WorldWideScience

Sample records for excited-state intramolecular proton

  1. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results...... in an unusually large fluorescence Stokes shift of 10500 cm−1. The emission appears as a broad band with a maximum at 17500 cm−1 and is characterized by a low and nearly temperature-independent quantum yield. The results are interpreted as an indication of a large equilibrium geometry change upon excitation...

  2. Excited state intramolecular proton transfer (ESIPT) in dihydroxyphenyl anthracenes.

    Science.gov (United States)

    Wang, Yu-Hsuan; Wan, Peter

    2011-12-01

    The photochemistry of three 9-(dihydroxyphenyl)anthracenes 6-8 was studied in neat CH(3)CN and selected organic solvents, to investigate excited state intramolecular proton transfer (ESIPT) from the phenol to the anthracene moiety. In D(2)O-CH(3)CN mixtures, the observed deuterium exchange of 6-8 is consistent with water-mediated (formal) ESIPT process from the ortho phenolic OH to the 10'-position of the anthracene ring, giving rise to quinone methide (QM) intermediates 12-14. There is no ESIPT for the corresponding methoxy-substituted compounds. Introduction of an extra hydroxyl group onto the phenol ring at different positions led to a range of deuterium exchange quantum yields (Φ = 0.03 to 0.15). In addition to the anticipated ESIPT process to the 10'-position, in neat CH(3)CN and other organic solvents, 6 (but not 7 or 8) undergoes a clean photocyclization to give bridged product 19 in quantitative yield. The mechanism of this unique photocyclization may involve a direct ESIPT or a 1,4-hydrogen transfer from the ortho phenolic OH to the 9'-position of the anthracene ring, generating a zwitterion (20) or diradical (21) intermediate, respectively, followed by ring closure. Fluorescence studies of 6 in various solvents show the existence of both local excited and intramolecular charge transfer states whereas only the former was present for 7 and 8, offering a possible rationalization for the photocyclization pathway.

  3. Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghwa; Joo, Taiha [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ∼300 fs component observed frequently in ESIPT dynamics arises from the S{sub 2}→S{sub 1} internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in S{sub 1} state to the keto isomer in S{sub 2} state.

  4. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics

    Czech Academy of Sciences Publication Activity Database

    Zamotaiev, O. M.; Shvadchak, Volodymyr; Sych, T. P.; Melnychuk, N. A.; Yushchenko, Dmytro A.; Mely, Y.; Pivovarenko, V. G.

    2016-01-01

    Roč. 4, č. 3 (2016), č. článku 034004. ISSN 2050-6120 Institutional support: RVO:61388963 Keywords : quinolone * fluorescent probes * local polarity * hydration * excited-state intramolecular proton transfer * kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.656, year: 2016

  5. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  6. The Effect of Substituent Position on Excited State Intramolecular Proton Transfer in Benzoxazinone Derivatives: Experiment and DFT Calculation.

    Science.gov (United States)

    Bian, Gao-Feng; Guo, Yun; Lv, Xiao-Jing; Zhang, Cheng

    2017-01-01

    The preparation and the photophysical behaviour of two benzoxazinone derivatives isomers 2-(1-hydroxynaphthalen-2-yl)-4H-benzo[e][1, 3]oxazin-4-one(1) and 2-(3-hydroxynaphthalen-2-yl)-4H-benzo[e][1, 3]oxazin-4-one(2) designed for displaying were reported. The effect of substituent position and solvent effect on the excited state intramolecular proton transfer (ESIPT) dynamics and the spectroscopic properties were investigated using a combined theoretical (i.e., time-dependent density function theory (DFT)) and experimental (i.e., steady-state absorption and emission spectra and time-resolved fluorescence spectra) study. The results showed that compound 1 would facilitate ESIPT process and favored the keto tautomer emission, while compound 2 suppressed the ESIPT process and favored the enol emission.

  7. Tunable excited-state intramolecular proton transfer reactions with Nsbnd H or Osbnd H as a proton donor: A theoretical investigation

    Science.gov (United States)

    Li, Yuanyuan; Wen, Keke; Feng, Songyan; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Guo, Xugeng; Zhang, Jinglai

    2017-12-01

    Excited-state intramolecular proton transfer (ESIPT) reactions occurring in the S1 state for five molecules, which possess five/six-membered ring intramolecular Nsbnd H···N or Osbnd H···N hydrogen bonds bearing quinoline or 2-phenylpyridine moiety, have been described in detail by the time-dependent density functional theory (TD-DFT) approach using the B3LYP hybrid functional. For the five molecules, the constrained potential energy profiles along the ESIPT reactions show that proton transfer is barrierless in molecules possessing six-membered ring intramolecular H-bonds, which is smoother than that with certain barriers in five-membered ring H-bonding systems. For the latter, chemical modification by a more strong acid group can lower the ESIPT barrier significantly, which harnesses the ESIPT reaction from a difficult type to a fast one. The energy barrier of the ESIPT reaction depends on the intensity of the intramolecular H-bond, which can be measured with the topological descriptors by topology analysis of the bond critical point (BCP) of the intramolecular H-bond. It is found that when the value of electron density ρ(r) at BCP is bigger than 0.025 a.u., the corresponding molecule might go through an ultrafast and barrierless ESIPT process, which opens a new scenario to explore the ESIPT reactions.

  8. Excited state intramolecular proton transfer in some tautomeric azo dyes and Schiff bases containing an intramolecular hydrogen bond

    NARCIS (Netherlands)

    Joshi, H.C.; Kamounah, F.S.; Gooijer, C.; van der Zwan, G.; Antonov, L.

    2002-01-01

    Photophysical properties of several basically important aromatic azodyes (1-phenylazo-2-naphthol and 2-phenylazo-1-naphthol) and Schiff bases (N-(2-hydroxy-1-naphthylmethylidene) aniline and N-(1-hydroxy-2-naphthylmethylidene) aniline) all containing an intramolecular hydrogen bond were studied by

  9. Theoretical study on the excited-state intramolecular proton-transfer reaction of 10-hydroxybenzo[h]quinoline in methanol and cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng [Department of Chemistry, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao, Jinfeng [Department of Physics, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cui, Yanling; Wang, Qianyu [Department of Physics, Liaoning University, Shenyang 110036 (China); Dai, Yumei [Normal College, Shenyang University, Shenyang 110044 (China); Song, Peng, E-mail: songpeng@lnu.edu.cn [Department of Physics, Liaoning University, Shenyang 110036 (China); Xia, Lixin, E-mail: lixinxia@lnu.edu.cn [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2015-05-15

    The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 10-hydroxybenzoquinoline (HBQ) in different solvents, have been investigated based on the time-dependent density functional theory (TD-DFT) in detail. Upon excitation, the intramolecular hydrogen bond between the hydroxyl and phenanthrene functionality is significantly strengthened in the S{sub 1} state, which can be used as a reasonable tendency for facilitating the ESIPT process. In addition, the calculated vertical excitation energies in the S{sub 0} state and S{sub 1} state reproduce the experimental UV–vis absorbance and fluorescence emission spectra well. Through calculating the fluorescence spectra of the HBQ chromophore, two outcomes for this chromophore were found in the S{sub 1} state, which demonstrates that the ESIPT process occurs. The potential energy curves have been calculated to account for the mechanism of the proton-transfer process in the excited-state. As a result, the barrierless ESIPT process can occur in the S{sub 1} state with proton transfer from the O atom to the N atom. And maybe the ESIPT process is easier in methanol solvent due to the higher potential energy difference. - Highlights: • The hydrogen bond between the hydroxyl and phenanthrene is strengthened. • The hydrogen bond facilitates the proton transfer from the hydroxyl group to the N atom. • The spontaneous excited-state intramolecular proton transfer reaction can be observed.

  10. Excited-state intramolecular proton transfer in 3-hyroxyflavone isolated in solid argon: fluorescence and fluorescence-excitation spectra and tautomer fluorescence rise time

    Energy Technology Data Exchange (ETDEWEB)

    Dick, B.; Ernsting, N.P.

    1987-07-30

    The fluorescence properties of 3-hydroxyflavone isolated in solid argon at 15 K have been investigated. Upon electronic excitation the molecules undergo rapid intramolecular proton transfer. No fluorescence from the excited state of the normal form of the molecule could be detected. Perturbations due to hydrogen-bonding impurities which produce serious experimental problems in hydrocarbon glasses are largely suppressed in argon matrices. The rise of the green fluorescence of the tautomer was studied with excitation pulses of 230-fs duration and streak camera detection. An apparent tautomer fluorescence rise time of 2.7 ps was obtained by deconvolution. A comparative measurement of the dye coumarine 6 yielded an apparent fluorescence rise time of 2.5 ps, which can be entirely attributed to the group velocity dispersion of the streak camera optics. This indicates a rate constant for excited-state intramolecular proton transfer in 3-hydroxyflavone of greater than 10/sup 12/ s/sup -1/.

  11. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    Science.gov (United States)

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  12. TDDFT study on excited state intramolecular proton transfer mechanism in 2-amino-3-(2‧-benzazolyl)-quinolines

    Science.gov (United States)

    Jia, Xueli; Li, Chaozheng; Li, Donglin; Liu, Yufang

    2018-03-01

    The intramolecular proton transfer reaction of the 2-amino-3-(2‧-benzoxazolyl)-quinoline (ABO) and 2-amino-3-(2‧-benzothiazolyl)-quinoline (ABT) molecules in both S0 and S1 states at B3LYP/6-311 ++G(d,p) level in ethanol solvent have been studied to reveal the deactivation mechanism of the tautomers of the two molecules from the S1 state to the S0 state. The results show that the tautomers of ABO and ABT molecules may return to the S0 state by emitting fluorescence. In addition, the bond lengths, angles and infrared spectra are analyzed to confirm the hydrogen bonds strengthened upon photoexcitation, which can facilitate the proton transfer process. The frontier molecular orbitals (MOs) and natural bond orbital (NBO) are also calculated to indicate the intramolecular charge transfer which can be used to explore the tendency of ESIPT reaction. The potential energy surfaces of the ABO and ABT molecules in the S0 and S1 states have been constructed. According to the energy potential barrier of 9.12 kcal/mol for ABO molecule and 5.96 kcal/mol for ABT molecule, it can be indicated that the proton transfer may occur in the S1 state.

  13. Excited-state inter- and intramolecular proton transfer in methyl 3-hydroxy-2-quinoxalinate: effects of solvent and acid or base concentrations

    International Nuclear Information System (INIS)

    Dogra, S.K.

    2005-01-01

    Absorption, fluorescence excitation and fluorescence spectroscopy, combined with time-dependent spectroscopy and semi-empirical (AM1) and density functional theory using Gaussian 98 program calculations have been used to study the effects of solvent and acid or base concentration on the spectral characteristics of methyl 3-hydroxy-2-quinoxalinate (M3HQ). M3HQ is present as enol in less polar solvents and as keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to the phototautomer, formed by the excited-state intramolecular proton transfer, whereas fluorescence is only observed from keto in the polar solvents. In aqueous and polar solvents the monocation (MC5/MC6) is formed by protonating the carbonyl oxygen atom in the ground (S 0 ) and the first excited singlet states (S 1 ). Dication is formed by protonating one of ?N- atom of MC5/MC6. Monoanion is formed by deprotonating the phenolic proton of enol in the basic solution. pK a values for different prototropic equilibriums were determined in S 0 and S 1 states and discussed

  14. Photophysical properties and excited state intramolecular proton transfer in 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid in homogeneous solvents and micro-heterogeneous environments

    International Nuclear Information System (INIS)

    Gashnga, Pynsakhiat Miki; Singh, T. Sanjoy; Baul, Tushar S. Basu; Mitra, Sivaprasad

    2014-01-01

    A systematic study on the photophysical properties and excited state intramolecular proton transfer (ESIPT) behavior of 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid, is reported using steady-state and time-resolved fluorescence spectroscopy in homogeneous solvents as well as in different micro-heterogeneous environments. Depending on the nature of intramolecular hydrogen bond (IHB), the salicylic acid derivative may exist in two different ground state conformers (I and II). Structure I having IHB between the carbonyl oxygen and phenolic hydrogen can undergo ESIPT upon excitation as evidenced by largely Stokes-shifted fluorescence at ∼455 nm; whereas, normal fluorescence in the blue side of the spectrum (∼410 nm) is due to the spontaneous emission from conformer II. The results in homogeneous solvents were compared with those in bio-mimicking environments of β-cyclodextrin (CD) and surfactants. The intensity of the ESIPT fluorescence increases substantially upon encapsulation of the probe into the cyclodextrin as well as micellar nano-cavities. Detailed analysis of the spectroscopic data indicates that the probe forms 1:1 complex with CD in aqueous medium. Binding constant of the probe with the micelles as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of different surfactants in aqueous medium. -- Highlights: • Steady state and time resolved fluorescence study on ESIPT in HMBA. • Dual fluorescence corresponding to the pro- and non-ESIPT structures. • Modulation of ESIPT fluorescence in micro-heterogeneous environments. • 1:1 stoichiometry for interaction with cyclodextrin. • Calculation of binding constant and other physico-chemical properties from fluorescence titration data in surfactants

  15. A comprehensive spectroscopic and computational investigation of intramolecular proton transfer in the excited states of 2-(2′-hydroxyphenyl) benzoxazole and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Padalkar, Vikas S. [Tinctorial Chemistry Group, Institute of Chemical Technology, Matunga, Mumbai 400019 (India); Ramasami, Ponnadurai, E-mail: ramchemi@intnet.mu [Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit (Mauritius); Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in [Tinctorial Chemistry Group, Institute of Chemical Technology, Matunga, Mumbai 400019 (India)

    2014-02-15

    The excited-state intramolecular proton transfer (ESIPT) fluorescence of the 2-(2′ hydroxyphenyl) benzoxazole (HBO) and its derivatives with NO{sub 2} as electron acceptor and NH{sub 2} as electron donor at the 4 and 5 position of benzoxazole ring was studied by spectroscopic and computational methods. The changes in the electronic transition, energy levels, and orbital diagrams of the HBO derivatives were investigated using the DFT computations and they were correlated with the experimental spectral emission. The benzoxazole derivatives are fluorescent under UV-light in solution. Photophysical properties of the compounds were also studied in solvents of different polarities. Experimental absorption and emission wavelengths are in agreement with those computed with a deviation ranging between 0 and 50%. The computational methods have been useful for molecular understanding of the transitions responsible for the fluorescent spectra. -- Highlights: • Experimental photophysical properties of 2-substituted benzoxazoles in different solvents have been studied and compared with the computational data. • Compounds show dual emission due to ESIPT process and was supported by DFT and TD-DFT computations. • Experimental results and computational results are in good agreements.

  16. Excited-state intramolecular proton transfer (ESIPT) emission of hydroxyphenylimidazopyridine: computational study on enhanced and polymorph-dependent luminescence in the solid state.

    Science.gov (United States)

    Shigemitsu, Yasuhiro; Mutai, Toshiki; Houjou, Hirohiko; Araki, Koji

    2012-12-13

    Although 2-(2'-hydroxyphenyl)imidazo[1,2-a]pyridine (HPIP) is only weakly fluorescent in solution, two of its crystal polymorphs in which molecules are packed as stacked pairs and in nearly coplanar conformation exhibit bright excited-state intramolecular proton transfer (ESIPT) luminescence of different colors (blue-green and yellow). In order to clarify the enhanced and polymorph-dependent luminescence of HPIP in the solid state, the potential energy surfaces (PESs) of HPIP in the ground (S(0)) and excited (S(1)) states were analyzed computationally by means of ab initio quantum chemical calculations. The calculations reproduced the experimental photophysical properties of HPIP in solution, indicating that the coplanar keto form in the first excited (S(1)) state smoothly approaches the S(0)/S(1) conical intersection (CI) coupled with the twisting motion of the central C-C bond. The S(1)-S(0) energy gap of the keto form became sufficiently small at the torsion angle of 60°, and the corresponding CI point was found at 90°. Since a minor role of the proximity effect was indicated experimentally and theoretically, the observed emission enhancement of the HPIP crystals was ascribed to the following two factors: (1) suppression of efficient radiationless decay via the CI by fixing the torsion angle at the nearly coplanar conformation of the molecules in the crystals and (2) inhibition of excimer formation resulting from the lower excited level of the S(1)-keto state compared to the S(0)-S(1) excitation energy in the enol form. However, the fluorescence color difference between the two crystal polymorphs having slightly different torsion angles was not successfully reproduced, even at the MS-CASPT2 level of theory.

  17. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several.

  18. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other ...

  19. Solvent control of intramolecular proton transfer

    DEFF Research Database (Denmark)

    Manolova, Y.; Marciniak, Heinz; Tschierlei, S.

    2017-01-01

    of molecules in the enol and zwitterionic proton transfer (PT) form exists in the ground state. However, the zwitterion is the energetically favored one in the electronically excited state. Optical excitation of the enol form results in intramolecular proton transfer and formation of the PT form within 1.4 ps...

  20. Intramolecular proton-transfer processes starting at higher excited states: a fluorescence study on 2-butylamino-6-methyl-4-nitropyridine N-oxide in nonpolar solutions

    NARCIS (Netherlands)

    de Klerk, J.S.; Szemik-Hojniak, A.; Ariese, F.; Gooijer, C.

    2007-01-01

    This article describes the exceptional photophysics of 2-butylamino-6- methyl-4-nitropyridine N-oxide (2B6M). It is known from the literature that this compound may undergo excited-state intra- or intermolecular protontransfer reactions. In nonpolar solvents, 2B6M exhibits an unusual fluorescence

  1. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    of the excited state dynamics, the presence of this state required the development of a numerical three-excited-state kinetic model to replace the commonly used two-excited-state model. The experimental results shows that the reaction rates are strongly influenced both by substituents and solvent, illustrating...

  2. Unique photophysical behavior of 2,2'-bipyridine-3,3'-diol in DMSO-water binary mixtures: potential application for fluorescence sensing of Zn2+ based on the inhibition of excited-state intramolecular double proton transfer.

    Science.gov (United States)

    Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-10-10

    In this work we have investigated the anomalous behavior of DMSO-water binary mixtures using 2,2'-bipyridine-3,3'-diol (BP(OH)2) as a microenvironment-sensitive excited-state-intramolecular-double-proton-transfer (ESIDPT) probe. Here we present results on the UV-vis absorption and fluorescence properties of BP(OH)2 in the binary solutions. DMSO-water binary mixtures at various compositions are an intriguing hydrogen bonded system, where DMSO acts to diminish the hydrogen bonding ability of water with the dissolved solutes. As a result, we observe unusual changes in the photophysical properties of BP(OH)2 with increasing DMSO content in complete correlation with the prior simulation and experimental results on the solvent structures and dynamics. The fluorescence quantum yield and fluorescence lifetime of BP(OH)2 depend strongly on the DMSO content and become maximum at very low mole fraction (∼0.12) of DMSO. The anomalous behavior at this particular region likely arises from the enhanced pair hydrophobicity of the medium as demonstrated by Bagchi and co-workers (Banerjee, S.; Roy, S.; Bagchi, B. J. Phys. Chem. B 2010, 114, 12875-12882). In addition we have also shown the utilization of BP(OH)2 as a potential Zn(2+)-selective fluorescent sensor in a 1:1 DMSO-water binary mixture useful for biological applications. We observed highly enhanced fluorescence emission of BP(OH)2 selectively for binding with the Zn(2+) metal ion. Moreover, the fluorescence emission maximum of BP(OH)2-Zn(2+) is significantly blue-shifted with a reduced Stokes shift due to the inhibition of the ESIDPT process of BP(OH)2 through strong coordination.

  3. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    Joo, T.; Kim, C.H.

    2006-01-01

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I 440 -I 490 )/(I 440 +I 490 ) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S 1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by

  4. Excited state intramolecular charge transfer reaction of 4 ...

    Indian Academy of Sciences (India)

    An intramolecular charge transfer (ICT) molecule with an extra hetero atom in its donor moiety has been synthesized in order to investigate how ICT reaction is affected by hetero atom replacement. Photo-physical and photo-dynamical properties of this molecule, 4-(morpholenyl)benzonitrile (M6C), have been studied in 20 ...

  5. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  6. Dynamics of excited state proton transfer in nitro substituted 10-hydroxybenzo[h] quinolines

    DEFF Research Database (Denmark)

    Marciniak, H.; Hristova, S.; Deneva, V.

    2017-01-01

    The ground state tautomerism and excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ) and its nitro derivatives, 7-nitrobenzo[h]quinolin-10-ol (2) and 7,9-dinitrobenzo[h]quinolin-10-ol (3), have been studied in acetonitrile using steady state as well as time...... occurs with a time constant of 0.89 ps and 0.68 ps, respectively. In both cases a mixture of the enol and proton transfer forms is optically excited. The enol form exhibits then the ESIPT and subsequently both fractions take the same relaxation path. We propose that in 2 and 3 the ESIPT path exhibits...... a potential energy barrier resulting in an incoherent rate governed process while in HBQ the ESIPT proceeds as a ballistic wavepacket motion along a path without significant barriers. The theoretical calculations (M06-2X/TZVP) confirm the existence of a barrier in the ground and excited states as result...

  7. Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by shpol'skii spectroscopy: The influence of redistribution of electron density

    NARCIS (Netherlands)

    Bader, A.N.; Pivovarenko, V.; Demchenko, A.P.; Ariese, F.; Gooijer, C.

    2004-01-01

    We studied the mechanisms of excited-state intramolecular proton transfer (ESIPT) and ground-state back proton transfer (BPT) in 3-hydroxyflavone (3HF) at cryogenic temperatures. The focus was on substituents that change the distribution of electronic density on the chromophore and their influence

  8. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    Science.gov (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  9. Electronic and photophysical properties of 2-(2′-hydroxyphenyl)benzoxazole and its derivatives enhancing in the excited-state intramolecular proton transfer processes: A TD-DFT study on substitution effect

    Energy Technology Data Exchange (ETDEWEB)

    Daengngern, Rathawat; Kungwan, Nawee, E-mail: naweekung@gmail.com

    2015-11-15

    The effect of electron donating and withdrawing substituents on the enol absorption and keto emission spectra of 2-(2′-hydroxyphenyl)benzoxazole (HBO) and its derivatives has been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The enol absorption spectra of HBO were simulated by using five different DFTs with various exchange-correlation functions to validate a suitable functional prior to being further used as a method of choice to study the effect of substituents on the spectral characteristics of HBO derivatives. The popular B3LYP (Becke, three-parameter, Lee–Yang–Parr) exchange-correlation functional is found to provide the best desirable result in predicting the absorption spectrum close to experimental data. In the ground state, enol forms of HBO and its derivatives are more stable than those of keto forms, while in the first lowest excited state, keto forms are found to be more stable than their enol forms. Overall, simulated absorption and emission spectra of HBO and its derivatives from TD-B3LYP calculations are in good agreement with the experimental data. For enol, absorption maxima of HBO derivatives having electron-withdrawing groups are red-shift corresponding to their lower HOMO–LUMO energy gaps compared to that of HBO. For keto emission, HBO having electron donating groups (m-MeHBO and MHBO) and withdrawing group (CNHBO) at 4′-position on the phenol fragment as well as electron donating groups (HBOMe and HBOM) at 6-position on the benzoxazole fragment make the position of keto emission peak shift to shorter wavelength (blue-shift). However, HBO derivatives with electron withdrawing groups (HBOF, HBOCl, HBOA and HBOE) at 6-position give redshifted emission compared to the parent compound (HBO). The type of substituent on both 4′- and 6-positions certainly has a pronounced effect on the absorption and emission spectra of HBO derivatives. - Highlights: • Simulated spectra

  10. Formation of H-atom in 2s excited state of proton-lithium and proton ...

    Indian Academy of Sciences (India)

    Abstract. The differential and total cross-sections have been investigated in the forma- tion of H-atom in the 2s excited state of proton-lithium and proton-sodium scattering by using the Coulomb projected Born (CPB) approximation in the energy range from 50 to. 10,000 keV. The results thus obtained are compared with the ...

  11. Theoretical Modelling for the Ground State Rotamerisation and Excited State Intramolecular Proton Transfer of 2-(2’-hydroxyphenyloxazole, 2-(2’-hydroxyphenylimidazole, 2-(2’-hydroxyphenylthiazole and Their Benzo Analogues

    Directory of Open Access Journals (Sweden)

    Nitin Chattopadhyay

    2003-05-01

    Full Text Available Abstract: Two series of compounds, one comprising of 2-(2′-hydroxyphenylbenzoxazole (HBO, 2-(2′-hydroxyphenylbenzimidazole (HBI, 2-(2′-hydroxyphenylbenzothiazole (HBT, and the other of 2-(2′-hydroxyphenyloxazole (HPO, 2-(2′-hydroxyphenylimidazole (HPI and 2-(2′-hydroxyphenylthiazole (HPT are susceptible to ground state rotamerization as well as excited state intramolecular proton transfer (ESIPT reactions. Some of these compounds show experimental evidence of the existence of two ground state conformers. Out of these two one undergoes ESIPT reaction leading to the formation of the tautomer. The two photophysical processes, in combination, result in the production of a number of fluorescence bands each one of which corresponding to a particular species. Semiempirical AM1-SCI calculations have been performed to rationalize the photophysical behaviour of the compounds. The calculations suggest that for the first series of compounds, two rotational isomers are present in the ground state of HBO and HBI while HBT has a single conformer under similar circumstances. For the molecules of the other series existence of rotamers depends very much on the polarity of the environment. The potential energy curves (PEC for the ESIPT process in different electronic states of the molecules have been generated theoretically. The simulated PECs reveal that for all these systems the IPT reaction is unfavourable in the ground state but feasible, both kinetically and thermodynamically, in the S1 as well as T1 states.

  12. The role of hydrogen bonding in excited state intramolecular charge transfer.

    Science.gov (United States)

    Chipem, Francis A S; Mishra, Anasuya; Krishnamoorthy, G

    2012-07-07

    Intramolecular charge transfer (ICT) that occurs upon photoexcitation of molecules is a vital process in nature and it has ample applications in chemistry and biology. The ICT process of the excited molecules is affected by several environmental factors including polarity, viscosity and hydrogen bonding. The effect of polarity and viscosity on the ICT processes is well understood. But, despite the fact that hydrogen bonding significantly influences the ICT process, the specific role of hydrogen bonding in the formation and stabilization of the ICT state is not unambiguously established. Some literature reports predicted that the hydrogen bonding of the solvent with a donor promotes the formation of a twisted intramolecular charge transfer (TICT) state. Some other reports stated that it inhibits the formation of the TICT state. Alternatively, it was proposed that the hydrogen bonding of the solvent with an acceptor favors the TICT state. It is also observed that a dynamic equilibrium is established between the free and the hydrogen bonded ICT states. This perspective focuses on the specific role played by hydrogen bonding of the solvent with the donor and the acceptor, and by proton transfer in the ICT process. The utility of such influence in molecular recognition and anion sensing is discussed with a few recent literature examples in the end.

  13. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: temperature dependence.

    Science.gov (United States)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-07

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO(4)) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-DeltaG(r)) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO(4) concentrations, and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-DeltaG(r)), the former in ethanol and ACN increases only linearly with the increase in driving force (-DeltaG(r)). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.

  14. Protonation of the imino nitrogen deactivates the excited state of ...

    Indian Academy of Sciences (India)

    2018-02-28

    Feb 28, 2018 ... These results point to the existence of a non-radiative pathway involving the imidazole nitrogen in the quenching of excited states in these compounds. Keywords. Imidazolin-5-one; gfp chromophore; fluorescence; crystal structure; theoretical study. 1. Introduction. Green Fluorescent Protein (gfp) is among ...

  15. Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited-State Proton Transfer of 4-Hydroxyacridine.

    Science.gov (United States)

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2015-07-20

    The application of local control theory combined with nonadiabatic ab initio molecular dynamics to study the photoinduced intramolecular proton transfer reaction in 4-hydroxyacridine was investigated. All calculations were performed within the framework of linear-response time-dependent density functional theory. The computed pulses revealed important information about the underlying excited-state nuclear dynamics highlighting the involvement of collective vibrational modes that would normally be neglected in a study performed on model systems constrained to a subset of the full configuration space. This study emphasizes the strengths of local control theory for the design of pulses that can trigger chemical reactions associated with the population of a given molecular excited state. In addition, analysis of the generated pulses can help to shed new light on the photophysics and photochemistry of complex molecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A non-adiabatic quantum-classical dynamics study of the intramolecular excited state hydrogen transfer in ortho-nitrobenzaldehyde.

    Science.gov (United States)

    Leyva, Verónica; Corral, Inés; Feixas, Ferran; Migani, Annapaola; Blancafort, Lluís; González-Vázquez, Jesús; González, Leticia

    2011-08-28

    Ab initio surface-hopping dynamics calculations have been performed to simulate the intramolecular excited state hydrogen transfer dynamics of ortho-nitrobenzaldehyde (o-NBA) in the gas phase from the electronic S(1) excited state. Upon UV excitation, the hydrogen is transferred from the aldehyde substituent to the nitro group, generating o-nitrosobenzoic acid through a ketene intermediate. The semiclassical propagations show that the deactivation from the S(1) is ultrafast, in agreement with the experimental measurements, which detect the ketene in less than 400 fs. The trajectories show that the deactivation mechanism involves two different conical intersections. The first one, a planar configuration with the hydrogen partially transferred, is responsible for the branching between the formation of a biradical intermediate and the regeneration of the starting material. The conversion of the biradical to the ketene corresponds to the passage through a second intersection region in which the ketene group is formed.

  17. Effective targeting of proton transfer at ground and excited states of ortho-(2'-imidazolyl)naphthol constitutional isomers.

    Science.gov (United States)

    Oliveira, Thaís C F; Carmo, Luiz F V; Murta, Bárbara; Duarte, Luís G T A; Nome, Rene A; Rocha, Willian R; Brandão, Tiago A S

    2015-01-28

    Steady-state and time-resolved spectroscopy and quantum chemical computational studies were employed to investigate ground and excited state proton transfer of a novel series of ortho-(1H-imidazol-2-yl)naphthol constitutional isomers: 1-(1H-imidazol-2-yl)naphthalen-2-ol (1NI2OH), 2-(1H-imidazol-2-yl)naphthalen-1-ol (2NI1OH) and 3-(1H-imidazol-2-yl)naphthalen-2-ol (3NI2OH). Proper Near Attack Conformations (NACs) involving a strong intramolecular hydrogen bond between the naphthol moiety and the ortho-imidazole group account for the highest ground state acidity of 2NI1OH compared with 1NI2OH and 3NI2OH. Moreover, ESIPT for 2NI1OH and 3NI2OH is further associated with planar chelate H-ring formation whereas 1NI2OH shows the highest ESIPT barrier and a noncoplanar imidazole group. In addition to energetic and structural requirements, the final state also depends on electronic configuration of the ESIPT product with the neutral 3NI2OH showing an ICT effect that correlates with the excited state pKa of the cationic species.

  18. Spectroscopy at the two-proton drip line: Excited states in 158W

    Directory of Open Access Journals (Sweden)

    D.T. Joss

    2017-09-01

    Full Text Available Excited states have been identified in the heaviest known even-Z N=84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b2p≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.

  19. Spectroscopy at the two-proton drip line: Excited states in 158W

    Science.gov (United States)

    Joss, D. T.; Page, R. D.; Herzán, A.; Donosa, L.; Uusitalo, J.; Carroll, R. J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppanen, A.-P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.; Sorri, J.

    2017-09-01

    Excited states have been identified in the heaviest known even-Z N = 84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b2p ≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.

  20. Photoinduced Ultrafast Intramolecular Excited-State Energy Transfer in the Silylene-Bridged Biphenyl and Stilbene (SBS) System: A Nonadiabatic Dynamics Point of View.

    Science.gov (United States)

    Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang

    2015-07-09

    The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.

  1. Prototropic studies in vitreous and in solid phases: Pyranine and 2-naphthol excited state proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fátima Aparecida das Chagas [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Rezende, Eduardo Triboni [Universidade Nove de Julho, São Paulo, SP (Brazil); Filho, Décio Briotto [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Brito Rezende, Daisy de [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Cuccovia, Iolanda Midea [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Gome, Ligia Ferreira [Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Silva, Mauro Francisco Pinheiro da [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); and others

    2014-02-15

    Excited state proton transfer processes in vitreous glasses and in solid mixtures are investigated by steady state fluorimetry and laser flash photolysis kinetic studies with the photoacids pyranine and 2-naphthol. Glasses were derived from TEOS by the sol–gel condensation process and hydrated solid mixtures from NaCl or KH{sub 2}PO{sub 4}/K{sub 2}HPO{sub 4} crystals. The extent of the water content necessary for the reaction is determined. Shrinkage of TEOS derived monoliths from water loss leads to an increase in proton transfer extent due to the increase in local concentrations of accepting and donor buffer species, but the concomitant increase in the ionic strength actuates in an opposite direction. Furthermore, water losses by aging of air-exposed gel goes to a critical 20% weight fraction, beyond it proton transfer reactions are hindered. Similar studies with solid NaCl or solid phosphate buffer mixtures demonstrated the same critical water level indicating that free water molecules are crucial for the proton to escape from the original cage where the geminate ion pair [–||RO{sup −⁎}H{sup +}||–] is formed and can undergo coupled proton transfer reactions. -- Highlights: • Pyranine and 2-naphthol excited state proton transfer in SiO{sub 2} gel, solid phosphate buffer and NaCl. • Sol–gel formation leads to contraction and concentration of donor and accepting species. • 20% weight fraction water is required for the ESPT to go forward.

  2. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  3. Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Charles A. [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    The 9-aminoacridine molecule is important in several different fields of chemistry. The absorption and fluorescence spectra of this compound are pH sensitive and it is this property that allowed it to be used as a pH probe in different chemical environments. The compound exhibits proton transfer reactions which are among the most fundamental of chemical reactions. The planarity of 9-aminoacridine allows it to intercalate into DNA. Intercalation is a process in which the aromatic flat surface of the intercalator inserts between adjacent base pairs of DNA. The large surface area of 9-aminoacridine`s fused tricyclic ring system allows strong intercalative binding through van der Waals attractions. 9-aminoacridine and many of its derivatives have been tried as possible antitumor drugs. The cytotoxicity of an antitumor agent can be dramatically increased through the addition of one or two cationic side chains. This increase in cytotoxicity using the 9-aminoacridine compound as a parent molecule has been investigated through various derivatives with cationic side chains consisting of different number of carbon atoms between the proximal and distal N atoms. Similar derivatives varied the position of the carboxamide side chain on the aromatic ring system. The objective of this work is to first create a baseline study of the excited state kinetics of the 9-aminoacridine carboxamides in the absence of DNA. The baseline study will allow the excited state kinetics of these antitumor drugs when placed in DNA to be more fully understood.

  4. Excited-state proton transfer in methanol-doped ice in the presence of KF.

    Science.gov (United States)

    Uritski, Anna; Huppert, Dan

    2008-05-15

    Steady-state and time-resolved emission techniques were employed to study the photoprotolytic cycle of an excited photoacid in ice in the presence of a low concentration of a weak base-like F(-). In previous studies we found that the photoprotolytic cycle in methanol-doped ice (1% mol fraction) is too slow to be observed at temperatures below 190 K. In this study we found that at temperatures below 240 K an additional proton-transfer process occurs in ice doped with 10 mM KF. We attributed this reaction to the creation of a mobile L-defect by F(-) ions. We used a diffusion-assisted reaction model, based on the Debye-Smoluchowski equation, to account for the direct reaction of the L-defect with the excited photoacid at temperatures below T < 240 K. Below 160 K the spectroscopic properties as well as the photoprotolytic cycle change dramatically. We propose that below 160 K the sample enters a new phase. The excited-state proton-transfer (ESPT) process was observed and followed down to a liquid nitrogen temperature of approximately 78 K. In the low-temperature phase the ESPT rate is almost twice as much as at 180 K and the temperature dependence of the rate is very small. The kinetic isotope effect of the ESPT at the low-temperature phase is small of about 1.3.

  5. Molecular electrostatic potential on the proton-donating atom as a theoretical descriptor of excited state acidity.

    Science.gov (United States)

    Wang, Yu-Fu; Cheng, Yuan-Chung

    2018-02-07

    Organic photoacids with enhanced acidities in the excited states have received much attention both experimentally and theoretically because of their applications in nanotechnology and chemistry. In this study, we investigate the excited-state acidities of 14 hydroxyl-substituted aromatic photoacids, with a focus on using theoretical molecular electrostatic potential (MEP) as an effective descriptor for photoacidity. For these model photoacids, we applied time-dependent density functional theory (TDDFT) at the ωB97X-D/6-31G(d) level to calculate the molecular electrostatic potentials of S 1 excited states and show that the molecular electrostatic potential on the proton-donating atom exhibits a linear relationship with the observed excited-state logarithmic acid dissociation constant (pK a *). As a result, the molecular electrostatic potential on the proton-donating atom can be used to estimate the pK a * values based on simple TDDFT calculations for a broad range of hydroxyl-substituted aromatic compounds. Furthermore, we explore the molecular electrostatic potential as a quantum descriptor for the photoacidities of cationic photoacids, and show a universal behavior of the pK a *-MEP dependence. We also investigate the solvent effects on the photoacidity using TDDFT calculations with implicit solvent models. Finally, we discuss the physical insights implicated by the molecular electrostatic potential as a successful measure for photoacidity on the mechanism of proton transfer in the molecular excited states. This pK a * descriptor provides an effective means to quantify the tendency of excited-state proton transfer with a relatively small computational cost, which is expected to be useful in the design of functional photoacids.

  6. An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Kaligotla, S.; Chábera, P.; Frank, H.A.

    2011-01-01

    Roč. 13, č. 22 (2011), s. 1463-9076 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoid * retinal * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 3.573, year: 2011

  7. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  8. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Esboui, Mounir, E-mail: mounir.esboui@fst.rnu.tn [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, 2092 Tunis (Tunisia); Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441 (Saudi Arabia)

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  9. Does excited-state proton-transfer reaction contribute to the emission behaviour of 4-aminophthalimide in aqueous media?

    Science.gov (United States)

    Khara, Dinesh Chandra; Banerjee, Sanghamitra; Samanta, Anunay

    2014-06-23

    4-Aminophthalimide (AP) is an extensively used molecule both for fundamental studies and applications primarily due to its highly solvent-sensitive fluorescence properties. The fluorescence spectrum of AP in aqueous media was recently shown to be dependent on the excitation wavelength. A time-dependent blue shift of its emission spectrum is also reported. On the basis of these findings, the excited-state solvent-mediated proton-transfer reaction of the molecule, which was proposed once but discarded at a later stage, is reintroduced. We report on the fluorescence behaviour of AP and its imide-H protected derivative, N-BuAP, to prove that a solvent-assisted excited-state keto-enol transformation does not contribute to the steady-state and time-resolved emission behaviour of AP in aqueous media. Our results also reveal that the fluorescence of AP in aqueous media arises from two distinct hydrogen-bonded species. The deuterium isotope effect on the fluorescence quantum yield and lifetime of AP, which was thought to be a reflection of the excited-state proton-transfer reaction in the system, is explained by considering the difference in the influence of H(2)O and D(2)O on the nonradiative rates and ground-state exchange of the proton with the solvent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. and Di-hydration on the Intramolecular Proton Transfers and ...

    Indian Academy of Sciences (India)

    of the isomers did not change the stability trend, so that the tri-keto isomer was the most stable isomer among the hydrated and non-hydrated isomers. The activation energies (Ea) of the intramolecular proton transfers. (tautomerisms) and energy barriers of H-rotations around its C-O axis in enolic isomers were calculated.

  11. CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1995-01-01

    The methodology for treatment of proton transfer processes by density matrix evolution (DME) with inclusion of many excited states is presented. The DME method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. 1993, 97, 13464) that simulates the dynamics of quantum systems embedded in a classical

  12. Protonation effect on the excited state behaviour of EE-1-(n-pyridyl)-4-phenylbutadienes (n = 2, 3 and 4).

    Science.gov (United States)

    Mazzucato, Ugo; Spalletti, Anna

    2003-03-01

    The acid-base equilibria of three aza-derivatives of EE-1,4-diphenylbutadiene and the excited state properties of their neutral and protonated forms have been studied in aqueous solutions. The prevalent relaxation of the neutral molecules is photoisomerization by a diabatic singlet mechanism accompanied by substantial internal conversion while the quantum yield of the radiative pathway is very small, particularly for the ortho- and para-substituted pyridines. Protonation affects only slightly the isomerization yield of these two compounds while drastically decreasing that of the meta-substituted analogue. Molecular orbital calculations and comparison with the corresponding azastilbenes indicate that the first excited singlet state of the protonated meta compound has a net charge transfer character, which leads to an increase of the torsional barrier in S1. Application of the Forster cycle to the three compounds showed that they become much stronger bases in S1. The 3-pyridyl derivative proved to be peculiar also in this respect since its equilibration with the proton occurs during the S1 lifetime thus allowing the acid-base equilibration in the excited state to be directly monitored by fluorimetric titration.

  13. Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole

    Science.gov (United States)

    Liu, Shuang; Ma, Yan-Zhen; Yang, Yun-Fan; Liu, Song-Song; Li, Yong-Qing; Song, Yu-Zhi

    2018-02-01

    Not Available Project supported by the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J17KA186), the Taishan Scholar Project of Shandong Province, China, the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540408), and the Science and Technology Plan Project of Shenyang City, China (Grant No. 17-231-1-06).

  14. Specific Features of Intramolecular Proton Transfer Reaction in Schiff Bases

    Directory of Open Access Journals (Sweden)

    Aleksander Koll

    2003-06-01

    Full Text Available Abstract: The differences between the intramolecular proton transfer in Mannich and Schiff bases are discussed. The tautomeric forms being in equilibrium in both types of molecules are seriously different. In Mannich bases there are in equilibrium the forms of phenols and phenolates. In Schiff bases each of tautomers is strongly influenced by resonance between zwitterionic and keto structures. Despite the common opinion that the proton transfer forms in compounds with internal π-electronic coupling are mainly keto forms it is shown in this work, that in Schiff bases the content of keto structure is slightly less than zwitterionic one. Almost equal participation of both forms leads to effective resonance between them and stabilization of intramolecular hydrogen bond in this way.

  15. Intramolecular photoinduced proton transfer in 2-(2′-hydroxyphenyl)benzazole family: A TD-DFT quantum chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Roohi, Hossein, E-mail: hroohi@guilan.ac.ir; Mohtamedifar, Nafiseh; Hejazi, Fahemeh

    2014-11-24

    Highlights: • PBE1PBE/TD method was used to study the ESIPT process in the benzazole family. • Potential energy curves in ground and excited states were calculated. • Effect of substitution in benzazole ring on the ESIPT process was investigated. • In contrast to S{sub 0} state, keto form of the molecules can be formed at the S{sub 1} state. • The photophysical properties of the compounds were calculated. - Abstract: In this work, intramolecular photoinduced proton transfer in 2-(2′-hydroxyphenyl)benzazole family (HBO, HBI and HBT) was investigated using TD-DFT calculations at PBE1PBE/6-311++G(2d,2p) level of theory. The potential energy surfaces were employed to explore the proton transfer reactions in both states. In contrast to the ground state, photoexcitation from S{sub 0} state to S{sub 1} one encourages the operation of the excited-state intramolecular proton transfer process. Structural parameters, H-bonding energy, absorption and emission bands, vertical excitation and emission energies, oscillator strength, fluorescence rate constant, dipole moment, atomic charges and electron density at critical points were calculated. Molecular orbital analysis shows that vertical S{sub 0} → S{sub 1} transition in the studied molecules corresponds essentially to the excitation from HOMO (π) to LUMO (π{sup ∗}). Our calculated results are in good agreement with the experimental observations.

  16. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  17. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Tarek A. [Chemistry Department, Faculty of Science, Tanta University, 31527-Tanta (Egypt)], E-mail: tfayed2003@yahoo.co.uk

    2006-05-31

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state ({delta}{mu} {sub eg} = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn{sup 2+}, Cd{sup 2+} and Hg{sup 2+}. This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions.

  18. Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183.

    Science.gov (United States)

    Joung, Joonyoung F; Kim, Sangin; Park, Sungnam

    2015-12-17

    Coumarin 183 (C183) was used as a photoacid to study excited-state proton transfer (ESPT) reactions. Here, we studied the effect of ions on the ESPT of C183 in aqueous NaCl solutions using a steady-state fluorescence spectroscopy and time-correlated single photon counting (TCSPC) method. The acid dissociation equilibrium of excited-state C183 and the activation energy for the ESPT of C183 were determined as a function of NaCl concentration. The change in the equilibrium constant was found to be correlated with the solvation energy of deprotonated C183. Frequency-resolved TCSPC signals measured at several temperatures were analyzed by using a global fitting analysis method which enabled us to extract all the rate constants involving the ESPT reaction and the spectra of individual species. The activation energy for the ESPT reaction of C183 was highly dependent on NaCl concentration. Quantum chemical calculations were used to calculate the local hydrogen-bond (H-bond) configurations around C183 in aqueous NaCl solutions. It was found that the activation energy for the ESPT was determined by the local H-bond configurations around C183 which were significantly influenced by the dissolved ions.

  19. Proton-hole and core-excited states in the semi-magic nucleus {sup 131}In{sub 82}

    Energy Technology Data Exchange (ETDEWEB)

    Taprogge, J. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); RIKEN Nishina Center, RIKEN, Saitama (Japan); Jungclaus, A. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Grawe, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Borzov, I.N. [Kurchatov Institute, Moscow (Russian Federation); Joint Institute for Nuclear Research, Dubna (Russian Federation); Nishimura, S.; Doornenbal, P.; Soederstroem, P.A.; Baba, H.; Fukuda, N.; Inabe, N.; Isobe, T.; Kameda, D.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H.; Watanabe, H. [RIKEN Nishina Center, RIKEN, Saitama (Japan); Lorusso, G. [RIKEN Nishina Center, RIKEN, Saitama (Japan); National Physical Laboratory, NPL, Teddington, Middlesex (United Kingdom); University of Surrey, Department of Physics, Guildford (United Kingdom); Simpson, G.S.; Drouet, F. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble Cedex (France); Sumikama, T. [Tohoku University, Department of Physics, Sendai, Miyagi (Japan); Xu, Z.Y.; Niikura, M. [University of Tokyo, Department of Physics, Tokyo (Japan); Browne, F. [RIKEN Nishina Center, RIKEN, Saitama (Japan); University of Brighton, School of Computing, Engineering and Mathematics, Brighton (United Kingdom); Gernhaeuser, R.; Steiger, K.; Muecher, D. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Gey, G. [RIKEN Nishina Center, RIKEN, Saitama (Japan); LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble Cedex (France); Institut Laue-Langevin, B.P. 156, Grenoble Cedex 9 (France); Jung, H.S. [Chung-Ang University, Department of Physics, Seoul (Korea, Republic of); Kim, G.D.; Kwon, Y.K. [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Kim, Y.K. [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Hanyang University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kojouharov, I.; Kurz, N.; Schaffner, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Li, Z. [Peking University, School of Physics and State key Laboratory of Nuclear Physics and Technology, Beijing (China); Sakurai, H. [RIKEN Nishina Center, RIKEN, Saitama (Japan); University of Tokyo, Department of Physics, Tokyo (Japan); Vajta, Zs. [RIKEN Nishina Center, RIKEN, Saitama (Japan); MTA Atomki, P.O. Box 51, Debrecen (Hungary); Wu, J. [RIKEN Nishina Center, RIKEN, Saitama (Japan); Peking University, School of Physics and State key Laboratory of Nuclear Physics and Technology, Beijing (China); Yagi, A.; Nishibata, H.; Odahara, A. [Osaka University, Department of Physics, Toyonaka (Japan); Yoshinaga, K. [Tokyo University of Science, Department of Physics, Faculty of Science and Technology, Noda, Chiba (Japan); Benzoni, G. [INFN, Sezione di Milano, Milano (Italy); Boenig, S.; Ilieva, S.; Kroell, T. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Chae, K.Y. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Coraggio, L.; Gargano, A. [Complesso Universitario di Monte S. Angelo, Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Daugas, J.M. [CEA, DAM, DIF, Arpajon cedex (France); Gadea, A.; Montaner-Piza, A. [CSIC-Univ. of Valencia, Instituto de Fisica Corpuscular, Paterna (Spain); Itaco, N. [Seconda Universita di Napoli, Dipartimento di Matematica e Fisica, Caserta (Italy); Kondev, F.G. [Argonne National Laboratory, Nuclear Engineering Division, Argonne, IL (United States); Lane, G.J. [Australian National University, Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Canberra (Australia); Moschner, K.; Wendt, A. [University of Cologne, IKP, Cologne (Germany); Naqvi, F. [Yale University, Wright Nuclear Structure Laboratory, New Haven, CT (United States); Orlandi, R. [K.U. Leuven, Instituut voor Kern- en StralingsFysica, Heverlee (Belgium); Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki (Japan); Patel, Z.; Podolyak, Zs. [University of Surrey, Department of Physics, Guildford (United Kingdom)

    2016-11-15

    The β decay of the N = 83 nucleus {sup 131}Cd has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the 1p{sub 3/2} and 0f{sub 5/2} proton-hole states and the energies of core-excited configurations in the semi-magic nucleus {sup 131}In. From the radiation emitted following the β decay, a level scheme of {sup 131}In was established and the β feeding to each excited state determined. Similarities between the single-particle transitions observed in the β decays of the N = 83 isotones {sup 132}In and {sup 131}Cd are discussed. Finally the excitation energies of several core-excited configurations in {sup 131}In are compared to QRPA and shell-model calculations. (orig.)

  20. Proton-hole and core-excited states in the semi-magic nucleus 131In82

    Energy Technology Data Exchange (ETDEWEB)

    Taprogge, J.; Jungclaus, A.; Grawe, H.; Borzov, I. N.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P. -A.; Sumikama, T.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y. -K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J. -M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.

    2016-11-01

    The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131 are compared to QRPA and shell-model calculations.

  1. Excited-state proton transfer from pyranine to acetate in methanol

    Indian Academy of Sciences (India)

    TECS

    -trisulphonate,. HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectros- copy. The rate constant of direct proton transfer from pyranine to acetate (k1) is calculated to be. ~1 × 10. 9. M. –1 s. –1.

  2. Excited-state proton transfer from pyranine to acetate in methanol

    Indian Academy of Sciences (India)

    trisulphonate, HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectroscopy. The rate constant of direct proton transfer from pyranine to acetate (1) is calculated to be ∼ 1 × 109 M-1 s-1. This is slower by ...

  3. Excited-state proton transfer of 4-hydroxyl-1, 8-naphthalimide derivatives: A combined experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Zongjin; Li, Peng; Zhang, Xuexiang; Wang, Endong; Wang, Yanni; Zhou, Panwang, E-mail: pwzhou@dicp.ac.cn

    2016-09-15

    The photophysical properties of N-butyl-4-hydroxyl-1, 8-naphthalimide (BOH) and N-(morpholinoethyl)−4-hydroxy-1, 8-naphthalimide (MOH) in various solvents are presented and the density functional theory (DFT)/time-dependent density functional theory (TDDFT) methods at the B3LYP/TZVP theoretical level are adopted to investigate the UV–visible absorption and emission data. An efficient intermolecular excited-state proton transfer (ESPT) reaction occurs for both compounds in DMSO, methanol and water. In aqueous solution, both BOH and MOH can be used as ratiometric pH probes and perform as strong photoacids with pKa*=−2.2, −2.4, respectively. Most interestingly, in the steady-state fluorescence spectra of BOH and MOH in concentrated HCl, an unexpected blue-shifted band is observed and assumed to originate from the contact ion pair (CIP) formed by hydronium ion and the anionic form of the photoacid resulted from ESPT. Theoretical calculations are used to simulate the CIP in the case of BOH, which afford reasonable results compared with the experimental data.

  4. Sensitivity tests on the rates of the excited states of positron decays during the rapid proton capture process of the one-zone X-ray burst model

    Science.gov (United States)

    Lau, Rita

    2018-02-01

    In this paper, we investigate the sensitivities of positron decays on a one-zone model of type-I X-ray bursts. Most existing studies have multiplied or divided entire beta decay rates (electron captures and beta decay rates) by 10. Instead of using the standard Fuller & Fowler (FFNU) rates, we used the most recently developed weak library rates [1], which include rates from Langanke et al.'s table (the LMP table) (2000) [2], Langanke et al.'s table (the LMSH table) (2003) [3], and Oda et al.'s table (1994) [4] (all shell model rates). We then compared these table rates with the old FFNU rates [5] to study differences within the final abundances. Both positron decays and electron capture rates were included in the tables. We also used pn-QRPA rates [6,7] to study the differences within the final abundances. Many of the positron rates from the nuclei's ground states and initial excited energy states along the rapid proton capture (rp) process have been measured in existing studies. However, because temperature affects the rates of excited states, these studies should have also acknowledged the half-lives of the nuclei's excited states. Thus, instead of multiplying or dividing entire rates by 10, we studied how the half-lives of sensitive nuclei in excited states affected the abundances by dividing the half-lives of the ground states by 10, which allowed us to set the half-lives of the excited states. Interestingly, we found that the peak of the final abundance shifted when we modified the rates from the excited states of the 105Sn positron decay rates. Furthermore, the abundance of 80Zr also changed due to usage of pn-QRPA rates instead of weak library rates (the shell model rates).

  5. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies

    Science.gov (United States)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.

    2015-02-01

    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  6. Excited-state intramolecular proton transfer (ESIPT) inspired azole-quinoline based fluorophores: Synthesis and photophysical properties study

    Energy Technology Data Exchange (ETDEWEB)

    Padalkar, Vikas S.; Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in

    2014-11-15

    7-Hydroxy-3-(4-nitrophenyl)quinoline-6-carboxylic acid was obtained by the condensation reaction of p-amino salicylic acid and 4-nitrophenylmalonadialdehyde which was obtained from phenylacetonitrile through nitration, hydrolysis and Vilsmeier reaction. 7-Hydroxy-3-(4-nitrophenyl) quinoline-6-carboxylic acid was condensed with different o-aminophenols or o-aminothiophenol in ethanol in the presence of phosphorustrichloride. Synthesized quinoline contained benzimidazole and benzothiazole moieties. Photophysical behaviors of these compounds in solvents of different polarities were studied using UV–vis and fluorescence spectroscopy. The compounds showed single absorption in all the studied solvents. The dual emissions (normal emission and ESIPT emission) as well as large Stokes' shift emission pattern were observed for the synthesized fluorophores. The photophysical study shows that the emission properties of the compounds depend on the solvent polarity. The photophysical properties of the compounds were compared with structurally analogous ESIPT quinoline. Thermal stability of the compounds was studied using thermogravimetric analysis and results show that compounds are thermally stable up to 300 °C. The synthesized quinoline derivatives were characterized using elemental analysis, FT-IR and {sup 1}H –NMR, {sup 13}C –NMR spectroscopy and mass spectral analysis. - Highlights: • First and unique study of quinoline derivatives contain ESIPT azole unit at 6-position and hydroxyl group at 7-position. • Compounds are fluorescent with considerable quantum yields. • All compounds showed absorption in ultraviolet region and emission in visible region with large Stokes' shift. • The photophysical properties of new compounds were compared with reported ESIPT quinoline analogous.

  7. Excited state intramolecular proton transfer of 2-(2′,6′-dihydroxyphenyl)benzoxazole: Insights using computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Tathe, Abhinav B.; Gupta, Vinod D.; Shreykar, Milind R. [Tinctorial Chemistry Group, Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, Maharashtra 400019 (India); Ramasami, Ponnadurai, E-mail: ramchemi@intnet.mu [Computational Chemistry Group, Department of Chemistry, Faculty of Science University of Mauritius, Réduit (Mauritius); Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in [Tinctorial Chemistry Group, Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, Maharashtra 400019 (India)

    2014-10-15

    The photo-physical behaviour of 2-(2′,6′-dihydroxyphenyl) benzoxazole was studied using the Density Functional Theory (DFT), Time Dependent Density Functional Theory (TD-DFT) and Configuration Interaction Singles (CIS). Different functionals including the hybrid and M06X series were used to compute the absorption and emission. Experimental absorption and emission wavelengths are in good agreement with those predicted using TD-DFT [TD-B3LYP/6–31 G(d)]. The further improvement was not observed with the larger basis sets like 6–31 G(d,p) and 6–311 G(d,p). The rotational barrier was also calculated theoretically in chloroform (10.5–14.1 kcal/mol) and it was found to be close to the experimental energy value (10.5 kcal/mol). - Highlights: • Photo-physical data of 2-(2′,6′-dihydroxyphenyl)benzoxazole was studied theoretically. • The methods employed are DFT, TD-DFT and CIS. • The rotational barriers evaluated computationally. • The results of DFT and TD-DFT are in good agreement with the experiments. • This study can lead to a better understanding of ESIPT phenomenon computationally.

  8. Excited-state proton transfer in confined medium. 4-methyl-7-hydroxyflavylium and β-naphthol incorporated in cucurbit[7]uril.

    Science.gov (United States)

    Basílio, Nuno; Laia, César A T; Pina, Fernando

    2015-02-12

    Excited-state proton transfer (ESPT) was studied by fluorescent emission using a mathematical model recast from the Weller theory. The titration curves can be fitted with three parameters: pK(a) (acidity constant of the ground sate), pK(ap)* (apparent acidity constant of the excited state), and η(A*), the efficiency of excited base formation from the excited acid. β-Naphthol and 4-metyhl-7-hydroxyflavylium were studied in aqueous solution and upon incorporation in cucurbit[7]uril. For all the compounds studied the interaction with the host leads to 1:1 adducts and the ground-state pK(a) increases upon incorporation. Whereas the ESPT of 4-methyl-7-hydroxyflavylium practically does not change in the presence of the host, in the case of β-naphthol it is prevented and the fluorescence emission titration curves are coincident with those taken by absorption. The position of the guest inside the host was investigated by NMR experiments and seems to determine the efficiency of the ESPT. The ESPT decreases for the guest, exhibiting a great protection of the phenol to the bulk water interaction.

  9. Measurement of Polarization Observables in the Electro-Excitation of the Proton to its First Excited State

    International Nuclear Information System (INIS)

    Rikki Roche

    2003-01-01

    This thesis reports results from the Thomas Jefferson National Accelerator Facility (Jefferson Lab) Hall A experiment E91-011, which measured double-polarization observables in the pion electroproduction reaction from the proton. Specifically, the experiment measured the recoil proton polarization, polarized response functions, and cross section for the p(rvec e), e(prime) (rvec p) π o reaction at a center-of-mass energy centered at W = 1232 MeV--the peak of the Δ(1232) resonance--and at a four-momentum transfer squared of Q 2 = 1.0 GeV 2 /c 2 . Both the recoil proton polarization and polarized response function results will be presented in this thesis

  10. Measurement of Polarization Observables in the Electro-Excitation of the Proton to its First Excited State

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Rikki [Florida State Univ., Tallahassee, FL (United States)

    2003-08-01

    This thesis reports results from the Thomas Jefferson National Accelerator Facility (Jefferson Lab) Hall A experiment E91-011, which measured double-polarization observables in the pion electroproduction reaction from the proton. Specifically, the experiment measured the recoil proton polarization, polarized response functions, and cross section for the p($\\vec{e}$, e' $\\vec{p}$) π° reaction at a center-of-mass energy centered at W = 1232 MeV--the peak of the Δ(1232) resonance--and at a four-momentum transfer squared of Q2 = 1.0 GeV2/c2. Both the recoil proton polarization and polarized response function results will be presented in this thesis. Data were collected at Jefferson Lab, located in Newport News, Virginia during the summer of 2000. A 4.53 GeV polarized electron beam was scattered off of a cryogenic hydrogen target. The recoil proton polarization was measured in the Focal Plane Polarimeter (FPP), located in one of the two High Resolution Spectrometers (HRS) in Hall A. A maximum likelihood method was used to determine the polarized response functions directly from the measured polarizations and cross sections. A simultaneous fit of the cross sections, the recoil proton polarizations, and angular distributions of the polarized response functions will provide a determination of individual multipole amplitudes. Some of these multipole amplitudes are related to the concept of proton deformation. Both the recoil proton polarizations and polarized response functions were compared to two phenomenological models: MAID and SAID, which have all free parameters fixed, based on fits to previous world data. The measured helicity dependent observables, which are dominated by imaginary parts of Δ(1232)-resonance excitation multipole amplitudes, agree very well with the two models. The measured helicity independent observables, which are dominated by real parts of background multipole amplitudes, do not agree completely with

  11. Hydrogen Bonding in the Electronic Excited State

    Science.gov (United States)

    Zhao, Guang-Jiu; Han, Ke-Li; DICP1101 Group Team

    2013-03-01

    Here, I will give a talk on our recent advances in electronic excited-state hydrogen-bonding dynamics and the significant role of excited-state hydrogen bonding on internal conversion (IC), electronic spectral shifts (ESS), photoinduced electron transfer (PET), fluorescence quenching (FQ), intramolecular charge transfer (ICT), and metal-to-ligand charge transfer (MLCT). The combination of various spectroscopic experiments with theoretical calculations has led to tremendous progress in excited-state hydrogen-bonding research. We first demonstrated that intermolecular hydrogen bond in excited state can be greatly strengthened or weakened for many chromophores. We have also clarified that intermolecular hydrogen-bond strengthening and weakening correspond to red-shifts and blue-shifts, respectively, in the electronic spectra. Moreover, radiationless deactivations (via IC, PET, ICT, MLCT, and so on) can be dramatically influenced by excited-state hydrogen bonding. GJZ and KLH thank the NSFC (Nos: 20903094 and 20833008) for financial support.

  12. Ethylene glycol modified 2-(2′-aminophenyl)benzothiazoles at the amino site: the excited-state N-H proton transfer reactions in aqueous solution, micelles and potential application in live-cell imaging

    International Nuclear Information System (INIS)

    Liu, Bo-Qing; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tseng, Huan-Wei; Chou, Pi-Tai

    2016-01-01

    Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2′-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH 2 Cl 2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15  ±  3 nm under a critical micelle concentration (CMC) of ∼80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at  >  CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging. (paper)

  13. Modulation of dual fluorescence in a 3-hydroxyquinolone dye by perturbation of its intramolecular proton transfer with solvent polarity and basicity.

    Science.gov (United States)

    Yushchenko, Dmytro A; Shvadchak, Volodymyr V; Bilokin', Mykhailo D; Klymchenko, Andrey S; Duportail, Guy; Mély, Yves; Pivovarenko, Vasyl G

    2006-11-01

    A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.

  14. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    Science.gov (United States)

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  15. Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone

    Directory of Open Access Journals (Sweden)

    Marco Lamperti

    2014-08-01

    Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  16. Intramolecular proton transfer and tunnelling reactions of hydroxyphenylbenzoxazole derivatives in Xenon at 15 K

    Energy Technology Data Exchange (ETDEWEB)

    Walla, Peter J. [Max-Planck-Institute for Biophysical Chemistry, Department 010, Spectroscopy and Photochemical Kinetics, Am Fassberg 11, D-37077 Goettingen (Germany) and Department for Biophysical Chemistry, Technical University of Brunswick, Institute for Physical and Theoretical Chemistry, Hans-Sommerstr. 10, D-38106 Braunschweig (Germany)]. E-mail: pwalla@gwdg.de; Nickel, Bernhard [Max-Planck-Institute for Biophysical Chemistry, Department 010, Spectroscopy and Photochemical Kinetics, Am Fassberg 11, D-37077 Goettingen (Germany)

    2005-06-06

    We investigated the site dependence and the tunnelling processes of the intramolecular proton and deuteron transfer in the triplet state of the compounds 2-(2'-hydroxy-4'-methylphenyl)benzoxazole (m-MeHBO) and 2-(2'-hydroxy-3'-methylphenyl)benzoxazoles (o-MeHBO) and their deuterio-oxy analogues in a solid xenon matrix. After singlet excitation there occurs an ultrafast intramolecular enol {yields} keto proton transfer and subsequent intersystem crossing mainly to the keto triplet state. In the triplet state of m-MeHBO, the proton transfer back to the lower enol triplet state is governed by tunnelling processes. In o-MeHBO, however, the enol triplet state is higher and therefore normally no tunnel reaction can be observed. Because of the external heavy atom-effect in a xenon matrix, we were able to investigate the reverse enol-keto-tunnelling after exciting directly the enol triplet state of deuterated o-MeHBO. The time constants of the reverse enol-keto tautomerization are similar to those of the normal keto-enol tautomerization. In a xenon matrix, the observed site-selective phosphorescence spectra are very well-resolved vibrationally. This allowed the study of the tunnel rates in different well-defined sites. The vibrational energies obtained in the spectra are in good agreement with vibrational energies found in resonant Raman and IR spectra of 2-(2'-hydroxyphenyl)benzoxazole (HBO)

  17. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  18. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  19. Intramolecular hydrogen bond in molecular and proton-transfer forms of Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Filarowski, A.; Koll, A.; Karpfen, A.; Wolschann, P

    2004-02-16

    The force field and structural parameters modifications upon the formation of intramolecular hydrogen bond and proton transfer reaction in N-methyl-2-hydroxybenzylidene amine (HBZA) are determined on the basis of ab initio and DFT calculations. Reliability of the calculations is verified by comparing of the theoretical vibrational spectra with those experimentally determined in the gas phase. A model of resonance interactions is applied and the quantitative contribution of ortho-quinoid structure in the particular conformers is estimated. A comparison is also made to the systems without {pi}-electron coupling (Mannich bases)

  20. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  1. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  2. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  3. Reaction Coordinate, Free Energy, and Rate of Intramolecular Proton Transfer in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Paul, Sanjib; Paul, Tanmoy Kumar; Taraphder, Srabani

    2018-03-22

    The role of structure and dynamics of an enzyme has been investigated at three different stages of its function including the chemical event it catalyzes. A one-pot computational method has been designed for each of these stages on the basis of classical and/or quantum mechanical-molecular mechanical molecular dynamics and transition path sampling simulations. For a pair of initial and final states A and B separated by a high free-energy barrier, using a two-stage selection process, several collective variables (CVs) are identified that can delineate A and B. However, these CVs are found to exhibit strong cross-coupling over the transition paths. A set of mutually orthogonal order parameters is then derived from these CVs and an optimal reaction coordinate, r, determined applying half-trajectory likelihood maximization along with a Bayesian information criterion. The transition paths are also used to project the multidimensional free energy surface and barrier crossing dynamics along r. The proposed scheme has been applied to the rate-determining intramolecular proton transfer reaction of the well-known enzyme human carbonic anhydrase II. The potential of mean force, F( r), in the absence of the chemical step is found to reproduce earlier results on the equilibrium population of two side-chain orientations of key residue His-64. Estimation of rate constants, k, from mean first passage times for the three different stages of catalysis shows that the rate-determining step of intramolecular proton transfer occurs with k ≃ 1.0 × 10 6 s -1 , in close agreement with known experimental results.

  4. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  5. Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter

    2005-01-01

    -specific information about the incorporation of deuterium into peptides and proteins in solution. Using a unique set of peptides with their carboxyl-terminal half labeled with deuterium we have shown unambiguously that hydrogen (1H/2H) scrambling is such a dominating factor during low energy collisional activation...... of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (Jørgensen, T. J. D., Gårdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc...... randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information...

  6. Spectroscopic studies on the excited-state properties of the light-induced antiviral drug hypocrellin A loaded in the mesoporous solid

    Science.gov (United States)

    Zhang, Lei Z.; Tang, Guo-Qing; Gao, Bo-Wen; Zhang, Gui-Lan

    2004-09-01

    Hypocrellin A (HA) is encapsulated in the mesoporous material MCM-41 for the first time, and its excited-state behaviors are elucidated by means of steady-state spectroscopies and excited-state lifetime measurements. No ground-state tautomer of HA in the mesoporous solid is deduced based on the spectra observed. Normal fluorescence energy level results from the (l, a π) state with pπ conjugation; the excited-state intramolecular proton transfer (ESIPT) fluorescence is mostly due to the two-photon excitation (or absorption) of HA. The ESIPT emission intensity becomes truly remarkable with increasing excitation laser intensities. The time-resolved fluorescence measurements are also performed as the further evidence.

  7. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory★

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-11-01

    We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80329-7.

  8. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  9. INFLUENCE OF SOLVENT ON INTRAMOLECULAR PROTON-TRANSFER IN HYDROGEN MALONATE - MOLECULAR-DYNAMICS SIMULATION STUDY OF TUNNELING BY DENSITY-MATRIX EVOLUTION AND NONEQUILIBRIUM SOLVATION

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC; VANGUNSTEREN, WF

    1993-01-01

    A density matrix evolution (DME) method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. the preceding paper in this issue) in combination with classical molecular dynamics simulation was applied to calculate the rate of proton tunneling in the intramolecular double-well hydrogen bond of hydrogen

  10. Protonation and strong H-bonding as the factors controlling structural changes in excited azaaromatics

    Energy Technology Data Exchange (ETDEWEB)

    Grabowska, A. (Polska Akademia Nauk, Warsaw. Inst. Chemii Fizycznej)

    1981-11-01

    The relationship between the structure of a molecule and electron density distribution in excited states of protonated N-heteroaromatics has been discussed, basing on (1) Walsh rules (2) dihydroflavines as model compounds. Two selected examples of inter- and intramolecular proton transfer have been quoted, namely the net charge distribution in 7-azaindole and proton transfer kinetics in 2(2'-hydroxyphenyl)benzoxazole.

  11. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.

    2015-10-15

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  12. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    International Nuclear Information System (INIS)

    Tomin, Vladimir I.; Ushakou, Dzmitryi V.

    2015-01-01

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  13. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    The organization of the rest of the paper is as fol- lows. Experimental details are given in ... found to be bi-exponential functions of time with one short and one long time constants, the decay in non-polar solvents (such as hexane or heptane) was single-exponential with only one long time constant. In addition, the short time ...

  14. Excited state intramolecular charge transfer reaction of 4 ...

    Indian Academy of Sciences (India)

    Administrator

    In spite of the above discus- sion, conclusions drawn from this work remain un- altered as the calculation of average equilibrium constant (Keq) involves only the amplitudes of the decay components, not the reaction time constants. 4. Conclusion. To summarize, the replacement of the carbon atom para to the nitrogen atom ...

  15. Excited state intramolecular charge transfer reaction in non-aqueous ...

    Indian Academy of Sciences (India)

    is found to produce a linear increase of confined solvent viscosity but leads to a non-monotonic electrolyte concentration ... The observed huge reduction in reaction rate constant is attributed to the effects of decreased solution polarity, enhanced vis- .... twisting mode while reacting inside a confined pool. We have used the ...

  16. Excited state intramolecular charge transfer reaction in non-aqueous ...

    Indian Academy of Sciences (India)

    is found to produce a linear increase of confined solvent viscosity but leads to a non-monotonic electrolyte concentration dependence of average .... does not participate in specific solute–solvent (such as. H-bondng) interaction.55–57 ..... tional resistance arising from the longer-ranged solute– solvent dipolar interaction and ...

  17. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory.

    Science.gov (United States)

    Chiba, Mahito; Tsuneda, Takao; Hirao, Kimihiko

    2006-04-14

    An analytical excitation energy gradient of long-range corrected time-dependent density functional theory (LC-TDDFT) is presented. This is based on a previous analytical TDDFT gradient formalism, which avoids solving the coupled-perturbed Kohn-Sham equation for each nuclear degree of freedom. In LC-TDDFT, exchange interactions are evaluated by combining the short-range part of a DFT exchange functional with the long-range part of the Hartree-Fock exchange integral. This LC-TDDFT gradient was first examined by calculating the excited state geometries and adiabatic excitation energies of small typical molecules and a small protonated Schiff base. As a result, we found that long-range interactions play a significant role even in valence excited states of small systems. This analytical LC-TDDFT gradient was also applied to the investigations of small twisted intramolecular charge transfer (TICT) systems. By comparing with calculated ab initio multireference perturbation theory and experimental results, we found that LC-TDDFT gave much more accurate absorption and fluorescence energies of these systems than those of conventional TDDFTs using pure and hybrid functionals. For optimized excited state geometries, LC-TDDFT provided fairly different twisting and wagging angles of these small TICT systems in comparison with conventional TDDFT results.

  18. Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Gårdsvoll, Henrik; Ploug, Michael

    2005-01-01

    if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional...... are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity...... of this labeling was confirmed after pepsin proteolysis. CID of such deuterated peptides, [M + 2H](2+), yielded fragment ions (b- and y-ions) having a deuterium content that resemble the theoretical values calculated for 100% scrambling. Thus, complete randomization of all hydrogen atoms attached to nitrogen...

  19. Application of the generator coordinates method to the intra-molecular proton tunneling in the malonaldehyde molecule; Aplicacao do metodo das coordenadas geradoras ao processo de tunelamento do proton intramolecular na molecula de malonaldeido

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andre Campos Kersten

    1995-12-31

    The effects of different vibrational modes on the isomerization process of polyatomic molecules, or solvent`s effects on reaction rates are object of up-to-date interest. In general, such many body phenomena are, in principle, multidimensional, and they first require a reduction of relevant degrees of freedom. In order to investigated, some aspects of the intra-molecular proton tunneling on a malonaldehyde molecule, we use the Generator Coordinate Method. The model used to describe such a process is the so-called System-Bath model, where the system is the reaction coordinate and the bath are the intrinsic degrees of freedom (vibrational modes of the molecule), which are described by a harmonic oscillator set linearly coupled to the system. The reduction of the multidimensional problem to the effective unidimensional one is done using a energy related variational principle on the intrinsic degrees of freedom. we obtained analytically a effective Hamiltonian where the effects of the various degrees of freedom reveal themselves in the appearance of a effective mass and in changes of the shape of the potential barrier. The analyticity of the method was crucial on identifying clearly the roles played by the different physical parameters involved. (author) 17 refs., 29 figs.

  20. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water.

    Science.gov (United States)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps(-1), which is about 2.5 times faster than that in vacuum, 0.27 ps(-1). This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.

  1. Search for excited states of light and heavy flavor quarks in the $\\gamma$+jet final state in proton-proton collisions at $\\sqrt{s} =$ 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-11-13

    A search is presented for excited quarks of light and heavy flavor that decay to $\\gamma$+jet final states. The analysis is based on data corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\\sqrt{s}=$ 13 TeV at the LHC. A signal would appear as a resonant contribution to the invariant mass spectrum of the $\\gamma$+jet system, above the background expected from standard model processes. No resonant excess is found, and upper limits are set on the product of the excited quark cross section and its branching fraction as a function of its mass. These are the most stringent limits to date in the $\\gamma$+jet final state, and exclude excited light quarks with masses below 5.5 TeV and excited b quarks with masses below 1.8 TeV, assuming standard model couplings.

  2. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  3. Influence of hydrogen bonding in the ground and the excited states of the isomers of the β-carboline anhydrobase (N 2-methyl-9H-pyrido[3,4-b]indole) in aprotic solvents

    Science.gov (United States)

    Sánchez-Coronilla, Antonio; Balón, Manuel; Muñoz, María A.; Carmona, Carmen

    2008-02-01

    The ground and excited state hydrogen bonding interactions between N 2-methyl-9H-pyrido[3,4-b]indole, BCA, and 1,1,1,3,3,3-hexafluoropropan-2-ol, HFIP, are comparatively studied in the aprotic solvents cyclohexane and toluene by absorption, steady state and time resolved fluorescence measurements. The different photophysical behaviours of the BCA-HFIP hydrogen bond complexes in these solvents definitively confirm the existence of two ground state BCA isomers. As previously proposed [A. Sánchez-Coronilla, C. Carmona, M.A. Muñoz, M. Balón, Chem. Phys. 327 (2006) 70.] we assume quinoid, Q, and zwitterionic, Z, structures for these isomers. Upon excitation, the hydrogen bond adducts of each isomer give dual fluorescence emitting from their locally excited states, LE, and from their intramolecular charge transfer states, ICT. In the hydrogen bond adducts of the Q form, the ICT process is favoured while it is disfavoured for the corresponding adducts of the Z form. The implication that these results could have on the current mechanistic interpretation of the excited state intramolecular proton transfer and phototautomerism of the betacarbolines is discussed.

  4. Intramolecular Rotation through Proton Transfer: [Fe(eta(5)-C5H4CO2-)(2)] Versus [(eta(5)-C5H4CO2-)Fe(eta(5)-C5H4CO2H)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue B.; Dai, Bing; Woo, Hin-koon; Wang, Lai S.

    2005-08-12

    We report a photoelectron spectroscopic study of doubly charged (?5C5H4CO2-)Fe(?5-C5H4CO2-) (1) and singly charged (?5C5H4CO2-)Fe(?5C5H4CO2H) (2). It is shown that strong intramolecular coulomb repulsion keeps 1 in the trans-form, in which the two ?CO2- groups on the cyclopentadienyl ligands are oriented opposite to each other, whereas 2 assumes the cis-form owing to a strong intramolecular H-bond. We estimate a rotational barrier of 1.4 eV for 1 and 0.6 eV for 2. A proton transfer to 1 would result in a 112? intramolecular rotation, whereas deportation of 2 would result in a similar intramolecular rotation. Thus 1 and 2 form a model molecular rotor system, controlled by a proton transfer.

  5. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  6. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  7. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  8. Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yukie, E-mail: mori.yukie@ocha.ac.jp; Masuda, Yuichi

    2015-09-08

    Highlights: • MD simulations were performed to study dynamics of strong hydrogen bonds. • Nuclear magnetic relaxation times of proton were measured in solution. • The hydrogen bond of dibenzoylmethane enol is asymmetric in methanol solution. • Formation or breakage of intermolecular hydrogen bonds can trigger proton transfer. • Dimethylsulfoxide may form a bifurcated hydrogen bond with a hydrogen-bonded system. - Abstract: Hydrogen phthalate anion has a short strong O–H–O hydrogen bond (H-bond). According to previous experimental studies, the H-bond is asymmetric and two tautomers are interconverted in aqueous solutions. In the present study, the effects of polar solvents on the H-bond in a zwitterionic hydrogen phthalate derivative 1 were investigated by quantum mechanics/molecular mechanics molecular dynamics (MD) simulations. The analyses of the trajectories for the methanol solution showed that the H-bonding proton tends to be located closer to the carboxylate group that forms fewer intermolecular H-bonds, than to the other carboxylate group and that the intramolecular proton transfer in 1 is triggered by the breakage and/or formation of an intermolecular H-bond. The enol form of dibenzoylmethane (2) also has a short H-bond, and the OH bond is reported to be rather long (>1.1 Å) in the crystal. In the present study, the effects of the solvent on the H-bond in 2 were investigated by molecular orbital (MO) calculations, MD simulations and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations for 2 in vacuum indicated that the barrier height for the intramolecular proton transfer is almost the same as the zero-point energy of the vibrational ground state, resulting in broad distribution of the proton density along the H-bond, owing to the nuclear quantum effect. The OH distances were determined in CCl{sub 4}, acetonitrile, and dimethylsulfoxide solutions from the magnetic dipolar interactions between the {sup 17

  9. Charge transfer state induced from locally excited state by polar solvent

    Science.gov (United States)

    Sun, Mengtao

    2005-06-01

    The photophysical properties of the novel perylene imide (Pi) and oligo-pentaphenyl bisfluorene (pPh) containing molecule have been investigated by quantum chemical methods. It is concluded that the first excited singlet state in the gas is the locally excited state; while the lowest excited state in polar solvents is the intramolecular charge transfer (ICT) state, which corresponds to the ICT from pPh to Pi. This excited state in the polar solvent adopts a planar geometry, in marked contrast to the twisted geometry in the gas phase. The planar geometry in the polar solvent significantly delocalized densities of HOMOs, compared to those in the gas phase, but the influence of the planar geometry to densities of LUMO is very small. Overall, the computed results remain in good agreement with the relevant experimental data.

  10. Study on the 49V excited states in the (p, nγ) reaction

    International Nuclear Information System (INIS)

    Fedorets, I.D.; Zalyubovskij, I.I.; Nemashkalo, B.A.; Storozhko, V.E.

    1986-01-01

    49 V excited states were investigated by means of the (p, nγ) reaction in the energy range of incident protons from the reaction threshold (1.412 MeV) to 3.34 MeV. Angular distributions of γ-rays related to excited states de-excitation were measured at 2.7 MeV proton energy. Check of statistical theory applicability for analysis of experimental results using the (p, γ) reaction on 49 Ti in the proton energy range from 0.84 to 2.58 MeV precedes the study of 42 V state properties. Cross sections of 49 V state excitation in the (p, nγ) reaction were determined from γ-ray yields. Scheme of 49 V states de-excitation was constructed, measurements of angular γ-ray distribution were analysed within the framework of the Hauser-Feshbach theory 49 V excited state characteristics were discussed

  11. Optical studies of multiply excited states

    International Nuclear Information System (INIS)

    Mannervik, S.

    1989-01-01

    Optical studies of multiply-excited states are reviewed with emphasis on emission spectroscopy. From optical measurements, properties such as excitation energies, lifetimes and autoionization widths can be determined with high accuracy, which constitutes a challenge for modern computational methods. This article mainly covers work on two-, three- and four-electron systems, but also sodium-like quartet systems. Furthermore, some comments are given on bound multiply-excited states in negative ions. Fine structure effects on transition wavelengths and lifetimes (autoionization) are discussed. In particular, the most recent experimental and theoretical studies of multiply-excited states are covered. Some remaining problems, which require further attention, are discussed in more detail. (orig.) With 228 refs

  12. Evaluating excited state atomic polarizabilities of chromophores.

    Science.gov (United States)

    Heid, Esther; Hunt, Patricia A; Schröder, Christian

    2018-03-28

    Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered.

  13. Excited state properties of aryl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Fuciman, M.; Chábera, P.; Župčanová, Anita; Hříbek, P.; Arellano, J.B.; Vácha, František; Pšenčík, J.; Polívka, Tomáš

    2010-01-01

    Roč. 12, č. 13 (2010), s. 3112-3120 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited-states * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 3.454, year: 2010

  14. Theoretical studies of π-electron delocalization and localization on intramolecular proton transfer in the ground state

    Science.gov (United States)

    Peng, Hongliang; Huang, Pengru; Yi, Pinggui; Xu, Fen; Sun, Lixian

    2018-02-01

    Proton transfer processes of 15 benzimidazole compounds are studied by density functional theory methods, and natural orbital energy index (NOEI) is introduced. Here, NOEI and nucleus independent chemical shift (NICS) are applied to estimate the π-electron localization and delocalization, respectively. Proton transfer potential energy surfaces are calculated to explore these processes, and the results show that the changes of the π-electron delocalization of the phenyl (pyridyl) is the main factors for the stability of keto form. There is high correlation between the π-electron delocalization and the proton transfer barrier. When the π-electron localization is considered, the regression increases the correlation coefficient, increasing from 0.9663 to 0.9864. NOEI index is sensitive to π-electron localization; it is a beneficial and useful complement to NICS.

  15. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  16. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Shelby, Megan L; Lestrange, Patrick J; Jackson, Nicholas E; Haldrup, Kristoffer; Mara, Michael W; Stickrath, Andrew B; Zhu, Diling; Lemke, Henrik T; Chollet, Matthieu; Hoffman, Brian M; Li, Xiaosong; Chen, Lin X

    2016-07-20

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the ∼100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  17. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  18. Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-l-tryptophanyltriphosphates

    Directory of Open Access Journals (Sweden)

    Zhihong Xu

    2015-10-01

    Full Text Available Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs. However, the availability of α-P-borano-γ-P-substituted NTP analogs remains limited due to challenges with synthesis and purification. Here, we report the chemical synthesis and stability of a new potential class of NRTI prodrugs: stavudine (d4T 5′-α-P-borano-γ-P-N-L-tryptophanyltriphosphates. One-pot synthesis of these compounds was achieved via a modified cyclic trimetaphosphate approach. Pure Rp and Sp diastereomers were obtained after HPLC separation. Based on LC-MS analysis, we report degradation pathways, half-lives (5–36 days and mechanisms arising from structural differences to generate the corresponding borano tri- and di-phosphates, and H-phosphonate, via several parallel routes in buffer at physiologically relevant pH and temperature. Here, the major hydrolysis products, d4T α-P-boranotriphosphate Rp and Sp isomers, were isolated by HPLC and identified with spectral data. We first propose that one of the major degradation products, d4T H-phosphonate, was generated from the d4T pronucleotides via a protonation-promoted intramolecular reduction followed by a second step nucleophilic attack. This report could provide valuable information for pronucleotide-based drug design in terms of selective release of target nucleotides.

  19. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA(US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  20. Observation of excited state in 41Si

    International Nuclear Information System (INIS)

    Sohler, D.; Dombradi, Zs.; Grevy, S.; Sorlin, O.; Azaiez, F.; Baiborodin, D.; Borcea, R.

    2007-01-01

    Complete text of publication follows. Recently, the collapse of the Z=14 and N=28 shell closures has been revealed in very neutron-rich Si and P nuclei [1]. In order to further explore the behaviour of these shell gaps, we studied the excited states of 41 Si by in-beam γ-ray spectroscopy from fragmentation of radioactive beams. The experiment was carried out at the GANIL facility, France. First a stabil 4μA 48 Ca beam at 60 MeV/u was fragmented on a 12 C target in the SISSI device. The primary reaction products were selected by measuring their energy loss and time-of-flight at the ALPHA spectrometer. The cocktail beam impinged onto a secondary 9 Be target placed in the dispersive focal plane of the SPEG spectrometer which was tuned to maximise the transmission of 42 Si. The secondary reaction products were unambiguously identified by their ΔE and positions determined by ionisation and drift chambers, furthermore by their TOF and residual energies measured by a plastic scintillator at the focal plane of SPEG. To detect γ rays, the secondary target was surrounded by an 4π array of 74 BaF 2 scintillators. The γ-ray spectra were obtained by selecting event-by-event the incoming nuclei and the ejectiles after the secondary target. The γ rays were corrected for Doppler shifts due to the in-flight emission by the fragments. As it can be seen in figure 1, a clear peak on a low background at 659±14 keV energy appears in the γ-ray spectrum of 41 Si. This finding is in accordance with the 770 keV energy of the first 2 + excited state in 42 Si with N=28 and Z=14. Along the N=28 isobaric line the next double magic nucleus is 48 Ca. In the neighbouring odd-N nucleus 47 Ca the energy of the first excited state was measured to be 2014 keV. Comparing with that of 47 Ca the low energy value of the first excited state obtained in 41 Si can be interpreted as a further indication of the disappearance of the N=28 spherical shell closure at Z=14

  1. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... a nonequilibrium formulation of the environmental response. In our formulation of polarizable embedding we explicitly take into account the full self-consistent many-body environmental response from both ground and excited states. The PE-DFT method can be applied to any molecular system, e.g., proteins...

  2. Protonation of the imino nitrogen deactivates the excited state of ...

    Indian Academy of Sciences (India)

    2018-02-28

    Feb 28, 2018 ... nenberg J L, Hada M, Ehara M, Toyota K, Fukuda R,. Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O,. Nakai H, Vreven T, Montgomery J A Jr., Peralta J E,. Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N,. Staroverov V N, Kobayashi R, Normand J, Raghavachari. K, Rendell A, Burant J C, ...

  3. Excited state proton transfer in the Cinchona alkaloid cupreidine

    NARCIS (Netherlands)

    Qian, J.; Brouwer, A.M.

    2010-01-01

    Photophysical properties of the organocatalyst cupreidine (CPD) and its chromophoric building block 6-hydroxyquinoline (6HQ) in protic and nonprotic polar solvents (methanol and acetonitrile) were investigated by means of UV-vis absorption, and steady state and time resolved fluorescence

  4. Excited states of {sup 4}He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R.; Navarro, J.; Portesi, M.

    2001-06-01

    We study low-lying excited states of {sup 4}He clusters up to a cluster size of 40 atoms in a variational framework. The ansatz wave function combines two- and three-body correlations, coming from a translationally invariant configuration interaction description, and Jastrow-type short-range correlation. We have previously used this scheme to determine the ground-state energies of {sup 4}He and {sup 3}He clusters. Here we present an extension of this ansatz wave function having a good quantum angular momentum L. The variational procedure is applied independently to the cases with L=0,2,4, and upper bounds for the corresponding energies are thus obtained. Moreover, centroid energies for L excitations are calculated through the use of sum rules. A comparison with previous calculations is also made.

  5. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  6. First 3- excited state of 56Fe

    International Nuclear Information System (INIS)

    Fotiades, N.; Nelson, R. O.; Devlin, M.

    2010-01-01

    There is no reliable evidence for the existence of the 3.076 MeV (3 - ) level adopted in the ENSDF evaluation for 56 Fe although it has been reported in a few experiments. Previous reports of the observation of this level appear to be based on an incorrect assignment in early (e,e ' ) work. Recent neutron inelastic scattering measurements by Demidov et al. [Phys. At. Nucl. 67, 1884, (2004)] show that the assigned γ-ray decay of this state does not occur at a level consistent with known properties of inelastic scattering. In the present work the 56 Fe(n,n ' γ) reaction was used to populate excited states in 56 Fe. Neutrons in the energy range from 1 to 250 MeV were provided by the pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility. Deexciting γ rays were detected with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. The γ-γ data obtained with GEANIE were used to establish coincidence relations between transitions. All previously reported levels up to E x =3.6 MeV excitation energy were observed except for the 3.076 MeV (3 - ) level. The 991- and 2229-keV transitions, previously reported to deexcite this level, were not observed in the γ-γ coincidence data obtained in the present experiment. The present work supports the assignment of the 4509.6 keV level as the first 3 - excited state in 56 Fe by observation of two previously known transitions deexciting this state.

  7. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  8. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  9. Spectroscopic and excited-state properties of tri-9-anthrylborane I: Solvent polarity effects.

    Science.gov (United States)

    Kitamura, Noboru; Sakuda, Eri

    2005-08-25

    Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.

  10. Doubly and triply excited states for different plasma sources

    International Nuclear Information System (INIS)

    More, R.M.; Safronova, U.I.

    2000-01-01

    Autoionizing rates of doubly excited states as nln'l' configurations with n=2-9 and n'=2-9 are calculated. Analytical expressions of decay amplitude for two-electron system are derived. Expressions for autoionizing rates with averaging over LS are obtained for many-electron systems. The n and l dependence of doubly excited states as nln'l' configurations are investigated. (author)

  11. Does the excited state of the 3He nucleus exist?

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1994-01-01

    The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases

  12. A note on calm excited states of inflation

    International Nuclear Information System (INIS)

    Ashoorioon, Amjad; Shiu, Gary

    2011-01-01

    We identify a two-parameter family of excited states within slow-roll inflation for which either the corrections to the two-point function or the characteristic signatures of excited states in the three-point function — i.e. the enhancement for the flattened momenta configurations– are absent. These excited states may nonetheless violate the adiabaticity condition maximally. We dub these initial states of inflation calm excited states. We show that these two sets do not intersect, i.e., those that leave the power-spectrum invariant can be distinguished from their bispectra, and vice versa. The same set of calm excited states that leave the two-point function invariant for slow-roll inflation, do the same task for DBI inflation. However, at the level of three-point function, the calm excited states whose flattened configuration signature is absent for slow-roll inflation, will lead to an enhancement for DBI inflation generally, although the signature is smaller than what suggested by earlier analysis. This example also illustrates that imposing the Wronskian condition is important for obtaining a correct estimate of the non-Gaussian signatures

  13. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Time-Resolved Signatures across the Intramolecular Response in Substituted Cyanine Dyes

    Science.gov (United States)

    Nairat, Muath; Webb, Morgan; Esch, Michael; Lozovoy, Vadim V.; Levine, Benjamin G.; Dantus, Marcos

    2017-06-01

    The optically populated excited state wave packet propagates along multidimensional intramolecular coordinates soon after photoexcitation. This action occurs alongside an intermolecular response from the surrounding solvent. Disentangling the multidimensional convoluted signal enables the possibility to separate and understand the initial intramolecular relaxation pathways over the excited state potential energy surface. Here we track the initial excited state dynamics by measuring the fluorescence yield from the first excited state as a function of time delay between two color femtosecond pulses for several cyanine dyes, having different electronic configurations. We find that when the high frequency pulse precedes the low frequency one and for timescales up to 200 fs, the excited state can be depleted through stimulated emission with efficiency that is dependent on the molecular electronic structure. A similar observation at even shorter times was made by scanning the chirp (frequencies ordering) of a femtosecond pulse. These changes reflect the rate at which the nuclear coordinates of the excited state leave the Franck-Condon (FC) region and progress towards achieving equilibrium. Through functional group substitution, we explore these dynamic changes as a function of dipolar change following photoexcitation. We show that with proper knowledge and control over the phase of the excitation pulses, we can extract the relative energy relaxation rates through which the early intramolecular modes are populated at the FC geometry soon after excitation

  15. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  16. g-Factor measurements on excited states in the N=82 isotones

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.; Wolf, A.

    1984-01-01

    A program for the measurement of g-factors for excited states of neutron-rich nuclei at the TRISTAN separator facility is described. Results are given for the 4 1 + states in the N=82 isotones 136 Xe and 138 Ba. Systematics for g-factors for 4 1 + and 6 1 + states in the N=82 isotones are presented and the results are compared with those of a shell-model calculation. The results are well described using effective proton spin and orbital g-factors. 21 references

  17. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  18. Investigation into chromophore excited-state coupling in allophycocyanin

    Science.gov (United States)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  19. Study of magnetic moments of nuclear excited states at TRISTAN

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.; Wolf, A.; Berant, Z.; Gill, R.L.; Kruse, H.

    1984-01-01

    Measurement of the static magnetic dipole moments of nuclear excited states are of interest since they reveal information on nuclear structure not available by other means. A system has been constructed at the TRISTAN separator to measure magnetic dipole moments of excited states in neutron-rich nuclei using the method of perturbed angular correlations (PAC). High magnetic fields are not available through the use of a superconducting magnet. The capability of the TRISTAN system is discussed and the PAC measuring apparatus is described. Final results from recent g factor measurements at TRISTAN on 4 + states in the N = 82 isotones are discussed in some detail. Studies in progress are briefly outlined

  20. Spanning four mechanistic regions of intramolecular proton-coupled electron transfer in a Ru(bpy)3(2+)-tyrosine complex.

    Science.gov (United States)

    Irebo, Tania; Zhang, Ming-Tian; Markle, Todd F; Scott, Amy M; Hammarström, Leif

    2012-10-03

    Proton-coupled electron transfer (PCET) from tyrosine (TyrOH) to a covalently linked [Ru(bpy)(3)](2+) photosensitizer in aqueous media has been systematically reinvestigated by laser flash-quench kinetics as a model system for PCET in radical enzymes and in photochemical energy conversion. Previous kinetic studies on Ru-TyrOH molecules (Sjödin et al. J. Am. Chem. Soc. 2000, 122, 3932; Irebo et al. J. Am. Chem. Soc. 2007, 129, 15462) have established two mechanisms. Concerted electron-proton (CEP) transfer has been observed when pH 10. Here we compare the PCET rates and kinetic isotope effects (k(H)/k(D)) of four Ru-TyrOH molecules with varying Ru(III/II) oxidant strengths over a pH range of 1-12.5. On the basis of these data, two additional mechanistic regimes were observed and identified through analysis of kinetic competition and kinetic isotope effects (KIE): (i) a mechanism dominating at low pH assigned to a stepwise electron-first PCET and (ii) a stepwise proton-first PCET with OH(-) as proton acceptor that dominates around pH = 10. The effect of solution pH and electrochemical potential of the Ru(III/II) oxidant on the competition between the different mechanisms is discussed. The systems investigated may serve as models for the mechanistic diversity of PCET reactions in general with water (H(2)O, OH(-)) as primary proton acceptor.

  1. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Abstract. In this work an analysis of the highly vibrationally excited states of thiophosgene (SCCl2) is made in order to gain insights into some of the experimental observations and spectral features. The states analysed here lie in a spectrally complex region where strong mode mixings are expected due to the overlap of ...

  2. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    Science.gov (United States)

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  3. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1...

  4. On satellite lines anomalies in OH excited states

    International Nuclear Information System (INIS)

    Elitzur, M.

    1976-01-01

    It is argued that different pumps produce similar distributions of populations in the first two excited states of OH. The pattern observed recently in G 219.3 - 07 by Whiteoak and Gardner can be due either to radiative or collisional pump. (author)

  5. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  6. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    WINTEC

    *For correspondence. Relaxation dynamics in the excited states of a ketocyanine dye probed by femtosecond transient absorption spectroscopy. JAHUR A MONDAL, SANDEEP VERMA, HIRENDRA N GHOSH and DIPAK K PALIT*. Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085.

  7. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    Abstract. The close coupling R-matrix method is used to calculate cross-sections for photoioniza- tion of Mg III from its first three excited states. Configuration interaction wave functions are used to represent two target states of Mg III retained in the R-matrix expansion. The positions and effective quantum numbers for the ...

  8. Optimal control of peridinin excited-state dynamics

    Czech Academy of Sciences Publication Activity Database

    Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 129-136 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  9. Dark excited states of carotenoids: Consensus and controversy

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Sundström, V.

    2009-01-01

    Roč. 477, 1-3 (2009), s. 1-11 ISSN 0009-2614 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited states * relaxation pathways * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.291, year: 2009

  10. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  11. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  12. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  13. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Hoffman, M.Z.

    1985-01-01

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished

  14. Evidence of lactim-lactam photo-tautomerization through four-member intramolecular hydrogen bonded network in 5-(4-fluorophenyl)-2-hydroxy-nicotinonitrile

    International Nuclear Information System (INIS)

    Samanta, Anuva; Guchhait, Nikhil

    2014-01-01

    Lactim-lactam isomerisation behavior through proton transfer process at the strained four-member intramolecular H-bonded ring in 5-(4-fluorophenyl)-2-hydroxy-nicotinonitrile (FP2HN) has been elaborately investigated by steady state absorption and emission, time-resolved fluorescence spectroscopy and quantum chemical calculations by the Density Functional Theory (DFT) method. Irrespective of the nature of the solvents, FP2HN exists as lactim (FP2HN) and lactam form (FP3PN) in the ground state. The observed large Stokes shifted emission band corresponds to the spectroscopic signature of lactim→lactam conversion by excited state intramolecular proton transfer (ESIPT) reaction across the four member H-bonded network. The ESIPT reaction is found to be suppressed in the basic medium due to the formation of anionic species. The effect of increase of temperature on the spectral behavior and hence the calculated thermodynamic parameters (K tau 0 , ΔG 0 , ΔH 0 , ΔS 0 ) indicate spontaneous lactim→lactam isomerisation process. The spectral behavior of the studied molecule has been compared with its parent molecule, 2-hydroxypyridine (2HP) and 5-(4-fluorophenyl)-2-hydroxypyridine (FP2HP). Structural calculations and potential energy curves along the proton transfer coordinate by the DFT method have been successfully employed to correlate the experimental findings. - Highlights: • Lactim lactam photo-isomerisation across four-member intramolecular hydrogen bond. • ESIPT reaction in 5-(4-fluorophenyl)-2-hydroxy-nicotinonitrile. • Steady state and time resolved spectroscopy. • Suppression of ESIPT in the basic medium. • Experimental spectral findings corroborate well DFT calculation results

  15. Calculation of neutral beam deposition accounting for excited states

    International Nuclear Information System (INIS)

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations

  16. Optimal control of peridinin excited-state dynamics

    Science.gov (United States)

    Dietzek, Benjamin; Chábera, Pavel; Hanf, Robert; Tschierlei, Stefanie; Popp, Jürgen; Pascher, Torbjörn; Yartsev, Arkady; Polívka, Tomáš

    2010-07-01

    Optimal control is applied to study the excited-state relaxation of the carbonyl-carotenoid peridinin in solution. Phase-shaping of the excitation pulses is employed to influence the photoinduced reaction dynamics of peridinin. The outcome of various control experiments using different experimentally imposed fitness parameters is discussed. Furthermore, the effects of pump-wavelength and different solvents on the control efficiency are presented. The data show that excited-state population within either the S 1 or the ICT state can be reduced significantly by applying optimal control, while the efficiency of control decreases upon excitation into the low-energy side of the absorption band. However, we are unable to alter the ratio of S 1 and ICT population or increase the population of either state compared to excitation with a transform-limited pulse. We compare the results to various control mechanisms and argue that characteristic low-wavenumber modes are relevant for the photochemistry of peridinin.

  17. The Exotic Excited State Behavior of 3-PHENYL-2-PROPYNENITRILE

    Science.gov (United States)

    Jawad, Khadija M.; Viquez Rojas, Claudia I.; Slipchenko, Lyudmila V.; Zwier, Timothy S.

    2017-06-01

    3-phenyl-2-propynenitrile (Ph-C≡C-C≡N) is of interest to the study of Titan's atmosphere as it is a likely product of the photochemical reaction between two known species in that environment: benzene and cyanoacetylene. The gas phase jet-cooled resonant two-photon ionization, laser induced fluorescence, and preliminary dispersed fluorescence spectra were previously reported without firm assignments due to the scarcity of totally symmetric vibrations and the prevalence of strong bands of b2 and b1 symmetry vibrations. These had called into question the identity and geometry of the excited state(s) involved in the transitions. We will here present the completed set of dispersed fluorescence data along with an analysis of the potential energy surfaces and vibronic coupling characteristic of the close-lying excited states in this intriguing molecule.

  18. Excited state nucleon spectrum with two flavors of dynamical fermions

    International Nuclear Information System (INIS)

    Bulava, John M.; Foley, Justin; Morningstar, Colin; Edwards, Robert G.; Joo, Balint; Lin, Huey-Wen; Richards, David G.; Engelson, Eric; Wallace, Stephen J.; Lichtl, Adam; Mathur, Nilmani

    2009-01-01

    Highly excited states for isospin (1/2) baryons are calculated for the first time using lattice QCD with two flavors of dynamical quarks. Anisotropic lattices are used with two pion masses, m π =416(36) MeV and 578(29) MeV. The lowest four energies are reported in each of the six irreducible representations of the octahedral group at each pion mass. The lattices used have dimensions 24 3 x64, spatial lattice spacing a s ≅0.11 fm, and temporal lattice spacing a t =(1/3)a s . Clear evidence is found for a (5 - /2) state in the pattern of negative-parity excited states. This agrees with the pattern of physical states and spin (5/2) has been realized for the first time on the lattice.

  19. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  20. Formation of H-atom in 2s excited state of proton-lithium and proton ...

    Indian Academy of Sciences (India)

    A process in which a projectile ion captures an electron from the neutral target and turns into a bound state is known as electron capture (charge transfer, charge exchange, electron transfer). The case of electron capture is more difficult to treat than excitation or ionization. The theory of direct reactions is essentially straight-.

  1. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  2. The Sommerfeld enhancement for dark matter with an excited state

    International Nuclear Information System (INIS)

    Slatyer, Tracy R.

    2010-01-01

    We present an analysis of the Sommerfeld enhancement to dark matter annihilation in the presence of an excited state, where the interaction inducing the enhancement is purely off-diagonal, such as in models of exciting or inelastic dark matter. We derive a simple and accurate semi-analytic approximation for the s-wave enhancement, which is valid provided the mass splitting between the ground and excited states is not too large, and discuss the cutoff of the enhancement for large mass splittings. We reproduce previously derived results in the appropriate limits, and demonstrate excellent agreement with numerical calculations of the enhancement. We show that the presence of an excited state leads to generically larger values of the Sommerfeld enhancement, larger resonances, and shifting of the resonances to lower mediator masses. Furthermore, in the presence of a mass splitting the enhancement is no longer a monotonic function of velocity: the enhancement where the kinetic energy is close to that required to excite the higher state can be up to twice as large as the enhancement at zero velocity

  3. Ground- and excited-state structural orientation of 2-(2`-hydroxyphenyl)benzazoles in cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, E.L.; Dey, J.; Warner, I.M. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-12-12

    The effects of {alpha}-, {beta}-, {gamma}-, and 2,6-di-O-methyl-{beta}-cyclodextrins (CDs) on the ground- and excited-state properties of 2-(2`-hydroxyphenyl)benzoxazole, 2-(2`-hydroxyphenyl)benzothiazole, and 2-(2`-hydroxyphenyl)benzimidazole in aqueous media are investigated. Steady-state fluorescence measurements are used to characterize the interaction of CDs with these azoles. Absorbance measurements indicate increased solubility of the azoles in aqueous solutions of CDs. Measurements of acidity constants (pK{sub a}) and data from induced circular dichroism indicate increased ground- and excited-state acidities of the phenolic protons of the molecules in the presence of CDs and axial orientation of the molecules within the CD cavity, respectively. The data further suggest a planar structure for HBO and a twisted confirmation for both HBT and HBI. The association constants of the inclusion complexes have also been estimated. These studies are further supplemented by comparative spectroscopic studies of 2-(2`-methoxyphenyl)benzothiazole in aqueous solutions of CDs. On the basis of the spectral data acquired, it is believed that the HBA molecules exist as zwitterionic tautomers in the presence of CDs. 35 refs., 6 figs., 2 tabs.

  4. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Understanding the nature of the highly excited molecu- lar eigenstates is equivalent to deciphering the mecha- nism of intramolecular vibrational energy redistribution. (IVR) occurring in the molecule.1 However, the assign- ment of eigenstates is far from simple. The existence of and interplay of several strong anharmonic ...

  5. Multiconfiguration pair-density functional theory for doublet excitation energies and excited state geometries: the excited states of CN.

    Science.gov (United States)

    Bao, Jie J; Gagliardi, Laura; Truhlar, Donald G

    2017-11-15

    Multiconfiguration pair-density functional theory (MC-PDFT) is a post multiconfiguration self-consistent field (MCSCF) method with similar performance to complete active space second-order perturbation theory (CASPT2) but with greater computational efficiency. Cyano radical (CN) is a molecule whose spectrum is well established from experiments and whose excitation energies have been used as a testing ground for theoretical methods to treat excited states of open-shell systems, which are harder and much less studied than excitation energies of closed-shell singlets. In the present work, we studied the adiabatic excitation energies of CN with MC-PDFT. Then we compared this multireference (MR) method to some single-reference (SR) methods, including time-dependent density functional theory (TDDFT) and completely renormalized equation-of-motion coupled-cluster theory with singles, doubles and noniterative triples [CR-EOM-CCSD(T)]; we also compared to some other MR methods, including configuration interaction singles and doubles (MR-CISD) and multistate CASPT2 (MS-CASPT2). Through a comparison between SR and MR methods, we achieved a better appreciation of the need to use MR methods to accurately describe higher excited states, and we found that among the MR methods, MC-PDFT stands out for its accuracy for the first four states out of the five doublet states studied this paper; this shows its efficiency for calculating doublet excited states.

  6. Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone.

    Science.gov (United States)

    Livingstone, Ruth A; Thompson, James O F; Iljina, Marija; Donaldson, Ross J; Sussman, Benjamin J; Paterson, Martin J; Townsend, Dave

    2012-11-14

    Time-resolved photoelectron imaging was used to investigate the dynamical evolution of the initially prepared S(1) (ππ*) excited state of phenol (hydroxybenzene), catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) following excitation at 267 nm. Our analysis was supported by ab initio calculations at the coupled-cluster and CASSCF levels of theory. In all cases, we observe rapid (<1 ps) intramolecular vibrational redistribution on the S(1) potential surface. In catechol, the overall S(1) state lifetime was observed to be 12.1 ps, which is 1-2 orders of magnitude shorter than in the other three molecules studied. This may be attributed to differences in the H atom tunnelling rate under the barrier formed by a conical intersection between the S(1) state and the close lying S(2) (πσ*) state, which is dissociative along the O-H stretching coordinate. Further evidence of this S(1)/S(2) interaction is also seen in the time-dependent anisotropy of the photoelectron angular distributions we have observed. Our data analysis was assisted by a matrix inversion method for processing photoelectron images that is significantly faster than most other previously reported approaches and is extremely quick and easy to implement.

  7. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  8. Contribution to the experimental study of excited states of 58,60,62,64Ni

    International Nuclear Information System (INIS)

    Beuzit, Pierre

    1971-01-01

    In its experimental part, this research thesis addresses the use of nuclear spectrometry to study electromagnetic properties of excited states of 58,60,62,64 Ni by using coincidence measurements of particles scattered by the nucleus, and of γ lines emitted by the nucleus in reaction. The author also computed energies, wave functions and transition probabilities of levels related to the quasi-particle model according the RPA (random phase approximation) approximation. After a description of the experimental device and a presentation of data reduction methods, the author reports the experimental results. Then, after a recall of theoretical models and calculation approximations, the author discusses the calculated results obtained within the framework of the layer model, and presents those obtained by using the quasi-particle model with the RPA approximation. By using experimental results, a level classification is proposed. The importance of the core configuration and of the proton-neutron interaction is highlighted

  9. Photoisomerization Mechanism of Ruthenium Sulfoxide Complexes: Role of the Metal-Centered Excited State in the Bond Rupture and Bond Construction Processes.

    Science.gov (United States)

    Li, Huifang; Zhang, Lisheng; Zheng, Lvyin; Li, Xun; Fan, Xiaolin; Zhao, Yi

    2016-09-26

    Phototriggered intramolecular isomerization in a series of ruthenium sulfoxide complexes, [Ru(L)(tpy)(DMSO)](n+) (where tpy=2,2':6',2''-terpyridine; DMSO=dimethyl sulfoxide; L=2,2'-bipyridine (bpy), n=2; N,N,N',N'-tetramethylethylenediamine (tmen) n=2; picolinate (pic), n=1; acetylacetonate (acac), n=1; oxalate (ox), n=0; malonate (mal), n=0), was investigated theoretically. It is observed that the metal-centered ligand field ((3) MC) state plays an important role in the excited state S→O isomerization of the coordinated DMSO ligand. If the population of (3) MCS state is thermally accessible and no (3) MCO can be populated from this state, photoisomerization will be turned off because the (3) MCS excited state is expected to lead to fast radiationless decay back to the original (1) GSS ground state or photodecomposition along the Ru(2+) -S stretching coordinate. On the contrary, if the population of (3) MCS (or (3) MCO ) state is inaccessible, photoinduced S→O isomerization can proceed adiabatically on the potential energy surface of the metal-to-ligand charge transfer excited states ((3) MLCTS →(3) MLCTO ). It is hoped that these results can provide valuable information for the excited state isomerization in photochromic d(6) transition-metal complexes, which is both experimentally and intellectually challenging as a field of study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Excited States of the Diatomic Molecule CrHe

    Science.gov (United States)

    Pototschnig, Johann V.; Ratschek, Martin; Hauser, Andreas W.; Ernst, Wolfgang E.

    2013-06-01

    Chromium (Cr) atoms embedded in superfluid helium nanodroplets (He_N) have been investigated by laser induced fluorescence, beam depletion and resonant two-photon ionization spectroscopy in current experiments at our institute. Cr is found to reside inside the He_N in the a^7S ground state. Two electronically excited states, z^7P and y^7P, are involved in a photoinduced ejection process which allowed us to study Fano resonances in the photoionisation spectra The need for a better understanding of the experimental observations triggered a theoretical approach towards the computation of electronically excited states via high-level methods of computational chemistry. Two well-established, wave function-based methods, CASSCF and MRCI, are combined to calculate the potential energy curves for the three states involved. The character of the two excited states z^7P and y^7P turns out to be significantly different. Theory predicts the ejection of the Cr atom in the case of an y^7P excitation as was observed experimentally. The quasi-inert helium environment is expected to weaken spin selection rules, allowing a coupling between different spin states especially during the ejection process. We therefore extend our theoretical analysis to the lowest state in the triplet- and quintet- manifold. Most of these alternative states show very weak bonding of only a few wn. A. Kautsch, M. Hasewend, M. Koch and W. E. Ernst, Phys. Rev. A 86, 033428 (2012). A. Kautsch, M. Koch and W. E. Ernst, J. Phys. Chem. A, accepted, doi:10.1021/jp312336m}.

  11. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  12. Splitting of the luminescent excited state of the uranyl ion

    International Nuclear Information System (INIS)

    Flint, C.D.; Sharma, P.; Tanner, P.A.

    1982-01-01

    The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds

  13. Study of the first excited state in 5Li

    International Nuclear Information System (INIS)

    Gagne, R.M.; Fou, C.M.; Ward, S.

    1975-01-01

    The reaction 6 Li( 3 He,α) 5 Li(α)p was studied with a 1.8MeV incident 3 He beam. Coincidence spectra (α-α) were measured at theta 1 =25 deg, 35 deg, 40 deg and theta 2 =-150 deg. The purpose was to locate the first excited state of 5 Li. The analysis yields E(x)=3.2+0.2MeV and GAMMA=1.5+-0.5MeV

  14. Excited states by analytic continuation of TBA equations

    International Nuclear Information System (INIS)

    Dorey, P.; Tateo, R.

    1996-01-01

    We suggest an approach to the problem of finding integral equations for the excited states of an integrable model, starting from the thermodynamic Bethe ansatz equations for its ground state. The idea relies on analytic continuation through complex values of the coupling constant, and an analysis of the monodromies that the equations and their solutions undergo. For the scaling Lee-Yang model, we find equations in this way for the one- and two-particle states in the spin-zero sector, and suggest various generalisations. Numerical results show excellent agreement with the truncated conformal space approach, and we also treat some of the ultraviolet and infrared asymptotics analytically. (orig.)

  15. Formation and role of excited states in radiolysis - a foreword

    International Nuclear Information System (INIS)

    Singh, A.

    1976-01-01

    It is stated that the choice of contributions to the special issue of this Journal has been limited to those which bear on the details of the mechanisms of excited state formation and are likely to be useful to radiation chemists. Since more than half the energy deposited in radiolysis goes into excitation, studies on the fate of the excited species formed are very important. A brief reference is made to the subject matter of each of the fifteen contributions, and its significance to the development of the technique of radiolysis is outlined. (U.K.)

  16. Excited state chemistry of indigoid dyes. Pt. 4

    International Nuclear Information System (INIS)

    Schulte-Frohlinde, D.; Herrmann, H.; Wyman, G.M.

    1976-01-01

    The triplet-triplet absorption spectra and lifetimes of 6,6'-di-n-hexyloxy thioindigo, 5,5'-diethyl selenoindigo and four 5,5'-dialkyl thioindigo dyes were determined by flash photolysis at 77 K in an EPA-glass matrix. Ring- or N,N'-substituted indigos and a mixed indigo-thioindigo dye gave no evidence for transient formation under these conditions. The excited state behavior of these dyes is discussed from the perspective of parallel oxygen-quenching studies on the photoisomerizable dyes and room-temperature nanosecond laser-flash photolytic measurements on several of these compounds. (orig.) [de

  17. Photodissociation of FONO: an excited state nonadiabatic dynamics study.

    Science.gov (United States)

    Hilal, Allaa R; Hilal, Rifaat

    2017-03-01

    The photo dissociation of nitrosyl fluorite, FONO, a potential source of atmospheric fluorine, underlies its active role in ozone depletion and other activities in the troposphere. In the present work, the electronic structure of FONO is revisited at high level of ab initio and density functional theory (DFT) theoretical levels. Several different post SCF methods were used to compute excited states, vertical excitation energies and intensities, namely configuration interaction with single excitations (CIS), equation of motion coupled cluster with single and double excitations (EOM-CCSD), and symmetry adopted cluster configuration interaction (SAC-CI) methods. The potential energy functions along two internal coordinates, namely the F-ONO bond and the FONO dihedral angle, have been computed on the ground state relaxed potential energy surface (PES) for the ground, 5A' and 5A″ excited states using the EOM-CCSD method. In the gas phase, the decay of the excited states of FONO was examined closely by calculating the UV photoabsorption cross-section spectrum and by nonadiabatic dynamics simulations. Nonadiabatic dynamics were simulated by sampling 300 trajectories in two spectral windows at 3.0 ± 0.25 and 4.5 ± 0.25 eV using the surface hopping method. Two different photodissociation reaction pathways with two main products, including multifragmentation (FO+NO) and atomic elimination (F) mechanisms were identified. For the cis-isomer, the main photochemical channel is F+NO 2 , representing 67% of all processes. For the trans-isomer, however, the main dissociation pathway is (FO+NO). Graphical Abstract Photodisscociation of nitrosyl fluorite (FONO) seems to underlie its active role in ozone depletion and other activities in the troposphere. The present research revisits the electronic structure of FONO at high level of ab initio and DFT theoretical levels. Cis-trans isomerization and dissociation in the ground and low lying excited states were examined

  18. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  19. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.

    Science.gov (United States)

    Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong

    2018-04-17

    The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

  20. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  1. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  2. The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited State

    Science.gov (United States)

    Fujita, Chiho; Ozeki, Hiroyuki; Kobayashi, Kaori

    2015-06-01

    Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine and was detected toward SgrB2(N). It is expected that the strongest transitions will be found in the terahertz region so that we have extended measurements up to 1.3 THz. This study gave an accurate prediction of aminoacetonitrile up to 2 THz which is useful for astronomically search. This molecule has a few low-lying vibrational excited states and the pure rotational transitions in these vibrational excited states are expected to found. We found a series of transitions with intensity of about 30%. Eighty-eight spectral lines including both a-type and b-type transitions were recorded in the frequency region of 400 - 450 GHz, and centrifugal distortion constants up to the sextic term were determined. Perturbation was recognized. We will report the current status of the analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975).

  3. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  4. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging.

    Science.gov (United States)

    Oscar, Breland G; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E; Fang, Chong

    2014-07-15

    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca(2+)) sensing. This study reveals that, in the absence of Ca(2+), the dominant skeletal motion is a ∼ 170 cm(-1) phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼ 30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca(2+) binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca(2+) in physiologically relevant environments.

  5. Aqueous reactions of triplet excited states with allylic compounds

    Science.gov (United States)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds in the atmosphere. We are currently evaluating the importance of triplets in particulate matter (PM) which can have much higher concentrations of triplet

  6. Quantum entanglement of locally excited states in Maxwell theory

    International Nuclear Information System (INIS)

    Nozaki, Masahiro; Watamura, Naoki

    2016-01-01

    In 4 dimensional Maxwell gauge theory, we study the changes of (Rényi) entanglement entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states, generated by acting with gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.

  7. Excited states using semistochastic heat-bath configuration interaction

    Science.gov (United States)

    Holmes, Adam A.; Umrigar, C. J.; Sharma, Sandeep

    2017-10-01

    We extend our recently developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to calculate excited-state wavefunctions and energies. We employ time-reversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the full CI limit. The resulting algorithm is used to compute fourteen low-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 μHa compared to full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values.

  8. Psoralen phototherapy and the possible involvement of triplet excited states

    International Nuclear Information System (INIS)

    Psoralens are important drugs used in the phototherapy of psoriasis and vitiligo. It has been predicted that the triplet excited state of psoralen is photoactive. The authors have employed pulse radiolysis and laser flash photolysis to determine the quantum yields of formation of the triplet states of psoralens and related molecules including 4'5' dihydropsoralen, a model for 4'5' psoralenpyrimidine mono-adducts. The triplet spectra were used to follow the reactions of the triplets with thymine and tryptophan. Such reactions may take place via a charge transfer mechanism. For 8-methoxy psoralen, in addition to triplet formation, photoionization was detected using high laser intensities. Although significant yields of psoralen triplets are formed, and some such triplets react with thymine, it is too early yet to say definitely whether or not the therapeutic action of psoralens is mediated via such triplet states. (Auth.)

  9. Electronically excited states of carbazole-modified ortho-phenylenes

    Science.gov (United States)

    Muraoka, Azusa; Fukabori, Nao

    2018-02-01

    In recent years new materials for phosphorescent organic light-emitting diodes were found from complexes of carbazole-modified ortho-phenylene derivatives. We investigate theoretically the photo-induced charge transfer in these complexes. The electronically excited states and absorption spectra of tetramer ortho-phenylene (OP) derivatives were first studied by using time-dependent density functional theory calculations with various functionals. The functional that best reproduced the experimental results was found to be ωB97XD, and the assignment of the experimentally observed ultraviolet-visible absorption spectrum was successfully performed in comparison with the theoretically obtained one. We then performed a spectral assignment of carbazole-modified OP derivatives.

  10. Excited states in 146Sm and 147Sm

    International Nuclear Information System (INIS)

    Kownacki, J.; Sujkowski, Z.; Hammaren, E.; Liukkonen, E.; Piiparinen, M.; Lindblad, Th.; Ryde, H.

    1979-10-01

    The sup(144,146)Nd(α,xn) and sup(146,148)Nd( 3 He,xn) reactions with Esub(α) = 20 - 43 MeV and E 3 sub(He) = 19 - 27 MeV are used to investigate excited states in the isotopes 146 Sm and 147 Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three parameter (E sub(γ)E sub(γ) time) coincidences. From these experiments information is obtained for states with spin up to I = 13 + and I = 27/2 - , respectively, These states are interpeted within the framework of the cluster-vibration model (CVM) as well as the shell model. (author)

  11. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  12. Excited state dynamics and isomerization in ruthenium sulfoxide complexes.

    Science.gov (United States)

    King, Albert W; Wang, Lei; Rack, Jeffrey J

    2015-04-21

    Molecular photochromic compounds are those that interconvert between two isomeric forms with light. The two isomeric forms display distinct electronic and molecular structures and must not be in equilibrium with one another. These light-activated molecular switch compounds have found wide application in areas of study ranging from chemical biology to materials science, where conversion from one isomeric form to another by light prompts a response in the environment (e.g., protein or polymeric material). Certain ruthenium and osmium polypyridine sulfoxide complexes are photochromic. The mode of action is a phototriggered isomerization of the sulfoxide from S- to O-bonded. The change in ligation drastically alters both the spectroscopic and electrochemical properties of the metal complex. Our laboratory has pioneered the preparation and study of these complexes. In particular, we have applied femtosecond pump-probe spectroscopy to reveal excited state details of the isomerization mechanism. The data from numerous complexes allowed us to predict that the isomerization was nonadiabatic in nature, defined as occurring from a S-bonded triplet excited state (primarily metal-to-ligand charge transfer in character) to an O-bonded singlet ground state potential energy surface. This prediction was corroborated by high-level density functional theory calculations. An intriguing aspect of this reactivity is the coupling of nuclear motion to the electronic wave function and how this coupling affects motions productive for isomerization. In an effort to learn more about this coupling, we designed a project to examine phototriggered isomerization in bis-sulfoxide complexes. The goal of these studies was to determine whether certain complexes could be designed in which a single photon excitation event would prompt two sulfoxide isomerizations. We employed chelating sulfoxides in this study and found that both the nature of the chelate ring and the R group on the sulfoxide affect

  13. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Embedding potentials for excited states of embedded species

    International Nuclear Information System (INIS)

    Wesolowski, Tomasz A.

    2014-01-01

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed

  15. Interference through the resonant Auger process via multiple core-excited states

    Science.gov (United States)

    Chatterjee, Souvik; Nakajima, Takashi

    2017-12-01

    We theoretically investigate the resonant Auger process via multiple core-excited states. The presence of multiple core-excited states sets off interference into the common final continuum, and we show that the degree of interference depends on the various parameters such as the intensity of the employed x-ray pulse and the lifetimes of the core-excited states. For the specific examples we employ the double (1 s-13 p and 1 s-14 p ) core-excited states of Ne atom and numerically solve the time-dependent Schrödinger equation to demonstrate that the energy-resolved electron spectra clearly exhibit the signature of interference.

  16. Effect of excited states on thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Sargood, D.G.

    1983-01-01

    Values of the ratio of the thermonuclear reaction rate of a reaction, with target nuclei in a thermal distribution of energy states, to the reaction rate with all target nuclei in their ground states are tabulated for neutron, proton and α-particle induced reactions on the naturally occurring nuclei from 20 Ne to 70 Zn, at temperatures of 1, 2, 3.5 and 5x10 9 K. The ratios are determined from reaction rates based on statistical model cross sections

  17. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    Science.gov (United States)

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  18. The Structure of the Nucleon and its Excited States

    International Nuclear Information System (INIS)

    None

    1995-01-01

    The past year has been an exciting and productive one for particle physics research at Abilene Christian University. The thrust of our experimental investigations is the study of the nucleon and its excited states. Laboratories where these investigations are presently being conducted are the AGS at Brookhaven, Fermilab and LAMPF. Some analysis of the data for experiments at the Petersburg Nuclear Physics Institute (Gatchina, Russia) is still in progress. Scheduling of activities at different laboratories inevitably leads to occasional conflicts. This likelihood is increased by the present budget uncertainties at the laboratories that make long-term scheduling difficult. For the most part, the investigators have been able to avoid such conflicts. Only one experiment received beam time in 1994 (E890 at the AGS). The situation for 1995-1996 also appears manageable at this point. E890 and another AGS experiment (E909) will run through May, 1995. El 178 at LAMPF is presently scheduled for August/September 1995. E866 at Fermilab is scheduled to start in Spring/Summer 1996. Undergraduate student involvement has been a key element in this research contract since its inception. Summer students participated at all of the above laboratories in 1994 and the same is planned in 1995. A transition to greater involvement by graduate students will provide cohesiveness to ACU involvement at a given laboratory and full-time on-site involvement in the longer running experiments at FNAL and BNL. Funds to support a full-time graduate student are requested this year. Finally, collaboration by Russian, Croatian and Bosnian scientists has proven to be mutually beneficial to these experimental programs and to the overall programs at the institutions involved. Past support has been augmented by other grants from government agencies and from the Research Council at Abilene Christian University. Additional funds are requested in this renewal to enable more programmatic support for these

  19. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  20. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.

    Science.gov (United States)

    Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho

    2018-03-06

    Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To

  1. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ingu; Pang, Yoonsoo; Lee, Sebok

    2014-01-01

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states

  2. Dielectronic recombination rate coefficients to excited states of He from He+

    International Nuclear Information System (INIS)

    Wang, J.G.; Kato, T.; Murakami, I.

    1999-04-01

    A Simplified Relativistic Configuration Interaction (SRCI) method is used to calculate the dielectronic recombination rate coefficients to the excited states of He from He + . In this method, the infinite resonant doubly excited states involving high Rydberg states are treated conveniently in a unified manner by interpolation. The dielectronic recombination processes for ΔN = 1 and ΔN = 2 transitions are included in our calculations, and the cross sections are in agreements with the experimental measurements. The rate coefficients to the excited states are fitted to an analytical formula and the n-dependences of the fitting parameters are discussed. (author)

  3. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  4. Dephasing of excited-state excitons in InGaAs quantum dots

    International Nuclear Information System (INIS)

    Borri, P.; Langbein, W.; Muljarov, E.A.; Zimmermann, R.

    2006-01-01

    We measure the dephasing time of the first optically-active excited-state excitonic transition in strongly confined InGaAs quantum dots using transient four-wave mixing. The optically-driven excited-state polarization shows a bi-exponential decay with a significant fraction of the probed excited states exhibiting a very long dephasing time, in the nanosecond range at 10 K. The full time-dependent four-wave mixing polarization is microscopically calculated by taking into account both virtual and real acoustic phonon-assisted transitions. The bi-exponential decay is qualitatively explained by a model of two-bright excitonic excited states non-degenerate in the absence of in-plane cylindrical symmetry. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Creation and evolution of excited states in anthracene crystals bombarded by electrons

    International Nuclear Information System (INIS)

    Klein, G.

    1978-01-01

    A qualitative description of the kinematics of excited states in anthracene crystals bombarded by electrons is given. It is compared with experimental results concerning scintillation decay curves, and magnetic field effects on the prompt and delayed components of the scintillation

  6. Triplet Excited States as a Source of Relevant (Bio)Chemical Information

    OpenAIRE

    Jiménez Molero, María Consuelo; Miranda Alonso, Miguel Ángel

    2014-01-01

    The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and alpha(1)-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external...

  7. A Multireference Density Functional Approach to the Calculation of the Excited States of Uranium Ions

    Science.gov (United States)

    2007-03-01

    oxidation of uranium oxides in molten salts and in the solid state to forum alkali metal uranates, and their composition and properties,” Journal of...AFIT/DS/ENP/07-01 A MULTIREFERENCE DENSITY FUNCTIONAL APPROACH TO THE CALCULATION OF THE EXCITED STATES OF URANIUM IONS DISSERTATION Eric V. Beck...FUNCTIONAL APPROACH TO THE CALCULATION OF THE EXCITED STATES OF URANIUM IONS DISSERTATION Presented to the Faculty of the School of Engineering

  8. Excited state populations and charge-exchange of fast ions in solids

    International Nuclear Information System (INIS)

    Miller, P.D.; Sofield, C.J.; Woods, C.J.

    1984-01-01

    Excited state populations and charge state fractions of 445 MeV Cl ions have been measured for a range of thicknesses of solid C targets. Cross sections for electron capture, loss, excitation and excited state quenching have been determined and these data are found to predict a quantitative difference between equilibrium charge state distributions from gases and solids for a special case of the Bohr-Lindhard density effect model. 8 references, 1 figure, 1 table

  9. Dissociation of core-valence doubly excited states in NO followed by atomic Auger decay.

    Science.gov (United States)

    Hikosaka, Y; Kaneyasu, T; Matsushita, T; Tamenori, Y; Shigemasa, E

    2010-10-21

    The decay processes of core-valence doubly excited states near the N K edge of NO have been studied using electron spectroscopy. Electron yields measured as a function of photon energy and kinetic energy enable the clear identification of atomic Auger lines associated with the dissociation of doubly excited states. The atomic Auger lines exhibit Doppler profiles, allowing the entire reaction scheme of such dissociation processes to be determined.

  10. On the triplet nature of excited states of group IVB metallocenes

    International Nuclear Information System (INIS)

    Lukova, G.V.; Smirnov, V.A.; Starodubova, S.E.

    2005-01-01

    Direct photophysical approach is presented to estimation of energy and orbital nature of electron-excited states of metalorganic compounds of transition metals (Ti, Zr, Hf) by nonradiating triplet-triplet energy transfer from metalorganic complexes to unsaturated hydrocarbons having strong S-T-splitting energy. It is proved for the first time that emission excites states of metallocenes Cp 2 M IV Cl 2 are triplet and their emission is accordingly phosphorescence [ru

  11. The Nature of the Intramolecular Charge Transfer State in Peridinin

    Science.gov (United States)

    Wagner, Nicole L.; Greco, Jordan A.; Enriquez, Miriam M.; Frank, Harry A.; Birge, Robert R.

    2013-01-01

    Experimental and theoretical evidence is presented that supports the theory that the intramolecular charge transfer (ICT) state of peridinin is an evolved state formed via excited-state bond-order reversal and solvent reorganization in polar media. The ICT state evolves in ICT state are generated via mixing of the “11Bu+” ionic state and the lowest-lying “21Ag–” covalent state. The resulting ICT state is primarily 1Bu+-like in character and exhibits not only a large oscillator strength but an unusually large doubly excited character. In most solvents, two populations exist in equilibrium, one with a lowest-lying ICT ionic state and a second with a lowest-lying “21Ag–” covalent state. The two populations are separated by a small barrier associated with solvent relaxation and cavity formation. PMID:23528091

  12. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew P.; Zia, Ahmad [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Horton, Peter [Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Ruban, Alexander V., E-mail: a.ruban@qmul.ac.uk [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2010-07-19

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to {approx}0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting (F{sub m}) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F{sub m} lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  13. Proton emission from high spin states of proton rich excited 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    Recent observation of direct 1P and 2P decay of 21 + isomer in proton rich 94 Ag has led to the present theoretical investigation of proton radioactivity from 94 Ag in ground state and excited state and it's dependence on the structural transitions

  14. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach.

    Science.gov (United States)

    Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang

    2013-01-28

    The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

  15. Some features of excited states density matrix calculation and their pairing relations in conjugated systems

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.

    1982-01-01

    Direct PPP-type calculations of self-consistent (SC) density matrices for excited states are described and the corresponding 'thawn' molecular orbitals (MO) are discussed. Special attention is addressed to particular solutions arising in conjugated systems of a certain symmetry, and to their chemical implications. The U(2) and U(3) algebras are applied respectively to the 4-electron and 6-electron cases: a natural separation of excited states in different cases follows. A simple approach to the convergence problem for excited states is given. The complementarity relations, an alternative formulation of the pairing theorem valid for heteromolecules and non-alternant systems, allow some fruitful experimental applications. Together with the extended pairing relations shown here, they may help to rationalize general trends. (Author) [pt

  16. On excited states in real-time AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Botta-Cantcheff, Marcelo; Martínez, Pedro J.; Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2016-02-25

    The Skenderis-van Rees prescription, which allows the calculation of time-ordered correlation functions of local operators in CFT’s using holographic methods is studied and applied for excited states. Calculation of correlators and matrix elements of local CFT operators between generic in/out states are carried out in global Lorentzian AdS. We find the precise form of such states, obtain an holographic formula to compute the inner product between them, and using the consistency with other known prescriptions, we argue that the in/out excited states built according to the Skenderis-Van Rees prescription correspond to coherent states in the (large-N) AdS-Hilbert space. This is confirmed by explicit holographic computations. The outcome of this study has remarkable implications on generalizing the Hartle-Hawking construction for wave functionals of excited states in AdS quantum gravity.

  17. Theoretical direct WIMP detection rates for inelastic scattering to excited states

    Science.gov (United States)

    Vergados, J. D.; Ejiri, H.; Savvidy, K. G.

    2013-12-01

    The recent WMAP and Planck data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Many extensions of the standard model provide dark matter candidates, in particular Weakly Interacting Massive Particles (WIMPs). Thus the direct dark matter detection is central to particle physics and cosmology. Most of the research on this issue has hitherto focused on the detection of the recoiling nucleus. In this paper we study transitions to the excited states, possible in some nuclei, which have sufficiently low lying excited states. Good examples are the first excited states of 127I and 129Xe. We find appreciable branching ratios for the inelastic scattering mediated by the spin cross sections. So, in principle, the extra signature of the gamma ray following the de-excitation of these states can, in principle, be exploited experimentally.

  18. Inelastic WIMP-nucleus scattering to the first excited state in 125Te

    International Nuclear Information System (INIS)

    Vergados, J D; Thomas, A W; III, F T Avignone; Kortelainen, M; Pirinen, P; Suhonen, J; Srivastava, P C

    2016-01-01

    The direct detection of dark matter constituents, in particular the weakly interacting massive particles (WIMPs), is considered central to particle physics and cosmology. In this paper we study transitions to the excited states, possible in nuclei which have sufficiently low-lying excited states. Examples considered previously were the first excited states of 127 I, 129 Xe and 83 Kr. Here, we examine 125 Te, which offers some advantages and is currently being considered as a target. In all these cases the extra signature of the gamma rays following the de-excitation of these states has definite advantages over the purely nuclear recoil and in principle such a signature can be exploited experimentally. A brief discussion of the experimental feasibility is given in the context of the CUORE experiment. (paper)

  19. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  20. Time-averaging within the excited state of the nitrogen-vacancy centre in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L J; McMurtrie, R L; Sellars, M J; Manson, N B [Laser Physics Center, RSPhysSE, Australian National University, Canberra, ACT 0200 (Australia)], E-mail: lachlan.rogers@anu.edu.au

    2009-06-15

    The emission intensity of diamond samples containing negatively charged nitrogen-vacancy centres are measured as a function of magnetic field along the (111) direction for various temperatures. At low temperatures the responses are sample and stress dependent and can be modelled in terms of the previous understanding of the {sup 3}E excited state fine structure which is strain dependent. At room temperature the responses are largely sample and stress independent, and modelling involves invoking a strain independent excited state with a single zero field spin-level splitting of 1.42 GHz. The change in behaviour is attributed to a temperature dependent averaging process over the components of the excited state orbital doublet. It decouples orbit and spin and at high temperature the spin levels become independent of any orbit splitting. One significant implication of this averaging is that it simplifies the development of room temperature applications.

  1. Time-averaging within the excited state of the nitrogen-vacancy centre in diamond

    Science.gov (United States)

    Rogers, L. J.; McMurtrie, R. L.; Sellars, M. J.; Manson, N. B.

    2009-06-01

    The emission intensity of diamond samples containing negatively charged nitrogen-vacancy centres are measured as a function of magnetic field along the lang111rang direction for various temperatures. At low temperatures the responses are sample and stress dependent and can be modelled in terms of the previous understanding of the 3E excited state fine structure which is strain dependent. At room temperature the responses are largely sample and stress independent, and modelling involves invoking a strain independent excited state with a single zero field spin-level splitting of 1.42 GHz. The change in behaviour is attributed to a temperature dependent averaging process over the components of the excited state orbital doublet. It decouples orbit and spin and at high temperature the spin levels become independent of any orbit splitting. One significant implication of this averaging is that it simplifies the development of room temperature applications.

  2. Theoretical investigation of the ground and excited state of silylated coumarin

    International Nuclear Information System (INIS)

    Abbas, Haider; Jain, V.K.

    2011-01-01

    We present ground and excited state properties of silylated coumarin dyes. We have calculated the energies and dipole moments of ground and excited states of silylated coumarins and some coumarin derivatives. Using CIS we find a good agreement with experimental S 0 →S 1 excitation energies. Silylation of dye molecules had minor effect on the transition energies. On the basis of theoretical results, we conclude that silylated dye will have improved long-term photostability compared to its unsilylated counterpart due to its covalent bonding with the host matrix. - Highlights: → Theoretical calculation of silylated coumarins. → Improved photostability. → Dye and sol gel silica interaction.

  3. Excited states of 26Al studied via the reaction 27Al(d,t

    Directory of Open Access Journals (Sweden)

    Srivastava Vishal

    2016-01-01

    Full Text Available The reaction 27Al(d,t at 25 MeV was utilized to study the excited states of 26Al. The angular distributions of the observed excited states of 26Al were analyzed with zero range distorted wave Born approximation as well as by incorporating finite range correction parameters to extract spectroscopic factors. The two sets of extracted spectroscopic factors were compared with each other to see the effect of using finite range correction in the transfer form factor.

  4. Nucleon, Delta and Omega excited state spectra at three pion mass values

    International Nuclear Information System (INIS)

    Bulava, John; Edwards, Robert G.; Joo, Balint; Richards, David G.; Engelson, Eric; Lin, Huey-Wen; Morningstar, Colin; Wallace, Stephen J.

    2010-01-01

    The energies of the excited states of the Nucleon, Delta and Omega are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculations are performed at three values of the pion mass: 392(4), 438(3) and 521(3) MeV. We employ the variational method with a basis of about ten interpolating operators enabling six energies to be distinguished clearly in each irreducible representation of the octahedral group. We compare our calculations of nucleon excited states with the low-lying experimental spectrum. There is reasonable agreement for the pattern of states.

  5. Luminescent materials: probing the excited state of emission centers by spectroscopic methods

    Science.gov (United States)

    Mihóková, E.; Nikl, M.

    2015-01-01

    We review recent methods employed to study the excited state of rare-earth centers in various luminescent and scintillating materials. The focus is on processes that help determine localization of the excited state within the material band gap, namely photoionization and thermally stimulated ionization. Then the tunneling process between the luminescence center and the trapping state is addressed. We describe the experimental implementation of methods recently developed to study these processes. We report theoretical models helping the data interpretation. We also present application to currently investigated materials.

  6. Unveiling how an archetypal fluorescent protein operates: theoretical perspective on the ultrafast excited state dynamics of GFP variant S65T/H148D.

    Science.gov (United States)

    Armengol, Pau; Gelabert, Ricard; Moreno, Miquel; Lluch, José M

    2015-02-12

    Green fluorescent protein variant S65T/H148D has been reported to host a photocycle involving the photoinduced proton transfer reaction between the chromophore and residue Asp148 under 50 fs and without a measurable kinetic isotope effect, and experimental evidence is suggestive of the existence of a highly delocalized proton between these residues. The blinding speed at which this biological system undergoes proton transfer has been ascribed to the extreme increase of acidity of the GFP chromophore in the electronic excited state where proton transfer takes place. This work strives to present a coherent, complete, and balanced description of the dynamics of this specific variant of GFP in which it will be shown that this increase of acidity is insufficient to explain the behavior observed. This study tracks the behavior of this photosystem to the delicate interplay between structure and dynamics shown in the presence of solvent. In this way, it has been found that the dynamics of this protein intertwines its structure with the intervening solvent to give rise to effectively degenerate situations in what concerns the reactants and products of the proton transfer reaction in ground and, most importantly, photoexcited state, in terms of potential energy profiles associated with the proton migration. Under these conditions, proton transfer can occur in accordance with the experimental data available. This set of characteristics is possibly common to a host of other proton transfer based fluorescent proteins, and helps promoting GFP S65T/H148D to a case of archetypal significance. Thus, our results can be useful to understand the way many fluorescent proteins work and, more generally, the molecular basis for proton transfer reactions in proteins.

  7. Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pirojsirikul, Teerapong [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Götz, Andreas W. [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Weare, John [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Walker, Ross C. [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; GlaxoSmithKline, 1250 S. Collegeville Road Collegeville Pennsylvania 19426; Kowalski, Karol [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999 Richland Washington 99352; Valiev, Marat [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999 Richland Washington 99352

    2017-05-03

    Green Fluorescent Protein (GFP) is a widely used fluorescent biomarker for the study of biological systems. Our investigation is focused on providing a reliable theoretical description of the GFP chromophore, the photochemical properties of which can be influenced through both the surrounding protein environment and pH levels. In this work we are specifically addressing the effect of an aqueous solvation environment , where a number of experimental measurements have been performed. Our approach is based on a combined quantum mechanics molecular mechanics (QM/MM) methodology, which incorporates high level coupled cluster theory for the analysis of excited states. It also presents the first application of the newly developed NWChem/AMBER QM/MM interface. Using a systematic approach, which involves comparison of gas phase and aqueous results for different protonation states and conformations, we have resolved existing uncertainties regarding theoretical interpretation of the experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts, but the magnitude of the effect is sensitive to charge state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level coupled description is essential for proper description of excited states of GFP.

  8. An MRCI investigation of the electronically excited states of difluorocarbene and its monovalent ions

    Czech Academy of Sciences Publication Activity Database

    Czernek, Jiří; Živný, O.

    2008-01-01

    Roč. 106, č. 14 (2008), s. 1761-1765 ISSN 0026-8976 Grant - others:GA ČR(CZ) GA102/06/1337 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbenes * excited states * ab initio Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.478, year: 2008

  9. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  10. Contribution to the study of highly excited states of the uranium atom

    International Nuclear Information System (INIS)

    Blancard, Pierre.

    1979-01-01

    Study of highly excited states and some autoionized states of uranium and particularly Rydberg states and behavior in a continuous electric field. The experimental equipment consists of three dye lasers allowing atom ionization or excitation in several steps. The aim is the study of a uranium enrichment process by lasers [fr

  11. Excited-state properties of the 16 kDa red carotenoid protein from Arthrospira maxima

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Durchan, Milan; Shih, P.M.; Kerfeld, C.A.; Polívka, Tomáš

    2011-01-01

    Roč. 1807, č. 1 (2011), s. 30-35 ISSN 0005-2728 Institutional research plan: CEZ:AV0Z50510513 Keywords : cyanobacteria * carotenoid * excited-state Subject RIV: BO - Biophysics Impact factor: 4.843, year: 2011

  12. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  13. An exciton approach to the excited states of two electron atoms. I Formalism and interpretation

    International Nuclear Information System (INIS)

    Schipper, P.E.

    1985-01-01

    The exciton model is formally applied to a description of the excited states of two electron atoms with the explicit inclusion of exchange. The model leads to a conceptually simple framework for the discussion of the electronic properties of the archetypical atomic electron pair

  14. An evaluation of the methods of determining excited state population distributions from sputtering sources

    International Nuclear Information System (INIS)

    Snowdon, K.J.; Andresen, B.; Veje, E.

    1978-01-01

    The method of calculating relative initial level populations of excited states of sputtered atoms is developed in principle and compared with those in current use. The reason that the latter, although mathematically different, have generally led to similar population distributions is outlined. (Auth.)

  15. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  16. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  17. Normal modes and the Duschinsky mixing of the ground- and excited-state vibrations of the green fluorescent protein chromophore

    Science.gov (United States)

    Gnanasekaran, Ramachandran

    2013-11-01

    Ground- and excited-state vibrational frequencies were calculated for the chromophore of the green fluorescent protein (GFP) using the complete active space self-consistent field (CASSCF) method and detailed normal-mode analyses were carried out for ground and excited states. The mixing of the vibrational modes between the different states was studied by applying the Duschinsky effect by the expressing excited-state normal modes in terms of the ground-state normal modes. It was found that the low-frequency vibrational modes in the vertical excited state play a significant role in structural adjustment.

  18. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  19. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  20. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  1. Functional Dynamics and Proton Transfer in Proteins

    Science.gov (United States)

    Boxer, Steven

    2014-03-01

    Internal proton transfer between an enzyme and substrate is a common feature of many enzyme mechanisms. Likewise, internal proton transfer between the chromophore of green fluorescent protein (GFP) and amino acids on the inside of the beta barrel are important both in the ground and excited state. I will discuss an interesting connection between the proton transfer dynamics in GFP and those in an enzyme, ketosteroid isomerase (KSI), bound to substrate analogs. In both cases there is a tug of war between the protein and bound substrate analog or chromophore that depends on their affinities for a proton and which can be tuned either by changing the substrate/chromophore or the protein. This can be observed in the ground state by optical methods (absorption and IR) as well as by nmr, or in the excited state by time-resolved fluorescence or visible pump-IR probe measurements. In both cases the proton dynamics have important functional consequences.

  2. Calculation of the ground and excited states of the Ne2 molecule by the variational cellular method

    International Nuclear Information System (INIS)

    Dias, A.M.; Rosato, A.

    1981-07-01

    The potential curves for the ground state 1 Σ + sub(g) and for the first singlet excited state 1 Σ + sub (u) of the Ne 2 molecule are determined by the Variational Cellular Method. From these curves some spectroscopical constants are obtained. Ionization energies of the excited state 1 Σ + sub (u) are calculated. (Author) [pt

  3. Calculation of the ground and excited states of the Ne2 molecule by the Variational Cellular Method

    International Nuclear Information System (INIS)

    Dias, A.M.; Rosato, A.

    1982-01-01

    The potential curves for the ground 1 μ + sub(g) and for the first singlet excited state 1 μ + sub(u) of the Ne 2 molecule are determined by the Variational Cellular Method. From these curves some spectroscopical constants are obtained. Ionization energies of the excited state 1 μ + sub(u) are calculated. (Author) [pt

  4. Distance dependence of intrahelix Ru(II)* to Os(II) polypyridyl excited-state energy transfer in oligoproline assemblies.

    Science.gov (United States)

    Brennaman, M Kyle; Fleming, Cavan N; Slate, Cheryl A; Serron, Scafford A; Bettis, Stephanie E; Erickson, Bruce W; Papanikolas, John M; Meyer, Thomas J

    2013-05-30

    Energy transfer between the metal-to-ligand charge transfer (MLCT) excited states of [Pra [M(II)(bpy)2(4-Me-4'(-N(H)CO)bpy)](PF6)2 units ([Pra(M(II)bpy2(mbpy)](2+): M(II) = Ru(II) or Os(II), bpy = 2,2'-bipyridine, mbpy = 4'-methyl-2,2'-bipyridine-4-carboxamido, Pra = 4-M(II)-L-proline) linked covalently to oligoproline assemblies in room temperature acetonitrile occurs on the picosecond-nanosecond time scale and has been time-resolved by transient emission measurements. Three derivatized oligoprolines, [CH3-CO-Pro6-Pra[Os(II)(bpy)2(mbpy)](2+)-Pro2-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro2-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro6-Glu-NH2](6+) (ORR-2, Pro = L-proline and Glu = glutamic acid); [CH3-CO-Pro6-Pra[Os(II)(bpy)2(mbpy)](2+)-Pro3-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro3-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro6-Glu-NH2](6+) (ORR-3); and CH3-CO-Pro6-Pra[Os(II)(bpy)2(mbpy)](2+)-Pro5-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro5-Pra[Ru(II)(bpy)2(mbpy)](2+)Pro6-Glu2-NH2](6+) (ORR-5), were prepared by using solid-phase peptide synthesis. Given the helical nature of the resulting assemblies and the nature of the synthesis, composition, length, and loading pattern are precisely controlled in the assemblies. In acetonitrile, they adopt a proline I helical secondary structure, confirmed by circular dichroism, in which the appended chromophores are ordered in well-defined orientations and internuclear separation distances although helix formation for ORR-2 is incomplete. Quantitative comparison of oligoproline ground-state absorption and steady-state emission spectra to those for the constituents, [Boc-Pra[M(II)(bpy)2(mbpy)](2+)-OH](PF6)2 (Boc = N(α)-(1,1-dimethylethoxycarbonyl), shows that following Ru(II) light absorption, Ru(II)* undergoes facile energy transfer resulting in sensitization of Os(II). Sensitization efficiencies are 93% for ORR-2, 77% for ORR-3, and 73% for ORR-5. Picosecond-resolved emission measurements reveal complex, coupled dynamics that arise from excited-state decay and kinetically

  5. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  6. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  7. Dielectronic recombination rate coefficients to the excited states of CII from CIII

    International Nuclear Information System (INIS)

    Kato, Takako; Safronova, U.; Ohira, Mituhiko.

    1996-02-01

    Energy levels, radiative transition probabilities and autoionization rates for CII including 1s 2 2l2l'nl'' (n=2-6, l'≤(n-1)) states were calculated by using multi-configurational Hartree-Fock (Cowan code) method. Autoionizing levels above three thresholds: 1s 2 2s 2 ( 1 S), 1s 2 2s2p( 3 P), 1s 2 2s2p( 1 P) were considered. Branching ratios related to the first threshold and the intensity factor were calculated for satellite lines of CII ion. The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated with these atomic data. The rate coefficients are fitted to an analytical formula and the fit parameters are given. The values for higher excited states than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The effective recombination rate coefficient for different electron densities are also derived. (author)

  8. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  9. Note on entanglement temperature for low thermal excited states in higher derivative gravity

    Science.gov (United States)

    Guo, Wu-zhong; He, Song; Tao, Jun

    2013-08-01

    We investigate the entanglement temperature of a small scale subsystem in low excited states by using holographic method. Especially, we study the entanglement entropy and entanglement temperature in higher derivative gravities which are considered as low thermal excitation of pure AdS gravity. We find that the entanglement entropy are related to the central charges of CFT living on the boundary. The relation between the variance of entanglement entropy and energy of a small scale subsystem has been also obtained. Furthermore, the relation is consistent with the first law-like relation that is proposed by Phys. Rev. Lett. 110 (2013)091602. Finally, we derive the formula of the variance of entanglement entropy in general excited states in gravity background with the Fefferman-Graham coordinates and the entanglement temperature can be figured out in special case.

  10. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  11. A new methodology for measuring time correlations and excite states of atoms and nuclei

    International Nuclear Information System (INIS)

    Cavalcante, M.A.

    1989-01-01

    A system for measuring time correlation of physical phenomena events in the range of 10 -7 to 10 5 sec is proposed, and his results presented. This system, is based on a sequential time scale which is controlled by a precision quartz oscillator; the zero time of observation is set by means of a JK Flip-Flop, which is operated by a negative transition of pulse in coincidence with the pulse from a detector which marks the time zero of the event (precedent pulse). This electronic system (named digital chronoanalizer) was used in the measurement of excited states of nuclei as well as for the determination of time fluctuations in physical phenomena, such as the time lag in a halogen Geiger counter and is the measurement of the 60 KeV excited state of N P 237 . (author)

  12. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  13. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various...... transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics...... in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong....

  14. Millimeter and submillimeter wave spectroscopy of HNC and DNC in the vibrationally excited states

    Science.gov (United States)

    Okabayashi, Toshiaki; Tanimoto, Mitsutoshi

    1993-09-01

    The rotational transitions of hydrogen isocyanide (HNC) and deuterium isocyanide (DNC) in the vibrationally excited states as well as in the ground states were observed in the millimeter and submillimeter wave region. These compounds were generated in a dc glow discharge plasma containing hydrogen (or deuterium), nitrogen, and carbon atoms. The stretching vibrational modes, nu1 and nu3 states, were selectively excited in the discharge plasma; on the other hand, the bending mode nu2 state was thermally populated at the cell temperature. The precise rotational, centrifugal distortion and l-type doubling constants were obtained for all of the first vibrationally excited states as well as the ground states. The experimental equilibrium rotational constants Be are 45 496.7769(45) and 38 207.7217(105) MHz for HNC and DNC, respectively, where uncertainties correspond to one standard deviation. The equilibrium internuclear distances are also determined.

  15. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  16. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  17. Optical methods for the evaluation of lanthanide excited state thermal ionization barrier in luminescent materials

    Czech Academy of Sciences Publication Activity Database

    Fasoli, M.; Vedda, A.; Mihóková, Eva; Nikl, Martin

    2012-01-01

    Roč. 85, č. 8 (2012), "085127-1"-"085127-8" ISSN 1098-0121 R&D Projects: GA AV ČR KAN300100802; GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Lu 2 Si 2 O 7 * Pr-doped * luminescence * scintillator * excited state ionization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  18. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2017-03-29

    Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH 3 synthesis from N 2 and H 2 is notoriously energy intensive. This is due to the difficulty of N 2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N 2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N 2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N 2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N 2 , with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.

  19. Role of mode-mode coupling in short-time excited state decay

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Nešpůrek, Stanislav

    2005-01-01

    Roč. 55, č. 5 (2005), s. 579-592 ISSN 0011-4626 R&D Projects: GA MŠk ME 558; GA MŠk OC D14.30; GA AV ČR KJB1050301 Institutional research plan: CEZ:AV0Z40500505 Keywords : excited state decay * electron-vibrational interaction * vibrational coherence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.360, year: 2005

  20. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  1. Influence of excited states on the energy loss of fast ions in a hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. (Max-Planck-Institut fuer Quantenoptik, D-8046 Garching, Germany (DE)); Peter, T. (Max-Planck-Institut fuer Chemie, D-6500 Mainz, Germany (DE))

    1991-04-01

    Stopping power calculations of fast ions penetrating a hydrogen plasma target in local thermodynamic equilibrium at arbitrary temperatures are performed. Excited state contributions to the energy loss are included in the framework of the Bethe formalism. Average ionization potentials for the excited ions are given in a quasiclassical approximation. It is shown that the net effect is an enhancement of the stopping power compared to the energy loss when assuming all atoms to be in their ground state.

  2. A DETERMINATION OF RADIATIVE TRANSITIONS WIDTHS OF EXCITED STATES IN C(12),

    Science.gov (United States)

    the -2 power to 3.14 F to the -2 power. A new method of analysis has been employed to obtain the radiative widths for the first three excited states...in C(12) from the measured inelastic cross sections. This method of analysis does not depend on a model for the transition charge distribution and is useful in determining the multipolarity of the transition. (Author)

  3. Excited state decay of cyclometalated polypyridine ruthenium complexes: insight from theory and experiment.

    Science.gov (United States)

    Kreitner, Christoph; Heinze, Katja

    2016-09-21

    Deactivation pathways of the triplet metal-to-ligand charge transfer ((3)MLCT) excited state of cyclometalated polypyridine ruthenium complexes with [RuN5C](+) coordination are discussed on the basis of the available experimental data and a series of density functional theory calculations. Three different complex classes are considered, namely with [Ru(N^N)2(N^C)](+), [Ru(N^N^N)(N^C^N)](+) and [Ru(N^N^N)(N^N^C)](+) coordination modes. Excited state deactivation in these complex types proceeds via five distinct decay channels. Vibronic coupling of the (3)MLCT state to high-energy oscillators of the singlet ground state ((1)GS) allows tunneling to the ground state followed by vibrational relaxation (path A). A ligand field excited state ((3)MC) is thermally accessible via a (3)MLCT →(3)MC transition state with the (3)MC state being strongly coupled to the (1)GS surface via a low-energy minimum energy crossing point (path B). Furthermore, a (3)MLCT →(1)GS surface crossing point directly couples the triplet and singlet potential energy surfaces (path C). Charge transfer states either with higher singlet character or with different orbital parentage and intrinsic symmetry restrictions are thermally populated which promote non-radiative decay via tunneling to the (1)GS state (path D). Finally, the excited state can decay via phosphorescence (path E). The dominant deactivation pathways differ for the three individual complex classes. The implications of these findings for isoelectronic iridium(iii) or iron(ii) complexes are discussed. Ultimately, strategies for optimizing the emission efficiencies of cyclometalated polypyridine complexes of d(6)-metal ions, especially Ru(II), are suggested.

  4. Excited states in 22Mg via the 12C(12C,2n)22Mg reaction

    International Nuclear Information System (INIS)

    Jewett, Cybele; Baktash, Cyrus; Bardayan, Daniel W.; Blackmon, Jeff C.; Chipps, K.; Galindo-Uribarri, Alfredo; Greife, U.; Gross, Carl J.; Jones, K. L.; Liang, Junjien; Livesay, Jake; Kozub, R. L.; Nesaraja, Caroline D; Radford, David C.; Sarazin, F.; Smith, Michael Scott; Thomas, J. S.; Yu, Chang-Hong

    2007-01-01

    The 12C(12C, 2n)22Mg reaction was measured with the CLARION array and the RMS separator at the Holifield Facility of Oak Ridge National Laboratory. This experiment was performed to gather more information on the excited states in 22Mg, which might be of relevance to recent radioactive ion beam measurements of the astrophysically important 21Na(p,γ)22Mg reaction. The results are compared to direct measurements, transfer experiments and a competing experiment performed with Gammasphere

  5. Theory of g-shift and linewidth in CeP excited state EPR

    International Nuclear Information System (INIS)

    Yang, D.; Cooper, B.R.; Huang, C.Y.; Sugawara, K.

    1979-01-01

    The Mori-Zwanzig memory function formalism was used to analyze the observed excited state EPR mode in CeP. The mixing of the Zeeman-split crystal-field excitation by the exchange, particularly among those with degenerate frequencies, yields a normal mode determining the observed low-frequency spectrum. This is illustrated by calculation with Heisenberg exchange which yields a single peak in qualitative agreement with the experiment

  6. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  7. Triplet excited States as a source of relevant (bio)chemical information.

    Science.gov (United States)

    Jiménez, M Consuelo; Miranda, Miguel A

    2014-01-01

    The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and α1-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external quenchers. With proteins, formation of spatially confined triplet excited states is favored over competitive processes affording ionic species. Remarkably, under aerobic atmosphere, the triplet decay of drug@protein complexes is dramatically longer than in bulk solution. This offers a convenient dynamic range for assignment of different triplet populations or for stereochemical discrimination. In this review, selected examples of the application of the laser flash photolysis technique are described, including drug distribution between the bulk solution and the protein cavities, or between two types of proteins, detection of drug-drug interactions inside proteins, and enzyme-like activity processes mediated by proteins. Finally, protein encapsulation can also modify the photoreactivity of the guest. This is illustrated by presenting an example of retarded photooxidation.

  8. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.

  9. Approximate singly excited states from a two-component Hartree-Fock reference.

    Science.gov (United States)

    Goings, Joshua J; Ding, Feizhi; Davidson, Ernest R; Li, Xiaosong

    2015-10-14

    For many molecules, relaxing the spin symmetry constraint on the wave function results in the lowest energy mean-field solution. The two-component Hartree-Fock (2cHF) method relaxes all spin symmetry constraints, and the wave function is no longer an eigenfunction of the total spin, spin projection, or time-reversal symmetry operators. For ground state energies, 2cHF is a superior mean-field method for describing spin-frustrated molecules. For excited states, the utility of 2cHF is uncertain. Here, we implement the 2cHF extensions of two single-reference excited state methods, the two-component configuration interaction singles and time-dependent Hartree-Fock. We compare the results to the analogous methods based off of the unrestricted Hartree-Fock approximation, as well as the full configuration interaction for three small molecules with distinct 2cHF solutions, and discuss the nature of the 2cHF excited state solutions.

  10. Creation and evolution of excited states in α particle tracks in anthracene crystals

    International Nuclear Information System (INIS)

    Klein, G.

    1977-01-01

    The kinematics of excited states in anthracene crystals bombarded by 5MeV α particles is studied. The elementary processes which account for the transitions from the primary excited states to the lowest singlet S 1 and triplet T 1 excited states is described. The equation governing the evolution of the S 1 and T 1 excitons in the α particle track are then solved, and the scintillation decay curve is calculated. This calculated result is in good agreement with all available experimental results. The experimental part of this work are scintillation decay curves measurements. The scintillation decay was measured between 0.5nsec and 40μsec. The influence of the initial very fast singlet excitons quenching by triplet excitons can be seen in the beginning of scintillation. The delayed component is described by the triplet excitons kinematics. The magnetic field effect on the scintillation was investigated. This effect is attributed to an effect on the T 1 -T 1 annihilation and an effect on the triplet excitons quenching by radicals which are formed in the α particle track

  11. Ab initio excited states from the in-medium similarity renormalization group

    Science.gov (United States)

    Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.

    2017-04-01

    We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.

  12. Initial excited-state structural dynamics of 9-methyladenine from UV resonance Raman spectroscopy.

    Science.gov (United States)

    Oladepo, Sulayman A; Loppnow, Glen R

    2011-05-19

    The photophysics and photochemistry of nucleobases are the factors governing the photostability of DNA and RNA, since they are the UV chromophores in nucleic acids. Because the formation of photoproducts involves structural changes in the excited electronic state, we study here the initial excited-state structural dynamics of 9-methyladenine (9-MeA) by using UV resonance Raman (UVRR) spectroscopy. UV resonance Raman intensities are sensitive to the initial excited-state structural dynamics of molecules. Therefore, information about the initial structural changes in the excited-state of a given molecule can be obtained from its UVRR intensities. The resonance Raman spectra of 9-MeA at wavelengths throughout its 262 nm absorption band were measured, and a self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum was performed using a time-dependent wave packet formalism. We found that the initial structural dynamics of this molecule primarily lie along the N3C4, C4C5, C5C6, C5N7, N7C8, and C8N9 stretching vibrations and CH(3) deformation vibrations. These results are discussed in the context of photochemistry and other deactivation processes. © 2011 American Chemical Society

  13. The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited States 2

    Science.gov (United States)

    Fujita, Chiho; Higurashi, Haruka; Ozeki, Hiroyuki; Kobayashi, Kaori

    2016-06-01

    Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine in the interstellar space and was detected toward SgrB2(N). We have extended measurements up to 1.3 THz so that the strongest transitions that may be found in the terahertz region should be covered. Aminoacetonitrile has a few low-lying vibrational excited states and indeed the pure rotational transitions in these vibrational excited states were found. The pure rotational transitions in six vibrational excited states in the 80-180 GHz range have been assigned and centrifugal distortion constants up to the sextic terms were determined. Based on spectral intensities and the vibrational information from Bak et al., They were assigned to the 3 low-lying fundamentals, 1 overtone and 2 combination bands. In the submillimeter wavelength region, perturbations were recognized and some of the lines were off by more than a few MHz. At this moment, these perturbed transitions are not included in our analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975) C. Fujita, H. Ozeki, and K. Kobayashi, 70th International Symposium on Molecular Spectroscopy (2015), MH14.

  14. Exact finite volume expectation values of local operators in excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pozsgay, B. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Szécsényi, I.M. [Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Institute of Theoretical Physics, Eötvös Loránd University,Pázmány Péter sétány 1/A, 1117 Budapest (Hungary); Takács, G. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics,Budafoki út 8, 1111 Budapest (Hungary)

    2015-04-07

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

  15. EPR studies of excited state exchange and crystal-field effects in rare earth compounds

    International Nuclear Information System (INIS)

    Huang, C.Y.; Sugawara, K.; Cooper, B.R.

    1976-01-01

    EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig

  16. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    Science.gov (United States)

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini; Coburn, Caleb; Thompson, Mark E.; Forrest, Stephen R.

    2017-05-01

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (>6.0 eV) that lead to molecular dissociation. Here we introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334+/-5 h (time to 80% of the 1,000 cd m-2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6+/-0.1 times improvement in a lifetime compared to conventional, unmanaged devices. To our knowledge, this significant improvement results in the longest lifetime for such a blue PHOLED.

  17. SUPPLEMENTARY INFORMATION Protonation of the imino ...

    Indian Academy of Sciences (India)

    Ashish

    SUPPLEMENTARY INFORMATION. Protonation of the imino nitrogen deactivates the excited state of imidazolin-5-one in the solid state. ASHISH SINGH, KHALID BADI-UZ ZAMA and GURUNATH RAMANATHAN*. Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India. 208 016.

  18. J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide

    KAUST Repository

    Kar, Haridas

    2015-03-12

    Herein we reveal a straightforward supramolecular design for the H-bonding driven J-aggregation of an amine-substituted cNDI in aliphatic hydrocarbons. Transient absorption spectroscopy reveals sub-ps intramolecular electron transfer in isolated NDI molecules in a THF solution followed by a fast recombination process, while a remarkable extension of the excited state lifetime by more than one order of magnitude occurred in methylcyclohexane likely owing to an increased charge-separation as a result of better delocalization of the charge-separated states in J-aggregates. We also describe unique solvent-effects on the macroscopic structure and morphology. While J-aggregation with similar photophysical characteristics was noticed in all the tested aliphatic hydrocarbons, the morphology strongly depends on the “structure” of the solvents. In linear hydrocarbons (n-hexane, n-octane, n-decane or n-dodecane), formation of an entangled fibrillar network leads to macroscopic gelation while in cyclic hydrocarbons (methylcyclohexane or cyclohexane) although having a similar polarity, the cNDI exhibits nanoscale spherical particles. These unprecedented solvent effects were rationalized by establishing structure-dependent specific interactions of the solvent molecules with the cNDI which may serve as a general guideline for solvent-induced morphology-control of structurally related self-assembled materials.

  19. Cathodoluminescence study of excited states and spatial smearing effects in InAs/GaAs self-assembled quantum dots

    International Nuclear Information System (INIS)

    Khatsevich, S.; Madhukar, A.; Rich, D. H.; Kim, Eui-Tae

    2004-01-01

    Full Text:We have examined state-filling and thermal activation of carriers in buried InAs self-assembled quantum dots (SAQDs) with excitation-dependent cathodoluminescence (CL) imaging and spectroscopy. The InAs SAQDs were formed during molecular beam epitaxial growth of InAs on undoped planar GaAs (001). Emission from the excited states was obtained under high electron beam currents, revealing up to three QD excited states in CL spectroscopy. A suppressed relaxation from the first excited state to the ground state at very low excitation densities was observed, demonstrating the presence of a phonon-bottle neck. The dependence of the CL intensity of the ground and the first excited state transitions on excitation density was shown to be linear at all temperatures at low excitation density. This result can be understood by considering that carriers escape and are recaptured as excitons or correlated electron-hole pairs. At sufficiently high excitations, state filling and spatial smearing elects are observed together with a sublinear dependence of the CL intensity on electron beam current. A successive filling of the ground and excited states in adjacent groups of QDs that possess different size distributions is argued to be the cause of the spatial smearing. The intensities of the ground and excited state transitions were analyzed as a function of temperature and excitation to study the thermal activation and reemission of carriers. Thermal quenching of the CL intensity of the QD ground and first excited state transitions at low excitations in 230 to 300 K temperature range is attributed to dissociation and reemission of excitons from the QD states into the WL. At high excitations, significantly reduced activation energies of the ground and excited states are obtained, suggesting that thermal reemission of single holes from QD states into the GaAs barrier is responsible for the observed temperature dependence of the QD luminescence in 230 to 300 K temperature range

  20. Photoinduced Intramolecular Tryptophan Oxidation and Excited-State Behavior of [Re(L-AA)(CO)3(r-diimine)] þ (L = Pyridine or Imidazole, AA = Tryptophan, Tyrosine, Phenylalanine)

    Czech Academy of Sciences Publication Activity Database

    Blanco-Rodríguez, A. M.; Towrie, M.; Sýkora, Jan; Záliš, Stanislav; Vlček, Antonín

    2011-01-01

    Roč. 50, č. 13 (2011), s. 6122-6134 ISSN 0020-1669 R&D Projects: GA MŠk(CZ) LD11082 Institutional research plan: CEZ:AV0Z40400503 Keywords : tryptophan * tyrosine * phenylalanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.601, year: 2011

  1. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories

    International Nuclear Information System (INIS)

    Nakatsuji, H.

    1979-01-01

    The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are involved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory is much more critical for excited states than for ground states. (Auth.)

  2. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  3. Intramolecular charge transfer effects on 3-aminobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, T. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India); Rajendiran, N. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India)], E-mail: drrajendiran@rediffmail.com

    2006-03-20

    Effect of solvents, buffer solutions of different pH and {beta}-cyclodextrin on the absorption and fluorescence spectra of 3-aminobenzoic acid (3ABA) have been investigated. The solid inclusion complex of 3ABA with {beta}-CD is discussed by UV-Vis, fluorimetry, semiempirical quantum calculations (AM1), FT-IR, {sup 1}H NMR and Scanning Electron Microscope (SEM). The thermodynamic parameters ({delta}H, {delta}G and {delta}S) of the inclusion process are also determined. The experimental results indicated that the inclusion processes is an exothermic and spontaneous. The large Stokes shift emission in solvents with 3ABA are correlated with different solvent polarity scales suggest that, 3ABA molecule is more polar in the S{sub 1} state. Solvent, {beta}-CD studies and excited state dipole moment values confirms that the presence of intramolecular charge transfer (ICT) in 3ABA. Acidity constants for different prototropic equilibria of 3ABA in the S{sub 0} and S{sub 1} states are calculated. {beta}-Cyclodextrin studies shows that 3ABA forms a 1:1 inclusion complex with {beta}-CD. {beta}-CD studies suggest COOH group present in non-polar part and amino group present in hydrophilic part of the {beta}-CD cavity. A mechanism is proposed to explain the inclusion process.

  4. Ultrafast Excited-State Dynamics of Cytosine Aza-Derivative and Analogues.

    Science.gov (United States)

    Zhou, Zhongneng; Zhou, Xueyao; Wang, Xueli; Jiang, Bin; Li, Yongle; Chen, Jinquan; Xu, Jianhua

    2017-04-13

    Excited state dynamics of 5-azacytosine (5-AC), 2,4-diamino-1,3,5-triazine (2,4-DT), and 2-amino-1,3,5-triazine (2-AT) were comprehensively investigated by steady state absorption, fluorescence, and femtosecond transient absorption measurements. Time-dependent density functional theory (TDDFT) calculations were performed to help assign the absorption bands and understand the excited state decay mechanisms. The experimental results of excited singlet state dynamics for 5-AC, 2,4-DT, and 2-AT with femtosecond time resolution were reported for the first time. Two distinct decay pathways, with ∼1 ps and tens of picosecond lifetimes, were observed in 5-AC. Only one decay pathway with 17 ps lifetime was observed in 2,4-DT while an emissive state was found in 2-AT. TDDFT calculations suggest that 5-AC has a dark nπ* (S 1 ) state below the first allowed ππ* (S 2 ) state, which leads to the ultrafast decay of the ππ* state. In 2,4-DT, there is no dark nπ* state below the bright ππ* (S 1 ) state and the 17 ps lifetime is assigned to the relaxation from the ππ* (S 1 ) state to ground state. Two dark nπ* states (S 1 and S 2 ) were found in 2-AT, which exhibits much more complex excited state dynamics compared with the other two. Photoluminescence in 2-AT has been confirmed to be fluorescence emission from its bright ππ* (S 3 ) state. Our results strongly suggest that electronic structures are very sensitive to the substitution on the triazine ring and that the photophysical properties of nucleic acid analogues depend highly on their molecular structures.

  5. Non-adiabatic Excited State Molecule Dynamics Modeling of Photochemistry and Photophysics of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.

  6. Relaxed structure of typical nitro explosives in the excited state: Observation, implication and application

    Science.gov (United States)

    Chu, Genbai; Yang, Zuhua; Xi, Tao; Xin, Jianting; Zhao, Yongqiang; He, Weihua; Shui, Min; Gu, Yuqiu; Xiong, Ying; Xu, Tao

    2018-04-01

    Understanding the structural, geometrical, and chemical changes that occur after an electronic excitation is essential to elucidate the inherent mechanism of nitro explosives. Herein, relaxed structures of typical nitro explosives in the lowest singlet excited state are investigated using time-dependent density functional theory. During the excitation process, the nitro group is activated and relaxes via geometrical change. The five explosives RDX, HMX, CL-20, PETN, and LLM-105 exhibit similar relaxed structures, and the impact sensitivity is related to their excitation energy. High-sensitivity δ-HMX has a lower excitation energy for relaxed structure than β-HMX. This study offers novel insight into energetic materials.

  7. Static quadrupole moment of the first excited state of 24Mg

    International Nuclear Information System (INIS)

    Fewell, M.P.; Hinds, S.; Kean, D.C.; Zabel, T.H.

    1979-01-01

    The static quadrupole moment Qsub(2+) and the B(E2;0 + → 2 + ) value for the first excited state of 24 Mg have been determined using the reorientation effect in Coulomb excitation. Surface barrier detectors at 90 0 and 172 0 were used to detect 24 Mg ions scattered from 208 Pb. It is found that Qsub(2+) = -18.1 +- 1.3 e.fm 2 , suggesting that, contrary to most previous experimental evidence, the quadrupole moment is in agreement with theoretical predictions. For B(E2;0 + → 2 + ) the value 443 +- 24 e 2 . fm 4 was obtained

  8. Excited-state relaxation of Ag8 clusters embedded in helium droplets

    International Nuclear Information System (INIS)

    Radcliffe, Paul; Przystawik, Andreas; Diederich, Thomas; Doeppner, Tilo; Tiggesbaeumker, Josef; Meiwes-Broer, Karl-Heinz

    2004-01-01

    Neutral silver clusters Ag N are grown in ultracold helium nanodroplets. By exploiting a strong absorption resonance recently found for Ag 8 , first photoelectron spectra of this neutral species are recorded. Variation of the laser photon energy reveals that direct vertical two-photon ionization is hindered by rapid relaxation into the lower edge of a long-living excited state manifold. The analysis of the dynamics gives a precise value of (6.89±0.09) eV for the vertical ionization potential of Ag 8 . The influence of the helium matrix on photoemission is discussed

  9. Ionization of highly excited states of a hydrogen atom by a strong low-frequency field

    International Nuclear Information System (INIS)

    Bersons, I.Y.

    1984-01-01

    The probability of ionization of highly excited states of a hydrogen atom by a low-frequency field is estimated by using the previously derived quasi-classical wave function of an electron in a Coulomb field and in a radiation field. The expression obtained predicts an ionization threshold at field intensities approximately equal to those observed experimentally, but predicts an increase in ionization probability that is approximately ten times the increase observed experimentally when the field intensity in the threshold region is increased. The approximations underlying the derivation of the equation for the ionization probability are discussed

  10. Excited State Contributions to the Heavy Baryon Fragmentation Functions in a Quark-Diquark Model

    CERN Document Server

    Adamov, A D; Goldstein, Gary R.

    2001-01-01

    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. The resulting $\\Lambda_b$ production rate and polarization at LEP energies are in agreement with experiment. The $\\Lambda_c$ and $\\Xi_c$ functions are also obtained. The spin independent $f_1(z)$ is compared to data. The integrated values for production rates agree with the data.

  11. Excited states in the doubly closed shell nucleus $^{132}_{50}Sn_{82}$

    CERN Document Server

    Bjørnstad, T; Ewan, G T; Jonson, B; Kawade, K; Kérek, A; Mattsson, S; Sistemich, K

    1982-01-01

    New excited states in the nucleus /sup 1/ /sup 32/Sn have been identified from gamma gamma coincidence measurements. Strong beta feeding to a state at 7.210 keV was established. This level is interpreted as a 6^{-} state formed after a\\pig/sup -1//sub 9/2/ to nu g/sup -1//sub 7/2/GT beta ^{-} transition from the 7^{-} ground state of /sup 132/In. The deexcitation of the 7210 keV state passes through a 4351 keV state, providing support for a 3^{-} assignment of this level.

  12. Performance of TD-DFT for Excited States of Open-Shell Transition Metal Compounds.

    Science.gov (United States)

    Suo, Bingbing; Shen, Kaiyuan; Li, Zhendong; Liu, Wenjian

    2017-05-25

    Time-dependent density functional theory (TD-DFT) has been very successful in accessing low-lying excited states of closed-shell systems. However, it is much less so for excited states of open-shell systems: unrestricted Kohn-Sham based TD-DFT (U-TD-DFT) often produces physically meaningless excited states due to heavy spin contaminations, whereas restricted Kohn-Sham based TD-DFT often misses those states of lower energies. A much better variant is the explicitly spin-adapted TD-DFT (X-TD-DFT) [J. Chem. Phys. 2011, 135, 194106] that can capture all the spin-adapted singly excited states yet without computational overhead over U-TD-DFT. While the superiority of X-TD-DFT over U-TD-DFT has been demonstrated for open-shell systems of main group elements, it remains to be seen if this is also the case for open-shell transition metal compounds. Taking as benchmark the results by MS-CASPT2 (multistate complete active space second-order perturbation theory) and ic-MRCISD (internally contracted multireference configuration interaction with singles and doubles), it is shown that X-TD-DFT is indeed superior to U-TD-DFT for the vertical excitation energies of ZnH, CdH, ScH 2 , YH 2 , YO, and NbO 2 . Admittedly, there exist a few cases where U-TD-DFT appears to be better than X-TD-DFT. However, this is due to a wrong reason: the underestimation (due to spin contamination) and the overestimation (due to either the exchange-correlation functional itself or the adiabatic approximation to the exchange-correlation kernel) happen to be compensated in the case of U-TD-DFT. As for [Cu(C 6 H 6 ) 2 ] 2+ , which goes beyond the capability of both MS-CASPT2 and ic-MRCISD, X-TD-DFT revises the U-TD-DFT assignment of the experimental spectrum.

  13. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  14. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  15. Efficient enhancement of below-threshold harmonic generation by laser-driven excited states of Cs atom

    Science.gov (United States)

    Guo, Qiao-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin; Chu, Shih-I.

    2018-03-01

    We propose an efficient method for the enhancement of below-threshold harmonic generation (BTHG) by mid-infrared laser-driven excited states of a Cs atom. The BTHG is calculated by solving three-dimensional time-dependent Schrödinger equation accurately and efficiently using the time-dependent generalized pseudospectral method. We adopt an excited state as the initial state of a Cs atom. As a result, the BTHG is significantly enhanced by two orders of magnitude compared with the case of the initial ground state. Furthermore, we find that a single vacuum-ultraviolet pulse can be generated by mid-infrared laser-driven excited states by superposing several below-threshold harmonics of a Cs atom. Our finding suggests that the generation of below-threshold harmonics by laser-driven excited states of an atom can provide a powerful methodology for the production of intense vacuum-ultraviolet pulses.

  16. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    OpenAIRE

    Brennan Ashwood; Steffen Jockusch; Carlos E. Crespo-Hernández

    2017-01-01

    6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studie...

  17. A MCSCF method for ground and excited states based on full optimizations of successive Jacobi rotations.

    Science.gov (United States)

    Ivanic, Joseph; Ruedenberg, Klaus

    2003-07-30

    A new multiconfigurational self-consistent field (MCSCF) method based on successive optimizations of Jacobi rotation angles is presented. For given one- and two-particle density matrices and an initial set of corresponding integrals, a technique is developed for the determination of a Jacobi angle for the mixing of two orbitals, such that the exact energy, written as a function of the angle, is fully minimized. Determination of the energy-minimizing orbitals for given density matrices is accomplished by successive optimization and updating of Jacobi angles and integrals. The total MCSCF energy is minimized by alternating between CI and orbital optimization steps. Efficiency is realized by optimizing CI and orbital vectors quasi-simultaneously by not fully optimizing each in each improvement step. On the basis of the Jacobi-rotation based approach, a novel MCSCF procedure is formulated for excited states, which avoids certain shortcomings of traditional excited-state MCSCF methods. Applications to specific systems show the practicability of the developed methods.

  18. Observation of excited state charge transfer with fs/ps-CARS

    International Nuclear Information System (INIS)

    Blom, Alex Jason

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles

  19. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  20. Pulsed laser study of excited states of aromatic molecules absorbed in globular proteins

    International Nuclear Information System (INIS)

    Cooper, M.; Thomas, J.K.

    1977-01-01

    Pyrene and several derivatives of pyrene such as pyrene sulfonic acid, and pyrene butyric acid were incorporated into bovine serum albumin (BSA) in aqueous solution. The pyrene chromophore was subsequently excited by a pulse of uv light (lambda = 3471 A) from a Q switched frequency doubled ruby laser. The lifetime of the pyrene excited singlet and triplet states were monitored by time resolved spectrophotometry. Various molecules, such as O 2 and I - , dissolved in the aqueous phase, diffused into the protein and quenched pyrene excited states. The rates of these reactions were followed under a variety of conditions such as pH and temperature and in the presence of inert additives. The rates of pyrene excited-state quenching were often considerably smaller than the rates observed in simple solutions. A comparison of the rates in the protein and homogeneous solutions gives information on the factors such as temperature, charge, and pH that control the movement of small molecules in and into BSA

  1. Reversible bridge-mediated excited-state symmetry breaking in stilbene-linked DNA dumbbells.

    Science.gov (United States)

    Lewis, Frederick D; Daublain, Pierre; Zhang, Ligang; Cohen, Boiko; Vura-Weis, Josh; Wasielewski, Michael R; Shafirovich, Vladimir; Wang, Qiang; Raytchev, Milen; Fiebig, Torsten

    2008-03-27

    The excited-state behavior of synthetic DNA dumbbells possessing stilbenedicarboxamide (Sa) linkers separated by short A-tracts or alternating A-T base-pair sequences has been investigated by means of fluorescence and transient absorption spectroscopy. Electronic excitation of the Sa chromophores results in conversion of a locally excited state to a charge-separated state in which one Sa is reduced and the other is oxidized. This symmetry-breaking process occurs exclusively via a multistep mechanism-hole injection followed by hole transport and hole trapping-even at short distances. Rate constants for charge separation are strongly distance-dependent at short distances but become less so at longer distances. Disruption of the A-tract by inversion of a single A-T base pair results in a pronounced decrease in both the rate constant and efficiency of charge separation. Hole trapping by Sa is highly reversible, resulting in rapid charge recombination that occurs via the reverse of the charge separation process: hole detrapping, hole transport, and charge return to regenerate the locally excited Sa singlet state. These results differ in several significant respects from those previously reported for guanine or stilbenediether as hole traps. Neither charge separation nor charge recombination occur via a single-step superexchange mechanism, and hole trapping is slower and detrapping faster when Sa serves as the electron donor. Both the occurrence of symmetry breaking and reversible hole trapping by a shallow trap in a DNA-based system are without precedent.

  2. High-precision measurements and theoretical calculations of indium excited-state polarizabilities

    Science.gov (United States)

    Vilas, N. B.; Wang, B.-Y.; Rupasinghe, P. M.; Maser, D. L.; Safronova, M. S.; Safronova, U. I.; Majumder, P. K.

    2018-02-01

    We report measurements of the scalar and tensor static polarizabilities of the 115In7 p1 /2 and 7 p3 /2 excited states using two-step diode laser spectroscopy in an atomic beam. These scalar polarizabilities are one to two orders of magnitude larger than for lower-lying indium states due to the close proximity of the 7 p and 6 d states. For the scalar polarizabilities, we find values (in atomic units) of 1.811 (4 ) ×105a03 and 2.876 (6 ) ×105a03 for the 7 p1 /2 and 7 p3 /2 states, respectively. We determine the tensor polarizability component of the 7 p3 /2 state to be -1.43 (18 ) ×104a03 . These measurements set high-precision benchmarks of the transition properties for highly excited states in trivalent atomic systems. We also present ab initio calculations of these quantities and other In polarizabilities using two high-precision relativistic methods to make a global comparison of the accuracies of the two approaches. The precision of the experiment is sufficient to differentiate between the two theoretical methods as well as to allow precise determination of the indium 7 p -6 d matrix elements. The results obtained in this paper are applicable to other heavier and more complicated systems, and provide much needed guidance for the development of even more precise theoretical approaches.

  3. Excited state hydrogen bonding fluorescent probe: Role of structure and environment

    International Nuclear Information System (INIS)

    Dey, Debarati; Sarangi, Manas Kumar; Ray, Angana; Bhattacharyya, Dhananjay; Maity, Dilip Kumar

    2016-01-01

    An environment sensitive fluorescent probe, 11-benzoyl-dibenzo[a,c]phenazine (BDBPZ), has been synthesized and characterized that acts via excited state hydrogen bonding (ESHB). On interaction with hydrogen bond donating solvents the fluorescence intensity of BDBPZ increases abruptly with a concomitant bathochromic shift. The extent of fluorescence increment and the red-shift of λ max depend on hydrogen bond donating ability of the solvent associated. ESHB restricts the free rotation of the benzoyl group and hence blocks the non-radiative deactivation pathway. BDBPZ forms an exciplex with organic amine in nonpolar medium that readily disappears on increasing the polarity of the solvent. In polar environment the fluorescence of both the free molecule and excited state hydrogen bonded species are quenched on addition of amine unlike its parent dibenzo[a,c]phenazine (DBPZ), that remains very much inaccessible towards the solvent as well as quencher molecules due to its structure. This newly synthesized derivative BDBPZ is much more interactive due to the benzoyl group that is flanked outside the skeletal aromatic rings of DBPZ, which helps to sense the environment properly and thus shows better ESHB capacity than DBPZ.

  4. Excited-State Dynamics in Folic Acid and 6-CARBOXYPTERIN upon Uva Excitation

    Science.gov (United States)

    Huang, Huijuan; Vogt, R. Aaron; Crespo-Hernandez, Carlos E.

    2013-06-01

    The excited-state dynamics of folic acid (FA) and 6-carboxypterin (6CP) are poorly understood and work is needed to uncover the relaxation pathways that ultimately lead to their oxidative damage of DNA. In our approach, broad-band transient absorption spectroscopy was used to monitor the evolution of the excited states in FA and 6CP in basic aqueous solution upon excitation at 350 nm. In addition, quantum-chemical calculations were performed to assist in the interpretation of the experimental results and in the postulation of kinetic mechanisms. The combined experimental and computational results support a kinetic model where excitation of FA results in ultrafast charge separation (τ = 0.6 ps), which decays back to the ground state primarily by charge recombination with a lifetime of 2.2 ps. A small fraction of the charge transfer state undergoes intersystem crossing to populate the lowest-energy triplet state with a lifetime of 200 ps. On the other hand, a large fraction of the initially excited singlet state in 6CP decays by fluorescence emission with a lifetime of 100 ps, while intersystem crossing to the triplet state occurs with a lifetime of 4.4 ns. The potential implications of these results to the oxidative damage of DNA by FA and 6CP will be discussed. Funding from the National Science Foundation is gratefully acknowledged (CHE-1255084).

  5. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    International Nuclear Information System (INIS)

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-01-01

    Resonance Raman and electronic absorption spectra are reported for the S 0 and T 1 states of the carotenoids β-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C 50 )-β-carotene, β-apo-8'-carotenal, and ethyl β-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S 0 and T 1 , regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S 0 and T 1 reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T 1 states of carotenoids and in the S 1 states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S 1 lifetime (of the 1 B/sub u/ and/or the 1 A/sub g/* states) of β-carotene in benzene is less than 1 ps

  6. Ground-State Proton Transfer Tautomer of Al(III)-Salicylate Complexes in Ethanol Solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming (BATTELLE (PACIFIC NW LAB)); Friedrich, Donald (Optical Coating Laboratory, Inc.); Ainsworth, Calvin C.(BATTELLE (PACIFIC NW LAB)); Hemmer, Staci L.(UNIVERSITY PROGRAMS); Joly, Alan G.(BATTELLE (PACIFIC NW LAB)); Beversluis, Michael R.(ASSOC WESTERN UNIVERSITY)

    2001-01-01

    The tautomerization of salicylate anion in the presence of A1(III) in ethanol was studied by UV? visible absorption spectroscopy and fluorescence spectroscopy, anisotropy, and lifetime measurements from 100 to 298 K. Complexation with A1(III) causes an equilibrium shift from the normal form of the salicylate anion toward the tautomer form, demonstrating that the presence of a highly charged cation, A1(III), stabilizes the tautomer form of salicylate. Spectra and fluorescence lifetimes of salicylate and other salicyl derivatives in the presence of A1(III) reveal three types of A1(III)-salicylate complexes. In type I complexes, salicylate binds to A1(III) through the carboxylate group, preserving the intramolecular hydrogen bond between the carbonyl oxygen and the phenol group, as indicated by the largely Stokes-shifted fluorescence emission following the excited state proton transfer process. In type II complexes, salicylate binds to A1(III) through the carboxylate group, but the phenol proton is oriented away from the carbonyl oxygen so that the complex shows short wavelength fluorescence emission characteristic of substituted phenolic compounds. In type III complexes, A1(III) stabilizes and binds to the tautomer form of salicylate through the phenolate oxygen, in which salicylate exists in its proton transferred tautomer form. Absorption spectra recorded at temperatures between 100 K and 298 K indicate that the type III tautomer complex is energetically favored at low temperature, although type I is the dominant species at room temperature. All three types of complexes are interconvertible above the ethanol glass transition temperature. However, below the glass transition temperature interconversion ceases, indicating large amplitude atomic motion is involved in the conversion.

  7. Application of transient infrared spectroscopy to intramolecular energy transfer in [(phen) (CO)[sub 3]Re[sup I](NC) Ru[sup II](CN) (bpy)[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Schoonover, J.R.; Myer, T.J. (Univ. of North Carolina, Chapel Hill, NC (United States)); Gordon, K.C.; Woodruff, W.H.; Peterson, K.A.; Dyer, R.B. (Los Alamos National Lab., NM (United States)); Argazzi, R.; Bignozzi, C.A. (Universita di Ferrara (Italy))

    1993-11-17

    Significant advances have been made in the design and characterization of molecular assemblies, which, when photolyzed, undergo intramolecular electron or energy transfer. Time-resolved resonance Raman spectroscopy has been successfully applied to the study of excited states and molecular assemblies, but time-resolved infrared spectroscopy is particularly well-suited for complexes containing ligands such as CO or CN. Unlike the transient Raman experiment, infrared spectroscopy does not rely on resonance enhancement in the excited state since the metal-CO and -CN stretching vibrations have high oscillator strengths, providing high sensitivity. We describe here a novel application of the technique to the elucidation of intramolecular energy transfer in the ligand-bridged complex [(phen)(CO)[sub 3]Re[sup I](NC) Ru[sup II](CN) (bpy)[sub 2

  8. Photophysics of a proton transfer phototautomer within biological confinement of a protein: Spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan K., E-mail: bijan.paul.chem.cu@gmail.com; Guchhait, Nikhil, E-mail: nguchhait@yahoo.com

    2014-09-15

    The present work demonstrates the effect of biological confinement on the photophysics of a proton transfer phototautomer viz., 2-hydroxy-1-naphthaldehyde (HN21). HN21 is a potential candidate exhibiting excited-state intramolecular proton transfer (ESIPT) reaction and thereby generating the phototautomer (i.e., proton transferred keto form) in the excited-state. The ESIPT photophysics of the probe (HN21) is found to be remarkably modified within the confined bio-environment of a model transport protein Bovine Serum Albumin (BSA). Such considerable modification of the ESIPT photophysics of the probe has been exploited to determine the probe–protein binding strength (binding constant, K(±10%)=1.23×10{sup 4} M{sup −1}). The probe–protein binding process is found to be thermodynamically feasible (ΔG=−24.25 kJ mol{sup −1}). The present work also delves into evaluation of the probable binding location of the probe (HN21) within the biomacromolecular assembly of the protein by blind docking simulation technique, which reveals that HN21 favorably binds to the hydrophobic subdomain IIIA of BSA. Circular dichroism (CD) spectroscopy delineates the effect of probe binding on the protein secondary structure in terms of decrease of α-helical content of BSA with increasing probe concentration. Apart from this, excitation–emission matrix fluorescence technique is found to hint at the effect on protein tertiary structure upon binding to the probe. The modulated dynamics of the proton transfer phototautomer of HN21 within the biological confinement is investigated in this context by time-resolved fluorescence decay measurements. The present work also accentuates the mutually corroborating data found from experimental and computational studies. - Highlights: • Remarkable modification of ESIPT emission of HN21 in protein is explored. • Probe–protein binding efficiency is evaluated from fluorescence spectral data. • Binding to the probe accompanies perturbation

  9. and Di-hydration on the Intramolecular Proton Transfers and ...

    Indian Academy of Sciences (India)

    Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda. R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao. O, Nakai H, Vreven T, Montgomery J A, Jr., Peralta J E,. Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin. K N, Staroverov V N, Kobayashi R, Normand J,. Raghavachari K, Rendell A, Burant J C, Iyengar S S,.

  10. Properties of α -decay to ground and excited states of heavy nuclei

    Science.gov (United States)

    Wang, Y. Z.; Gu, J. Z.; Dong, J. M.; Peng, B. B.

    2010-05-01

    Branching ratios and half-lives of α -decay to the ground-state rotational bands as well as the high-lying excited states of even-even nuclei have been calculated in the framework of the generalized liquid drop model (GLDM) and Royer’s formula that we improved very recently. The calculation covers the isotopic chains from Ra to No in the mass regions 222 ≤ A ≤ 252 and 88 ≤ Z ≤ 102 . The agreement between the calculated results and the experimental data indicates the reliability of investigating the properties of the unfavored α -decay with our method, especially the improved Royer’s formula, which is very valuable for the analysis of experimental data. In addition, the dependence of half-lives on excitation energies of daughter nuclei has been investigated. It is shown that the influence on half-lives becomes stronger and stronger with the increase of the excitation energies.

  11. Calculating Derivative Couplings between Time-Dependent Hartree-Fock Excited States with Pseudo-Wavefunctions.

    Science.gov (United States)

    Alguire, Ethan C; Ou, Qi; Subotnik, Joseph E

    2015-06-18

    A pseudo-wavefunction description of time-dependent Hartree-Fock (TDHF) states is proposed and used to develop an analytic expression for derivative couplings between TDHF excited states based on the Hellmann-Feynman theorem. The resulting expression includes Pulay terms associated with using an atom-centered basis as well as a correction to ensure translational invariance. We demonstrate that our formalism recovers the well-known Chernyak-Mukamel expression near a crossing and in the limit of a complete basis, and thus our approach is consistent with time-dependent response theory. In a companion paper (DOI 10.1021/jp5057682 ), we investigate these derivative couplings near conical intersections and show that they behave correctly.

  12. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission.

    Science.gov (United States)

    Dyba, Marcus; Hell, Stefan W

    2003-09-01

    Saturated stimulated-emission depletion (STED) of a fluorescent marker has been shown to break the diffraction barrier in far-field fluorescence microscopy and to facilitate spatial resolution down to a few tens of nanometers. Here we investigate the photostability of a fluorophore that, in this concept, is repeatedly excited and depleted by synchronized laser pulses. Our study of bacteria labeled with RH-414, a membrane marker, reveals that increasing the duration of the STED pulse from approximately 10 to 160 ps fundamentally improves the photostability of the dye. At the same time the STED efficiency is maintained. The observed photobleaching of RH-414 is due primarily to multiphoton absorption from its ground state. One can counteract photobleaching by employing STED pulses that range from 150 ps to approximately half of the lifetime of the excited state. The results also have implications for multiphoton excitation microscopy.

  13. Nucleon, Δ and Ω excited state spectra in Nf=2+1 lattice QCD

    International Nuclear Information System (INIS)

    Bulava, J.; Edwards, R.G.; Joo, B.; Richards, D.G.; Engelson, E.; Wallace, S.J.; Lin, H.W.; Morningstar, C.

    2010-04-01

    The energies of the excited states of the Nucleon, Δ and Ω and are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses m π =392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we nd reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified. (orig.)

  14. Rabi oscillation in few-photon double ionization through doubly excited states

    Science.gov (United States)

    Chen, Yinbo; Zhou, Yueming; Li, Yang; Li, Min; Lan, Pengfei; Lu, Peixiang

    2018-01-01

    We theoretically investigate few-photon double ionization of helium in intense XUV laser fields by numerically solving the time-dependent Schrödinger equation. Our results show that the familiar single-ring structure in the joint electron momentum spectra is split into the double-ring and previously unobserved triple-ring structures at some specific photon energies. By tracing the electron population evolution of the corresponding states, we found that the triple-ring structure is induced by the coupled Rabi oscillations among the ground, a singly excited, and a doubly excited states. The intermediate detuning causes the asymmetry of the triple-ring structures, which can be controlled by changing the laser intensity and frequency.

  15. Study of mass=28 isobaric nuclei. 28Si and 28P excited states

    International Nuclear Information System (INIS)

    Miehe, Christiane.

    1975-01-01

    A study of the electromagnetic decay of the excited states of 28 Si and 28 P was done using the reactions 27 Al(p,γ) 28 Si, 24 Mg(α,γ) 28 Si, 25 Mg(α,nγ) 28 Si, 26 Mg(tau,nγ) 28 Si, 27 Al(d,nγ) 28 Si and 28 Si(p,n) 28 P. Special interest was devoted to negative parity level structure and the T=1 states of 28 Si. The location and γ-decay of 28 P levels led to several isospin triplets identification and yields a measurement of Coulomb deplacement energy in the nuclei A=28 [fr

  16. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  17. On the importance of excited state dynamic response electron correlation in polarizable embedding methods

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin

    2012-01-01

    picture leading to the PE-Random-Phase Approximation (PE-RPA) and bridge the expressions to a Second-Order Polarization Propagator Approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level...... but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA based model successfully recovers...... a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field...

  18. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry.

    Science.gov (United States)

    Frutos, Luis Manuel; Andruniów, Tadeusz; Santoro, Fabrizio; Ferré, Nicolas; Olivucci, Massimo

    2007-05-08

    The primary event that initiates vision is the photoinduced isomerization of retinal in the visual pigment rhodopsin (Rh). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh. The analysis of a 140-fs trajectory provides a description of the electronic and geometrical changes that prepare the system for decay to the ground state. The data uncover a complex change of the retinal backbone that, at approximately 60-fs delay, initiates a space saving "asynchronous bicycle-pedal or crankshaft" motion, leading to a conical intersection on a 110-fs time scale. It is shown that the twisted structure achieved at decay features a momentum that provides a natural route toward the photoRh structure recently resolved by using femtosecond-stimulated Raman spectroscopy.

  19. Evidence from n=2 fine structure transitions for the production of fast excited state positronium

    International Nuclear Information System (INIS)

    Ley, R.; Niebling, K.D.; Schwarz, R.; Werth, G.

    1990-01-01

    Fine structure transitions in the first excited state of positronium (Ps) have been measured using 'Backscatter Ps' production on a Mo surface by observation of a change in the emitted Lyman-α intensity under resonant microwave irradiation. Production, fine structure transitions and Lyman-α decay of the Ps atoms took place inside a waveguide designed to transmit the microwave frequencies of 8.6, 13.0 and 18.5 GHz for the transitions from the 2 3 S 1 state to the 2 3 P J , J=2, 1, 0, states, respectively. In the presence of a magnetic field, all transitions observed show a shift to higher frequencies, compared with earlier calculations and measurements in zero magnetic field. The deviations exceed the expected Zeeman shift significantly but may be explained by assuming a motional Stark effect for Ps with kinetic energies of several eV. (author)

  20. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  1. Temporal mapping of photochemical reactions and molecular excited states with carbon specificity.

    Science.gov (United States)

    Wang, K; Murahari, P; Yokoyama, K; Lord, J S; Pratt, F L; He, J; Schulz, L; Willis, M; Anthony, J E; Morley, N A; Nuccio, L; Misquitta, A; Dunstan, D J; Shimomura, K; Watanabe, I; Zhang, S; Heathcote, P; Drew, A J

    2017-04-01

    Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.

  2. Phenothiazine Radical Cation Excited States as Super-oxidants for Energy Demanding Reactions.

    Science.gov (United States)

    Christensen, Joseph A; Phelan, Brian T; Chaudhuri, Subhajyoti; Acharya, Atanu; Batista, Victor S; Wasielewski, Michael R

    2018-03-28

    We demonstrate that the 10-phenyl-10H-phenothiazine radical cation (PTZ +• ) has a manifold of excited doublet states accessible using visible and near-infrared light that can serve as super-photooxidants with excited state potentials in excess of +2.1 V vs SCE to power energy demanding oxidation reactions. Photoexcitation of PTZ +• in CH 3 CN with a 517 nm laser pulse populates a D n electronically excited doublet state that decays first to the unrelaxed lowest electronic excited state, D 1 ' (τ < 0.3 ps), followed by relaxation to D 1 (τ = 10.9 ± 0.4 ps), which finally decays to D 0 (τ = 32.3 ± 0.8 ps). D 1 ' can also be populated directly using a lower energy 900 nm laser pulse, which results in a longer D 1 ' → D 1 relaxation time (τ = 19 ± 2 ps). To probe the oxidative power of PTZ +• photoexcited doublet states, PTZ +• was covalently linked to each of three hole acceptors, perylene (Per), 9,10-diphenylanthracene (DPA), and 10-phenyl-9-anthracenecarbonitrile (ACN), which have oxidation potentials of 1.04, 1.27, and 1.6 V vs. SCE, respectively. In all three cases, photoexcitation wavelength dependent ultrafast hole transfer occurs from D n , D 1 ', or D 1 of PTZ +• to Per, DPA, and ACN. The ability to take advantage of the additional oxidative power provided by the upper excited doublet states of PTZ +• will enable applications using this chromophore as a super-oxidant for energy demanding reactions.

  3. Probing ground and low-lying excited states for HIO{sub 2} isomers

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Gabriel L. C. de [Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900 (Brazil); Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas 69100-000 (Brazil); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Brown, Alex, E-mail: alex.brown@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  4. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.

    Science.gov (United States)

    Nettels, Daniel; Haenni, Dominik; Maillot, Sacha; Gueye, Moussa; Barth, Anders; Hirschfeld, Verena; Hübner, Christian G; Léonard, Jérémie; Schuler, Benjamin

    2015-12-28

    Single-molecule Förster resonance energy transfer (FRET) experiments are an important method for probing biomolecular structure and dynamics. The results from such experiments appear to be surprisingly independent of the excitation power used, in contradiction to the simple photophysical mechanism usually invoked for FRET. Here we show that excited-state annihilation processes are an essential cause of this behavior. Singlet-singlet annihilation (SSA) is a mechanism of fluorescence quenching induced by Förster-type energy transfer between two fluorophores while they are both in their first excited singlet states (S1S1), which is usually neglected in the interpretation of FRET experiments. However, this approximation is only justified in the limit of low excitation rates. We demonstrate that SSA is evident in fluorescence correlation measurements for the commonly used FRET pair Alexa 488/Alexa 594, with a rate comparable to the rate of energy transfer between the donor excited state and the acceptor ground state (S1S0) that is exploited in FRET experiments. Transient absorption spectroscopy shows that SSA occurs exclusively via energy transfer from Alexa 488 to Alexa 594. Excitation-power dependent microsecond correlation experiments support the conclusion based on previously reported absorption spectra of triplet states that singlet-triplet annihilation (STA) analogously mediates energy transfer if the acceptor is in the triplet state. The results indicate that both SSA and STA have a pronounced effect on the overall FRET process and reduce the power dependence of the observed FRET efficiencies. The existence of annihilation processes thus seems to be essential for using FRET as a reliable spectroscopic ruler at the high excitation rates commonly employed in single-molecule spectroscopy.

  5. Electronically excited states and photochemical reaction mechanisms of β-glucose.

    Science.gov (United States)

    Tuna, Deniz; Sobolewski, Andrzej L; Domcke, Wolfgang

    2014-01-07

    Carbohydrates are important molecular components of living matter. While spectroscopic and computational studies have been performed on carbohydrates in the electronic ground state, the lack of a chromophore complicates the elucidation of the excited-state properties and the photochemistry of this class of compounds. Herein, we report on the first computational investigation of the singlet photochemistry of β-glucose. It is shown that low-lying singlet excited states are of nσ* nature. Our computations of the singlet vertical excitation energies predict absorption from 6.0 eV onward. Owing to a dense manifold of weakly-absorbing states, a sizable and broad absorption in the ultraviolet-C range arises. We have explored two types of photochemical reaction mechanisms: hydrogen-detachment processes for each of the five O-H groups and a C-O ring-opening process. Both types of reactions are driven by repulsive nσ* states that are readily accessible from the Franck-Condon region and lead to conical intersections in a barrierless fashion. We have optimized the geometries of the conical intersections involved in these photochemical processes and found that these intersections are located around 5.0 eV for the O-H hydrogen-detachment reactions and around 4.0 eV for the C-O ring-opening reaction. The energies of all conical intersections are well below the computed absorption edge. The calculations were performed using linear-response methods for the computation of the vertical excitation energies and multiconfigurational methods for the optimization of conical intersections and the computation of energy profiles.

  6. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    Science.gov (United States)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  7. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation.

    Science.gov (United States)

    Liu, Jie; Liang, WanZhen

    2011-07-07

    We present the analytical expression and computer implementation for the second-order energy derivatives of the electronic excited state with respect to the nuclear coordinates in the time-dependent density functional theory (TDDFT) with Gaussian atomic orbital basis sets. Here, the Tamm-Dancoff approximation to the full TDDFT is adopted, and therefore the formulation process of TDDFT excited-state Hessian is similar to that of configuration interaction singles (CIS) Hessian. However, due to the replacement of the Hartree-Fock exchange integrals in CIS with the exchange-correlation kernels in TDDFT, many quantitative changes in the derived equations are arisen. The replacement also causes additional technical difficulties associated with the calculation of a large number of multiple-order functional derivatives with respect to the density variables and the nuclear coordinates. Numerical tests on a set of test molecules are performed. The simulated excited-state vibrational frequencies by the analytical Hessian approach are compared with those computed by CIS and the finite-difference method. It is found that the analytical Hessian method is superior to the finite-difference method in terms of the computational accuracy and efficiency. The numerical differentiation can be difficult due to root flipping for excited states that are close in energy. TDDFT yields more exact excited-state vibrational frequencies than CIS, which usually overestimates the values.

  8. Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kulesza, Alexander Jan; Titov, Evgenii; Daly, Steven; Włodarczyk, Radosław; Megow, Jörg; Saalfrank, Peter; Choi, Chang Min; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2016-10-05

    Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas-phase absorption properties with quantum-chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest-such as xanthene analogues. We, therefore, face their nano- and picosecond laser-induced photofragmentation with excited-state computations by using the CC2 method and time-dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree-Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher-lying excited states conforms to intense excited-to-excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photoinduced symmetry-breaking intramolecular charge transfer in a quadrupolar pyridinium derivative.

    Science.gov (United States)

    Carlotti, Benedetta; Benassi, Enrico; Spalletti, Anna; Fortuna, Cosimo G; Elisei, Fausto; Barone, Vincenzo

    2014-07-21

    We report here a joint experimental and theoretical study of a quadrupolar, two-branched pyridinium derivative of interest as a potential non-linear optical material. The spectral and photophysical behaviour of this symmetric system is greatly affected by the polarity of the medium. A very efficient photoinduced intramolecular charge transfer, surprisingly more efficient than in the dipolar asymmetric analogue, is found to occur by femtosecond resolved transient absorption spectroscopy. TD-DFT calculations are in excellent agreement with these experimental findings and predict large charge displacements in the molecular orbitals describing the ground state and the lowest excited singlet state. The theoretical study also revealed that in highly polar media the symmetry of the excited state is broken giving a possible explanation to the fluorescence and transient absorption spectra resembling those of the one-branched analogous compound in the same solvents. The present study may give an important insight into the excited state deactivation mechanism of cationic (donor-π-acceptor-π-donor)(+) quadrupolar compounds characterised by negative solvatochromism, which are expected to show significant two-photon absorption (TPA). Moreover, the water solubility of the investigated quadrupolar system may represent an added value in view of the most promising applications of TPA materials in biology and medicine.

  10. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond. Dipak K. Palit Radaition & Photochemistry Division Bhabha Atomic Research Centre Mumbai 400 085, India.

  11. Intramolecular Association within the SAFT Framework

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Chapman, Walter G.

    2011-01-01

    the contribution to the Helmholtz free energy from association (inter- as well as intramolecularly) at equilibrium. Sear and Jackson rederived the contribution to the Helmholtz free energy from association from the theory by Wertheim [J. Stat. Phys. 42 (3–4), 459 (1986)] with inclusion of intramolecular...... association, and using this approach we obtain an expression for the Helmholtz free energy that is valid also at non-equilibrium states (with respect to hydrogen bonds), which is very useful when calculating derivatives.......A general theory for modelling intramolecular association within the SAFT framework is proposed. Sear and Jackson [Phys. Rev. E. 50 (1), 386 (1994)] and Ghonasgi and Chapman [J. Chem. Phys. 102 (6), 2585 (1995)] have previously extended SAFT to include intramolecular association for chains with two...

  12. Ground and excited state dipole moments of some flavones using solvatochromic methods: An experimental and theoretical study

    Science.gov (United States)

    Kumar, Sanjay; Kapoor, Vinita; Bansal, Ritu; Tandon, H. C.

    2018-03-01

    The absorption and fluorescence characteristics of biologically active flavone derivatives 6-Hydroxy-7,3‧,4‧,5‧-tetramethoxyflavone (6HTMF) and 7-Hydroxy-6,3‧,4‧,5‧-tetramethoxyflavone (7HTMF) are studied at room temperature (298 K) in solvents of different polarities. Excited state dipole moments of these compounds have been determined using the solvatochromic shift method based on the microscopic solvent polarity parameter ETN . Dipole moments in excited state were found to be higher than those in the ground state in both the molecules. A reasonable agreement has been observed between experimental and theoretically calculated dipole moments (using AM1 method). Slightly large value of ground and excited state dipole moments of 7HTMF than 6HTMF are in conformity with predicted electrostatic potential maps. Our results would be helpful in understanding use of these compounds as tunable dye lasers, optical brighteners and biosensors.

  13. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  14. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio...

  15. Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond

    Science.gov (United States)

    Batalov, A.; Jacques, V.; Kaiser, F.; Siyushev, P.; Neumann, P.; Rogers, L. J.; McMurtrie, R. L.; Manson, N. B.; Jelezko, F.; Wrachtrup, J.

    2009-05-01

    We report a study of the E3 excited-state structure of single negatively charged nitrogen-vacancy (NV) defects in diamond, combining resonant excitation at cryogenic temperatures and optically detected magnetic resonance. A theoretical model is developed and shows excellent agreement with experimental observations. In addition, we show that the two orbital branches associated with the E3 excited state are averaged when operating at room temperature. This study leads to an improved physical understanding of the NV defect electronic structure, which is invaluable for the development of diamond-based quantum information processing.

  16. Some Brief Notes on Theoretical and Experimental Investigations of Intramolecular Hydrogen Bonding

    Directory of Open Access Journals (Sweden)

    Lucjan Sobczyk

    2016-12-01

    Full Text Available A review of selected literature data related to intramolecular hydrogen bonding in ortho-hydroxyaryl Schiff bases, ortho-hydroxyaryl ketones, ortho-hydroxyaryl amides, proton sponges and ortho-hydroxyaryl Mannich bases is presented. The paper reports on the application of experimental spectroscopic measurements (IR and NMR and quantum-mechanical calculations for investigations of the proton transfer processes, the potential energy curves, tautomeric equilibrium, aromaticity etc. Finally, the equilibrium between the intra- and inter-molecular hydrogen bonds in amides is discussed.

  17. Proton therapy

    Science.gov (United States)

    Proton beam therapy; Cancer - proton therapy; Radiation therapy - proton therapy; Prostate cancer - proton therapy ... that use x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  18. 4-Hydroxy-1-naphthaldehydes: proton transfer or deprotonation

    DEFF Research Database (Denmark)

    Manolova, Y; Kurteva, V; Antonov, L

    2015-01-01

    . For 4-hydroxy-3-(piperidin-1-ylmethyl)-1-naphthaldehyde (a Mannich base) an intramolecular proton transfer involving the OH group and the piperidine nitrogen occurs. In acetonitrile the equilibrium is predominantly at the OH-form, whereas in methanol the proton transferred tautomer is the preferred form...

  19. Electronic excited states of Si(100) and organic molecules adsorbed on Si(100).

    Science.gov (United States)

    Besley, Nicholas A; Blundy, Adam J

    2006-02-02

    The electronically excited states of the Si(100) surface and acetylene, benzene, and 9,10-phenanthrenequinone adsorbed on Si(100) are studied with time-dependent density functional theory. The computational cost of these calculations can be reduced through truncation of the single excitation space. This allows larger cluster models of the surface in conjunction with large adsorbates to be studied. On clean Si(100), the low-lying excitations correspond to transitions between the pi orbitals of the silicon-silicon dimers. These excitations are predicted to occur in the range 0.4-2 eV. When organic molecules are adsorbed on the surface, surface --> molecule, molecule --> surface, and electronic excitations localized within the adsorbate are also observed at higher energies. For acetylene and benzene, the remaining pipi* excitations are found to lie at lower energies than in the corresponding gas-phase species. Even though the aromaticity of 9,10-phenanthrenequinone is retained, significant shifts in the pipi* excitations of the aromatic rings are predicted. This is in part due to structural changes that occur upon adsorption.

  20. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  1. Localized excitations and the geometry of the 1nπ* excited states of pyrazine

    International Nuclear Information System (INIS)

    Kleier, D.A.; Martin, R.L.; Wadt, W.R.; Moomaw, W.R.

    1982-01-01

    Previous theoretical work has shown that the lowest excited singlet state of pyrazine, the π* 1 B 3 u state, is best described in terms of interacting excitations localized on each nitrogen. The present work refines the localized excitation model and considers its implications for the geometry of the 1 B 3 u state. Hartree-Fock calculations show that the best single configuration description of the nπ* state has broken ( 1 B 1 ) symmetry with the excitation strongly localized at one end of the molcule. If the symmetry-restricted hf result is used for reference, this localization describes an important correlation effect. The excited-state geometry was probed using configuration interaction wave functions based on the symmetry-restricted orbitals, as well as properly symmetrized ''valance-bond'' wave functions based on the broken symmetry solutions. Both descriptions lead to a very flat potential for a b/sub 1u/ vibrational mode. This mode reduces the molecular geometry from D/sub 2h/ to C/sub 2v/. We present spectroscopic evidence of our own and of other workers which is consistent with such a flat potential

  2. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    Science.gov (United States)

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Photoluminescence and excited states dynamics in PbWO4:Pr3+ crystals

    CERN Document Server

    Auffray, E; Shalapska, T; Zazubovich, S

    2014-01-01

    Luminescence and photo-thermally stimulated defects creation processes are studied for a Pr3+-doped PbWO4 crystal at 4.2-400 K under excitation in the band-to-band, exciton, and charge-transfer transitions regions, as well as in the Pr3+-related absorption bands. Emission spectra of Pr3+ centers depend on the excitation energy, indicating the presence of Pr3+ centers of two types. The origin of these centers is discussed. The 2.03-2.06 eV emission, arising from the D-1(2) -> H-3(4) transitions of Pr3+ ions, is found to be effectively excited in a broad intense absorption band peaking at 4.2 K at 3.92 eV. By analogy with some other Pe(3+)-doped compounds, this band is suggested to arise from an electron transfer from an impurity Pr3+ ion to the crystal lattice W6+ or Pb2+ ions. The dynamics of the Pr3+-related excited states is clarified. In the PbWO4:Pr crystal studied, the concentration of single oxygen and lead vacancies as traps for electrons and holes is found to be negligible.

  4. Double-magnetic-lens beta spectrometer for measurements of nucleus excited state lifetime

    International Nuclear Information System (INIS)

    Alikov, B.A.; Lizurej, G.I.; Muminov, T.M.; Ormandzhiev, S.I.; Salikhbaev, U.S.; Usmanov, R.R.; Kholbaev, I.

    1977-01-01

    Described is a design of an installation made on the basis of a double magnetic-lens beta spectrometer intended for measurement of lifetimes of nucleus excited states by the method of e-e-delayed coincidences. A system of the Hubert conic diaphragms is used in the spectrometer, and plastic scintillation detectors and photomultipliers are used as a registering system. The experimental arrangement is considered, and the main parameters of a stabilized current rectifier, developed for the supply of the spectrometer windings are given. Also presented is the lay-out of the time spectrometer of e-e-delayed coincidences which uses units of fast spectra metric electronics and the system of amplification stabilization. Besides, analytically studied were focusing characteristics of the magnetic-lens spectrometer for the case when the magnetic field shape may be considered triangular. Using the above installation obtained was the time spectrum of delayed coincidences between conversion electrons of K241 and K104 keV in a 136 E/ r nucleus, and determined was the half-life of 104 keV state (Tsub(1/2)=0.53+-0.02 ns) which is in a good agreement with the known value of Tsub(1/2)=0.52+-0.02 ns

  5. The dynamics of excited state structural relaxation of 4-dimethylaminobenzonitrile (DMABN and related compounds

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The excited state structural relaxation of 4 -dimethylaminobenzenes with various para-acceptor substituents having double-band emission, local excited (LE and charge transfer (CT, has been investigated. Fluorescence measurements at different temperatures and in different solvents have confirmed the existence of viscosity-dependent, temperature, and polarity-activated relaxation. The kinetics analysis has shown that the radiative deactivation rate constants of the individual LE and CT states differ by 7 – 112 -fold. The dipole moment changes at the excitation for CT states are significantly larger than those for LE states. The spectral-kinetics behavior of compounds studied agrees with the models A→ A ∗ → B ∗ or A→ A ∗ ↔ B ∗ , where A ∗ is the local excited planar and B ∗ is the relaxed twisted state of the molecule. The rate constants of the twisted state formation have been calculated in the temperature range 293 – 77 K. The activation energies of forward process for compounds studied have been estimated.

  6. Triplet excited states and radical intermediates formed in electron pulse radiolysis of amino-substituted fluorenones

    Energy Technology Data Exchange (ETDEWEB)

    Samant, Vaishali; Singh, A.K.; Mukherjee, Tulsi; Palit, D.K. E-mail: dkpalit@apsara.barc.ernet.in

    2005-04-01

    Electron pulse radiolysis of four differently substituted amino derivatives of fluorenone, namely, 1-amino-, 2-amino- 3-amino-, and 4-aminofluorenone, has been carried out to study the effect of structure on the spectroscopic and kinetic characteristics of the triplet excited states as well as the transient free radical intermediates formed under reducing and oxidizing conditions. The triplet states of these compounds have been generated in benzene by pulse radiolysis and in other solvents by flash photolysis technique and their spectral and kinetic properties have been investigated. Hydrated electron (e{sub aq}{sup -}) has been found to react with these fluorenone derivatives to form the anion radical species with a diffusion-controlled rate constant. The spectral and kinetic properties of the transient ketyl and anion radicals have been studied by generating them in aqueous solutions of suitable pH. The pK{sub a} values of ketyl[rlhar2]anion radical equilibria are in the range of 6.8-7.7 for these derivatives. The oxidized species have been generated by reaction with the azide radical. Hydrogen atom adducts as well as the cation radicals of these derivatives have also been generated by pulse radiolysis and characterized.

  7. Going beyond Kohn and Sham (KS): determining accurate ground and first excited states

    Science.gov (United States)

    Ferreira, Luiz; Marques, Marcelo; Teles, Lara; Pela, Ronaldo

    2013-03-01

    The Total energy in KS is written as E =1/2 ∑ ∫ ∇ψ* . ∇ ψ +1/2 ∫∑ψ*/ψ (r) ∑ψ* ψ (r') (r -r') + ∫ ∑ψ* ψVnuclei + Exc The KS procedure continues by minimizing the energy with respect the wavefunctions ψ. The equation for the wave functions is similar to the one-particle Schroedinger equation. In our talk we will present results obtained in the following way: we add an external potential Vadd to the nuclei potential Vnuclei and, after the calculation is completed, we subtract what we added, namely. - ∫ ∑ψ* ψVadd . The result is a calculation according to the Eq. above but with wavefunctions not satisfying the KS equations. If the exchange-correlation term were reliable one would expect that the calculated energy would be larger than the KS energy. The added potential Vadd is what is being used in the LDA-1/2 method and is dependent on a cut-off parameter C. Making the extremization of the total energy with respect to C we obtain (1) a point of maximum, which frequently will be shown to be the first excited state, (2) a minimum, with an energy lower than the KS (C = 0) ground state and with improved lattice parameter.

  8. Excited-state dynamics of size-dependent colloidal TiO{sub 2}-Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Karam, Tony E.; Khoury, Rami A.; Haber, Louis H., E-mail: lhaber@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-03-28

    The ultrafast excited-state dynamics of size-dependent TiO{sub 2}-Au nanocomposites synthesized by reducing gold nanoclusters to the surface of colloidal TiO{sub 2} nanoparticles are studied using pump-probe transient absorption spectroscopy with 400 nm excitation pulses. The results show that the relaxation processes of the plasmon depletion band, which are described by electron-phonon and phonon-phonon scattering lifetimes, are independent of the gold nanocluster shell size surrounding the TiO{sub 2} nanoparticle core. The dynamics corresponding to interfacial electron transfer between the gold nanoclusters and the TiO{sub 2} bandgap are observed to spectrally overlap with the gold interband transition signal, and the electron transfer lifetimes are shown to significantly decrease as the nanocluster shell size increases. Additionally, size-dependent periodic oscillations are observed and are attributed to acoustic phonons of a porous shell composed of aggregated gold nanoclusters around the TiO{sub 2} core, with frequencies that decrease and damping times that remain constant as the nanocluster shell size increases. These results are important for the development of improved catalytic nanomaterial applications.

  9. Ensemble DFT Approach to Excited States of Strongly Correlated Molecular Systems.

    Science.gov (United States)

    Filatov, Michael

    2016-01-01

    Ensemble density functional theory (DFT) is a novel time-independent formalism for obtaining excitation energies of many-body fermionic systems. A considerable advantage of ensemble DFT over the more common Kohn-Sham (KS) DFT and time-dependent DFT formalisms is that it enables one to account for strong non-dynamic electron correlation in the ground and excited states of molecular systems in a transparent and accurate fashion. Despite its positive aspects, ensemble DFT has not so far found its way into the repertoire of methods of modern computational chemistry, probably because of the perceived lack of practically affordable implementations of the theory. The spin-restricted ensemble-referenced KS (REKS) method is perhaps the first computationally feasible implementation of the ideas behind ensemble DFT which enables one to describe accurately electronic transitions in a wide class of molecular systems, including strongly correlated molecules (biradicals, molecules undergoing bond breaking/formation), extended π-conjugated systems, donor-acceptor charge transfer adducts, etc.

  10. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de [Institut für Physikalische Chemie, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany); Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl [Institute for Molecules and Materials, Radboud University, NL-6525 AS Nijmegen (Netherlands)

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  11. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  12. Puzzle degeneracies for 87Rb2 and Yangian structures appearing in lower excited states of rare gas atoms

    International Nuclear Information System (INIS)

    Bai Chengming; Ge Molin

    2001-01-01

    The authors show that the degenerate states appearing in the experiment of the condensed vapor of 87 Rb 2 can be described by Yangian. Furthermore, the model for three angular momentum system is solved through Yangian that can be checked by the experiments for lower excited states of Inert Gas atoms under pressure

  13. Control of the atom (nucleus) lifetime in the excited state by means of a low-frequency external field

    International Nuclear Information System (INIS)

    Feranchuk, I.D.; Komarov, L.I.; Ulyanenkov, A.

    2002-01-01

    The radiative decay dynamics of an atomic (nuclear) excited state split into two neighbouring sublevels are considered for the case of interaction with a low-frequency electromagnetic field. The conditions of cancellation of the spontaneous emission in this system are analysed beyond the rotating wave approximation. (author)

  14. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    Science.gov (United States)

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; Schirò, Giorgio; Adam, Virgile; Aquila, Andrew; Barends, Thomas R. M.; Boutet, Sébastien; Byrdin, Martin; Carbajo, Sergio; de La Mora, Eugenio; Doak, R. Bruce; Feliks, Mikolaj; Fieschi, Franck; Foucar, Lutz; Guillon, Virginia; Hilpert, Mario; Hunter, Mark S.; Jakobs, Stefan; Koglin, Jason E.; Kovacsova, Gabriela; Lane, Thomas J.; Lévy, Bernard; Liang, Mengning; Nass, Karol; Ridard, Jacqueline; Robinson, Joseph S.; Roome, Christopher M.; Ruckebusch, Cyril; Seaberg, Matthew; Thepaut, Michel; Cammarata, Marco; Demachy, Isabelle; Field, Martin; Shoeman, Robert L.; Bourgeois, Dominique; Colletier, Jacques-Philippe; Schlichting, Ilme; Weik, Martin

    2018-01-01

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.

  15. DETERMINATION OF THE ABSOLUTE EXCITED-STATE DENSITY OF A SODIUM TARGET BY MEANS OF BEAM DEFLECTION MEASUREMENTS

    NARCIS (Netherlands)

    WIERSEMA, WP; SCHLATMANN, AR; MORGENSTERN, R

    1994-01-01

    The average deflection of a laser excited, divergent sodium beam with a broad velocity distribution is measured by means of a Langmuir-Taylor detector and exploited for determining the absolute density of the excited state in the interaction area. Simulations of the excitation and deflection process

  16. Ultrafast dynamics of hydrophilic carbonyl carotenoids - Relation between structure and excited-state properties in polar solvents

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Naqvi, K.R.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 56-64 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : hydrophilic carotenoids * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  17. Progress in the Rotational Analysis of the Ground and Low-Lying Vibrationally Excited States of Malonaldehyde

    Science.gov (United States)

    Goudreau, E. S.; Tokaryk, Dennis W.; Ross, Stephen Cary; Billinghurst, Brant E.

    2016-06-01

    Despite being an important prototype molecule for intramolecular proton tunnelling, the far-IR spectrum of the internally hydrogen-bonded species malonaldehyde (C_3O_2H_4) is not yet well understood. In the talk I gave at the ISMS meeting in 2015 I discussed the high-resolution spectra we obtained at the Canadian Light Source synchrotron in Saskatoon, Saskatchewan. These spectra include a number of fundamental vibrational bands in the 100-2000 cm-1 region. In our efforts to analyze these bands we have noticed that our ground state combination differences show a large drift (up to an order of magnitude larger than our experimental error) away from those calculated using constants established by Baba et al., particularly in regions of high J (above 30) and low Ka (below 5). An examination of the previous microwave and far-IR studies reveals that this region of J-Ka space was not represented in the lines that Baba et al. used to generate the values for their fitting parameters. By including our own measurements in the fitting, we were able to improve the characterization of the ground state so that it is now consistent with all of the existing data. This characterization now covers a much larger range of J-Ka space and has enabled us to make significant progress in analyzing our far-IR synchrotron spectra. These include an excited vibrational state at 241 cm-1 as well as several states split by the tunnelling effect at higher wavenumber. T. Baba, T. Tanaka, I. Morino, K. M. T. Yamada, K. Tanaka. Detection of the tunneling-rotation transitions of malonaldehyde in the submillimeter-wave region. J. Chem. Phys., 110. 4131-4133 (1999) P. Turner, S. L. Baughcum, S. L. Coy, Z. Smith. Microwave Spectroscopic Study of Malonaldehyde. 4. Vibration-Rotation Interaction in Parent Species. J. Am. Chem. Soc., 106. 2265-2267 (1984) D. W. Firth, K. Beyer, M. A. Dvorak, S. W. Reeve, A. Grushow, K. R. Leopold. Tunable far-infrared spectroscopy of malonaldehyde. J. Chem. Phys., 94. 1812

  18. A contribution to the study of excited states of Neon 22 and Sodium 22

    International Nuclear Information System (INIS)

    Chambon, Bernard.

    1976-01-01

    The experimental study of 22 Ne has been performed. A differentially pump gas target has been used, in conjunction with E+ΔE detectors. Angular distribution measurements have been performed on the 21 Ne(d,p) 22 Ne reaction in the Esub(d) energy range from 3 to 3.6MeV. Angular momentum has been identified and spectroscopic factors extracted for 18 levels by comparison with DWBA predictions. Spin and parities of some excited levels were deduced. The study of the 21 Ne(t,d) 22 Ne reaction corroborates the results concerning the first excited state (2 + ). Experimental results are compared with the predictions of the unified rotational model and of the shell-model. The 20 Ne(t,p) 22 Ne reaction was studied at 3MeV and 3.4MeV bombarding energies. The total cross-section of most groups was analyzed in terms of Hauser-Feshbach theory and several final-state spin predictions are made. The angular distribution of the 20 Ne(t,p) 22 Ne (Esub(x)=6.24MeV) reaction was analyzed by double stripping DWBA theory and indicates 0 + for this state, the isobaric analog of which has been identified at 6.83MeV in 22 Na. Furthermore, several new isobaric analog pairs in 22 Na and 22 Ne are identified via the study of excitation functions for the reactions 21 Ne(p,p) 21 Ne and 21 Ne(p,p') 21 Ne for Esub(p)=0.6-2MeV. Implications of the present results with regard to the identification of band structure in 22 Na are discussed [fr

  19. The [18.1], [18.6] and [18.7] Excited States of Ytterbium Fluoride

    Science.gov (United States)

    Steimle, Timothy; Wang, Fang; Smallman, Joe

    2014-06-01

    The generation of a fountain of laser-cooled ytterbium fluoride, YbF, has been recently proposed as a method for long coherent observation times, thereby improving the electron electric dipole moment (eEDM) measurement. Understanding the properties of the excited electronic states of YbF is essential for the development of such a scheme for laser cooling. Here we report on the measurement of the radiative lifetimes,τ, permanent electric dipole moments, μel, and magnetic g-factors for the [18.6] and [18.7] excited states of YbF. The results are compared with the previously determined values for [18.1] state. The [18.1] state is the Ω=1/2 spin-orbit component of the A 2Π(v=0) electronic state arising from the Yb+(4f146pπ)F-(2p14) configuration. The experimentally determined μel, and g-factors will be used to unravel the nature of the [18.6] and [18.7] states, which are known to be admixtures A 2Π and an additional Ω=1/2 state of unknown electronic configuration. Tarbutt, M R; Sauer, B E; Hudson, J J; Hinds E A, New J. Phys 15, 053034, 2013. Zhuang,X; Le,A.;Steimle, T C; Bulleid, N E; Smallman, I J; Hendricks, R J; Skoff, S M ; M R; Hudson, J J; Sauer, B E; Hinds, Tarbutt, M R, PCCP, 13 19103, 2011 Condylis,P C; Hudson, J J; Tarbutt, M R; Sauer, B E; Hinds E A, J. Chem. Phys. 123, 231101, 2005

  20. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    Science.gov (United States)

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  1. THE MICROWAVE SPECTROSCOPY OF METHYL FORMATE IN THE SECOND TORSIONAL EXCITED STATE

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaori; Takamura, Kazunori; Sakai, Yusuke; Tsunekawa, Shozo [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Odashima, Hitoshi [Department of Physics, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571 (Japan); Ohashi, Nobukimi, E-mail: kaori@sci.u-toyama.ac.jp [Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2013-03-01

    The cis-methyl formate molecule is a well known molecule found in interstellar space. Recently, rotational lines of methyl formate in the first CH{sub 3} torsional excited state were observed in Orion KL and W51e2. It is quite natural to observe methyl formate in even higher vibrational states considering the temperature estimated in Orion KL and W51e2. Maeda et al. reported results on the laboratory spectroscopy of methyl formate including the spectral analysis in its second CH{sub 3} torsional state. Their assignments were limited to a series of a-type R-branch lines and low K{sub a} b-type R-branch transitions, and many assigned lines are excluded in the least-squares analysis. In the present study, we extended the line assignments of both the A- and E-species transitions in the second CH{sub 3} torsional state especially in the frequency region below the 120 GHz region. By combining the present assignments and those made by Maeda et al., 1951 transitions in total for the second CH{sub 3} torsional state, 1096 A-species transitions up to J = 39, and K{sub a} = 15 and 855 E-species transitions up to J = 35 and K{sub a} = 13, were least-squares analyzed by using the pseudo-principal-axis-method Hamiltonian with 42 parameters consisting of rotational, centrifugal distortion, and internal rotational constants in the second CH{sub 3} torsional state. In addition, 1012 transitions out of 1096 A-species transitions could also be least-squares analyzed by using Watson's A-reduced Hamiltonian with 43 parameters, which can serve to calculate the energy levels of the A-species lines of molecules with the CH{sub 3} internal rotation conveniently.

  2. Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems

    Science.gov (United States)

    da Jornada, Felipe H.

    2015-03-01

    Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.

  3. Simultaneous Evaluation of Multiple Rotationally Excited States of Floppy Molecules Using Diffusion Monte Carlo

    Science.gov (United States)

    McCoy, Anne B.; Ford, Jason E.; Marlett, Melanie L.; Petit, Andrew S.

    2014-06-01

    In this work, an extension to diffusion Monte Carlo (DMC) is proposed, allowing for the simultaneous calculation of the energy and wave function of multiple rotationally excited states of floppy molecules. The total wave function is expanded into a set of Dirac δ-functions called walkers, while the rotational portion of the wave function is expanded in a symmetric top basis set. Each walker is given a rotational state vector containing coefficients for all states of interest. The positions of the atoms and the coefficients in the state vector evolve according to the split operator approximation of the quantum propagator. The method was benchmarked by comparing calculated rotation-vibration energies for H_3^+, H_2D^+, and H_3O^+ to experimental values. For low to moderate values of J, the resulting energies are within the statistical uncertainty of the calculation. Rotation-vibration coupling is captured through flexibility introduced in the form of the vibrational wave function. This coupling is found to increase with increasing J-values. Based on the success achieved through these systems, the method was applied to CH_5^+ and its deuterated isotopologues for v = 0, J ≥ 10. Based on these calculations, the energy level structure of CH_5^+ is found to resemble that for a of a spherical top, and excitations up to J = 10 displayed insignificant rotation-vibration coupling. Extensions of this approach that explicitly account for vibrations will also be discussed. ` A. S. Petit, J. E. Ford and A. B. McCoy, J. Phys. Chem. A, in press, K. D. Jordan Festschrift, DOI: 10.1021/jp408821a

  4. Development and implementation of theoretical methods for the description of electronically core-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Jan

    2016-03-23

    My PhD project mainly consists of two important parts. One was to enhance and develop variants of the core-valence-separation-algebraic-diagrammatic-construction (CVS-ADC) method and implement all approaches efficiently in the adcman program, which is part of the Q-chem program package. Secondly, I benchmarked these implementations and simulated X-ray absorption spectra of small- and medium-sized molecules from different fields. In this thesis, I present my implementations, as well as the results and applications obtained with the CVS-ADC methods and give a general introduction into quantum chemical methods. At first, I implemented the CVS-ADC approach up to the extended second in an efficient way. The program is able to deal with systems up to 500 basis functions in an adequate computational time, which allows for accurate calculations of medium-sized closed-shell molecules, e.g. acenaphthenequinone (ANQ). Afterwards, the CVS-ADC implementation was extended for the first time to deal with open-shell systems, i.e. ions and radicals, which implies a treatment of unrestricted wave functions and spin-orbitals. The resulting method is denoted as CVS-UADC(2)-x. For the first time, I applied the CVS approximation to the the third order ADC scheme, derived the working equations, and implemented the CVS-ADC(3) method in adcman. As the last step, I applied the CVS formalism for the first time to the ISR approach to enable calculations of core-excited state properties and densities. To benchmark all restricted and unrestricted CVS-ADC/CVS-ISR methods up to third order in perturbation theory, I chose a set of small molecules, e.g. carbon monoxide (CO). The calculated values of core-excitation energies, transition moments and static dipole moments are compared with experimental data or other approaches, thereby estimating complete basis set (CBS) limits. Furthermore, a comprehensive study of different basis sets is performed. In combination with the CBS limit of the aug

  5. Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability

    DEFF Research Database (Denmark)

    Gauden, M.; Pezzella, A.; Panzella, L.

    2008-01-01

    in the O-acetylated forms. The results show that: 1) excited state decays are faster for the trimer relative to the monomer; 2) for parent DHICA, excited state lifetimes are much shorter in aqueous acidic medium (380 ps) as compared to organic solvent (acetonitrile, 2.6 ns); 3) variation of fluorescence...

  6. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    The harmonic oscillator model of aromaticity (HOMA) index elucidated the impact of hydrogen bond- ing in the ring. Intramolecular hydrogen bonding energy has been calculated from topological study. The low wavenumber vibrational modes obtained from experimental FT-Raman spectrum also supported the presence.

  7. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  8. Structural, intramolecular hydrogen bonding and vibrational studies

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  9. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  10. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    The harmonic oscillator model of aromaticity (HOMA) index elucidated the impact of hydrogen bond- ing in the ring. Intramolecular hydrogen ... (Figure 3). The total ener- gies obtained for these possible conformers are listed in Table 1. ..... Structure, Reactivity and Intermolecular Forces: An. Euristic Interpretation by Means of ...

  11. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    Science.gov (United States)

    Xu, Wenhua; Ma, Jianyi; Peng, Daoling; Zou, Wenli; Liu, Wenjian; Staemmler, Volker

    2009-02-01

    The perrhenate anion, ReO4-, is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted.

  12. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    International Nuclear Information System (INIS)

    Xu Wenhua; Ma Jianyi; Peng Daoling; Zou Wenli; Liu Wenjian; Staemmler, Volker

    2009-01-01

    The perrhenate anion, ReO 4 - , is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3 T 1 and 3 T 2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted

  13. A Folded Excited State of Ligand-Free Nuclear Coactivator Binding Domain (NCBD) Underlies Plasticity in Ligand Recognition

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Andersen, Lisbeth; Nielsen, Lau Dalby

    2013-01-01

    Intrinsically disordered proteins are renowned for their structural plasticity when they undergo coupled folding and binding to partner proteins. The nuclear coactivator binding domain of CBP is a remarkable example of this adaptability as it folds into two different conformations depending...... experience conformational exchange. The dispersion data can be described by a global two-state exchange process between a ground state and an excited state populated to 8%. The three helices are still folded in the excited state but have a different packing from the ground state; the contact between helices...... with that of NCBD in complex with the ligand IRF-3. The energy landscape of this domain is thus proposed to resemble the fold-switching proteins that have two coexisting native states, which may serve as a starting point for binding via conformational selection....

  14. Lowest excited-state impurity binding energy in InGaN/GaN parabolic QWW: magnetic field effect

    International Nuclear Information System (INIS)

    Haddou El Ghazi; Anouar Jorio; Izeddine Zorkani

    2013-01-01

    In this paper, we have investigated the magnetic field effect on the lowest excited-state binding energy of hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) using the finite-difference method within the quasi-one-dimensional effective potential model. The calculations are performed within the framework of the effective mass approximation. A cylindrical QWW effective radius is taken into account to describe the lateral confinement strength. The numerical results show that: (i) the probability density is the largest on a circularity whose radius is the effective radius and (ii) the lowest excited-state binding energy is the largest when an impurity is located on this circularity while it starts to decrease as the impurity is away from the circularity. (author)

  15. The Structure of the Nucleon and it's Excited States

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-20

    The past year has been an exciting and productive one for particle physics research at Abilene Christian University. The thrust of our experimental investigations is the study of the nucleon and its excited states. Laboratories where these investigations are presently being conducted are the AGS at Brookhaven, Fermilab and LAMPF. Some analysis of the data for experiments at the Petersburg Nuclear Physics Institute (Gatchina, Russia) is still in progress. Scheduling of activities at different laboratories inevitably leads to occasional conflicts. This likelihood is increased by the present budget uncertainties at the laboratories that make long-term scheduling difficult. For the most part, the investigators have been able to avoid such conflicts. Only one experiment received beam time in 1994 (E890 at the AGS). The situation for 1995-1996 also appears manageable at this point. E890 and another AGS experiment (E909) will run through May, 1995. El 178 at LAMPF is presently scheduled for August/September 1995. E866 at Fermilab is scheduled to start in Spring/Summer 1996. Undergraduate student involvement has been a key element in this research contract since its inception. Summer students participated at all of the above laboratories in 1994 and the same is planned in 1995. A transition to greater involvement by graduate students will provide cohesiveness to ACU involvement at a given laboratory and full-time on-site involvement in the longer running experiments at FNAL and BNL. Funds to support a full-time graduate student are requested this year. Finally, collaboration by Russian, Croatian and Bosnian scientists has proven to be mutually beneficial to these experimental programs and to the overall programs at the institutions involved. Past support has been augmented by other grants from government agencies and from the Research Council at Abilene Christian University. Additional funds are requested in this renewal to enable more programmatic support for these

  16. A Theoretical Study of the Ground and Excited States of the CHCl2+ Dication and the CHCl+ Cation

    Czech Academy of Sciences Publication Activity Database

    Roithová, Jana; Hrušák, Jan; Herman, Zdeněk

    2003-01-01

    Roč. 228, - (2003), s. 497-506 ISSN 1387-3806 R&D Projects: GA ČR GA203/00/0632; GA AV ČR KJB4040302; GA MŠk ME 561 Institutional research plan: CEZ:AV0Z4040901 Keywords : dications * ground and excited states * ionization energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.361, year: 2003

  17. Characterization of trans-dioxotechnetium(V) and technetium(II)phosphine excited states and spectroelectrochemical detection of pertechnetate

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A.; Del Negro, Andy S.; Wang, Zheming; Hubler, Timothy L.; Heineman, William R.; Seliskar, Carl J.; Sullivan, Brian P.

    2006-06-01

    We report the first examples of excited-state luminescence from technetium complexes. We have examined a series of trans-dioxo complexes of Tc(V) and a Tc(I/II) phosphine complex and compare their respective photophysical properties with the corresponding rhenium analogues. When excited with a 415 nm laser, the Tc(V) complexes luminesce in the 700-800 nm range and have excited state lifetimes in the range of several microseconds at room temperature. The low-temperature luminescence spectra of the technetium complexes have also been investigated. Distinct vibrational band progressions are resolved in the low-temperature luminescence spectra. Excited state lifetimes at 5 K vary between tens of microseconds to several milliseconds for the dioxo-technetium complexes. In addition, a previously known Tc(I) complex, [Tc(DMPE) 3]+ which has been used as a radiography imaging agent has been demonstrated in our labs to fluoresce in the visible wavelength region upon a one-electron reversible oxidation to form the Tc(II), [Tc(DMPE)3]2+ complex in aqueous solution. The luminescence of [Tc(DMPE)3]2+ was observed by illuminating the solution complex with a 404 nm excitation while performing the reversible electrochemical experiment. In a recent application, we have focused on making thin chemically-selective films for sensing radioactive technetium compounds and in this effort have developed a fluorescence-based spectroelectrochemical sensor. Characterization of the new dioxo-technetium(V) and technetium(II)phosphine excited states as well as application of the respective chromophores for use in a spectroelectrochemical sensor for pertechnetate will be discussed.

  18. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques

    Czech Academy of Sciences Publication Activity Database

    Vlček, Antonín; Záliš, Stanislav

    2007-01-01

    Roč. 251, 3-4 (2007), s. 258-287 ISSN 0010-8545 R&D Projects: GA MŠk 1P05OC068; GA MŠk OC 139 Institutional research plan: CEZ:AV0Z40400503 Keywords : charge-transfer transition * DFT technique * excited states * spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 8.568, year: 2007

  19. Dependence of resonant effects in excited-state decay on the form of inter-state coupling

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Král, Karel

    2008-01-01

    Roč. 486, - (2008), s. 79-100 ISSN 1542-1406 R&D Projects: GA ČR GA202/07/0643 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100520 Keywords : electron-vibrational interaction * energy transfer * excited state decay Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.537, year: 2008

  20. Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3

    NARCIS (Netherlands)

    Pollnau, Markus; Heumann, E.; Huber, G.

    1992-01-01

    A pump- and probe-beam technique is used for measuring time-resolved excited-state absorption (ESA) and stimulated-emission (SE) spectra of Er3+ doped YAlO3. The Er3+ 4I15/2 -> 4F7/2 transition of the sample is excited at 488 nm by an excimer laser pumped dye laser. The ESA and SE of broadband xenon

  1. Contribution to Λ+c → φΣ, φΛ and p anti Ko from excited states

    International Nuclear Information System (INIS)

    Turan, G.; Eeg, J.O.

    1990-12-01

    Contributions to Λ c + → φΣ, φΛ and p anti K o from excited states are considered. The calculations are performed within the MIT-bag model and a Heavy Quark bag model. Because the mass of Λ c + is rather big compared to the strange baryons, excited baryon states with mass close to that of Λ c + in some cases give significant pole contributions to the decay amplitudes of Λ c + . 20 refs., 3 tabs

  2. Excited state electron spin coherence (ESESC) studies of triplet states in molecular solids

    Energy Technology Data Exchange (ETDEWEB)

    Tarrasch, M.E.

    1978-02-01

    The field of coherent spectroscopy of two-level systems is applied to the lowest triplet state of organic molecules. By neglecting the triplet sublevel not coupled by the field, it is possible to describe the remaining two levels with Feynman-Vernon-Hellwarth geometrical representation of a general two-level system. The equations of motion of the pseudomagnetization are derived after transformation to the rotating frame, as are Bloch-type equations which include phenomenological relaxation times. The loss of coherence due to exchange between triplet states with different Larmor frequencies but identical zero-field dipolar tensor axes is then discussed. By writing two sets of coupled Bloch equations, expressions for the effective decay rate and frequency shift of the experimentally monitored triplet system are derived and discussed in the limits of slow and rapid exchange. This analysis is applied to intramolecular tunneling between different configurations of cyclopentanone. It is shown by both spin locking and CW spectra that the tunneling rate is considerably slower than the phosphorescence decay rate of the lowest triplet state. Rotary echoes are considered, both on- and off-resonance, with Average Hamiltonian theory. It is shown that relaxation fields perpendicular to the driving field are averaged while those parallel to it are not. The inhomogeneity in the broadening mechanism is completely removed by on-resonance rotary echoes but only partially eliminated by off-resonance rotary echoes. Calculations for off-resonance rotary echo intensities are presented and extended to include triplet sublevel population kinetics and inhomogeneous broadening. Finally, experimental observation of rotary echoes in several 1,2,4,5-Tetrachlorobenzene systems is reported and compared with the theoretical predictions made.

  3. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  4. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    Science.gov (United States)

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  5. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    International Nuclear Information System (INIS)

    Prima, Eka Cahya; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno

    2015-01-01

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell

  6. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO) 2I 2 complex

    Science.gov (United States)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkiö, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [ trans-I-Ru(dcbpy)(CO) 2I 2] (dcbpy= 4,4 '-dicarboxy-2,2 '-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [ cis-I-Ru(dcbpy)(CO)(Sol)I 2] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  7. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO)2I2 complex

    International Nuclear Information System (INIS)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-01-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO) 2 I 2 ] (dcbpy4,4 ' -dicarboxy-2,2 ' -bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I 2 ] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1 ) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes

  8. Excited States and Photodebromination of Selected Polybrominated Diphenyl Ethers: Computational and Quantitative Structure—Property Relationship Studies

    Directory of Open Access Journals (Sweden)

    Jin Luo

    2015-01-01

    Full Text Available This paper presents a density functional theory (DFT/time-dependent DFT (TD-DFT study on the lowest lying singlet and triplet excited states of 20 selected polybrominateddiphenyl ether (PBDE congeners, with the solvation effect included in the calculations using the polarized continuum model (PCM. The results obtained showed that for most of the brominated diphenyl ether (BDE congeners, the lowest singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* excitation. In triplet excited states, structure of the BDE congeners differed notably from that of the BDE ground states with one of the specific C–Br bonds bending off the aromatic plane. In addition, the partial least squares regression (PLSR, principal component analysis-multiple linear regression analysis (PCA-MLR, and back propagation artificial neural network (BP-ANN approaches were employed for a quantitative structure-property relationship (QSPR study. Based on the previously reported kinetic data for the debromination by ultraviolet (UV and sunlight, obtained QSPR models exhibited a reasonable evaluation of the photodebromination reactivity even when the BDE congeners had same degree of bromination, albeit different patterns of bromination.

  9. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  10. Excited State Assignment and Laser Action in π-Conjugated Polymers

    Science.gov (United States)

    Vardeny, Z. V.

    1998-03-01

    We have applied a variety of ps transient and cw spectroscopies to elucidate the ground and excited electronic states of luminescent and nonluminescent thin films and solutions of π-conjugated polymers. These techniques include photoinduced absorption (PA), photoluminescence (PL), resonant Raman scattering (RRS), electro-absorption (EA), two photon absorption (TPA), and PA detected magnetic resonance. We found that the luminescence efficiency, the resonant and subgap third-order nonlinear optical properties and the RRS dispersion in these polymers are determined by the energies and symmetries of a subset of the excited states, including a series of singlet excitons with odd (B_u) and even (A_g) parity lying below a continuum band. Among them, the lowest Bu exciton (1B_u) and two other dominant Ag excitons (mAg and kA_g) are particularly important in determining the EA, TPA, and excitonic ps PA spectra.(S.V. Frolov, M. Liess, P.A. Lane, W. Gellermann, Z.V. Vardeny, M. Ozaki, and K. Yoshino, Phys. Rev. Lett). 78, 4285 (1997). We also found(M. Ozaki, E. Ehrenfreund, R.E. Benner, T.J. Baron, K. Yoshino, and Z.V. Vardeny, Phys. Rev. Lett). 79, 1762 (1997). that the RRS phonon dispersion with the laser excitation energy is governed by the dependence of lowest Ag exciton (2A_g) on the chain length distribution in the polymer. This leads to stronger RRS dispersion in nonluminescent polymers. Moreover the relative energies of the 1Bu and 2Ag excitons determine the PL quantum efficiency η, regardless of the ground state degeneracy. If E(2A_g) < E(1B_u) then η is small because of the dipole forbidden character of the lowest singlet. We will give examples of nonluminescent polymers which belong to this class with both degenerate and nondegenerate ground state, respectively. On the other hand, if E(1B_u) < E(2A_g) then η is large and the polymer might be considered as active material for display applications. Again we give examples of highly luminescent polymers with

  11. Intramolecular and Transannular Diels-Alder Reactions

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Ascic, Erhad

    2014-01-01

    Few reactions can compete with the Diels-Alder (DA) [4+2] cycloaddition for the rapid and efficient generation of molecular complexity. The DA reaction is atom-economic and stereospecific, as well as diastereo- and regioselective. The intramolecular version (IMDA) of the DA cycloaddition and its...... and dienophile, methods for acceleration of IMDA reactions (such as use of high pressure) and catalysis (using oxophilic or carbophilic metal complexes, Brønsted acids, and enzymes). The use of furans as diene components (IMDAF), intramolecular hetero-DA (IMHDA) and IMDA reactions with inverse electron demand...... are also covered. Applications of IMDA to asymmetric synthesis (from substrate control through to enantioselective catalysis, including organocatalysis) are presented, along with tandem sequences involving IMDA cycloaddition. A theme pervading the whole chapter is the use of IMDA reactions for the total...

  12. Direct Observation of a Photochemical Alkyne-Allene Reaction and of a Twisted and Rehybridized Intramolecular Charge-Transfer State in a Donor-Acceptor Dyad.

    Science.gov (United States)

    Dereka, Bogdan; Svechkarev, Denis; Rosspeintner, Arnulf; Tromayer, Maximilian; Liska, Robert; Mohs, Aaron M; Vauthey, Eric

    2017-11-22

    The excited-state dynamics of an aniline-triazine electron donor-acceptor dyad with an alkyne spacer has been investigated using a combination of ultrafast broadband mid-IR and visible transient absorption and fluorescence spectroscopies. The transient IR data reveal the occurrence of an efficient alkyne to allene isomerization of the spacer with a time constant increasing from a few hundreds of femtoseconds to a few picoseconds with solvent viscosity. This process is faster than the vibrational cooling of the Franck-Condon excited state, indicative of nonequilibrium dynamics. The transient electronic absorption and fluorescence data evidence that this transformation is accompanied by a charge separation between the donor and the acceptor subunits. The allene character of the spacer implies an orthogonal orientation of the donor and acceptor moieties, similar to that proposed for twisted intramolecular charge-transfer states. Such states are often invoked in the excited-state dynamics of donor-acceptor dyads, but their involvement could never be unambiguously evidenced spectroscopically. The alkyne-allene isomerization involves not only a torsional motion but also a bending of the molecule due to the sp to sp 2 rehybridization of one of the alkyne carbon atoms. This twisted and rehybridized intramolecular charge transfer ("TRICT") state decays back to the planar and linear alkyne ground state on a time scale decreasing from a few hundred to ten picoseconds upon going from weakly to highly polar solvents. The different solvent dependencies reveal that the dynamics of the allene buildup are controlled by the structural changes, whereas the decay is limited by the charge recombination step.

  13. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  14. Intramolecular Energy Relaxation and Statistical Rate Theory

    OpenAIRE

    Okitsugu, KAJIMOTO; Department of Chemistry, Kyoto University

    1994-01-01

    Statistical rate theory is essentially based on the state counting without any restrictions other than the energy and the angular momentum conservation. In this work, two kinds of restrictions are introduced into the statistical theory. The first restriction is related to the intramolecular energy flow within the reacting molecular system. The excess energy of reaction is made distributed with some bias favoring a specific degree of freedom. That is, the statistical weight of each product sta...

  15. Excited states of 117Sb populated in the reaction (α, 2nγ)

    International Nuclear Information System (INIS)

    Lobach, Y.N.; Trishin, V.V.

    1995-01-01

    The structure of 117 Sb levels populated in the reaction 115 In(α, 2nγ) at E α = 27.2 MeV is investigated. Data on γγ coincidences and the angular distributions of γ rays are used to construct the energy-level diagram and to determine the multipole orders of various transitions and the quantum numbers of levels. The positive-parity band based on the 9/2 + level is observed up to I = 23/2. A new band is revealed that is probably based on one of the isomer states. The levels of 117 Sb are interpreted in terms of the coupling of a proton to vibrations of the core or to three-quasiparticle excitations. Identical bands in the neighboring isotopes of Sb are discussed. 26 refs., 7 figs., 3 tabs

  16. Search of the first excited states 0+ of 108Cd and106Cd

    International Nuclear Information System (INIS)

    Roussiere, B.

    1981-01-01

    108 Cd and 106 Cd nuclei have been studied from the β + /EC decay of 108 In and 106 In using the isocele II isotope separator working on-line with the Orsay synchrocyclotron. In order to produce indium nuclei, a molten tin target is irradiated by protons (E = 200 MeV) or 3 He (E = 270 MeV). The comparison of saturation activity measured after mass separation with the one measured before mass-separation has allowed us to determine the average delay-time of indium isotopes and the overall efficiency of the separator. Single γ rays, conversion electrons rays, γ-γ-t and γ-e - -t coincidence measurements have been performed to build level schemes of 108 Cd and 106 Cd. In 108 Cd, the first excited 0 + state has been established unambiguously. This state preferably decays to the 2 2 + and not to the 2 1 + as it does in the even-even neighbouring Cd nuclei. An excited 0 + state is proposed in 106 Cd. These states could not be interpreted as headstate of collective band corresponding to a shape different from the ground state one. On the other hand, the model of G. Alaga (vibrator + two proton holes), as well as the IBA2 F. Iachello one seem to be able to describe the low-lying states properties. Finally, the feeding balance and the deduced log ft values have led us to discuss the possible values of the 108 In and 106 In isomeric state spins [fr

  17. Excited states built on the 6- isomer in 3786Rb49

    International Nuclear Information System (INIS)

    Winter, G.; Schwengner, R.; Reif, J.; Prade, H.; Doering, J.; Wirowski, R.; Nicolay, N.; von Brentano, P.; Grawe, H.; Schubart, R.

    1994-01-01

    High-spin states of the doubly-odd nucleus 86 Rb containing 37 protons and 49 neutrons have been investigated via the reaction 82 Se( 7 Li,3n) using 7 Li ions with energies between 30 and 35 MeV. The new level scheme is based on prompt γγ coincidences, angular distributions and directional correlation orientation ratios of γ rays as well as on linear polarizations of some strong γ rays and contains levels with excitation energies up to 7.9 MeV and tentative spins up to 16ℎ. For fifteen of the levels lifetimes in the ps region have been determined by analyzing the Doppler shift of γ rays. Several fast M1 transitions with B(M1)approx-gt 0.3W.u. have been identified. The new high-spin level scheme of 86 Rb is interpreted on the basis of shell-model calculations in the configuration space 1p 3/2 , 0f 5/2 , 1p 1/2 , and 0g 9/2 for the protons and 1p 1/2 , 0g 9/2 , and 1d 5/2 for the neutrons. The energies of the observed levels with I>5 as well as most of the observed electromagnetic transition probabilities could be well described. The excitation of a 0g 9/2 neutron over the N=50 shell gap into the d 5/2 orbital is predicted to cause remarkable alterations only for states with I π ≥15 + . Some of the reduced M1 transition probabilities calculated within the shell model are found to depend critically on the parametrization used to describe the residual interaction

  18. Can we Predict Quantum Yields Using Excited State Density Functional Theory for New Families of Fluorescent Dyes?

    Science.gov (United States)

    Kohn, Alexander W.; Lin, Zhou; Shepherd, James J.; Van Voorhis, Troy

    2016-06-01

    For a fluorescent dye, the quantum yield characterizes the efficiency of energy transfer from the absorbed light to the emitted fluorescence. In the screening among potential families of dyes, those with higher quantum yields are expected to have more advantages. From the perspective of theoreticians, an efficient prediction of the quantum yield using a universal excited state electronic structure theory is in demand but still challenging. The most representative examples for such excited state theory include time-dependent density functional theory (TDDFT) and restricted open-shell Kohn-Sham (ROKS). In the present study, we explore the possibility of predicting the quantum yields for conventional and new families of organic dyes using a combination of TDDFT and ROKS. We focus on radiative (kr) and nonradiative (knr) rates for the decay of the first singlet excited state (S_1) into the ground state (S_0) in accordance with Kasha's rule. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950). For each dye compound, kr is calculated with the S_1-S_0 energy gap and transition dipole moment obtained using ROKS and TDDFT respectively at the relaxed S_1 geometry. Our predicted kr agrees well with the experimental value, so long as the order of energy levels is correctly predicted. Evaluation of knr is less straightforward as multiple processes are involved. Our study focuses on the S_1-T_1 intersystem crossing (ISC) and the S_1-S_0 internal conversion (IC): we investigate the properties that allow us to model the knr value using a Marcus-like expression, such as the Stokes shift, the reorganization energy, and the S_1-T_1 and S_1-S_0 energy gaps. Taking these factors into consideration, we compare our results with those obtained using the actual Marcus theory and provide explanation for discrepancy. T. Kowalczyk, T. Tsuchimochi, L. Top, P.-T. Chen, and T. Van Voorhis, J. Chem. Phys., 138, 164101 (2013). M. Kasha, Discuss. Faraday Soc., 9, 14 (1950).

  19. QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base.

    Science.gov (United States)

    Guo, Wei-Wei; Zhang, Teng-Shuo; Fang, Wei-Hai; Cui, Ganglong

    2018-02-14

    Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S 2 ( 1 ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T 1 ( 3 ππ*). In the first one, the S 2 ( 1 ππ*) system first decays to the S 1 ( 1 nπ*) state near the S 2 /S 1 conical intersection, which is followed by an efficient S 1 → T 1 intersystem crossing process at the S 1 /T 1 crossing point; in the second one, an efficient S 2 → T 2 intersystem crossing takes place first, and then, the T 2 ( 3 nπ*) system hops to the T 1 ( 3 ππ*) state through an internal conversion process at the T 2 /T 1 conical intersection. Moreover, an S 2 /S 1 /T 2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.

  20. Triplet Excited State of BODIPY Accessed by Charge Recombination and Its Application in Triplet-Triplet Annihilation Upconversion.

    Science.gov (United States)

    Chen, Kepeng; Yang, Wenbo; Wang, Zhijia; Iagatti, Alessandro; Bussotti, Laura; Foggi, Paolo; Ji, Wei; Zhao, Jianzhang; Di Donato, Mariangela

    2017-10-12

    The triplet excited state properties of two BODIPY phenothiazine dyads (BDP-1 and BDP-2) with different lengths of linker and orientations of the components were studied. The triplet state formation of BODIPY chromophore was achieved via photoinduced electron transfer (PET) and charge recombination (CR). BDP-1 has a longer linker between the phenothiazine and the BODIPY chromophore than BDP-2. Moreover, the two chromophores in BDP-2 assume a more orthogonal geometry both at the ground and in the first excited state (87°) than that of BDP-1 (34-40°). The fluorescence of the BODIPY moiety was significantly quenched in the dyads. The charge separation (CS) and CR dynamics of the dyads were studied with femtosecond transient absorption spectroscopy (k CS = 2.2 × 10 11 s -1 and 2 × 10 12 s -1 for BDP-1 and BDP-2, respectively; k CR = 4.5 × 10 10 and 1.5 × 10 11 s -1 for BDP-1 and BDP-2, respectively; in acetonitrile). Formation of the triplet excited state of the BODIPY moiety was observed for both dyads upon photoexcitation, and the triplet state quantum yield depends on both the linker length and the orientation of the chromophores. Triplet state quantum yields are 13.4 and 97.5% and lifetimes are 13 and 116 μs for BDP-1 and BDP-2, respectively. The spin-orbit charge transfer (SO-CT) mechanism is proposed to be responsible for the efficient triplet state formation. The dyads were used for triplet-triplet annihilation (TTA) upconversion, showing an upconversion quantum yield up to 3.2%.

  1. Ultraviolet Photodissociation Action Spectroscopy of Protonated Azabenzenes

    Science.gov (United States)

    Hansen, Christopher S.; Blanksby, Stephen J.; Bieske, Evan; Reimers, Jeffrey R.; Trevitt, Adam J.

    2014-06-01

    Azabenzenes are derivatives of benzene containing between one and six nitrogen atoms. Protonated azabenzenes are the fundamental building blocks of many biomolecules, charge-transfer dyes, ionic liquids and fluorescent tags. However, despite their ubiquity, there exists limited spectroscopic data that reveals the structure, behaviour and stability of these systems in their excited states. For the case of pyridinium (C_5H_5N-H^+), the simplest azabenzene, the electronic spectroscopy is complicated by short excited state lifetimes, efficient non-radiative deactivation methods and limited fluorescence. Ultraviolet (UV) photodissociation (PD) action spectroscopy provides new insight into the spectroscopic details, excited state behaviour and photodissociation processes of a series of protonated azabenzenes including pyridinium, diazeniums and their substituted derivatives. The room-temperature UV PD action spectra, often exhibiting vibronic detail,^b will be presented alongside PD mass spectra and the kinetic data from structurally-diagnostic ion-molecule reaction kinetics. Analysis of the spectra, with the aid of quantum chemical calculations, reveal that many azabenzenes prefer a non-planar excited state geometry reminiscent of the structures encountered in 'channel 3'-like deactivation of aromatics. The normal modes active in this isomerization contribute largely to the spectroscopy of the N-pyridinium ion as they build upon totally-symmetric vibronic transitions leading to repeating sets of closely-spaced spectral features. Hansen, C.S. et al.; J. Am. Soc. Mass Spectrom. 24:932-940 (2013) Hansen, C.S. et al.; J. Phys. Chem. A 117:10839-10846 (2013)

  2. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Science.gov (United States)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  3. Chromium(0), molybdenum(0), and tungsten(0) isocyanide complexes as luminophores and photosensitizers with long-lived excited states

    International Nuclear Information System (INIS)

    Bueldt, Laura A.; Wenger, Oliver S.

    2017-01-01

    Arylisocyanide complexes based on earth-abundant Group 6 d 6 metals are interesting alternatives to photoactive complexes made from precious metals such as Ru II , Re I , Os II , or Ir III . Some of these complexes have long-lived 3 MLCT excited states that exhibit luminescence with good quantum yields as well as nano- to microsecond lifetimes, and they are very strongly reducing. Recent studies have demonstrated that Cr 0 , Mo 0 , and W 0 arylisocyanide complexes have great potential for applications in luminescent devices, photoredox catalysis, and dye-sensitized solar cells. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  5. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    International Nuclear Information System (INIS)

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-01-01

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed

  6. Resonance processes in e - H2 collisions: Dissociative attachment and dissociation from vibrationally and rotationally excited states

    International Nuclear Information System (INIS)

    Fabrikant, I.; Xu, Y.; Wadehra, J.M.

    2002-01-01

    We summarize theoretical studies of dissociative electron attachment to rovibrationally excited H2 molecules by comparing results of earlier local calculations with the results of more recent nonlocal complex potential calculations. The extension of the resonance theory to the near-threshold resonant dissociation is discussed and results are shown for dissociation from vibrationally excited states. Contributions from two negative-ion resonances, 2 Σ + u shape resonance and 2 Σ + g Feshbach resonance, are analysed. We also demonstrate the isotope effect by presenting the peak values of the dissociative attachment cross section for all five isotopic substitutes of H 2

  7. Intramolecular electron transfer through a bridging carboxylate group coordinated to two cobalt(III)-ions

    International Nuclear Information System (INIS)

    Wieghardt, K.

    1978-01-01

    Reduction of the binuclear μ-p-nitrobenzoato -di-μ-hydroxo -bis[triammine cobalt(III)] cation with (CH 3 ) 2 COH radicals yields a radical cation with the p-nitrobenzoato radical being coordinated to two cobalt(III) ions at the carboxylic group. The unprotonated form of this species undergoes intramolecular electron transfer producing Co(II) (k = (3.3 +- 0.3). x 10 3 s -1 ). The role of the carboxylate group in the intramolecular electron transfer process is tentatively assessed in terms of an intramolecular outer-sphere reaction because of lack of overlap of the donor orbitals (π) and the acceptor orbital (sigma). The protonated form of the radical cation (pKsub(a) = 2.5) disproportionates via a bimolecular process without production of Co(II). The effect of two coordinated Co(III) ions as compared to only one on the properties of the nitrobenzoate radical anion are discussed. (orig.) 891 HK 892 GM [de

  8. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  9. Inelastic p{sup 9}Be scattering and halo-structure of excited states of {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Ibraeva, E.T., E-mail: ibraeva.elena@gmail.com [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); Zhusupov, M.A. [Al-Farabi Kazakh National University, 050040, av. Al-Farabi 71, Almaty (Kazakhstan); Dzhazairov-Kakhramanov, A.V., E-mail: albert-j@yandex.ru [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); V.G. Fessenkov Astrophysical Institute “NCSRT” NSA RK, 050020, Observatory 23, Kamenskoe plato, Almaty (Kazakhstan); Krassovitskiy, P.M. [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan)

    2015-01-15

    The calculation of the differential cross-section of inelastic p{sup 9}Be scattering (to the levels J{sup π}=1/2{sup +}, 3/2{sup +}) was made in the framework of the Glauber diffraction theory. We have used the wave function of {sup 9}Be in the ground and excited states in the three-body 2αn model. Expansion in series by gaussoids of the wave function of {sup 9}Be and presentation of the Glauber's operator Ω in the form, conjugated with three-body wave function make it possible for us to analytically calculate the matrix elements of inelastic scattering, taking into account all of the multiplicities of scattering and rescattering on clusters and nucleons, which are components of {sup 9}Be. The drawn-up profiles of probability densities of excited state functions allow us to form conclusions on their extended neutron distribution. The differential cross-section with the wave function in model 1 (with the αα-Ali–Bodmer potential) is in good agreement with available experimental data at E=180 MeV.

  10. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Scalable implementations of accurate excited-state coupled cluster theories: application of high-level methods to porphyrin based systems

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Karol; Krishnamoorthy, Sriram; Olson, Ryan M.; Tipparaju, Vinod; Apra, Edoardo

    2011-11-30

    The development of reliable tools for excited-state simulations is emerging as an extremely powerful computational chemistry tool for understanding complex processes in the broad class of light harvesting systems and optoelectronic devices. Over the last years we have been developing equation of motion coupled cluster (EOMCC) methods capable of tackling these problems. In this paper we discuss the parallel performance of EOMCC codes which provide accurate description of the excited-state correlation effects. Two aspects are discuss in details: (1) a new algorithm for the iterative EOMCC methods based on the novel task scheduling algorithms, and (2) parallel algorithms for the non-iterative methods describing the effect of triply excited configurations. We demonstrate that the most computationally intensive non-iterative part can take advantage of 210,000 cores of the Cray XT5 system at OLCF. In particular, we demonstrate the importance of non-iterative many-body methods for achieving experimental level of accuracy for several porphyrin-based system.

  12. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    International Nuclear Information System (INIS)

    Stránský, Pavel; Macek, Michal; Cejnar, Pavel

    2014-01-01

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies

  13. Efficient evaluation of dielectric response functions and calculations of ground and excited state properties beyond local Density Functional approaches

    Science.gov (United States)

    Lu, Deyu; Li, Yan; Rocca, Dario; Viet Nguyen, H.; Gygi, Francois; Galli, Giulia

    2010-03-01

    A recently developed technique to diagonalize iteratively dielectric matrices [1], is used to carry out efficient, ab-initio calculations of dispersion interactions, and excited state properties of nanostructures. In particular, we present results for the binding energies of weakly bonded molecular crystals [2], obtained at the EXX/RPA level of theory, and for absorption spectra of semiconducting clusters, obtained by an iterative solution of the Bethe-Salpeter equations [3]. We show that the ability to obtain the eigenmodes of dielectric matrices from Density Functional perturbation theory, without computing single particle excited states, greatly improves the efficiency of both EXX/RPA and many body perturbation theory [3,4] calculations and opens the way to large scale computations. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B , 78, 113303, 2008; and H. Wilson, D. Lu, F. Gygi and G. Galli, Phys. Rev. B, 79, 245106, 2009. [2] D. Lu, Y. Li, D. Rocca and G. Galli, Phys. Rev. Lett, 102, 206411, 2009; and Y. Li, D. Lu, V. Nguyen and G. Galli, J. Phys. Chem. C (submitted) [3] D. Rocca, D. Lu and G. Galli, submitted. [4] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett. 100, 147601, 2008. Work was funded by DOE/Scidac DE-FC02-06ER25794 and DOE/BES DE-FG02-06ER46262.

  14. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350–1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  15. Photoinduced dynamics of a cyanine dye: parallel pathways of non-radiative deactivation involving multiple excited-state twisted transients.

    Science.gov (United States)

    Upadhyayula, Srigokul; Nuñez, Vicente; Espinoza, Eli M; Larsen, Jillian M; Bao, Duoduo; Shi, Dewen; Mac, Jenny T; Anvari, Bahman; Vullev, Valentine I

    2015-04-01

    Cyanine dyes are broadly used for fluorescence imaging and other photonic applications. 3,3'-Diethylthiacyanine (THIA) is a cyanine dye composed of two identical aromatic heterocyclic moieties linked with a single methine, -CH 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 . The torsional degrees of freedom around the methine bonds provide routes for non-radiative decay, responsible for the inherently low fluorescence quantum yields. Using transient absorption spectroscopy, we determined that upon photoexcitation, the excited state relaxes along two parallel pathways producing three excited-state transients that undergo internal conversion to the ground state. The media viscosity impedes the molecular modes of ring rotation and preferentially affects one of the pathways of non-radiative decay, exerting a dominant effect on the emission

  16. Nuclear structure studies by means of magnetic moments of excited states

    International Nuclear Information System (INIS)

    Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.

    1981-09-01

    Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)

  17. Intramolecular Barbier reaction in water: cyclopentane and cyclohexane ring closure

    Directory of Open Access Journals (Sweden)

    RADOMIR N. SAICIC

    2002-03-01

    Full Text Available Zinc or indium promoted intramolecular Barbier reactions of aldehydes containing a suitably positioned allylic or propargylic halide unit afford unsaturated cyclic alcohols in moderate yields.

  18. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  19. Intramolecular energy transfer reactions in polymetallic

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, J.

    1990-11-01

    This report is concerned with intramolecular, energy-transfer reactions. The concept of preparing synthetically a complex molecular species, capable of absorbing a photon at one metal center (antenna fragment), transferring that energy to a second metal center (reactive fragment) via a bridging ligand was first reported by our group in 1979. It is now apparent that a major emphasis in inorganic chemistry in the future will involve these types of molecular ensembles. Complexes discussed include Rh, Ru, and Cu complexes. 23 refs., 14 tabs.

  20. Structural factors influencing the intramolecular charge transfer and photoinduced electron transfer in tetrapyrazinoporphyrazines.

    Science.gov (United States)

    Novakova, Veronika; Hladík, Petr; Filandrová, Tereza; Zajícová, Ivana; Krepsová, Veronika; Miletin, Miroslav; Lenčo, Juraj; Zimcik, Petr

    2014-03-21

    A series of unsymmetrical tetrapyrazinoporphyrazines (TPyzPzs) from the group of azaphthalocyanines with one peripherally attached amino substituent (donor) were synthesized, and their photophysical properties (fluorescence quantum yield and singlet oxygen quantum yield) were determined. The synthesized TPyzPzs were expected to undergo intramolecular charge transfer (ICT) as the main pathway for deactivating their excited states. Several structural factors were found to play a critical role in ICT efficiency. The substituent in the ortho position to the donor center significantly influences the ICT, with tert-butylsulfanyl and butoxy substituents inducing the strongest ICTs, whereas chloro, methyl, phenyl, and hydrogen substituents in this position reduce the efficiency. The strength of the donor positively influences the ICT efficiency and correlates well with the oxidation potential of the amines used as the substituents on the TPyzPz as follows: n-butylamine ICT (with conjugated donors and acceptors) in the TPyzPz also proved to be much stronger than a photoinduced electron transfer in which the donor and the acceptor are connected through an aliphatic linker.

  1. Intramolecular stabilization of a catalytic [FeFe]-hydrogenase mimic investigated by experiment and theory.

    Science.gov (United States)

    Pandey, Indresh Kumar; Natarajan, Mookan; Faujdar, Hemlata; Hussain, Firasat; Stein, Matthias; Kaur-Ghumaan, Sandeep

    2018-04-03

    The mono-substituted complex [Fe2(CO)5(μ-naphthalene-2-thiolate)2(P(PhOMe-p)3)] was prepared taking after the structural principles from both [NiFe] and [FeFe]-hydrogenase enzymes. Crystal structures are reported for this complex and the all carbonyl analogue. The bridging naphthalene thiolates resemble μ-bridging cysteine amino acids. One of the naphthyl moieties forms π-π stacking interactions with the terminal bulky phosphine ligand in the crystal structure and in calculations. This interaction stabilizes the reduced and protonated forms during electrocatalytic proton reduction in the presence of acetic acid and hinders the rotation of the phosphine ligand. The intramolecular π-π stabilization, the electrochemistry and the mechanism of the hydrogen evolution reaction were investigated using computational approaches.

  2. Angular distributions of four proton groups from the b10(d, p)b11 reaction

    NARCIS (Netherlands)

    Endt, P.M.; Paris, C.H.; Jongerius, H.M.; Valckx, F.P.G.

    Angular distributions have been measured of four proton groups from the B10(d, p)B11 reaction corresponding to transitions to the groundstate (group (0)) and the three lowest excited states of B11 (groups (1), (2) and (3)). A thin target of natural boron was bombarded with 310 keV deuterons and

  3. Chromium(0), molybdenum(0), and tungsten(0) isocyanide complexes as luminophores and photosensitizers with long-lived excited states

    Energy Technology Data Exchange (ETDEWEB)

    Bueldt, Laura A. [Institute of Inorganic Chemistry, University of Tuebingen, Auf der Morgenstelle 18, 72076, Tuebingen (Germany); Wenger, Oliver S. [Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel (Switzerland)

    2017-05-15

    Arylisocyanide complexes based on earth-abundant Group 6 d{sup 6} metals are interesting alternatives to photoactive complexes made from precious metals such as Ru{sup II}, Re{sup I}, Os{sup II}, or Ir{sup III}. Some of these complexes have long-lived {sup 3}MLCT excited states that exhibit luminescence with good quantum yields as well as nano- to microsecond lifetimes, and they are very strongly reducing. Recent studies have demonstrated that Cr{sup 0}, Mo{sup 0}, and W{sup 0} arylisocyanide complexes have great potential for applications in luminescent devices, photoredox catalysis, and dye-sensitized solar cells. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments

    International Nuclear Information System (INIS)

    Toniolo, A.; Ciminelli, C.; Persico, M.; Martinez, T.J.

    2005-01-01

    We have studied the cis→trans and trans→cis photoisomerization of azobenzene after n→π* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined 'on the fly' from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields

  6. Inelastic scattering of high transfer moment electrons to the first excited state (Jsup(π)=3-) of 208Pb

    International Nuclear Information System (INIS)

    Goutte, Dominique.

    1979-10-01

    A determination was made of an angular distribution of the inelastic scattering cross-sections of electrons by the first excited state (Jsup(π)=3 - , E*=2.615 MeV) of 208 Pb. The statistical accuracy of previous data was improved between 2 and 2.7 fm -1 and the area of transfer of moment was extended up to qsub(max)=3.4 fm -1 . Cross-sections up to 10 -37 cm 2 /sr were determined whereas the limit reached before was 7x10 -35 cm 2 /sr. In order to determine the transition charge density, it was put into parametric form by a Fourier-Bessel development using 12 coefficients and an 11 fm cut-off radius. The model error inherent in this method is reduced to an insignificant contribution by the sufficiently high transfer of moment. The experimental transition charge density was compared with the theoretical predictions [fr

  7. Study of doubly excited states of H- and He in the coupled-channel hypersperical adiabatic approach

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.

    1989-01-01

    Doubly excited states (DES) of H - and He are investigated within the coupled-channel hyperspherical adiabatic (HSA) approach. Influence of the angular and radial electron correlations on the rate of convergence of the values of the potential curves and matrix elements of radial coupling is studied numerically. The scheme based on molecular classification of the HSA basis states is used for the classification of DES. The results of the multichannel calculations of 1 S e and 1 P 0 DES of H - and He below the second threshold are presented. The obtained results are compared with other calculations and experiment. The region of applicability of the adiabatic approximation is discussed. 75 refs.; 10 tabs

  8. The radiative decays of excited states of transition elements located inside and near core-shell nanoparticles

    Science.gov (United States)

    Pukhov, Konstantin K.

    2017-12-01

    Here we discuss the radiative decays of excited states of transition elements located inside and outside of the subwavelength core-shell nanoparticles embedded in dielectric medium. Based on the quantum mechanics and quantum electrodynamics, the general analytical expressions are derived for the probability of the spontaneous transitions in the luminescent centers (emitter) inside and outside the subwavelength core-shell nanoparticle. Obtained expressions holds for arbitrary orientation of the dipole moment and the principal axes of the quadrupole moment of the emitter with respect to the radius-vector r connecting the center of the emitter with the center of the nanoparticle. They have simple form and show how the spontaneous emission in core-shell NPs can be controlled and engineered due to the dependence of the emission rates on core-shell sizes, radius-vector r and permittivities of the surrounding medium, shell, and core.

  9. Millimeter-wave and Submillimeter-wave Spectra of Aminoacetonitrile in the Three Lowest Vibrational Excited States

    Energy Technology Data Exchange (ETDEWEB)

    Esposti, Claudio Degli; Dore, Luca; Melosso, Mattia [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, I-40126 Bologna (Italy); Kobayashi, Kaori [Department of Physics, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Fujita, Chiho; Ozeki, Hiroyuki, E-mail: ozeki@env.sci.toho-u.ac.jp [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510 (Japan)

    2017-06-01

    It is important to study possible precursors of amino acids such as glycine to enable future searches in interstellar space. Aminoacetonitrile (NH{sub 2}CH{sub 2}CN) is one of the most feasible molecules for this purpose. This molecule was already detected toward Sgr B2(N). Aminoacetonitrile has a few low-lying vibrational excited states, and transitions within these states may be found in space. In this study, the pure-rotational transitions in the three lowest vibrational states in the 80–450 GHz range have been assigned and analyzed. It was found to be very important to include Coriolis coupling between the two lowest vibrational fundamentals, while the third one was unperturbed. The partition function was evaluated considering these new results.

  10. Symmetry-adapted density matrix renormalization group calculations of the primary excited states of poly(para-phenylene vinylene).

    Science.gov (United States)

    Bursill, Robert J; Barford, William

    2009-06-21

    The Pariser-Parr-Pople model of pi-conjugated electrons is solved by a three-block, symmetry-adapted density matrix renormalization group (DMRG) method for the light emitting polymer, poly(para-phenylene vinylene). The energies of the primary excited states are calculated. There is excellent agreement between theory and experiment when solid state screening is incorporated into the model parameters, enabling us to make an identification of the origin of the key spectroscopic features. Appendices describe important technical aspects of the three-block DMRG approach: Local Hilbert space efficiency and its relation to the matrix product formulation of the DMRG; an efficient computational procedure for constructing symmetry-adapted states for DMRG calculations; and correct superblock state targeting to ensure good convergence of the method.

  11. Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Royal Institute of Technology, Department of Physics, Stockholm (Sweden); University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Gadea, A. [CSIC-University of Valencia, Istituto de Fisica Corpuscular, Valencia (Spain); Valiente-Dobon, J.J. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Quintana, B. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); University of Oslo, Oslo (Norway); Mengoni, D. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Moeller, O.; Pietralla, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Dewald, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2017-10-15

    The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unshifted peak ratio method. The technique has been validated using data measured with the γ-ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed. (orig.)

  12. Sign Changes in the Electric Dipole Moment of Excited States in Rubidium-Alkaline Earth Diatomic Molecules

    Science.gov (United States)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2015-06-01

    In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347

  13. Cyanide-Assembled d10Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence.

    Science.gov (United States)

    Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O

    2018-01-26

    The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electronic Structure and Excited-State Dynamics of an Arduengo-Type Carbene and its Imidazolone Oxidation Product.

    Science.gov (United States)

    Schmitt, Hans-Christian; Flock, Marco; Welz, Eileen; Engels, Bernd; Schneider, Heidi; Radius, Udo; Fischer, Ingo

    2017-03-02

    We describe an investigation of the excited-state dynamics of isolated 1,3-di-tert-butyl-imidazoline-2-ylidene (tBu 2 Im, C 11 H 20 N 2 , m/z=180), an Arduengo-type carbene, by time- and frequency-resolved photoionization using a picosecond laser system. The energies of several singlet and triplet excited states were calculated by time-dependent density functional theory (TD-DFT). The S 1 state of the carbene deactivates on a 100 ps time scale possibly by intersystem crossing. In the experiments we observed an additional signal at m/z=196, that was assigned to the oxidation product 1,3-di-tert-butyl-imidazolone, tBu 2 ImO. It shows a well-resolved resonance-enhanced multiphoton ionization (REMPI) spectrum with an origin located at 36951 cm -1 . Several low-lying vibrational bands could be assigned, with a lifetime that depends strongly on the excitation energy. At the origin the lifetime is longer than 3 ns, but drops to 49 ps at higher excess energies. To confirm formation of the imidazolone we also performed experiments on benzimidazolone (BzImO) for comparison. Apart from a redshift for BzImO the spectra of the two compounds are very similar. The TD-DFT values display a very good agreement with the experimental data. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protonated serotonin: Geometry, electronic structures and photophysical properties

    Science.gov (United States)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  16. Sigmatropic proton shifts: a quantum chemical study.

    Science.gov (United States)

    Wang, Yi; Yu, Zhi-Xiang

    2017-09-13

    A quantum chemical study of [1,j] sigmatropic proton shifts in polyenyl anions and related conjugated systems has been performed. We found that the Woodward-Hoffmann rules can be applied to understand the stereochemical outcome of these sigmatropic rearrangements, showing that [1,j] sigmatropic proton shift occurs antarafacially when j = 4n + 2, while suprafacial proton shift is symmetry-allowed when j = 4n. The activation barriers for [1,j] proton shifts in polyenyl anions C j H j+3 - are 48.2 (j = 2), 32.8 (j = 4), 21.0 (j = 6), 40.5 (j = 8), and 49.1 (j = 10) kcal mol -1 , respectively. This trend can be explained by the trade-off between stereoelectronic requirement and ring strain in the proton shift transition structure. Among these reactions, only the [1,6] proton shift with the lowest activation barrier can occur intramolecularly under mild reaction conditions. The others are unlikely to take place in a direct manner. Consequently, proton shuttles are generally required to facilitate these sigmatropic proton shifts through a protonation/deprotonation mechanism.

  17. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Zhang, Wenkai; Alonso-Mori, Roberto

    2017-01-01

    -visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state...... of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2− in dimethylsulfoxide solution......We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV...

  18. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study.

    Science.gov (United States)

    Komoto, Keenan T; Kowalczyk, Tim

    2016-10-06

    To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.

  19. Influence of Intramolecular Charge Transfer and Nuclear Quantum Effects on Intramolecular Hydrogen Bonds in Azopyrimidines.

    Science.gov (United States)

    Bártová, Kateřina; Čechová, Lucie; Procházková, Eliška; Socha, Ondřej; Janeba, Zlatko; Dračínský, Martin

    2017-10-06

    Intramolecular hydrogen bonds (IMHBs) in 5-azopyrimidines are investigated by NMR spectroscopy and DFT computations that involve nuclear quantum effects. A series of substituted 5-phenylazopyrimidines with one or two hydrogen bond donors able to form IMHBs with the azo group is prepared by azo coupling. The barrier of interconversion between two rotamers of the compounds with two possible IMHBs is determined by variable temperature NMR spectroscopy and it is demonstrated that the barrier is significantly affected by intramolecular charge transfer. Through-hydrogen-bond scalar coupling is investigated in 15 N labeled compounds and the stability of the IMHBs is correlated with experimental NMR parameters and rationalized by path integral molecular dynamics simulations that involve nuclear quantum effects. Detailed information on the hydrogen bond geometry upon hydrogen-to-deuterium isotope exchange is obtained from a comparison of experimental and calculated NMR data.

  20. Effect of an external field on the reversible reaction of a neutral particle and a charged particle in three dimensions. II. Excited-state reaction.

    Science.gov (United States)

    Reigh, Shang Yik; Shin, Kook Joe; Kim, Hyojoon

    2010-04-28

    The excited-state reversible reaction of a neutral particle and a charged particle in an external electric field is studied in three dimensions. This work extends the previous investigation for the ground-state reaction [S. Y. Reigh et al., J. Chem. Phys. 129, 234501 (2008)] to the excited-state reaction with two different lifetimes and quenching. The analytic series solutions for all the fundamental probability density functions are obtained with the help of the diagonal approximation. They are found to be in excellent agreement with the exact numerical solutions of anisotropic diffusion-reaction equations. The analytical solutions for reaction rates and survival probabilities are also obtained. We find that the long-time kinetic transition from a power-law decrease to an exponential increase can be controlled by the external field strength or excited-state decay rates or both.

  1. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    International Nuclear Information System (INIS)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-01-01

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated

  2. Monte Carlo simulation on teaching of luminescence and excited states decay kinetics; Simulacao Monte Carlo no ensino de luminescencia e cinetica de decaimento de estado excitado

    Energy Technology Data Exchange (ETDEWEB)

    Winnischofer, Herbert; Araujo, Marcio Peres de; Dias Junior, Lauro Camargo; Novo, Joao Batista Marques [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2010-07-01

    A software based in the Monte Carlo method have been developed aiming the teaching of important cases of mechanisms found in luminescence and in excited states decay kinetics, including: multiple decays, consecutive decays and coupled systems decays. The Monte Carlo Method allows the student to easily simulate and visualize the luminescence mechanisms, focusing on the probabilities of the related steps. The software CINESTEX was written for FreeBASIC compiler; it assumes first-order kinetics and any number of excited states, where the pathways are allowed with probabilities assigned by the user. (author)

  3. Ground State versus Excited State: Discrepancy in Electronic Communication in a Series of meso-meso Two-Atom-Bridged Diporphyrins.

    Science.gov (United States)

    Zieleniewska, Anna; Harper, Shannon R; Arnold, Dennis P; Guldi, Dirk M

    2018-02-26

    The focal point of this work is the photophysical characterization of three meso-meso two-atom-bridged diporphyrins. Detailed investigations by means of cyclic voltammetry, absorption, fluorescence, and femto-/nanosecond transient absorption spectroscopy revealed the discrepancy in electronic communication in a series of meso-meso two-atom-bridged porphyrins in the ground state and in the excited state. In the ground state, the azo bridge facilitates the strongest electronic communication between the two porphyrins. In the excited state, however, the ethene bridge induces the strongest coupling, followed by the imine and azo bridges. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Position-dependent deuterium isotope effect on photoisomerization of ammineaquarhodium(III) complexes: identification of the excited-state vibronic deactivation mode

    International Nuclear Information System (INIS)

    Skibsted, L.H.

    1987-01-01

    cis to trans Photoisomerization quantum yields are increased by a factor of approximately two by deuteriation of co-ordinated water in tetra-amminediaquarhodium, but are almost insensitive to deuteriation of co-ordinated water in tetra-ammineaquachlororhodium and to deuteriation of co-ordinated ammonia in either complex; this identifies the dominating nonradiative deactivation mode (competing with the excited-state rearrangement) as a hydrogen-oxygen vibration in an excited-state intermediate of reduced co-ordination number. (author)

  5. Synthesis, Acidity Constants and Tautomeric Structure of the Diazonium Coupling Products of 2-(Benzylsulfanyl-7H-purin-6-one in Its Ground and Excited States

    Directory of Open Access Journals (Sweden)

    Hosam A. Saad

    2011-10-01

    Full Text Available A series of new 8-arylhydrazono-2-(benzylsulfanyl-7H-purin-6-ones 6 were synthesized, their electronic absorption spectra in different organic solvents of varying polarities were investigated and their acid dissociation constants in both the ground and excited states were determined spectrophotometrically. The tautomeric structures of such products were elucidated by spectral analyses and correlation of their acid dissociation constants with the Hammett equation. The results indicated that the studied compounds 6 exist predominantly in the hydrazone tautomeric form 6A in both the ground and excited states.

  6. Degrees of validity of models for the description of doubly excited states of H{sup -} and He

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaides, Cleanthes A. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece); Physics Department, National Technical University, Athens (Greece); Themelis, Spyros I.; Komninos, Yannis [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece)

    2002-04-28

    There are models for the description of doubly excited states (DES) of H{sup -} and He whose degrees of validity can be tested by comparing their results to those from theory based on the solution of the Schroedinger equation with the full Hamiltonian. Such comparisons are meaningful and definitive when a reasonably wide range of data are available. We present results for the energies and the nature of the wavefunctions of the four lowest {sup 1}P{sup o} DES of H{sup -} and of He for each hydrogenic manifold from N=6 up to 25. These are used to establish the degree and range of validity of the quantum number n{sub 2} introduced by Herrick and Kellman (Herrick D R and Kellman M E 1980 Phys. Rev. A 21 418) in their triatomic model for qualitative description of the spectra of DES, as well as of two classification schemes, as a function of level of excitation and of type of state. According to the model, the number n{sub 2} is equal to the number of nodes of the density {rho}({theta}{sub 12}) of the corresponding DES. We present results of calculations of {rho}({theta}{sub 12}) using correlated wavefunctions for the four lowest states in the N=10 and 25 manifolds. These show for the first time for such highly excited states how the angle opens as excitation increases. Furthermore, they indicate that n{sub 2} provides a valid picture even up to N=25. The first of the two classification schemes examined here is the (K,T) scheme, introduced by Herrick and Sinanoglu (Herrick D R and Sinanoglu O 1975 Phys. Rev. A 11 97). It is shown quantitatively that it deteriorates as N increases and Z decreases. The second scheme is the (F,T) scheme, introduced by Komninos et al (Komninos Y, Themelis S, Chrysos M and Nicolaides C A 1993 Int. J. Quantum Chem. Suppl. 27 399), where F=N-K-1 and N,K are not good numbers anymore. It is shown that it constitutes a consistently better representation, especially as the relative significance of electron correlation increases, as in the high

  7. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-01-12

    A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters.

  8. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    Directory of Open Access Journals (Sweden)

    Brennan Ashwood

    2017-02-01

    Full Text Available 6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studied in aqueous solution following UVA excitation at 345 nm in order to provide mechanistic insight regarding its photochemical reactivity and to scrutinize whether N9-glycosylation modulates its phototoxicity in solution. The experimental results are complemented with time-dependent density functional calculations that include solvent dielectric effects by means of a reaction-field solvation model. UVA excitation results in the initial population of the S2(ππ* state, which is followed by ultrafast internal conversion to the S1(nπ* state and then intersystem crossing to the triplet manifold within 560 ± 60 fs. A small fraction (ca. 25% of the population that reaches the S1(nπ* state repopulates the ground state. The T1(ππ* state decays to the ground state in 1.4 ± 0.2 μs under N2-purged conditions, using a 0.2 mM concentration of 6-thioguanine, or it can sensitize singlet oxygen in 0.21 ± 0.02 and 0.23 ± 0.02 yields in air- and O2-saturated solution, respectively. This demonstrates the efficacy of 6-thioguanine to act as a Type II photosensitizer. N9-glycosylation increases the rate of intersystem crossing from the singlet to triplet manifold, as well as from the T1(ππ* state to the ground state, which lead to a ca. 40% decrease in the singlet oxygen yield under air-saturated conditions. Enhanced vibronic coupling between the singlet and triplet manifolds due to a higher density of vibrational states is proposed to be responsible for the observed

  9. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    Energy Technology Data Exchange (ETDEWEB)

    Blancafort, Lluis [Institut de Quimica Computacional, Department de Quimica, Universitat de Girona, Campus de Montilivi, 17071 Girona (Spain); Gatti, Fabien [CTMM, Institut Charles Gerhardt Montpellier (UMR 5253), CC 1501, Universite Montpellier 2, 34095 Montpellier Cedex 05 (France); Meyer, Hans-Dieter [Theoretische Chemie, Ruprecht-Karls-Universitaet, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany)

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  10. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    International Nuclear Information System (INIS)

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-01-01

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  11. Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3.

    Science.gov (United States)

    Gonzalez-Vazquez, José P; Burn, Paul L; Powell, Benjamin J

    2015-11-02

    The lowest energy triplet state, T1, of organometallic complexes based on iridium(III) is of fundamental interest, as the behavior of molecules in this state determines the suitability of the complex for use in many applications, e.g., organic light-emitting diodes. Previous characterization of T1 in fac-Ir(ppy)3 suggests that the trigonal symmetry of the complex is weakly broken in the excited state. Here we report relativistic time dependent density functional calculations of the zero-field splitting (ZFS) of fac-Ir(ppy)3 in the ground state (S0) and lowest energy triplet (T1) geometries and at intermediate geometries. We show that the energy scale of the geometry relaxation in the T1 state is large compared to the ZFS. Thus, the natural analysis of the ZFS and the radiative decay rates, based on the assumption that the structural distortion is a small perturbation, fails dramatically. In contrast, our calculations of these quantities are in good agreement with experiment.

  12. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  13. Ab initio calculation on the low-lying excited states of Si2+ cation including spin–orbit coupling

    International Nuclear Information System (INIS)

    Liu, Yanlei; Zhai, Hongsheng; Zhang, Xiaomei; Liu, Yufang

    2013-01-01

    Highlights: • 24 Λ–S states are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ) are first reported. • The dissociation energies of the calculated electronic states are predicted in our work. • It is first time that the entire 54 Ω states generated from the 24 Λ–S states have been studied. • PECs of Λ–S and Ω states are depicted with the aid of avoided crossing rule between the same symmetry. - Abstract: Ab initio all-electron relativistic calculations of the low-lying excited states of Si 2 + have been performed at MRCI+Q/AVQZ level. The calculated electronic states, including 12 doublet and 12 quartet Λ–S states, are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ). Spin–orbit interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian, which causes the entire 24 Λ–S states to split into 54 Ω states. This is the first time that spin–orbit coupling (SOC) calculation has been performed on Si 2 + . The obtained potential energy curves (PECs) of Λ–S and Ω states are respectively depicted with the aid of the avoided crossing rule between the same symmetry. The spectroscopic constants of the bound Λ–S and Ω states are determined, and excellent agreements with the latest theoretical results are achieved

  14. Excited-state properties of a photochromic spirooxazine: double pathways for both fluorescence emission and camphorquinone-sensitized reaction.

    Science.gov (United States)

    di Nunzio, Maria Rosaria; Romani, Aldo; Favaro, Gianna

    2009-08-27

    In this article, we report a study on the singlet and triplet excited-state properties of a spirooxazine (1,3-dihydro-3,3-dimethyl-1-isobutyl-6'-(2,3-dihydro-1H-indol-1-yl)spiro[2H-indole-2,3'-3H-naphtho[2,1-b][1,4]oxazine]). The singlet state of this molecule is photoreactive: upon UV light stimulation, it produces a colored merocyanine that thermally reverts to the starting compound. A double-way radiative relaxation path was found for singlet-state excitation. Experimental observations on the absorption and fluorescence spectra were in excellent agreement with TD-DFT calculations for the singlet state. The triplet state, which could not be directly populated by intersystem crossing from the singlet, when reached by energy transfer from a suitable sensitizer (camphorquinone), yielded the colored merocyanine with quantum yield close to unity. However, the donor/acceptor interaction also originated a new photochromic system as a consequence of the competition of hydrogen abstraction with energy transfer in the interplay of the sensitizer with the substrate. The newly produced photochrome was structurally, spectrally, and photochemically characterized. It exhibited excellent colorability in both directly excited and triplet-sensitized photoreactions by virtue of high photoreaction quantum yield and rather slow bleaching rate of the colored form but also underwent significant degradation in the presence of oxygen that led to the destruction of the photochromic functionality.

  15. Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states

    International Nuclear Information System (INIS)

    Power, E.A.; Thirunamachandran, T.

    1993-01-01

    Spatial correlations between electromagnetic fields arising from neutral sources with electric-dipole transition moments are calculated using nonrelativistic quantum electrodynamics in the multipolar formalism. Expressions for electric-electric, magnetic-magnetic, and electric-magnetic correlation functions at two points r and r' are given for a source molecule in either a ground or an excited state. In contrast to the electric-electric and magnetic-magnetic cases there are no electric-magnetic correlations for a ground-state molecule. For an excited molecule the downward transitions contribute additional terms which have modulating factors depending on (r-r')/λ. From these correlation functions electric and magnetic energy densities are found by setting r=r'. These energy densities are then used in a response formalism to calculate intermolecular energy shifts. In the case of two ground-state molecules this leads to the Casimir-Polder potential. However, for a pair of molecules, one or both excited, there are additional terms arising from downward transitions. An important feature of these energies is that they exhibit an R -2 dependence for large intermolecular separations R. This dependence is interpreted in terms of the Poynting vector, which itself can be obtained by setting r=r' in the electric-magnetic correlation function

  16. Cotunneling spectroscopy and the properties of excited-state spin manifolds of Mn12 single molecule magnets

    Science.gov (United States)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2014-10-01

    We study charge transport through single molecule magnet (SMM) junctions in the cotunneling regime as a tool for investigating the properties of the excited-state manifolds of neutral Mn12 SMs. This study is motivated by a recent transport experiment [S. Kahle et al., Nano Lett. 12, 518 (2012), 10.1021/nl204141z] that probed the details of the magnetic and electronic structure of Mn12 SMMs beyond the ground-state spin manifold. A giant spin Hamiltonian and master equation approach is used to explore theoretically the cotunneling transport through Mn12-Ac SMM junctions. We identify SMM transitions that can account for both the strong and weak features of the experimental differential conductance spectra. We find the experimental results to imply that the excited spin-state manifolds of the neutral SMM have either different anisotropy constants or different g factors in comparison with its ground-state manifold. However, the latter scenario accounts best for the experimental data.

  17. Search for 2νββ excited state transitions and HPGe characterization for surface events in GERDA phase II

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern

    2016-03-01

    The search for the neutrinoless double beta (0νββ) decay is one of the most active fields in modern particle physics. This process is not allowed within the Standard Model and its observation would imply lepton number violation and would lead to the Majorana nature of neutrinos. The experimentally observed quantity is the half-life of the decay, which can be connected to the effective Majorana neutrino mass via nuclear matrix elements. The latter can only be determined theoretically and are currently affected by large uncertainties. To reduce these uncertainties one can investigate the well established two-neutrino double beta (2νββ) decay into the ground and excited states of the daughter isotope. These similar processes are allowed within the Standard Model. In this dissertation, the search for 2νββ decays into excited states is performed in {sup 110}Pd, {sup 102}Pd and {sup 76}Ge. Three gamma spectroscopy setups at the Felsenkeller (Germany), HADES (Belgium) and LNGS (Italy) underground laboratories are used to search for the transitions in {sup 110}Pd and {sup 102}Pd. No signal is observed leading to lower half-live bounds (90% C.I.) of 2.9 . 10{sup 20} yr, 3.9 . 10{sup 20} yr and 2.9 . 10{sup 20} yr for the 0/2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2} transitions in {sup 110}Pd and 7.9 . 10{sup 18} yr, 9.2 . 10{sup 18} yr and 1.5 . 10{sup 19} yr for the 0/2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2} transitions in {sup 102}Pd, respectively. This is a factor of 1.3 to 3 improvement compared to previous limits. The data of Phase I (Nov 2011 - May 2013) of the 0νββ decay experiment GERDA at LNGS is used to search for excited state transitions in {sup 76}Ge. The analysis is based on coincidences between two detectors and finds no signal. Lower half-life limits (90 % C.L.) of 1.6.10{sup 23} yr, 3.7.10{sup 23} yr and 2.3.10{sup 23} yr are obtained for the 2νββ 2{sup +}{sub 1}, 0{sup +}{sub 1} and 2{sup +}{sub 2

  18. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    Science.gov (United States)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  19. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  20. Electronic bands and excited states of III-V semiconductor polytypes with screened-exchange density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori [Department of Physics Engineering, Mie University, 1577 Kurima-Machiya, Tsu 514-8507 (Japan); Freeman, Arthur J. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-03-31

    The electronic band structures and excited states of III-V semiconductors such as GaP, AlP, AlAs, and AlSb for various polytypes are determined employing the screened-exchange density functional calculations implemented in the full-potential linearized augmented plane-wave methods. We demonstrate that GaP and AlSb in the wurtzite (WZ) structure have direct gap while III-V semiconductors in the zinc blende, 4H, and 6H structures considered in this study exhibit an indirect gap. Furthermore, we find that inclusion of Al atoms less than 17% and 83% in the hexagonal Al{sub x}Ga{sub 1−x}P and Al{sub x}Ga{sub 1−x}As alloys, respectively, leads to a direct transition with a gap energy of ∼2.3 eV. The feasibility of III-V semiconductors with a direct gap in WZ structure offers a possible crystal structure engineering to tune the optical properties of semiconductor materials.

  1. Fluorescence and Intramolecular Energy Transfer in Polyphenylene Dendrimers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Stefan, Alina; Wiesler, Uwe-Martin; Herrmann, Andreas; Grebel-Koehler, Dörthe; Qu, Jianqiang; Müllen, Klaus; Schryver, Frans C. De

    2003-01-01

    The fluorescence of polyphenylene dendrimers and the intramolecular energy transfer in polyphenylene dendrimers containing a perylenediimide core have been investigated in this paper. Polyphenylene dendrimers composed of tens or hundreds of out-of-plane twisted phenyl units exhibit strong

  2. Intramolecularly Hydrogen-Bonded Polypyrroles as Electro-Optical Sensors

    National Research Council Canada - National Science Library

    Nicholson, Jesse

    2001-01-01

    We have developed a new class of polypyrroles bearing both hydrogen-bond acceptor and hydrogen-donor groups such that the intramolecular hydrogen bonding holds the system planar enhancing conjugation...

  3. Two states are not enough: quantitative evaluation of the valence-bond intramolecular charge-transfer model and its use in predicting bond length alternation effects.

    Science.gov (United States)

    Jarowski, Peter D; Mo, Yirong

    2014-12-15

    The structural weights of the canonical resonance contributors used in the Two-state valence-bond charge-transfer model, neutral (N, R1) and ionic (VB-CT, R2), to the ground states and excited states of a series of linear dipolar intramolecular charge-transfer chromophores containing a buta-1,3-dien-1,4-diyl bridge have been computed by using the block-localized wavefunction (BLW) method at the B3LYP/6-311+G(d) level to provide the first quantitative assessment of this simple model. Ground- and excited-state analysis reveals surprisingly low ground-state structural weights for the VB-CT resonance form using either this Two-state model or an expanded Ten-state model. The VB-CT state is found to be more prominent in the excited state. Individual resonance forms were structurally optimized to understand the origins of the bond length alternation (BLA) of the bridging unit. Using a Wheland energy-based weighting scheme, the weighted average of the optimized bond lengths with the Two-state model was unable to reproduce the BLA features with values 0.04 to 0.02 Å too large compared to the fully delocalized (FD) structure (BLW: ca. -0.13 to -0.07 Å, FD: ca. -0.09 to -0.05 Å). Instead, an expanded Ten-state model fit the BLA values of the FD structure to within only 0.001 Å of FD. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Charge-resonance excitations in symmetric molecules - Comparison of linear response DFT with CC3 for the excited states of a model dimer

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby; Mikkelsen, Kurt V.; Møller, Klaus Braagaard

    2009-01-01

    to a reference CC3 calculation revealing a better description of the excited states by CAM-B3LYP than that of B3LYP. The Λ parameter introduced by Peach et al. [M.J.G. Peach, P. Benfield, T. Helgaker, D.J. Tozer, J. Chem. Phys. 128 (2008) 044118] does not always reveal the problematic charge-resonance states...

  5. Excited state potential energy surfaces and their interactions in FeIV[double bond, length as m-dash]O active sites

    Czech Academy of Sciences Publication Activity Database

    Srnec, Martin; Wong, S. D.; Solomon, E. I.

    2014-01-01

    Roč. 43, č. 47 (2014), s. 17567-17577 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : excited state potential energy * chemical analysis * Frontier molecular orbitals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  6. Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories

    International Nuclear Information System (INIS)

    Nakatsuji, H.

    1979-01-01

    The solutions of the SAC (symmetry-adapated-cluster) and SAC CI theories for the study of electron correlations in ground and excited states, respectively have been summarized. Variational and non-variational solutions are considered for both theories and their features are discussed. (Auth.)

  7. The Raman effect and its application to electronic spectroscopies in metal-centered species : Techniques and investigations in ground and excited states

    NARCIS (Netherlands)

    Browne, W.R.; J. McGarvey, J.

    In the decades since its discovery and somewhat limited early applications, Raman scattering has become the basis for the development of a variety of methods for probing molecular structure both in ground and electronically excited states. In this review, following a brief look at the underlying

  8. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  9. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  10. Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability

    DEFF Research Database (Denmark)

    Gauden, M.; Pezzella, A.; Panzella, L.

    2008-01-01

      Ultrafast time-resolved fluorescence spectroscopy has been used to investigate the excited state dynamics of the basic eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid  (DHICA) its acetylated, methylated and carboxylic ester derivatives as well as two oligomers, a dimer and a trim...

  11. International conference: Features of nuclear excitation states and mechanisms of nuclear reactions. 51. Meeting on nuclear spectroscopy and nuclear structure. The book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru

  12. Stimulated emission and excited-state absorption at room temperature on the 550 nm-laser transition in Er3+ doped YAlO3

    NARCIS (Netherlands)

    Pollnau, Markus; Heumann, E.; Huber, G.

    1994-01-01

    A pump- and probe-beam technique is used for measuring time-resolved and cw-pumped excited-state absorption (ESA) and stimulated-emission (SE) spectra of Er3+:YAlO3 with high resolution. In combination with absorption and fluorescence spectra, detailed information on the wavelengths and

  13. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    Science.gov (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  14. Luminescence and excited state dynamics in Bi.sup.3+./sup.-doped LiLaP.sub.4./sub.O.sub.12./sub. phosphates

    Czech Academy of Sciences Publication Activity Database

    Babin, Vladimir; Chernenko, K.; Demchenko, P.; Mihóková, Eva; Nikl, Martin; Pashuk, I.; Shalapska, T.; Voloshinovskii, A.; Zazubovich, S.

    2016-01-01

    Roč. 176, Aug (2016), s. 324-330 ISSN 0022-2313 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : photoluminescence * time-resolved spectroscopy * excited states Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.686, year: 2016

  15. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer

    Science.gov (United States)

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-01

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.

  16. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2012-03-08

    We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations

  17. Intramolecular Hydrogen Bonding Involving Organic Fluorine: NMR Investigations Corroborated by DFT-Based Theoretical Calculations

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Mishra

    2017-03-01

    Full Text Available The combined utility of many one and two dimensional NMR methodologies and DFT-based theoretical calculations have been exploited to detect the intramolecular hydrogen bond (HB in number of different organic fluorine-containing derivatives of molecules, viz. benzanilides, hydrazides, imides, benzamides, and diphenyloxamides. The existence of two and three centered hydrogen bonds has been convincingly established in the investigated molecules. The NMR spectral parameters, viz., coupling mediated through hydrogen bond, one-bond NH scalar couplings, physical parameter dependent variation of chemical shifts of NH protons have paved the way for understanding the presence of hydrogen bond involving organic fluorine in all the investigated molecules. The experimental NMR findings are further corroborated by DFT-based theoretical calculations including NCI, QTAIM, MD simulations and NBO analysis. The monitoring of H/D exchange with NMR spectroscopy established the effect of intramolecular HB and the influence of electronegativity of various substituents on the chemical kinetics in the number of organic building blocks. The utility of DQ-SQ technique in determining the information about HB in various fluorine substituted molecules has been convincingly established.

  18. Normal modes and the Duschinsky mixing of the ground- and excited-state vibrations of the green fluorescent protein chromophore

    Czech Academy of Sciences Publication Activity Database

    Gnanasekaran, Ramachandran

    2013-01-01

    Roč. 587, NOV 5 (2013), s. 61-67 ISSN 0009-2614 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : proton-transfer * gas-phase * GFP Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.991, year: 2013

  19. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    Science.gov (United States)

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  20. First observation of γ rays emitted from excited states south-east of 132Sn: The π g9/2 -1⊗ν f7 /2 multiplet of In13283

    Science.gov (United States)

    Jungclaus, A.; Gargano, A.; Grawe, H.; Taprogge, J.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Shimizu, Y.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Bönig, S.; Coraggio, L.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Ilieva, S.; Itaco, N.; Kröll, T.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Nishibata, H.; Odahara, A.; Orlandi, R.; Wendt, A.

    2016-04-01

    For the first time, the γ decay of excited states has been observed in a nucleus situated in the quadrant south-east of doubly magic 132Sn, a region in which experimental information so far is limited to ground-state properties. Six γ rays with energies of 50, 86, 103, 227, 357, and 602 keV were observed following the β -delayed neutron emission from Cd13385, populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN within the EURICA project. The new experimental information is compared to the results of a modern realistic shell-model calculation, the first one in this region very far from stability, focusing in particular on the π 0 g9/2 -1⊗ν 1 f7 /2 particle-hole multiplet in In13283. In addition, theoretical estimates based on a scaling of the two-body matrix elements for the π h11/2 -1⊗ν g9 /2 analog multiplet in Tl208127, one major proton and one major neutron shell above, are presented.

  1. Protonated nitrosamide

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.; Øgaard Madsen, J.

    1994-01-01

    The protonated nitrosamide, NH3NO+, has been generated by chemical ionization mass spectrometry. Although a direct search for this species in ammonia flames has proved negative, fast proton transfer to major flame constituents is supported experimentally as well as by MO calculations....

  2. Aromatic Fused [30] Heteroannulenes with NIR Absorption and NIR Emission: Synthesis, Characterization, and Excited-State Dynamics.

    Science.gov (United States)

    Mallick, Abhijit; Oh, Juwon; Kim, Dongho; Rath, Harapriya

    2016-06-06

    Two hitherto unknown planar aromatic [30] fused heterocyclic macrocycles (1.1.0.1.1.0), with NIR absorption in free-base form and protonation-induced enhanced NIR emission, have been synthesized from easy to make precursors. The induced correspondence of fusion on the macrocyclic structure, electronic absorption, and emission spectra have been highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Proton Transport

    Science.gov (United States)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  4. Proton-coupled electron transfer from tryptophan: a concerted mechanism with water as proton acceptor.

    Science.gov (United States)

    Zhang, Ming-Tian; Hammarström, Leif

    2011-06-15

    The mechanism of proton-coupled electron transfer (PCET) from tyrosine in enzymes and synthetic model complexes is under intense discussion, in particular the pH dependence of the PCET rate with water as proton acceptor. Here we report on the intramolecular oxidation kinetics of tryptophan derivatives linked to [Ru(bpy)(3)](2+) units with water as proton acceptor, using laser flash-quench methods. It is shown that tryptophan oxidation can proceed not only via a stepwise electron-proton transfer (ETPT) mechanism that naturally shows a pH-independent rate, but also via another mechanism with a pH-dependent rate and higher kinetic isotope effect that is assigned to concerted electron-proton transfer (CEP). This is in contrast to current theoretical models, which predict that CEP from tryptophan with water as proton acceptor can never compete with ETPT because of the energetically unfavorable PT part (pK(a)(Trp(•)H(+)) = 4.7 ≫ pK(a)(H(3)O(+)) ≈ -1.5). The moderate pH dependence we observe for CEP cannot be explained by first-order reactions with OH(-) or the buffers and is similar to what has been demonstrated for intramolecular PCET in [Ru(bpy)(3)](3+)-tyrosine complexes (Sjödin, M.; et al. J. Am. Chem. Soc.2000, 122, 3932. Irebo, T.; et al. J. Am. Chem. Soc.2007, 129, 15462). Our results suggest that CEP with water as the proton acceptor proves a general feature of amino acid oxidation, and provide further experimental support for understanding of the PCET process in detail. © 2011 American Chemical Society

  5. General active space commutator-based coupled cluster theory of general excitation rank for electronically excited states: implementation and application to ScH.

    Science.gov (United States)

    Hubert, Mickaël; Olsen, Jeppe; Loras, Jessica; Fleig, Timo

    2013-11-21

    We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.

  6. Selective Complexation of Cyanide and Fluoride Ions with Ammonium Boranes: A Theoretical Study on Sensing Mechanism Involving Intramolecular Charge Transfer and Configurational Changes.

    Science.gov (United States)

    Bhat, Haamid R; Jha, Prakash C

    2017-05-18

    The anion binding selectivity and the recognition mechanism of two isomeric boranes, namely, 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] + , 1, where "Mes" represents mesitylene and "Me" represents methyl) and 2-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline ([o-(Mes 2 B)C 6 H 4 (NMe 3 )] + , 2) has been investigated using density functional theory (DFT) and time dependent-density functional theory (TD-DFT) methods. Natural population analysis indicates that the central boron atoms in 1 and 2 are the most active centers for nucleophilic addition of anions. The negative magnitude of free energy changes (ΔG) reveals that out of CN - , F - , Cl - , Br - , NO 3 - , and HSO 4 - only the binding of CN - and F - with 1 and 2 is thermodynamically feasible and spontaneous. In addition, the calculated binding energies reveal that the CN - is showing lesser binding affinity than F - both with 1 and 2, while other ions, viz. NO 3 - , HSO 4 - , Br - , and Cl - , either do not bind at all or show very insignificant binding energy. The first excited states (S 1 ) of 1 and 2 are shown to be the local excited states with π → σ* transition by frontier molecular orbital analysis, whereas fourth excited states (S 4 ) of 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline cyanide ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] CN, 1CN, the cyano form of 1) and 4-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline fluoride ([p-(Mes 2 B)C 6 H 4 (NMe 3 )] F, 1F, the fluoro form of 1) and fifth excited state (S 5 ) of 2-[bis(2,4,6-trimethylphenyl)boranyl]-N,N,N-trimethylaniline fluoride ([o-(Mes 2 B)C 6 H 4 (NMe 3 )] F, 2F, the fluoro form of 2) are charge separation states that are found to be responsible for the intramolecular charge transfer (ICT) process. The synergistic effect of ICT and partial configuration changes induce fluorescence quenching in 1CN, 1F, and 2F after a significant internal conversion (IC) from S 4 and

  7. Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd2@C78]- and [Gd2@C80]-

    Science.gov (United States)

    Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.

    2017-09-01

    The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.

  8. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia

    2007-01-01

    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  9. Locally-excited (LE) versus charge-transfer (CT) excited state competition in a series of para-substituted neutral green fluorescent protein (GFP) chromophore models.

    Science.gov (United States)

    Olsen, Seth

    2015-02-12

    In this paper, I provide a characterization of the low-energy electronic structure of a series of para-substituted neutral green fluorescent protein (GFP) chromophore models using a theoretical approach that blends linear free energy relationships (LFERs) with state-averaged complete-active-space self-consistent field (SA-CASSCF) theory. The substituents are chosen to sample the Hammett σ(p) scale from R = F to NH2, and a model of the neutral GFP chromophore structure (R = OH) is included. I analyze the electronic structure for different members of the series in a common complete-active-space valence-bond (CASVB) representation, exploiting an isolobal analogy between active-space orbitals for different members of the series. I find that the electronic structure of the lowest adiabatic excited state is a strong mixture of weakly coupled states with charge-transfer (CT) or locally excited (LE) character and that the dominant character changes as the series is traversed. Chromophores with strongly electron-donating substituents have a CT-like excited state such as expected for a push-pull polyene or asymmetric cyanine. Chromophores with weakly electron-donating (or electron-withdrawing) substituents have an LE-like excited state with an ionic biradicaloid structure localized to the ground-state bridge π bond.

  10. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO){sub 2}I{sub 2} complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-15

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO){sub 2}I{sub 2}] (dcbpy4,4{sup '}-dicarboxy-2,2{sup '}-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I{sub 2}] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm{sup -1}) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  11. New limit for the half-life of double beta decay of {sup 94}Zr to the first excited state of {sup 94}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Dokania, N.; Nanal, V.; Gupta, G.; Pillay, R.G.; Ghosh, C. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Mumbai (India); Pal, S. [Tata Institute of Fundamental Research, Pelletron Linac Facility, Mumbai (India); Rath, P.K. [University of Lucknow, Department of Physics, Lucknow (India); Tretyak, V.I. [Institute for Nuclear Research, Kyiv (Ukraine); Garai, A.; Krishnamoorthy, H. [Tata Institute of Fundamental Research, India-based Neutrino Observatory, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Raina, P.K. [Indian Institute of Technology, Department of Physics, Rupnagar (India); Bhushan, K.G. [Bhabha Atomic Research Centre, Technical Physics Division, Mumbai (India)

    2017-04-15

    Neutrinoless double beta decay is a phenomenon of fundamental interest in particle physics. The decay rates of double beta decay transitions to the excited states can provide input for Nuclear Transition Matrix Element calculations for the relevant two neutrino double beta decay process. It can be useful as supplementary information for the calculation of Nuclear Transition Matrix Element for the neutrinoless double beta decay process. In the present work, double beta decay of {sup 94}Zr to the 2{sup +}{sub 1} excited state of {sup 94}Mo at 871.1 keV is studied using a low background ∝ 230 cm{sup 3} HPGe detector. No evidence of this decay was found with a 232 g.y exposure of natural zirconium. The lower half-life limit obtained for the double beta decay of {sup 94}Zr to the 2{sup +}{sub 1} excited state of {sup 94}Mo is T{sub 1/2}(0ν + 2ν) > 3.4 x 10{sup 19} y at 90% C.L., an improvement by a factor of ∝ 4 over the existing experimental limit at 90% C.L. The sensitivity is estimated to be T{sub 1/2} (0ν + 2ν) > 2.0 x 10{sup 19} y at 90% C.L. using the Feldman-Cousins method. (orig.)

  12. Effective Strategy for Conformer-Selective Detection of Short-Lived Excited State Species: Application to the IR Spectroscopy of the N1H Keto Tautomer of Guanine.

    Science.gov (United States)

    Asami, Hiroya; Tokugawa, Munefumi; Masaki, Yoshiaki; Ishiuchi, Shun-Ichi; Gloaguen, Eric; Seio, Kohji; Saigusa, Hiroyuki; Fujii, Masaaki; Sekine, Mitsuo; Mons, Michel

    2016-04-14

    The ultrafast deactivation processes in the excited state of biomolecules, such as the most stable tautomers of guanine, forbid any state-of-the-art gas phase spectroscopic studies on these species with nanosecond lasers. This drawback can be overcome by grafting a chromophore having a long-lived excited state to the molecule of interest, allowing thus a mass-selective detection by nanosecond R2PI and therefore double resonance IR/UV conformer-selective spectroscopic studies. The principle is presently demonstrated on the keto form of a modified 9-methylguanine, for which the IR/UV double resonance spectrum in the C═O stretch region, reported for the first time, provides evidence for extensive vibrational couplings within the guanine moiety. Such a successful strategy opens up a route to mass-selective IR/UV spectroscopic investigations on molecules exhibiting natural chromophores having ultrashort-lived excited states, such as DNA bases, their complexes as well as peptides containing short-lived aromatic residues.

  13. Ultrafast electronic and vibrational dynamics of stabilized A state mutants of the green fluorescent protein (GFP): Snipping the proton wire

    Science.gov (United States)

    Stoner-Ma, Deborah; Jaye, Andrew A.; Ronayne, Kate L.; Nappa, Jérôme; Tonge, Peter J.; Meech, Stephen R.

    2008-06-01

    Two blue absorbing and emitting mutants (S65G/T203V/E222Q and S65T at pH 5.5) of the green fluorescent protein (GFP) have been investigated through ultrafast time resolved infra-red (TRIR) and fluorescence spectroscopy. In these mutants, in which the excited state proton transfer reaction observed in wild-type GFP has been blocked, the photophysics are dominated by the neutral A state. It was found that the A∗ excited state lifetime is short, indicating that it is relatively less stabilised in the protein matrix than the anionic form. However, the lifetime of the A state can be increased through modifications to the protein structure. The TRIR spectra show that a large shifts in protein vibrational modes on excitation of the A state occurs in both these GFP mutants. This is ascribed to a change in H-bonding interactions between the protein matrix and the excited state.

  14. Study of proton and 2 protons emission from light neutron deficient nuclei around A=20; Etude de l'emission proton et de deux protons dans les noyaux legers deficients en neutrons de la region A=20

    Energy Technology Data Exchange (ETDEWEB)

    Zerguerras, T

    2001-09-01

    Proton and two proton emission from light neutron deficient nuclei around A=20 have been studied. A radioactive beam of {sup 18}Ne, {sup 17}F and {sup 20}Mg, produced at the Grand Accelerateur National d'Ions Lourds by fragmentation of a {sup 24}Mg primary beam at 95 MeV/A, bombarded a {sup 9}Be target to form unbound states. Proton(s) and nuclei from the decay were detected respectively in the MUST array and the SPEG spectrometer. From energy and angle measurements, the invariant mass of the decaying nucleus could be reconstructed. Double coincidence events between a proton and {sup 17}F, {sup 16}O, {sup 15}O, {sup 14}O and {sup 18}Ne were registered to obtain excitation energy spectra of {sup 18}Ne, {sup 17}F, {sup 16}F, {sup 15}F et {sup 19}Na. Generally, the masses measures are in agreement with previous experiments. In the case of {sup 18}Ne, excitation energy and angular distributions agree well with the predictions of a break up model calculation. From {sup 17}Ne proton coincidences, a first experimental measurement of the ground state mass excess of {sup 18}Na has been obtained and yields 24,19(0,15)MeV. Two proton emission from {sup 17}Ne and {sup 18}Ne excited states and the {sup 19}Mg ground state was studied through triple coincidences between two proton and {sup 15}O, {sup 16}O and {sup 17}Ne respectively. In the first case, the proton-proton relative angle distribution in the center of mass has been compared with model calculation. Sequential emission from excited states of {sup 17}Ne, above the proton emission threshold, through {sup 16}F is dominant but a {sup 2}He decay channel could not be excluded. No {sup 2}He emission from the 1.288 MeV {sup 17}Ne state, or from the 6.15 MeV {sup 18}Ne state has been observed. Only one coincidence event between {sup 17}Ne and two proton was registered, the value of the one neutron stripping reaction cross section of {sup 20}Mg being much lower than predicted. (author)

  15. The energy gap at Z=64 and its implications for the structure of excited states in the A approximately 150

    International Nuclear Information System (INIS)

    Broda, R.

    1980-01-01

    The experimental results are presented indicating the existence of the energy gap in the single particle level sequence at proton number Z=64. Studied experimentally yrast states of the 64 146 Gd 82 closed core nucleus and of the neighbouring nuclei are interpreted within the framework of the spherical shell model. The consideration of the simple shell model multiparticle configurations is suggested to explain the observed frequent appearance of the high-spin isomers in nuclei of the A approximately 150 region. Emphasized is the role of the octupole excitations in the level structures of considered nuclei and some aspects of the coupling of octupole vibrations with valence nucleons are discussed. (author)

  16. NMR investigation of intramolecular dynamics of heteroleptic triple-decker (porphyrinato)(phthalocyaninato) lanthanides.

    Science.gov (United States)

    Birin, Kirill P; Gorbunova, Yulia G; Tsivadze, Aslan Yu

    2011-11-21

    Intramolecular dynamics of meso-aryl substituents of porphyrin deck in the triple-decker lanthanide (porphyrinato)(phthalocyaninates) of symmetrical type [Br(4)TPP]Ln[(15C5)(4)Pc]Ln[Br(4)TPP] (Ln = La, Nd, Eu; [Br(4)TPP] = tetrakis-5,10,15,20-(4-bromophenyl)-porphyrinato-ligand; [(15C5)(4)Pc] = tetrakis-(15-crown-5)-phthalocyaninato-ligand) are investigated. Attempts to achieve coalescence were not successful, although the trend of exchanging protons to coalescence point was observed in the case of Nd and Eu complexes. The analysis of NOESY cross-peaks between exchanging protons allowed to evaluate the rotation rate constants at different temperatures. The activation barrier of the meso-aryl substituent rotation was calculated with Arrhenius equation based on determined rate constants. The rate constants are lower and activation barriers are higher than ones found previously for related compounds. This journal is © The Royal Society of Chemistry 2011

  17. Evaluation of intramolecular charge transfer state of 4-N, N ...

    Indian Academy of Sciences (India)

    intermediate charge transfer (TICT) model.2 Evidence suggests that the intramolecular TICT process from a donor to an acceptor could be achieved by a twist- ing motion of the donor moiety that promotes initially generated locally excited (LE) state to an energeti- cally relaxed charge transfer state (CT).2–6,8,13 Besides.

  18. Preparation of CN x /Carbon Nanotube Intramolecular Junctions by ...

    African Journals Online (AJOL)

    Preparation of CN x /Carbon Nanotube Intramolecular Junctions by Switching Gas Sources in Continuous Chemical Vapour Deposition. ... nanotubes were observed, and such different structures at both sides of the junctions indicated some interesting properties and offered potential applications for future nanodevices.

  19. The intramolecular electron transfer between copper sites of nitrite reductase

    DEFF Research Database (Denmark)

    Farver, O; Eady, R R; Abraham, Z H

    1998-01-01

    The intramolecular electron transfer (ET) between the type 1 Cu(I) and the type 2 Cu(II) sites of Alcaligenes xylosoxidans dissimilatory nitrite reductase (AxNiR) has been studied in order to compare it with the analogous process taking place in ascorbate oxidase (AO). This internal process is in...

  20. Effects of acid concentration on intramolecular charge transfer ...

    Indian Academy of Sciences (India)

    of P4C molecule.7 Temperature-assisted aggregation of alcohol has also been observed by following the fluo- rescence response of the same solute.20 Electrolyte- induced modulation of intramolecular charge transfer rate of P4C molecule in pure solvent has been explored and a non-monotonic dependence observed.18.