aqueous solutions exhibited fluorescence signal on the decaying edge of plasma emission at their respective characteristic resonance lines. Potential of the laser plasma spectroscopy for in-situ pollution monitoring in natural ...

  6. Resonance ionization spectroscopy using ultraviolet laser

    CERN Document Server

    Han, J M; Ko, D K; Park, H M; Rhee, Y J

    2002-01-01

    In this study, Ti:sapphire laser which is pumped by the enhanced Nd:YAG laser using laser diode, was designed and manufactured. The AO Q-switched CW Nd:YAG laser was converted into a high repetition plus-type laser using the AO Q-switch, and two heads were installed inside the cavity in order to improve the laser beam quality. The Nd:YAG laser enhancement was completed by optimization using a simulation for the cavity length, structure and thermal lens effect that greatly effected the laser beam output and quality. As the result of the enhancement, a 30W laser at 532nm and at 5k-Hz was successfully made. Also, the Ti:sapphire laser that will be used for atomic spectroscopy which is pumped by the Nd:YAG laser, was completely designed. As a basic experiment for laser oscillation. We measured the tunability of the laser, and it turned out that the wave tunability range was 730 850 nm. A self-seeding type tunable laser using grating for narrow line width, is planned to be designed due to the fact that the Ti:sapp...

  7. A Novel Temperature Measurement Approach for a High Pressure Dielectric Barrier Discharge Using Diode Laser Absorption Spectroscopy (Preprint)

    National Research Council Canada - National Science Library

    Leiweke, R. J; Ganguly, B. N

    2006-01-01

    A tunable diode laser absorption spectroscopic technique is used to measure both electronically excited state production efficiency and gas temperature rise in a dielectric barrier discharge in argon...

  8. Pulsed Laser Spectroscopy: An Inexpensive Approach

    Science.gov (United States)

    Daly, J. G.; Hastings, R.; Schmidt, J. A.

    1982-10-01

    The assembly of a pulsed laser spectroscopy laboratory is presented. The authors describe how they constructed pulsed lasers, fast photodetectors, a boxcar signal averager, and associated equipment. A molecular nitrogen laser operating up to 50 Hz with an ultraviolet (337.1 nm) 700 kW pulse was used to optically pump an organic dye laser. The resulting output could be tuned from 360.0 to 680.0 nm. This pulse was typically 30 kW and 8 nsec, which makes it ideally suited to selective excitation and fluorescence studies. By constructing this equipment, it is estimated that the investment was one-tenth the cost of commercial components.

  9. Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces

    Science.gov (United States)

    Sollit, Luke S.; Beegle, Luther W.

    2008-01-01

    Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.

  10. Investigations into photo-excited state dynamics in colloidal quantum dots

    Science.gov (United States)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  11. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    Science.gov (United States)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    Highly Excited Vibrational State * Investigation of the Stark Effect in Xenon Autoionizing Rydberg Series with the Use of Coherent Tunable XUV Radiation * Laser Spectroscopy of Autoionising 5 dnf J = 4.5 Rydberg Series of Ba I * Resonance Photoionization Spectroscopy of Atoms: Autoionization and Highly Excited States of Kr and U * Stark Spectra of Strontium and Calcium Atoms * Observation of Bidirectional Stimulated Radiation at 330 nm, 364 nm and 718 nm with 660 nm Laser Pumping in Sodium Vapour * Study of Molecular Rydberg States and their Discriminations in Na2 * The Measurement of the High Excited Spectra of Samarium by using Stepwise Laser Excitation Method * Product Analysis in the Reaction of the Two-photon Excited Xe(5p56p) States with Freons * Photoionization Spectra of Ca and Sr Atoms above the Classical Field-ionization Threshold * Effect of Medium Background on the Hydrogen Spectrum * Photoemission and Photoelectron Spectra from Autoionizing Atoms in Strong Laser Field * Natural Radiative Lifetime Measurements of High-lying States of Samarium * Two-step Laser Excitation of nf Rydberg States in Neutral Al and Observation of Stark Effect * Measurements of Excited Spectra of the Refractory Metal Elements using Discharge Synchronized with the Laser Pulse * Multiphoton Ionization of Atomic Lead at 1.06μ * Kinetic Processes in the Electron-beam pumped KrF Laser * Laser-induced Fluorescence of Zn2 Excimer * Calculation of Transition Intensity in Heteronuclear Dimer NaK: Comparison with Experiment * Laser-induced Fluorescence of CCl2 Carbene * Study of Multiphoton Ionization Spectrum of Benzene and Two-photon Absorption Cross Section * Dicke Narrowing of N2O Linewidth Perturbed by N2 at 10 μm Band * Polyatomic Molecular Ions Studied by Laser Photodissociation Spectroscopy * Transverse-optically Pumped Ultraviolet S2 Laser * Multiphoton Ionization of Propanal by High Power Laser * UV MPI Mass Spectroscopy and Dynamics of Photodissociation of SO2 * Multiphoton

  12. Principles of laser spectroscopy and quantum optics

    CERN Document Server

    Berman, Paul R

    2011-01-01

    Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorptio

  13. Explosive detection using infrared laser spectroscopy

    Science.gov (United States)

    Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A.

    2009-01-01

    Stand-off and extractive explosive detection methods for short distances are investigated using mid-infrared laser spectroscopy. A quantum cascade laser (QCL) system for TATP-detection by open path absorption spectroscopy in the gas phase was developed. In laboratory measurements a detection limit of 5 ppm*m was achieved. For explosives with lower vapor pressure an extractive hollow fiber based measurement system was investigated. By thermal desorption gaseous TATP or TNT is introduced into a heated fiber. The small sample volume and a fast gas exchange rate enable fast detection. TNT and TATP detection levels below 100 ng are feasible even in samples with a realistic contaminant background.

  14. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  15. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  16. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  17. Evidence of the participation of electronic excited states in the mechanism of positronium formation in substitutional Tb1-xEux(dpm)(3) solid solutions studied by optical and positron annihilation spectroscopies

    OpenAIRE

    Fulgencio, F.; Oliveira, F.C. [UNESP; Windmoeller, D.; Brito, Hermi Felinto de; Malta, O. L.; Sa, G. F. de; Magalhaes, W.F.; Machado, J. C.

    2012-01-01

    Positronium formation in the bimary molecular solid solutions Tb1-xEux (dpm)(3) (dpm = dipivaloylmethanate) has been investigated. A strong linear correlation between the D-5(4) Tb(III) energy level excited state lifetime and the positronium formation probability has been observed. This correlation indicates that the ligand-to-metal charge transfer LMCT states act in both luminescence quenching and positronium formation inhibition, as previously proposed. A kinetic mechanism is proposed to ex...

  18. Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical.

    Science.gov (United States)

    Reilly, Neil J; Nakajima, Masakazu; Gibson, Bligh A; Schmidt, Timothy W; Kable, Scott H

    2009-04-14

    The D(1)((2)A("))-D(0)((2)A(")) electronic transition of the resonance-stabilized 1-phenylpropargyl radical, produced in a jet-cooled discharge of 3-phenyl-1-propyne, has been investigated in detail by laser-induced fluorescence excitation and dispersed single vibronic level fluorescence (SVLF) spectroscopy.The transition is dominated by the origin band at 21,007 cm(-1), with weaker Franck-Condon activity observed in a(') fundamentals and even overtones and combinations of a(") symmetry. Ab initio and density functional theory calculations of the D(0) and D(1) geometries and frequencies were performed to support and guide the experimental assignments throughout. Analysis of SVLF spectra from 16 D(1) vibronic levels has led to the assignment of 15 fundamental frequencies in the excited state and 19 fundamental frequencies in the ground state; assignments for many more normal modes not probed directly by fluorescence spectroscopy are also suggested. Duschinsky mixing, in which the excited state normal modes are rotated with respect to the ground state modes, is prevalent throughout, in vibrations of both a(') and a(") symmetry.

  19. Laser photoelectron spectroscopy of ions

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, G.B. [Univ. of Colorado, Boulder (United States)

    1993-12-01

    During the last year the author has (a) completed a review article that critically contrasts three methods to measure R-H bond energies, (b) finished a spectroscopic study of the phenylnitrene anion, and (c) successfully completed an overhaul of the light source of the photodetachment spectrometer. The new light source is based on an Ar III laser that provides approximately 100 W of 3.531 eV photons.

  20. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  1. Laser induced breakdown spectroscopy on meteorites

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)], E-mail: alessandro.degiacomo@ba.imip.cnr.it; Dell' Aglio, M.; De Pascale, O. [MIP-CNR sec Bari (Italy); Longo, S.; Capitelli, M. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)

    2007-12-15

    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite)

  2. Charmonium excited state spectrum in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  3. Computing correct truncated excited state wavefunctions

    Science.gov (United States)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  4. Lifetimes of excited states in neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Stoyanka; Kroell, Thorsten [Institut fuer Kernphysik, TU Darmstadt (Germany); Collaboration: EXILL-FATIMA-Collaboration

    2016-07-01

    The EXILL and FATIMA campaign at ILL, Grenoble is the first prompt-fission γ-ray spectroscopy experiment performed with a mixed array of Ge detectors (EXILL) and fast LaBr{sub 3}(Ce) scintillators (FATIMA). The lifetimes of excited states, populated by neutron-induced fission of {sup 235}U and {sup 241}Pu targets, were directly measured. The high-resolution EXILL detector gives us the possibility to identify the nuclides of interest among the large amount of produced fission fragments. Using the generalized centroid difference method to analyse the data from FATIMA we could measure lifetimes down to ∼ 10 ps. The lifetime of an excited state is a direct measure for the strength (collectivity) of a transition. The properties of the excited states in even-even nuclei can be largely described by quadrupole and octupole degrees of freedom. This contribution will present the current status of the analysis for the neutron-rich even-even {sup 138,140,142}Xe isotopes which lie in the vicinity of the double shell closure Z=50 and N=82. Through the direct lifetime measurement we aim to study the evolution of quadrupole and octupole collectivity above {sup 132}Sn.

  5. Quantum cascade lasers (QCLs) in biomedical spectroscopy.

    Science.gov (United States)

    Schwaighofer, Andreas; Brandstetter, Markus; Lendl, Bernhard

    2017-10-02

    Quantum cascade lasers (QCL) are the first room temperature semiconductor laser source for the mid-IR spectral region, triggering substantial development for the advancement of mid-IR spectroscopy. Mid-IR spectroscopy in general provides rapid, label-free and objective analysis, particularly important in the field of biomedical analysis. Due to their unique properties, QCLs offer new possibilities for development of analytical methods to enable quantification of clinically relevant concentration levels and to support medical diagnostics. Compared to FTIR spectroscopy, novel and elaborated measurement techniques can be implemented that allow miniaturized and portable instrumentation. This review illustrates the characteristics of QCLs with a particular focus on their benefits for biomedical analysis. Recent applications of QCL-based spectroscopy for analysis of a variety of clinically relevant samples including breath, urine, blood, interstitial fluid, and biopsy samples are summarized. Further potential for technical advancements is discussed in combination with future prospects for employment of QCL-based devices in routine and point-of-care diagnostics.

  6. OPTIMIZATION OF A BOXCAR INTEGRATOR AVERAGER SYSTEM FOR EXCITED-STATE LIFETIME MEASUREMENTS

    OpenAIRE

    NOVO, JBM; PESSINE, FBT

    1992-01-01

    The instrumental distortions due to adjustable parameters of the SR250 boxcar integrator/averager system and a pulsed-laser luminescence spectrometer on the excited-state lifetime decay waveforms were investigated. A theoretical model which takes into account the exponential moving average for this instrument and also RC distortion on the time-dependent luminescence signal is presented. An analytical expression relating the sample's excited-state lifetime and the adjustable instrumental param...

  7. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    Muonium formation in excited states in muon-hydrogen charge-exchange collision is investigated using a method developed in a previous paper. Differential cross-section results are found to resemble positronium formation cross-section results of positron-hydrogen charge-exchange problem. Forward differential and ...

  8. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  9. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  10. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  11. The generation of stationary π-electron rotations in chiral aromatic ring molecules possessing non-degenerate excited states.

    Science.gov (United States)

    Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-01-21

    The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules.

  12. Excited state absorption measurement in the 900-1250 nm wavelength range for bismuth-doped silicate fibers.

    Science.gov (United States)

    Yoo, Seongwoo; Kalita, Mridu P; Nilsson, Johan; Sahu, Jayanta

    2009-02-15

    The feasibility of direct laser diode pumping of Bi-doped fiber lasers at the wavelengths of 915 and 975 nm was examined by measuring excited state absorption in Bi-doped silicate fibers for the wavelength range of 900-1250 nm. When the Bi-doped fibers were pumped at 1047 nm a strong excited state absorption was found at 915 and 975 nm, whereas no significant excited state absorption was observed in the 1080 nm pumping band nor in the emission band, approximately 1160 nm, of Bi-doped fiber lasers.

  13. Laser spectroscopy used in nuclear physics; La spectroscopie laser appliquee a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, F

    2001-04-05

    The study of nuclear shapes is a basic topic since it constitutes an excellent ground for testing and validating nuclear models. Measurements of the electron quadrupolar moment, of the nuclear charge radius and of the magnetic dipolar moment shed light on the nuclear deformation. Laser spectroscopy is a specific tool for such measurements, it is based on the interaction of the nucleus with the surrounding electron cloud (hyperfine structure), it is then an external approach of the shape of the nucleus whereas the classical nuclear spectroscopy ({alpha}, {beta} or {gamma}) gives information on the deformation from the inside of the nucleus. The author describes 2 techniques of laser spectroscopy: the colinear spectroscopy directly applied to a beam issued from an isotope separator and the resonant ionization spectroscopy linked with atom desorption that allows the study of particular nuclei. In order to illustrate both methods some effective measurements are presented: - the colinear spectroscopy has allowed the achievement of the complete description of the isomeric state (T = 31 years) of hafnium-178; - The experiment Complis has revealed an unexpected even-odd zigzag effect on very neutron-deficient platinum isotopes; and - the comparison of 2 isotopes of gold and platinum with their isomers has shown that the inversion of 2 levels of neutron, that was found out by nuclear spectroscopy, is in fact a consequence of a change in the nuclear shape. (A.C.)

  14. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  15. Laser-Raman spectroscopy of living cells

    Science.gov (United States)

    Webb, Sydney J.

    1980-04-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1, has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1, from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced “collective” Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell “time clock” may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis.

  16. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  17. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  18. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Science.gov (United States)

    de Groote, R. P.; Lynch, K. M.; Wilkins, S. G.

    2017-11-01

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  19. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA(US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  20. Molecular Laser Spectroscopy as a Tool for Gas Analysis Applications

    Directory of Open Access Journals (Sweden)

    Javis Anyangwe Nwaboh

    2011-01-01

    Full Text Available We have used the traceable infrared laser spectrometric amount fraction measurement (TILSAM method to perform absolute concentration measurements of molecular species using three laser spectroscopic techniques. We report results performed by tunable diode laser absorption spectroscopy (TDLAS, quantum cascade laser absorption spectroscopy (QCLAS, and cavity ring down spectroscopy (CRDS, all based on the TILSAM methodology. The measured results of the different spectroscopic techniques are in agreement with respective gravimetric values, showing that the TILSAM method is feasible with all different techniques. We emphasize the data quality objectives given by traceability issues and uncertainty analyses.

  1. Excited state carbene formation from UV irradiated diazomethane.

    Science.gov (United States)

    Lee, Hosik; Miyamoto, Yoshiyuki; Tateyama, Yoshitaka

    2009-01-16

    The laser flash photolysis process of diazomethane has been studied by using a real time propagation time-dependent density functional theory (RTP-TDDFT) combined with molecular dynamics. The activation energy barrier for disintegrating diazomethane into nitrogen (N(2)) and carbene (CH(2)) molecules significantly decreases in the electronic excited S(1) state compared to that in the S(0) ground state. Furthermore, the produced carbene molecule can be in the electronic excited state of (1)CH(2) ((1)B(1)) instead of the lowest state among singlet states (1)CH(2) ((1)A(1)), which is evident in the wave function characteristics of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) throughout the disintegration. This is regarded as the initial stage of the rearrangement in the excited state (RIES), the evidence of which has been given by experiments in the past decade. In the RIES mechanism scheme, we suggest that the photoreaction in the S(1) state contributes considerably to the photochemistry of carbene formation. The passing near the S(1)/S(0) conical intersection, which allows the transition to ground state diazomethane producing the lowest singlet state carbene molecule, is considered a rare event from our molecular dynamics, although this has been regarded as the dominant mechanism in previous theoretical studies.

  2. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  3. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  4. Quantum cascade laser FM spectroscopy of explosives

    Science.gov (United States)

    Gutmann, Zach; Clasp, Trocia; Lue, Chris; Johnson, Tiffani; Ingle, Taylor; Jamison, Janet; Buchanan, Roger; Reeve, Scott

    2013-05-01

    Polyisobutylene is an industrial polymer that is widely used in a number of applications including the manufacture of military grade explosives. We have examined the vapor emanating from a series of different molecular weight samples of polyisobutylene using high resolution Quantum Cascade Laser FM spectroscopy. The vapor phase spectra all exhibit a rovibrational structure similar to that for the gas phase isobutylene molecule. We have assigned the structure in the 890 cm-1 and 1380 cm-1 regions to the isobutylene ν28 and ν7 fundamental bands respectively. These spectroscopic signatures may prove useful for infrared sensing applications. Here we will present the infrared signatures along with recent GCMS data from a sample of C4, utilizing solid-phase microextraction vapor collection fibers, which confirm the presence of isobutylene as one of the volatile bouquet species in RDX-based explosives.

  5. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2......,2'-bipyridine)(3)](2+), where the excited-state charge and spin dynamics involved in the transition from a low-to a high-spin state (spin crossover) have long been a source of interest and controversy(6-15). Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity...

  6. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.

    Science.gov (United States)

    Gornushkin, Igor B; Smith, Ben W; Panne, Ulrich; Omenetto, Nicoló

    2014-01-01

    A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation < 10%) and accuracy (within ± 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications.

  7. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  8. Quantum marginals from pure doubly excited states

    Science.gov (United States)

    Maciążek, Tomasz; Tsanov, Valdemar

    2017-11-01

    The possible spectra of one-particle reduced density matrices that are compatible with a pure multipartite quantum system of finite dimension form a convex polytope. We introduce a new construction of inner- and outer-bounding polytopes that constrain the polytope for the entire quantum system. The outer bound is sharp. The inner polytope stems only from doubly excited states. We find all quantum systems, where the bounds coincide giving the entire polytope. We show, that those systems are: (i) any system of two particles (ii) L qubits, (iii) three fermions on N≤slant 7 levels, (iv) any number of bosons on any number of levels and (v) fermionic Fock space on N≤slant 5 levels. The methods we use come from symplectic geometry and representation theory of compact Lie groups. In particular, we study the images of proper momentum maps, where our method describes momentum images for all representations that are spherical.

  9. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...... functional theory which we denote the PE-DFT method. It has been implemented in combination with time-dependent quantum mechanical linear and nonlinear response techniques, thus allowing for assessment of electronic excitation processes and dynamic ground- and excited-state molecular properties using...

  10. Excited states of {sup 4}He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R.; Navarro, J.; Portesi, M.

    2001-06-01

    We study low-lying excited states of {sup 4}He clusters up to a cluster size of 40 atoms in a variational framework. The ansatz wave function combines two- and three-body correlations, coming from a translationally invariant configuration interaction description, and Jastrow-type short-range correlation. We have previously used this scheme to determine the ground-state energies of {sup 4}He and {sup 3}He clusters. Here we present an extension of this ansatz wave function having a good quantum angular momentum L. The variational procedure is applied independently to the cases with L=0,2,4, and upper bounds for the corresponding energies are thus obtained. Moreover, centroid energies for L excitations are calculated through the use of sum rules. A comparison with previous calculations is also made.

  11. Excited states in {sup 155}Yb and

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. Y.; Cizewski, J. A.; Seweryniak, D.; Amro, H.; Carpenter, M. P.; Davids, C. N.; Fotiades, N.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J. (and others)

    2001-09-01

    The 270-MeV {sup 58}Ni+{sup 102}Pd reaction was used for the first recoil-decay tagging measurement with Gammasphere coupled to the Fragment Mass Analyzer at Argonne National Laboratory. Level structures of {sup 155}Yb, {sup 156}Lu, and {sup 157}Lu, as well as the excited states associated with the 25/2{sup -} isomer in {sup 155}Lu, are identified for the first time. The systematical behavior of the energy levels is compared with that of neighboring isotones and isotopes. The attractive interaction between h{sub 11/2} protons and h{sub 9/2} neutrons plays an important role in the structure of {sup 155}Yb and {sup 155,156}Lu.

  12. First 3- excited state of Fe56

    Science.gov (United States)

    Fotiades, N.; Nelson, R. O.; Devlin, M.

    2010-03-01

    There is no reliable evidence for the existence of the 3.076 MeV (3-) level adopted in the ENSDF evaluation for Fe56 although it has been reported in a few experiments. Previous reports of the observation of this level appear to be based on an incorrect assignment in early (e,e') work. Recent neutron inelastic scattering measurements by Demidov [Phys. At. Nucl. 67, 1884, (2004)] show that the assigned γ-ray decay of this state does not occur at a level consistent with known properties of inelastic scattering. In the present work the Fe56(n,n'γ) reaction was used to populate excited states in Fe56. Neutrons in the energy range from 1 to 250 MeV were provided by the pulsed neutron source of the Los Alamos Neutron Science Center’s WNR facility. Deexciting γ rays were detected with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. The γ-γ data obtained with GEANIE were used to establish coincidence relations between transitions. All previously reported levels up to Ex=3.6 MeV excitation energy were observed except for the 3.076 MeV (3-) level. The 991- and 2229-keV transitions, previously reported to deexcite this level, were not observed in the γ-γ coincidence data obtained in the present experiment. The present work supports the assignment of the 4509.6 keV level as the first 3- excited state in Fe56 by observation of two previously known transitions deexciting this state.

  13. A treatment of excited states in nucleosynthesis

    Science.gov (United States)

    Gupta, Sanjib Shankar

    2002-10-01

    Many isotopes of importance to nucleosynthesis have metastable states whose decay to the ground state is strongly inhibited by a high angular momentum difference. Traditionally, excited states of a nucleus have been treated by assuming attainment of thermal equilibrium; a Hauser-Feshbach calculation is then performed on the whole nucleus to determine nuclear reaction rates. A description of the nucleus when it is not in equilibrium, and a method for computing reaction rates that does not presume thermalization are presented in this work. In nucleosynthesis calculations, we may characterize the internal electromagnetic transitions of a nucleus as a Markov process. This allows us to decompose the interaction of radiation with nucleons into effective interactions between ensembles. Rather than consider a single isotope, we construct the canonical ensembles which are the true nuclear species of interest. We are then in a position to specify nonequilibrium occupations of the ensembles by discretizing the Nuclear Level Density function. The generality of the stochastic process identified at the outset now permits the description of nucleosynthesis as Markov flows in networks of suitably populated ensembles. This allows us to use as many excited states as we wish in nucleosyn thesis while tracking their nonequilibrium evolution as substochastic processes. A website utilizing these principles is discussed in some detail. It accesses the theoretical NLD database from the Brussels Intitute of Astrophysics to supplement adopted experimental data from the ENSDF database (maintained by Brookhaven National Laboratories). The composite is processed by a CGI (Common Gateway Interface) application to dynamically obtain plots and tables of rates on a specified temperature grid. Beta-decay rates are discussed for an isotope important to nuclear astrophysics ( 180TA) as a test-bed for the techniques implemented.

  14. A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a CuI-diimine complex captured by X-ray transient absorption spectroscopy

    DEFF Research Database (Denmark)

    Huang, J.; Mara, M.W.; Stickrath, A.B.

    2014-01-01

    Photophysical and structural properties of a CuI diimine complex with very strong steric hindrance, [CuI(dppS)2]+ (dppS = 2,9-diphenyl-1,10-phenanthroline disulfonic acid disodium salt), are investigated by optical and X-ray transient absorption (OTA and XTA) spectroscopy. The bulky phenylsulfoni...... of metal complex/semiconductor NP hybrids but also provide guidance for designing efficient CuI diimine complexes with optimized structures for application in solar-to-electricity conversion. This journal is...

  15. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  16. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  17. Enhanced negative ion formation via electron attachment to electronically-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, L.A. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  18. Laser frequency stabilization using bichromatic crossover spectroscopy

    Science.gov (United States)

    Jeong, Taek; Seb Moon, Han

    2015-03-01

    We propose a Doppler-free spectroscopic method named bichromatic crossover spectroscopy (BCS), which we then use for the frequency stabilization of an off-resonant frequency that does not correspond to an atomic transition. The observed BCS in the 5S1/2 → 5P1/2 transition of 87Rb is related to the hyperfine structure of the conventional saturated absorption spectrum of this transition. Furthermore, the Doppler-free BCS is numerically calculated by considering all of the degenerate magnetic sublevels of the 5S1/2 → 5P1/2 transition in an atomic vapor cell, and is found to be in good agreement with the experimental results. Finally, we successfully achieve modulation-free off-resonant locking at the center frequency between the two 5S1/2(F = 1 and 2) → 5P1/2(F' = 1) transitions using a polarization rotation of the BCS. The laser frequency stability was estimated to be the Allan variance of 2.1 × 10-10 at 1 s.

  19. Towards laser spectroscopy on lithium II

    Energy Technology Data Exchange (ETDEWEB)

    Semczuk, Mariusz [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Institute of Experimental Physics, University of Warsaw (Poland); Saathoff, Guido; Batteiger, Valentin; Herrmann, Maximilian; Knuenz, Sebastian; Udem, Thomas; Haensch, Theodor [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Schuessler, Hans [Dept. of Physics, Texas A and M University, Texas (United States)

    2009-07-01

    Simple atomic systems like hydrogen and helium have been subject to great interest as they allow for sensitive tests of quantum electrodynamics. Helium spectroscopy, in particular, has been considered as one way of determining an accurate value of the fine-structure constant. The constant {alpha} can be derived from the fit of a theoretical calculation of the He 2{sup 3}P level fine structure to measured values. While the fine structure has been measured to high accuracy, there is still a significant discrepancy between two theoretical calculations. In order to help solve this open problem in bound-state QED, we plan to measure the 2{sup 3}P fine structure in helium-like Li{sup +}. The lithium ion provides the advantage that it can be trapped and laser-cooled in an ion trap. Moreover the Li{sup +} fine structure is more sensitive to higher-order QED terms as these scale with large powers of Z. The measurement is complicated by hyperfine structure. We thus aim at a measurement of the complete hyperfine structure multiplet of the 2{sup 3}S{sub 1}-2{sup 3}P{sub 0,1,2} optical transition in {sup 7}Li{sup +} to extract both the hyperfine and fine structure simultaneously.

  20. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  1. Medical Applications of Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  2. Cold Antihydrogen for Precise Laser Spectroscopy

    CERN Multimedia

    Gabrielse, G S; Walz, J; Hessels, E A; Tan, J; Oelert, W; George, M C; Grzonka, D J; Kossick, M; Storry, C H; Sefzick, T

    2002-01-01

    %AD-2 %title\\\\ \\\\The Antihydrogen TRAP Collaboration (ATRAP) seeks to do precise laser spectroscopy of antihydrogen. Comparisons of antihydrogen and hydrogen atoms should provide the most stringent test of CPT invariance involving baryons and leptons. ATRAP is an expansion of the TRAP collaboration that developed the techniques to take CERN antiprotons from an energy of 6 MeV (momentum 100 MeV/c) all the way down to thermal equilibrium at 4 K for storage. This storage energy is lower than realized previously by more than ten orders of magnitude. The TRAP techniques include slowing, capturing, electron cooling and stacking of antiprotons. ATRAP and other collaborations will use antiprotons from the Antiproton Decelerator (AD). This new facility makes sense for such experiments because we showed that antiprotons can be accumulated in a trap at much lower expense than was required in the earlier CERN AC-AA-LEAR complex. In the closest approach yet to the production of cold antihydrogen, collaboration members wer...

  3. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  4. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  5. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  6. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  7. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  8. UV laser long-path absorption spectroscopy

    Science.gov (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  9. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1,3-cyc...... indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....

  10. Excited-State Effective Masses in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  11. Analytical methods of laser spectroscopy for biomedical applications

    Science.gov (United States)

    Martyshkin, Dmitri V.

    Different aspects of the application of laser spectroscopy in biomedical research have been considered. A growing demand for molecular sensing techniques in biomedical and environmental research has led the introduction of existing spectroscopic techniques, as well as development of new methods. The applications of laser-induced fluorescence, Raman scattering, cavity ring-down spectroscopy, and laser-induced breakdown spectroscopy for the monitoring of superoxide dismutase (SOD) and hemoglobin levels, the study of the characteristics of light-curing dental restorative materials, and the environmental monitoring of levels of toxic metal ion is presented. The development of new solid-state tunable laser sources based on color center crystals for these applications is presented as well.

  12. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  13. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...

  14. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    Science.gov (United States)

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  15. Spectroscopy and laser characterization of synthesized ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... spectrophotometric titration. Laser performances of the synthesized and commercial CB[7] sample as an additive were evaluated using Nd-YAG (532 nm) pumped Rhodamine B aqueous dye lasers and comparable results were obtained. Keywords. Macrocyclic host; cucurbit[7]uril; host–guest complex; ...

  16. Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres.

    Science.gov (United States)

    Manton, Jennifer C; Amirjalayer, Saeed; Coleman, Anthony C; McMahon, Suzanne; Harvey, Emma C; Greetham, Gregory M; Clark, Ian P; Buma, Wybren Jan; Woutersen, Sander; Pryce, Mary T; Long, Conor

    2014-12-21

    The photochemistry and photophysics of three model "half-sandwich" complexes (η(6)-benzophenone)Cr(CO)3, (η(6)-styrene)Cr(CO)3, and (η(6)-allylbenzene)Cr(CO)3 were investigated using pico-second time-resolved infrared spectroscopy and time-dependent density functional theory methods. The (η(6)-benzophenone)Cr(CO)3 complex was studied using two excitation wavelengths (470 and 320 nm) while the remaining complexes were irradiated using 400 nm light. Two independent excited states were detected spectroscopically for each complex, one an unreactive excited state of metal-to-arene charge-transfer character and the other with metal-to-carbonyl charge transfer character. This second excited state leads to an arrested release of CO on the pico-second time-scale. Low-energy excitation (470 nm) of (η(6)-benzophenone)Cr(CO)3 populated only the unreactive excited state which simply relaxes to the parent complex. Higher energy irradiation (320 nm) induced CO-loss. Irradiation of (η(6)-styrene)Cr(CO)3, or (η(6)-allylbenzene)Cr(CO)3 at 400 nm provided evidence for the simultaneous population of both the reactive and unreactive excited states. The efficiency at which the unreactive excited state is populated depends on the degree of conjugation of the substituent with the arene π-system and this affects the efficiency of the CO-loss process. The quantum yield of CO-loss is 0.50 for (η(6)-allylbenzene)Cr(CO)3 and 0.43 for (η(6)-styrene)Cr(CO)3. These studies provide evidence for the existence of two photophysical routes to CO loss, a minor ultrafast route and an arrested mechanism involving the intermediate population of a reactive excited state. This reactive excited state either relaxes to reform the parent species or eject CO. Thus the quantum yield of the CO-loss is strongly dependent on the excitation wavelength. Time-dependent density functional theory calculations confirm that the state responsible for ultrafast CO-loss has significant metal-centred character while

  17. Variation of excited-state dynamics in trifluoromethyl functionalized C60 fullerenes.

    Science.gov (United States)

    Park, Jaehong; Ramirez, Jessica J; Clikeman, Tyler T; Larson, Bryon W; Boltalina, Olga V; Strauss, Steven H; Rumbles, Garry

    2016-08-17

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1 → T1 intersystem crossing quantum yield (ΦISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1 → S0 relaxation mechanism and negligible ΦISC, therefore decreasing the average excited-state lifetime (τavg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (τavg ≈ 17 μs and 54 μs for C60/4-1 and C60/6-2, respectively, whereas τavg ≈ 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited-state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  18. Variation of excited-state dynamics in trifluoromethyl functionalized C 60 fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehong; Ramirez, Jessica J.; Clikeman, Tyler T.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry

    2016-01-01

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1--T1 intersystem crossing quantum yield (..phi..ISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1--S0 relaxation mechanism and negligible ..phi..ISC, therefore decreasing the average excited-state lifetime (..tau..avg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (..tau..avg approx. 17 us and 54 us for C60/4-1 and C60/6-2, respectively, whereas ..tau..avg approx. 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited- state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  19. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  20. Compositional Analysis of Drugs by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Beldjilali, S. A.; Axente, E.; Belasri, A.; Baba-Hamed, T.; Hermann, J.

    2017-07-01

    The feasibility of the compositional analysis of drugs by calibration-free laser-induced breakdown spectroscopy (LIBS) was investigated using multivitamin tablets as a sample material. The plasma was produced by a frequencyquadrupled Nd:YAG laser delivering UV pulses with a duration of 5 ns and an energy of 12 mJ, operated at a repetition rate of 10 Hz. The relative fractions of the elements composing the multivitamin drug were determined by comparing the emission spectrum of the laser-produced plume with the spectral radiance computed for a plasma in a local thermodynamic equilibrium. Fair agreement of the measured fractions with those given by the manufacturer was observed for all elements mentioned in the leafl et of the drug. Additional elements such as Ca, Na, Sr, Al, Li, K, and Si were detected and quantifi ed. The present investigations demonstrate that laser-induced breakdown spectroscopy is a viable technique for the quality control of drugs.

  1. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    CERN Document Server

    Lynch, K M; Bissell, M L; Budincevic, I; Cocolios, T E; De Groote, R P; De Schepper, S; Fedosseev, V N; Flanagan, K T; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Marsh, B A; Neyens, G; Procter, T J; Rossel, R E; Rothe, S; Strashnov, I; Stroke, H H; Wendt, K D A

    2014-01-01

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes $^{202-206}$Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly-sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes $^{202-206}$Fr, in addition to the identification of the low-lying states of $^{202,204}$Fr performed at the CRIS experiment.

  2. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    Directory of Open Access Journals (Sweden)

    K. M. Lynch

    2014-03-01

    Full Text Available This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes ^{202–206}Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay-spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes ^{202–206}Fr, in addition to the identification of the low-lying states of ^{202,204}Fr performed at the CRIS experiment.

  3. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    Science.gov (United States)

    Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Cocolios, T. E.; De Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2014-01-01

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes Fr202-206 performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay-spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes Fr202-206, in addition to the identification of the low-lying states of Fr202,204 performed at the CRIS experiment.

  4. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    CERN Multimedia

    Blaum, K; Kowalska, M; Ware, T; Procter, T J

    2007-01-01

    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  5. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  6. Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase.

    Science.gov (United States)

    Hada, Masaki; Saito, Shohei; Tanaka, Sei'ichi; Sato, Ryuma; Yoshimura, Masahiko; Mouri, Kazuhiro; Matsuo, Kyohei; Yamaguchi, Shigehiro; Hara, Mitsuo; Hayashi, Yasuhiko; Röhricht, Fynn; Herges, Rainer; Shigeta, Yasuteru; Onda, Ken; Miller, R J Dwayne

    2017-11-08

    Aromaticity of photoexcited molecules is an important concept in organic chemistry. Its theory, Baird's rule for triplet aromaticity since 1972 gives the rationale of photoinduced conformational changes and photochemical reactivities of cyclic π-conjugated systems. However, it is still challenging to monitor the dynamic structural change induced by the excited-state aromaticity, particularly in condensed materials. Here we report direct structural observation of a molecular motion and a subsequent packing deformation accompanied by the excited-state aromaticity. Photoactive liquid crystal (LC) molecules featuring a π-expanded cyclooctatetraene core unit are orientationally ordered but loosely packed in a columnar LC phase, and therefore a photoinduced conformational planarization by the excited-state aromaticity has been successfully observed by time-resolved electron diffractometry and vibrational spectroscopy. The structural change took place in the vicinity of excited molecules, producing a twisted stacking structure. A nanoscale torque driven by the excited-state aromaticity can be used as the working mechanism of new photoresponsive materials.

  7. Tunable diode laser optogalvanic spectroscopy of molecules

    Science.gov (United States)

    Webster, C. R.; Menzies, R. T.

    1983-01-01

    The laser optogalvanic (LOG) technique for studying molecular spectra has been extended for the first time to the infrared wavelength region. Portions of the NH3 nu-2 band at 9.5 microns and the NO2 nu-3 band at 6.2 microns have been recorded at Doppler-limited resolution using CW tunable diode lasers to probe dc electrical discharges in pure NH3 and an NO2/He gas mixture. Using adjustable electrode positions and an orthogonal geometry between the probe laser and the discharge axis, two contributions to the optogalvanic signal are identified: one which corresponds to an increase in discharge impedance and is seen only for irradiation of the negative glow region; and a second which corresponds to a decrease in discharge impedance and is seen for irradiation of all other discharge regions.

  8. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  9. Detection of early caries by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  10. Femtosecond induced transparency and absorption in the extremeultraviolet by coherent coupling of the He 2s2p (1Po) and 2p2 (1Se)double excitation states with 800 nm light

    Energy Technology Data Exchange (ETDEWEB)

    Loh, Z.-H.; Greene, C.H.; Leone, S.R.

    2007-08-01

    Femtosecond high-order harmonic transient absorption spectroscopy is used to observe electromagnetically induced transparency-like behavior as well as induced absorption in the extreme ultraviolet by laser dressing of the He 2s2p ({sup 1}P{sup 0}) and 2p{sup 2} ({sup 1}S{sup e}) double excitation states with an intense 800 nm field. Probing in the vicinity of the 1s{sup 2} {yields} 2s2p transition at 60.15 eV reveals the formation of an Autler-Townes doublet due to coherent coupling of the double excitation states. Qualitative agreement with the experimental spectra is obtained only when optical field ionization of both double excitation states into the N = 2 continuum is included in the theoretical model. Because the Fano q-parameter of the unperturbed probe transition is finite, the laser-dressed He atom exhibits both enhanced transparency and absorption at negative and positive probe energy detunings, respectively.

  11. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  12. Excited State Dynamics of DNA and RNA bases

    Science.gov (United States)

    Hudock, Hanneli; Levine, Benjamin; Martinez, Todd

    2007-03-01

    Recent ultrafast spectroscopic experiments have reported excited state lifetimes for DNA and RNA bases and assigned these lifetimes to various electronic states. We have used theoretical and simulation methods to describe the excited state dynamics of these bases in an effort to provide a mechanistic explanation for the observed lifetimes. Our simulations are based on ab initio molecular dynamics, where the electronic and nuclear Schrodinger equations are solved simultaneously. The results are further verified by comparison to high-level ab initio electronic structure methods, including dynamic electron correlation effects through multireference perturbation theory, at important points along the dynamical pathways. Our results provide an explanation of the photochemical mechanism leading to nonradiative decay of the electronic excited states and some suggestions as to the origin of the different lifetimes. Comparisons between pyrimidines illustrate how chemical differences impact excited state dynamics and may play a role in explaining the propensity for dimer formation in thymine.

  13. Spectroscopy and laser characterization of synthesized ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... Recent demonstration in augmenting the efficiency of aqueous Rhodamine dye lasers using cucurbit[7]uril (CB[7]), a deaggregating and photostabilizing host, has drawn interest in the synthesis and characterization of spectroscopic grade CB[7] in larger quantities. Synthesis of cucurbituril group of ...

  14. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  15. Application of laser-induced breakdown spectroscopy in carbon ...

    Indian Academy of Sciences (India)

    2014-07-18

    Jul 18, 2014 ... We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique to detect carbon dioxide leaks to aid in the successful application of CCS. LIBS has a real-time ... This work details the laboratory scale experiments to measure carbon contents in soil, aqueous, and air samples.

  16. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  17. Cooling and bunching of ion beams for collinear laser spectroscopy

    CERN Document Server

    Nieminen, A; Billowes, J; Forest, D H; Griffith, J A R; Huikari, J; Jokinen, A; Moore, I D; Moore, R; Tungate, G; Äystö, J

    2003-01-01

    A greatly increased sensitivity in collinear laser spectroscopy experiments has been achieved by the application of new on-line ion cooling and bunching techniques. Cooling of a low-energy ion beam to low emittance and low velocity spread is shown to increase the peak efficiency while bunching the beam results in highly efficient background suppression.

  18. Laser-induced breakdown spectroscopy and inductively coupled ...

    African Journals Online (AJOL)

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique, which can be used to perform elemental analysis of any material, irrespective of its physical state. In this study, the LIBS technique has been applied for quantification of total Cr in soil samples collected from polluted areas of Brits, North ...

  19. Characterization of a pulsed injection-locked Ti:sapphire laser and its application to high resolution resonance ionization spectroscopy of copper

    Science.gov (United States)

    Sonnenschein, V.; Moore, I. D.; Raeder, S.; Reponen, M.; Tomita, H.; Wendt, K.

    2017-08-01

    A high repetition rate pulsed Ti:sapphire laser injection-locked to a continuous wave seed source is presented. A spectral linewidth of 20 MHz at an average output power of 4 W is demonstrated. An enhanced tuning range from 710-920 nm with a single broadband mirror set is realized by the inclusion of a single thin birefringent quartz plate for suppression of unseeded emission. The spectral properties have been analyzed using both a scanning Fabry-Pérot interferometer as well as crossed beam resonance ionization spectroscopy of the hyperfine levels of natural copper. Delayed ionization of the long-lived excited state is demonstrated for increased resolution. For the excited state hyperfine coupling constant of the 244 nm 4s 2S1/2→ 4s4p4P°1/2 ground-state transition in {\\hspace{0pt}}63 Cu, a factor of ten reduction in error compared to previous literature was achieved. The described laser system has been in operation at several radioactive ion beam facilities.

  20. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  1. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-01-31

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  2. Identification of excited states in conjugated polymers

    CERN Document Server

    Hartwell, L J

    2003-01-01

    This thesis reports quasi steady state photoinduced absorption measurements from three conjugated polymers: polypyridine (PPy), polyfluorene (PFO) and the emeraldine base (EB) form of polyaniline. The aim of these experiments was to determine the nature of the photoexcited states existing in these materials in the millisecond time domain, as this has important consequences for the operation of real devices manufactured using these materials. The results from the photoinduced absorption experiments are closely compared with published results from pulse radiolysis experiments. In all cases there is very good correspondence between the two data sets, which has enabled the photoexcited states to be assigned with a high degree of confidence. Quasi steady-state photoinduced absorption involves the measurement of the change in absorption of a material in response to optical excitation with a laser beam. The changes in absorption are small, so a instrument was developed and optimised for each different sample. Lock-i...

  3. Cyclopropyl Group: An Excited-State Aromaticity Indicator?

    Science.gov (United States)

    Ayub, Rabia; Papadakis, Raffaello; Jorner, Kjell; Zietz, Burkhard; Ottosson, Henrik

    2017-10-04

    The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first ππ* triplet and singlet excited states (T 1 and S 1 ). Baird's rule says that the π-electron counts for aromaticity and antiaromaticity in the T 1 and S 1 states are opposite to Hückel's rule in the ground state (S 0 ). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4nπ-electron heterocycles with two or more heteroatoms represent limitations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radiative and Excited State Charmonium Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek

    2007-07-30

    Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.

  5. Diode-Laser Induced Fluorescence Spectroscopy of an Optically Thick Plasma in Combination with Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Nomura

    2013-01-01

    Full Text Available Distortion of laser-induced fluorescence profiles attributable to optical absorption and saturation broadening was corrected in combination with laser absorption spectroscopy in argon plasma flow. At high probe-laser intensity, saturated absorption profiles were measured to correct probe-laser absorption. At low laser intensity, nonsaturated absorption profiles were measured to correct fluorescence reabsorption. Saturation broadening at the measurement point was corrected using a ratio of saturated to non-saturated broadening. Observed LIF broadening and corresponding translational temperature without correction were, respectively, 2.20±0.05 GHz and 2510±100 K and corrected broadening and temperature were, respectively, 1.96±0.07 GHz and 1990±150 K. Although this correction is applicable only at the center of symmetry, the deduced temperature agreed well with that obtained by LAS with Abel inversion.

  6. Minimal-excitation states for electron quantum optics using levitons.

    Science.gov (United States)

    Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C

    2013-10-31

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  7. Nanosecond spectroscopy of expanding laser-produced tin plasma

    Energy Technology Data Exchange (ETDEWEB)

    O' Shay, B; Najmabadi, F; Harilal, S S; Tillack, M S [Center for Energy Research, University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093-0438 (United States)

    2007-04-15

    Time dependent behavior of laser-produced tin plasma has been investigated using gated optical emission spectroscopy. Plasma was generated by focusing 1.064 m Nd:YAG laser light onto a solid density, planar tin target in vacuum at a laser irradiance of 3.8 x 10{sup 11} W/cm{sup 2}. Estimates of the electron temperature and density were made by assuming Boltzmann distributed population levels and Stark broadened singly ionized tin spectral lines, respectively. An initial temperature of 1.4 eV and density of 4.1 x 10{sup 17} cm{sup -3} were calculated from the analysis of spectral data. Experimental data were interpreted alongside numerical results from HYADES - a onedimensional radiation hydrodynamics plasma simulation code. An energy balance was calculated to determine the fraction of incident laser energy converted to directed kinetic energy of expansion.

  8. DETERMINATION OF THE ABSOLUTE EXCITED-STATE DENSITY OF A SODIUM TARGET BY MEANS OF BEAM DEFLECTION MEASUREMENTS

    NARCIS (Netherlands)

    WIERSEMA, WP; SCHLATMANN, AR; MORGENSTERN, R

    1994-01-01

    The average deflection of a laser excited, divergent sodium beam with a broad velocity distribution is measured by means of a Langmuir-Taylor detector and exploited for determining the absolute density of the excited state in the interaction area. Simulations of the excitation and deflection process

  9. Digital control of diode laser for atmospheric spectroscopy

    Science.gov (United States)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  10. Advances in Spectroscopy for Lasers and Sensing

    CERN Document Server

    Bartolo, Baldassare; New Development in Optics and Related Fields

    2006-01-01

    This volume presents the Proceedings of "New Development in Optics and Related Fields," held in Erice, Sicily, Italy, from the 6th to the 21st of June, 2005. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Center for Scientific Culture. The purpose of this Institute was to provide a comprehensive and coherent treatment of the new techniques and contemporary developments in optics and related fields. Several lectures of the course addressed directly the technologies required for the detection and identification of chemical and biological threats; other lectures considered the possible applications of new techniques and materials to the detection and identification of such threats. Each lecturer developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion.

  11. Laser photodissociation and spectroscopy of mass-separated biomolecular ions

    CERN Document Server

    Polfer, Nicolas C

    2014-01-01

    This lecture notes book presents how enhanced structural information of biomolecular ions can be obtained from interaction with photons of specific frequency - laser light. The methods described in the book ""Laser photodissociation and spectroscopy of mass-separated biomolecular ions"" make use of the fact that the discrete energy and fast time scale of photoexcitation can provide more control in ion activation. This activation is the crucial process producing structure-informative product ions that cannot be generated with more conventional heating methods, such as collisional activation. Th

  12. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  13. Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy

    Science.gov (United States)

    Glenar, David A.; Jennings, Donald E.; Nadler, Shacher

    1990-01-01

    A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.

  14. High-resolution laser spectroscopy of nickel isotopes

    CERN Multimedia

    This proposal aims to measure the nuclear ground-state spins, moments and mean-square charge radii of $^{56-71}$Ni using collinear laser spectroscopy. This will enable direct measurements of isotopes in the region of shell closure $^{56}$Ni, structural change $^{68}$Ni and monopole migration beyond N = 40. Optical spectroscopy serves as a detailed probe not only of the changing single-particle behaviour, but also for the study of collective properties such as size and shape. Measurements of the most neutron-rich isotopes available at ISOLDE will critically test models which seek to extrapolate the data to the doubly magic region of $^{78}$Ni.

  15. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  16. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    Science.gov (United States)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  17. Applications of laser-induced gratings to spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, E.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  18. Laser-induced breakdown spectroscopy theory and applications

    CERN Document Server

    Perini, Umberto

    2014-01-01

    This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS), a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.

  19. Entanglement entropy in excited states of the quantum Lifshitz model

    Science.gov (United States)

    Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.

    2017-06-01

    We investigate the entanglement properties of an infinite class of excited states in the quantum Lifshitz model (QLM). The presence of a conformal quantum critical point in the QLM makes it unusually tractable for a model above one spatial dimension, enabling the ground state entanglement entropy for an arbitrary domain to be expressed in terms of geometrical and topological quantities. Here we extend this result to excited states and find that the entanglement can be naturally written in terms of quantities which we dub ‘entanglement propagator amplitudes’ (EPAs). EPAs are geometrical probabilities that we explicitly calculate and interpret. A comparison of lattice and continuum results demonstrates that EPAs are universal. This work shows that the QLM is an example of a 2  +  1d field theory where the universal behavior of excited-state entanglement may be computed analytically.

  20. A Simple Hubbard Model for the Excited States of Dibenzoterrylene

    CERN Document Server

    Sadeq, Z S

    2016-01-01

    We use a simple Hubbard model to characterize the electronic excited states of the dibenzoterrylene (DBT) molecule; we compute the excited state transition energies and oscillator strengths from the ground state to several singlet excited states. We consider the lowest singlet and triplet states of the molecule, examine their wavefunctions, and compute the density correlation functions that describe these states. We find that the DBT ground state is mostly a closed shell singlet with very slight radical character. We predict a relatively small singlet-triplet splitting of 0.75 eV, which is less than the mid-sized -acenes but larger than literature predictions for this state; this is because the Hubbard interaction makes a very small correction to the singlet and triplet states.

  1. Two-neutron decay of excited states of 11Li

    Science.gov (United States)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  2. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  3. Computational Laser Spectroscopy in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    M. Gantri

    2010-01-01

    Full Text Available We present a numerical spectroscopic study of visible and infrared laser radiation in a biological tissue. We derive a solution of a general two-dimensional time dependent radiative transfer equation in a tissue-like medium. The used model is suitable for many situations especially when the external source is time-dependent or continuous. We use a control volume-discrete ordinate method associated with an implicit three-level second-order time differencing scheme. We consider a very thin rectangular biological-tissue-like medium submitted to a visible or a near infrared light sources. The RTE is solved for a set of different wavelength source. All sources are assumed to be monochromatic and collimated. The energetic fluence rate is computed at a set of detector points on the boundaries. According to the source type, we investigate either the steady-state or transient response of the medium. The used model is validated in the case of a heterogeneous tissue-like medium using referencing experimental results from the literature. Also, the developed model is used to study changes on transmitted light in a rat-liver tissue-like medium. Optical properties depend on the source wavelength and they are taken from the literature. In particular, light-transmission in the medium is studied for continuous wave and for short pulse.

  4. Ideal radiation source for plasma spectroscopy generated by laser ablation

    Science.gov (United States)

    Hermann, Jörg; Grojo, David; Axente, Emanuel; Gerhard, Christoph; Burger, Miloš; Craciun, Valentin

    2017-11-01

    Laboratory plasmas inherently exhibit temperature and density gradients leading to complex investigations. We show that plasmas generated by laser ablation can constitute a robust exception to this. Supported by emission features not observed with other sources, we achieve plasmas of various compositions which are both uniform and in local thermodynamic equilibrium. These properties characterize an ideal radiation source opening multiple perspectives in plasma spectroscopy. The finding also constitutes a breakthrough in the analytical field as fast analyses of complex materials become possible.

  5. In-source laser spectroscopy developments at TRILIS-towards spectroscopy on actinium and scandium

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian, E-mail: raeder@triumf.ca; Dombsky, Marik; Heggen, Henning; Lassen, Jens; Quenzel, Thomas [TRIUMF, Canada' s National Laboratory for Nuclear and Particle Physics (Canada); Sjoedin, Marica [GANIL (France); Teigelhoefer, Andrea [TRIUMF, Canada' s National Laboratory for Nuclear and Particle Physics (Canada); Wendt, Klaus [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2013-04-15

    Resonance Ionization Laser Ion Sources (RILIS) have become a versatile tool for production and study of exotic nuclides at Isotope Separator On-Line (ISOL) facilities such as ISAC at TRIUMF. The recent development and addition of a grating tuned spectroscopy laser to the TRIUMF RILIS solid state laser system allows for wide range spectral scans to investigate atomic structures on short lived isotopes, e.g., those from the element actinium, produced in uranium targets at ISAC. In addition, development of new and improved laser ionization schemes for rare isotope production at ISAC is ongoing. Here spectroscopic studies on bound states, Rydberg states and autoionizing (AI) resonances on scandium using the existing off-line capabilities are reported. These results allowed to identify a suitable ionization scheme for scandium via excitation into an autoionizing state at 58,104 cm{sup - 1} which has subsequently been used for ionization of on-line produced exotic scandium isotopes.

  6. Excited state of {sup 7}He and its unique structure

    Energy Technology Data Exchange (ETDEWEB)

    Korsheninnikov, A.A.; Golovkov, M.S.; Ozawa, A.; Yoshida, K.; Tanihata, I.; Fulop, Z.; Kusaka, K.; Morimoto, K.; Otsu, H.; Petrascu, H.; Tokanai, F. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kuzmin, E.A.; Nikolskii, E.Yu.; Novatskii, B.G.; Ogloblin, A.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2000-07-01

    The transfer reaction p({sup 8}He,d){sup 7}He with the exotic {sup 8}He-beam has been studied by correlational measurements, and an excited state of {sup 7}He was observed. Most likely, it has a structure with a neutron in an excited state coupled to the {sup 6}He-core which itself is in the excited 2{sup +}-state. The transfer reaction p({sup 8}He,{sup 2}He){sup 7}H was also studied, and manifestation on the possible existence of the resonance {sup 7}H was obtained. (orig.)

  7. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  8. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  9. BaH molecular spectroscopy with relevance to laser cooling

    CERN Document Server

    Tarallo, M G; Zelevinsky, T

    2015-01-01

    We describe a simple experimental apparatus for laser ablation of barium monohydride (BaH) molecules and the study of their rovibrational spectra that are relevant to direct laser cooling. We present a detailed analysis of the properties of ablation plumes that can improve the understanding of surface ablation and deposition technologies. A range of absorption spectroscopy and collisional thermalization regimes has been studied. We directly measured the Franck-Condon factor of the $\\mathrm{B}^2\\Sigma^+(v'=0)\\leftarrow\\mathrm{X}^2\\Sigma^+(v"=1)$ transition. Prospects for production of a high luminosity cryogenic BaH beam are outlined. This molecule is a promising candidate for laser cooling and ultracold fragmentation, both of which are precursors to novel experiments in many-body physics and precision measurement.

  10. Tunable cw UV laser with spectroscopy of Sr Rydberg states.

    Science.gov (United States)

    Bridge, Elizabeth M; Keegan, Niamh C; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2016-02-08

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.

  11. Dynamics of charge-transfer excited states relevant to photochemical energy conversion. Progress report, June 1, 1991--November 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  12. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  13. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    The close coupling -matrix method is used to calculate cross-sections for photoionization of Mg III from its first three excited states. Configuration interaction wave functions are used to represent two target states of Mg III retained in the -matrix expansion. The positions and effective quantum numbers for the Rydberg ...

  14. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    Science.gov (United States)

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  15. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  16. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several.

  17. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other ...

  18. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.

  19. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Guendalyn Kendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-04

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simple in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.

  20. Comparison of TiO₂ and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes.

    Science.gov (United States)

    Sobuś, Jan; Burdziński, Gotard; Karolczak, Jerzy; Idígoras, Jesús; Anta, Juan A; Ziółek, Marcin

    2014-03-11

    Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.

  1. Collinear laser spectroscopy at ISOLDE: new methods and highlights

    Science.gov (United States)

    Neugart, R.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.

    2017-06-01

    Over three and a half decades of collinear laser spectroscopy and the COLLAPS setup have played a major role in the ISOLDE physics programme. Based on a general experimental principle and diverse approaches towards higher sensitivity, it has provided unique access to basic nuclear properties such as spins, magnetic moments and electric quadrupole moments as well as isotopic variations of nuclear mean square charge radii. While previous methods of outstanding sensitivity were restricted to selected chemical elements with special atomic properties or nuclear decay modes, recent developments have yielded a breakthrough in sensitivity for nuclides in wide mass ranges. These developments include the use of bunched beams from the radiofrequency quadrupole cooler-buncher ISCOOL, which allows a suppression of background by several orders of magnitude. Very recently, the combination of collinear laser spectroscopy with the principle of laser resonance ionisation took shape in the new CRIS setup, providing a very selective and efficient detection of optical resonance. We outline the basic experimental developments and discuss important results on nuclei or chains of isotopes in different mass ranges.

  2. Two-Dimensional Fluorescence Spectroscopy for Measuring Uranium Isotopes in Femtosecond Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Brumfield, Brian E.; Harilal, Sivanandan S.; Hartig, Kyle C.; Jovanovic, Igor

    2017-05-30

    We present the first two-dimensional fluorescence spectroscopy measurements of uranium isotopes in femtosecond laser ablation plasmas. A new method of signal normalization is presented to reduce noise in absorption-based measurements of laser ablation.

  3. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  4. Use of laser diodes in cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zare, R.N.; Paldus, B.A.; Ma, Y.; Xie, J. [Stanford Univ., CA (United States)

    1997-12-31

    We have demonstrated that cavity ring-down spectroscopy (CRDS), a highly sensitive absorption technique, is versatile enough to serve as a complete diagnostic for materials process control. In particular, we have used CRDS in the ultraviolet to determine the concentration profile of methyl radicals in a hot-filament diamond reactor; we have applied CRDS in the mid-infrared to detect 50 ppb of methane in a N{sub 2} environment; and, we have extended CRDS so that we can use continuous-wave diode laser sources. Using a laser diode at 810 nm, we were able to achieve a sensitivity of 2 x 10{sup -8} cm{sup -1}. Thus, CRDS can be used not only as an in situ diagnostic for investigating the chemistry of diamond film deposition, but it can also be used as a gas purity diagnostic for any chemical vapor deposition system.

  5. Nonlinear Laser Fluorescence Spectroscopy of Natural Organic Compounds

    Science.gov (United States)

    Fadeev, Victor V.; Shirshin, Evgeny A.

    Principles of nonlinear laser fluorescence spectroscopy of complicated organic compounds and of the method capable of determining photophysical parameters are considered in this chapter. Special attention is paid to the peculiarities of the method connected with specific photophysical processes in natural organic compounds, especially in proteins, and to the major role of intramolecular energy transfer and presence of localized donor-acceptor pairs (LDAP) of fluorophores within single macromolecules. These facts stimulated the development of models based on the collective states formalism describing fluorescent response of LDAP to pulsed laser excitation. Unique features of the method are illustrated by the example of proteins (proteins with intrinsic fluorescence (HSA, BSA) and fluorescent protein mRFP1) that can be used as fluorescent tags of intracellular processes while their photophysical parameters can be used as the information channel.

  6. LASER CORRELATION SPECTROSCOPY (LCS AND ITS CLINICAL PERSPECTIVES IN OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    Karganov Mikhail

    2015-12-01

    Full Text Available The method of laser correlation spectroscopy (LCS is based on the analysis of the spectrum of quasielastic light scatter during coherent monochromatic laser irradiation of micro-particles in biological fluids (blood serum, urine, oropharyngeal washout fluid, tear fluid etc.. Spectrum provides information on dynamic processes in the analyzed system: translation motion of scattering particles and their orientation and conformation dynamics. Special procedures of cluster analysis make it possible to find out to which linkage group a particular spectrum belongs. LCS allows evaluation of sub-fractional composition of biological fluids in a wide range of molecular sizes (from 1 to 10,000 nm, which determines principal novelty of this approach in ophthalmology.

  7. Analysis of fresco by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneve, L., E-mail: luisa.caneve@enea.i [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Diamanti, A. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Grimaldi, F. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Palleschi, G. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy); Spizzichino, V. [ENEA, CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Valentini, F. [Universita ' Tor Vergata' , Dipartimento di Scienze e Tecnologie Chimiche, via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2010-08-15

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  8. Analysis of fresco by laser induced breakdown spectroscopy

    Science.gov (United States)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-08-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  9. Recognition of archaeological materials underwater by laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, V. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy)]. E-mail: lazic@frascati.enea.it; Colao, F. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy); Fantoni, R. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy); Spizzicchino, V. [ENEA, FIS-LAS, V. E. Fermi 45, Frascati, RM (Italy)

    2005-08-31

    The detection of different materials immersed in seawater has been studied by means of Laser Induced Breakdown Spectroscopy. The plasma emission was produced by a Q-Switched Nd:YAG laser operated at 1064 nm in a dual pulse mode. Different classes of materials potentially found in the undersea archaeological parks, such as iron, copper-based alloys, precious alloys, marble and wood have been examined. Data acquisition and processing were optimized for better signal control and in order to improve the detection threshold. In all the examined cases but wood, qualitative analysis was successful and allowed for the material recognition. The spectral features necessary to clearly distinguish marble materials from calcareous rocks have been also established. It was found that these characteristic spectral intervals could be also used for the recognition of sedimentary layers deposited on the underwater findings. Quantitative chemical analysis was also performed on submerged bronze samples, after generating calibration curves with standards of similar matrix composition.

  10. Stratospheric species measurements with tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Menzies, R. T.; Webster, C. R.

    1983-01-01

    A balloon-borne instrument for stratospheric research has been developed with the capability to simultaneously measure several chemically related species in situ, for a full diurnal cycle. The instrument utilizes tunable infrared diode lasers (TDLs) to provide the radiation in selected wavelength regions for sensitive absorption spectroscopy over a one-km round-trip path. The TDL radiation is directed to a remote retroreflector which is lowered 500 m below the instrument gondola. A HeNe laser and co-aligned TV camera with CID imaging are used for retroreflector tracking. Currently the instrument operates with two TDLs, and the capability exists to measure four stratospheric species: NO, NO2, O3, and H2O. The number of operating TDLs can be expanded to four, resulting in the possibility of measuring several additional trace species.

  11. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  12. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  13. Atomic Physics at Accelerators Laser Spectroscopy and Applications

    CERN Document Server

    Letokhov, V

    2003-01-01

    From 19 to 24 September, 1999, the First European Conference Atomic physics at Accelerators: Laser Spectroscopy and Applications (APAC'99) was held at University of Mainz and Schloss Waldhausen (Budenheim, Germany) under the chairmanship of H. Backe and G. Huber. The idea of this up-to-date conference was associated with the 65th anniversary of Professor Ernst Otten (University of Mainz) who, together with H. Kluge, contributed much to the development of this work at CERN, University of Mainz, and Darmstadt. (17 refs).

  14. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    Science.gov (United States)

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized F208-210r ion beams at beam energies of 5 keV and intensities of 105 s-1. Efficient neutralization (≥80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  15. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Haslinger, M.J.; Bodea, M.A.; Huber, N. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Wolfmeir, H. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe{sub 2}O{sub 3} powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe{sub 2}O{sub 3} pellets and Fe{sub 3}O{sub 4} ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λ{sub L}). The UV pulses (λ{sub L} = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λ{sub L} = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of t{sub d} ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency. - Highlights: • Chlorine in iron oxide is measured by LIBS with LOD = 440 ppm and LOQ = 720 ppm. • The LOD of Cl is among the best values achieved on solid samples by LIBS. • Enhanced emission of Cl is observed by orthogonal UV laser re-excitation of plasma. • Cl signals are enhanced at long interpulse delays and short detector gate delays. • Measured LIBS signals of Cl and Fe qualitatively agree with calculated emissions.

  16. Ultrasensitive Laser Spectroscopy in Solids: Statistical Fine Structure and Single-Molecule Detection

    Science.gov (United States)

    1990-03-28

    the measurement. Keywords: Statistical fine structure, Atomic properties, Single molecule detection, Molecule properties, Laser spectroscopy of solids, Instrumentation, Pentacene in p-terphenyl, Organic compounds, Near field.

  17. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system

    Science.gov (United States)

    Chu, Wei; Zeng, Bin; Li, Ziting; Yao, Jinping; Xie, Hongqiang; Li, Guihua; Wang, Zhanshan; Cheng, Ya

    2017-06-01

    We extend the detection range of laser-induced breakdown spectroscopy by combining high-intensity femtosecond laser pulses with high-energy nanosecond CO2 laser pulses. The femtosecond laser pulses ionize the molecules and generate filament in air. The free electrons generated in the self-confined plasma channel by the femtosecond laser serve as the seed electrons which cause efficient avalanche ionization in the nanosecond CO2 laser field. We show that the detection distance has been extended by three times with the assistance of femtosecond laser filamentation.

  18. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Science.gov (United States)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  19. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    Science.gov (United States)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  20. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  1. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  2. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    Science.gov (United States)

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Signature of nonadiabatic coupling in excited-state vibrational modes.

    Science.gov (United States)

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  4. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  5. Structures of Annulenes and Model Annulene Systems in the Ground and Lowest Excited States

    Directory of Open Access Journals (Sweden)

    Pier Remigio Salvi

    2010-11-01

    Full Text Available The paper introduces general considerations on structural properties of aromatic, antiaromatic and non-aromatic conjugated systems in terms of potential energy along bond length alternation and distortion coordinates, taking as examples benzene, cyclobutadiene and cyclooctatetraene. Pentalene, formally derived from cyclooctatetraene by cross linking, is also considered as a typical antiaromatic system. The main interest is concerned with [n]annulenes and model [n]annulene molecular systems, n ranging from 10 to 18. The rich variety of conformational and  configurational isomers and of dynamical processes among them is described. Specific attention is devoted to bridged [10]- and [14]annulenes in the ground and lowest excited states as well as to s-indacene and biphenylene. Experimental data obtained from vibrational and electronic spectroscopies are discussed and compared with ab initio calculation results. Finally, porphyrin, tetraoxaporphyrin dication and diprotonated porphyrin are presented as annulene structures adopting planar/non-planar geometries depending on the steric hindrance in the inner macrocycle ring. Radiative and non-radiative relaxation processes from excited state levels have been observed by means of time-resolved fluorescence and femtosecond transient absorption spectroscopy. A short account is also given of porphycene, the structural isomer of porphyrin, and of porphycene properties.

  6. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  7. Determination of osmium isotope abundances by high resolution laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schieder, R.; Sorgalla, K.H.; Herr, W.

    1981-01-01

    A new optical method for isotopic abundance determinations based on Laser saturation spectroscopy is described. The technique has been applied on gaseous OsO/sub 4/ at low pressure, using a single mode CO/sub 2/-Laser at lambda = 10,4 ..mu..m. Compared with the linear absorption spectroscopy, the saturation method has the advantage that higher sensitivity is easiliy achieved by phase sensitive detection. As an example radiogenic /sup 187/Os in a molybdenite from S.W. Africa is measured and the age of the ore, determined by the Re/Os-method is (5.3 +- 0.4) x 10/sup 8/ years. Further, the /sup 186/Os(n,..gamma..)/sup 187/Os cross section was evaluated by breeding Os-isotopes from Rhenium in a high flux nuclear reactor. In this case, a cross section ratio R = sigmasub(eff)(/sup 186/Os)/ sigmasub(eff)(/sup 187/Os) = O.245 was obtained. The /sup 186/Os-resonance integral was estimated to be Isub(infinite) = 375 +- 90 b. Certain implications of R, with respect to the age of the universe (duration of the nucleosynthesis) are pointed out.

  8. Mid-infrared absorption spectroscopy using quantum cascade lasers

    Science.gov (United States)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  9. Single-shot spectroscopy of broadband Yb fiber laser

    Science.gov (United States)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2017-02-01

    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  10. Photoacoustic-based detector for infrared laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, L.; Palzer, S., E-mail: stefan.palzer@imtek.uni-freiburg.de [Department of Microsystems Engineering-IMTEK, Laboratory for Gas Sensors, University of Freiburg, Georges-Köhler-Allee 102, Freiburg 79110 (Germany)

    2016-07-25

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v{sub 3} band at 6046.95 cm{sup −1} using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  11. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    Science.gov (United States)

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; Schirò, Giorgio; Adam, Virgile; Aquila, Andrew; Barends, Thomas R. M.; Boutet, Sébastien; Byrdin, Martin; Carbajo, Sergio; de La Mora, Eugenio; Doak, R. Bruce; Feliks, Mikolaj; Fieschi, Franck; Foucar, Lutz; Guillon, Virginia; Hilpert, Mario; Hunter, Mark S.; Jakobs, Stefan; Koglin, Jason E.; Kovacsova, Gabriela; Lane, Thomas J.; Lévy, Bernard; Liang, Mengning; Nass, Karol; Ridard, Jacqueline; Robinson, Joseph S.; Roome, Christopher M.; Ruckebusch, Cyril; Seaberg, Matthew; Thepaut, Michel; Cammarata, Marco; Demachy, Isabelle; Field, Martin; Shoeman, Robert L.; Bourgeois, Dominique; Colletier, Jacques-Philippe; Schlichting, Ilme; Weik, Martin

    2018-01-01

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.

  12. Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser

    Science.gov (United States)

    Medhi, G.; Muravjov, A. V.; Saxena, H.; Fredricksen, C. J.; Brusentsova, T.; Peale, R. E.; Edwards, O.

    2011-06-01

    Intracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing with sufficient sensitivity to detect vapors of low vapor pressure compounds such as explosives. Reported here are key enabling technologies for this approach, including multi-mode external-cavity quantum cascade lasers and a scanning Fabry-Perot spectrometer to analyze the laser mode spectrum in the presence of a molecular intracavity absorber. Reported also is the design of a compact integrated data acquisition and control system. Applications include military and commercial sensing for threat compounds, chemical gases, biological aerosols, drugs, and banned or invasive plants or animals, bio-medical breath analysis, and terrestrial or planetary atmosphere science.

  13. Structure of excited states in nuclei near doubly magic {sup 100}SN

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M.

    1998-11-01

    The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)

  14. Switching of the triplet excited state of rhodamine/naphthaleneimide dyads: an experimental and theoretical study.

    Science.gov (United States)

    Cui, Xiaoneng; Zhao, Jianzhang; Lou, Zhangrong; Li, Shujing; Wu, Huijian; Han, Ke-Li

    2015-01-02

    Rhodamine-bromonaphthaleneimide (RB-NI) and rhodamine-bromonaphthalenediimide (RB-NDI) dyads were prepared for switching of the triplet excited states. Bromo-NI or bromo-NDI parts in the dyads are the spin converters, i.e., the triplet state producing modules, whereas the RB unit is the acid-activatable electron donor/energy acceptor. NI and NDI absorb at 359 and 541 nm, and the T1 state energy levels are 2.25 and 1.64 eV, respectively. RB undertakes the reversible spirolactam (RB-c) ↔ opened amide (RB-o) transformation. RB-c shows no visible light absorption, and the triplet-state energy level is ET1 = 3.36 eV. Conversely RB-o shows strong absorption at 557 nm, and ET1 is 1.73 eV. Thus, the acid-activated fluorescence-resonance-energy-transfer (FRET) competes with the ISC of NI or NDI. No triplet state was observed for the dyads with nanosecond time-resolved transient absorption spectroscopy. Upon addition of acid, strong fluorescence and long-living triplet excited states were observed. Thus, the producing of triplet state is acid-activatable. The triplet state of RB-NI is localized on RB-o part, whereas in RB-NDI the triplet state is delocalized on both the NDI and RB-o units. The ISC of spin converter was not outcompeted by RET. These studies are useful for switching of triplet excited state.

  15. Laser light-scattering spectroscopy: a new application in the study of ciliary activity.

    Science.gov (United States)

    Lee, W I; Verdugo, P

    1976-09-01

    A uniquely precise and simple method to study ciliary activity by laser light-scattering spectroscopy has been developed and validated. A concurrent study of the effect of Ca2+ on ciliary activity in vitro by laser scattering spectroscopy and high speed cinematography has demonstrated that this new method is simpler and as accurate and reproducible as the high speed film technique.

  16. Utilizing Near-IR Tunable Laser Absorption Spectroscopy to Study Detonation and Combustion Systems

    Science.gov (United States)

    2014-03-27

    3 2.1 Rotating Detonation Engines . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Previous & Current ...Research . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 III...Tunable Diode Laser Absorption Spectroscopy TDM-TDLAS Time-Devision Multiplexed Tunable Diode Laser Absorption Spectroscopy VCSEL Vertical Cavity

  17. Lamb-dip spectroscopy of the C-N stretching band of methylamine by using frequency-tunable microwave sidebands of CO2 laser lines

    Science.gov (United States)

    Sun, Zhen-Dong; Qi, Shan-Dong; Lees, Ronald M.; Xu, Li-Hong

    2016-09-01

    Lamb-dip spectroscopy of the C-N stretching band of methylamine has been systematically extended to P-, Q-, and R-branch by using microwave sidebands of a large number of CO2 laser lines as frequency-tunable infrared sources in a sub-Doppler spectrometer. Lamb-dip signals of more than 150 spectral lines have been observed with a resolution of 0.4 MHz and their frequencies have been precisely measured with an accuracy of ±0.1 MHz. More than 30 closed combination loops have been formed, which unambiguously confirm the assignments. For over 150 vibrational excited levels in 27 substates, refined term values have been determined and expanded in J(J + 1) power-series to determine the substate origins and the effective rotational constants. For transitions with Aa torsion-inversion symmetry in torsional state υt = 0, 57 K-doublet lines displaying asymmetry splittings have been observed and the splitting constants for levels with K = 1, 2, and 3 in the excited states have been determined. Our results provide accurate experimental information for spectroscopic studies of the interesting vibrational perturbations and intermode interactions related to the C-N stretching mode, directly support astronomical surveys, and are very relevant in practice to identification and frequency determination of the CO2-laser-pumped far-infrared laser lines of methylamine.

  18. Lamb-dip spectroscopy of the C-N stretching band of methylamine by using frequency-tunable microwave sidebands of CO2 laser lines.

    Science.gov (United States)

    Sun, Zhen-Dong; Qi, Shan-Dong; Lees, Ronald M; Xu, Li-Hong

    2016-09-29

    Lamb-dip spectroscopy of the C-N stretching band of methylamine has been systematically extended to P-, Q-, and R-branch by using microwave sidebands of a large number of CO2 laser lines as frequency-tunable infrared sources in a sub-Doppler spectrometer. Lamb-dip signals of more than 150 spectral lines have been observed with a resolution of 0.4 MHz and their frequencies have been precisely measured with an accuracy of ±0.1 MHz. More than 30 closed combination loops have been formed, which unambiguously confirm the assignments. For over 150 vibrational excited levels in 27 substates, refined term values have been determined and expanded in J(J + 1) power-series to determine the substate origins and the effective rotational constants. For transitions with Aa torsion-inversion symmetry in torsional state υt = 0, 57 K-doublet lines displaying asymmetry splittings have been observed and the splitting constants for levels with K = 1, 2, and 3 in the excited states have been determined. Our results provide accurate experimental information for spectroscopic studies of the interesting vibrational perturbations and intermode interactions related to the C-N stretching mode, directly support astronomical surveys, and are very relevant in practice to identification and frequency determination of the CO2-laser-pumped far-infrared laser lines of methylamine.

  19. Lamb-dip spectroscopy of the C−N stretching band of methylamine by using frequency-tunable microwave sidebands of CO2 laser lines

    Science.gov (United States)

    Sun, Zhen-Dong; Qi, Shan-Dong; Lees, Ronald M.; Xu, Li-Hong

    2016-01-01

    Lamb-dip spectroscopy of the C−N stretching band of methylamine has been systematically extended to P-, Q-, and R-branch by using microwave sidebands of a large number of CO2 laser lines as frequency-tunable infrared sources in a sub-Doppler spectrometer. Lamb-dip signals of more than 150 spectral lines have been observed with a resolution of 0.4 MHz and their frequencies have been precisely measured with an accuracy of ±0.1 MHz. More than 30 closed combination loops have been formed, which unambiguously confirm the assignments. For over 150 vibrational excited levels in 27 substates, refined term values have been determined and expanded in J(J + 1) power-series to determine the substate origins and the effective rotational constants. For transitions with Aa torsion-inversion symmetry in torsional state υt = 0, 57 K-doublet lines displaying asymmetry splittings have been observed and the splitting constants for levels with K = 1, 2, and 3 in the excited states have been determined. Our results provide accurate experimental information for spectroscopic studies of the interesting vibrational perturbations and intermode interactions related to the C−N stretching mode, directly support astronomical surveys, and are very relevant in practice to identification and frequency determination of the CO2-laser-pumped far-infrared laser lines of methylamine. PMID:27685615

  20. Modular Hamiltonian for Excited States in Conformal Field Theory.

    Science.gov (United States)

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  1. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  2. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  3. Nuclear moments of neutron deficient iridium isotopes from laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Verney, D.; Le Blanc, F. [IN2P3 CNRS, Institut de Physique Nucleaire (France); Cabaret, L. [Laboratoire Aime Cotton (France); Crawford, J. [McGill University, Physics Department (Canada); Duong, H.T. [Laboratoire Aime Cotton (France); Genevey, J. [IN2P3 CNRS/UJF, Institut des Sciences Nucleaires (France); Huber, G. [Universitaet Mainz, Institut fuer Physik (Germany); Ibrahim, F. [IN2P3 CNRS/UJF, Institut des Sciences Nucleaires (France); Krieg, M. [Universitaet Mainz, Institut fuer Physik (Germany); Lee, J.K.P. [McGill University, Physics Department (Canada); Lunney, D. [IN2P3 CNRS, CSNSM (France); Obert, J.; Oms, J. [IN2P3 CNRS, Institut de Physique Nucleaire (France); Pinard, J. [Laboratoire Aime Cotton (France); Putaux, J.C.; Roussiere, B.; Sauvage, J. [IN2P3 CNRS, Institut de Physique Nucleaire (France); Sebastian, V. [Universitaet Mainz, Institut fuer Physik (Germany)

    2000-08-15

    Laser spectroscopy measurements have been performed on neutron deficient iridium isotopes. The hyperfine structure and isotope shift of the optical Ir I transition 5d{sup 7}6s{sup 24}F{sub 9/2} {sup {yields}} 5d{sup 7}6s6p {sup 6}F{sub 11/2} at 351.5 nm have been studied for the {sup 182-189}Ir, {sup 186}Ir{sup 1}m and {sup 191,193}Ir isotopes. The nuclear magnetic and quadrupole moments were obtained from the HFS measurements and the changes of the mean square charge radii from the IS measurements. A large mean square charge radius change between {sup 187}Ir and {sup 186}Ir and between {sup 186}Ir{sup 1}m and {sup 186}Ir{sup 1}g has been observed.

  4. Large Deformation Change in Iridium Isotopes from Laser Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    D. Verney; L. Cabaret; J. Crawford; H.T. Duong; J. Genevey; G. Hubert; F. Ibrahim; M. Krieg; F. Le Blanc; J.K.P. Lee; G. Le Scornet; D. Lunney; J. Obert; J. Oms; J. Pinard; J.C. Putaux; B. Roussiere; J. Sauvage; V. Sebastian

    1999-12-31

    Laser spectroscopy measurements have been performed on neutron-deficient iridium isotopes. The hyperfine structure and isotope shift of the optical Ir I transition 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2} {yields}5d{sup 7}6s6p {sup 6}F{sub 11/2} have been studied for the {sup 182-189}Ir, {sup 186}Ir{sup m} and {sup 191,193}Ir isotopes. The nuclear magnetic and quadrupole moments were obtained from the hyperfine splitting measurements and the changes of the mean square charge radii from the isotope shift measurements. A large deformation change between {sup 187}Ir and {sup 186}Ir and between {sup 186}Ir{sup m} and {sup 186}Ir{sup g} has been observed.

  5. Laser-induced breakdown spectroscopy fundamentals and applications

    CERN Document Server

    Noll, Reinhard

    2012-01-01

    This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LI...

  6. Characterization of a Continuous Wave Laser for Resonance Ionization Mass Spectroscopy Analysis in Nuclear Forensics

    Science.gov (United States)

    2015-06-01

    OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize

  7. Determination of sulfur content in steel by laser-produced plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.; Ortiz, M. [Unidad de Fisica Atomica y Laseres, Instituto de Investigacion Basica, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain); Campos, J. [Catedra de Fisica Atomica Experimental, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    1995-11-01

    Sulfur content in steel samples has been determined by laser-produced plasma atomic emission spectroscopy with the use of a Q-switch Nd:YAG laser. With the use of time-resolved spectroscopy employing an OMA III (EG&G) as detector, a detection limit of 70 ppm and a precision of 7{percent} have been obtained. Calibration curves are linear, and no noticeable matrix effects have been observed. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  8. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    Science.gov (United States)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  9. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  10. Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers.

    Science.gov (United States)

    Kahmann, Simon; Salazar Rios, Jorge M; Zink, Matthias; Allard, Sybille; Scherf, Ullrich; Dos Santos, Maria C; Brabec, Christoph J; Loi, Maria A

    2017-11-16

    We employ photoluminescence and pump-probe spectroscopy on films of semiconducting single-walled carbon nanotubes (CNTs) of different chirality wrapped with either a wide band gap polyfluorene derivative (PF12) or a polythiophene with narrower gap (P3DDT) to elucidate the excited states' interplay between the two materials. Excitation above the polymer band gap gives way to an ultrafast electron transfer from both polymers toward the CNTs. By monitoring the hole polaron on the polymer via its mid infrared signature, we show that also illumination below the polymer band gap leads to the formation of this fingerprint and infer that holes are also transferred toward the polymer. As this contradicts the standard way of discussing the involved energy levels, we propose that polymer-wrapped CNTs should be considered as a single hybrid system, exhibiting states shared between the two components. This proposition is validated through quantum chemical calculations that show hybridization of the first excited states, especially for the thiophene-CNT sample.

  11. Unbound Excited States of the N = 16 Closed Shell Nucleus 24O

    Science.gov (United States)

    Rogers, W. F.; MoNA Collaboration

    2015-10-01

    The energies of two low-lying neutron-unbound excited states of 24O, which were populated by proton-knockout reactions on 26F, have been measured using the MoNA and LISA arrays in combination with the Sweeper Magnet at the Coupled Cyclotron Facility at the NSCL using invariant mass spectroscopy. The current measurement confirms for the first time the separate identity of 2+ and (1+) neutron-unbound excited states in 24O with decay energies 0.51(5) MeV state and 1.20(7) MeV, respectively, to the 23O ground state. These measured decay energies are consistent with two previous lower resolution measurements to within 2 σ. The level energies for the two states are computed using the decay energies and the 1-neutron separation energy for 24O, resulting in 4.70(15) MeV for the 2+ state and 5.39(16) MeV for the (1+) state. Errors in the level energies are dominated by uncertainty in the 24O neutron separation energy, underscoring the need for a higher resolution 24O ground state mass measurement. Results will be compared with 3 phenomenological and 2 ab initio model calculations. Work Supported by NSF Grants PHY-0922335, PHY-0922409, PHY-0922446, PHY-0922462, PHY-0922473, PHY-0922537, PHY-0922559, PHY-0922622, PHY-0922794, PHY-0969173, PHY-1101745, PHY-1205357, PHY- 1205537.

  12. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  13. Laser-frequency locking using light-pressure-induced spectroscopy in a calcium beam

    NARCIS (Netherlands)

    Mollema, A. K.; Wansbeek, L. W.; Willmann, L.; Jungmann, K.; Timmermans, R. G. E.; Hoekstra, R.

    We demonstrate a spectroscopy method that can be applied in an atomic beam, light-pressure-induced spectroscopy (LiPS). A simple pump and probe experiment yields a dispersivelike spectroscopy signal that can be utilized for laser frequency stabilization. The underlying principles are discussed and

  14. Laser Spectroscopy Studies in the Neutron-Rich Sn Region

    CERN Multimedia

    Obert, J

    2002-01-01

    We propose to use the powerful laser spectroscopy method to determine the magnetic moment $\\mu$ and the variation of the mean square charge radius ($\\delta\\,\\langle$r$_{c}^{2}\\,\\rangle$) for ground and long-lived isomeric states of the Sn isotopes from A=125 to the doubly-magic $^{132}$Sn isotope and beyond. For these neutron-rich Sn nuclei, numerous $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ curves have already been calculated and the predictions depend upon the effective interactions used. Therefore, a study of the effect of the shell closure N=82 on the $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ values in the Z=50 magic nuclei is of great interest, especially because $^{132}$Sn is located far from the stability valley. It will help to improve the parameters of the effective interactions and make them more suitable to predict the properties of exotic nuclei. \\\\ \\\\The neutron-rich Sn isotopes produced with an uranium carbide target, are ionized using either a hot plasma ion source or the resonant ionization laser ion ...

  15. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  16. Fatigue crack localization using laser nonliner wave modulation spectroscopy (LNWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peipei; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kundu, Tribikram [Dept. of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson (United States)

    2016-12-15

    Nonlinear features of ultrasonic waves are more sensitive to the presence of a fatigue crack than their linear counterparts are. For this reason, the use of nonlinear ultrasonic techniques to detect a fatigue crack at its early stage has been widely investigated. Of the different proposed techniques, laser nonlinear wave modulation spectroscopy (LNWMS) is unique because a pulse laser is used to exert a single broadband input and a noncontact measurement can be performed. Broadband excitation causes a nonlinear source to exhibit modulation at multiple spectral peaks owing to interactions among various input frequency components. A feature called maximum sideband peak count difference(MSPCD), which is extracted from the spectral plot, measures the degree of crack- induced material nonlinearity. First, the ratios of spectral peaks whose amplitudes are above a moving threshold to the total number of peaks are computed for spectral signals obtained from the pristine and the current state of a target structure. Then, the difference of these ratios are computed as a function of the moving threshold. Finally, the MSPCD is defined as the maximum difference between these ratios. The basic premise is that the MSPCD will increase as the nonlinearity of the material increases. This technique has been used successfully for localizing fatigue cracks in metallic plates.

  17. Single fiber laser based wavelength tunable excitation for CRS spectroscopy.

    Science.gov (United States)

    Su, Jue; Xie, Ruxin; Johnson, Carey K; Hui, Rongqing

    2013-06-01

    We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting (SSFS) in a nonlinear optical fiber. Spectra of C-H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when performing spectroscopy in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

  18. Calculations on the electronic excited states of ureas and oligoureas.

    Science.gov (United States)

    Oakley, Mark T; Guichard, Gilles; Hirst, Jonathan D

    2007-03-29

    We report CASPT2 calculations on the electronic excited states of several ureas. For monoureas, we find an electric dipole forbidden n --> pi* transition between 180 and 210 nm, dependent on the geometry and substituents of the urea. We find two intense pinb --> pi* transitions between 150 and 210 nm, which account for the absorptions seen in the experimental spectra. The n' --> pi* and pib --> pi* transitions are at wavelengths below 125 nm, which is below the lower limit of the experimental spectra. Parameter sets modeling the charge densities of the electronic transitions have been derived and permit calculations on larger oligoureas, using the exciton matrix method. For glycouril, a urea dimer, both the CASPT2 method and the matrix method yield similar results. Calculations of the electronic circular dichroism spectrum of an oligourea containing eight urea groups indicate that the experimental spectrum cannot be reproduced without the inclusion of electronic excitations involving the side chains. These calculations are one of the first attempts to understand the relationship between the structure and excited states of this class of macromolecule.

  19. Excited state mass spectra of singly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)

    2016-10-15

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)

  20. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  1. Imaging spectroscopy of polymer ablation plasmas for laser propulsion applications

    Science.gov (United States)

    Jiao, Long; Truscott, Benjamin S.; Liu, Hao; Ashfold, Michael N. R.; Ma, Honghao

    2017-01-01

    A number of polymers have been proposed for use as propellants in space launch and thruster applications based on laser ablation, although few prior studies have either evaluated their performance at background pressures representative of the upper atmosphere or investigated interactions with ambient gases other than air. Here, we use spatially and temporally resolved optical emission spectroscopy to compare three polymers, poly(ethylene), poly(oxymethylene), and glycidyl azide polymer, ablated using a 532 nm, nanosecond pulsed laser under Ar and O2 at pressures below 1 Torr. Emission lines from neutrally and positively charged atoms are observed in each case, along with the recombination radiation at the interaction front between the plasma plume and the background gas. C2 radicals arise either as a direct fragmentation product or by a three-body recombination of C atoms, depending on the structure of the polymer backbone, and exhibit a rotational temperature of ≈5000 K. The Sedov-Taylor point blast model is used to infer the energy release relative to the incident laser energy, which for all polymers is greater in the presence of O2, as to be expected based on their negative oxygen balance. Under Ar, plume confinement is seen to enhance the self-reactivity of the ejecta from poly(oxymethylene) and glycidyl azide polymer, with maximum exothermicity close to 0.5 Torr. However, little advantage of the latter, widely considered one of the most promising energetic polymers, is apparent under the present conditions over the former, a common engineering plastic.

  2. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    Science.gov (United States)

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  3. Color-center laser spectroscopy of transient species produced by excimer-laser flash photolysis

    Energy Technology Data Exchange (ETDEWEB)

    Adams, H.; Hall, J.L.; Rusell, L.A.; Kasper, J.V.V.; Tittel, F.K.; Curl, R.F.,JR.

    1985-05-01

    Kinetic spectroscopy based on excimer-laser flash photolysis and color-center-laser (CCL) infrared probing is explored. In simiple absorption, the achievable signal-to-noise ratio (S/N) is not satisfactory even though the signal itself (corresponding to greater than 1 percent absorption) is fairly large. This is due to amplitude fluctuations of the CCL. By using a double-beam detection scheme to balance out these amplitude fluctuations the sensitivity can be improved to the extent that a 1 percent absorption gives a S/N approximately 100. In certain situations transient decreases in absorption of the precursor and transient increases in absorption due to final product formation can produce severe interferinng signals even in simple systems. This problem is overcome without a major loss in sensitivity by a recently developed 45 deg magnetic rotation scheme. These points are illustrated with spectra of Br, OH, and NH2. 21 references.

  4. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    Science.gov (United States)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  5. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission.

    Science.gov (United States)

    Dyba, Marcus; Hell, Stefan W

    2003-09-01

    Saturated stimulated-emission depletion (STED) of a fluorescent marker has been shown to break the diffraction barrier in far-field fluorescence microscopy and to facilitate spatial resolution down to a few tens of nanometers. Here we investigate the photostability of a fluorophore that, in this concept, is repeatedly excited and depleted by synchronized laser pulses. Our study of bacteria labeled with RH-414, a membrane marker, reveals that increasing the duration of the STED pulse from approximately 10 to 160 ps fundamentally improves the photostability of the dye. At the same time the STED efficiency is maintained. The observed photobleaching of RH-414 is due primarily to multiphoton absorption from its ground state. One can counteract photobleaching by employing STED pulses that range from 150 ps to approximately half of the lifetime of the excited state. The results also have implications for multiphoton excitation microscopy.

  6. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    Directory of Open Access Journals (Sweden)

    Xianfeng Zheng

    2014-10-01

    Full Text Available We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  7. Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm.

    Science.gov (United States)

    Xiong, Junyu; Yin, Longfei; Luo, Bin; Guo, Hong

    2016-06-27

    In this work, a detailed theoretical analysis of 1529 nm ES-FADOF (excited state Faraday anomalous dispersion optical filter) based on rubidium atoms pumped by 780 nm laser is introduced, where Zeeman splitting, Doppler broadening, and relaxation processes are considered. Experimental results are carefully compared with the derivation. The results prove that the optimal pumping frequency is affected by the working magnetic field. The population distribution among all hyperfine Zeeman sublevels under the optimal pumping frequency has also been obtained, which shows that 85Rb atoms are the main contribution to the population. The peak transmittance above 90% is obtained, which is in accordance with the experiment. The calculation also shows that the asymmetric spectra observed in the experiment are caused by the unbalanced population distribution among Zeeman sublevels. This theoretical model can be used for all kinds of calculations for FADOF.

  8. Base sequence and higher-order structure induce the complex excited-state dynamics in DNA.

    Science.gov (United States)

    Schwalb, Nina K; Temps, Friedrich

    2008-10-10

    The high photostability of DNA is commonly attributed to efficient radiationless electronic relaxation processes. We used femtosecond time-resolved fluorescence spectroscopy to reveal that the ensuing dynamics are strongly dependent on base sequence and are also affected by higher-order structure. Excited electronic state lifetimes in dG-doped d(A)20 single-stranded DNA and dG.dC-doped d(A)20.d(T)20 double-stranded DNA decrease sharply with the substitution of only a few bases. In duplexes containing d(AGA).d(TCT) or d(AG).d(TC) repeats, deactivation of the fluorescing states occurs on the subpicosecond time scale, but the excited-state lifetimes increase again in extended d(G) runs. The results point at more complex and molecule-specific photodynamics in native DNA than may be evident in simpler model systems.

  9. Relaxation of vibrationally excited states in solid "nitrate-nitrite" binary systems

    Science.gov (United States)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2017-10-01

    The processes of molecular relaxation in the solid NaNO3-NaNO2 and KNO3-KNO2 "nitrate-nitrite" binary systems have been investigated by Raman spectroscopy. The relaxation time of the vibration ν1(A) of an NO- 3 anion in the binary system is found to be shorter than that in individual nitrate. The increase in the relaxation rate is explained by the existence of an additional mechanism of relaxation of vibrationally excited states of the nitrate ion in the system. This mechanism is related to the excitation of vibration of another anion (NO- 2) and generation of a lattice phonon. It has been established that this relaxation mechanism is implemented provided that the difference between the frequencies of the aforementioned vibrations correspond to the range of sufficiently high density of states in the phonon spectrum.

  10. Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    CERN Document Server

    Rahkila, P; Pakarinen, J; Gray-Jones, C; Greenlees, P T; Jakobsson, U; Jones, P; Julin, R; Juutinen, S; Ketelhut, S; Koivisto, H; Leino, M; Nieminen, P; Nyman, M; Papadakis, P; Paschalis, S; Petri, M; Peura, P; Roberts, O J; Ropponen, T; Ruotsalainen, P; Saren, J; Scholey, C; Sorri, J; Tuff, A G; Uusitalo, J; Wadsworth, R; Bender, M; Heenen, P -H

    2010-01-01

    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.

  11. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    CERN Document Server

    Krieger, A.; Catherall, R.; Hochschulz, F.; Kramer, J.; Neugart, R.; Rosendahl, S.; Schipper, J.; Siesling, E.; Weinheimer, Ch.; Yordanov, D.T.; Nortershauser, W.

    2011-01-01

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  12. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes.

    Science.gov (United States)

    Phillips, Mark C; Brumfield, Brian E; LaHaye, Nicole; Harilal, Sivanandan S; Hartig, Kyle C; Jovanovic, Igor

    2017-06-19

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  13. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.; Harilal, Sivanandan S.; Hartig, Kyle C.; Jovanovic, Igor

    2017-06-19

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  14. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.

    Science.gov (United States)

    Nettels, Daniel; Haenni, Dominik; Maillot, Sacha; Gueye, Moussa; Barth, Anders; Hirschfeld, Verena; Hübner, Christian G; Léonard, Jérémie; Schuler, Benjamin

    2015-12-28

    Single-molecule Förster resonance energy transfer (FRET) experiments are an important method for probing biomolecular structure and dynamics. The results from such experiments appear to be surprisingly independent of the excitation power used, in contradiction to the simple photophysical mechanism usually invoked for FRET. Here we show that excited-state annihilation processes are an essential cause of this behavior. Singlet-singlet annihilation (SSA) is a mechanism of fluorescence quenching induced by Förster-type energy transfer between two fluorophores while they are both in their first excited singlet states (S1S1), which is usually neglected in the interpretation of FRET experiments. However, this approximation is only justified in the limit of low excitation rates. We demonstrate that SSA is evident in fluorescence correlation measurements for the commonly used FRET pair Alexa 488/Alexa 594, with a rate comparable to the rate of energy transfer between the donor excited state and the acceptor ground state (S1S0) that is exploited in FRET experiments. Transient absorption spectroscopy shows that SSA occurs exclusively via energy transfer from Alexa 488 to Alexa 594. Excitation-power dependent microsecond correlation experiments support the conclusion based on previously reported absorption spectra of triplet states that singlet-triplet annihilation (STA) analogously mediates energy transfer if the acceptor is in the triplet state. The results indicate that both SSA and STA have a pronounced effect on the overall FRET process and reduce the power dependence of the observed FRET efficiencies. The existence of annihilation processes thus seems to be essential for using FRET as a reliable spectroscopic ruler at the high excitation rates commonly employed in single-molecule spectroscopy.

  15. Vibrational kinetics of electronically excited states in H2 discharges

    Science.gov (United States)

    Colonna, Gianpiero; Pietanza, Lucia D.; D'Ammando, Giuliano; Celiberto, Roberto; Capitelli, Mario; Laricchiuta, Annarita

    2017-11-01

    The evolution of atmospheric pressure hydrogen plasma under the action of repetitively ns electrical pulse has been investigated using a 0D state-to-state kinetic model that self-consistently couples the master equation of heavy particles and the Boltzmann equation for free electrons. The kinetic model includes, together with atomic hydrogen states and the vibrational kinetics of H2 ground state, vibrational levels of singlet states, accounting for the collisional quenching, having a relevant role because of the high pressure. The mechanisms of excitations, radiative decay and collisional quenching involving the excited H2 states and the corresponding cross sections, integrated over the non-equilibrium electron energy distribution function (EEDF) to obtain kinetic rates, are discussed in the light of the kinetic simulation results, i.e. the time evolution during the pulse of the plasma composition, of the EEDF and of the vibrational distributions of ground and singlet excited states.

  16. Ultrafast excited state dynamics in 9,9'-bifluorenylidene.

    Science.gov (United States)

    Conyard, Jamie; Heisler, Ismael A; Browne, Wesley R; Feringa, Ben L; Amirjalayer, Saeed; Buma, Wybren Jan; Woutersen, Sander; Meech, Stephen R

    2014-08-07

    9,9'-Bifluorenylidene has been proposed as an alternative and flexible electron acceptor in organic photovoltaic cells. Here we characterize its excited state properties and photokinetics, combining ultrafast fluorescence and transient IR measurements with quantum chemical calculations. The fluorescence decay is ultrafast (sub-100 fs) and remarkably independent of viscosity. This suggests that large scale structure change is not the primary relaxation mode. The ultrafast decay populates a dark state characterized by distinct vibrational and electronic spectra. This state decays with a 6 ps time constant to a hot ground state that ultimately populates the initial state with a 20 ps time constant; these times are also insensitive to solvent viscosity. No metastable intermediate structures are resolved in the photocycle after population of the dark state. The implications of these results for the operation of 9,9'-bifluorenylidene as an electron acceptor and as a potential molecular switch are discussed.

  17. Excited state mass spectra and Regge trajectories of bottom baryons

    Science.gov (United States)

    Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.

    2017-09-01

    We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.

  18. Excited state mass spectra of doubly heavy Ξ baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)

    2017-02-15

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ{sub cc}{sup +}, Ξ{sub cc}{sup ++}, Ξ{sub bb}{sup -}, Ξ{sub bb}{sup 0}, Ξ{sub bc}{sup 0} and Ξ{sub bc}{sup +}. These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in (n, M{sup 2}) and (J, M{sup 2}) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated. (orig.)

  19. Electronic excited states at ultrathin dielectric-metal interfaces

    Science.gov (United States)

    Sementa, L.; Marini, A.; Barcaro, G.; Negreiros, F. R.; Fortunelli, A.

    2013-09-01

    Electronic excited states at a bcc(110) lithium surface, both bare and covered by ionic ultrathin (1-2 monolayers) LiF epitaxial films, are investigated via many-body perturbation theory calculations achieving an atomistic level of detail. The full self-consistent solution of the GW equations is used to account for correlation effects and to properly describe the screened potential in the vacuum. In addition to the correct prediction of image-potential states, we find that the mixing between resonances and image states and the charge compression due to the dielectric ultrathin overlayer give rise to excitations with a hybrid localized but low-lying character whose accurate description cannot intrinsically be achieved via simple models or low-level calculations, but which are expected to play a crucial role in determining the electronic response and transport properties of these systems.

  20. Excited states using semistochastic heat-bath configuration interaction

    Science.gov (United States)

    Holmes, Adam A.; Umrigar, C. J.; Sharma, Sandeep

    2017-10-01

    We extend our recently developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to calculate excited-state wavefunctions and energies. We employ time-reversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the full CI limit. The resulting algorithm is used to compute fourteen low-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 μHa compared to full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values.

  1. Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability

    DEFF Research Database (Denmark)

    Gauden, M.; Pezzella, A.; Panzella, L.

    2008-01-01

      Ultrafast time-resolved fluorescence spectroscopy has been used to investigate the excited state dynamics of the basic eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid  (DHICA) its acetylated, methylated and carboxylic ester derivatives as well as two oligomers, a dimer and a trim...

  2. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  3. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gaspard, S. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain)], E-mail: sgaspard@iqfr.csic.es; Oujja, M.; Rebollar, E. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain); Abrusci, C.; Catalina, F. [Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Castillejo, M. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain)

    2007-12-15

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  4. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    National Research Council Canada - National Science Library

    K. Rehan; I. Rehan; S. Sultana; M. Zubair Khan; Z. Farooq; A. Mateen; M. Humayun

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm) of a Nd:YAG pulsed laser...

  5. Laser-Induced Breakdown Spectroscopy and Plasma Characterization Generated by Long-Pulse Laser on Soil Samples

    Science.gov (United States)

    Xu, S.; Duan, W.; Ning, R.; Li, Q.; Jiang, R.

    2017-03-01

    The plasma is generated by focusing a long-pulse (80 μs) Nd:YAG laser on chromium-doped soil samples. The calibration curves are drawn using the intensity ratio of the chromium spectral line at 425.435 nm with the iron spectral line (425.079 nm) as reference. The regression coefficient of the calibration curve is 0.993, and the limit of detection is 16 mg/kg, which is 19% less than that for the case of a Q-switched laser In the method of long-pulse laser-induced breakdown spectroscopy, the laser-induced plasma had a temperature of 15795.907 K and an electron density of 2.988 × 1017 cm-3, which exceeded the corresponding plasma parameters of the Q-switched laser-induced breakdown spectroscopy by 75% and 24% respectively.

  6. Multiphoton Ionization Detection in Collinear Laser Spectroscopy of Isolde Beams

    CERN Multimedia

    2002-01-01

    The experiments using the multiphoton ionization technique have been continued in the beginning of 1990 with stable beam tests on the modified apparatus and with another radioactive beam time on Yb. Higher laser power and an increased vacuum in the ionization region (see figure) yielded a further gain in sensitivity, mainly due to the better suppression of the background ions produced in rest gas collisions. For even Yb isotopes we have now reached a detection efficiency of $\\epsilon$~=~1~x~10$^{-5}$ ions per incoming atom at a background count rate of 30~ions from a beam of 5~x~10$^9$. This sensitivity was high enough for spectroscopy on $^{157}$Yb, where the typical ISOLDE yield of 5~x~10$^7$Yb ions is covered by an isobaric contamination of more than 10$^{10}$ ions. Measurements have also been performed on $^{175}$Yb. These give the first precise value for the magnetic moment of this isotope, $\\mu$~=~0.766(8)$ mu _{N} $, which agrees rather well with the magnetic moment of the isotone $^{177}$Hf. The isoto...

  7. Nondestructive evaluation of composite materials via scanning laser ultrasound spectroscopy

    Science.gov (United States)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-04-01

    Composite materials pose a complex problem for ultrasonic nondestructive evaluation due to their unique material properties, greater damping, and often complicated geometry. In this study, we explored acoustic wavenumber spectroscopy (AWS) as a means of rapid inspection of laminate and honeycomb composites. Each aerospace sample was tested at different ultrasonic frequencies using steady-state excitation via a piezo electric actuator. We measured the velocity response of the composite at each pixel via a raster scan using a laser Doppler vibrometer. We were able to detect radial inserts along corners, delamination, and facing-core separation by analyzing local amplitude and wavenumber responses. For each honeycomb composite, we excited the sample at the first resonant frequency of the individual cells. The local mode shape for each cell was extracted from the local amplitude response. Analyzing local amplitude and phase responses for each cell provided an accurate indication as to the presence, size, shape, and type of defect present in the composite. We detected both delamination and deformation of cells within a honeycomb composite. For the laminar composites, we analyzed the non-resonance steady-state response at several excitation frequencies.

  8. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis

    Science.gov (United States)

    Sieger, Markus; Kos, Gregor; Sulyok, Michael; Godejohann, Matthias; Krska, Rudolf; Mizaikoff, Boris

    2017-03-01

    Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B1 affected peanuts at EU regulatory limits of 1250 μg kg-1 and 8 μg kg-1, respectively.

  9. Analysis of bakery products by laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Gas monitoring in human sinuses using tunable diode laser spectroscopy.

    Science.gov (United States)

    Persson, Linda; Andersson, Mats; Cassel-Engquist, Märta; Svanberg, Katarina; Svanberg, Sune

    2007-01-01

    We demonstrate a novel nonintrusive technique based on tunable diode laser absorption spectroscopy to investigate human sinuses in vivo. The technique relies on the fact that free gases have spectral imprints that are about 10.000 times sharper than spectral structures of the surrounding tissue. Two gases are detected; molecular oxygen at 760 nm and water vapor at 935 nm. Light is launched fiber optically into the tissue in close proximity to the particular maxillary sinus under study. When investigating the frontal sinuses, the fiber is positioned onto the caudal part of the frontal bone. Multiply scattered light in both cases is detected externally by a handheld probe. Molecular oxygen is detected in the maxillary sinuses on 11 volunteers, of which one had constantly recurring sinus problems. Significant oxygen absorption imprint differences can be observed between different volunteers and also left-right asymmetries. Water vapor can also be detected, and by normalizing the oxygen signal on the water vapor signal, the sinus oxygen concentration can be assessed. Gas exchange between the sinuses and the nasal cavity is also successfully demonstrated by flushing nitrogen through the nostril. Advantages over current ventilation assessment methods using ionizing radiation are pointed out.

  11. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  12. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  13. Core-excited states and core-polarization effects in sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At

    CERN Document Server

    Bayer, S; Dracoulis, G D; Baxter, A M; Kibedi, T; Kondev, F G

    2001-01-01

    Excited states in the nuclei sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At have been studied using sup 2 sup 0 sup 8 Pb( sup 7 Li,xn) reactions. Detailed spectroscopy of levels up to 30 Planck constant has been achieved. New isomeric levels arising from core-excited states were observed, with the highest-lying isomers attributed to a coupling of the pi[h sub 9 sub / sub 2 sup 2 i sub 1 sub 3 sub / sub 2] configuration to double neutron-particle-hole excitations. Clear relationships between the states observed in sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At were identified. Semiempirical shell-model calculations reproduce very well the yrast states in both nuclei. Uncertainty in the modeling of core-polarization was seen as a limiting factor in the calculation of accurate level energies for core-excited states.

  14. Structure of potassium isotopes studied with collinear laser spectroscopy

    CERN Document Server

    AUTHOR|(CDS)2082445

    By exploring the structure of different nuclei, one can learn about the interaction between the nucleons, their building blocks. In this field of research, there is a strong interplay between experiment and theory. In particular, theory has a crucial role in the interpretation of the experimental results, while new experimental results provide testing ground and directions for theorists. In the light- and mid-mass regions of the nuclear chart, the shell model is very successful and widely used for calculations of the ground- as well as excited- states properties. It is based on associated larger energy gaps between single particle energy levels for isotopes with certain proton (Z) and neutron (N) numbers, which are called "magic numbers". It was believed that these numbers (8, 20, 28, ...) are preserved for all nuclei throughout the nuclear chart. However, during the last decades studies of the isotopes with an unbalanced number of protons and neutrons revealed that in these isotopes the shell gaps could chan...

  15. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging.

    Science.gov (United States)

    Oscar, Breland G; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E; Fang, Chong

    2014-07-15

    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca(2+)) sensing. This study reveals that, in the absence of Ca(2+), the dominant skeletal motion is a ∼ 170 cm(-1) phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼ 30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca(2+) binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca(2+) in physiologically relevant environments.

  16. In situ TEM Raman spectroscopy and laser-based materials modification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.I., E-mail: fiallen@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, E. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Andresen, N.C. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grigoropoulos, C.P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Minor, A.M., E-mail: aminor@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-15

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS{sub 2} combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS{sub 2} are performed in situ.

  17. Laser spectroscopies for elemental and molecular analysis in art and archaeology

    Science.gov (United States)

    Nevin, Austin; Spoto, Giuseppe; Anglos, Demetrios

    2012-02-01

    Spectroscopic methods using laser sources have significantly improved our capacity to unravel the chemical composition of works of art and archaeological remains. Lasers enhance the performance of spectroscopic techniques which require intense light sources and specific analytical protocols assuring a microanalytical approach for analysis has been established. This review focuses on laser spectroscopic methods used in the field of cultural heritage diagnostics. Emphasis in this work is given to the analytical capabilities of laser-based techniques for elemental and/or molecular analysis and in-situ use, spatial resolution and microanalysis. Analytical methods are classified according to the elemental (LIBS, LA-ICP-MS) and molecular (LIF/LIDAR, time-resolved absorption spectroscopy, laser desorption ionization mass spectrometry) information they yield. For non-destructive laser-induced fluorescence (LIF/LIDAR) and time-resolved fluorescence spectroscopy, imaging applications are described. The advantages provided by combined complementary techniques including but not limited to LIBS-LIF-Raman and LIBS-XRF are presented, as are recent improvements in terms of chemical imaging. Advances and applications of THz spectroscopy, non-linear spectroscopy and imaging are outlined. Finally, laser spectroscopies are described for investigations of different materials and works of art which include Bronze Age ceramics, Minoan archaeological remains, Ancient Roman buildings, Renaissance wall paintings and sculptures, and manuscripts containing iron gall inks and colorants.

  18. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  19. Diagnostic study of laser-produced tungsten plasma using optical emission spectroscopy and time-of-flight mass spectroscopy

    Science.gov (United States)

    Wu, Ding; Zhang, Lei; Liu, Ping; Sun, Liying; Hai, Ran; Ding, Hongbin

    2017-11-01

    In this work, the plasma was produced by irradiating a tungsten target with an 8 ns pulsed Nd:YAG (λ = 1064 nm) laser in a vacuum chamber under the pressure of 4 × 10- 4 Pa. The optical and particle emissions were systematically investigated using laser induced breakdown spectroscopy and time-of-flight mass spectroscopy respectively. The results showed that not only there were neutral and single ionized atoms in the laser induced plasma, but also quite a number of multi-charged ions were observed. The ion charge state was even up to 6 at the laser power density of 11 GW/cm2. Time and space resolved optical spectroscopy was investigated by using a bundle of lined fibers. Meanwhile, the time-resolved mass spectrometric study of laser produced tungsten plasma was carried out. The variation in intensities of the different species with time showed that higher charged ions reached their peak intensities earlier. This demonstrated that the higher charged ions had higher velocities and the different charged ions were separated during the expansion process. The kinetic energy corresponding to the velocity of the ions was found to increase exponentially with ionic charge state which was related to the acceleration of the dynamic plasma sheath.

  20. Characterization of trans-dioxotechnetium(V) and technetium(II)phosphine excited states and spectroelectrochemical detection of pertechnetate

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A.; Del Negro, Andy S.; Wang, Zheming; Hubler, Timothy L.; Heineman, William R.; Seliskar, Carl J.; Sullivan, Brian P.

    2006-06-01

    We report the first examples of excited-state luminescence from technetium complexes. We have examined a series of trans-dioxo complexes of Tc(V) and a Tc(I/II) phosphine complex and compare their respective photophysical properties with the corresponding rhenium analogues. When excited with a 415 nm laser, the Tc(V) complexes luminesce in the 700-800 nm range and have excited state lifetimes in the range of several microseconds at room temperature. The low-temperature luminescence spectra of the technetium complexes have also been investigated. Distinct vibrational band progressions are resolved in the low-temperature luminescence spectra. Excited state lifetimes at 5 K vary between tens of microseconds to several milliseconds for the dioxo-technetium complexes. In addition, a previously known Tc(I) complex, [Tc(DMPE) 3]+ which has been used as a radiography imaging agent has been demonstrated in our labs to fluoresce in the visible wavelength region upon a one-electron reversible oxidation to form the Tc(II), [Tc(DMPE)3]2+ complex in aqueous solution. The luminescence of [Tc(DMPE)3]2+ was observed by illuminating the solution complex with a 404 nm excitation while performing the reversible electrochemical experiment. In a recent application, we have focused on making thin chemically-selective films for sensing radioactive technetium compounds and in this effort have developed a fluorescence-based spectroelectrochemical sensor. Characterization of the new dioxo-technetium(V) and technetium(II)phosphine excited states as well as application of the respective chromophores for use in a spectroelectrochemical sensor for pertechnetate will be discussed.

  1. Excited-State Absorption of 4’-(5’’’-R-PYRIMIDYL)-2,2’:6’,2’’-Terpyridyl Platinum(II) Phenylacetylide Complexes (Preprint)

    Science.gov (United States)

    2010-02-01

    was tracked during the laser irradiation in this model. The ground-state absorption cross-section obtained from the UV-Vis absorption measurement , the...singlet excited-state lifetime from the decay of the fs transient absorption measurement , and the triplet excited-state lifetime and quantum yield...from the ns transient 4 absorption measurement were used as the input parameter to fit the ns and ps Z-scan data simultaneously. The set of the

  2. Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils

    Science.gov (United States)

    Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.

    2017-01-01

    This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…

  3. Deformation change in light iridium nuclei from laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Verney, D.; Le Blanc, F.; Obert, J.; Oms, J.; Puteaux, J.C.; Roussiere, B.; Sauvage, J. [IN2P3-CNRS/Universite Paris Sud-XI, Institut de Physique Nucleaire, Orsay Cedex (France); Cabaret, L.; Duong, H.T.; Pinard, J. [CNRS, Laboratoire Aime Cotton, Orsay Cedex (France); Crawford, J.E.; Lee, J.K.P. [McGill University, Physics Department, Montreal (Canada); Fricke, B.; Rashid, K. [Institut fuer Theoretische Physik der Universitaet Kassel, Kassel (Germany); Genevey, J.; Ibrahim, F. [IN2P3-CNRS/Universite Joseph Fourier-Grenoble I, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Cedex (France); Huber, G.; Krieg, M.; Sebastian, V. [Institut fuer Physik der Universitaet Mainz, Mainz (Germany); Le Scornet, G.; Lunney, D. [IN2P3-CNRS/Universite Paris Sud-XI, Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay Cedex (France)

    2006-12-15

    Laser spectroscopy measurements have been performed on neutron-deficient and stable Ir isotopes using the COMPLIS experimental setup installed at ISOLDE-CERN. The radioactive Ir atoms were obtained from successive decays of a mass-separated Hg beam deposited onto a carbon substrate after deceleration to 1kV and subsequently laser desorbed. A three-color, two-step resonant scheme was used to selectively ionize the desorbed Ir atoms. The hyperfine structure (HFS) and isotope shift (IS) of the first transition of the ionization path 5d{sup 7}6s{sup 24}F{sub 9/2}{yields}5d{sup 7}6s6p{sup 6}F{sub 11/2} at 351.5nm were measured for {sup 182-189}Ir, {sup 186}Ir{sup m} and the stable {sup 191,193}Ir. The nuclear magnetic moments {mu}{sub I} and the spectroscopic quadrupole moments Q{sub s} were obtained from the HFS spectra and the change of the mean square charge radii from the IS measurements. The sign of {mu}{sub I} was experimentally determined for the first time for the masses 182{<=}A{<=}189 and the isomeric state {sup 186}Ir{sup m}. The spectroscopic quadrupole moments of {sup 182}Ir and {sup 183}Ir were measured also for the first time. A large mean square charge radius change between {sup 187}Ir and {sup 186}Ir{sup g} and between {sup 186}Ir{sup m} and {sup 186}Ir{sup g} was observed corresponding to a sudden increase in deformation: from {beta}{sub 2}{approx_equal}+0.16 for the heavier group A = 193, 191, 189, 187 and 186m to {beta}{sub 2}{>=}+0.2 for the lighter group A=186g, 185, 184, 183 and 182. These results were analyzed in the framework of a microscopic treatment of an axial rotor plus one or two quasiparticle(s). This sudden deformation change is associated with a change in the proton state that describes the odd-nuclei ground state or that participates in the coupling with the neutron in the odd-odd nuclei. This state is identified with the {pi}3/2 {sup +}[402 ] orbital for the heavier group and with the {pi}1/2{sup -}[541 ] orbital stemming from the 1h

  4. Prototropic studies in vitreous and in solid phases: Pyranine and 2-naphthol excited state proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fátima Aparecida das Chagas [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Rezende, Eduardo Triboni [Universidade Nove de Julho, São Paulo, SP (Brazil); Filho, Décio Briotto [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Brito Rezende, Daisy de [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Cuccovia, Iolanda Midea [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Gome, Ligia Ferreira [Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Silva, Mauro Francisco Pinheiro da [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); and others

    2014-02-15

    Excited state proton transfer processes in vitreous glasses and in solid mixtures are investigated by steady state fluorimetry and laser flash photolysis kinetic studies with the photoacids pyranine and 2-naphthol. Glasses were derived from TEOS by the sol–gel condensation process and hydrated solid mixtures from NaCl or KH{sub 2}PO{sub 4}/K{sub 2}HPO{sub 4} crystals. The extent of the water content necessary for the reaction is determined. Shrinkage of TEOS derived monoliths from water loss leads to an increase in proton transfer extent due to the increase in local concentrations of accepting and donor buffer species, but the concomitant increase in the ionic strength actuates in an opposite direction. Furthermore, water losses by aging of air-exposed gel goes to a critical 20% weight fraction, beyond it proton transfer reactions are hindered. Similar studies with solid NaCl or solid phosphate buffer mixtures demonstrated the same critical water level indicating that free water molecules are crucial for the proton to escape from the original cage where the geminate ion pair [–||RO{sup −⁎}H{sup +}||–] is formed and can undergo coupled proton transfer reactions. -- Highlights: • Pyranine and 2-naphthol excited state proton transfer in SiO{sub 2} gel, solid phosphate buffer and NaCl. • Sol–gel formation leads to contraction and concentration of donor and accepting species. • 20% weight fraction water is required for the ESPT to go forward.

  5. New Rh2(II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity.

    Science.gov (United States)

    Whittemore, Tyler J; Sayre, Hannah J; Xue, Congcong; White, Travis A; Gallucci, Judith C; Turro, Claudia

    2017-10-18

    The new heteroleptic paddlewheel complexes cis-[Rh 2 (μ-form) 2 (μ-np) 2 ][BF 4 ] 2 , where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh 2 (μ-form) 2 (μ-npCOO) 2 (npCOO - = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λ max = 300 nm, ε = 20 300 M -1 cm -1 ) and visible regions (λ max = 640 nm ε = 3500 M -1 cm -1 ), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were used to characterize the identity and dynamics of the excited states, where singlet and triplet Rh 2 /form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO - complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E( 3 ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ∼800 nm.

  6. Laser Doppler spectroscopy of testes after unilateral orchiopexy.

    Science.gov (United States)

    de Laffolie, Jan; Engel, Veronika; Turial, Salmai

    2015-04-01

    Undescended testes are the most common urogenital malformation in boys. Impaired microcirculation is among other factors addressed as a potential complication of surgery and scar formation, leading to long-term suboptimal results. Our aim was to compare the postoperative microcirculation in operated versus non-operated contralateral testis groups after unilateral orchiopexies versus a healthy control cohort. Ninety-nine consecutive patients were included after unilateral orchiopexy procedures at the age of 3.5 years (±2.9 years) at a single center for pediatric surgery. Eight-five patients were examined with a combination of laser Doppler (blood flow determination) and white-light spectroscopy (oxygen saturation and hemoglobin amount determinations) to determine the microcirculation at two different depth levels non-invasively. All relevant surgery data were obtained retrospectively. The right side was operated in 53.5% of cases. Previous hormone treatment had been prescribed in 46.5%. There were no significant differences in perfusion measurements between patients with previous hormone therapy and patients without. There was no significant difference in age and clinical pubertal stage between groups; however, 65% of patients underwent surgery after their second birthday. When comparing oxygen saturation (So2), relative hemoglobin (rHb), flow, and velocity in the operated testis with the contralateral testis of the same patients, we found significantly higher flows and velocities for the contralateral testes (p = 0.041, p = 0.022). Similar higher flows and velocities were found in the healthy controls (p testes within the range but a rather high incidence of wound infections. The combination of Doppler and white-light spectroscopy was easily applicable and produced reliable data at 2 and 8 mm depth simultaneously in a standardized setting. After orchiopexy, differences were found in the microcirculation between the operated and contralateral testes or healthy

  7. Nanoparticle detection in aqueous solutions using Raman and Laser Induced Breakdown Spectroscopy

    NARCIS (Netherlands)

    Sovago, M.; Buis, E.-J.; Sandtke, M.

    2013-01-01

    We show the chemical identification and quantification of the concentration and size of nanoparticle (NP) dispersions in aqueous solutions by using a combination of Raman Spectroscopy and Laser Induced Breakdown Spectroscopy (LIBS). The two spectroscopic techniques are applied to demonstrate the NP

  8. [Comparison of quasi-continuous and continuous tunable diode laser absorption spectroscopy for gas detection].

    Science.gov (United States)

    Du, Zhen-Hui; Gao, Dong-Yu; Qi, Ru-Bin; Xu, Xiao-Bin; Jiao, Meng

    2012-06-01

    The theoretical analysis of the direct absorption spectroscopy, the continuous modulation spectroscopy and the quasi-continuous modulation spectroscopy was shown and the corresponding experiments were carried out in order to choose the adequate scheme of the laser modulation spectroscopy to satisfy different requirements of the detection. CO2 gas with different concentrations was detected under the same experimental conditions by using the three different modulation techniques with the same laser. Technical characteristics, signal features and detection limits were compared respectively. Results showed that the detection limit of the quasi-continuous modulation spectroscopy was approaching to that of the continuous modulation spectroscopy. However the linear distortion of the detection signal was obvious, because of the effects of laser energy intermittent and parasitic amplitude modulation on the line shape. Therefore the quasi-continuous modulation spectroscopy is not suitable for the pressure and flow measurements, which closely depend on the line shape. This work has provided reference for selections of the laser modulation spectroscopy.

  9. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase.

    Science.gov (United States)

    Snellenburg, Joris J; Laptenok, Sergey P; DeSa, Richard J; Naumov, Panče; Solntsev, Kyril M

    2016-12-21

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time-resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH-dependent emission to a single chemical species would be an oversimplification.

  10. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  11. Using Diffusion Monte Carlo to Probe Rotational Excited States

    Science.gov (United States)

    Petit, Andrew S.; McCoy, Anne B.

    2009-06-01

    Since its inception in 1975 by Anderson, has been successfully applied to a wide range of electronic and vibrational problems. In the latter case, it has been shown to be a powerful method for studying highly fluxional systems exhibiting large amplitude vibrational motions. We report here our recent work developing a new DMC algorithm capable of treating rotational excited states. We first develop the appropriate coordinates, nodal structures, and re-crossing corrections for this problem. Then, using H_3O^+ and D_3O^+ as model systems, we show that our method can successfully describe a range of rotational states from mid0,0,0> to {1}/{√{2}} (mid10,10,0 > + mid 10,-10,0 >). In particular, we examine the combined effects of rotational and zero-point vibrational motion on the geometric structure of the molecules. Finally, we find the mid 10,0,0 > state to be somewhat problematic but show that the problem is straightforward to identify and has a well-defined solution. J. B. Anderson, J. Chem. Phys., 63, 1499 (1975). X. Huang, S. Carter, and J. Bowman, J. Chem. Phys., 118, 5431 (2003).

  12. Beam-line systems for pump-probe photoelectron spectroscopy using SR and laser

    CERN Document Server

    Kamada, M; Takahashi, K; Doi, Y I; Fukui, K; Kinoshita, T; Haruyama, Y; Asaka, S; Fujii, Y; Itoh, M

    2001-01-01

    Combined systems for photoelectron spectroscopy using synchrotron radiation (SR) and laser have been constructed at BL5A and BL6A2 in the UVSOR facility, Okazaki. The systems consist of photoelectron spectrometers with high performance, mode-locked lasers, and timing electronic circuits. The laser pulses with repetition frequency of 90 MHz are synchronized with the SR pulses. An upgrade project to install a micro-ESCA at BL6A2, which is now in progress, is also reported.

  13. Laser-Interferometric Creep Rate Spectroscopy of Polymers

    Science.gov (United States)

    Bershtein, Vladimir A.; Yakushev, Pavel N.

    Laser-interferometric creep rate meter (LICRM) and creep rate spectroscopy (CRS), as an original high-resolution method for discrete relaxation spectrometry and thermal analysis, were developed in the authors' Materials Dynamics Laboratory at Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Saint-Petersburg). In the last few decades they have been successfully applied to solving various problems of polymer physics and materials science, especially being combined with DSC, structural, and other techniques. CRS involves measuring ultra-precisely a creep rate at small tensile or compressive stress, typically much lower than the yield stress, as a function of temperature, over the range from 100 to 800 K. LICRM setup allows one to register precisely creep rates on the basis of deformation increment of 150-300 nm. The survey describes this method and summarizes the results of numerous studies performed with the LICRM setup and CRS technique for different bulk polymeric materials, films, or thin fibers. This approach provided new experimental possibilities superior in resolution and sensitivity compared to the conventional relaxation spectrometry techniques. Among such possibilities are discrete analysis of dynamics; creep on submicro-, micro- and meso-scales; revealing relations between stepwise microplasticity and morphology; kinetic information on creep at any temperature and deformation; polymer dynamics at interfaces; analysis of microplasticity, relaxations, and phase transitions in brittle materials; using creep rate spectra for non-destructive prediction of temperature anomalies in mechanical behavior of materials, etc. Considerable attention has been paid to combined CRS/DSC analysis of the peculiarities of segmental dynamics, nanoscale dynamic, and compositional heterogeneity in different kinds of complex polymer systems and nanocomposites.

  14. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    Science.gov (United States)

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Precision Spectroscopy of Hydrogen and Femtosecond Laser Frequency Combs

    Science.gov (United States)

    Udem, Thomas

    2006-03-01

    A femtosecond frequency comb is a simple and compact tool that allows the phase coherent connection of the radio frequency domain (below 100 GHz) with the optical domain (above 200 THz). It greatly simplified high precision optical frequency measurements and provides the long awaited clockwork mechanism for an all-optical atomic clock. We have used such a frequency comb to measure the absolute frequency of the 1S-2S two-photon transition in atomic hydrogen, i.e. comparing it with the Cs ground state hyperfine splitting. By comparing data taken in 2003 with earlier measurements in 1999 we can set an upper limit on the variation of the 1S-2S transition frequency of (-29 ±57) Hz within 44 months. To derive limits on the drift rates of fundamental constant such as the fine structure constant, we combine these measurements with other optical frequency measurements in Hg^+ and in Yb^+ performed at NIST, Boulder/USA and at PTB, Braunschweig/Germany respectively. This combined method gives precise and separate restrictions for the fractional time variation of the fine structure constant and the Cs nuclear magnetic moment measured in Bohr magnetons. The latter is a measure of the drift rate of the strong interaction. We also report on efforts to convert the frequency comb technology to much shorter wavelength. Based on intra cavity high harmonic generation an XUV (up to 60 nm) frequency comb is generated with a repetition rate of more than 100 MHz useful for high resolution laser spectroscopy in this region.

  16. Tm,Ho:YAG laser with tunable range of 2.08-2.12 microns and its applications to spectroscopy

    Science.gov (United States)

    Asai, Kazuhiro; Itabe, Toshikazu

    1992-01-01

    In recent advanced lasers, 2 micron solid-state lasers such as Tm:YAG and Ho:YAG lasers are very attractive for laser radar remote sensing technologies because of eye safety, realizations of all solid-state laser pumped by diode laser and smaller dimension, tunability of lasing wavelength, possibility of coherent detection, etc. Featuring these advantages, 2 micron lasers have been candidated as laser transmitters for use in water vapor Differential Absorption Lidar (DIAL), laser altimeter, Doppler wind sensor, Mie lidar, etc. Characterization of a tunable Cr, Tm, Ho:YAG laser and its applications to spectroscopy concerning absorption and reflectance are reported.

  17. Interference through the resonant Auger process via multiple core-excited states

    Science.gov (United States)

    Chatterjee, Souvik; Nakajima, Takashi

    2017-12-01

    We theoretically investigate the resonant Auger process via multiple core-excited states. The presence of multiple core-excited states sets off interference into the common final continuum, and we show that the degree of interference depends on the various parameters such as the intensity of the employed x-ray pulse and the lifetimes of the core-excited states. For the specific examples we employ the double (1 s-13 p and 1 s-14 p ) core-excited states of Ne atom and numerically solve the time-dependent Schrödinger equation to demonstrate that the energy-resolved electron spectra clearly exhibit the signature of interference.

  18. New yrast excited states of the N=84 nucleus {sup 142}Ce observed in deep inelastic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Zhang, Y.H.; Zhou, X.H.; Liu, M.L.; Luo, W.J.; Pan, Q.Y.; Gan, Z.G. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Hayakawa, T.; Oshima, M.; Toh, Y.; Shizima, T.; Hatsukawa, Y.; Osa, A.; Ishii, T. [Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Sugawara, M. [Chiba Institute of Technology, Narashino, Chiba (Japan)

    2002-03-01

    Excited states of {sup 142}Ce, populated in deep inelastic reactions of {sup 82}Se projectiles bombarding {sup 139}La target, have been studied up to medium spins using in-beam {gamma} spectroscopy techniques. Three new levels have been identified at 2625, 2995, 3834 keV, and assigned as 8{sup +}, 9{sup (-)} and 11{sup (-)}, respectively. These new yrast states follow closely the level systematics of the even mass N=84 isotones. Their structures have been discussed with the help of empirical shell model calculations. (orig.)

  19. Photo-vibrational spectroscopy using quantum cascade laser and laser Doppler vibrometer

    Science.gov (United States)

    Liu, Huan; Hu, Qi; Xie, Jiecheng; Fu, Yu

    2017-06-01

    Photoacoustic/photothermal spectroscopy is an established technique for detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity sensor coupled with a lock-in amplifier, limiting the technique to applications in a controllable laboratory environment. Hence, this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment in short and long standoff distances demonstrated that the LDV is a capable sensor for chemical detection in an open environment.

  20. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    Science.gov (United States)

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen (1O2) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1O2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1O2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1O2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1O2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  1. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  2. Infrared spectroscopy of laser-irradiated dental hard tissues using the Advanced Light Source

    Science.gov (United States)

    Fried, Daniel; Breunig, Thomas

    2001-04-01

    FTIR spectroscopy used in the specular reflectance mode is well suited for resolving thermally induced changes in dental hard tissue as a result of laser irradiation. High spatial resolution is achievable with a high brightness synchrotron radiation source such as the ALS at Lawrence Berkeley National Laboratory. IR spectra of modified enamel were acquired after laser ablation using several laser wavelengths from the UV to the mid-IR. Specific areas of laser ablation craters were probed non-destructively with 10-micrometers spatial resolution. The chemical composition of the crater walls deviates markedly from that of hydroxyapatite after Er:YAG and CO2 laser irradiation without added water. New mineral phases were resolved that have not been previously observed using conventional IR spectroscopy.

  3. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz....

  4. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-06-01

    A laser-induced breakdown spectroscopy (LIBS) system targeting for the in vivo analysis of tooth enamel is described. The system is planned to enable real-time analysis of teeth during laser dental treatment by utilizing a hollow optical fiber that transmits both Q-switched Nd:YAG laser light for LIBS and infrared Er:YAG laser light for tooth ablation. The sensitivity of caries detection was substantially improved by expanding the spectral region under analysis to ultraviolet (UV) light and by focusing on emission peaks of Zn in the UV region. Subsequently, early caries were distinguished from healthy teeth with accuracy rates above 80% in vitro.

  5. Two-dimensional fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV.

    Science.gov (United States)

    Tseng, Chien-hung; Sándor, Péter; Kotur, Marija; Weinacht, Thomas C; Matsika, Spiridoula

    2012-03-22

    We compare two-dimensional (2D) ultrafast Fourier transform spectroscopy measurements in the deep UV (262 nm) for adenine and uracil in solution. Both molecules show excited-state absorption on short time scales and ground-state bleaching extending for over 1 ps. While the 2D spectrum for uracil shows changes in the center of gravity during the first few hundred femtoseconds, the center of gravity of the 2D spectrum for adenine does not show similar changes. We discuss our results in light of ab initio electronic structure calculations. © 2011 American Chemical Society

  6. Comparing predictive ability of Laser-Induced Breakdown Spectroscopy to Near Infrared Spectroscopy for soil texture and organic carbon determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Gislum, René

    and texture was tested and compared with near infrared spectroscopy (NIRS) technique and traditional laboratory analysis. Calibration models were developed on 50 topsoil samples. For all properties except silt, higher predictive ability of LIBS than NIRS models was obtained. Successful calibrations indicate......Soil organic carbon (SOC) and texture have a practical value for agronomy and the environment. Thus, alternative techniques to supplement or substitute for the expensive conventional analysis of soil are developed. Here the feasibility of laser-induced breakdown spectroscopy (LIBS) to determine SOC...

  7. Experimental investigation of the hyperfine structure of praseodymium-I lines using laser spectroscopy

    Science.gov (United States)

    Khan, Shamim; Gamper, Bettina; Iqbal, S. Tanweer; Windholz, Laurentius

    2011-05-01

    The electronic ground state configuration of praseodymium 59Pr141 is [Xe] 4f3 6s2 , with ground state level 4I9 / 2 . Our research is mainly devoted to find previously unknown energy levels by the investigation of spectral lines on the basis of their hyperfine (hf) structure. In a hollow cathode discharge lamp, praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The laser induced fluorescence (LIF) signal is then recorded using lock-in detection techniques. From the recorded hyperfine structure we determine J-values and hyperfine constants A of the combining levels. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of the involved new levels. Up to now we have discovered a large number of previously unknown energy levels with various angular momentum values. We present here the characteristic data (energy, parity, angular momentum J and magnetic hyperfine constant A) of ca. 40, until now unknown energy levels.

  8. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  9. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    Science.gov (United States)

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Hussain, T; Gondal, M A

    2008-06-01

    Laser Induced Breakdown Spectroscopy (LIBS) System was developed locally for determination of toxic metals in liquid samples and the system was tested for analysis of waste water collected from dairy products processing plant. The plasma was generated by focusing a pulsed Nd: YAG laser at 1064 nm on waste water samples. Optimal experimental conditions were evaluated for improving the sensitivity of our LIBS system through parametric dependence investigations. The Laser-Induced Breakdown Spectroscopy (LIBS) results were then compared with the results obtained using standard analytical technique such as Inductively Coupled Plasma Emission Spectroscopy (ICP). The evaluation of the potential and capabilities of LIBS as a rapid tool for liquid sample analysis are discussed in brief.

  11. Properties of the Excited States of Molecular Ions.

    Science.gov (United States)

    1981-04-13

    photodetachinent cross section fortDid, wthe pose onl r y loly remo yntralf measured in 0,. The ratio of the relative Laser powers Izaton ithposiiveion or y...also observed. remain bound to it. The sm 1% n s been sported in earlier studies" of The observed ?Og 0,O phatodestruction to too large native ins In NO

  12. Calibration-free laser-induced breakdown spectroscopy for ...

    Indian Academy of Sciences (India)

    LIBS) for quantitative analysis of materials, illustrated by CF-LIBS applied to a brass ... Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104, India; Laser and Plasma Technology Division, Bhabha Atomic Research ...

  13. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  14. Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures

    Energy Technology Data Exchange (ETDEWEB)

    Reyhani, A. [Phys. Dept., Faculty of Science, Imam Khomeini International University, Qazvin, 34149-16818 (Iran, Islamic Republic of); Mortazavi, S.Z. [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Parvin, P., E-mail: parvin@aut.ac.ir [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mahmoudi, Z. [Phys. Dept., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2012-08-15

    Methane decomposition is investigated during Pd-assisted laser induced plasma in the controlled chamber at various pressures using Q-switched Nd:YAG laser. Real time LIBS monitoring is applied to reveal the involved mechanisms during methane decomposition by inspecting the plasma parameters at mano-metric pressures of 1 to 10 mbar. The dependence of electron density and plasma temperature with pressure is also studied. It is shown that the plasma recreates higher hydrocarbons during the decomposition of methane. In addition, Fourier transform infrared spectroscopy, gas chromatography, scanning electron microscopy and transmission electron microscopy are applied to support the findings. - Highlights: Black-Right-Pointing-Pointer Simultaneous laser induced breakdown spectroscopy Black-Right-Pointing-Pointer Pd-assisted methane decomposition Black-Right-Pointing-Pointer Nanosecond pulsed laser decomposition of methane Black-Right-Pointing-Pointer Generation of higher hydrocarbon Black-Right-Pointing-Pointer Dependence of electron density and temperature of induced plasma with pressure.

  15. Spectroscopy of laser-produced plasmas: Setting up of high ...

    Indian Academy of Sciences (India)

    induced breakdown spectroscopy system ... We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified charge coupled device (ICCD) to detect and quantify trace ...

  16. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  17. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  18. An all-solid state laser system for the laser ion source RILIS and in-source laser spectroscopy of astatine at ISOLDE, CERN

    CERN Document Server

    Rothe, Sebastian; Nörtershäuser, W

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at ISOLDE, CERN, by the addition of an all-solid state tuneable titanium: sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE, CERN, and at ISAC, TRIUMF, radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  19. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M., E-mail: Masaki.Hori@mpq.mpg.de [Max-Planck-Institut fuer Quantenoptik (Germany); Dax, A. [University of Tokyo, Department of Physics (Japan); Soter, A. [Max-Planck-Institut fuer Quantenoptik (Germany)

    2012-12-15

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth {Gamma}{sub pl} {approx} 6 MHz, pulse energy 50-100 mJ, and output wavelength {lambda} = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth {Gamma}{sub pl} {approx} 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  20. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Science.gov (United States)

    Hori, M.; Dax, A.; Soter, A.

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  1. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  2. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  3. Spectroscopy based on target luminescence caused by interaction with ultrashort UV laser pulses

    CERN Document Server

    Ionin, A A; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Fokina, N A

    2015-01-01

    We proposed remote spectroscopy approach consisted in luminescence light utilization. During interaction with different targets ultrashort UV laser pulse generates broadband spectrum light, which can be applied for remote spectroscopy purposes. We selected appropriate target materials to cover required spectral range from 300 to 600 nm and provided an example of spectrum reconstruction of known material. Obtained spectra are in a good correlation with calculated ones.

  4. Coherence Measurements for Excited to Excited State Transitions in Barium

    Science.gov (United States)

    Trajmar, S.; Kanik, I.; Karaganov, V.; Zetner, P. W.; Csanak, G.

    2000-01-01

    Experimental studies concerning elastic and inelastic electron scattering by coherently ensembles of Ba (...6s6p (sub 1)P(sub 1)) atoms with various degrees of alignment will be described. An in-plane, linearly-polarized laser beam was utilized to prepare these target ensembles and the electron scattering signal as a function of polarization angle was measured for several laser geometries at fixed impact energies and scattering angles. From these measurements, we derived cross sections and electron-impact coherence parameters associated with the electron scattering process which is time reverse of the actual experimentally studied process. This interpretation of the experiment is based on the theory of Macek and Herte. The experimental results were also interpreted in terms of cross sections and collision parameters associated with the actual experimental processes. Results obtained so far will be presented and plans for further studies will be discussed.

  5. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    Science.gov (United States)

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  6. Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states.

    Science.gov (United States)

    Capitelli, M; Celiberto, R; Gorse, C; Laricchiuta, A; Pagano, D; Traversa, P

    2004-02-01

    A study of the dependence of transport coefficients (thermal conductivity, viscosity, electrical conductivity) of local thermodynamic equilibrium H2 plasmas on the presence of electronically atomic excited states, H(n), is reported. The results show that excited states with their "abnormal" cross sections strongly affect the transport coefficients especially at high pressure. Large relative errors are found when comparing the different quantities with the corresponding values obtained by using ground-state transport cross sections. The accuracy of the present calculation is finally discussed in the light of the selection of transport cross sections and in dependence of the considered number of excited states.

  7. Evaluation of laser-induced thin-layer removal by using shadowgraphy and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rabasović, M. S.; Šević, D.; Lukač, N.; Jezeršek, M.; Možina, J.; Gregorčič, P.

    2016-03-01

    Shadow photography and laser-induced breakdown spectroscopy (LIBS) are studied as methods for monitoring the selective removal of thin (i.e., under 100 μm) layers by laser ablation. We used a laser pulse of 5 ns and 16 mJ at 1064 nm to ablate an 18-μm-thin copper layer from the fiberglass substrate. On the basis of shadowgraphs of the laser-induced shock waves, we measured the optodynamic energy-conversion efficiency, defined as the ratio between the mechanical energy of the shock wave and the excitation-pulse energy. Our results show that this efficiency is significantly higher for the laser pulse-copper interaction than for the interaction between the excitation pulse and the substrate. LIBS was simultaneously employed in our experimental setup. The optical emission from the plasma plume was collected by using a spectrograph and recorded with a streak camera. We show that advancing of laser ablation through the copper layer and reaching of the substrate can be estimated by tracking the spectral region between 370 and 500 nm. Therefore, the presented results confirm that LIBS method enables an on-line monitoring needed for selective removal of thin layers by laser.

  8. Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence.

    Science.gov (United States)

    Li, Changmao; Hao, Zhongqi; Zou, Zhimin; Zhou, Ran; Li, Jiaming; Guo, Lianbo; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2016-04-18

    Boron (B) is widely applied in microalloying of metals. As a typical light element, however, determination of boron in alloys with complex matrix spectra is still a challenge for laser-induced breakdown spectroscopy (LIBS) due to its weak line intensities in the UV-visible-NIR range and strong spectral interference from the matrix spectra. In this study, a wavelength-tunable laser was used to enhance the intensities of boron lines selectively. The intensities of B I 208.96 nm from boron plasmas were enhanced approximately 3 and 5.8 times while the wavelength-tunable laser was tuned to 249.68 and 249.77 nm, respectively. Utilizing the selective enhancement effect, accurate determinations of trace boron in nickel-based superalloys and steels were achieved by laser-induced breakdown spectroscopy assisted by laser-induced fluorescence (LIBS-LIF), with limits of detection (LoDs) of 0.9 and 0.5 ppm, respectively. The results demonstrated that LIBS-LIF can hopefully be used in boron determinations and has great potential for improving the ability of LIBS to determine light elements in alloys with a complex matrix.

  9. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  10. Analysis of Trace Elements in Leaves Using Laser-Induced Breakdown Spectroscopy

    OpenAIRE

    ZHANG, XU; Yao, Mingyin; Liu, Muhua; Lei, Zejian

    2011-01-01

    Part 1: GIS, GPS, RS and Precision Farming; International audience; Laser-Induced Breakdown Spectroscopy (LIBS) is a new way to analyze the plant ecology. The experimental used a Q-switched Nd:YAG laser to be the laser source and equipped with an eight-channel model spectrometer which’s wavelength range between 200 and 1100 nm. Studying the spectrum of the air-drying leaves and the nature leaves and detected the elements which contain Fe, Ca, Na, Mg, K, Cu, Al and Mn. Displaying the list whic...

  11. High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy

    Science.gov (United States)

    Pierścińska, Dorota; Marona, Łucja; Pierściński, Kamil; Wiśniewski, Przemysław; Perlin, Piotr; Bugajski, Maciej

    2017-02-01

    In this paper accurate measurements of temperature distribution on the facet of GaN-based diode lasers are presented as well as development of the instrumentation for high-resolution thermal imaging based on thermoreflectance. It is shown that thermoreflectance can be successfully applied to provide information on heat dissipation in these devices. We demonstrate the quantitative measurements of the temperature profiles and high-resolution temperature maps on the front facet of nitride lasers and prove that thermoreflectance spectroscopy can be considered as the accurate and fast nondestructive tool for investigation of thermally induced degradation modes of GaN lasers.

  12. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  13. First ionization potential measurements using laser-induced breakdown spectroscopy

    OpenAIRE

    Sherbini, Ahsraf M. EL; Faham, Mohamed M. EL; Parigger, Christian G.

    2016-01-01

    The first ionization potential of neutral atoms is determined from thresholds of laser-induced optical breakdown. Bulk material ablation plasma of aluminum, silver, lead, indium and copper is created in laboratory air with focused, 5-ns pulsed Nd:YAG, 1064 nm IR radiation. At fixed spot size of 2 $\\pm$ 0.1 mm, the laser fluence is varied from 16 to 3 J/cm$^2$. The first ionization potentials of the lines Al I 396.2, Ag I 520.9, Pb I 405.8 and 406.2, In I 410.2 and Cu I 515.3 nm are measured t...

  14. Laser spectroscopy and photochemistry on metal surfaces, pt.1

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  15. Laser spectroscopy and photochemistry on metal surfaces, pt.2

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  16. Optical spectroscopy of emission from CN plasma formed by laser ablation

    Science.gov (United States)

    Riascos, H.; Franco, L. M.; Pérez, J. A.

    2008-10-01

    The characterization of a plasma plume is a key issue in laser ablation and deposition studies. The formation, composition and propagation of laser-produced plasmas used for pulsed laser deposition (PLD) of CN have been studied under film growth conditions. The plume was generated by focusing 1064 nm, 9 ns pulses from Nd:YAG laser on carbon target under nitrogen ambient. We investigated the different species, such as CII, CI, C2, NII and CN, in laser ablated CN plasma using optical emission spectroscopy. The spectral characteristics of the plasmas were measured to determine the plasma properties as gas pressure was changed from 10-5 to 90 mTorr. The intensities of molecular species did not depend on gas ambient whereas ion intensities did. The vibrational temperature shows dependence with gas pressure.

  17. Optical spectroscopy of emission from CN plasma formed by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Riascos, H; Franco, L M; Perez, J A [Departamento de Fisica, Universidad Tecnologica de Pereira, A A 097, Pereira (Colombia)], E-mail: hriascos@utp.edu.co

    2008-10-15

    The characterization of a plasma plume is a key issue in laser ablation and deposition studies. The formation, composition and propagation of laser-produced plasmas used for pulsed laser deposition (PLD) of CN have been studied under film growth conditions. The plume was generated by focusing 1064 nm, 9 ns pulses from Nd:YAG laser on carbon target under nitrogen ambient. We investigated the different species, such as CII, CI, C{sub 2}, NII and CN, in laser ablated CN plasma using optical emission spectroscopy. The spectral characteristics of the plasmas were measured to determine the plasma properties as gas pressure was changed from 10{sup -5} to 90 mTorr. The intensities of molecular species did not depend on gas ambient whereas ion intensities did. The vibrational temperature shows dependence with gas pressure.

  18. Determination of Different Metals in Steel Waste Samples Using laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. H. Bakry

    2007-12-01

    Full Text Available Elemental analysis of waste samples collected from steel products manufacturing plant (SPS located at industrial city of Jeddah, Saudi-Arabia has been carried out using Laser Induced Breakdown Spectroscopy (LIBS. The 1064 nm laser radiations from a Nd:YAG laser at an irradiance of 7.6  1010 W cm –2 were used. Atomic emission spectra of the elements present in the waste samples were recorded in the 200 – 620 nm region. Elements such as Fe, W, Ti, Al, Mg, Ca, S, Mn, and Na were detected in these samples. Quantitative determination of the elemental concentration was obtained for these metals against certified standard samples. Parametric dependences of LIBS signal intensity on incident laser energy and time delay between the laser pulse and data acquisition system were also carried out.

  19. Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser.

    Science.gov (United States)

    Hahn, J W; Park, C W; Park, S N

    1997-09-20

    We develop a modeless dye laser for broadband coherent anti-Stokes Raman spectroscopy (CARS) and investigate the operational characteristics of the modeless laser. The energy efficiency of the modeless laser is 6%, and the beam divergence is 0.65 mrad. We construct a compact movable CARS system with the modeless laser and a graphite tube furnace to assess the accuracy of the CARS temperature. It is found that the difference between the averaged CARS temperature and the radiation temperature measured with an optical pyrometer is <2% at a temperature range from 1000 to 2400 K. We also measure the averaged CARS temperature drift owing to the variation of the spectral distribution of the modeless laser, which is <1.5% during 5 h of operation.

  20. Standoff high energy laser induced oxidation spectroscopy (HELIOS)

    Science.gov (United States)

    Daigle, J.-F.; Pudo, D.; Théberge, F.

    2017-11-01

    High Energy Lasers (HELs) used for defense applications require operational distances ranging from few hundred meters to several kilometers. As the distance increases, the incident beam properties and, consequently, the anticipated effect delivered to the sample become less predictable. Therefore, the direct observation of the event induced by the laser can become an asset. In this paper, we propose a novel spectroscopic method that analyses in real time the spectral components present in the flames produced during the interaction of a HEL with a metallic piece at a long distance. This method was used on aluminum and carbon steel samples placed 200 m away from the laser system. It was discovered that the aluminum and iron oxides created as a by-product of the HEL reaction with the samples emitted clear fingerprint signatures that could be detected remotely using a spectroscopic receiver placed beside the HEL beam director. The real-time assessment of the laser-induced effect can be achieved by monitoring the temporal evolution of the oxide signatures, hence providing information to the operator about the reaction and the nature of the sample illuminated.

  1. Spectroscopy of laser-produced plasmas: Setting up of high ...

    Indian Academy of Sciences (India)

    . 2. Experimental methods. The schematic diagram of the LIBS set-up used for this study is shown in figure 1. The third harmonic of Nd:YAG laser (Spectra Physics PRO 230-10) with a pulse duration of 6 ns, pulse repetition frequency of 10 Hz ...

  2. Frequency comb laser spectroscopy in the vacuum-ultraviolet region

    NARCIS (Netherlands)

    Zinkstok, R.T.; Witte, S.; Ubachs, W.M.G.; Hogervorst, W.; Eikema, K.S.E.

    2006-01-01

    We demonstrate that the output of a frequency comb laser can be amplified and upconverted to the vacuum ultraviolet (vuv) in a gaseous medium while its phase coherence is maintained to a high degree (< 1 30 of a vuv cycle). The produced vuv pulses are well suited to perform frequency comb

  3. Calculation and optimization of sample identification by laser induced breakdown spectroscopy via correlation analysis

    NARCIS (Netherlands)

    Lentjes, M.; Dickmann, K.; Meijer, J.

    2007-01-01

    Linear correlation analysis may be used as a technique for the identification of samples with a very similar chemical composition by laser induced breakdown spectroscopy. The spectrum of the “unknown” sample is correlated with a library of reference spectra. The probability of identification by

  4. Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon

    Science.gov (United States)

    Gerhard, C.; Hermann, J.; Mercadier, L.; Loewenthal, L.; Axente, E.; Luculescu, C. R.; Sarnet, T.; Sentis, M.; Viöl, W.

    2014-11-01

    We demonstrate that elemental analysis of glass with a measurement precision of about 10% can be performed via calibration-free laser-induced breakdown spectroscopy. Therefore, plasma emission spectra recorded during ultraviolet laser ablation of different glasses are compared to the spectral radiance computed for a plasma in local thermodynamic equilibrium. Using an iterative calculation algorithm, we deduce the relative elemental fractions and the plasma properties from the best agreement between measured and computed spectra. The measurement method is validated in two ways. First, the LIBS measurements are performed on fused silica composed of more than 99.9% of SiO2. Second, the oxygen fractions measured for heavy flint and barite crown glasses are compared to the values expected from the glass composing oxides. The measured compositions are furthermore compared with those obtained by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It is shown that accurate LIBS analyses require spectra recording with short enough delays between laser pulse and detector gate, when the electron density is larger than 1017 cm- 3. The results show that laser-induced breakdown spectroscopy based on accurate plasma modeling is suitable for elemental analysis of complex materials such as glasses, with an analytical performance comparable or even better than that obtained with standard techniques.

  5. Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Junjuri, R.; Myakalwar, A.K.; Gundawar, M.K.

    2017-01-01

    Roč. 67, č. 6 (2017), s. 623-630 ISSN 0011-748X Institutional support: RVO:67985882 Keywords : Laser induced breakdown spectroscopy * Multivariate analysis * Principal component analysis * Explosive detection Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.500, year: 2016

  6. Laser-induced breakdown spectroscopy for quantification of heavy metals in soils and sediments

    CSIR Research Space (South Africa)

    Ambushe, AA

    2010-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS) will be used to determine the contents of heavy metals in soils and sediments. LIBS results will be compared with the results obtained by inductively coupled plasma-optical emission spectrometry (ICP...

  7. Laser-induced breakdown spectroscopy thickness measurements of films thinner than ablation rate

    Science.gov (United States)

    Nishijima, D.; Doerner, R. P.; Hollmann, E. M.; Miyamoto, M.

    2017-10-01

    A new laser-induced breakdown spectroscopy (LIBS) technique is proposed to measure the thickness of films thinner than the ablation rate. The film thickness dependence of the signal intensity is used as a calibration curve. It is demonstrated that calibration curves are successfully made for thin W films and (Fe, Cr, Ni) mixed-material films produced in a magnetron sputtering device.

  8. Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data.

    Science.gov (United States)

    Thoma, Eben D; Shores, Richard C; Thompson, Edgar L; Harris, D Bruce; Thorneloe, Susan A; Varma, Ravi M; Hashmonay, Ram A; Modrak, Mark T; Natschke, David F; Gamble, Heather A

    2005-05-01

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. Environmental Protection Agency (EPA) has developed a ground-based optical remote-sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transform infrared spectroscopy (OP-FTIR) has been the primary technique for acquisition of pollutant concentration data used in this emission measurement method. For a number of environmentally important compounds, such as ammonia and methane, open-path tunable diode laser absorption spectroscopy (OP-TDLAS) is shown to be a viable alternative to Fourier transform spectroscopy for pollutant concentration measurements. Near-IR diode laser spectroscopy systems offer significant operational and cost advantages over Fourier transform instruments enabling more efficient implementation of the measurement strategy. This article reviews the EPA's fugitive emission measurement method and describes its multipath tunable diode laser instrument. Validation testing of the system is discussed. OP-TDLAS versus OP-FTIR correlation testing results for ammonia (R2 = 0.980) and methane (R2 = 0.991) are reported. Two example applications of tunable diode laser-based fugitive emission measurements are presented.

  9. Fast single-photon avalanche diode arrays for laser Raman spectroscopy

    NARCIS (Netherlands)

    Blacksberg, J.; Maruyama, Y.; Charbon, E.; Rossman, G.R.

    2011-01-01

    We incorporate newly developed solid-state detector technology into time-resolved laser Raman spectroscopy, demonstrating the ability to distinguish spectra from Raman and fluorescence processes. As a proof of concept, we show fluorescence rejection on highly fluorescent mineral samples willemite

  10. A Simple Hubbard Model for the Excited States of $\\pi$ Conjugated -acene Molecules

    CERN Document Server

    Sadeq, Z S

    2015-01-01

    In this paper we present a model that elucidates in a simple way the electronic excited states of $\\pi$ conjugated -acene molecules such as tetracene, pentacene, and hexacene. We use a tight-binding and truncated Hubbard model written in the electron-hole basis to describe the low lying excitations with reasonable quantitative accuracy. We are able to produce semi-analytic wavefunctions for the electronic states of the system, which allows us to compute the density correlation functions for various states such as the ground state, the first two singly excited states, and the lowest lying doubly excited state. We show that in this lowest lying doubly excited state, a state which has been speculated as to being involved in the singlet fission process, the electrons and holes behave in a triplet like manner.

  11. Tracking the Excited-State Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry

    National Research Council Canada - National Science Library

    Luis Manuel Frutos; Tadeusz Andruniów; Fabrizio Santoro; Nicolas Ferré; Massimo Olivucci

    2007-01-01

    ...). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh...

  12. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    Science.gov (United States)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  13. High-resolution in-source laser spectroscopy in perpendicular geometry. Development and application of the PI-LIST

    Science.gov (United States)

    Heinke, R.; Kron, T.; Raeder, S.; Reich, T.; Schönberg, P.; Trümper, M.; Weichhold, C.; Wendt, K.

    2017-11-01

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 1011 atoms.

  14. Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183.

    Science.gov (United States)

    Joung, Joonyoung F; Kim, Sangin; Park, Sungnam

    2015-12-17

    Coumarin 183 (C183) was used as a photoacid to study excited-state proton transfer (ESPT) reactions. Here, we studied the effect of ions on the ESPT of C183 in aqueous NaCl solutions using a steady-state fluorescence spectroscopy and time-correlated single photon counting (TCSPC) method. The acid dissociation equilibrium of excited-state C183 and the activation energy for the ESPT of C183 were determined as a function of NaCl concentration. The change in the equilibrium constant was found to be correlated with the solvation energy of deprotonated C183. Frequency-resolved TCSPC signals measured at several temperatures were analyzed by using a global fitting analysis method which enabled us to extract all the rate constants involving the ESPT reaction and the spectra of individual species. The activation energy for the ESPT reaction of C183 was highly dependent on NaCl concentration. Quantum chemical calculations were used to calculate the local hydrogen-bond (H-bond) configurations around C183 in aqueous NaCl solutions. It was found that the activation energy for the ESPT was determined by the local H-bond configurations around C183 which were significantly influenced by the dissolved ions.

  15. Strategic modulation of the photonic properties of conjugated organometallic Pt-Ir polymers exhibiting hybrid CT-excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D

    2015-04-01

    Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study.

    Science.gov (United States)

    Banyasz, Akos; Douki, Thierry; Improta, Roberto; Gustavsson, Thomas; Onidas, Delphine; Vayá, Ignacio; Perron, Marion; Markovitsi, Dimitra

    2012-09-12

    The study addresses interconnected issues related to two major types of cycloadditions between adjacent thymines in DNA leading to cyclobutane dimers (TTs) and (6-4) adducts. Experimental results are obtained for the single strand (dT)(20) by steady-state and time-resolved optical spectroscopy, as well as by HPLC coupled to mass spectrometry. Calculations are carried out for the dinucleoside monophosphate in water using the TD-M052X method and including the polarizable continuum model; the reliability of TD-M052X is checked against CASPT2 calculations regarding the behavior of two stacked thymines in the gas phase. It is shown that irradiation at the main absorption band leads to cyclobutane dimers (TTs) and (6-4) adducts via different electronic excited states. TTs are formed via (1)ππ* excitons; [2 + 2] dimerization proceeds along a barrierless path, in line with the constant quantum yield (0.05) with the irradiation wavelength, the contribution of the (3)ππ* state to this reaction being less than 10%. The formation of oxetane, the reaction intermediate leading to (6-4) adducts, occurs via charge transfer excited states involving two stacked thymines, whose fingerprint is detected in the fluorescence spectra; it involves an energy barrier explaining the important decrease in the quantum yield of (6-4) adducts with the irradiation wavelength.

  17. Collinear laser spectroscopy of manganese isotopes using optical pumping in ISCOOL

    CERN Multimedia

    Marsh, B A; Neyens, G; Flanagan, K; Rajabali, M M; Reponen, M; Campbell, P; Procter, T J

    Recently, optical pumping of ions has been achieved inside an ion beam cooler-buncher. By illuminating the central axis of the cooler with laser light, subsequent decay populates selected ionic metastable states. This population enhancement is retained as the ion beam is delivered to an experimental station. In the case of collinear laser spectroscopy, transitions can then be excited from a preferred metastable level, rather than the ground-state. This proposal seeks to establish and develop the technique for ISCOOL. As a test of efficiency, this will be applied to the study of $^{55-66}$Mn isotopes using collinear laser spectroscopy-expanding an earlier study where the benefit of the technique was demonstrated. This will provide nuclear spins, magnetic-dipole and electric-quadrupole moments and changes in mean-square charge radii across N = 40 shell closure candidate and into a region where an onset of deformation, and a new "island of inversion" is predicted.

  18. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Vila, A. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Rebollar, E. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Garcia, J.F. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Castillejo, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)]. E-mail: marta.castillejo@iqfr.csic.es

    2005-08-31

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints.

  19. An effective method for trapping ion beams in superfluid helium for laser spectroscopy experiments

    Directory of Open Access Journals (Sweden)

    Yang X.F

    2014-03-01

    Full Text Available A novel laser spectroscopy technique -“OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher has been proposed. This method aimed to investigate the structure of exotic nuclei systematically by measuring nuclear spins and moments. For in-situ laser spectroscopy of atoms in He II, a method to trap atoms precisely at the observation region of laser is highly needed. In this work, a setup composed of a degrader, two plastic scintillators and a photon detection system is further tested and verified for adjusting and checking the stopping position of 84–87Rb beam. Details of the current setup, experimental results using this method are presented.

  20. Measurement of sulfur isotope compositions by tunable laser spectroscopy of SO2.

    Science.gov (United States)

    Christensen, Lance E; Brunner, Benjamin; Truong, Kasey N; Mielke, Randall E; Webster, Christopher R; Coleman, Max

    2007-12-15

    Sulfur isotope measurements offer comprehensive information on the origin and history of natural materials. Tunable laser spectroscopy is a powerful analytical technique for isotope analysis that has proven itself readily adaptable for in situ terrestrial and planetary measurements. Measurements of delta(34)S in SO2 were made using tunable laser spectroscopy of combusted gas samples from six sulfur-bearing solids with delta(34)S ranging from -34 to +22 per thousand (also measured with mass spectrometry). Standard deviation between laser and mass spectrometer measurements was 3.7 per thousand for sample sizes of 200 +/- 75 nmol SO(2). Although SO(2)(g) decreased 9% over 15 min upon entrainment in the analysis cell from wall uptake, observed fractionation was insignificant (+0.2 +/- 0.6 per thousand). We also describe a strong, distinct (33)SO(2) rovibrational transition in the same spectral region, which may enable simultaneous delta(34)S and Delta(33)S measurements.

  1. Size effect of water cluster on the excited-state proton transfer in aqueous solvent

    Science.gov (United States)

    Liu, Yu-Hui; Chu, Tian-Shu

    2011-03-01

    Time-dependent density functional theory (TDDFT) was used to investigate the excited-state proton transfer (ESPT) dynamics of 6-hydroxyquinolinium (6HQc) in aqueous solvent, resulting in the excited zwitterionic form (6HQz). The optimized excited-state energy profiles of 6HQc:(H 2O) n complexes have been calculated along the phenolic O sbnd H bond to simulate the minimum energy pathway (MEP) in the excited state. The results suggested that the threshold of the size of the water cluster is 3 for the excited-state proton transfer of 6HQc in aqueous solvent, since the conformation of the stable hydrated proton requires proton transferring to the second or deeper shell of water solvent. Moreover, the stability of the hydrated proton can be improved significantly by adding one more H 2O molecule to form an Eigen cation in the excited-state 6HQz:H 9O 4+. The effect of the size of water cluster on the proton transfer is investigated theoretically in the excited state for the first time.

  2. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  3. [Study on CO2 measurement using tunable multi-mode diode laser absorption spectroscopy].

    Science.gov (United States)

    Gao, Guang-Zhen; Chen, Bao-Xue; Hu, Bo; Long, Xiu-Hui; Li, Ai-Ping; Li, Rong

    2013-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) technology is a kind of fast time response, large-range, continuous on-line monitoring gas detection technique. It is the mainstream technology of gas detection. In this paper the multimode laser diode was used as light source. Multi-mode laser combined with correlation spectroscopy can improve the test reliability and stability. It can also conquer the problem of the central wavelength change of the single mode diode laser due to thermal or mechanical fluctuations in durable working process. A FP laser was used as the light source in this research. A multi-mode diode laser system based on correlation spectroscopy and wavelength modulation spectroscopy (TMDL-COSPEC-WMS) was used to measure carbon dioxide in ambient air around 1 570 nm. The carbon dioxide concentrations were derived from the relationship between the normalized WMS-2f signal peak heights of the measurement and reference signals which selected based on high signal to noise ratio and correlation coefficient. All measurements were performed with controlled carbon dioxide and nitrogen mixtures in which carbon dioxide concentrations range from 0. 6% to 30%. The calculation results showed that there was a high linear relationship between the measured and actual carbon dioxide concentration, the linearity was 0. 998 7 and the fitted slope was 1. 061+/-0. 016 8 respectively over the tested range. A detection limit of 335 ppm m was achieved. The standard deviation of 0. 036 7% was achieved using 20 successive measurements with each measurement time taking approximately 10 s during 20 minutes, which demonstrated good stability of the system. Good agreements between the measurements of the system and actual values confirm the accuracy and potential utility of the system for carbon dioxide detection.

  4. Detection of calculus by laser-induced breakdown spectroscopy (LIBS) using an ultra-short pulse laser system (USPL)

    Science.gov (United States)

    Schelle, F.; Brede, O.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.

    2011-03-01

    The aim of this study was to assess the detection of calculus by Laser Induced Breakdown Spectroscopy (LIBS). The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz at an average power of 5 W was used. Employing a focusing lense, intensities of the order of 1011 W/cm2 were reached on the tooth surface. These high intensities led to the generation of a plasma. The light emitted by the plasma was collimated into a fibre and then analyzed by an echelle spectroscope in the wavelength region from 220 nm - 900 nm. A total number of 15 freshly extracted teeth was used for this study. For each tooth the spectra of calculus and cementum were assessed separately. Comprising all single measurements median values were calculated for the whole spectrum, leading to two specific spectra, one for calculus and one for cementum. For further statistical analysis 28 areas of interest were defined as wavelength regions, in which the signal strength differed regarding the material. In 7 areas the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p Laser Induced Breakdown Spectroscopy is well suited as method for a reliable diagnostic of calculus. Further studies are necessary to verify that LIBS is a minimally invasive method allowing a safe application in laser-guided dentistry.

  5. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  6. Ultrafast excited-state dynamics in biological and in organised environments

    OpenAIRE

    Fürstenberg, Alexandre

    2007-01-01

    La dynamique d'états excités de sondes fluorescentes placées dans des environnements biologiques et organisés a été étudiée par spectroscopie optique stationnaire et par spectroscopie laser femtoseconde. En particulier, l'influence de tels environnements sur des processus ultrarapides tels que la solvatation, la relaxation vibrationnelle, l'inhibition de fluorescence et la dépolarisation de fluorescence a été suivie. Les systèmes étudiés sont : ( 1) les protéines avidine et streptavidine au l...

  7. Frequency stabilization of a 1083 nm fiber laser to ⁴He transition lines with optical heterodyne saturation spectroscopies.

    Science.gov (United States)

    Gong, W; Peng, X; Li, W; Guo, H

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable (4)He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10(-12)@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  8. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.; Guo, H., E-mail: hongguo@pku.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  9. Frequency stabilization of a 1083 nm fiber laser to 4He transition lines with optical heterodyne saturation spectroscopies

    Science.gov (United States)

    Gong, W.; Peng, X.; Li, W.; Guo, H.

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable 4He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10-12@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  10. SO2 Spectroscopy with A Tunable UV Laser

    Science.gov (United States)

    Morey, W. W.; Penney, C. M.; Lapp, M.

    1973-01-01

    A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.

  11. Iron-Doped Zinc Selenide: Spectroscopy and Laser Development

    Science.gov (United States)

    2014-03-27

    10/a=A06 [5] J. Kernal, V. V. Fedorov , A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9-4.8 µm gain-switched lasing of Fe:ZnSe at room temperature...ADA526209 [15] I. S. Moskalev, V. V. Fedorov , S. B. Mirov, P. A. Berry, and K. L. Schepler, “12-Watt CW Polycrystalline Cr2+:ZnSe Laser Pumped by Tm...http://ol.osa.org/abstract.cfm?URI=ol-24-23-1720 [21] N. Myoung, V. V. Fedorov , S. B. Mirov, and L. E. Wenger, “Temperature and concentration

  12. Stable isotope analysis using tunable diode laser spectroscopy

    Science.gov (United States)

    Becker, Joseph F.; Sauke, Todd B.; Loewenstein, Max

    1992-01-01

    Ratios of C-12/C-13 in CO2 have been measured using a tunable diode laser (TDL) spectrometer to an accuracy of better than 0.4 percent. These results were made possible by the use of state-of-the-art high-temperature TDLs, an etalon and wavenumber calibration technique, high-speed assembly language controlled data acquisition, and the ratioing of absorbances from simultaneously acquired sample and reference data scans. The dual beam spectrometer that is employed uses the sweep integration technique in a spectral region where adjacent spectral lines are of approximately equal absorbance at the expected isotopic abundances.

  13. Doppler-free spectroscopy on Cs D$_1$ line with a dual-frequency laser

    CERN Document Server

    Hafiz, Moustafa Abdel; De Clercq, Emeric; Boudot, Rodolphe

    2016-01-01

    We report on Doppler-free laser spectroscopy in a Cs vapor cell using a dual-frequency laser system tuned on the Cs D$_1$ line. Using counter-propagating beams with crossed linear polarizations, an original sign-reversal of the usual saturated absorption dip and large increase in Doppler-free atomic absorption is observed. This phenomenon is explained by coherent population trapping (CPT) effects. The impact of laser intensity and light polarization on absorption profiles is reported in both single-frequency and dual-frequency regimes. In the latter, frequency stabilization of two diode lasers was performed, yielding a beat-note fractional frequency stability at the level of $3 \\times 10^{-12}$ at 1 s averaging time. These performances are about an order of magnitude better than those obtained using a conventional single-frequency saturated absorption scheme.

  14. Quantitative Classification of Quartz by Laser Induced Breakdown Spectroscopy in Conjunction with Discriminant Function Analysis

    Directory of Open Access Journals (Sweden)

    A. Ali

    2016-01-01

    Full Text Available A responsive laser induced breakdown spectroscopic system was developed and improved for utilizing it as a sensor for the classification of quartz samples on the basis of trace elements present in the acquired samples. Laser induced breakdown spectroscopy (LIBS in conjunction with discriminant function analysis (DFA was applied for the classification of five different types of quartz samples. The quartz plasmas were produced at ambient pressure using Nd:YAG laser at fundamental harmonic mode (1064 nm. We optimized the detection system by finding the suitable delay time of the laser excitation. This is the first study, where the developed technique (LIBS+DFA was successfully employed to probe and confirm the elemental composition of quartz samples.

  15. Study of neutron deficient iridium isotopes by using laser spectroscopy; Etude des noyaux d'iridium deficients en neutrons par spectroscopie laser

    Energy Technology Data Exchange (ETDEWEB)

    Verney, D

    2000-12-19

    Resonance ionization spectroscopy was performed on neutron deficient iridium isotopes {sup 182-189}Ir, {sup 186}Ir{sup m} and stable isotopes {sup 191,193}Ir. Hyperfine spectra were recorded from the optical transition at 351,7 nm between the 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2} ground state and the 5d{sup 7}6s6p {sup 6}F{sub 11/2} excited state. Radioactive iridium isotopes were obtained from {beta}{sup +}/EC decay of radioactive mercury nuclei deposited on a graphite substrate. The radioactive mercury nuclei were produced at the ISOLDE facility at CERN through spallation reactions, by bombarding a molten lead target with the 1 GeV proton beam delivered by the PS-Booster. Magnetic dipole moments and spectroscopic quadrupole moments were extracted from the hyperfine spectra. The mean square charge radius variations, as deduced from the measured isotopic shift, show a sharp change between {sup 187}Ir and {sup 186}Ir{sup g}, accompanied by a sudden increase in deformation: from {beta}2 {approx} 0,16 to {beta}2 > 0, 2. These results were analysed in the framework of an axial rotor plus one or two quasiparticles. The wave functions of the osmium and platinum cores which are used in order to describe the iridium nuclei were calculated from the HF+BCS method with the Skyrme SIII effective interaction. The cores were constrained to take the deformation parameters extracted from the isotopic shift measurements. One shows then that this sudden deformation change corresponds also to a change in the proton state that describes the odd nuclei ground state or that participates in the coupling with the neutron in odd-odd nuclei. This state is identified with the {pi}3/2{sup +}[402] orbital for the smaller deformations nuclei and with the {pi}1/2{sup -}[541] orbital stemming from the h{sub 9/2} subshell for bigger deformations nuclei. (author)

  16. In situ TEM Raman spectroscopy and laser-based materials modification.

    Science.gov (United States)

    Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M

    2017-07-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Science.gov (United States)

    Gadelshin, V.; Cocolios, T.; Fedoseev, V.; Heinke, R.; Kieck, T.; Marsh, B.; Naubereit, P.; Rothe, S.; Stora, T.; Studer, D.; Van Duppen, P.; Wendt, K.

    2017-11-01

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  18. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Energy Technology Data Exchange (ETDEWEB)

    Gadelshin, V., E-mail: gadelshin@uni-mainz.de [University of Mainz, Institute of Physics (Germany); Cocolios, T. [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Fedoseev, V. [CERN, EN Department (Switzerland); Heinke, R.; Kieck, T. [University of Mainz, Institute of Physics (Germany); Marsh, B. [CERN, EN Department (Switzerland); Naubereit, P. [University of Mainz, Institute of Physics (Germany); Rothe, S.; Stora, T. [CERN, EN Department (Switzerland); Studer, D. [University of Mainz, Institute of Physics (Germany); Duppen, P. Van [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Wendt, K. [University of Mainz, Institute of Physics (Germany)

    2017-11-15

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  19. Spectroscopy and Laser-SNMS on stable and radioactive strontium

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Hauke; Walther, Clemens [Institut fuer Radiooekologie und Strahlenschutz, Leibniz Universitaet Hannover (Germany); Franzmann, Michael [Institut fuer Radiooekologie und Strahlenschutz, Leibniz Universitaet Hannover (Germany); Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany); Kron, Tobias; Wendt, Klaus [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany)

    2016-07-01

    Nuclear accidents as experienced e.g. in Chernobyl or Fukushima and nuclear weapon tests released considerable activity levels and a variety of medium to long-lived radionuclides into the environment. Strontium-90 appears as a significant share of the fission products in spent nuclear fuel and correspondingly in any possible release. Due to its chemical properties it is subject to long range transport through the environment and can cause considerable dose to man when entering the food chain. Correspondingly, the investigation of speciation and migration channels is of major relevance. A radioanalytical approach is severely hampered by the low beta energy of the strontium-90 decay and the need to separate strontium-90 from the secular equilibrated daughter yttrium-90. Hence, application of a mass spectrometric method without chemical separation of the elements is a promising alternative for low-level investigation of strontium-90. Application of the new Laser-SNMS system at IRS Hannover could well suit those needs. It applies three Ti:Sa lasers for resonant ionization of neutral atoms produced by primary ion sputtering in a SIMS together with a time-of-flight mass analysis which provides high spatial resolution. The analytical measurements are preceded by spectroscopic studies on the level structure of strontium to develop a most efficient ionization scheme.

  20. Design and research of analysis instrument based on Q-switch micro-crystal UV laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Yu, Suping; Han, Hanguang; Yu, Jinming; Fu, Yinping; Sha, Pingsheng

    2010-10-01

    The physical principle of micro- crystal UV Laser-Induced Fluorescence Spectroscopy (MUV-LIF) is expatiated in the paper, and the application of MUV-LIF to organic matter is studied. Then a portable intelligent analysis instrument based on MUV-LIF is designed. The instrument is composed of following units-----excitation source module based on micro-crystal UV laser, laser driving and controlling module, sample cell, spectroscopy-detecting module, processing and displaying module. Especially, because of high peak power and high repetition frequency rate, Qswitch micro-crystal UV laser is selected as excitation source. MUV-laser module of the instrument is singlepolarization solid-state coherent sources. The module is quasi monolithic integrated. The MUV-laser emits at wavelengths of 355nm, 266nm and 213nm, and it has many advantages, such as high peak power (greater than 30kw), high repeat frequency rate (greater than 10kHz), subnanosecond pulse (less than 500ps pulse width). So the excitation source module is an efficient compact high-order harmonic laser system. Laser driving and controlling module supplies power regulator and temperature controller for MUV-laser. Fluorescence spectroscopy image is produced by spectroscopy-detecting module and pre-processed in processing module. Qualitative and semi-quantitative analysis of sample can be conducted by referring to fluorescence spectroscopy feature library. The experimental results express that lots of organic matter, e.g. melamine, can be detected. The portal instrument has high SNR and sensitivity.

  1. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hoehse, Marek [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Mory, David [LTB Lasertechnik Berlin, Rudower Chaussee 29, 12489 Berlin (Germany); Florek, Stefan [ISAS - Institute for Analytical Science, Albert-Einstein-Str. 9, D-12489 Berlin (Germany); Weritz, Friederike [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Gornushkin, Igor, E-mail: igor.gornushkin@bam.d [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Panne, Ulrich [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, D-12489 Berlin (Germany); Humboldt Universitaet zu Berlin, Chemistry Department, Brook-Taylor-Strasse 2, D-12489 Berlin (Germany)

    2009-11-15

    Raman and laser-induced breakdown spectroscopy is integrated into a single system for molecular and elemental microanalyses. Both analyses are performed on the same approx 0.002 mm{sup 2} sample spot allowing the assessment of sample heterogeneity on a micrometric scale through mapping and scanning. The core of the spectrometer system is a novel high resolution dual arm Echelle spectrograph utilized for both techniques. In contrast to scanning Raman spectroscopy systems, the Echelle-Raman spectrograph provides a high resolution spectrum in a broad spectral range of 200-6000 cm{sup -1} without moving the dispersive element. The system displays comparable or better sensitivity and spectral resolution in comparison to a state-of-the-art scanning Raman microscope and allows short analysis times for both Raman and laser induced breakdown spectroscopy. The laser-induced breakdown spectroscopy performance of the system is characterized by ppm detection limits, high spectral resolving power (15,000), and broad spectral range (290-945 nm). The capability of the system is demonstrated with the mapping of heterogeneous mineral samples and layer by layer analysis of pigments revealing the advantages of combining the techniques in a single unified set-up.

  2. Collinear resonant ionization laser spectroscopy of rare francium isotopes

    CERN Document Server

    Neyens, G; Flanagan, K; Rajabali, M M; Le blanc, F M; Ware, T; Procter, T J

    2008-01-01

    We propose a programme of collinear resonant ionization spectroscopy (CRIS) of the francium isotopes up to and including $^{201}$Fr and $^{218,219}$Fr. This work aims at answering questions on the ordering of quantum states, and effect of the ($\\pi s_{1/2}^{-1}$)1/2$^{+}$ intruder state, which is currently believed to be the ground state of $^{199}$Fr. This work will also study the edge of the region of reflection asymmetry through measurement of the moments and radii of $^{218,219}$Fr. This proposal forms the first part of a series of experiments that will study nuclei in this region of the nuclear chart. Based on the success of this initial proposal it is the intention of the collaboration to perform high resolution measurements on the isotopes of radium and radon that surround $^{201}$Fr and $^{218}$Fr and thus providing a comprehensive description of the ground state properties of this region of the nuclear chart. Recent in-source spectroscopy measurements of lead, bismuth and polonium have demonstrated a...

  3. Inverse kinetic isotope effect in the excited-state relaxation of a Ru(II)-aquo complex: revealing the impact of hydrogen-bond dynamics on nonradiative decay.

    Science.gov (United States)

    Hewitt, Joshua T; Concepcion, Javier J; Damrauer, Niels H

    2013-08-28

    Photophysics of the MLCT excited-state of [Ru(bpy)(tpy)(OH2)](2+) (1) and [Ru(bpy)(tpy)(OD2)](2+) (2) (bpy = 2,2'-bipyridine and tpy = 2,2':6',2″-terpyridine) have been investigated in room-temperature H2O and D2O using ultrafast transient pump-probe spectroscopy. An inverse isotope effect is observed in the ground-state recovery for the two complexes. These data indicate control of excited-state lifetime via a pre-equilibrium between the (3)MLCT state that initiates H-bond dynamics with the solvent and the (3)MC state that serves as the principal pathway for nonradiative decay.

  4. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  5. Dual fluorescence of ellipticine: excited state proton transfer from solvent versus solvent mediated intramolecular proton transfer.

    Science.gov (United States)

    Banerjee, Sanghamitra; Pabbathi, Ashok; Sekhar, M Chandra; Samanta, Anunay

    2011-08-25

    Photophysical properties of a natural plant alkaloid, ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), which comprises both proton donating and accepting sites, have been studied in different solvents using steady state and time-resolved fluorescence techniques primarily to understand the origin of dual fluorescence that this molecule exhibits in some specific alcoholic solvents. Ground and excited state calculations based on density functional theory have also been carried out to help interpretation of the experimental data. It is shown that the long-wavelength emission of the molecule is dependent on the hydrogen bond donating ability of the solvent, and in methanol, this emission band arises solely from an excited state reaction. However, in ethylene glycol, both ground and excited state reactions contribute to the long wavelength emission. The time-resolved fluorescence data of the system in methanol and ethylene glycol indicates the presence of two different hydrogen bonded species of ellipticine of which only one participates in the excited state reaction. The rate constant of the excited state reaction in these solvents is estimated to be around 4.2-8.0 × 10(8) s(-1). It appears that the present results are better understood in terms of solvent-mediated excited state intramolecular proton transfer reaction from the pyrrole nitrogen to the pyridine nitrogen leading to the formation of the tautomeric form of the molecule rather than excited state proton transfer from the solvents leading to the formation of the protonated form of ellipticine. © 2011 American Chemical Society

  6. Quantitative analyses of glass via laser-induced breakdown spectroscopy in argon

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, C. [Laboratory of Laser and Plasma Technologies, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen (Germany); Hermann, J., E-mail: Hermann@lp3.univ-mrs.fr [LP3, CNRS – Aix–Marseille University, 163 Av. de Luminy, 13288 Marseille (France); Mercadier, L. [LP3, CNRS – Aix–Marseille University, 163 Av. de Luminy, 13288 Marseille (France); Loewenthal, L. [Laboratory of Laser and Plasma Technologies, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen (Germany); Axente, E.; Luculescu, C.R. [Laser–Surface–Plasma Interactions Laboratory, Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Sarnet, T.; Sentis, M. [LP3, CNRS – Aix–Marseille University, 163 Av. de Luminy, 13288 Marseille (France); Viöl, W. [Laboratory of Laser and Plasma Technologies, University of Applied Sciences and Arts, Von-Ossietzky-Straße 99, 37085 Göttingen (Germany)

    2014-11-01

    We demonstrate that elemental analysis of glass with a measurement precision of about 10% can be performed via calibration-free laser-induced breakdown spectroscopy. Therefore, plasma emission spectra recorded during ultraviolet laser ablation of different glasses are compared to the spectral radiance computed for a plasma in local thermodynamic equilibrium. Using an iterative calculation algorithm, we deduce the relative elemental fractions and the plasma properties from the best agreement between measured and computed spectra. The measurement method is validated in two ways. First, the LIBS measurements are performed on fused silica composed of more than 99.9% of SiO{sub 2}. Second, the oxygen fractions measured for heavy flint and barite crown glasses are compared to the values expected from the glass composing oxides. The measured compositions are furthermore compared with those obtained by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It is shown that accurate LIBS analyses require spectra recording with short enough delays between laser pulse and detector gate, when the electron density is larger than 10{sup 17} cm{sup −3}. The results show that laser-induced breakdown spectroscopy based on accurate plasma modeling is suitable for elemental analysis of complex materials such as glasses, with an analytical performance comparable or even better than that obtained with standard techniques. - Highlights: • Plasma modeling including the calculation of the plasma pressure • Calibration-free LIBS based on accurate modeling of the plasma emission spectrum • Quantitative LIBS analysis of multicomponent optical glasses including oxygen • Good measurement accuracy obtained only for small delays between laser pulse and detector gate.

  7. First excited states in doubly-odd {sup 110}Sb: Smooth band termination in the A {approx} 110 region

    Energy Technology Data Exchange (ETDEWEB)

    Lane, G.J.; Fossan, D.B.; Thorslund, I. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics] [and others

    1996-11-01

    Excited states have been identified for the first time in {sup 110}Sb in a comprehensive series of {gamma}-spectroscopy experiments, including recoil-mass and neutron-field measurements. Three high-spin decoupled bands with configurations based on 2p-2h excitations across the Z = 50 shell gap, are observed to show the features of smooth band termination, the first such observation in an odd-odd nucleus. The yrast intruder band has been connected to the low spin levels and is tentatively identified up to its predicred termination at I{sup {pi}} = (45{sup +}). Detailed configuration assignments are made through comparison with configuration-dependent cranked Nilsson-Strutinsky calculations; excellent agreement with experiment is obtained. The systematic occurrence of smoothly terminating bands in the neighboring isotopes is discussed.

  8. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  9. Structural changes in nanostructured catalytic oxides monitored by Raman spectroscopy: Effect of the laser heating

    Science.gov (United States)

    Oliveira, Alcemira C.; da Silva, Antonio N.; Junior, Jose Alves L.; Freire, Paulo T. C.; Oliveira, Alcineia C.; Filho, Josué M.

    2017-03-01

    The laser power effects on the structural properties of nanostructured oxides were studied by Raman spectroscopy. The nanostructured CeO2, ZrO2, SnO2, TiO2 and MnOx oxides were prepared by a nanocasting route and characterized through various physicochemical techniques. The structural features of the solids were accompanied by varying the incident laser power from 2.0 to 9.1 mW. The laser caused local heating on the surface of the nanostructured solids and influenced on their particle sizes. The CeO2, TiO2 and MnOx spectra exhibited particle size changes due to thermal effects. Elevated laser power up to 9.1 mW accelerated the sintering of CeO2, TiO2 and MnOx particles in contrast to SnO2 counterparts. Simultaneously, the creation of defects in the aforesaid oxide structures was suggested upon increasing the laser power from 2.0 to 9.1 mW. The phase transformation from MnOx-related phases to α-Mn2O3 and the oxidation of these phases were observed. Tetragonal ZrO2 showed a very stable structure under laser heating, envisaging further catalytic applications upon using mild laser power.

  10. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    Science.gov (United States)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  11. Bond Shortening (1.4 Å) in the Singlet and Triplet Excited States of [Ir2(dimen)4]2+ in Solution Determined by Time-Resolved X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Harlang, Tobias; Christensen, Morten

    2011-01-01

    Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)42+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different ti...

  12. Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy

    Science.gov (United States)

    Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Xu, Kexin

    2014-04-01

    Wavelength-tunable laser spectroscopy in combination with a small-sized fiber-optic attenuated total reflection (ATR) sensor (fiber-based evanescent field analysis, FEFA) is reported for the continuous measurement of the glucose level. We propose a method of controlling and stabilizing the wavelength and power of laser emission and present a newly developed mid-infrared wavelength-tunable laser with a broad emission spectrum band of 9.19-9.77 μm (1024-1088 cm-1). The novel small-sized flow-through fiber-optic ATR sensor with long optical sensing length was used for glucose level determination. The experimental results indicate that the noise-equivalent concentration of this laser measurement system is as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. The sensitivity, which is three times that of conventional Fourier transform infrared spectrometer, was acquired because of the higher laser power and higher spectral resolution. The best prediction of the glucose concentration in phosphate buffered saline solution was achieved using the five-variable partial least-squares model, yielding a root-mean-square error of prediction as small as 3.5 mg/dL. The high sensitivity, multiple tunable wavelengths and small fiber-based sensor with long optical sensing length make glucose determination possible in blood or interstitial fluid in vivo.

  13. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    Science.gov (United States)

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  14. Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes

    Science.gov (United States)

    Hartig, K. C.; Brumfield, B. E.; Phillips, M. C.; Harilal, S. S.

    2017-09-01

    Oxygen present in the ambient gas medium may affect both laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) emission through a reduction of emission intensity and persistence. In this study, an evaluation is made on the role of oxygen in the ambient environment under atmospheric pressure conditions in LIBS and laser ablation (LA)-LIF emission. To generate plasmas, 1064 nm, 10 ns pulses were focused on an aluminum alloy sample. LIF was performed by frequency scanning a CW laser over the 396.15 nm (3s24s 2S1/2 → 3s23p 2P°3/2) Al I transition. Time-resolved emission and fluorescence signals were recorded to evaluate the variation in emission intensity caused by the presence of oxygen. The oxygen partial pressure (po) in the atmospheric pressure environment using N2 as the makeup gas was varied from 0 to 400 Torr O2. 2D-fluorescence spectroscopy images were obtained for various oxygen concentrations for simultaneous evaluation of the emission and excitation spectral features. Results showed that the presence of oxygen in the ambient environment reduces the persistence of the LIBS and LIF emission through an oxidation process that depletes the density of atomic species within the resulting laser-produced plasma (LPP) plume.

  15. Laser and Fourier transform spectroscopy of 7Li88Sr

    Science.gov (United States)

    Schwanke, Erik; Knöckel, Horst; Stein, Alexander; Pashov, Asen; Ospelkaus, Silke; Tiemann, Eberhard

    2017-12-01

    LiSr was produced in a heat-pipe oven and its thermal emission spectrum around 9300 cm‑1 was recorded by a high resolution Fourier transform spectrometer. In addition, selected lines of the spectrum of deeply bound vibrational levels of the {1}2{{{Σ }}}+ and {2}2{{{Σ }}}+ states were studied using laser excitation to facilitate the assignment of the lines. The ground state could be described for {v}{\\prime\\prime }=0 to 2, {N}{\\prime\\prime } up to 105 and the {2}2{{{Σ }}}+ state for {v}{\\prime }=0 up to {N}{\\prime }=68. For both states, Dunham coefficients, spin–rotation parameters and potential energy curves were evaluated. A coupling of the {2}2{{{Σ }}}+ state to the {1}2{{\\Pi }} state was observed, allowing a local description with Dunham coefficients of the {1}2{{\\Pi }} state and an approximate evaluation of the coupling strength.

  16. Laser spectroscopy with an electrostatic ConeTrap

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S., E-mail: sam.kelly@postgrad.manchester.ac.uk; Campbell, P. [University of Manchester, Nuclear Physics Group, Schuster Laboratory, Brunswick Street (United Kingdom); Cheal, B., E-mail: Bradley.Cheal@Liverpool.ac.uk [University of Liverpool, Oliver Lodge Laboratory (United Kingdom); Eronen, T.; Geldhof, S.; Jokinen, A.; Moore, I. D.; Penttilä, H.; Pohjalainen, I.; Rinta-Antila, S.; Sonnenschein, V.; Voss, A. [JYFL, University of Jyväskylä (Finland)

    2017-11-15

    A compact electrostatic trap has been designed and installed as part of the recent upgrades to the IGISOL IV facility. The ConeTrap provides an in vacuo optical pumping site for low energy (800 eV) ionic ensembles available for interaction periods of 10-100 ms. At present, 6.7(3) % of injected mass A=98 ions can be trapped, stored for 5 ms, extracted and transported to a laser-ion interaction region. This fraction represents those ions for which no perturbation to total energy or energy spread is observed. Proposed enhancements to the trap are designed to improve the trapping efficiency by up to a factor of 5. Differential pumping and reduction in background pressure below the present 10{sup −6} mbar will extend storage times beyond 100 ms.

  17. Ultrasensitive photoacoustic sensor based on quantum cascade laser spectroscopy.

    Science.gov (United States)

    Kumar, Deepak; Gautam, Surya; Kumar, Subodh; Gupta, Saurabh; Srivastava, Hari B; Thakur, Surya N; Sharma, Ramesh C

    2017-04-05

    The paper focuses on development of ultra-sonic detection system based on laser photoacoustic spectroscopic technique and processing of signal for detection of very low quantity chemicals, explosive materials, and mixtures of these hazardous molecules. The detection system has been developed for the first time with specially designed one side open photo-acoustic cell having high quality factor. Explosive and Hazardous materials like RDX, DNT, PETN, Gun Powder, TATP (Tri acetone tri-peroxide) and their simulants like Acetone were detected in 7 to 9μm wavelength band. Lock in amplifier electronic instrument was used for the detection of hazardous chemicals and mixture of explosives in very low quantity. Detection limit of the photoacoustic ultrasonic sensor was also carried out of powder, liquid and adsorbed on surfaces. Copyright © 2016. Published by Elsevier B.V.

  18. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K.M.; Livett, M.K.; Nugent, K.W. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  19. Infrared diode laser spectroscopy of the LiO radical

    Science.gov (United States)

    Yamada, Chikashi; Hirota, Eizi

    1993-12-01

    The fundamental vibrational band of the 7LiO radical in the ground electronic state X 2Πi was observed in a region from 720 to 850 cm-1 using a source frequency modulation infrared diode laser spectrometer. Radicals were generated in a high-temperature cell by the reaction of lithium metal vapor with nitrous oxide. The observed spectrum was analyzed together with the radio-frequency and microwave spectra already reported. It was found that the vibration-rotation Hamiltonian employed in a previous paper was insufficient to fit all of the observed spectra simultaneously. The Hamiltonian was thus extended to include higher-order corrections for the centrifugal distortion and Λ-type doubling terms, and was used to derive molecular parameters.

  20. Ultrasensitive photoacoustic sensor based on quantum cascade laser spectroscopy

    Science.gov (United States)

    Kumar, Deepak; Gautam, Surya; Kumar, Subodh; Gupta, Saurabh; Srivastava, Hari B.; Thakur, Surya N.; Sharma, Ramesh C.

    2017-04-01

    The paper focuses on development of ultra-sonic detection system based on laser photoacoustic spectroscopic technique and processing of signal for detection of very low quantity chemicals, explosive materials, and mixtures of these hazardous molecules. The detection system has been developed for the first time with specially designed one side open photo-acoustic cell having high quality factor. Explosive and Hazardous materials like RDX, DNT, PETN, Gun Powder, TATP (Tri acetone tri-peroxide) and their simulants like Acetone were detected in 7 to 9 μm wavelength band. Lock in amplifier electronic instrument was used for the detection of hazardous chemicals and mixture of explosives in very low quantity. Detection limit of the photoacoustic ultrasonic sensor was also carried out of powder, liquid and adsorbed on surfaces.

  1. Laser diagnostics of welding plasma by polarization spectroscopy.

    Science.gov (United States)

    Lucas, Owen; Alwahabi, Zeyad T; Linton, Valerie; Meeuwissen, Karel

    2007-05-01

    The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.

  2. Near infrared spectroscopy of food systems using a supercontinuum laser

    DEFF Research Database (Denmark)

    Ringsted, Tine

    Mid-infrared and particularly near-infrared spectroscopy is extremely useful for food analysis because they measure chemical and physical properties fast and non-destructively. The advancement of a supercontinuum light source covering the near-infrared and parts of the ultraviolet and mid......)) can be obtained, (c) that the supercontinuum light is fiber compatible i.e. it can couple directly to fibers, and (d) that the fast repetition rate of the supercontinuum pulses makes it possible to do very fast measurements. For these reasons, the supercontinuum light stands out from the commonly...... applied near- and mid-infrared incandescent light bulbs. This thesis aim to explore the utility of using a supercontinuum source in two food applications. (1) The supercontinuum light was applied for the first time to barley seeds in transmission mode in the long wavelength near-infrared region from 2260...

  3. Laser Spectroscopy of Vinyl Alcohol Embedded in Helium Droplets

    Science.gov (United States)

    Bunn, Hayley; Raston, Paul; Douberly, Gary E.

    2017-06-01

    Vinyl alcohol has two rotameric forms, known as syn- and anti-vinyl alcohol, where syn is the most stable. While both have been investigated by microwave and far-infrared spectroscopy, only the syn rotamer has been investigated by mid-infrared spectroscopy. This is due to the low anti rotamer population (15%) at room temperature, in addition to the closeness in proximity of the mid-infrared bands between the rotamers; this results in overlapping bands that are dominated by syn-vinyl alcohol absorptions. In this investigation we increase the anti-vinyl alcohol population to 40% by using a high temperature "pyrolysis" source, and eliminate the spectral overlap by recording the spectra at low temperature in helium nanodroplets. We observe a number of bands of both rotamers in the OH, CH, and CO stretching regions that display rotational substructure. A highlight of this work is the observation of a Fermi dyad in the OH stretching region of anti-vinyl alcohol. Anharmonic frequency calculations suggest that this is due to a near degeneracy of the OH stretching state (νb{1}) with a triple combination involving νb{7}, νb{8}, and νb{9}. M. Rodler, J. Mol. Spec. 114, 23 (1985);S. Saito, Chem. Phys. Lett. 42, 3 (1976) H. Bunn, R. Hudson, A. S. Gentleman, and P. L. Raston, ACS Earth Space Chem. DOI: 10.1021/acsearthspacechem.6b00008 (2017) D-L Joo, A. J. Merer, D. J. Clouthier, J. Mol. Spec. 197, 68 (1999)

  4. Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery — An approach on a feedback Laser control mechanism

    Science.gov (United States)

    Kanawade, Rajesh; Mehari, Fanuel; Knipfer, Christian; Rohde, Maximilian; Tangermann-Gerk, Katja; Schmidt, Michael; Stelzle, Florian

    2013-09-01

    This study focuses on tissue differentiation using 'Laser Induced Breakdown Spectroscopy' (LIBS) by monitoring the plasma plume created during laser surgery processes. This technique is aimed at controlling a laser surgery feedback system in real time. An Excimer laser (Ar-F 193 nm) was used for the ablation of tissue samples. Fat, muscle, nerve and skin tissue samples of bisected ex-vivo pig heads were prepared as test objects for the ablation procedure. A single fiber was used to collect emissions and deliver them to a spectrometer. The obtained LIBS spectra in the measured emissions were analyzed to determine each tissue type according to their chemical composition. The elements found in the samples and their emission spectra were in agreement with those described in literature. The collected LIBS spectra were analyzed to differentiate the tissues using statistical data analysis: Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Receiver Operating Characteristics (ROC). The obtained preliminary results suggest a successful differentiation of the target tissues with high sensitivity and specificity. The main goal of this study was to qualitatively identify tissue types during laser ablation, which will provide a real time feedback mechanism for clinical Laser surgery applications to significantly improve the accuracy and safety of laser surgery procedures.

  5. Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy

    Science.gov (United States)

    Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.; McIntyre, Dustin L.; Singh, Jagdish P.

    2017-11-01

    In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny-Turner spectrometer within the wavelength range of 375-515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 and 156 ppm, respectively.

  6. Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy

    Science.gov (United States)

    Castillejo, M.; Martín, M.; Silva, D.; Stratoudaki, T.; Anglos, D.; Burgio, L.; Clark, R. J. H.

    2000-09-01

    Two laser-based analytical techniques, Laser Induced Breakdown Spectroscopy (LIBS) and Raman microscopy, have been used for the identification of pigments on a polychrome from the Rococo period. Detailed spectral data are presented from analyses performed on a fragment of a gilded altarpiece from the church of Escatrón, Zaragoza, Spain. LIBS measurements yielded elemental analytical data which suggest the presence of certain pigments and, in addition, provide information on the stratigraphy of the paint layers. Identification of most pigments and of the materials used in the preparation layer was performed by Raman microscopy.

  7. Laser spectroscopy measurements of neutron-rich tellurium isotopes by COMPLIS

    Energy Technology Data Exchange (ETDEWEB)

    Sifi, R., E-mail: sifi@ipno.in2p3.fr; Blanc, F. Le; Barre, N. [Institut de Physique Nucleaire, IN2P3-CNRS (France); Cabaret, L. [Laboratoire Aime Cotton (France); Crawford, J. [Mc Gill University, Physics Department (Canada); Ducourtieux, M.; Essabaa, S. [Institut de Physique Nucleaire, IN2P3-CNRS (France); Genevey, J. [Institut des Sciences Nucleaires, IN2P3-CNRS (France); Huber, G.; Kowalska, M. [Institut fuer Physik der Universitaet Mainz (Germany); Lau, C. [Institut de Physique Nucleaire, IN2P3-CNRS (France); Lee, J. K. P. [Mc Gill University, Physics Department (Canada); Scornet, G. Le [CERN, 1211 (Switzerland); Oms, J. [Institut de Physique Nucleaire, IN2P3-CNRS (France); Pinard, J. [Laboratoire Aime Cotton (France); Roussiere, B.; Sauvage, J. [Institut de Physique Nucleaire, IN2P3-CNRS (France); Seliverstov, M. [Institut fuer Physik der Universitaet Mainz (Germany); Stroke, H. [New York University, Department of physics (United States)

    2006-07-15

    Laser spectroscopy based on resonant ionization of laser-desorbed atoms has been used to study the neutron-rich tellurium isotopes with the COMPLIS facility at ISOLDE-CERN. Isotope shifts and hyperfine structures of several neutron-rich Te isotopes: {sup 120-136}Te and {sup 123m-133m}Te have been measured. From the hyperfine structure we have extracted magnetic and quadrupole moments. Changes in the mean square charge radii have been deduced and their comparison with the known data for the other elements near Z = 50 is presented. The experimental {delta} < r{sup 2}> values are compared with those obtained from relativistic mean field calculations.

  8. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M

    2014-01-01

    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  9. Polarization spectroscopy on laser-produced plasmas and Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong E. [POSTECH, Kyungbuk (Korea); Baronova, Elena O. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2002-08-01

    PPS experiments on laser-produced plasmas are reviewed. Polarization is interpreted in terms of the anisotropic velocity distribution of electrons due to non-local transport. The polarization of an x-ray laser, and recent results regarding the recombining plasma are also presented. X-ray polarization spectroscopy experiments on heliumlike ion lines from a vacuum spark and from a plasma focus are presented: in both cases, the resonance line of the heliumlike ions shows polarization in the direction perpendicular to the discharge axis. Two possible interpretations are suggested. (author)

  10. Study on Absorption Signal Interference of Gas Concentration Measurement Using Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maeng Saerom

    2016-01-01

    Full Text Available In order to optimize the combustion condition of the combustion system, it is important to know the information of the physical properties which vary during combustion. Gas concentration and temperature are the major target properties but it is difficult to measure exactly at combustion system. In this paper, a distributed feedback diode laser which wavelength is tunable in accordance with a function generator’s output wave is applied to realize the laser absorption spectroscopy measurement. A concentration measuring test for 99% CO2 gas was performed as basic experiment and major experiments were conducted on separation of interfered absorption signals at CO2 and CO mixed condition.

  11. Stratospheric composition measurements of earth and Titan using high-resolution tunable diode laser spectroscopy

    Science.gov (United States)

    Webster, Christopher R.

    1988-01-01

    Field and laboratory measurements of species of atmospheric interest made as part of the JPL diode laser spectroscopy program are presented. Stratospheric measurements of NO2, NO, CO2, and H2O made in November 1985 using the BLISS instrument are reported, together with recent laboratory measurements of spectral line parameters of HNO3 and HO2NO2. In addition, a novel diode laser instrument concept for the in situ sensing of Titan's atmosphere is described for the Saturn Orbiter/Titan Probe (SOTP) Cassini Mission.

  12. Isotopic resolution of carbon monoxide and carbon dioxide by NIR diode laser spectroscopy

    OpenAIRE

    Lau, Steffen; Salffner, Katharina; Löhmannsröben, Hans-Gerd

    2006-01-01

    Near-infrared (NIR) absorption spectroscopy with tunable diode lasers allows the simultaneous detection of the three most important isotopologues of carbon dioxide (12CO2, 13CO2, 12C18O16O) and carbon monoxide (12CO, 13CO, 12C18O). The flexible and compact fiber-optic tunable diode laser absorption spectrometer (TDLAS) allows selective measurements of CO2 and CO with high isotopic resolution without sample preparation since there is no interference with water vapour. For each species, linear ...

  13. Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rehse, Steven; Diedrich, Jonathan; Palchaudhuri, Sunil

    2007-06-01

    Three strains of Escherichia coli, one strain of black mold and one strain of Candida albicans yeast have been analyzed by laser-induced breakdown spectroscopy (LIBS) using nanosecond laser pulses. All microorganisms were analyzed while still alive and with no sample preparation. Nineteen atomic and ionic emission lines have been identified in the spectrum, which is dominated by calcium, magnesium and sodium. A discriminant function analysis (DFA) has been used to discriminate between the bio-types and E. coli strains. This is the first demonstration of the ability of the LIBS technique to differentiate between different strains of a single species.

  14. COMPLIS experiments: COllaboration for spectroscopy Measurements using a Pulsed Laser Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Sauvage, J. [IN2P3-CNRS, Institut de Physique Nucleaire (France); Boos, N. [Universitaet Mainz, Institut fuer Physik (Germany); Cabaret, L. [Laboratoire AimeCotton (France); Crawford, J.E. [McGill University, Physics Department (Canada); Duong, H.T. [Laboratoire AimeCotton (France); Genevey, J. [IN2P3-CNRS, Institut des Sciences Nucleaires (France); Girod, M. [Commissariat al' Energie Atomique, Service de Physique Nucleaire (France); Huber, G. [Universitaet Mainz, Institut fuer Physik (Germany); Ibrahim, F. [IN2P3-CNRS, Institut de Physique Nucleaire (France); Krieg, M. [Universitaet Mainz, Institut fuer Physik (Germany); Le Blanc, F. [IN2P3-CNRS, Institut de Physique Nucleaire (France); Lee, J.K.P. [McGill University, Physics Department (Canada); Libert, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan (France); Lunney, D.; Obert, J.; Oms, J. [IN2P3-CNRS, Institut de Physique Nucleaire (France); Peru, S. [Commissariat al' Energie Atomique, Service de Physique Nucleaire (France); Pinard, J. [Laboratoire AimeCotton (France); Putaux, J.C.; Roussiere, B. [IN2P3-CNRS, Institut de Physique Nucleaire (France)] (and others)

    2000-12-15

    Laser spectroscopy measurements have been carried out on very neutron-deficient isotopes of Au, Pt and Ir, produced as daughter elements from a Hg ISOLDE beam. For these transitional region nuclides, the hyperfine structure (HFS) and isotope shift (IS) were measured by Resonance Ionization Spectroscopy (RIS). Magnetic moments {mu}, spectroscopic quadrupole moments Q{sub s} and changes of the nuclear mean square charge radius {delta}along isotopic series have been extracted. For some results, a detailed comparison with theoretical predictions is presented.

  15. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew P.; Zia, Ahmad [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Horton, Peter [Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Ruban, Alexander V., E-mail: a.ruban@qmul.ac.uk [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2010-07-19

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to {approx}0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting (F{sub m}) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F{sub m} lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  16. Fiber based infrared lasers and their applications in medicine, spectroscopy and metrology

    Science.gov (United States)

    Alexander, Vinay Varkey

    In my thesis, I have demonstrated the development of fiber based infrared lasers and devices for applications in medicine, spectroscopy and metrology. One of the key accomplishments presented in this thesis for medical applications is the demonstration of a focused infrared laser to perform renal denervation both in vivo and in vitro. Hypertension is a significant health hazard in the US and throughout the world, and the laser based renal denervation procedure may be a potential treatment for resistant hypertension. Compared to current treatment modalities, lasers may be able to perform treatments with lesser collateral tissue damage and quicker treatment times helping to reduce patient discomfort and pain. An additional medical application demonstrated in this thesis is the use of infrared fiber lasers to damage sebaceous glands in human skin as a potential treatment for acne. Another significant work presented in this thesis is a field trial performed at the Wright Patterson Air Force Base using a Short Wave Infrared (SWIR) Supercontinuum (SC) laser as an active illumination source for long distance reflectance measurements. In this case, an SC laser developed as part of this thesis is kept on a 12 story tower and propagated through the atmosphere to a target kept 1.6 km away and used to perform spectroscopy measurements. In the future this technology may permit 24/7 surveillance based on looking for the spectral signatures of materials. Beyond applications in defense, this technology may have far reaching commercial applications as well, including areas such as oil and natural resources exploration. Beyond these major contributions to the state-of-the-art, this thesis also describes other significant studies such as power scalability of SWIR SC sources and non-invasive measurement of surface roughness.

  17. Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy.

    Science.gov (United States)

    Ghita, Adrian; Matousek, Pavel; Stone, Nicholas

    2016-10-21

    The aim of this research was to find the optimal Raman excitation wavelength to attain the largest possible sensitivity in deep Raman spectroscopy of breast tissue. This involved careful consideration of factors such as tissue absorption, scattering, fluorescence and instrument response function. The study examined the tissue absorption profile combined with Raman scattering and detection sensitivity at seven different, laser excitation wavelengths in the near infrared region of the spectrum. Several key scenarios in regards to the sample position within the tissue were examined. The highest Raman band visibility over the background ratio in respect to biological tissue provides the necessary information for determining the optimum laser excitation wavelength for deep tissue analysis using transmission Raman spectroscopy, including detection of breast calcifications. For thick tissues with a mix of protein and fat, such as breast tissue, 790-810 nm is concluded to be the optimum excitation wavelength for deep Raman measurements.

  18. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  19. Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis

    Science.gov (United States)

    K. S., Nagapriya; Sinha, Shashank; Prashanth, R.; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip

    2017-02-01

    In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.

  20. Zeeman structure of red lines of lanthanum observed by laser spectroscopy methods

    Science.gov (United States)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence (LIF) Spectroscopy and Optogalvanic (OG) Spectroscopy were used for the investigation of the Zeeman hyperfine (hf) structures of 27 spectral lines of La I in the wavelength range between 633.86 and 667.54 nm. As a source of free La atoms a hollow cathode discharge lamp was used. Spectra were recorded in the presence of a relatively weak magnetic field (about 800G) produced by a permanent magnet, for two linear polarization directions of the exciting laser beam. As a result of the measurements, we determined for the first time the Landé gJ- factors of 18 levels of La I. The Landé gJ- factors of 12 other levels were re-investigated and determined with higher accuracy.

  1. Laser-induced autofluorescence spectroscopy of benign and dysplastic nevi and malignant melanoma

    Science.gov (United States)

    Troyanova, P.; Borisova, E.; Stoyanova, V.; Avramov, L.

    2006-09-01

    The easy and non-destructive fluorescence method for quantification of early changes in biological tissues improves the possibilities of the clinical research. Using endogenous and exogenous fluorophores one can achieve high accuracy in the determination of malignant melanoma lesions with wide clinical applications. The goals of this work were investigation of melanin-pigmented cutaneous lesions by the methods of laser-induced autofluorescence spectroscopy (LIAFS), using nitrogen laser (337 nm) as excitation source. All lesions investigated were excised and investigated histologically by standard methods and histological results were used for comparison with the spectra detected. In the cases of nevi and melanoma significant decrease of fluorescence intensity toward normal skin fluorescence, which correlated with the type of pigment lesion was observed. The results, obtained in this investigation of the different pigment lesions could be used for better comprehension of the skin optical properties. The fluorescence spectroscopy of the human skin is very prominent for early diagnosis and differentiation of cutaneous diseases.

  2. Quartz enhanced photoacoustic spectroscopy with a 3.38 μm antimonide distributed feedback laser.

    Science.gov (United States)

    Jahjah, Mohammad; Belahsene, Sofiane; Nähle, Lars; Fischer, Marc; Koeth, Johannes; Rouillard, Yves; Vicet, Aurore

    2012-07-01

    A system for gas sensing based on the quartz-enhanced photoacoustic spectroscopy technique has been developed. It makes use of a quantum well distributed feedback (DFB) laser diode emitting at 3.38 μm. This laser emits near room temperature in the continuous wave regime. A spectrophone, consisting of a quartz tuning fork and two steel microresonators were used. Second derivative wavelength modulation detection is used to perform low concentration measurements. The sensitivity and the linearity of the Quartz enhanced photoacoustic spectroscopy (QEPAS) sensor were studied. A normalized noise equivalent absorption coefficient of 4.06×10(-9) cm(-1)·W/Hz(1/2) was achieved.

  3. Fast photodynamics of azobenzene probed by scanning excited-state potential energy surfaces using slow spectroscopy

    NARCIS (Netherlands)

    Tan, E.M.M.; Amirjalayer, S.; Smolarek, S.; Vdovin, A.; Zerbetto, F.; Buma, W.J.

    2015-01-01

    Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum

  4. In-source laser spectroscopy of mercury isotopes

    CERN Multimedia

    This proposal follows on from the Letter of Intent, I-153. The neutron-deficient mercury isotopes are one of the prime examples of shape coexistence anywhere in the nuclear chart. Wide-ranging and complementary experimental and theoretical approaches have been used to investigate their structure over the last few years, however mean-square charge radii are unknown for isotopes with $\\textit{A}$ < 181. It is proposed to measure the isotope shift (IS) and hyperfine structure (HFS) of the 253-nm transition in $^{177-182}$Hg in an attempt to study the propagation of the famous odd-even staggering behaviour. At the other end of the chain, no information exists on the optical spectroscopy of Hg isotopes beyond the $\\textit{N}$ = 126 shell closure. There is a well-known "kink" in mean-square charge radii beyond this point in the even $\\textit{Z}$ $\\geq$ 82 elements. It is proposed to measure the IS of $^{207,208}$Hg in order to provide the first information on this effect below $\\textit{Z}$ = 82.

  5. Application of Laser Induced Plasma Spectroscopy on Breast Cancer Diagnoses

    Science.gov (United States)

    Abd-Alfattah, A.; Eldakrouri, A. A.; Emam, H.; Azzouz, I. M.

    2013-03-01

    Worldwide, millions of breast cancer cases appear each year. It ranked as the first malignant tumors in Egypt. Breast cancer patients are at increased risk of developing malignant melanoma and cancers of the ovary, endometrium, colon, thyroid, and salivary glands because of similar hormonal and genetic factors. Therefore, early diagnosis by a quick and accurate method may have a great affect on healing. In this work, we investigate the feasibility of using LIPS as a simple, technique to diagnose breast cancer by measuring the concentration of trace elements in breast tissues. The accuracy of LIPS measurements was confirmed by carrying out another elemental analysis via atomic absorption spectroscopy (AAS) technique. The results obtained via these two techniques showed that the concentration of Ca, Cu, Fe, Zn and Mn in the malignant tissue cells are significantly enhanced. A voting algorithm was built for instantaneous decision of the diagnostic technique (normal or malignant). This study instigates developing a new diagnostic tool with potential use in vivo.

  6. Consequences of Femtosecond Laser Filament Generation Conditions in Standoff Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Phillips, Mark C.

    2016-08-08

    We investigate the role of femtosecond laser focusing conditions on ablation properties and its implications on analytical merits and standoff detection applications. Femtosecond laser pulses can be used for ablation either by tightly focusing or by using filaments generated during its propagation. We evaluated the persistence of atomic, and molecular emission features as well as time evolution of the fundamental properties (temperature and density) of ablation plumes generated using different methods.

  7. Shell structure and level migrations in zinc studied using collinear laser spectroscopy

    CERN Multimedia

    Tungate, G; De rydt, M A E; Flanagan, K; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Kowalska, M; Campbell, P; Neugart, R; Kreim, K D; Stroke, H H; Krieger, A R; Procter, T J

    We propose to perform collinear laser spectroscopy of zinc isotopes to measure the nuclear spin, magnetic dipole moment, electric quadrupole moment and mean-square charge radius. The yield database indicates that measurements of the isotopes $^{60-81}$Zn will be feasible. These measurements will cross the N = 50 shell closure and provide nuclear moments in a region where an inversion of ground-state spin has been identified in neighbouring chains.

  8. Determining spatial sodium distribution in fresh and aged bread using laser-induced breakdown spectroscopy

    NARCIS (Netherlands)

    Scholtes-Timmerman, M.; Heddes, C.; Noort, M.W.J.; Veen, S. van

    2013-01-01

    A fast and easy-to-use method using laser-induced breakdown spectroscopy (LIBS) was set up to determine Na (sodium) distribution in baked bread. Standard bread was made using a standard recipe and the amount of salt added was 0, 0.5, 1, 2, 4, 10, 15 and 20g corresponding to 0, 0.25, 0.5, 1.0, 2.0,

  9. Investigation of Plant-Pathogen Interaction by Laser-Based Photoacoustic Spectroscopy

    Science.gov (United States)

    Puiu, A.; Giubileo, G.; Lai, A.

    2014-12-01

    The laser-based photoacoustic spectroscopy apparatus, constructed at ENEA Frascati (Italy), was applied to monitor trace amounts of ethylene emitted by plants in a stress condition. More specifically, in the present work, the biotic stress response of tomato mutant plants after inoculation with Phthorimaea operculella larvae ( Lepidoptera: Gelechiidae) was investigated. The principle of the method, the photoacoustic setup, the experimental work, and the results are being reported.

  10. Laser assisted nuclear decay spectroscopy: A new method for studying neutron-deficient francium

    CERN Document Server

    Lynch, Kara Marie

    2015-01-01

    Radioactive decay studies of rare isotopes produced at radioactive ion beam facilities have often been hindered by the presence of isobaric and isomeric contamination. The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN uses laser radiation to stepwise excite and ionize an atomic beam in a particular isomeric state. Deflection of this selectively ionized beam of exotic nuclei, from the remaining neutral contaminants, allows ultra-sensitive detection of rare isotopes and nuclear structure measurements in background-free conditions.\

  11. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  12. Laser spectroscopy of tin and cadmium: across N=82 and closing in on N=50

    CERN Multimedia

    We propose to study the isotopes of tin starting in proximity of N = 50 up to and beyond N = 82, as well as the "magic-plus-one" nuclei of cadmium at both shell closures. The objective is to determine model-independent properties of ground and isomeric states by high-resolution laser spectroscopy, which are essential for understanding the structure of nuclei and their astrophysical importance in this region of the nuclear chart.

  13. Depth-profile investigations of triterpenoid varnishes by KrF excimer laser ablation and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Theodorakopoulos, C.; Zafiropulos, V.

    2009-07-01

    The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.

  14. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  15. On excited states in real-time AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Botta-Cantcheff, Marcelo; Martínez, Pedro J.; Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2016-02-25

    The Skenderis-van Rees prescription, which allows the calculation of time-ordered correlation functions of local operators in CFT’s using holographic methods is studied and applied for excited states. Calculation of correlators and matrix elements of local CFT operators between generic in/out states are carried out in global Lorentzian AdS. We find the precise form of such states, obtain an holographic formula to compute the inner product between them, and using the consistency with other known prescriptions, we argue that the in/out excited states built according to the Skenderis-Van Rees prescription correspond to coherent states in the (large-N) AdS-Hilbert space. This is confirmed by explicit holographic computations. The outcome of this study has remarkable implications on generalizing the Hartle-Hawking construction for wave functionals of excited states in AdS quantum gravity.

  16. Improving the Selectivity of the ISOLDE Resonance Ionization Laser Ion Source and In-Source Laser Spectroscopy of Polonium

    CERN Document Server

    Fink, Daniel Andreas; Jochim, Selim

    Exotic atomic nuclei far away from stability are fascinating objects to be studied in many scientic elds such as atomic-, nuclear-, and astrophysics. Since these are often short-lived isotopes, it is necessary to couple their production with immediate extraction and delivery to an experiment. This is the purpose of the on-line isotope separator facility, ISOLDE, at CERN. An essential aspect of this laboratory is the Resonance Ionization Laser Ion Source (RILIS) because it provides a fast and highly selective means of ionizing the reaction products. This technique is also a sensitive laser-spectroscopy tool for the development and improvement of electron excitation schemes for the resonant laser photoionization and the study of the nuclear structure or fundamental atomic physics. Each of these aspects of the RILIS applications are subjects of this thesis work: a new device for the suppression of unwanted surface ionized contaminants in RILIS ion beams, known as the Laser Ion Source and Trap (LIST), was impleme...

  17. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-07

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.

  18. Design of fiber laser and sensor systems for gas spectroscopy in the near-IR

    Science.gov (United States)

    Stewart, George; Whitenett, Gillian; Shields, Peter; Marshall, Joanna; Culshaw, Brian

    2004-03-01

    Because of the ready availability of fibre optic components from the communications industry, fibre optic systems operating in the near-IR are well suited for remote, multi-point monitoring of hazardous and environmentallyimportant gases. However a number of challenges have to be met in order exploit the potential commercial opportunities and applications for such sensors. Here we review our research on gas sensors based on fibre laser systems and absorption spectroscopy. Fibre lasers are of particular interest for sensors since on-going developments have extended their wavelength range of operation over ~1480-1620nm, encompassing the near-IR absorption lines of numerous gases. We discuss several configurations for fibre laser systems which offer the prospect of either enhanced performance or the possibility of multiplexing a number of sensor cells. However, because gas absorption lines in the near-IR spectral region are relatively weak, high sensitivity techniques are required for a number of species and we discuss methods for path-length enhancement through ring-down and intra-cavity absorption spectroscopy. Effective interrogation methods are required to attain the benefits of the various forms of cavity enhanced spectroscopy in fibre optic systems and several techniques are under investigation to realise this potential.

  19. Laser speckle reduction techniques for mid-infrared microscopy and stand-off spectroscopy

    Science.gov (United States)

    Furstenberg, Robert; Kendziora, Christopher A.; Breshike, Christopher J.; Nguyen, Viet; McGill, R. Andrew

    2017-05-01

    Due to their high brightness, infrared (IR) lasers (such as tunable quantum cascade lasers, QCLLs) are very attractive illumination sources in both stand-off spectroscopy and micro-spectroscopy. In fact, they are the enabling device for trace-level spectroscopy. However, due to their high coherence as laser beams, QCLLs can cause speckle, especially when illuminating a rough surface. This is highly detrimental to the signal-to-noise ratio (SNR) of thee collected spectra and can easily negate the gains from using aa high brightness source. In most cases, speckle reduction is performed at the expense of optical power. In this paper, we examine several speckle reduction approaches and evaluate them for their ability to reduce speckle contrast while at the same time preserving aa high optical throughput. We analyze multi-mode fibers, integrating spheres, and stationary and moving diffusers for their speckle reduction potential. Speckle-contrast is measured directly by acquiring beam profiles of the illumination beam or, indirectly, by observing speckle formation from illuminating a rough surface (e.g. Infragold® coated surface) with an IR micro-bolometer camera. We also report on a novel speckle-reducing device with increased optical throughput. We characterize speckle contrast reduction from spatial, temporal and wavelength averaging for both CWW and pulsed QCLs. Examples of effect of speckle-reduction on hyperspectral images in both standoff and microscopy configurations are given.

  20. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Khalil, Ahmed Asaad I; Gondal, Mohammed A; Shemis, Mohamed; Khan, Irfan S

    2015-03-10

    The UV single-pulsed (SP) laser-induced breakdown spectroscopy (LIBS) system was developed to detect the carcinogenic metals in human kidney stones extracted through the surgical operation. A neodymium yttrium aluminium garnet laser operating at 266 nm wavelength and 20 Hz repetition rate along with a spectrometer interfaced with an intensified CCD (ICCD) was applied for spectral analysis of kidney stones. The ICCD camera shutter was synchronized with the laser-trigger pulse and the effect of laser energy and delay time on LIBS signal intensity was investigated. The experimental parameters were optimized to obtain the LIBS plasma in local thermodynamic equilibrium. Laser energy was varied from 25 to 50 mJ in order to enhance the LIBS signal intensity and attain the best signal to noise ratio. The parametric dependence studies were important to improve the limit of detection of trace amounts of toxic elements present inside stones. The carcinogenic metals detected in kidney stones were chromium, cadmium, lead, zinc, phosphate, and vanadium. The results achieved from LIBS system were also compared with the inductively coupled plasma-mass spectrometry analysis and the concentration detected with both techniques was in very good agreement. The plasma parameters (electron temperature and density) for SP-LIBS system were also studied and their dependence on incident laser energy and delay time was investigated as well.

  1. Frequency Stabilization of a 369 nm Diode Laser by Nonlinear Spectroscopy of Ytterbium Ions in a Discharge

    CERN Document Server

    Lee, Michael W; Marciniak, Christian; Biercuk, Michael J

    2014-01-01

    We demonstrate stabilisation of an ultraviolet diode laser via Doppler free spectroscopy of Ytterbium ions in a discharge. Our technique employs polarization spectroscopy, which produces a natural dispersive lineshape whose zero-crossing is largely immune to environmental drifts, making this signal an ideal absolute frequency reference for Yb$^+$ ion trapping experiments. We stabilise an external-cavity diode laser near 369 nm for cooling Yb$^+$ ions, using amplitude-modulated polarisation spectroscopy and a commercial PID feedback system. We achieve stable, low-drift locking with a standard deviation of measured laser frequency ~400 kHz over 10 minutes, limited by the instantaneous linewidth of the diode laser. These results and the simplicity of our optical setup makes our approach attractive for stabilization of laser sources in atomic-physics applications.

  2. Laser-Induced Breakdown Spectroscopy in open-path configuration for the analysis of distant objects

    Energy Technology Data Exchange (ETDEWEB)

    Salle, B. [Noveltis, Parc Technologique du Canal, 2 avenue de l' Europe, 31520 Ramonville Saint Agne (France)], E-mail: beatrice.salle@voila.fr; Mauchien, P. [CEA Saclay, DEN/DPC/SCP, Bat.467, 91191 Gif sur Yvette Cedex (France); Maurice, S. [Observatoire Midi-Pyrenees, Centre d' Etude Spatiale des Rayonnements, 9 avenue du Colonel Roche, BP 4346, 31028 Toulouse Cedex 04 (France)

    2007-08-15

    A review of recent results on stand-off Laser-Induced Breakdown Spectroscopy (LIBS) analysis and applications is presented. Stand-off LIBS was suggested for elemental analysis of materials located in environments where any physical access was not possible but optical access could be envisaged. This review only refers to the use of the open-path LIBS configuration in which the laser beam and the returning plasma light are transmitted through the atmosphere. It does not present the results obtained with a transportation of the laser pulses to the target through an optical fiber. Open-path stand-off LIBS has mainly been used with nanosecond laser pulses for solid sample analysis at distances of tens of meters. Liquid samples have also been analyzed at distances of a few meters. The distances achievable depend on many parameters including the laser characteristics (pulse energy and power, beam divergence, spatial profile) and the optical system used to focus the pulses at a distance. A large variety of laser focusing systems have been employed for stand-off analysis comprising refracting or reflecting telescope. Efficient collection of the plasma light is also needed to obtain analytically useful signals. For stand-off LIBS analysis, a lens or a mirror is required to increase the solid angle over which the plasma light can be collected. The light collection device can be either at an angle from the laser beam path or collinear with the optical axis of the system used to focus the laser pulses on the target surface. These different configurations have been used depending on the application such as rapid sorting of metal samples, identification of material in nuclear industry, process control and monitoring in metallurgical industry, applications in future planetary missions, detection of environmental contamination or cleaning of objects of cultural heritage. Recent stand-off analyses of metal samples have been reported using femtosecond laser pulses to extend LIBS

  3. Stark-effect measurement of high FEL (free-electron laser) electric fields in MTX (Microwave Tokamak Experiment) by laser-aided particle-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T.; Takiyama, K. (Hiroshima Univ. (Japan)); Odajima, K.; Ohasa, K.; Shiho, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Mizuno, K. (California Univ., Davis, CA (USA) Sandia National Labs., Livermore, CA (USA)); Foote, J.H.; Nilson, D.G. (Sandia National Labs., Livermore, CA (USA))

    1990-05-04

    We are constructing a diagnostic system to measure the electric field (>100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, {approx}1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by a collimated optical system. Because of the Stark effect due to the FEL electric field ({rvec E}), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E{sup 2}. Because photon counting rates are calculated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower {rvec E} of an MTX gyrotron-produced ECH beam with its longer-duration pulses also can be measured using this method. Other applications may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations. 11 refs., 2 figs., 2 tabs.

  4. Start-effect measurement of high FEL (free-electron laser) electric fields in MTX (Microwave Tokamak Experiment) by laser-aided particle-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T.; Takiyama, K. (Hiroshima Univ. (Japan)); Odajima, K.; Ohasa, K.; Shiho, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Mizuno, K. (California Univ., Davis, CA (USA) Lawrence Livermore National Lab., CA (USA)); Foote, J.H.; Nilson, D.G. (Lawrence Livermore National Lab., CA (USA))

    1990-05-10

    We are constructing a diagnostic system to measure the electric field (>100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, {approx}1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by an efficient optical system. Because of the Stark effect arising from the FEL electric field ({rvec E}), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E{sup 2}. Because photon counting rates are estimated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower {rvec E} of an MTX gyrotron-produced ECH beam with its longer-duration pulses can also be measured using this method. Other applications of the apparatus described here may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations.

  5. Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Chou, Nee-Yin; Sachse, Glen W.

    1987-01-01

    A generalized theory for optical heterodyne spectroscopy with phase modulated laser radiation is used which allows the calculation of signal line shapes for frequency modulation spectroscopy of Lorentzian gas absorption lines. In particular, synthetic spectral line shapes for both single-tone and two-tone modulation of lead-salt diode lasers are presented in which the contributions from both amplitude and frequency modulations are included.

  6. Using laser-induced breakdown spectroscopy on vacuum alloys-production process for elements concentration analysis

    Science.gov (United States)

    Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo

    2017-11-01

    Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.

  7. Characterization of organic photovoltaic devices using femtosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Banerjee, S. P.; Sarnet, Thierry; Siozos, Panayiotis; Loulakis, Michalis; Anglos, Demetrios; Sentis, Marc

    2017-10-01

    The potential of laser induced breakdown spectroscopy (LIBS) as a non-contact probe, for characterizing organic photovoltaic devices during selective laser scribing, was investigated. Samples from organic solar cells were studied, which consisted of several layers of materials including a top electrode (Al, Mg or Mo), organic layer, bottom electrode (indium tin oxide), silicon nitride barrier layer and substrate layer situated from the top consecutively. The thickness of individual layers varies from 115 to 250 nm. LIBS measurements were performed by use of a 40 femtosecond Ti:Sapphire laser operated at very low pulse energy (solar cell structure, demonstrating the potential of LIBS for fast, non-contact characterization of organic photovoltaic coatings.

  8. Nuclear and in-source laser spectroscopy with the ISAC yield station

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Peter, E-mail: pkunz@triumf.ca; Bricault, Pierre; Dombsky, Marik; Lassen, Jens; Teigelhöfer, Andrea; Heggen, Henning [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Andreoiu, Corina; Wong, Fiona [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada)

    2014-05-15

    A new decay station has been built for the ISAC facility at TRIUMF for the rapid and reliable characterization of radioactive ion beam (RIB) compositions and intensities with the capability of simultaneously collecting α, β, and γ decay data from RIB with intensities between a few and ≈10{sup 11} ions per second. It features user-friendly control, data acquisition, and analysis software. The analysis of individual decay time structures allows the unambiguous assignment of α and γ lines even with substantial isobaric contamination present. The capability for accurate half-life measurements is demonstrated with the example of {sup 46}K. The coupling of the yield station to the laser ion source, TRILIS, allows the correlation of radiometric data with automated laser frequency scans. First results of in-source laser spectroscopy measurements on astatine are discussed.

  9. Nuclear and in-source laser spectroscopy with the ISAC yield station.

    Science.gov (United States)

    Kunz, Peter; Andreoiu, Corina; Bricault, Pierre; Dombsky, Marik; Lassen, Jens; Teigelhöfer, Andrea; Heggen, Henning; Wong, Fiona

    2014-05-01

    A new decay station has been built for the ISAC facility at TRIUMF for the rapid and reliable characterization of radioactive ion beam (RIB) compositions and intensities with the capability of simultaneously collecting α, β, and γ decay data from RIB with intensities between a few and ≈10(11) ions per second. It features user-friendly control, data acquisition, and analysis software. The analysis of individual decay time structures allows the unambiguous assignment of α and γ lines even with substantial isobaric contamination present. The capability for accurate half-life measurements is demonstrated with the example of (46)K. The coupling of the yield station to the laser ion source, TRILIS, allows the correlation of radiometric data with automated laser frequency scans. First results of in-source laser spectroscopy measurements on astatine are discussed.

  10. Optical emission spectroscopy of Aluminum Nitride thin films deposited by Pulsed Laser Deposition

    Science.gov (United States)

    Pérez, J. A.; Vera, L. P.; Riascos, H.; Caicedo, J. C.

    2014-05-01

    In this work we study the Aluminium Nitride plasma produced by Nd:YAG pulsed laser, (λ = 1064 nm, 500 mJ, τ = 9 ns) with repletion rate of 10 Hz. The laser interaction on Al target (99.99%) under nitrogen gas atmosphere generate a plasma which is produced at room temperature; with variation in the pressure work from 0.53 Pa to 0.66 Pa matching with a applied laser fluence of 7 J/cm2.The films thickness measured by profilometer was 150 nm. The plasma generated was at different pressures was characterized by Optical Emission Spectroscopy (EOS). From emission spectra obtained ionic and atomic species were observed. The plume electronic temperature has been determined by assuming a local thermodynamic equilibrium of the emitting species. Finally the electronic temperature was calculated with Boltzmann plot from relative intensities of spectral lines.

  11. The three dimensional laser induced temperature distribution in photo-thermal displacement spectroscopy

    CERN Document Server

    Soltanolkotabi, M

    2002-01-01

    In this paper we present a detailed theoretical treatment of 3-D temperature distribution induced by laser beam in photothermal displacement spectroscopy. We assume that a solid sample, which is deposited on a substrate and is in contact with a fluid, is irradiated by an intensity modulated cw laser source. By using a technique based on Green's function and integral transformations we find the explicit expression for temperature distribution function. This function which depends on the properties of the laser beam and optical and thermal properties of the sample, the substrate and the fluid, exhibits the characteristics of a damped thermal wave. Numerical analysis of the temperature distribution for a certain sample (GaAs) reveals that the behavior of thermal wave is not so sensitive with respect to the variation of the modulation frequency. On the other hand, we find that the temperature of the sample surface decreases with increasing modulation frequency because of the thermal inter tia of the sample. Furth...

  12. Analysis of Manganese in Soil Using Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Yongcheng, J.; Jiang, H.; Benchi, J.; Dong, L.

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to measure spectral characteristics and to perform quantitative analysis of the concentration of manganese in soil, an issue of great concern for precision agriculture. For the analysis, soil samples were compressed into pellets and a pulsed Nd:YAG laser was employed to produce the plasma in air at atmospheric pressure. Using this approach, we analyzed the time evolution of spectral characteristics and their dependence on the laser pulse energy. A calibration curve was constructed using reference sandy soil samples collected from a farm. An internal standard curve was used to improve the accuracy of the LIBS metrology for soil analyses. The results of this analysis demonstrated the usefulness of this method for analyzing the concentration of manganese in soil.

  13. Fast identification of steel bloom composition at a rolling mill by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sturm, Volker; Meinhardt, Christoph; Fleige, Rüdiger; Fricke-Begemann, Cord; Eisbach, Jens

    2017-10-01

    Laser-induced breakdown spectroscopy (LIBS) is applied for the elemental analysis of steel blooms in a rolling mill. The 2-3 tons steel blooms with superficial scale are transported in a sequence on a roller table to successive processing steps. Laser ablation of the scale and the analysis of the subsurface bulk steel is carried out using the same laser in steel during routine production. The comparison of the measured with the nominal compositions, results in root mean square errors of prediction in the range of 0.01-0.2 m.-%. The rolling sequence is clearly reflected by the LIBS measurement of the individual blooms demonstrating the feasibility for material identification. Identification rates are estimated from computer simulations by permutation of the LIBS measured values and the reference values from the rolling sequence.

  14. Enhancement mechanism of femtosecond double-pulse laser-induced Cu plasma spectroscopy

    Science.gov (United States)

    Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Li, Suyu; Wang, Ying; Sui, Laizhi; Jiang, Yuanfei; Jin, Mingxing

    2017-11-01

    A dual-wavelength femtosecond double-pulse laser is used to induce the Cu plasma spectroscopy in air. The laser wavelengths are a fundamental wavelength (800 nm) and a second harmonic wavelength (400 nm) from Ti:sapphire laser. The inter-pulse delay of double-pulse is from -300 ps to 160 ps. The observed spectral intensity is dependent on the inter-pulse delay of the dual-wavelength femtosecond double-pulse. We analyze the characteristics of the plasma temperature and the electron number density on the inter-pulse delay of double-pulse with two different wavelengths. For 800 nm + 400 nm, the spectral emission enhancement is based on more material ablation. For 400 nm + 800 nm, the enhanced mechanism is plasma reheating effect. This study will provide a better way to understand the mechanism of femtosecond double-pulse LIBS.

  15. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  16. Raman spectroscopy of carbon nano-particles synthesized by laser ablation of graphite in water

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, J. F.; Cadenbach, T.; Costa V, C.; Paz, J. L. [Escuela Politecnica Nacional, Departamento de Fisica, Apdo. 17-12-866, Ladron de Guevara E11-253, EC 170109, Quito (Ecuador); Zhang, Z. B.; Zhang, S. L. [Institutionen for teknikvetenskaper, Fasta tillstandets elektronik, Angstromlaboratoriet, Lagerhyddsvagen, 1 Box 534, 751-21 Uppsala (Sweden); Debut, A.; Vaca, A. V., E-mail: cardenas9291@gmail.com [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Sangolqui (Ecuador)

    2017-11-01

    Carbon nanoparticles (CNPs) have been synthesized by laser ablation of polycrystalline graphite in water using a pulsed Nd:YAG laser (1064 nm) with a width of 8 ns. Structural and mesoscopic characterization of the CNPs in the supernatant by Raman spectroscopy provide evidence for the presence of mainly two ranges of particle sizes: 1-5 nm and 10-50 nm corresponding to amorphous carbon and graphite Nps, respectively. These results are corroborated by complementary characterization using atomic force microscopy (AFM) and transmission electron microscopy (Tem). In addition, large (10-100 μm) graphite particles removed from the surface are essentially unmodified (in structure and topology) by the laser as confirmed by Raman analysis. (Author)

  17. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    Science.gov (United States)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  18. Dual fluorescent polyaniline model compounds: steric and temperature effects on excited state charge separation.

    Science.gov (United States)

    Kapelle, Sabine; Rettig, Wolfgang; Lapouyade, René

    2002-07-01

    Low temperature dual fluorescence of several derivatives of 4-aminodiphenylamine is investigated quantitatively. A strong thermochromic and solvatochromic redshift is indicative of the high dipole moment of the CT state emitting at long wavelength. The combination of steady state and time-resolved data allowed the calculation of the excited-state equilibrium. The absence of CT-risetimes in diethyl ether and their presence in butyronitrile points to the complication by additional ground state conformational equilibria. Both ground and excited state equilibria depend on solvent polarity and temperature. High solvent polarity favours one of the ground state conformers.

  19. Shannon information entropy in position space for doubly excited states of helium with finite confinements

    Science.gov (United States)

    Ou, Jen-Hao; Ho, Yew Kam

    2017-12-01

    Quantifying electron localization in quantum confined systems remains challenging, especially for excited states. A quantum dot (QD) is represented by a helium atom in a finite oscillator potential. The effect of dot width variation on the electron localization in QD is systematically examined via Shannon entropy for low-lying doubly excited states (2s21Se, 2p21Se, 2s3s 1Se) obtained using highly correlated Hylleraas functions. In particular, the most effective dot width where the electron density is the most localized is determined successfully and justified by the electron density plot for all three states.

  20. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.

    Science.gov (United States)

    Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P

    2016-09-01

    Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.

  1. Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination

    DEFF Research Database (Denmark)

    Knadel, Maria; Gislum, René; Hermansen, Cecilie

    2017-01-01

    for becoming an alternative method for soil analysis since it is faster and cheaper than conventional methods. Laser-induced breakdown spectroscopy (LIBS) is another cost-effective technique with potential for rapid analysis of elements present in the soil. In this study, the feasibility of using LIBS......, the country-scale calibration data set was spiked with 14 representative samples from the fields and validated with the 54 field samples. Generated country-scale LIBS models exhibited similar and not significantly different (p > 0.05) results to viseNIRS for all soil properties except a significantly higher...... country-scale models. Lower prediction errors for most properties were obtained using LIBS, rendering it an equally good or even a more accurate technique for soil properties determination than the well-established viseNIRS method....

  2. Measurement of Moments and Radii of Light Nuclei by Collinear Fast-Beam Laser Spectroscopy and $\\beta$-NMR Spectroscopy

    CERN Multimedia

    Marinova, K P

    2002-01-01

    Nuclear Moments and radii of light unstable isotopes are investigated by applying different high-sensitivity and high-resolution techniques based on collinear fast-beam laser spectroscopy. A study of nuclear structure in the sd shell is performed on neon isotopes in the extended chain of $^{17-28}$Ne, in particular on the proton-halo candidate $^{17}$Ne. Measurements of hyperfine structure and isotope shift have become possible by introducing an ultra-sensitive non-optical detection method which is based on optical pumping, state-selective collisional ionization and $\\beta$-activity counting. The small effect of nuclear radii on the optical isotope shifts of light elements requires very accurate measurements. The errors are dominated by uncertainties of the Doppler shifts which are conventionally determined from precisely measured acceleration voltages. These uncertainties are removed by measuring the beam energy with simultaneous excitation of two optical lines in parallel / antiparallel beam configuration. ...

  3. Laser systems for collinear spectroscopy and the charge radius of {sup 12}Be

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, Andreas

    2012-03-30

    Collinear laser spectroscopy has been used to investigate the nuclear charge radii of shortlived medium- and heavy-Z nuclei for more than three decades. But it became only recently be applicable to low-Z nuclei. This region of the nuclear chart attracts attention because so-called ab-initio nuclear models, based on realistic nucleon-nucleon potentials, can only be applied to the lightest elements due to the rapidly increasing calculational demands with the number of nucleons. Furthermore, strong clusterization of atomic nuclei occurs and the encountered halo nuclei are presently subject of intense research. The isotopic chain of beryllium exhibits the prime example of a one-neutron halo nucleus, {sup 11}Be, and the two- or four-neutron halo nucleus {sup 14}Be. {sup 12}Be is a key isotope between these two exotic nuclei and particularly interesting because the nuclear shell model predicts a shell closure for the magic neutron number N = 8. In the course of this thesis, several frequency-stabilized laser systems for collinear laser spectroscopy have been developed. At TRIGA-SPEC a frequency-doubled diode laser system with a tapered amplifier and a frequency comb-stabilized titanium-sapphire laser with a frequency doubling stage are now available for the spectroscopy of refractory metals above molybdenum. They have already been used for test-experiments and commissioning of the TRIGA-LASER beamline. Furthermore, frequency-quadrupling of the Ti:Sa laser was demonstrated to expand the emitted wavelengths into the 200 nm region. At ISOLDE/CERN a frequency comb-stabilized and an iodine-stabilized dye laser were installed and applied for laser spectroscopy of {sup 9,10,11,12}Be{sup +}. The improved laser system and the development of a delayed photon-ion coincidence detection improved the sensitivity of the beryllium spectroscopy by more than two orders of magnitude and, thus, the previous measurements of {sup 7-11}Be could be extended for the first time to the short

  4. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    Science.gov (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  5. Probing the excited state dynamics of a new family of Cu(I)-complexes with an enhanced light absorption capacity: excitation-wavelength dependent population of states through branching.

    Science.gov (United States)

    Papanikolaou, Panagiotis A; Tkachenko, Nikolai V

    2013-08-21

    The ultrafast dynamics of six homoleptic Cu(I)-complexes and their respective ligands was examined through time-resolved electronic absorption spectroscopy in the subpicosecond time domain, in a variety of solvents, and at different excitation wavelengths. Results indicate that after excitation of the complexes in the blue part of the spectrum, the initially formed intraligand (IL) singlet excited state decays via two pathways yielding simultaneously both the lower-lying MLCT excited state and the ligand locally excited triplet state. The latter is also observed in the case of the free ligands and relaxes back to the ground state in a timescale of 40 ps. Excitation in the red part results in the formation of the MLCT excited state of the complexes which decays to the ground state through the same intraligand triplet excited state. The solvent viscosity does not affect the overall relaxation kinetics. The short time constant observed for the intersystem crossing of the MLCT singlet excited state is discussed in terms of the contribution of the d-orbitals of copper to the wavefunction of these states.

  6. Luminescence and excited state dynamics of Bi{sup 3+} centers in Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Chernenko, K., E-mail: nuclearphys@yandex.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Peter the Great Saint-Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St. Petersburg (Russian Federation); Lipińska, L. [Institute of Electronic Materials Technology, Wólczyńska 133, 01919 Warsaw (Poland); Mihokova, E.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Schulman, L.S. [Physics Department, Clarkson University, Potsdam, NY 13699-5820 (United States); Shalapska, T. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, University of Bydgoszcz, Weyssenhoffa 11, 85072 Bydgoszcz (Poland); Zazubovich, S. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Zhydachevskii, Ya. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Lviv Polytechnic National University, Bandera 12, 79646 Lviv (Ukraine)

    2015-11-15

    Photoluminescence of Y{sub 2}O{sub 3}:Bi nanopowder synthesized by the modified sol–gel method is studied using time-resolved luminescence spectroscopy in the 4.2–300 K temperature range. Bi{sup 3+} ions are substituted for Y{sup 3+} ions in two different crystal lattice sites, one having S{sub 6} symmetry (Bi(S{sub 6})) and the other C{sub 2} symmetry (Bi(C{sub 2})). The luminescence characteristics of these two centers are found to have strongly different electron–phonon interactions. The luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers peak at 3.04 eV and 2.41 eV, respectively, and arise from the radiative decay of the triplet relaxed excited state (RES) of Bi{sup 3+} ions. The model and structure of the RES, responsible for the luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers in Y{sub 2}O{sub 3}:Bi, as well as radiative and nonradiative processes, taking place in the excited states of these centers, are investigated. The parameters of the triplet RES (the separation between the metastable and radiative levels and probabilities of radiative and nonradiative transitions from these levels) are determined. Low-temperature quenching of the triplet luminescence of these centers is explained by nonradiative quantum tunneling transitions from the metastable minima of their triplet RES to closely located defect- or exciton-related levels. - Highlights: • Photoluminescence of Bi{sup 3+} centers of two types in Y{sub 2}O{sub 3}:Bi is investigated. • Bi(S{sub 6}) and Bi(C{sub 2}) centers reveal strongly different electron–phonon interaction. • Radiative and nonradiative processes in their triplet excited states are clarified. • Low-temperature luminescence quenching in Bi(S{sub 6}) and Bi(C{sub 2}) centers is studied. • New fast weak ≈2.9 eV emission is suggested to arise from Bi(C{sub 2}) centers.

  7. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    Science.gov (United States)

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  8. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  9. A Simple Laser Induced Breakdown Spectroscopy (LIBS) System for Use at Multiple Levels in the Undergraduate Chemistry Curriculum

    Science.gov (United States)

    Randall, David W.; Hayes, Ryan T.; Wong, Peter A.

    2013-01-01

    A LIBS (laser induced breakdown spectroscopy) spectrometer constructed by the instructor is reported for use in undergraduate analytical chemistry experiments. The modular spectrometer described here is based on commonly available components including a commercial Nd:YAG laser and a compact UV-vis spectrometer. The modular approach provides a…

  10. Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils

    Energy Technology Data Exchange (ETDEWEB)

    Srungaram, Pavan K.; Ayyalasomayajula, Krishna K.; Yu-Yueh, Fang; Singh, Jagdish P., E-mail: singh@icet.msstate.edu

    2013-09-01

    Mercury is a toxic element found throughout the environment. Elevated concentrations of mercury in soils are quite hazardous to plants growing in these soils and also the runoff of soils to nearby water bodies contaminates the water, endangering the flora and fauna of that region. This makes continuous monitoring of mercury very essential. This work compares two potential spectroscopic methods (laser induced breakdown spectroscopy (LIBS) and spark induced breakdown spectroscopy (SIBS)) at their optimum experimental conditions for mercury monitoring. For LIBS, pellets were prepared from soil samples of known concentration for generating a calibration curve while for SIBS, soil samples of known concentration were used in the powder form. The limits of detection (LODs) of Hg in soil were calculated from the Hg calibration curves. The LOD for mercury in soil calculated using LIBS and SIBS is 483 ppm and 20 ppm, respectively. The detection range for LIBS and SIBS is discussed. - Highlights: • We compared SIBS and LIBS for mercury (Hg) measurements in soil. • Hg 546.07 nm line was selected for both LIBS and SIBS measurements. • Limit of detection for Hg was found to be 20 ppm with SIBS and 483 ppm with LIBS.

  11. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Science.gov (United States)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  12. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Edilene Cristina, E-mail: edilene@iq.unesp.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); São Paulo State University—UNESP, Analytical Chemistry Department, P.O. Box 355, 14801-970 Rua Prof. Francisco Degni, 55, CEP 14800-900 Araraquara, SP (Brazil); Ferreira, Ednaldo José, E-mail: ednaldo.ferreira@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Villas-Boas, Paulino Ribeiro, E-mail: paulino.villas-boas@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari 70126 (Italy); Carvalho, Camila Miranda, E-mail: camilamc@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Martin-Neto, Ladislau, E-mail: ladislau.martin@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); and others

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. - Highlights: • Humification degree of soil organic matter (HD) • Importance of soil organic matter HD in keeping carbon in soil • Laser induced fluorescence spectroscopy (LIFS) for HD estimation (reference method) • New LIBS application to predict HD.

  13. XUV Transient Absorption Spectroscopy: Probing Laser-Perturbed Dipole Polarization in Single Atom, Macroscopic, and Molecular Regimes

    Directory of Open Access Journals (Sweden)

    Chen-Ting Liao

    2017-03-01

    Full Text Available We employ an extreme ultraviolet (XUV pulse to impulsively excite dipole polarization in atoms or molecules, which corresponds to coherently prepared superposition of excited states. A delayed near infrared (NIR pulse then perturbs the fast evolving polarization, and the resultant absorbance change is monitored in dilute helium, dense helium, and sulfur hexafluoride (SF6 molecules. We observe and quantify the time-dependence of various transient phenomena in helium atoms,includinglaser-inducedphase(LIP,time-varying(ACStarkshift,quantumpathinterference, and laser-induced continuum structure. In the case of dense helium targets, we discuss nonlinear macroscopic propagation effects pertaining to LIP and resonant pulse propagation, which accoun tfor the appearance of new spectral features in transient lineshapes. We then use tunable NIR photons to demonstrate the wavelength dependence of the transient laser induced effects. In the case of molecular polarization experiment in SF6, we show suppression of XUV photoabsorption corresponding to inter-valence transitions in the presence of a strong NIR field. In each case, the temporal evolution of transient absorption spectra allows us to observe and understand the transient laser induced modifications of the electronic structure of atoms and molecules.

  14. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-05

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium.

  15. Analysis of indium zinc oxide thin films by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, A. C. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. de Luminy, Marseille 13288 (France); National Institute for Lasers, Plasma and Radiation Physics, Magurele, Ilfov 077125 (Romania); Beldjilali, S. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. de Luminy, Marseille 13288 (France); LPPMCA, Universite des Sciences et de la Technologie d' Oran, BP 1505 El Mnaouer, Oran (Algeria); Socol, G.; Mihailescu, I. N. [National Institute for Lasers, Plasma and Radiation Physics, Magurele, Ilfov 077125 (Romania); Craciun, V. [National Institute for Lasers, Plasma and Radiation Physics, Magurele, Ilfov 077125 (Romania); MAIC, University of Florida, Gainesville, FL 32611 (United States); Hermann, J. [LP3, CNRS - Universite Aix-Marseille, 163 Ave. de Luminy, Marseille 13288 (France)

    2011-10-15

    We have performed spectroscopic analysis of the plasma generated by Nd:YAG ({lambda} = 266 nm) laser irradiation of thin indium zinc oxide films with variable In content deposited by combinatorial pulsed laser deposition on glass substrates. The samples were irradiated in 5 x 10{sup 4} Pa argon using laser pulses of 5 ns duration and 10 mJ energy. The plasma emission spectra were recorded with an Echelle spectrometer coupled to a gated detector with different delays with respect to the laser pulse. The relative concentrations of indium and zinc were evaluated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. Plasma temperature and electron density were deduced from the relative intensities and Stark broadening of spectral lines of atomic zinc. Analyses at different locations on the deposited thin films revealed that the In/(In + Zn) concentration ratio significantly varies over the sample surface, from 0.4 at the borders to about 0.5 in the center of the film. The results demonstrate that laser-induced breakdown spectroscopy allows for precise and fast characterization of thin films with variable composition.

  16. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-05

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS.

  17. Ongoing Work to Improve Precision Laser Spectroscopy of Helium Fine Structure.

    Science.gov (United States)

    Cameron, Garnet; Currey, Ronnie; Alnasser, Khadijah; Nook, Corey; Khademian, Ali; Shiner, David

    2017-04-01

    Spectroscopy of the 2P triplet levels of helium provides a nice proving ground for various precision experimental techniques. It also provides a sensitive test of atomic theory, quantum electrodynamics and, with the isotope shift determination of the nuclear size, a test of nuclear few-body theory. It can also provide, with improvements, an important input to the value of the fine structure constant, α. Several improvements to our previous experiments are ongoing, including making the study of potential systematic errors more convenient by increasing the count rate. A straight forward increase results from reducing the source-detector separation. This is accomplished by replacing the static high voltage E-field quench plates used for the elimination of the 2S singlet background, with a more reliable and convenient laser to induce the 2S to 2P singlet resonant quenching transition at 2059 nm. We discuss the theory and performance of the 2059 nm cladding-pumped Tm fiber laser we use. The in-house fabricated Tm fiber laser has required several design iterations. Additional 1083 nm fiber lasers are being implemented to improve signal via pumping to a single ms level (+1 or -1). As emphasized by Hessels and co-workers for these laser transitions, non-resonant transition amplitudes often make contributions that must be included in the data analysis at current and future levels of precision. We discuss this and experimental tests of its proper inclusion. This work is supported by NSF award 1404498.

  18. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management.

    Science.gov (United States)

    Gondal, Mohammed A; Siddiqui, Mohammad N

    2007-11-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied for the identification of various kinds of plastics for management and recycling of plastic waste. In order to fingerprint these plastics, a laser-produced plasma emission was recorded for spectral analysis of various kinds of plastics. The plasma was generated by focusing a Nd:YAG laser radiation at wavelength = 1064 nm having laser energy = 40 mJ. The 6 main family of plastics tested are: Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), Polypropylenes (PP), Polystyrene (PS), Polyethylene Terephthalate (PET) and Polyvinyl chloride (PVC). The capability of this technique is demonstrated by the analysis of the major constituents carbon and hydrogen present in polymer matrices. The LIBS signal intensity measured for carbon and hydrogen was detrimental for the fingerprinting of various kinds of plastics. The C/H line intensity ratio was 1.68, 1.51, 1.42, 1.16, 1.01 and 0.91 for HDPE, LDPE, PS, PP, PET and PVC respectively. The detection limits of carbon and hydrogen were found to be approximately 6 micro g/g by applying 20 laser shots. The unique features of LIBS are: it is a simple, rapid, remote, real-time analysis without sampling requirements. The study demonstrated that LIBS could be applied as a best tool for sorting out different kinds plastics on a fast scale for waste management. The health hazards of different kinds of plastics are also described.

  19. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    Science.gov (United States)

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.

  20. Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Verhoff, B.; Harilal, S. S.; Freeman, J. R.; Diwakar, P. K.; Hassanein, A. [Center for Materials Under Extreme Environment and School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-11-01

    We investigated the spatial and temporal evolution of temperature and electron density associated with femto- and nanosecond laser-produced plasmas (LPP) from brass under similar laser fluence conditions. For producing plasmas, brass targets were ablated in vacuum employing pulses either from a Ti:Sapphire ultrafast laser (40 fs, 800 nm) or from a Nd:YAG laser (6 ns, 1064 nm). Optical emission spectroscopy is used to infer the density and temperature of the plasmas. The electron density (n{sub e}) was estimated using Stark broadened profiles of isolated lines while the excitation temperature (T{sub exc}) was estimated using the Boltzmann plot method. At similar fluence levels, continuum and ion emission are dominant in ns LPP at early times (<50 ns) followed by atomic emission, while the fs LPP provided an atomic plume throughout its visible emission lifetime. Though both ns and fs laser-plasmas showed similar temperatures ({approx}1 eV), the fs LPP is found to be significantly denser at shorter distances from the target surface as well as at early phases of its evolution compared to ns LPP. Moreover, the spatial extension of the plume emission in the visible region along the target normal is larger for fs LPP in comparison with ns LPP.