WorldWideScience

Sample records for excited transient molecules

  1. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  2. Electron-excited molecule interactions

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L.G. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA). Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  3. Exciting H2 Molecules for Graphene Functionalization

    DEFF Research Database (Denmark)

    Kyhl, Line; Bisson, Regis; Balog, Richard

    2018-01-01

    Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high resolution electron energy loss spectroscopy, x-ray photoemission spectroscopy measurements and density functional theory calculations. The meas......Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high resolution electron energy loss spectroscopy, x-ray photoemission spectroscopy measurements and density functional theory calculations....... The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nano-patterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows...... for the adsorption reaction at energies well below the dissociation threshold of the H-H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers...

  4. Electron Excitation of High Dipole Moment Molecules

    Science.gov (United States)

    Goldsmith, Paul; Kauffmann, Jens

    2018-01-01

    Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ~10^5 for HCN, yields the requirements for electron excitation to be of practical importance if n(H2) 10^{-5}, where the numerical factors reflect critical values n_c(H2) and X^*(e-). This indicates that in regions where a large fraction of carbon is ionized, X(e-) will be large enough to make electron excitation significant. The situation is in general similar for other “high density tracers”, including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, X^*(e-), defined by the value required for equal effect from collisions with H2 and e-. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of the emission from dense gas tracers in some molecular clouds (Pety et al. 2017, Kauffmann, Goldsmith et al. 2017, A&A, submitted). The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non--static.

  5. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  6. Photoion-photoelectron coincidence studies clusters and transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, K.

    1990-11-16

    Experimental photoion-photoelectron coincidence (PIPECO) spectra have been obtained at different nozzle stagnation pressures for Ar, Kr, Xe, and CO dimers and trimers in the wavelength regions corresponding to the respective ground states through all states accessible with a photon energy of 20 eV. Ionization energies for all ground states were measured and agree well with previously reported values. The formation of stable dimer ions from fragmentation of larger cluster ions initially produced by photoionization is efficient. For nozzle expansion conditions which minimize the formation of clusters larger than dimers, the intensities of the excited PIPECO bands for all clusters, except Ar{sub 2}{sup +} and Ar{sub 3}{sup +}, are found to be negligible with respect to the ground state PIPECO bands. The PIPECO technique has been used successfully to obtain the mass-selected threshold photoelectron spectra of the SO and S{sub 2}O transient molecules formed from a microwave discharge, effusive beam source. Analysis of the PIPECO spectra of all the clusters and transient molecules are presented. 177 refs., 32 figs., 6 tabs.

  7. Electron Impact Excitation-Ionization of Molecules

    Science.gov (United States)

    Ali, Esam Abobakr A.

    In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.

  8. Non-adiabatic rotational excitation of dipolar molecule under the ...

    Indian Academy of Sciences (India)

    adiabatically by half cycle pulse. (HCP) is controlled using the second ultrashort HCP. ... excited to create a rotational quantum wave packet, a .... Non-adiabatic rotational excitation of dipolar molecule under the influence of delayed pulses. 1215.

  9. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1992-01-01

    are vibrationally excited to states with quantum numbers 3-10. The rate and equilibrium constants for the process using vibrationally excited nitrogen molecules are calculated and expressions for the reaction rates are derived. A comparison with the ordinary process, where the nitrogen molecules...

  10. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate -4. The process was found to be effective up to 30 which is well beyond the ...

  11. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  12. Reaction dynamics of electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.; Mestdagh, J.; Schmidt, H.; Vernon, M.F. Covinsky, M.H.; Balko, B.A.; Lee, Y.T.

    1985-09-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3/sup 2/P/sub 3/2/,4/sup 2/D/sub 5/2/, and 5/sup 2/S/sub 1/2) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions.

  13. Reaction dynamics of electronically excited alkali atoms with simpler molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Schmidt, H.; Vernon, M. F.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1985-05-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3(2)P(sub 3/2), 4(2)D(sub 5/2), and 5(2)S(sub 1/2) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions.

  14. Alternating-laser excitation : single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, Johannes; Craggs, Timothy D.; Cordes, Thorben

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Forster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  15. Alternating-laser excitation: single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, J.C.; Craggs, T.D.; Cordes, T.

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Förster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  16. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Excitation energy transfer from dye molecules to doped graphene. #. R S SWATHIa and K L SEBASTIANb,∗. aSchool of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695 016, India. bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, ...

  17. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  18. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    Science.gov (United States)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  19. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Hongtao [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  20. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.

    Science.gov (United States)

    Nettels, Daniel; Haenni, Dominik; Maillot, Sacha; Gueye, Moussa; Barth, Anders; Hirschfeld, Verena; Hübner, Christian G; Léonard, Jérémie; Schuler, Benjamin

    2015-12-28

    Single-molecule Förster resonance energy transfer (FRET) experiments are an important method for probing biomolecular structure and dynamics. The results from such experiments appear to be surprisingly independent of the excitation power used, in contradiction to the simple photophysical mechanism usually invoked for FRET. Here we show that excited-state annihilation processes are an essential cause of this behavior. Singlet-singlet annihilation (SSA) is a mechanism of fluorescence quenching induced by Förster-type energy transfer between two fluorophores while they are both in their first excited singlet states (S1S1), which is usually neglected in the interpretation of FRET experiments. However, this approximation is only justified in the limit of low excitation rates. We demonstrate that SSA is evident in fluorescence correlation measurements for the commonly used FRET pair Alexa 488/Alexa 594, with a rate comparable to the rate of energy transfer between the donor excited state and the acceptor ground state (S1S0) that is exploited in FRET experiments. Transient absorption spectroscopy shows that SSA occurs exclusively via energy transfer from Alexa 488 to Alexa 594. Excitation-power dependent microsecond correlation experiments support the conclusion based on previously reported absorption spectra of triplet states that singlet-triplet annihilation (STA) analogously mediates energy transfer if the acceptor is in the triplet state. The results indicate that both SSA and STA have a pronounced effect on the overall FRET process and reduce the power dependence of the observed FRET efficiencies. The existence of annihilation processes thus seems to be essential for using FRET as a reliable spectroscopic ruler at the high excitation rates commonly employed in single-molecule spectroscopy.

  1. Inner-shell excitation and ionic fragmentation of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Tyliszczak, T. [McMaster Univ., Hamilton, Ontario (Canada); Cavell, R.G. [Univ. of Alberta, Edmonton (Canada)] [and others

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.

  2. Impact Assessment of Various Methods for Control of Synchronous Generator Excitation on Quality of Transient Processes

    Directory of Open Access Journals (Sweden)

    Y. D. Filipchik

    2011-01-01

    Full Text Available The paper considers an impact of various methods for control of an exciting current pertaining to a synchronous generator on the nature of transient processes. A control algorithm for the exciting current in relation to changes in sliding and acceleration of a generator rotor has been proposed in the paper. The algorithm makes it possible to improve quality of the transient processes due to reduction of oscillation range concerning as an active power so a δ-angle as well.

  3. Reactive scattering of electronically excited alkali atoms with molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl/sup -/ repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O/sub 2/ is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO/sub 2/ is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed.

  4. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  5. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  6. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  7. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules

    National Research Council Canada - National Science Library

    Crim, F. F

    2007-01-01

    ...) in solution and in the gas phase. This second experiment is one of the few direct comparisons of intramolecular vibrational energy flow in a solvated molecule with that in the same molecule isolated in a gas...

  8. Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Madsen, Mads Alexander Just; Bojsen-Møller, Emil

    2018-01-01

    Background: A session of motor skill learning is accompanied by transient increases in corticospinal excitability (CSE), which are thought to reflect acute changes in neuronal connectivity associated with improvements in sensorimotor performance. Factors influencing changes in excitability...... and motor skill with continued practice remain however to be elucidated. Objective/Hypothesis: Here we investigate the hypothesis that progressive motor practice during consecutive days can induce repeated transient increases in corticospinal excitability and promote motor skill learning. Methods: Changes...... in motor performance and CSE were assessed during 4 consecutive days of skill learning and 8 days after the last practice session. CSE was assessed as area under recruitment curves (RC) using transcranial magnetic stimulation (TMS). Two groups of participants (n = 12) practiced a visuomotor tracking...

  9. Renormalization of Optical Excitations in Molecules near a Metal Surface

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation. The energy of the charge-transfer excitations obtained for the gas phase complexes are found to be ...

  10. selective excitation of vibrational modes of polyatomic molecule

    Indian Academy of Sciences (India)

    Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...

  11. Transient radiation from a ring resonant medium excited by an ultrashort superluminal pulse

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, R M [Humboldt University at Berlin (Germany); Arkhipov, M V; Tolmachev, Yu A [Department of Physics, Saint-Petersburg State University (Russian Federation); Babushkin, I V [Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1 30167, Hannover (Germany)

    2015-06-30

    We report some specific features of transient radiation from a periodic spatially modulated one-dimensional medium with a resonant response upon excitation by an ultrashort pulse. The case of ring geometry (with particle density distributed along the ring according to the harmonic law) is considered. It is shown that the spectrum of scattered radiation contains (under both linear and nonlinear interaction), along with the frequency of intrinsic resonance of the medium, a new frequency, which depends on the pulse velocity and the spatial modulation period. The case of superluminal motion of excitation, when the Cherenkov effect manifests itself, is also analysed. (laser applications and other topics in quantum electronics)

  12. Transient radiation from a ring resonant medium excited by an ultrashort superluminal pulse

    Science.gov (United States)

    Arkhipov, R. M.; Arkhipov, M. V.; Babushkin, I. V.; Tolmachev, Yu A.

    2015-06-01

    We report some specific features of transient radiation from a periodic spatially modulated one-dimensional medium with a resonant response upon excitation by an ultrashort pulse. The case of ring geometry (with particle density distributed along the ring according to the harmonic law) is considered. It is shown that the spectrum of scattered radiation contains (under both linear and nonlinear interaction), along with the frequency of intrinsic resonance of the medium, a new frequency, which depends on the pulse velocity and the spatial modulation period. The case of superluminal motion of excitation, when the Cherenkov effect manifests itself, is also analysed.

  13. Millimeterwave spectroscopy of transient molecules produced in a ...

    Indian Academy of Sciences (India)

    chemical and astrophysical interest, e.g., molecular ions, free radicals and other unstable molecules can be generated inside the cell. Furthermore, an enamelled copper wire of. 2 mm diameter has been wound around the cell and connected to another DC regulated power supply (100 V, 10 A) to generate magnetic field ...

  14. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    We present a model suggesting high chemical activity of electronically-excited molecules colliding with an isolator surface. Initial photochemical event is accounted for as the result of molecular evolution on the electronically-excited potential energy surface (PES), where acceleration and align...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  15. Polarized Fluorescence from Nitrogen Molecules Excited by Polarized Electron Impact

    Science.gov (United States)

    Maseberg, J. W.; Furst, J. E.; Gay, T. J.

    2005-05-01

    We have measured the optical excitation function and relative Stokes parameters for 388±5 nm fluorescence from spin-polarized electron impact excitation of molecular N2. Specifically, the circular polarization fraction normalized to the incident electron spin, P3/Pe, was found to be +1(5)% at an electron energy of 30eV. This result, even though it contains contributions from 6 different triplet spectral lines, is consistent with the data of the Münster group [1] who measured the N2 337 nm C3πu - B3πg (ν'=0, ν=0) transition and found P3 Mette et al., Verhandl. DPG (VI) 29, 462 (1994). [2] A.S. Green et al., Phys. Rev. Lett. 92, 093201 (2004).

  16. Half-Collision Studies of Excited Metal Atom - Molecule Interactions

    Science.gov (United States)

    Kleiber, P. D.; Chen, J.; Wong, T. H.

    1998-05-01

    We report on state-resolved studies of excited state molecular dynamics, including both reactive and nonreactive (energy transfer) processes using half-collision techniques. Scattering state spectroscopy is used to investigate electronic orbital alignment effects on the reactive quenching of excited p-state alkali and alkaline earth metal atoms in collisions with hydrogen and methane. These experiments give information about the shape of the Born-Oppenheimer potential energy surfaces for the collision complex, and about the nonadiabatic interactions that couple the surfaces. Experimental results indicate two distinct reaction mechanisms are operative in the alkali metal-hydrogen quenching system. In complementary experiments, the spectroscopy and dissociation dynamics of weakly bound metal ion-hydrocarbon bimolecular complexes are studied using photofragmentation spectroscopic techniques in a tandem time-of- flight mass spectrometer. Results suggest that the quenching mechanism involves metal ion activation of the hydrocarbon bonds througha bond- stretch insertion process.

  17. Transient behavior of carbon nanotube thin film for adsorption of polar and non-polar molecules

    Science.gov (United States)

    Tomita, Yoshihiro; Inoue, Shuhei; Matsumura, Yukihiko

    2018-01-01

    Application of carbon nanotube (CNT) film as a gas sensor is highly desired. Transient behavior of molecular adsorption provides adsorption and desorption constants; however, to date, few researchers have investigated it. Here, we focused on the transient behavior of electric conductance of the CNT film during adsorption. Adsorption of polar molecules showed predicable behavior, but non-polar molecules showed a sudden change of electric conductance that indicated excess adsorption. We analyzed the process based on Langmuir adsorption, and adsorption and desorption constants, which are considered to be physical properties; however, these parameters did not show good agreement for the same film.

  18. Optical and Microwave Spectroscopy of Transient Metal-Containing Molecules

    Science.gov (United States)

    Steimle, Timothy

    2016-06-01

    Small metal containing molecules are ideal venues for testing Fundamental Physics, investigating relativistic effects, and modelling spin-orbit induced unimolecular dynamics. Electronic spectroscopy is an effective method for probing these phenomena because such spectra are readily recorded at the natural linewidth limited resolution and accuracy of 0.0001 wn. The information garnered includes fine and hyperfine interactions, magnetic and electric dipoles, and dynamics. With this in mind, three examples from our recent (unpublished) studies will be highlighted. SiHD: Long ago Duxbury et al. developed a semi-quantitative model invoking Renner-Teller and spin-orbit coupling of the tilde{a}3B{1}, tilde{X}1A1, and tilde{A}1B1, states to explain the observed local perturbations and anomalous radiative lifetimes in the visible spectrum. More recently, the tilde{a}3B1 to tilde{A}1B1 intersystem crossing has been modeled using both semi-classical transition state theory and quantum trajectory surface hopping dynamics. Here we investigate the effects of the reduced symmetry of SiHD on the spectroscopy and dynamics using 2D spectroscopy. Rotationally resolved lines in the origin tilde{X}1A'→ tilde{A}1A" band are assigned to both c-type transitions and additional axis-switching induced transitions. AuO and AuS: The observed markedly different bonding of thiols and alcohols to gold clusters should be traceable to the difference in Au-O and Au-S bonding. To investigate this difference we have used optical Stark and Zeeman spectroscopy to determine the permanent electric dipole moments and magnetic g-factors. The results are rationalized using simple m.o. correlation diagrams and compared to ab initio predictions. TaN: TaN is the best candidate to search for a T,P- violating nuclear magnetic quadrupole moment. Here we report on the optical 2D, Stark, and Zeeman spectra, and our efforts to record the pure rotational spectrum using the separated field pump/probe microwave

  19. Transient sloshing in half-full horizontal elliptical tanks under lateral excitation

    Science.gov (United States)

    Hasheminejad, Seyyed M.; Aghabeigi, Mostafa

    2011-07-01

    A semi-analytical mathematical model is developed to study the transient liquid sloshing characteristics in half-full horizontal cylindrical containers of elliptical cross section subjected to arbitrary lateral external acceleration. The problem solution is achieved by employing the linear potential theory in conjunction with conformal mapping, resulting in linear systems of ordinary differential equations which are truncated and then solved numerically by implementing Laplace transform technique followed by Durbin's numerical inversion scheme. A ramp-step function is used to simulate the lateral acceleration excitation during an idealized turning maneuver. The effects of tank aspect ratio, excitation input time, and baffle configuration on the resultant sloshing characteristics are examined. Limiting cases are considered and good agreements with available analytic and numerical solutions as well as experimental data are obtained.

  20. Changes in intracortical excitability after transient ischemic attack are associated with ABCD² score.

    Science.gov (United States)

    Edwards, Jodi D; Meehan, Sean K; Levy, Adrian R; Teal, Philip A; Linsdell, Meghan A; Boyd, Lara A

    2011-03-01

    A transient ischemic attack (TIA) is a brief ischemic episode characterized by rapid clinical resolution and not associated with permanent cerebral infarction. Whether changes in intracortical excitability persist and are related to clinical predictors of stroke risk after TIA remains unknown. Participants were individuals with clinically resolved motor TIA with no structural lesions and healthy age-matched control participants. Single and paired-pulse transcranial magnetic stimulation was used to measure intracortical excitability. Recruitment curves for percent inhibition and facilitation were used to derive excitability thresholds. Correlations between threshold asymmetries and ABCD(2) score were performed. Results showed a significant 3-way interaction with reduced inhibition and enhanced facilitation in the affected compared with unaffected hemisphere after TIA. No significant differences were present in healthy participants. Asymmetries in intracortical inhibition and facilitation were significantly correlated with ABCD(2) score. The present study is the first, to our knowledge, to demonstrate altered intracortical inhibition and facilitation in the affected hemisphere after TIA. These changes occurred on average 2 weeks after clinical signs of TIA resolved and in the absence of structural lesions and were not present in healthy age-matched control participants. Furthermore, this study is the first, to our knowledge, to report that changes in intracortical excitability after TIA are associated with ABCD(2) score.

  1. Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules

    DEFF Research Database (Denmark)

    Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa

    2016-01-01

    -srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become...... and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC...

  2. Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule

    CERN Document Server

    Laporta, V; Celiberto, R

    2016-01-01

    Vibrational-excitation cross sections of ground electronic state of carbon dioxide molecule by electron-impact through the CO2-(2\\Pi) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume decoupling between normal modes and employ the local complex potential model for the treatment of the nuclear dynamics, usually adopted for the electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and comparison with data present in the literature is discussed.

  3. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    Science.gov (United States)

    Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.

    2017-01-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  4. A Simple Hubbard Model for the Excited States of $\\pi$ Conjugated -acene Molecules

    CERN Document Server

    Sadeq, Z S

    2015-01-01

    In this paper we present a model that elucidates in a simple way the electronic excited states of $\\pi$ conjugated -acene molecules such as tetracene, pentacene, and hexacene. We use a tight-binding and truncated Hubbard model written in the electron-hole basis to describe the low lying excitations with reasonable quantitative accuracy. We are able to produce semi-analytic wavefunctions for the electronic states of the system, which allows us to compute the density correlation functions for various states such as the ground state, the first two singly excited states, and the lowest lying doubly excited state. We show that in this lowest lying doubly excited state, a state which has been speculated as to being involved in the singlet fission process, the electrons and holes behave in a triplet like manner.

  5. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described.

  6. Simultaneous Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral Imaging.

    Science.gov (United States)

    Huang, Tao; Phelps, Carey; Wang, Jing; Lin, Li-Jung; Bittel, Amy; Scott, Zubenelgenubi; Jacques, Steven; Gibbs, Summer L; Gray, Joe W; Nan, Xiaolin

    2018-01-23

    Single-molecule tracking (SMT) offers rich information on the dynamics of underlying biological processes, but multicolor SMT has been challenging due to spectral cross talk and a need for multiple laser excitations. Here, we describe a single-molecule spectral imaging approach for live-cell tracking of multiple fluorescent species at once using a single-laser excitation. Fluorescence signals from all the molecules in the field of view are collected using a single objective and split between positional and spectral channels. Images of the same molecule in the two channels are then combined to determine both the location and the identity of the molecule. The single-objective configuration of our approach allows for flexible sample geometry and the use of a live-cell incubation chamber required for live-cell SMT. Despite a lower photon yield, we achieve excellent spatial (20-40 nm) and spectral (10-15 nm) resolutions comparable to those obtained with dual-objective, spectrally resolved Stochastic Optical Reconstruction Microscopy. Furthermore, motions of the fluorescent molecules did not cause loss of spectral resolution owing to the dual-channel spectral calibration. We demonstrate SMT in three (and potentially more) colors using spectrally proximal fluorophores and single-laser excitation, and show that trajectories of each species can be reliably extracted with minimal cross talk. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Creation of a transient vapor nanogap between two fluidic reservoirs for single molecule manipulation.

    Science.gov (United States)

    Polonsky, Stanislav; Balagurusamy, Venkat S K; Ott, John A

    2014-08-01

    We introduce a new experimental technique for manipulating a segment of a charged macromolecule inside a transient nanogap between two fluidic reservoirs. This technique uses an FPGA-driven nanopositioner to control the coupling of a nanopipette with the liquid surface of a fluidic cell. We present results on creating a transient nanogap, triggered by a translocation of double-stranded DNA between a nanopipette and a fluidic cell, and measure the probability to find the molecule near the tip of the nanopipette after closing the gap. The developed platform will enable testing of our recent theoretical predictions for the behavior of charged macromolecule in a nanogap between two fluidic reservoirs.

  8. Creation of a transient vapor nanogap between two fluidic reservoirs for single molecule manipulation

    Science.gov (United States)

    Polonsky, Stanislav; Balagurusamy, Venkat S. K.; Ott, John A.

    2014-08-01

    We introduce a new experimental technique for manipulating a segment of a charged macromolecule inside a transient nanogap between two fluidic reservoirs. This technique uses an FPGA-driven nanopositioner to control the coupling of a nanopipette with the liquid surface of a fluidic cell. We present results on creating a transient nanogap, triggered by a translocation of double-stranded DNA between a nanopipette and a fluidic cell, and measure the probability to find the molecule near the tip of the nanopipette after closing the gap. The developed platform will enable testing of our recent theoretical predictions for the behavior of charged macromolecule in a nanogap between two fluidic reservoirs.

  9. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    Science.gov (United States)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  10. Bibliography on electron collisions with molecules: rotational and vibrational excitations, 1980-2000

    Energy Technology Data Exchange (ETDEWEB)

    Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    2001-04-01

    A list of papers reporting cross sections for electron-impact excitations of rotational and vibrational states of molecules is presented. The list includes both the theoretical and the experimental papers published in 1980-2000. An index by molecular species is provided at the end of the bibliography. (author)

  11. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  12. Vibronic excitation of single molecules: a new technique for studying low-temperature dynamics.

    Science.gov (United States)

    Kiraz, Alper; Ehrl, Moritz; Hellriegel, Christian; Bräuchle, Christoph; Zumbusch, Andreas

    2005-05-01

    Herein, we present vibronic excitation and detection of purely electronic zero-phonon lines (ZPL) of single molecules as a new tool for investigating dynamics at cryogenic temperatures. Applications of this technique to study crystalline and amorphous matrix materials are presented. In the crystalline environment, spectrally stable ZPLs are observed at moderate excitation powers. By contrast, investigations at higher excitation intensities reveal the opening of local degrees of freedom and spectral jumps, which we interpret as the observation of elementary steps in the melting of a crystal. We compare these results to spectral single-molecule trajectories recorded in a polymer. The way in which much more complicated spectral features can be analysed is shown. Surprisingly, pronounced spectral shifts on a previously not accessible large energy scale are observed, which are hard to reconcile with the standard two-level model system used to describe low-temperature dynamics in disordered systems.

  13. Nuclear-Motion Effects in Attosecond Transient Absorption Spectroscopy of Molecules

    CERN Document Server

    Bækhøj, Jens E; Madsen, Lars Bojer

    2015-01-01

    We investigate the characteristic effects of nuclear motion on attosecond transient absorption spectra in molecules by calculating the spectrum for different model systems. Two models of the hydrogen molecular ion are considered: one where the internuclear separation is fixed, and one where the nuclei are free to vibrate. The spectra for the fixed nuclei model are similar to atomic spectra reported elsewhere, while the spectra obtained in the model including nuclear motion are very different and dominated by extremely broad absorption features. These broad absorption features are analyzed and their relation to molecular dissociation investigated. The study of the hydrogen molecular ion validates an approach based on the Born-Oppenheimer approximation and a finite electronic basis. This latter approach is then used to study the three-dimensional hydrogen molecule including nuclear vibration. The spectrum obtained from H$_2$ is compared to the result of a fixed-nuclei calculation. In the attosecond transient ab...

  14. Light-Induced Structures in Attosecond Transient Absorption Spectroscopy of Molecules

    CERN Document Server

    Bækhøj, Jens E

    2015-01-01

    The nature of light-induced structures in attosecond transient absorption spectroscopy of molecular systems is investigated theoretically. It is shown how nuclear dynamics affect these structures. We find that a theoretical three-surface model captures the main characteristics in the calculated spectra. Based on this model, nuclear dynamics is divided into different categories, each category having unique signatures in the absorption spectra. Finally, we discuss the possibility for experimental observation of light-induced structures in molecules.

  15. Resonant electron-impact excitation of vibrational modes in polyatomic molecules

    Science.gov (United States)

    Cartwright, David C.; Trajmar, Sandor

    1996-04-01

    Measured differential cross sections (DCSs) for electron-impact excitation of bending vibrational modes involving an odd number of vibrational quanta in 0953-4075/29/8/018/img5 by 4 eV incident energy electrons display a strong trend to zero for forward and backward scattering which is characteristic of `symmetry-forbidden' transitions. This DCS behaviour is postulated here to be produced by a Feshbach resonant mechanism involving a low-lying bent excited state of 0953-4075/29/8/018/img5. The model described here identifies three additional low-lying bent excited states of 0953-4075/29/8/018/img5 which could also be parent states for core-excited Feshbach resonances, one of which may play a role in dissociative attachment in this 3.5 - 5.0 eV energy region. The resonant vibrational excitation mechanism proposed here is also believed to be operative in other polyatomic molecules and could be investigated by performing selected electron energy-loss measurements within the lowest energy resonance regions of the molecules 0953-4075/29/8/018/img8 and 0953-4075/29/8/018/img9.

  16. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  17. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    Science.gov (United States)

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, M.; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-11-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  18. Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies.

    Science.gov (United States)

    Kayal, Surajit; Roy, Khokan; Umapathy, Siva

    2018-01-14

    Ultrafast torsional dynamics plays an important role in the photoinduced excited state dynamics. Tetraphenylethylene (TPE), a model system for the molecular motor, executes interesting torsional dynamics upon photoexcitation. The photoreaction of TPE involves ultrafast internal conversion via a nearly planar intermediate state (relaxed state) that further leads to a twisted zwitterionic state. Here, we report the photoinduced structural dynamics of excited TPE during the course of photoisomerization in the condensed phase by ultrafast Raman loss (URLS) and femtosecond transient absorption (TA) spectroscopy. TA measurements on the S1 state reveal step-wise population relaxation from the Franck-Condon (FC) state → relaxed state → twisted state, while the URLS study provides insights on the vibrational dynamics during the course of the reaction. The TA spectral dynamics and vibrational Raman amplitudes within 1 ps reveal vibrational wave packet propagating from the FC state to the relaxed state. Fourier transformation of this oscillation leads to a ∼130 cm-1 low-frequency phenyl torsional mode. Two vibrational marker bands, Cet=Cet stretching (∼1512 cm-1) and Cph=Cph stretching (∼1584 cm-1) modes, appear immediately after photoexcitation in the URLS spectra. The initial red-shift of the Cph=Cph stretching mode with a time constant of ∼400 fs (in butyronitrile) is assigned to the rate of planarization of excited TPE. In addition, the Cet=Cet stretching mode shows initial blue-shift within 1 ps followed by frequency red-shift, suggesting that on the sub-picosecond time scale, structural relaxation is dominated by phenyl torsion rather than the central Cet=Cet twist. Furthermore, the effect of the solvent on the structural dynamics is discussed in the context of ultrafast nuclear dynamics and solute-solvent coupling.

  19. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    We present a modification of the Delta self-consistent field (Delta SCF) method of calculating energies of excited states in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Delta SCF approximation...... is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...

  20. Elastic peak of K shell excited HCl molecule: Comparison HCl-DCl-Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)], E-mail: marc.simon@ccr.jussieu.fr; Journel, L.; Guillemin, R. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Stolte, W.C. [Department of Chemistry, University of Nevada, Las Vegas, NV (United States); Minkov, I.; Gel' mukhanov, F.; Salek, P.; Agren, H. [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Carniato, S.; Taieb, R. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Hudson, A.C.; Lindle, D.W. [Department of Chemistry, University of Nevada, Las Vegas, NV (United States)

    2007-03-15

    Femtosecond dynamics has been recently observed by resonant X-ray Raman scattering (RXRS) after excitation along the dissociative Cl 1s{yields}6{sigma}* resonance of gas phase HCl. In this paper, we show a method to take into account and correct for self-absorption of the elastic peak, in order to allow for quantitative comparison with theory. We have performed measurements on the DCl molecule exhibiting ultrafast nuclear motion. A comparison between HCl and DCl is presented.

  1. ARTICLE Volume-conserved Twist Excited-state of π-Conjugated Molecules

    Science.gov (United States)

    Sun, Qin-chao; Liu, Jian-yong; Hao, Yan; Yang, Xi-chuan

    2010-12-01

    The excited state characters of HY103 have been studied by means of time-resolved photon emission (time-correlated single photon counting) and time dependent density functional theory calculations. The experimental and theoretical results demonstrate that HY103 dyes undergo an efficient one-bond-flip motion after photoexicitation at room temperature, which leads to a very short lifetime of the normal fluorescence state, and a weak fluorescence emission around 670 nm. However, when HY103 are excited in amorphous glasses at 77 K, the normal fluorescence emission is prolonged to nanoseconds time scale about 2 ns, and the fluorescence emission is enhanced. Furthermore, a new emission state is produced, which is characterized as a volume-conserved twisted (VCT) state. This is the first observation of a VCT state. The experiment indicates that the VCT motion of excited state of π-conjugated molecules in restricted environment can form a stable emission state, and the excited state character of π-conjugated molecules in restricted environment is complex.

  2. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    Science.gov (United States)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  3. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  4. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Pamela Mei-Ying [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  5. Transient absorption and lasing without inversion in an artificial molecule via Josephson coupling energy

    Science.gov (United States)

    Hamedi, Hamid Reza

    2015-03-01

    This letter investigates the dynamical behavior of the absorption in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is found that the ratio of the Josephson coupling energy to the capacitive coupling strength provides an extra controlling parameter for manipulating transient absorption behaviors. It is also realized that in the presence of an incoherent pumping field, lasing without inversion can be obtained just through the joint effect of the Josephson coupling energy and the capacitive coupling strength. Results may provide some new possibilities for solid-state quantum information science.

  6. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  7. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  8. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible....

  9. History-dependent excitability as a single-cell substrate of transient memory for information discrimination.

    Directory of Open Access Journals (Sweden)

    Fabiano Baroni

    Full Text Available Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon the current context that the neuron "sees" through the subset of the network impinging on it in the immediate past, the same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of History-Dependent Excitability (HDE as a measure of the propensity to firing in any moment in time, linking the subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF neuron, and the inductive behavior of a Generalized Integrate and Fire (GIF neuron with subthreshold damped oscillations. This framework allows us to characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics, and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the recognition of these cell-specific discrimination properties might further our understanding of neuronal network computations and their relationships to the distribution and

  10. Mode coupling and multiquantum vibrational excitations in Feshbach-resonant positron annihilation in molecules

    Science.gov (United States)

    Gribakin, G. F.; Stanton, J. F.; Danielson, J. R.; Natisin, M. R.; Surko, C. M.

    2017-12-01

    The dominant mechanism of low-energy positron annihilation in polyatomic molecules is through positron capture in vibrational Feshbach resonances (VFR). In this paper, we investigate theoretically the effect of anharmonic terms in the vibrational Hamiltonian on positron annihilation rates. Such interactions enable positron capture in VFRs associated with multiquantum vibrational excitations, leading to enhanced annihilation. Mode coupling can also lead to faster depopulation of VFRs, thereby reducing their contribution to the annihilation rates. To analyze this complex picture, we use coupled-cluster methods to calculate the anharmonic vibrational spectra and dipole transition amplitudes for chloroform, chloroform-d1, 1,1-dichloroethylene, and methanol, and use these data to compute positron resonant annihilation rates for these molecules. Theoretical predictions are compared with the annihilation rates measured as a function of incident positron energy. The results demonstrate the importance of mode coupling in both enhancement and suppression of the VFR. There is also experimental evidence for the direct excitation of multimode VFR. Their contribution is analyzed using a statistical approach, with an outlook towards more accurate treatment of this phenomenon.

  11. A model for energy transfer in collisions of atoms with highly excited molecules.

    Science.gov (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2015-05-21

    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  12. Near threshold vibrational excitation of molecules by positron impact: A projection operator approach

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Marcio T. do N [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)], E-mail: mvarella@if.usp.br; Oliveira, Eliane M. de; Lima, Marco A.P. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil)

    2008-02-15

    We report vibrational excitation ({nu}{sub i}=0{yields}{nu}{sub f}=1) cross-sections for positron scattering by H{sub 2} and model calculations for the ({nu}{sub i}=0{yields}{nu}{sub f}=1) excitation of the C-C symmetric stretch mode of C{sub 2}H{sub 2}. The Feshbach projection operator formalism was employed to vibrationally resolve the fixed-nuclei phase shifts obtained with the Schwinger multichannel method. The near threshold behavior of H{sub 2} and C{sub 2}H{sub 2} significantly differ in the sense that no low lying singularity (either virtual or bound state) was found for the former, while a e{sup +}-acetylene virtual state was found at the equilibrium geometry (this virtual state becomes a bound state upon stretching the molecule). For C{sub 2}H{sub 2}, we also performed model calculations comparing excitation cross-sections arising from virtual (-i{kappa}{sub 0}) and bound (+i{kappa}{sub 0}) states symmetrically located around the origin of the complex momentum plane (i.e. having the same {kappa}{sub 0}). The virtual state is seen to significantly couple to vibrations, and similar cross-sections were obtained for shallow bound and virtual states.

  13. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents

    Science.gov (United States)

    Beckstead, Ashley Ann

    UV radiation from the sun is strongly absorbed by DNA, and the resulting electronic excited states can lead to the formation of mutagenic photoproducts. Decades of research have brought to light the excited-state dynamics of single RNA and DNA nucleobases, but questions remain about the nature of excited states accessed in DNA strands. In this thesis, I present ultrafast spectroscopic observations of photoinduced electron transfer from the oxidatively damaged bases, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine, to adenine in three dinucleotides. The results reveal that charge transfer states are formed on a timescale faster than our instrumental resolution (electron transfer efficiently returns the excited-state population to the ground state on timescales from tens to hundreds of ps. In addition to recent spectroscopic observations of charge transfer state species in DNA by other groups, our results have augmented understanding of the long-lived transient signals observed in DNA strands. The observation of photoinduced electron transfer in these oxidatively damaged nucleobases also supports a recent proposal regarding the role of oxidative products in pre-RNA catalysis. I discuss these observations in the contexts of fundamental DNA excited-state dynamics and prebiotic chemical evolution. In this thesis, I also present the first ultrafast spectroscopic investigation of violacein, a pigment isolated from Antarctic bacteria. Despite claims for the photoprotective role of this pigment, there has never been a spectroscopic analysis of excited-state deactivation in violacein. Emission spectra, fluorescence quantum yields and excited-state lifetimes of violacein in various solvents were measured for the first time. Both the fluorescence quantum yield and excited-state lifetime of violacein increase in increasingly viscous solvents, suggesting a large-scale motion mediates excited-state deactivation. I compare these

  14. Femtosecond photoelectron imaging of transient electronic states and Rydberg atom emission from electronically excited he droplets.

    Science.gov (United States)

    Kornilov, Oleg; Bünermann, Oliver; Haxton, Daniel J; Leone, Stephen R; Neumark, Daniel M; Gessner, Oliver

    2011-07-14

    Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.

  15. Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact

    CERN Document Server

    Chaudhry, Afzal

    2011-01-01

    Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...

  16. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  17. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  18. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  19. Electronic excitation and deexcitation of atoms and molecules in nonequilibrium plasmas; Hiheiko plasma chu no denshi reiki ryushi hanno katei

    Energy Technology Data Exchange (ETDEWEB)

    Shimamori, H. [Fukui University of Technology, Fukui (Japan)

    1997-05-20

    Regarding excitation and deexcitation due to collision of electrons and deexcitation due to collision of baryons in nonequilibrium plasma, explanation is made about the general characteristics of the elementary processes involving their formation and disappearance and about the prediction of their sectional areas and velocity constants. As for the process of the formation of excited atoms and molecules by collision of electrons, it may be divided into the direct excitation in the ground state, excitation and light emission toward the resonance state, reexcitation and transformation of excited particles, recombination of electrons and positive atomic ions, and dissociation and recombination of electrons and positive molecular ions. As for the process of the disappearance of excited particles, there exist various courses it may follow, and it is quite complicated because it is dependent on the types of particles involved and the conditions the process proceeds under. Although the skeleton has been built of the theory of derivation of the sectional area of excitation due to collision of electrons and atoms/molecules, yet it is accurate enough only when applied to simple atomic/molecular systems, is far from satisfying in general, and is to be augmented by data from future experiments. 22 refs., 3 figs., 1 tab.

  20. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing

    Science.gov (United States)

    2012-03-13

    REPORT FINAL REPORT - contract No. W911NF-09-C-0135 Part I. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation...W911NF-09-C-0135 Part I. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach Part II. Altairnano...Nanosensors" A Single Molecule – Multiple Excitation Source Approach. The partnership of Altairnano, Inc. and Western Michigan University produced one

  1. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Rivera, Luis A.; Sewell, Thomas D.; Thompson, Donald L. [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211-7600 (United States); Wagner, Albert F. [Argonne National Laboratory, Chemical Sciences and Engineering Division, Argonne, Illinois 60439 (United States)

    2015-01-07

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane “simultaneously” colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed

  2. Pressure Effects on the Relaxation of an Excited Nitromethane Molecule in Argon Bath

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.; Thompson, Donald L.

    2015-01-07

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is similar to 100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed

  3. The reactions of ground and excited state sodium atoms with hydrogen halide molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1988-10-01

    The reactions of ground and excited state Na atoms with hydrogen halide (HX) molecules have been studied using the crossed molecular beams method. With both increasing translational and increasing electronic energy, the reactive cross sections increase in the reactions of HCl and HBr. From product angular and velocity distributions detailed center-of-mass information is derived. For the reactions of Na (3 2S 1/2, 3 2P 1/2, 4 2D 5/2, 5 2S 1/2) with HCl, the product NaCl is back-scattered with respect to the incoming Na atom in the center-of-mass frame of reference. The reaction of each Na state studied with HCl is direct and proceeds via collinear and near-collinear Na-Cl-H approach geometries. For the Na (3 2P 3/2) and Na (4 2D 5/2) reactions with HCl the predominant transition state symmetry is 2Σ in a collinear (C ∞ν) Na-Cl-H geometry. This is consistent with the reaction proceeding via electron transfer from the Na atom to the halide atom. Absolute reactive cross sections for each state of Na studied with HCl were determined by comparison with both small and large angle elastic scattering. We were unable to observe Na atoms with over 4 eV of electronic energy react with HF up to collision energies of 13 kcal/mole.

  4. Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation.

    Science.gov (United States)

    Thompson, L T; Moyer, J R; Disterhoft, J F

    1996-09-01

    learning. 5. Both learning-specific changes in CA3 increased neuronal excitability. Both changes were highly time dependent. AHPs were reduced maximally 1-24 h after learning, then increased, returning to basal (naive) levels within 7 days and remaining basal thereafter. The decay rate of accommodation to basal levels preceded that of the AHP by several days. 6. Other membrane properties, including action potential characteristics, resting potential, and input resistance, were unchanged by learning. The restriction of the observed changes to two interrelated measures of excitability concurs with earlier reports that learning-specific changes in the mammalian hippocampus are linked to changes in a limited number of membrane conductances. 7. Learning, not long-term memory or performance of the learned behavior, was linked to the excitability changes. Neurons from rabbits that failed to acquire the task after considerable training exhibited no excitability changes. Neurons from pseudoconditioned rabbits were indistinguishable from neurons of behaviorally naive controls. Finally, neurons from rabbits that explicitly demonstrated long-term retention of the conditioned response were indistinguishable from those of naive controls. 8. Behavioral changes persisted for extremely long periods, but the observed changes in hippocampal excitability were transient and greatest soon after learning. Excitability was enhanced for a period of a few days, a period demonstrated in other eyeblink studies to be required for memory consolidation. Because hippocampal excitability then returned to basal levels but memory of the learned task persisted, postconsolidation memory traces (the "engram") must be extrahippocampal.

  5. Resonant excitation of ethylene molecules in the combustion flame CVD of diamond using a wavelength tunable CO2 laser

    Science.gov (United States)

    Xie, Z. Q.; Park, J. B.; He, X. N.; Gao, Y.; Zhou, Y. S.; Lu, Y. F.

    2010-02-01

    CO2 laser resonant excitations of precursor molecules were applied in combustion flame synthesis of diamond films. The combustion flame was produced from a mixture of ethylene (C2H4), acetylene (C2H2) and oxygen (O2). A wavelength-tunable CO2 laser with wavelength range from 9.2 to 10.9 μm was used for wavelength-matched excitation of the ethylene molecules. By irradiating the flame using CO2 laser at 10.532 μm, the ethylene molecules were resonantly excited through the CH2 wagging vibrational mode (ν7, 949.3 cm-1). Irradiation of the flame using the common CO2 laser wavelength at 10.591 μm was also carried out for comparison. It was found that diamond synthesis was more obviously enhanced by the CO2 laser resonant excitation at 10.532 μm as compared to that at 10.591 μm. Firstly, the flame was shortened by 50%, indicating a promoted reaction in the process. Secondly, the diamond grain sizes as well as the diamond film thicknesses were increased by 200~300% and 160% respectively, indicating a higher growth rate of diamond films. Finally, Raman spectra of the diamond sample showed a sharp diamond peak at 1334 cm-1 and a suppressed G-band, indicating higher diamond quality.

  6. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  7. The generation of stationary π-electron rotations in chiral aromatic ring molecules possessing non-degenerate excited states.

    Science.gov (United States)

    Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-01-21

    The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules.

  8. Photophysical aspects of single-molecule detection by two-photon excitation with consideration of sequential pulsed illumination.

    Science.gov (United States)

    Niesner, R; Roth, W; Gericke, Karl-Heinz

    2004-05-17

    An important goal in single molecule fluorescence correlation spectroscopy is the theoretical simulation of the fluorescence signal stemming from individual molecules and its autocorrelation function. The simulation approaches developed up to now are based exclusively on continuous-wave (cw) illumination and consequently on cw-excitation. However, this approximation is no longer valid in the case of two-photon excitation, for which pulsed illumination is usually employed. We present a novel theoretical model for the simulation of the fluorescence signal of single molecules and its autocorrelation function with consideration of the time dependence of the excitation flux and thus of all illumination-dependent photoprocesses: two-photon excitation, induced emission and photobleaching. Further important characteristics of our approach are the consideration of the dependence of the photobleaching rate on illumination and the low intersystem-crossing rates of the studied coumarins. Moreover, using our approach, we can predict quantitatively the effect of the laser pulse width on the fluorescence signal of a molecule, that is, the contributions of the photobleaching and saturation effects, and thus we can calculate the optimal laser pulse width. The theoretical autocorrelation functions were fitted to the experimental data, and we could ascertain a good agreement between the resulting and the expected parameters. The most important parameter is the photobleaching constant sigma, the cross section of the transition Sn<--S1, which characterises the photostability of the molecules independent of the experimental conditions. Its value is 1.7 x 10(-23) cm2 for coumarin 153 and 5 x 10(-23) cm2 for coumarin 314.

  9. Transient optical response of ultrafast nonequilibrium excited metals: effects of electron-electron contribution to collisional absorption.

    Science.gov (United States)

    Colombier, J P; Combis, P; Audouard, E; Stoian, R

    2008-03-01

    Approaching energy coupling in laser-irradiated metals, we point out the role of electron-electron collision as an efficient control factor for ultrafast optical absorption. The high degree of laser-induced electron-ion nonequilibrium drives a complex absorption pattern with consequences on the transient optical properties. Consequently, high electronic temperatures determine largely the collision frequency and establish a transition between absorptive regimes in solid and plasma phases. In particular, taking into account umklapp electron-electron collisions, we performed hydrodynamic simulations of the laser-matter interaction to calculate laser energy deposition during the electron-ion nonequilibrium stage and subsequent matter transformation phases. We observe strong correlations between optical and thermodynamic properties according to the experimental situations. A suitable connection between solid and plasma regimes is chosen in accordance with models that describe the behavior in extreme, asymptotic regimes. The proposed approach describes as well situations encountered in pump-probe types of experiments, where the state of matter is probed after initial excitation. Comparison with experimental measurements shows simulation results which are sufficiently accurate to interpret the observed material behavior. A numerical probe is proposed to analyze the transient optical properties of matter exposed to ultrashort pulsed laser irradiation at moderate and high intensities. Various thermodynamic states are assigned to the observed optical variation. Qualitative indications of the amount of energy coupled in the irradiated targets are obtained.

  10. Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Maccarrone, M.; Veldink, G.A.; Finazzi Agrò, A.

    1995-01-01

    Protoplasts were isolated from lentil (Lens culinaris) roots and their suitability as a transient expression system was investigated. After transfecting the protoplasts with the -glucuronidase (GUS) gene by either electroporation or polyethylene glycol (PEG), the specific activity of the reporter

  11. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.

    Science.gov (United States)

    Faber, C; Boulanger, P; Attaccalite, C; Duchemin, I; Blase, X

    2014-03-13

    Many-body Green's function perturbation theories, such as the GW and Bethe-Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn-Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules. The perspectives and challenges that many-body perturbation theory is facing, such as the role of self-consistency, the calculation of forces and potential energy surfaces in the excited states, or the development of embedding techniques specific to the GW and Bethe-Salpeter equation formalisms, are outlined.

  12. A semi-classical approach to the calculation of highly excited rotational energies for asymmetric-top molecules.

    Science.gov (United States)

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N; Yachmenev, Andrey; Jensen, Per

    2017-01-18

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations.

  13. Fluorescence anisotropy of indole molecules under two-photon excitation in the spectral range of 485-510 nm

    Science.gov (United States)

    Sasin, M. E.; Tushkanov, V. I.; Smolin, A. G.; Vasyutinskii, O. S.

    2017-10-01

    Decay of polarized fluorescence in indole dissolved in propylene glycol under two-photon excitation by femtosecond laser pulses in the wavelength range of 485-510 nm has been studied. It is shown that under the experimental conditions used the fluorescence decay signal can be well described by a single excited state lifetime τf and a single rotation diffusion time τrot. By processing the data obtained, the times τf and τrot as well as anisotropy parameter r 0 characterizing the symmetry of two-photon excitation of indole molecules have been determined. Decreasing of the anisotropy parameter r0 down to zero under two-photon excitation energy higher than 5.1 eV has been observed. Interpretation of the obtained results have been done on the basis of ab initio quantum-mechanical computations. A model of energy relaxation under the condition of twophoton excitation of indole in a polar solvent has been discussed.

  14. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  15. Laboratory and observational studies of transient molecules at microwave and millimeter/submillimeter wavelengths

    Science.gov (United States)

    Zack, Lindsay Nicole

    In this dissertation, techniques of high-resolution rotational spectroscopy have been used to measure the spectra of molecules in both laboratory and astronomical settings. In the laboratory, small metal-bearing molecules containing zinc, iron, nickel, titanium, yttrium, and scandium have been studied at microwave and millimeter/submillimeter wavelengths in order to determine their rotational, fine, and hyperfine constants. These molecules were synthesized in situ in direct-absorption and Fourier-transform microwave spectrometers using Broida-type ovens and laser ablation methods. From the spectroscopic parameters, information about fundamental physical properties and electronic character could be obtained. Radio telescopes were used to measure the spectra of molecules in different interstellar environments. A new molecule, FeCN, was detected toward the circumstellar envelope of the carbon-rich asymtotic giant branch star, IRC+10216, marking the first iron-bearing molecule detected in the interstellar medium. The telescopes were also used to conduct a study of the evolved planetary nebula, NGC 7293, or the Helix Nebula. In the Helix, CO, HCO+, and H2CO were observed at several positions offset from the central star to obtain densities and kinetic temperatures throughout the Helix. A map of the HCO+ J = 1→ 0 transition was also constructed, showing that HCO+ is widespread throughout the Helix, instead of being photodissociated and destroyed, as theoretical models of planetary nebulae predict.

  16. Laser-induced photochemical gas-phase reactions of vibrationally excited triplet molecules

    Science.gov (United States)

    Zalesskaya, G. A.; Yakovlev, D. L.; Sambor, E. G.

    2002-05-01

    Mechanisms and rates of laser-induced gas-phase reactions of vibrationally excited triplet ketones were studied after adding electron and hydrogen donors using time-resolved delayed fluorescence. The influence of various bimolecular competing processes on DF quenching was analyzed.

  17. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    Energy Technology Data Exchange (ETDEWEB)

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  18. Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2010-10-01

    Full Text Available Except for a few reactions involving electronically excited molecular or atomic oxygen or nitrogen, atmospheric chemistry modelling usually assumes that the temperature dependence of reaction rates is characterized by Arrhenius' law involving kinetic temperatures. It is known, however, that in the upper atmosphere the vibrational temperatures may exceed the kinetic temperatures by several hundreds of Kelvins. This excess energy has an impact on the reaction rates. We have used upper atmospheric OH populations and reaction rate coefficients for OH(v=0...9+O3 and OH(v=0...9+O to estimate the effective (i.e. population weighted reaction rates for various atmospheric conditions. We have found that the effective rate coefficient for OH(v=0...9+O3 can be larger by a factor of up to 1470 than that involving OH in its vibrational ground state only. At altitudes where vibrationally excited states of OH are highly populated, the OH reaction is a minor sink of Ox and O3 compared to other reactions involving, e.g., atomic oxygen. Thus the impact of vibrationally excited OH on the ozone or Ox sink remains small. Among quiescent atmospheres under investigation, the largest while still small (less than 0.1% effect was found for the polar winter upper stratosphere and mesosphere. The contribution of the reaction of vibrationally excited OH with ozone to the OH sink is largest in the upper polar winter stratosphere (up to 4%, while its effect on the HO2 source is larger in the lower thermosphere (up to 1.5% for polar winter and 2.5% for midlatitude night conditions. For OH(v=0...9+O the effective rate coefficients are lower by up to 11% than those involving OH in its vibrational ground state. The effects on the odd oxygen sink are negative and can reach −3% (midlatitudinal nighttime lowermost thermosphere, i.e. neglecting vibrational excitation overestimates the odd

  19. a Semi-Classical Approach to the Calculation of Highly Excited Rotational Energies for Asymmetric-Top Molecules

    Science.gov (United States)

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergei N.; Yachmenev, Andrey; Jensen, Per

    2017-06-01

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fully quantum-mechanical variational approach. Test calculations for excited states of SO_2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. We hope to be able to present at the meeting also semi-classical calculations of transition intensities. See also the open-access paper Phys. Chem. Chem. Phys. 19, 1847-1856 (2017). DOI: 10.1039/C6CP05589C

  20. Quantum dynamics study on the binding of a positron to vibrationally excited states of hydrogen cyanide molecule

    Science.gov (United States)

    Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori

    2017-05-01

    We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.

  1. Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.; Dobryakov, A. L.; Hecht, S., E-mail: sh@chemie.hu-berlin.de, E-mail: skovale@chemie.hu-berlin.de; Kovalenko, S. A., E-mail: sh@chemie.hu-berlin.de, E-mail: skovale@chemie.hu-berlin.de [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin (Germany); Ioffe, I. N. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Granovsky, A. A. [Firefly Project, 117593 Moscow (Russian Federation)

    2015-07-14

    1-photon (382 nm) and 2-photon (752 nm) excitations to the S{sub 1} state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S{sub 1} → S{sub n} due to resonant absorption of a third pump photon. Subsequent S{sub n} → S{sub 1} internal conversion (with τ{sub 1} = 1 ps) prepares a very hot S{sub 1} state which cools down with τ{sub 2} = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ{sup (2)} = 32 ⋅ 10{sup −50} cm{sup 4} s at 752 nm are evaluated from the bleach signal.

  2. Cross Sections and Rate Coefficients for Vibrational Excitation of HeH+ Molecule by Electron Impact

    Directory of Open Access Journals (Sweden)

    Mehdi Ayouz

    2016-12-01

    Full Text Available Cross sections and thermally-averaged rate coefficients for vibration (de-excitation of HeH + by an electron impact are computed using a theoretical approach that combines the multi-channel quantum defect theory and the UK R-matrix code. Fitting formulas with a few numerical parameters are derived for the obtained rate coefficients. The interval of applicability of the formulas is from 40 to 10,000 K.

  3. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    Science.gov (United States)

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Nonequilibrium Green function theory for excitation and transport in atoms and molecules

    NARCIS (Netherlands)

    Dahlen, Nils Erik; Stan, Adrian

    2006-01-01

    In this work we discuss the application of nonequilibrium Green functions theory to atomic and molecular systems with the aim to study charge and energy transport in these systems. We apply the Kadanoff-Baym equations to atoms and diatomic molecules initially in the ground state. The results

  5. Interference effects in the plasmon fields excited by a diatomic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Segui, S. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Gervasoni, J.L. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Instituto Balseiro (Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica) (Argentina)

    2015-07-01

    We study the fluctuations of the plasmon field associated to the wake potential generated by a dimer formed by two identical charged particles (such as two nuclei of the ionized hydrogen molecule) traveling through a semiinfinite dielectric medium. We use coherent states to describe bulk and surface plasmons as wave packets that raise fluctuations in the electronic density of the material. We analyze different configurations of interest, taking into account various trajectories and orientations of the dimer.

  6. Thiacyclophane cages and related bi- and tripodal molecules via transient polysulfenic acids.

    Science.gov (United States)

    Aversa, Maria Chiara; Barattucci, Anna; Bonaccorsi, Paola; Faggi, Cristina; Papalia, Teresa

    2007-06-08

    A series of bis- and tris-bridged thiacyclophane S-oxides, as racemates or meso products, have been synthesized with a new procedure. Starting from the corresponding thiols, in three steps, transient polyarene- and polyarylmethane-sulfenic acids were generated in the presence of di- and triethynylbenzenes. The thermal syn-addition of these sulfenic acids onto the triple bonds of the unsaturated acceptors was conducted in CH2Cl2 at 40 degrees C. The concentration of sulfoxide precursors of sulfenic acid and the sulfoxide/acceptor molar ratio addressed the syn-addition toward open-chain benzene sulfoxides or thiacyclophane S-oxides. Complete stereochemical control was observed in some reactions between polysulfenic acids and ethynylbenzenes, where the meso dithiacyclophane S,S'-dioxides were obtained exclusively, whereas 1:1 mixtures of meso/rac dithiacyclophanes S,S'-dioxides were isolated as products of other reactions. In almost all the cases, the obtained compounds were separated by column chromatography. The structure assignment of the new heterophanes was done on the basis of their diagnostic NMR spectra and X-ray crystallographic analysis of some of them. Open-chain polysulfinyl and polysulfinylmethyl benzenes, obtained as meso/rac mixtures, were separated and the products were fully characterized. Both synthesized cages, including trithia[3(3)](1,3,5)cyclophane S,S',S' '-trioxides, and bi- and tripodal benzene sulfoxides, appear promising in the field of coordination and material chemistry.

  7. Spin Polarization of Rb and Cs np ^{2}P_{3/2} (n=5, 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule.

    Science.gov (United States)

    Mironov, A E; Hewitt, J D; Eden, J G

    2017-03-17

    We report the selective population of Rb or Cs np ^{2}P_{3/2} (n=5, 6; F=4, 5) hyperfine states by the photodissociation of a transient, alkali-rare gas diatomic molecule. Circularly polarized (σ^{-}), amplified spontaneous emission (ASE) on the D_{2} line of Rb or Cs (780.0 and 852.1 nm, respectively) is generated when Rb-Xe or Cs-Xe ground state collision pairs are photoexcited by a σ^{+}-polarized optical field having a wavelength within the D_{2} blue satellite continuum, associated with the B^{2}Σ_{1/2}^{+}←X^{2}Σ_{1/2}^{+} (free←free) transition of the diatomic molecule. The degree of spin polarization of Cs (6p ^{2}P_{3/2}), specifically, is found to be dependent on the interatomic distance (R) at which the excited complex is born, a result attributed to the structure of the B^{2}Σ_{1/2}^{+} state. For Cs-Xe atomic pairs, tuning the wavelength of the optical field from 843 to 848 nm varies the degree of circular polarization of the ASE from 63% to almost unity because of the perturbation, in the 5≤R≤6  Å interval, of the ^{2}Σ_{1/2}^{+} potential by a dσ molecular orbital associated with a higher ^{2}Λ electronic state. Monitoring only the Cs 6p ^{2}P_{3/2} spin polarization reveals a previously unobserved interaction of CsXe (B^{2}Σ_{1/2}^{+}) with the lowest vibrational levels of a ^{2}Λ state derived from Cs (5d)+Xe. By inserting a molecular intermediate into the alkali atom excitation mechanism, these experiments realize electronic spin polarization through populating no more than two np ^{2}P_{3/2} hyperfine states, and demonstrate a sensitive spectroscopic probe of R-dependent state-state interactions and their impact on interatomic potentials.

  8. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  9. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  10. Minimum in the high-order harmonic generation spectrum from molecules: role of excited states

    DEFF Research Database (Denmark)

    Han, Yong-Chang; Madsen, Lars Bojer

    2010-01-01

    that the coherent laser coupling induced between the 2Σ+g(1sσg) ground state and the first excited 2Σ+u(2pσu) state leads to two dominating amplitudes for the high-order harmonic generation that may interfere: amplitudes describing recombination back into the σg and σu states, respectively. These two amplitudes may......We model the process of high-order harmonic generation by solving the time-dependent Schrödinger equation for H+2 in the fixed nuclei approximation including full 3D electron motion for nonvanishing angles between the nuclear axis and the linear polarization of the driving pulse. We show...... interfere destructively or constructively. The effect of a destructive interference is very clear through the occurrence of a minimum in the high-order harmonic spectrum. We show cases where such a minimum in the spectrum is approximately at the position predicted by the simple two-centre interference...

  11. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  12. Laser-induced resonant excitation of ethylene molecules in C2H4/C2H2/O2 reactions to enhance diamond deposition

    Science.gov (United States)

    Ling, H.; Sun, J.; Han, Y. X.; Gebre, T.; Xie, Z. Q.; Zhao, M.; Lu, Y. F.

    2009-01-01

    Vibrational resonant excitation of ethylene (C2H4) molecules using a carbon dioxide laser was employed to promote reactions in precursors of ethylene, acetylene (C2H2), and oxygen to enhance diamond deposition. One of the vibrational modes (CH2 wag mode, v7) of the C2H4 molecules was selected to achieve the resonant excitation in the reactions. Optical emission spectroscopy was used to study the effects of laser resonant excitation on the reactions for diamond deposition. The optical emissions of CH and C2 species were enhanced with the laser excitation, indicating that there are more active species generated in the reactions. Thicknesses and grain sizes of the deposited films were increased correspondingly. Temperature calculations from the line set in the R-branch of CH emission spectra indicated that a nonthermal process is involved in the enhanced diamond deposition.

  13. The response of a (3)He Fermi liquid droplet to vibronic excitation of an embedded glyoxal molecule.

    Science.gov (United States)

    Benedek, Giorgio; Hizhnyakov, Vladimir; Toennies, J Peter

    2014-08-21

    The zero-phonon line (ZPL) and the sideband in the vibronic spectrum of a single glyoxal molecule inside a (3)He droplet are analyzed within the framework of the Lax formalism. The new theory takes full account of the coupling of the molecule to the single particle-hole (PH) and collective excitations of the doped Fermionic droplet. The effect on the coupling of the wavevector dependence of the effective (3)He mass and the large local density of the first (3)He shell, resulting from the interaction with the chromophore, are also included in the theory. By fitting of a coupling parameter and the phase factor between the PH and collective response functions, the shape and relative intensity of the observed ZPL and its slowly decreasing multiexcitation sideband are well-reproduced. The new theory is consistent with the previous explanation of the surprisingly sharp phonon line superimposed on the sideband in terms of the dense first (3)He shell, which acts as a Helmholtz resonator for the zero sound of the droplet.

  14. Optical oscillator strengths of the valence-shell excitations of atoms and molecules determined by the dipole ( γ,γ) method

    Science.gov (United States)

    Xu, Long-Quan; Liu, Ya-Wei; Xu, Xin; Ni, Dong-Dong; Yang, Ke; Zhu, Lin-Fan

    2017-07-01

    The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  15. On the biphoton excitation of the fluorescence of the bacteriochlorophyll molecules of purple photosynthetic bacteria by powerful near IR femto-picosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A. Yu., E-mail: borissov@belozersky.msu.ru [Moscow State University, Belozersky Institute of Physicochemical Biology (Russian Federation)

    2011-11-15

    The authors of a number of experimental works detected nonresonance biphoton excitation of bacteriochlorophyll molecules, which represent the main pigment in the light-absorbing natural 'antenna' complexes of photosynthesizing purple bacteria, by femtosecond IR pulses (1250-1500 nm). They believe that IR quanta excite hypothetic forbidden levels of the pigments of these bacteria in the double frequency range 625-750 nm. We propose and ground an alternative triplet mechanism to describe this phenomenon. According to our hypothesis, the mechanism of biphoton excitation of molecules by IR quanta can manifest itself specifically, through high triplet levels of molecules in the high fields induced by femtosecond-picosecond laser pulses.

  16. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers

    Science.gov (United States)

    Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.

    2017-10-01

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very

  17. X-ray absorption spectroscopy of the chiral molecules fenchone, α-pinene, limonene and carvone in the C1s excitation region

    Energy Technology Data Exchange (ETDEWEB)

    Ozga, Christian, E-mail: ozga@physik.uni-kassel.de [Institute for Physics and CINSaT, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel (Germany); Jänkälä, Kari [Centre for Molecular Materials Research, University of Oulu, PO Box 3000, 90014 Oulu (Finland); Schmidt, Philipp; Hans, Andreas; Reiß, Philipp; Ehresmann, Arno; Knie, André [Institute for Physics and CINSaT, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel (Germany)

    2016-02-15

    Highlights: • Determination of the X-ray absorption spectra for two terpenoids and two terpenes. • Allocation of predominant or even site-selective excitation of stereocenters. • Fragment fluorescence spectra of the prototype molecules are identical. • Presented data can be used for future fluorescence circular dichroism experiments. - Abstract: Relative ionization cross sections and fluorescence intensities as functions of the exciting-photon energy were recorded for the chiral molecules carvone, α-pinene, limonene and fenchone after excitation by monochromatized synchrotron radiation with energies of the exciting-photons between 284 eV and 289 eV. At selected exciting-photon energies dispersed fragment fluorescence spectra in the wavelength range between 365 nm and 505 nm were obtained. Time dependent density functional theory (TD-DFT) computations were performed to analyze the experimentally observed resonance-structures. Comparison of the computed and recorded spectra demonstrates the possibility of a predominant or even specific excitation of one particular stereocenter site in a molecule with more than one stereocenter.

  18. Multipole expansion for transient electric and magnetic fields in an internally excited spherical cavity containing dampers of finite thickness with distributed electrical properties

    Science.gov (United States)

    Curry, B. P.

    1981-10-01

    The multipole expansion coefficients needed to calculate transient electromagnetic fields and cavity frequency response in an internally excited, damped cavity are derived for an arbitrary but centralized distribution of source currents and an arbitrary number of dampers which have finite width. A block matrix procedure is devised to solve the N damper boundary value problems, but specific solutions are presented for the cases of zero, one, and two dampers. Also, the TM wave multipole coefficients for an uncapped biconical antenna used as excitation source are obtained in closed form, with use of Schelkunoff's mode solution for the antenna currents. Finally, coupled integrodifferential equations for the current distribution in the end caps and the conical sections of a capped bicone source are presented. This entire theory will be encoded to permit analysis of AEDC experiments.

  19. Molecular-dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: A test of the corrugation in the nitrogen-graphite potential

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    1995-01-01

    The dynamical excitations in a commensurate monolayer solid of N2 molecules adsorbed on graphite have been studied using molecular-dynamics simulations. Velocity and rotational correlation functions as well as coherent intermediate scattering functions and dynamical structure factors have been ca...

  20. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.; Haldrup, Kristoffer; Mara, Michael W.; Stickrath, Andrew B.; Zhu, Diling; Lemke, Henrik; Chollet, Matthieu; Hoffman, Brian M.; Li, Xiaosong

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.

  1. Control of population of excited nitrogen molecules by mixing hydrogen in low pressure discharge; Chisso jun`antei reiki bunshi mitsudo no quenching ni yoru seigyo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, K.; Yumoto, M.; Sakai, T. [Musashi Institute of Technology, Tokyo (Japan)

    1998-06-01

    The authors have studied on surface treatment of PTFE by a low pressure discharge. It is deduced that excited nitrogen molecules contribute to introduce polar components on the surface. To confirm the speculation, we tried to change population of metastable nitrogen N2 (A{sup 3}{Sigma}u{sup +}) by quenching precursor N2 (B{sup 3}{pi}g), with hydrogen molecule. The decrease of relaxation time which indicates a change of excited molecule and measured by emission spectroscopy using a time after glow method was obtained. As a result, the relaxation times of N2 (B{sup 3}{pi}g) and N2 (A{sup 3}{Sigma}u{sup +}) decreased to 55% and 20% respectively, when mixing ratio of hydrogen was 3%. It was also deduced that hydrogen atom may take a part in a quenching process of N2 (A{sup 3}{Sigma}u{sup +}). 14 refs., 11 figs., 1 tab.

  2. Enhanced chemical vapor deposition of diamond by wavelength-matched vibrational excitations of ethylene molecules using tunable CO2 laser irradiation

    Science.gov (United States)

    Ling, H.; Xie, Z. Q.; Gao, Y.; Gebre, T.; Shen, X. K.; Lu, Y. F.

    2009-03-01

    Wavelength-matched vibrational excitations of ethylene (C2H4) molecules using a tunable carbon dioxide (CO2) laser were employed to significantly enhance the chemical vapor deposition (CVD) of diamond in open air using a precursor gas mixture of C2H4, acetylene (C2H2), and oxygen (O2). The CH2-wag vibration mode (ν7) of the C2H4 molecules was selected to achieve the resonant excitation in the CVD process. Both laser wavelengths of 10.591 and 10.532 μm were applied to the CVD processes to compare the C2H4 excitations and diamond depositions. Compared with 10.591 μm produced by common CO2 lasers, the laser wavelength of 10.532 μm is much more effective to excite the C2H4 molecules through the CH2-wag mode. Under the laser irradiation with a power of 800 W and a wavelength of 10.532 μm, the grain size in the deposited diamond films was increased by 400% and the film thickness was increased by 300%. The quality of the diamond crystals was also significantly enhanced.

  3. Molecule Matters

    Indian Academy of Sciences (India)

    Fluorescence usually originates from the lowest excited electronic state (singlet) irrespective of the excitation and hence, the fluorescence spectrum of a molecule is characterized by a single band. However, what makes DMABN a very special molecule is that it exhibits dual fluorescence (i.e. emission of. Molecule Matters.

  4. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...... orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could...

  5. Modulation of ventricular transient outward K+ current by acidosis and its effects on excitation-contraction coupling

    Science.gov (United States)

    Saegusa, Noriko; Garg, Vivek

    2013-01-01

    The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132

  6. Metastable Electronically Excited Atoms and Molecules: Excitation Transfer in Slow Collisions, Probed by Means of a Counter-Rotating Supersonic Jet

    Science.gov (United States)

    2012-08-15

    Acetylene S1 State,’’ J. Phys. Chem. A (feature article) 115, 11921-11943 (2011). 5. S. H. Lipoff and D. R. Herschbach, “Low-Energy Limit for...triplet states) and how these mechanisms may be experimentally characterized. Throughout this project, the spin-orbit interaction of the acetylene S1...Laser Excited Metastables (SEELEM) experiments, largely because we have accumulated an unprecedentedly complete description of the vibrational levels

  7. LASER PHYSICS: Formation of XeCl excimer molecules as a result of mixing of gas streams excited by a continuous discharge

    Science.gov (United States)

    Mikhkel'soo, V. T.; Treshchalov, A. B.; Peét, V. É.; Yalviste, É. Kh; Belokon', A. A.; Braĭnin, B. I.; Khritov, K. M.

    1987-07-01

    A longitudinal continuous discharge in two independent supersonic gas streams, which were subsequently mixed, was used for nonequilibrium electronic excitation of components undergoing reactions and emitting chemiluminescence. Formation of XeCl excimer molecules as a result of mixing of excited He:Xe = 95:5 and He:HCl(Cl2) = 99:1 streams was deduced from the XeCl* fluorescence spectra (B→X and C→A bands). The steady-state concentration of the XeCl molecules in B and C states determined in the mixing region was ~1010 cm-3 when the pump power was 50 W, so that the efficiency of conversion of the input electrical energy into the excimer fluorescence was ~1%.

  8. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  9. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro [Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-naka, Myodaiji, Okazaki, 444-8585 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.

  10. Transient conductivity OF 1,3-dimethyluracil, uridine and 3-methyluridine in aqueous solution following 20-ns laser excitation at 248 nm

    Science.gov (United States)

    Görner, Helmut; Currell, Leslie J.

    1996-09-01

    Uridine, 3-methyluridine and 1,3-dimethyluracil in aqueous solution were studied by timeresolved conductimetry after excitation at 248 nm by 20-ns laser pulses. The conductivity signal increases to the maximum value at the pulse end (Δκ m) and decreases then with time, depending on the saturating gas (Ar, N 2O, O 2 or McCI) and pH. The Δκ m signal is suggested to originate from hydrated electrons (e aq-) and protons, the latter resulting from radical cations after rapid reaction with water. Biphotonic photoionization occurs in the whole pH range 3-11 with a quantum yield of 0.016 or smaller for laser intensities of ⩽ 8 MW/cm 2. The reaction of eaq with uncharged bases in Ar-saturated solution at pH 5-8 generates radical anions which are subsequently protonated. The neutralization reaction kinetics of the uracil derivatives depend essentially on the transient proton concentration and lead to the disappearance of most of the conductivity (>90%) within a few microseconds or less in neutral or acidic solution, respectively. For 3-methyluridine and uridine after neutralization, the presence of a long-lived species with acidic properties was observed (in small yield) upon biphotonic (but not monophotonic) excitation. The time-resolved conductivity pattern in the alkaline pH range is different for each of the three pyrimidines, depending essentially on the generation or consumption of OH - in the radical termination reactions.

  11. One minute static stretch of plantar flexors transiently increases H reflex excitability and exerts no effect on corticospinal pathways.

    Science.gov (United States)

    Budini, Francesco; Gallasch, Eugen; Christova, Monica; Rafolt, Dietmar; Rauscher, Andreas Benedikt; Tilp, Markus

    2017-08-01

    What is the central question of this study? What mediates neural responses following static stretching, and how long do these influences last? What is the main finding and its importance? This study shows that 1 min of static stretching inhibits the tendon tap reflex and facilitates the H reflex without influencing motor-evoked potentials. The results indicate that at least two different mechanisms mediate neural responses after static stretching. The purpose of this study was to determine whether the neural responses observed after static stretching are mediated by sensitivity of muscle spindles, spinal excitability or cortical excitability and how long these influences last. Nineteen volunteers (25.7 ± 5.6 years old) were tested for the tendon tap reflex (T-reflex), H reflex and motor-evoked potentials on ankle flexors and extensors immediately, 5 and 10 min after 1 min static stretching applied at individual maximal ankle dorsiflexion, as well as immediately, 5 and 10 min after a control period of the same duration. Comparison of measurements collected immediately after stretching or control conditions revealed that the T-reflex was weaker after stretching than after control (-59.2% P = 0.000). The T-reflex showed a slow recovery rate within the first 150 s after stretching, but 5 min after the inhibition had disappeared. The H reflex increased immediately after stretching (+18.3%, P = 0.036), showed a quick tendency to recover and returned to control values within 5 min from stretching. Motor-evoked potentials were not affected by the procedure. These results suggest that 1 min of static stretching primarily decreases muscle spindle sensitivity and facilitates the H reflex, whereas effects on the motor cortex can be excluded. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Cammi, Roberto

    2014-02-01

    A perturbative approximation of the state specific polarizable continuum model (PCM) symmetry-adapted cluster-configuration interaction (SAC-CI) method is proposed for efficient calculations of the electronic excitations and absorption spectra of molecules in solutions. This first-order PCM SAC-CI method considers the solvent effects on the energies of excited states up to the first-order with using the zeroth-order wavefunctions. This method can avoid the costly iterative procedure of the self-consistent reaction field calculations. The first-order PCM SAC-CI calculations well reproduce the results obtained by the iterative method for various types of excitations of molecules in polar and nonpolar solvents. The first-order contribution is significant for the excitation energies. The results obtained by the zeroth-order PCM SAC-CI, which considers the fixed ground-state reaction field for the excited-state calculations, are deviated from the results by the iterative method about 0.1 eV, and the zeroth-order PCM SAC-CI cannot predict even the direction of solvent shifts in n-hexane for many cases. The first-order PCM SAC-CI is applied to studying the solvatochromisms of (2,2'-bipyridine)tetracarbonyltungsten [W(CO)4(bpy), bpy = 2,2'-bipyridine] and bis(pentacarbonyltungsten)pyrazine [(OC)5W(pyz)W(CO)5, pyz = pyrazine]. The SAC-CI calculations reveal the detailed character of the excited states and the mechanisms of solvent shifts. The energies of metal to ligand charge transfer states are significantly sensitive to solvents. The first-order PCM SAC-CI well reproduces the observed absorption spectra of the tungsten carbonyl complexes in several solvents.

  13. Dynamics of Activated Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Amy S. [Univ. of Maryland, College Park, MD (United States)

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  14. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laporta, V. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Celiberto, R. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Italy and Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari (Italy); Tennyson, J. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  15. A new treatment of the v4 = 2 excited state of the symmetric top molecule PF3 around 693 cm-1

    Science.gov (United States)

    Najib, Hamid

    2013-07-01

    All experimental data of the 2ν40 parallel and 2ν4-2 perpendicular components of the pyramidal molecule PF3 have been refined using five equivalent D-, Q-, QD-, L-, LD-reduction forms of the effective rovibrational Hamiltonian recently developed for the vt(E) = 2 vibrational state of a C3v symmetric top molecule. The v4 = 2 excited level of the PF3 molecule has been treated with models taking into account ℓ- and k-intravibrational resonances. The body of data comprised 1171 IR lines of the 2ν40 component, 249 energies of the v4 = 2-2 substate deduced from the 2ν4-2-ν4-1 hot band and 5 reported MW data. The standard deviations of the fits are practically similar for the reductions applied and close to the quality of measurements. The unitary equivalence of the tested relations between the derived parameters was satisfactorily fulfilled.

  16. Dissociative electron attachment to vibrationally excited H{sub 2} molecules involving the {sup 2}{Sigma}{sub g}{sup +} resonant Rydberg electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Celiberto, R., E-mail: r.celiberto@poliba.it [Department of Water Engineering and Chemistry, Polytechnic of Bari, 70125 Bari (Italy); Institute of Inorganic Methodologies and Plasmas, CNR, 70125 Bari (Italy); Janev, R.K., E-mail: r.janev@fz-juelich.de [Macedonian Academy of Sciences and Arts, P.O.B 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH Association EURATOM-FZJ, Partner in Trilateral Euregio Cluster, 52425 Juelich (Germany); Wadehra, J.M., E-mail: wadehra@wayne.edu [Physics Department, Wayne State University, Detroit, MI 48202 (United States); Tennyson, J., E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2012-04-04

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v{sub i} = 0-5, 10 of the H{sub 2} molecule. Highlights: Black-Right-Pointing-Pointer We calculated electron-hydrogen dissociative attachment cross sections and rates coefficients. Black-Right-Pointing-Pointer Collision processes occurring through a resonant Rydberg state are considered. Black-Right-Pointing-Pointer Cross sections and rates were obtained for vibrationally excited hydrogen molecules. Black-Right-Pointing-Pointer The cross sections exhibit pronounced oscillatory structures. Black-Right-Pointing-Pointer A comparison with the process involving the electron-hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H{sub 2} molecule taking place via the {sup 2}{Sigma}{sub g}{sup +} Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v{sub i} = 0-14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v{sub i}, when the process proceeds via the X {sup 2}{Sigma}{sub u}{sup +} shape resonance of H{sub 2}, for the {sup 2}{Sigma}{sub g}{sup +} Rydberg resonance the cross sections increase only gradually up to v{sub i} = 3 and then decrease. Moreover, the cross sections for v{sub i} Greater-Than-Or-Slanted-Equal-To 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v{sub i} levels are also calculated in the 0.5-1000 eV temperature range.

  17. Excitation and ionic fragmentation of the carvone molecule (C{sub 10}H{sub 14}O) around the O 1s edge

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, R.B. de, E-mail: bobcast@gmail.com [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Campus Universitário, Coroado, 69077-000 Manaus, AM (Brazil); Nunez, C.V. [Coordenação de Pesquisas em Produtos Naturais, Instituto Nacional de Pesquisas da Amazônia, INPA, 69060-001 Manaus, AM (Brazil); Lago, A.F. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), 09210-170 Santo André, SP (Brazil); Santos, A.C.F.; Coutinho, L.H. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Lucas, C.A. [Instituto de Química, Universidade Federal Fluminense (UFF), 24020150 Rio de Janeiro (Brazil); Pilling, S. [Instituto de Pesquisa e Desenvolvimento (IP and D), Universidade do Vale do Paraíba (UNIVAP), 12244-000 São José dos Campos, SP (Brazil); Silva-Moraes, M.O. [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Campus Universitário, Coroado, 69077-000 Manaus, AM (Brazil); Souza, G.G.B. de [Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ (Brazil)

    2014-01-01

    Highlights: • Interaction of the carvone molecule with high energy photons results in an extensive fragmentation of the molecular skeleton. • The occurrence of a site selective mechanism is suggested based on a production of atomic oxygen single and doubly charged, notably around the O 1s edge. • The photoabsorption spectra around O 1s edge present four resonances and the cross section estimation shows a maximum on the first one. - Abstract: The electronic excitation and associated ionic dissociation of the carvone molecule have been studied around the oxygen 1s edge, using synchrotron radiation and time-of-flight techniques. Photoabsorption spectrum (total ion yield) and mass spectra have been obtained in the range between 520 and 545 eV. For the sake of comparison, carvone mass spectra have also been obtained following valence (21.21 eV) and core (carbon 1s) ionization. Fragmentation of the molecule is seen to be greatly enhanced following core excitation. Around the oxygen 1s edge, we observe an extensive fragmentation of the molecular skeleton, as exemplified by the appearance of several previously unreported ions: H{sup +}, H{sub 2}{sup +}, CH{sup +}, CH{sub 2}{sup +} and CH{sub 3}{sup +}, which are not formed at low energies. A maximum is observed at 536 eV photon energy in the relative intensity of the oxygen-containing ions O{sup +}, O{sup 2+} and OH{sup +}, as an evidence for the existence of site-selective fragmentation of the carvone molecule excited around the O 1s edge. Absolute values for the photoionization and photodissociation cross sections were estimated using the molecular additive rule.

  18. Quenching of electronically excited N2 molecules and Tb3+ /Eu3+ ions by polyatomic sulfur-containing gases upon triboluminescence of inorganic lanthanide salts.

    Science.gov (United States)

    Sharipov, G L; Tukhbatullin, A A; Bagautdinova, A R

    2017-08-01

    The triboluminescence of Eu2 (SO4 )3 ·8H2 O and Tb2 (SO4 )3 ·8H2 O crystals in an atmosphere of sulfur dioxide (SO2 ) or sulfur hexafluoride (SF6 ) was studied. Quenching of the gaseous (emitter N2 ) and solid-state (emitter Ln3+ ) components of the triboluminescence (TL) emission spectrum was seen when compared with the TL spectra of the crystals in air. One reason for the quenching is a reduction in the effective charge both on the crystal surface and in micro-cracks under an SO2 or SF6 atmosphere, leading to a decrease in the probability of electrical breakdown and a reduction in electric field strength responsible for the electroluminescence excitation of lanthanide ions in TL. In an SO2 atmosphere, there is an additional mode of quenching, as confirmed by quenching of the crystal photoluminescence (emitter Ln3+ ). It is supposed that this quenching is due to an exchange of energy on electronic excitation of the lanthanide ions to the vibrational sublevels of the SO2 molecules adsorbed on the crystal surface. Another additional channel of TL quenching originates from non-radiative transfer of excitation energy during collisions between the *N2 and SO2 molecules in the gaseous phase. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Excitation energies and properties of open-shell singlet molecules applications to a new class of molecules for nonlinear optics and singlet fission

    CERN Document Server

    Nakano, Masayoshi

    2014-01-01

    This brief investigates the diradical character, which is one of the ground-state chemical indices for 'bond weakness' or 'electron correlation' and which allows researchers to explore the origins of the electron-correlation-driven physico-chemical phenomena concerned with electronic, optical and magnetic properties as well as to control them in the broad fields of physics and chemistry. It then provides the theoretical fundamentals of ground and excited electronic structures of symmetric and asymmetric open-shell molecular systems by using model molecular systems. Moreover, it presents the th

  20. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.

    Science.gov (United States)

    Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F

    2009-04-30

    Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile

  1. Interatomic potentials, electric properties and spectroscopy of the ground and excited states of the Rb2 molecule: ab initio calculations and effect of a non-resonant field*

    Science.gov (United States)

    Tomza, Michał; Skomorowski, Wojciech; Musiał, Monika; González-Férez, Rosario; Koch, Christiane P.; Moszynski, Robert

    2013-07-01

    We formulate the theory for a diatomic molecule in a spatially degenerate electronic state interacting with a non-resonant laser field and investigate its rovibrational structure in the presence of the field. We report on ab initio calculations employing the double electron attachment intermediate Hamiltonian Fock space coupled cluster method restricted to single and double excitations for all electronic states of the Rb2 molecule up to 5s+5d dissociation limit of about 26,000 cm-1. In order to correctly predict the spectroscopic behaviour of Rb2, we have also calculated the electric transition dipole moments, non-adiabatic coupling and spin-orbit coupling matrix elements, and static dipole polarisabilities, using the multireference configuration interaction method. When a molecule is exposed to strong non-resonant light, its rovibrational levels get hybridised. We study the spectroscopic signatures of this effect for transitions between the X1Σ+ g electronic ground state and the A1Σ+ u and b3Π u excited state manifold. The latter is characterised by strong perturbations due to the spin-orbit interaction. We find that for non-resonant field strengths of the order 109 W/cm2, the spin-orbit interaction and coupling to the non-resonant field become comparable. The non-resonant field can then be used to control the singlet-triplet character of a rovibrational level.

  2. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    Science.gov (United States)

    Sauer, Stephan P. A.; Haq, Inam Ul; Sabin, John R.; Oddershede, Jens; Christiansen, Ove; Coriani, Sonia

    2014-03-01

    Using an asymmetric Lanczos chain algorithm for the calculation of the coupled cluster linear response functions at the coupled cluster singles and doubles (CCSD) and coupled cluster singles and approximate iterative doubles (CC2) levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule (H2). Convergence with respect to the one-electron basis set was investigated in detail for families of correlation-consistent basis sets including both augmentation and core-valence functions. We find that the electron correlation effects at the CCSD level change the mean excitation energies obtained at the uncorrelated Hartree-Fock level by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42.28 eV (helium) and I0 = 19.62 eV (H2), correspond to full configuration interaction results and are therefore the exact, non-relativistic theoretical values for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry.

  3. Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides, amino acids and beyond

    Science.gov (United States)

    Staniforth, Michael; Stavros, Vasilios G.

    2013-01-01

    In many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules. A notable example is the focus towards understanding the interaction of DNA with ultraviolet radiation and the subsequent chemical changes. However, the interaction of radiation with large biological structures is highly complex, and thus the photochemistry of these systems as a whole is poorly understood. Studying the gas-phase spectroscopy and ultrafast dynamics of the building blocks of these more complex biomolecules offers the tantalizing prospect of providing a scientifically intuitive bottom-up approach, beginning with the study of the subunits of large polymeric biomolecules and monitoring the evolution in photochemistry as the complexity of the molecules is increased. While highly attractive, one of the main challenges of this approach is in transferring large, and in many cases, thermally labile molecules into vacuum. This review discusses the recent advances in cutting-edge experimental methodologies, emerging as excellent candidates for progressing this bottom-up approach. PMID:24204191

  4. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.

    2014-01-01

    Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values...

  5. Molecular-dynamics simulations of the dynamical excitations in commensurate submonolayer films of nitrogen molecules on graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter; Taub, H.

    1996-01-01

    The dynamics of commensurate submonolayer solids of N-2 molecules adsorbed on the basal planes of graphite have been studied using molecular-dynamics simulations. The calculations yielded the temperature dependence of the Brillouin-zone-center gap in the acoustic-phonon branches, for comparison...

  6. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  7. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  8. Charge Migration in Eyring, Walter and Kimball's 1944 Model of the Electronically Excited Hydrogen-Molecule Ion.

    Science.gov (United States)

    Diestler, Dennis J; Hermann, Gunter; Manz, Jörn

    2017-07-20

    In an elementary variational treatment of the electronic structure of H2(+), Eyring, Walter, and Kimball (EWK) serendipitously discovered charge migration (CM) in 1944. Using an analytic expression for the electronic probability density (EPD), they found that if the electron is initially localized on one of the protons (by taking the initial state to be a superposition of the ground and first excited electronic energy eigenstates), then it oscillates adiabatically between fixed protons with a period T inversely proportional to the energy gap between the eigenstates. At the equilibrium internuclear separation, T = 550.9 as. As shown here, the EWK model also yields an analytic formula for the electronic flux density (EFD). While the EPD indicates where the electron is at any instant, the EFD reveals the pathways the electron follows during its migration. Thus, the EFD complements the EPD, providing valuable new insight into the mechanism of CM. The formula for the EFD is a simple product of a time factor and a spatial factor. This factoring exposes a plethora of spatial-temporal symmetry relations which imply novel and surprising properties. An especially significant finding is that, in contrast to multielectron systems, where electron correlation may play a role in CM, in the EWK model of H2(+), CM is due strictly to quantum interference between the ground and first excited electronic states.

  9. Enhanced Non-Viral Gene Delivery to Human Embryonic Stem Cells via Small Molecule-Mediated Transient Alteration of Cell Structure.

    Science.gov (United States)

    Yen, Jonathan; Yin, Lichen; Cheng, Jianjun

    Non-viral gene delivery into human embryonic stem cells (hESCs)is an important tool for controlling cell fate. However, the delivery efficiency remains low due in part to the tight colony structure of the cells which prevents effective exposure towards delivery vectors. We herein report a novel approach to enhance non-viral gene delivery to hESCs by transiently altering the cell and colony structure. (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide (Y-27632), a small molecule that inhibits the rho-associated protein kinase pathway, is utilized to induce transient colony spreading which leads to increased transfection efficiency by 1.5 to 2 folds in a spectrum of non-viral transfection reagents including Lipofectamine 2000 and Fugene HD. After removal of Y-27632 post-transfection, cells can revert back to its normal state and do not show alteration of pluripotency. This approach provides a simple, effective tool to enhance non-viral gene delivery into adherent hESCs for genetic manipulation.

  10. Electron correlation in the 3 (1)Sigma(g)+ and 2 (1)Sigma(u)+ excited state lithium molecule.

    Science.gov (United States)

    Wang, Jian; Zhang, Lei; Wang, Yu; Ugalde, Jesus M

    2006-12-21

    Electron correlation effects in the two excited states of Li(2), 3 (1)Sigma(g) (+) and 2 (1)Sigma(u) (+), one with a shelf shape and another with double minima in their potential energy curves, have been studied with the aid of the calculated electron pair density distribution as a function of the internuclear distance and the analysis of the natural orbitals. Both states show increased electron pair densities at intermediate interelectronic distances around the second minimum of their potential energy curves. Since the bond breaks homolitically this observation runs contrary to regular expectations. Analysis of the electron pair density distributions and the natural orbitals provides mechanisms to account for this abnormal behavior.

  11. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami.

    Science.gov (United States)

    Jungmann, Ralf; Steinhauer, Christian; Scheible, Max; Kuzyk, Anton; Tinnefeld, Philip; Simmel, Friedrich C

    2010-11-10

    DNA origami is a powerful method for the programmable assembly of nanoscale molecular structures. For applications of these structures as functional biomaterials, the study of reaction kinetics and dynamic processes in real time and with high spatial resolution becomes increasingly important. We present a single-molecule assay for the study of binding and unbinding kinetics on DNA origami. We find that the kinetics of hybridization to single-stranded extensions on DNA origami is similar to isolated substrate-immobilized DNA with a slight position dependence on the origami. On the basis of the knowledge of the kinetics, we exploit reversible specific binding of labeled oligonucleotides to DNA nanostructures for PAINT (points accumulation for imaging in nanoscale topography) imaging with <30 nm resolution. The method is demonstrated for flat monomeric DNA structures as well as multimeric, ribbon-like DNA structures.

  12. Spin excitations in the molecule Mn19 with a record ground-state spin S = 83/2

    Science.gov (United States)

    Burger, B.; Waldmann, O.; Ako, A. M.; Powell, A. K.; Mutka, H.; Unruh, T.

    2008-03-01

    In the magnetic molecule Mn19, 12 Mn(III) and 7 Mn(II) ions are ferromagnetically coupled such as to yield a S = 83/2 ground state. We recorded Q-band EPR and inelastic neutron scattering (INS) spectra on powder samples of Mn19. The EPR data is well interpreted by the model of an isolated S = 83/2 spin with uniaxial magnetic anisotropy, H = DSz^2 + gμBS.B. We find D = 0.004 cm-1, hence Mn19 is not a single-molecule magnet. The INS spectra show a broad feature I at ca. 0.25 meV, which exhibits an uncommon temperature dependence, and two peaks II and III at ca. 3.0 and 5.7 meV. The analysis of the INS data is complicated by the huge Hilbert space of Mn19 of 6.8 10^13 states. Peaks II and III are assigned to discrete ferromagnetic spin waves. Understanding feature I is more difficult because it consists of many transitions which combine such as to yield a complex temperature dependence. Hence, its behavior cannot be described in a single-spin picture, but requires an inherent many-body description.

  13. A light-induced photochromic nanoswitch capable of non-destructive readout via fluorescence emission: cluster vs. single-molecule excitation of dihydroindolizines.

    Science.gov (United States)

    Hartmann, Thomas; Shrestha, Tej B; Bossmann, Stefan H; Hübner, Christian; Renn, Alois; Dürr, Heinz

    2009-08-01

    We have synthesized a prototype of a photochromic styrylquinolyl-dihydroindolizine (DHI), which forms a highly coloured and fluorescent betaine upon irradiation with lambda<400 nm. Embedding this photochromic DHI in a thin polymethyl methacrylate (PMMA) film permits the non-destructive readout via fluorescence at low temperature (77 K). Thus, either a non-destructive photoswitch or an information recording system becomes available. Both possibilities have been explored: image recording and read-out, as well as information storage (at 77 K) have been demonstrated. Cluster- and single molecule-fluorescence upon laser excitation (lambda=355 nm) of the styrylquinolyl-dihydroindolizine in a PMMA matrix, and the effect of fluorescence blinking has been observed.

  14. XUV Transient Absorption Spectroscopy: Probing Laser-Perturbed Dipole Polarization in Single Atom, Macroscopic, and Molecular Regimes

    OpenAIRE

    Chen-Ting Liao; Arvinder Sandhu

    2017-01-01

    We employ an extreme ultraviolet (XUV) pulse to impulsively excite dipole polarization in atoms or molecules, which corresponds to coherently prepared superposition of excited states. A delayed near infrared (NIR) pulse then perturbs the fast evolving polarization, and the resultant absorbance change is monitored in dilute helium, dense helium, and sulfur hexafluoride (SF6) molecules. We observe and quantify the time-dependence of various transient phenomena in helium atoms,includinglaser-indu...

  15. Quantum analysis in the transition process to excited state of an oxygen molecule induced by electron collisions; Denshi shototsu ni tomonau sanso bunshi ni okeru reiki jotai sen`i no ryoshironteki kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ishimaru, K. [Gifu National College of Technology, Gifu (Japan); Okazaki, K. [Tokyo Inst. of Technology, Tokyo (Japan)

    1996-06-25

    For understanding of fundamental chemical reactions under a highly non equilibrium condition which is quite often used in plasma processing, the relevant atomic and molecular processes must be clarified. In this study, an analysis of the transition process to the excited state of an oxygen molecule induced by electron collisions in the oxygen plasma has been carried out. First, the electron density distribution in an oxygen molecule has been calculated using the extended Huckel molecular orbital method. Then, the electron potential energy distribution in the transition process to the excited state has been estimated. The electron behavior has been calculated using the estimated unidimensional electron potential energy distribution and unsteady quantum mechanics. As a result, the transition process to the excited state of an oxygen molecule induced by electron collisions and its conditions have been clarified qualitatively. 9 refs., 9 figs.

  16. Synthesis, structural, and photophysical studies of π-fused acenaphtho[1,2-d]imidazole-based excited-state intramolecular proton transfer molecules

    Science.gov (United States)

    Somasundaram, Sivaraman; Kamaraj, Eswaran; Hwang, Su Jin; Jung, Sooyoung; Choi, Moon Gun; Park, Sanghyuk

    2017-06-01

    Orange-red fluorescent molecules are promising materials for use in a new generation of displays, light sources, and chemosensors because conventional red-emitters have lower fluorescence quantum efficiencies. In this work, a set of orange-emitting fused imidazole series 2-(7-(4-fluorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-F), 2-(7-(4-chlorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Cl), and 2-(7-(4-bromophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Br) have been synthesized via multicomponent reaction method with high yield. Synthesized molecules were fully characterized by 1H NMR, 13C NMR, GC-Mass, UV-vis. absorption, PL, and TGA-DSC. The compounds AHPI-F, AHPI-Cl, AHPI-Br showed large Stokes' shifted emission due to excited-state intramolecular proton transfer (ESIPT) process, and they effectively formed large single crystals. The crystal structure of each compound was identified by X-ray crystallographic analysis. To elucidate the photophysical properties of the molecule, theoretical calculation were performed by density functional theory (DFT) with B3LYP 6-31G(d,p) basis sets using the identified molecular conformations from X-ray analysis. Calculated electronic properties including HOMO-LUMO levels were compared with the experimental results. As a result of ESIPT process, extended conjugation length through acenaphto[1,2-d]imidazole, and charge transfer characteristics by the introduction of halogen atoms, all of the materials showed orange ESIPT emission with no spatial overlap between absorption (λmax,abs = 325 nm) and emission (λmax,ems = 578 nm).

  17. Initial transient accumulation of M2 macrophage-associated molecule-expressing cells after pulpotomy with mineral trioxide aggregate in rat molars.

    Science.gov (United States)

    Takei, Erika; Shigetani, Yoshimi; Yoshiba, Kunihiko; Hinata, Go; Yoshiba, Nagako; Okiji, Takashi

    2014-12-01

    M2 (alternatively activated) macrophages are known to participate in wound healing and tissue repair. This study aimed to analyze the temporospatial changes in the distribution and density of M2 macrophage-associated molecule-expressing cells after pulpotomy with mineral trioxide aggregate (MTA) in rat molars to ascertain the role played by M2 macrophages in the healing of MTA-capped pulp tissue. The maxillary first molars of 8-week-old Wistar rats were pulpotomized and capped with MTA. After 1-14 days, the teeth were examined after hematoxylin-eosin staining or immunoperoxidase staining of CD68 (a general macrophage marker) and M2 macrophage markers (CD163 and CD204). The density of positively stained cells was enumerated in the surface and inner regions (0-100 μm and 300-400 μm, respectively, from the wound surface). MTA capping initially caused mild inflammatory changes and the formation of a degenerative layer followed by progressive new matrix formation and calcified bridging. At 1-2 days, CD68-, CD163-, and CD204-positive cells started to accumulate beneath the degenerative layer, and the density of these cells was significantly higher in the surface region than in the inner region (P MTA, M2 macrophage-associated molecule-expressing cells transiently accumulated beneath the degenerative layer under the MTA. This suggests that M2 macrophages participate in the initial phases of the healing of MTA-capped pulp tissue. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Formation of cold molecules through the photo-association of cold atoms of Cesium. Existence of long range forces between between cold excited atoms of Cesium; Formation de molecules froides par photoassociation d'atomes froids de cesium. Mise en evidence de forces a longue portee entre atomes froids excites de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Comparat, D

    1999-09-01

    This thesis deals with the experimental study and the theoretical interpretation of the processes involved in photo-association and the formation of cold caesium molecules. It also presents a study of the dipolar forces between a pair of cold excited caesium atoms. We present here the first photo-association experiment on cold caesium atoms: two cold atoms absorb a photon to form an excited electronically excited molecules in a rotation-vibration level. The first production of cold molecules which was realised experimentally, after the spontaneous deexcitation of the photo-associated molecules, is described, stressing the role of the potential well of the molecular states O{sub g}{sup -}(6s+6p{sub 3/2}) or 1{sub u} (6s+6p{sub 3/2}) of caesium. The detection of the formed caesium molecules is based on a two-photons resonant ionisation that creates Cs{sub 2}{sup +} ions, afterwards selectively detected. Temperatures around 20-200 {mu}K have been measured. The photo-associative spectroscopy is described on the theoretical point of view: a detailed theoretical study allows to calculate precisely the asymptotic parts of the potential curves. On the experimental point of view, we present the spectroscopy of the extern potential well of the caesium state O{sub g}{sup -}(6s+6p{sub 3/2}) and the construction of an effective potential curve of the RKR type. A unified theory of photo-association in weak field, considered as a collision assisted by laser, is developed. The cold atoms experiments allow to study and control the collision between two atoms whose mutual interaction is of the dipole-dipole type. Two different physical systems are studied: a sample of Rydberg atoms, and the photo-association process which is a laser-assisted collision. A modification of the motion of one pair of atoms makes it possible to control the bipolar forces and to choose the atoms relative speeds. (author)

  19. An experimental setup for studying the core-excited atoms and molecules by electron impact using energy analysed electron-ion coincidence technique

    Science.gov (United States)

    Kumar, S.; Prajapati, S.; Singh, B.; Singh, B. K.; Shanker, R.

    2017-07-01

    Operation and performance of an apparatus for studying the decay dynamics relevant to core-hole decay processes in atoms and molecules excited by energetic electrons using an energy analysed electron-ion coincidence technique are described in some detail. The setup consists of a time- and position sensitive double-field linear TOF mass spectrometer coupled with a dual MCP detector and a single-pass CMA to select the energy of detected electrons. Details of different components involved in the setup are presented and discussed. To demonstrate the performance and capability of the apparatus, we present some typical results extracted from the TOF argon ion-mass spectra observed in coincidence with 18-energy selected electrons emitted from interaction of a continuous beam of 3.5 keV electrons with a dilute gaseous target of argon atoms. Specifically, the variation of relative correlation probability for the final ion-charge states Ar1+ to Ar4+ produced in the considered collision reactions as a function of energy of emitted electrons is determined and discussed.

  20. Time-dependent formulation of the two-dimensional model of resonant electron collisions with diatomic molecules and interpretation of the vibrational excitation cross sections

    Science.gov (United States)

    VáÅa, Martin; Houfek, Karel

    2017-02-01

    A two-dimensional model of the resonant electron-molecule collision processes with one nuclear and one electronic degree of freedom introduced by K. Houfek, T. N. Rescigno, and C. W. McCurdy [Phys. Rev. A 73, 032721 (2006), 10.1103/PhysRevA.73.032721] is reformulated within the time-dependent framework and solved numerically using the finite-element method with the discrete variable representation basis, the exterior complex scaling method, and the generalized Crank-Nicolson method. On this model we illustrate how the time-dependent calculations can provide deep insight into the origin of oscillatory structures in the vibrational excitation cross sections if one evaluates the cross sections not only at sufficiently large time to obtain the final cross sections, but also at several characteristic times which are given by the evolution of the system. It is shown that all details of these structures, especially asymmetrical peaks, can be understood as quantum interference of several experimentally indistinguishable processes separated in time due to a resonant capture of the electron and the subsequent vibrational motion of the negative molecular ion. Numerical results are presented for the N2-like, NO-like, and F2-like models and compared with ones obtained within the time-independent approach and within the local complex potential approximation.

  1. Nonlinear characteristics of the rotating exciter system of power plant generators in case of electricity accidents; Transientes Verhalten des rotierenden Erregersystems von Kraftwerksgeneratoren bei elektrischen Stoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Ataei, Nader

    2006-05-09

    Different types of exciter are used for voltage supply to the synchronous generators of power stations depending on the required power and design. The exciter system of the generator, which as a rule consists syncronous motors and commutators, is commonly modeled in conventional models by control units with nonlinear characteristics which do not give an accurate picture of the dynamic processes inside the exciter motor. It was not possible to assess the component loads of the exciter components and the physical characteristics within the exciter system. In this study, a brushless exciter for the grid-connected synchronous generator was investigated which consists of two synchronous motors as primary and secondary exciter and two commutator bridges. A dynamic simulation model was developed for calculating the interactions between the grid, generator and exciter unit in consideration of electromagnetic and galvanic coupling. For this, the normal control units were replaced by physical components of the exciter system, i.e. electric exciter motors and commutators. The study was carried out using an enhanced version of the Siemens NETOMAC software, which provided information on the loads on the exciter components in case of internal and external failures. In particular, loads in coils and commutators were calculated that could not be measured before. The findings enable more accurate dimensioning of the exciter unit making it more fail-safe, and the protective systems can be adjusted more accurately. One important result of the investigation was the identification of all dynamic processes going on between the exciter motors, commutators, generator and grid induced by external and internal failures. (orig.) [German] Zur Spannungsversorgung der Synchrongeneratoren in Kraftwerken werden je nach Leistungsanforderung und Baukonzept unterschiedliche Erregereinrichtungen verwendet. Das Erregersystem des Generators, das in der Regel aus Erregersynchronmaschinen und

  2. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    Science.gov (United States)

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  3. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could...

  4. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation

    Science.gov (United States)

    Rangel, Tonatiuh; Hamed, Samia M.; Bruneval, Fabien; Neaton, Jeffrey B.

    2017-05-01

    The accurate prediction of singlet and triplet excitation energies is an area of intense research of significant fundamental interest and critical for many applications. Most calculations of singlet and triplet energies use time-dependent density functional theory (TDDFT) in conjunction with an approximate exchange-correlation functional. In this work, we examine and critically assess an alternative method for predicting low-lying neutral excitations with similar computational cost, the ab initio Bethe-Salpeter equation (BSE) approach, and compare results against high-accuracy wavefunction-based methods. We consider singlet and triplet excitations of 27 prototypical organic molecules, including members of Thiel's set, the acene series, and several aromatic hydrocarbons exhibiting charge-transfer-like excitations. Analogous to its impact in TDDFT, we find that the Tamm-Dancoff approximation (TDA) overcomes triplet instabilities in the BSE approach, improving both triplet and singlet energetics relative to higher level theories. Finally, we find that BSE-TDA calculations built on effective DFT starting points, such as those utilizing optimally tuned range-separated hybrid functionals, can yield accurate singlet and triplet excitation energies for gas-phase organic molecules.

  5. Transient Impulsive Giant Electronic Raman Redistribution

    CERN Document Server

    Miyabe, S

    2014-01-01

    Resonant Raman excitation by ultrafast vacuum ultraviolet laser pulses is a powerful means to study electron dynamics in molecules, but experiments must contend with linear background ionization: frequencies high enough to reach resonant core-valence transitions will usually ionize all occupied orbitals as well, and the ionization cross sections are usually dominant. Here we show that attosecond pulses can induce a new process, transient impulsive stimulated Raman scattering, which can overwhelm valence ionization. Calculations are performed for atomic sodium, but the principal is valid for many molecular systems. This approach opens the path for high fidelity multidimensional spectroscopy with attosecond pulses.

  6. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    Science.gov (United States)

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  7. Generation of a pair of photons through the three-body dissociation of a multiply excited water molecule around the double ionization potential

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki [Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Suzuki, Isao H; Kouchi, Noriyuki, E-mail: joe@chem.titech.ac.j [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-11-01

    The cross sections for the generation of a photon-pair from excited fragments in photoexcitation of H{sub 2}O have been measured as a function of incident photon energy. The multiply excited states of H{sub 2}O have been observed even above the adiabatic double ionization potential.

  8. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  9. Transient Analysis of Dispersive Power-Ground Plate Pairs With Arbitrarily Shaped Antipads by the DGTD Method With Wave Port Excitation

    KAUST Repository

    Li, Ping

    2016-09-09

    A discontinuous Galerkin time-domain (DGTD) method analyzing signal/power integrity on multilayered power-ground parallel plate pairs is proposed. The excitation is realized by introducing wave ports on the antipads where electric/magnetic current sources are represented in terms of the eigenmodes of the antipads. Since closed-forms solutions do not exist for the eigenmodes of the arbitrarily shaped antipads, they have to be calculated using numerical schemes. Spatial orthogonality of the eigenmodes permits determination of each mode\\'s temporal expansion coefficient by integrating the product of the electric field and the mode over the wave port. The temporal mode coefficients are then Fourier transformed to accurately calculate the S-parameters corresponding to different modes. Additionally, to generalize the DGTD to manipulate dispersive media, the auxiliary differential equation method is employed. This is done by introducing a time-dependent polarization volume current as an auxiliary unknown and the constitutive relation between this current and the electric field as an auxiliary equation. Consequently, computationally expensive temporal convolution is avoided. Various numerical examples, which demonstrate the applicability, robustness, and accuracy of the proposed method, are presented.

  10. Electronically Excited C2 from Laser Photodissociated C60

    Science.gov (United States)

    Arepalli, Sivaram; Scott, Carl D.; Nikolaev, Pavel; Smalley, Richard E.

    1999-01-01

    Spectral and transient emission measurements are made of radiation from products of laser excitation of buckminsterfullerene (C60) vapor diluted in argon at 973 K. The principal radiation is from the Swan band system of C2 and, at early times, also from a black body continuum. The C2 radiation is observed only when C60 is excited by green (532 nm) and not with IR (1064 nm) laser radiation at energy densities of about 1.5 J/square cm. Transient measurements indicate that there are two characteristic periods of decay of radiation. The first period, lasting about 2 micro seconds, has a characteristic decay time of about 0.3 micro seconds. The second period, lasting at least 50 micro seconds, has a characteristic decay time of about 5 micro seconds. These characteristic times are thought to be associated with cooling of C60 molecules or nanosized carbon particles during the early period; and with electronically excited C2 that is a decomposition product of laser excited C60, C58, ... molecules during the later period.

  11. S1←S0 vibronic spectra and structure of cyclopropanecarboxaldehyde molecule in the S1 lowest excited singlet electronic state

    Science.gov (United States)

    Godunov, I. A.; Yakovlev, N. N.; Terentiev, R. V.; Maslov, D. V.; Bataev, V. A.; Abramenkov, A. V.

    2016-11-01

    The S1←S0 vibronic spectra of gas-phase absorption at room temperature and fluorescence excitation of jet-cooled cyclopropanecarboxaldehyde (CPCA, c-C3H5CHO)were obtained and analyzed. In addition, the quantum chemical calculation (CASPT2/cc-pVTZ)was carried out for CPCA in the ground (S0) and lowest excited singlet (S1) electronic states. As a result, it was proved that the S1←S0 electronic excitation of the CPCA conformers (syn and anti) causes (after geometrical relaxation) significant structural changes, namely, the carbonyl fragments become non-planar and the cyclopropyl groups rotate around the central C-C bond. As a consequence, the potential energy surface of CPCA in the S1 state has six minima, 1ab, 2ab, and 3ab, corresponding to three pairs of mirror symmetry conformers: a and b. It was shown that vibronic bands of experimental spectra can be assigned to the 2(S1)←syn(S0) electronic transition with the origin at 30,481 cm-1. A number of fundamental vibrational frequencies for the 2 conformer of CPCA were assigned. In addition, several inversional energy levels for the 2 conformer were found and the 2a↔2b potential function of inversion was determined. The experimental barrier to inversion and the equilibrium angle between the CH bond and the CCO plane were calculated as 570 cm-1 and 28°, respectively.

  12. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  13. The HIFI spectral survey of AFGL2591 (CHESS) : I. Highly excited linear rotor molecules in the high-mass protostellar envelope

    NARCIS (Netherlands)

    van der Wiel, M. H. D.; Pagani, L.; van der Tak, F. F. S.; Kazmierczak, M.; Ceccarelli, C.

    Context. Linear rotor molecules such as CO, HCO+ and HCN are important probes of star-forming gas. For these species, temperatures of less than or similar to 50K are sufficient to produce emission lines that are observable from the ground at (sub)millimeter wavelengths. Molecular gas in the

  14. Negative- and positive-ion fragmentation of core-excited formic-acid molecules studied with three- and four-ion coincidence spectroscopy

    Science.gov (United States)

    Strâhlman, Christian; Kivimäki, Antti; Richter, Robert; Sankari, Rami

    2017-08-01

    The negative-ion fragmentation of formic acid (HCOOH) is studied with negative- and positive-ion coincidence spectroscopy. We report four-body ionic fragmentation where up to three positive ions are collected in coincidence with one negative ion. We report yields for 21 three-body channels and five four-body channels. More than 80% of all negative-ion fragmentation involves production of O-, and it is dominated by complete dissociation of all molecular bonds. Negative-ion creation is most abundant at high-Rydberg resonances and just above the molecule's core-ionization potentials. The existence of four-body fragmentation channels evidences a strong charge redistribution in the molecule.

  15. Enhancing the upconversion luminescence and photothermal conversion properties of ∼800nm excitable core/shell nanoparticles by dye molecule sensitization.

    Science.gov (United States)

    Shao, Qiyue; Li, Xiaosong; Hua, Peiyi; Zhang, Gongtuo; Dong, Yan; Jiang, Jianqing

    2017-01-15

    Upconversion nanoparticles capable of strongly absorbing photons in a wide spectral range are highly desired for practical applications. In this work, IR-806 dye was used to increase the light absorptivity of Nd3+/Yb3+/Er3+ tri-doped core/shell nanoparticles and then to enhance their upconversion luminescence under ∼800nm excitation. The IR-806 dye exhibited more efficient energy transfer to Nd3+ ions than to Yb3+ ions for subsequent upconversion emission due to the increased spectral overlap between the dye emission and Nd3+ absorption. The influence of the Nd3+ concentration in the shell and the dye/nanoparticle ratio on the dye-sensitization effect was also investigated. A maximum 28-fold overall enhancement in the emission intensity was achieved for NaYF4:Yb3+/Er3+@NaYF4:Yb3+/Nd3+ core/shell nanoparticles using dye sensitization. The dye-sensitized NaYF4:Yb3+/Er3+@NaYF4:Yb3+/Nd3+ core/shell nanoparticles also exhibited increased photothermal conversion capabilities and excellent temperature sensing properties, enabling their potential application in photothermal nanoheaters with real-time temperature monitoring under 808nm single beam excitation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Energy transfer in anisotropic systems: A. Excitation migration in substitutionally disordered one-dimensional solids. B. The spectroscopy of molecules adsorbed on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zwemer, D.A.

    1978-11-01

    The energy and dynamics of excited states in a variety of anisotropic environments, including isotopically and chemically mixed crystals and molecular overlayers adsorbed on a nickel (111) surface, are investigated. The relationship between local and long-range structure and spectroscopic properties is explored. A theory for energy transfer in substitutionally disordered solids is presented. Explicit expressions for the ''diffusion'' coefficients and the energy partitioning ratios in binary systems are derived. Energy transfer between localized states is found to be facilitated by concurrent tunnelling and thermal promotion. Experimental results for triplet energy partitioning between mobile and stationary trap states as a function of mobile trap concentration in the ternary d/sub 2/-1,2,4,5-tetrachlorobenzene--h/sub 2/-1,2,4,5-tetrachlorobenzene--pyrazine system are analyzed. It is shown that both tunnelling and thermal detrapping contribute to triplet exciton mobility below 4.2 K. Singlet exciton migration makes an important contribution to trap equilibration before intersystem crossing to the triplet manifold. Spin coherence experiments are used to determine the energy level structure, physical geometry, and exciton dynamics of a series of impurity-induced traps in 1,2,4,5-tetrachlorobenzene. The uv spectra of pyrazine, pyridine, and naphthalene adsorbed on a nickel single crystal (111) surface are measured by spectroscopic ellipsometry at low temperatures. The excited electronic and vibronic energy levels measured are similar to bulk molecular crystal values, but pyrazine and pyridine show small, but significant deviations. The ordering of molecular overlays is observed spectroscopically and information about overlayer crystal structure is deduced. 148 references, 48 figures, 5 tables.

  17. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  18. Surface-induced vibrational excitation of metastable nitrogen molecules traversing a micro-slit copper grating: a probe of surface profiles

    Energy Technology Data Exchange (ETDEWEB)

    Karam, J-C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Grucker, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Boustimi, M [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Vassilev, G [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Reinhardt, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Mainos, C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Bocvarski, V [Institute of Physics, Pregrevica, 11000-Zemun, Belgrade (Serbia and Montenegro); Robert, J [Laboratoire Aime Cotton, Bat. 505, Universite Paris-Sud, 91405-Orsay Cedex (France); Baudon, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Perales, F [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France)

    2006-04-28

    The interaction at mean distance (a few tens up to a few hundreds of a{sub 0}), i.e. in the van der Waals interaction range, between metastable nitrogen molecules, N{sub 2}* (A{sup 3}{sigma}{sub u}{sup +}), and the slit edges of a micro-slit copper grating depends on both the molecular orientation and the internuclear distance in the molecule. Such an interaction is able to induce rotational and vibrational transitions. Endo-energetic transitions (v {yields} v + 1, v ranging from 5 to 10) are observed by means of a time-of-flight technique combined with an angular distribution measurement. By setting the grating plane at an angle with respect to the incident direction, different from that imposed by ideally planar slit walls, it is shown that the angular distribution of the inelastic process reveals a departure of the surface from an ideal plane. Assuming a regular evolution of the tangent plane along the surface profile, a mean wall profile can be derived from this distribution.

  19. XUV Transient Absorption Spectroscopy: Probing Laser-Perturbed Dipole Polarization in Single Atom, Macroscopic, and Molecular Regimes

    Directory of Open Access Journals (Sweden)

    Chen-Ting Liao

    2017-03-01

    Full Text Available We employ an extreme ultraviolet (XUV pulse to impulsively excite dipole polarization in atoms or molecules, which corresponds to coherently prepared superposition of excited states. A delayed near infrared (NIR pulse then perturbs the fast evolving polarization, and the resultant absorbance change is monitored in dilute helium, dense helium, and sulfur hexafluoride (SF6 molecules. We observe and quantify the time-dependence of various transient phenomena in helium atoms,includinglaser-inducedphase(LIP,time-varying(ACStarkshift,quantumpathinterference, and laser-induced continuum structure. In the case of dense helium targets, we discuss nonlinear macroscopic propagation effects pertaining to LIP and resonant pulse propagation, which accoun tfor the appearance of new spectral features in transient lineshapes. We then use tunable NIR photons to demonstrate the wavelength dependence of the transient laser induced effects. In the case of molecular polarization experiment in SF6, we show suppression of XUV photoabsorption corresponding to inter-valence transitions in the presence of a strong NIR field. In each case, the temporal evolution of transient absorption spectra allows us to observe and understand the transient laser induced modifications of the electronic structure of atoms and molecules.

  20. Dual electron transfer pathways from 4,4'-dimethoxybenzophenone ketyl radical in the excited state to parent molecule in the ground state.

    Science.gov (United States)

    Sakamoto, Masanori; Cai, Xichen; Fujitsuka, Mamoru; Majima, Tetsuro

    2005-08-11

    Dual intermolecular electron transfer (ELT) pathways from 4,4'-dimethoxybenzophenone (1) ketyl radical (1H*) in the excited state [1H*(D1)] to the ground-state 4,4'-dimethoxybenzophenone [1(S0)] were found in 2-methyltetrahydrofuran (MTHF) by observing bis(4-methoxyphenyl)methanol cation (1H+) and 4,4'-dimethoxybenzophenone radical anion (1*-) during nanosecond-picosecond two-color two-laser flash photolysis. ELT pathway I involved the two-photon ionization of 1H* following the injection of electron to the solvent. The solvated electron was quickly trapped by 1(S0) to produce 1*-. ELT pathway II was a self-quenching-like ELT from 1H*(D1) to 1(S0) to give 1H+ and 1*-. From the fluorescence quenching of 1H*(D1), the ELT rate constant was determined to be 1.0 x 10(10) M(-1) s(-1), which is close to the diffusion-controlled rate constant of MTHF. The self-quenching-like ELT mechanism was discussed on the basis of Marcus' ELT theory.

  1. The excited-state intramolecular proton transfer in Nsbnd H-type dye molecules with a seven-membered-ring intramolecular hydrogen bond: A theoretical insight

    Science.gov (United States)

    Yuan, Huijuan; Feng, Songyan; Wen, Keke; Guo, Xugeng; Zhang, Jinglai

    2018-02-01

    Excited-state intramolecular proton transfer (ESIPT) reactions of a series of N(R)sbnd H ⋯ N-type seven-membered-ring hydrogen-bonding compounds were explored by employing density functional theory/time-dependent density functional theory calculations with the PBE0 functional. Our results indicate that the absorption and emission spectra predicted theoretically match very well the experimental findings. Additionally, as the electron-withdrawing strength of R increases, the intramolecular H-bond of the Nsbnd S1 form gradually enhances, and the forward energy barrier along the ESIPT reaction gradually decreases. For compound 4, its ESIPT reaction is found to be a barrierless process due to the involvement of a strong electron-withdrawing COCF3 group. It is therefore a reasonable presumption that the ESIPT efficiency of these N(R)sbnd H ⋯ N-type seven-membered-ring H-bonding systems can be improved when a strong electron-withdrawing group in R is introduced.

  2. Comparative experimental and theoretical study of the rotational excitation of CO by collision with ortho- and para-D2 molecules.

    Science.gov (United States)

    Stoecklin, T; Faure, A; Jankowski, P; Chefdeville, S; Bergeat, A; Naulin, C; Morales, S B; Costes, M

    2016-12-21

    A joint crossed beam and quantum mechanical investigation of the rotationally inelastic collisions of CO with ortho- and para-D2 molecules is reported. A new 4D potential energy surface (PES) averaged over the ground vibrational states of D2 and CO is used to calculate the rovibrational bound states of the ortho-D2-CO complexes. Close coupling calculations are then performed in the rigid rotor approximation for ortho- and para-D2 colliding with CO for the experimentally investigated transition of CO (j = 0 → 1) and for collision energies ranging from 0.1 to 25 cm-1. The agreement between theory and experiment is found to be very good for both the bound state energies of the ortho-D2-CO complexes and for the inelastic scattering cross-sections showing that the free rotation of two rigid rotors is a very good model of the D2-CO system in this low collision energy domain.

  3. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  4. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  5. Dynamical Spectroscopy of Transient He2 Molecules

    NARCIS (Netherlands)

    Rijnbach, M. van

    2004-01-01

    The velocities of atoms can be manipulated by near-resonant laser light. After many absorption-spontaneous emission cycles momentum is transferred to the atoms in the direction of the laser beam. In this way atoms can be slowed down and cooled to milliKelvin temperatures and below. In three

  6. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  7. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  8. Determination of molecular stoichiometry without reference samples by analyzing fluorescence blinking with and without excitation synchronization

    Science.gov (United States)

    Hevekerl, Heike; Widengren, Jerker

    2015-06-01

    Stoichiometry of molecular complexes plays a crucial role in biology. Moreover, for quantitative fluorescence studies, it is often useful to know the number of fluorophores labeled onto the molecules studied. In this work, we propose an approach to determine the number of independent fluorescence emitters on fluorescent molecules based on fluorescence blinking caused by photo-induced triplet state formation, photo-isomerization or charge transfer. The fluorescence blinking is measured under two different excitation regimes, on the same setup, and in one and the same sample. By comparing the fluorescence fluctuations under continuous excitation using Fluorescence Correlation Spectroscopy (FCS), when all the fluorophores are blinking independently of each other, with those occurring under square-pulsed excitation using Transient State (TRAST) spectroscopy, when all fluorophores are blinking in a synchronized manner, the number of fluorophores per molecule can be determined. No calibration sample is needed and the approach is independent of experimental conditions and of the specific environment of the molecules under study. The approach was experimentally validated by labeling double stranded DNA (dsDNA) with different concentrations of the intercalating dye YOYO-1 Iodide. The sample was then measured consecutively by TRAST and FCS and the number of fluorophores per molecule was calculated. The determined numbers were found to agree well with the number of fluorophores per dsDNA, as determined from FCS measurements using additional calibration samples.

  9. Electromagnetic excitation of ultrasound in electrolytes

    Science.gov (United States)

    Tankovsky, N. S.

    1996-11-01

    An electromagnetic explanation is given in earlier experimental evidence for the possibility of exciting acoustic signals by a transient electric field in an electrolyte. The theory is in agreement with experimental observations of acoustic signals excited by some elementary electric signals. The described mechanism can be applied to the construction of ultrasonic transducers operating in liquids or in living tissues.

  10. Transient Astrophysics Probe

    Science.gov (United States)

    Camp, Jordan

    2017-08-01

    Transient Astrophysics Probe (TAP), selected by NASA for a funded Concept Study, is a wide-field high-energy transient mission proposed for flight starting in the late 2020s. TAP’s main science goals, called out as Frontier Discovery areas in the 2010 Decadal Survey, are time-domain astrophysics and counterparts of gravitational wave (GW) detections. The mission instruments include unique imaging soft X-ray optics that allow ~500 deg2 FoV in each of four separate modules; a high sensitivity, 1 deg2 FoV soft X-ray telescope based on single crystal silicon optics; a passively cooled, 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of ~8 small NaI gamma-ray detectors. TAP will observe many events per year of X-ray transients related to compact objects, including tidal disruptions of stars, supernova shock breakouts, neutron star bursts and superbursts, and high redshift Gamma-Ray Bursts. Perhaps most exciting is TAP’s capability to observe X-ray and IR counterparts of GWs involving stellar mass black holes detected by LIGO/Virgo, and possibly X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays.

  11. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses; Manipulation coherente d'atomes et de molecules diatomiques avec des impulsions mises en forme

    Energy Technology Data Exchange (ETDEWEB)

    Degert, J

    2002-12-15

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  12. Twisting in the excited state of an N-methylpyridinium fluorescent dye modulated by nano-heterogeneous micellar systems.

    Science.gov (United States)

    Cesaretti, A; Carlotti, B; Gentili, P L; Germani, R; Spalletti, A; Elisei, F

    2016-04-01

    A push-pull N-methylpyridinium fluorescent dye with a pyrenyl group as the electron-donor portion was investigated within the nano-heterogeneous media provided by some micellar systems. The molecule was studied by stationary and time-resolved spectroscopic techniques in spherical micellar solutions and viscoelastic hydrogels, in order to throw light on the role played by twisting in its excited state deactivation. As proven by femtosecond fluorescence up-conversion and transient absorption experiments, the excited state dynamics of the molecule is ruled by charge transfer and twisting processes, which, from the locally excited (LE) state initially populated upon excitation, progressively lead to twisted (TICT) and planar (PICT) intramolecular charge transfer states. The inclusion within micellar aggregates was found to slow down and/or limit the rotation of the molecule with respect to what had previously been observed in water, while its confinement within the hydrophobic domains of the gel matrixes prevents any molecular torsion. The increasing viscosity of the medium, when passing from water to micellar systems, implies that the detected steady-state fluorescence comes from an excited state which is not fully relaxed, as is the case with the TICT state in micelles or the LE state in hydrogels, where the detected emission changes its usual orange colour to yellow.

  13. Electron correlation in molecules

    CERN Document Server

    Wilson, S

    2007-01-01

    Electron correlation effects are of vital significance to the calculation of potential energy curves and surfaces, the study of molecular excitation processes, and in the theory of electron-molecule scattering. This text describes methods for addressing one of theoretical chemistry's central problems, the study of electron correlation effects in molecules.Although the energy associated with electron correlation is a small fraction of the total energy of an atom or molecule, it is of the same order of magnitude as most energies of chemical interest. If the solution of quantum mechanical equatio

  14. Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules.

    Science.gov (United States)

    Kwak, Kyuju; Thanthirige, Viraj Dhanushka; Pyo, Kyunglim; Lee, Dongil; Ramakrishna, Guda

    2017-10-05

    The energy gap law relates the nonradiative decay rate to the energy gap separating the ground and excited states. Here we report that the energy gap law can be applied to exciton dynamics in gold cluster molecules. Size-dependent electrochemical and optical properties were investigated for a series of n-hexanethiolate-protected gold clusters ranging from Au25 to Au333. Voltammetric studies reveal that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of these clusters decrease with increasing cluster size. Combined femtosecond and nanosecond time-resolved transient absorption measurements show that the exciton lifetimes decrease with increasing cluster size. Comparison of the size-dependent exciton lifetimes with the HOMO-LUMO gaps shows that they are linearly correlated, demonstrating the energy gap law for excitons in these gold cluster molecules.

  15. A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a CuI-diimine complex captured by X-ray transient absorption spectroscopy

    DEFF Research Database (Denmark)

    Huang, J.; Mara, M.W.; Stickrath, A.B.

    2014-01-01

    Photophysical and structural properties of a CuI diimine complex with very strong steric hindrance, [CuI(dppS)2]+ (dppS = 2,9-diphenyl-1,10-phenanthroline disulfonic acid disodium salt), are investigated by optical and X-ray transient absorption (OTA and XTA) spectroscopy. The bulky phenylsulfoni...... of metal complex/semiconductor NP hybrids but also provide guidance for designing efficient CuI diimine complexes with optimized structures for application in solar-to-electricity conversion. This journal is...

  16. Excited Delirium

    Directory of Open Access Journals (Sweden)

    Takeuchi, Asia

    2011-02-01

    Full Text Available Excited (or agitated delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. [West J Emerg Med. 2011;12(1:77-83.

  17. Below-Gap Excitation of π-Conjugated Polymer-Fullerene Blends: Implications for Bulk Organic Heterojunction Solar Cells

    Science.gov (United States)

    Drori, T.; Sheng, C.-X.; Ndobe, A.; Singh, S.; Holt, J.; Vardeny, Z. V.

    2008-07-01

    We used a variety of optoelectronic techniques such as broadband fs transient and cw photomodulation spectroscopies, electroabsorption, and short-circuit photocurrent in bulk heterojunctions organic solar cells for studying the photophysics in π-conjugated polymer-fullerene blends with below-gap excitation. In contrast to the traditional view, we found that below-gap excitation, which is incapable of generating intrachain excitons, nevertheless efficiently generates polarons on the polymer chains and fullerene molecules. The polaron action spectrum extends deep inside the gap as a result of a charge-transfer complex state formed between the polymer chain and fullerene molecule. With appropriate design engineering the long-lived polarons might be harvested in solar cell devices.

  18. Reactor transient

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.

    1956-05-31

    The authors are planning a calculation to be done on the Univac at the Louviers Building to estimate the effect of xenon transients, a high reactor power. This memorandum outlines the reasons why they prefer to do the work at Louviers rather than at another location, such as N.Y.U. They are to calculate the response of the reactor to a sudden change in position of the half rods. Qualitatively, the response will be a change in the rooftop ratio of the neutron flux. The rooftop ratio may oscillate with high damping, or, instead, it may oscillate for many cycles. It has not been possible for them to determine this response by hand calculation because of the complexity of the problem, and yet it is important for them to be certain that high power operation will not lead us to inherently unstable operation. Therefore they have resorted to machine computation. The system of differential equations that describes the response has seven dependent variables; therefore there are seven equations, each coupled with one or more of the others. The authors have discussed the problem with R.R. Haefner at the plant, and it is his opinion that the IBM 650 cannot adequately handle the system of seven equations because the characteristic time constants vary over a range of about 10{sup 8}. The Univac located at the Louviers Building is said to be satisfactory for this computation.

  19. Imaging Laser-Triggered Drug Release from Gold Nanocages with Transient Absorption Lifetime Microscopy.

    Science.gov (United States)

    Xu, Yongkui; Liu, Qi; He, Ruoyu; Miao, Xianchong; Ji, Minbiao

    2017-06-14

    Nanoparticles have shown promise in loading and delivering drugs for targeted therapy. Many progresses have been made in the design, synthesis, and modification of nanoparticles to fulfill such goals. However, realizing targeted intracellular delivery and controlled release of drugs remains challenging, partly because of the lack of reliable tools to detect the drug-releasing process. In this paper, we applied femtosecond laser pulses to trigger the explosion of gold nanocages (AuNCs) and control the intracellular release of loaded aluminum phthalocyanine (AlPcS) molecules for photodynamic therapy (PDT). AuNCs were found to enhance the encapsulation efficiency and suppress the PDT effect of AlPcS molecules until they were released. More importantly, we discovered that the excited-state lifetimes of the AlPcS-AuNC conjugate (∼3 ps) and free AlPcS (∼11 ps) differ significantly, which was utilized to image the released drug molecules using transient absorption lifetime microscopy with the same laser source. This technique extracts information similar to fluorescence lifetime imaging microscopy but is superior in imaging the molecules that hardly fluoresce or are prone to photobleaching. We further combined a dual-phase lock-in detection technique to show the potential of real-time imaging based on the change in transient optical behaviors. Our method may provide a new tool for investigating nanoparticle-assisted drug delivery and release.

  20. Transient tachypnea - newborn

    Science.gov (United States)

    TTN; Wet lungs - newborns; Retained fetal lung fluid; Transient RDS; Prolonged transition; Neonatal - transient tachypnea ... Newborns with transient tachypnea have breathing problems soon after birth, most often within 1 to 2 hours. ...

  1. Origin of the S* Excited State Feature of Carotenoids in Light-Harvesting Complex 1 from Purple Photosynthetic Bacteria.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Swainsbury, David J K; Martin, Elizabeth C; Hunter, C Neil; Blankenship, Robert E

    2017-08-17

    This spectroscopic study investigates the origin of the transient feature of the S* excited state of carotenoids bound in LH1 complexes from purple bacteria. The studies were performed on two RC-LH1 complexes from Rba. sphaeroides strains that bound carotenoids with different carbon-carbon double bond conjugation N, neurosporene (N = 9) and spirilloxanthin (N = 13). The S* transient spectral feature, originally associated with an elusive and optically silent excited state of spirilloxanthin in the LH1 complex, may be successfully explained and mimicked without involving any unknown electronic state. The spectral and temporal characteristics of the S* feature suggest that it is associated with triplet-triplet annihilation of carotenoid triplets formed after direct excitation of the molecule via a singlet fission mechanism. Depending on pigment homogeneity and carotenoid assembly in the LH1 complex, the spectro-temporal component associated with triplet-triplet annihilation may simply resolve a pure T-S spectrum of a carotenoid. In some cases (like spirilloxanthin), the T-S feature will also be accompanied by a carotenoid Stark spectrum and/or residual transient absorption of minor carotenoid species bound into LH1 antenna complex.

  2. Excited state dynamics of liquid water near the surface

    Directory of Open Access Journals (Sweden)

    Schultz Thomas

    2013-03-01

    Full Text Available Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.

  3. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  4. Single molecule logical devices.

    Science.gov (United States)

    Renaud, Nicolas; Hliwa, Mohamed; Joachim, Christian

    2012-01-01

    After almost 40 years of development, molecular electronics has given birth to many exciting ideas that range from molecular wires to molecular qubit-based quantum computers. This chapter reviews our efforts to answer a simple question: how smart can a single molecule be? In our case a molecule able to perform a simple Boolean function is a child prodigy. Following the Aviram and Ratner approach, these molecules are inserted between several conducting electrodes. The electronic conduction of the resulting molecular junction is extremely sensitive to the chemical nature of the molecule. Therefore designing this latter correctly allows the implementation of a given function inside the molecular junction. Throughout the chapter different approaches are reviewed, from hybrid devices to quantum molecular logic gates. We particularly stress that one can implement an entire logic circuit in a single molecule, using either classical-like intramolecular connections, or a deformation of the molecular orbitals induced by a conformational change of the molecule. These approaches are radically different from the hybrid-device approach, where several molecules are connected together to build the circuit.

  5. A novel type of transient luminous event produced by terrestrial gamma-ray flashes

    Science.gov (United States)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor P.; Marshall, Robert A.

    2017-03-01

    Terrestrial Gamma-ray Flashes (TGFs), discovered in 1994 by the Compton Gamma-Ray Observatory, are high-energy photon bursts originating in the Earth's atmosphere in association with thunderstorms. In this paper, we demonstrate theoretically that, while TGFs pass through the atmosphere, the large quantities of energetic electrons knocked out by collisions between photons and air molecules generate excited species of neutral and ionized molecules, leading to a significant amount of optical emissions. These emissions represent a novel type of transient luminous events in the vicinity of the cloud tops. We show that this predicted phenomenon illuminates a region with a size notably larger than the TGF source and has detectable levels of brightness. Since the spectroscopic, morphological, and temporal features of this luminous event are closely related with TGFs, corresponding measurements would provide a novel perspective for investigation of TGFs, as well as lightning discharges that produce them.

  6. Transient Exciplex Formation Electron Transfer Mechanism

    Directory of Open Access Journals (Sweden)

    Michael G. Kuzmin

    2011-01-01

    Full Text Available Transient exciplex formation mechanism of excited-state electron transfer reactions is analyzed in terms of experimental data on thermodynamics and kinetics of exciplex formation and decay. Experimental profiles of free energy, enthalpy, and entropy for transient exciplex formation and decay are considered for several electron transfer reactions in various solvents. Strong electronic coupling in contact pairs of reactants causes substantial decrease of activation energy relative to that for conventional long-range ET mechanism, especially for endergonic reactions, and provides the possibility for medium reorganization concatenated to gradual charge shift in contrast to conventional preliminary medium and reactants reorganization. Experimental criteria for transient exciplex formation (concatenated mechanism of excited-state electron transfer are considered. Available experimental data show that this mechanism dominates for endergonic ET reactions and provides a natural explanation for a lot of known paradoxes of ET reactions.

  7. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  8. Laser-induced transient grating setup with continuously tunable period

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Flick, A. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico (Mexico); Eliason, J. K.; Maznev, A. A.; Nelson, K. A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Khanolkar, A.; Abi Ghanem, M.; Boechler, N. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Alvarado-Gil, J. J. [Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico (Mexico)

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  9. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients

    OpenAIRE

    Baier, Gerold; Taylor, Peter N.; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal tr...

  10. Vibrational Spectrum of an Excited State and Huang-Rhys Factors by Coherent Wave Packets in Time-Resolved Fluorescence Spectroscopy.

    Science.gov (United States)

    Lee, Gyeongjin; Kim, Junwoo; Kim, So Young; Kim, Dong Eon; Joo, Taiha

    2017-03-17

    Coherent nuclear wave packet motions in an electronic excited state of a molecule are measured directly by time-resolved spontaneous fluorescence spectroscopy with an unprecedented time resolution by using two-photon absorption excitation and fluorescence upconversion by noncollinear sum frequency generation. With an estimated time resolution of approximately 25 fs, wave packet motions of vibrational modes up to 1600 cm(-1) are recorded for coumarin 153 in ethanol. Two-color transient absorption at 13 fs time resolution are measured to confirm the result. Vibrational displacements between the ground and excited states and Huang-Rhys factors (HRFs) are calculated by quantum mechanical methods and are compared with the experimental results. HRFs calculated by density functional theory (DFT) and time-dependent DFT reproduce the experiment adequately. This fluorescence-based method provides a unique and direct way to obtain the vibrational spectrum of a molecule in an electronic excited state and the HRFs, as well as the dynamics of excited states, and it might provide information on the structure of an excited state through the HRFs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transient field generation and measurement

    Science.gov (United States)

    Parkes, D. M.; Smith, P. D.

    The mathematical modeling and numerical computation of the elecromagnetic field radiated by a biconic antenna excited by a transient waveform such as a pulse are outlined. Very good agreement between the model and experiment is achieved for the time history of the radiated pulse. Amplitudes of calculated field strengths are within engineering tolerances. The type of field and its amplitude which result when any variant of biconic antenna is excited by a given input pulse can be predicted, since the time marching method of solving integral equations is shown to be successfully implemented on a computer. Because the system is not limited to single shot events, measurement of induced currents inside target equipments when illuminated by the radiation field is simplified, since sampling technology can be employed. Current waveforms which occur in antennas can also be predicted.

  12. Loss of excitation of synchronous generator

    Science.gov (United States)

    Krištof, Vladimír; Mešter, Marián

    2017-01-01

    This paper presents results of study of loss-of-excitation phenomena simulations. Loss of excitation is a very common fault in synchronous machine operating and can be caused by short circuit of the field winding, unexpected field breaker open or loss-of-excitation relay mal-operation. According to the statistic [1], the generator failure due to loss-of-excitation accounts for 69% of all generator failures. There has been concern over possible incorrect operation of the relay when operating the generator in the under-excited region, during stable transient swings and during major system disturbances. This article can serve as inputs for system operators in preparation of operation area or protection relaying area.

  13. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  14. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  15. Ultra-short strong excitation of two-level systems

    Science.gov (United States)

    Jha, Pankaj K.; Eleuch, Hichem; Grazioso, Fabio

    2014-11-01

    We present a model describing the use of ultra-short strong pulses to control the population of the excited level of a two-level quantum system. In particular, we study an off-resonance excitation with a few cycles pulse which presents a smooth phase jump i.e. a change of the pulse's phase which is not step-like, but happens over a finite time interval. A numerical solution is given for the time-dependent probability amplitude of the excited level. The control of the excited level's population is obtained acting on the shape of the phase transient, and other parameters of the excitation pulse.

  16. [Vibrational and rotational excitation of CO2 in the collisional quenching of H2(v = 1)].

    Science.gov (United States)

    Zhang, Wen-jun; Feng, Li; Li, Jia-ling; Liu, Jing; Dai, Kang; Shen, Yi-fan

    2014-06-01

    Energy transfer in H2 (1,1) +CO2 collisions was investigated using high resolution transient laser spectroscopy. Rotational state selective excitation of v = 1 for rotational level J = 1 was achieved by stimulated Raman pumping. Energy gain into CO2 resulting from collisions with H2 (1,1) was probed using transient absorption techniques, Distributions of nascent CO2 rotational populations in both the ground (00 degrees 0) state and the vibrationally excited (00 degrees 1) state were determined from overtone absorption measurements. Translational energy distributions of the recoiling CO2 in individual rovibrational states were determined through measurement of Doppler-broadened transient line shapes. A kinetic model was developed to describe rates for appearance of CO2 states resulting from collisions with H2(1,1). From scanned CARS (coherent anti-stokes Raman scattering) the spectral peaks population ratio n0/n1 was obtained, where n0 and n1 represent the number densities of H2 at the levels (0,1) and (1,1), respectively. Using rotational Boltzmann distribution of H2 (v = 0) at 300 K, n1 was yielded. Values for rate coefficients were obtained using data for CO2 (00 degrees 0) J = 48 to 76 and CO2 (00 degrees 1) J = 5 to 33. The rate coefficients derived from appearance of the (00 degrees 0) state have values of K(tr) = (3.9 ± 0.8) x 10(-11) cm3 x molecule(-1) x s(-1) for J = 48 and k(tr) = (1.4 ± 0.3) x 10(-10) cm3 x molecule(-1) x s(-1) for J = 76, with a monotonic increase for the higher J states. For the (00 degrees 1) state, values of k(tr) remain fairly constant at k(tr) = (4.3 ± 0.9) x 10(-12) cm3 x molecule(-1) x s(-1). Rotational populations for the nascent CO2 states were measured at 0. 5 μs following excitation of H2. The transient population for each state was fit using a Boltzmann rotational distribution. The CO2 (00 degrees 0) J = 48-76 rotational states were populated substantially relative to the initial 300 K CO2 distributions, and the

  17. The search for a molecule to measure an autocorrelation trace of the second/third harmonic emission of a Ti:sapphire laser based on two-photon resonant excitation and subsequent one-photon ionization

    Science.gov (United States)

    Imasaka, Tomoko; Okuno, Tomoya; Imasaka, Totaro

    2013-12-01

    The temporal profile of the second and third harmonic emissions of a Ti:sapphire laser was measured using an autocorrelator consisting of a mass spectrometer as a two-photon-response detector. A number of organic compounds that are potentially applicable for two-photon excitation and subsequent one-photon ionization were investigated using density functional theory calculations. N, N'-dimethylaniline and acetonitrile were used for the measurement of the pulse width for the second and third harmonic emissions of the Ti:sapphire laser. This approach has the potential for use in measuring pulse widths as short as 1-3 fs in the ultraviolet region.

  18. The coupled cluster approach with a hybrid treatment of connected triple excitations: Spectroscopic constants in open-shell diatomic molecules, and bond-breaking or twisting potential energy surfaces

    Science.gov (United States)

    Kou, Zhuangfei; Shen, Jun; Xu, Enhua; Li, Shuhua

    2012-06-01

    A coupled cluster singles, doubles, and a hybrid treatment of triples [denoted as CCSD(T)-h] has been applied to investigate the equilibrium geometries and harmonic frequencies of five diatomic open-shell molecules, bond breaking potential energy surfaces in C2 and F2+, and the twisting potential energy surface of ethylene. In the present work, CCSD(T)-h calculations are based on the restricted or restricted open-shell Hartree-Fock (RHF or ROHF) reference. A general procedure for constructing the active RHF or ROHF orbitals is proposed. A comparison of CCSD(T)-h with other CC methods show that for all systems CCSD(T)-h is an excellent approximation to CCSDT, being much better than CCSD(T) especially when a molecule exhibits strong multireference character.

  19. Molecule Matters

    Indian Academy of Sciences (India)

    is such an innocuous molecule that you might not think it worthy of special attention. We take this molecule for granted because it is abundantly available on earth. About 80 % of the earth's atmosphere, which means a total of 4×1018 kg, is dinitrogen![1] Secondly, it is ignored because it is quite un- reactive. Nitrogen is such ...

  20. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  1. Transient Global Amnesia

    Science.gov (United States)

    ... sudden memory loss. Request an Appointment at Mayo Clinic Causes The underlying cause of transient global amnesia is unknown. There appears to be a link between transient global amnesia and a history of migraines, though the underlying factors that contribute ...

  2. Producing coherent excitations in pumped Mott antiferromagnetic insulators

    Science.gov (United States)

    Wang, Yao; Claassen, Martin; Moritz, B.; Devereaux, T. P.

    2017-12-01

    Nonequilibrium dynamics in correlated materials has attracted attention due to the possibility of characterizing, tuning, and creating complex ordered states. To understand the photoinduced microscopic dynamics, especially the linkage under realistic pump conditions between transient states and remnant elementary excitations, we performed nonperturbative simulations of various time-resolved spectroscopies. We used the Mott antiferromagnetic insulator as a model platform. The transient dynamics of multiparticle excitations can be attributed to the interplay between Floquet virtual states and a modification of the density of states, in which interactions induce a spectral weight transfer. Using an autocorrelation of the time-dependent spectral function, we show that resonance of the virtual states with the upper Hubbard band in the Mott insulator provides the route towards manipulating the electronic distribution and modifying charge and spin excitations. Our results link transient dynamics to the nature of many-body excitations and provide an opportunity to design nonequilibrium states of matter via tuned laser pulses.

  3. Transient drainage summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  4. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  5. Transient Ischemic Attack

    Medline Plus

    Full Text Available Transient Ischemic Attack TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an artery for a short time. The only ... TIA is that with TIA the blockage is transient (temporary). TIA symptoms occur rapidly and last a ...

  6. Field-free orientation of molecules

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2001-01-01

    The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...

  7. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    Science.gov (United States)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  8. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  9. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  10. Correlating excited state and charge carrier dynamics with photovoltaic parameters of perylene dye sensitized solar cells: influences of an alkylated carbazole ancillary electron-donor.

    Science.gov (United States)

    Li, Yang; Wang, Junting; Yuan, Yi; Zhang, Min; Dong, Xiandui; Wang, Peng

    2017-01-18

    Two perylene dyes characteristic of electron-donors phenanthrocarbazole (PC) and carbazyl functionalized PC are selected to study the complicated dynamics of excited states and charge carriers, which underlie the photovoltaic parameters of dye-sensitized solar cells (DSCs). We have combined femtosecond fluorescence up-conversion and time-resolved single-photon counting techniques to probe the wavelength-dependent photoluminescence dynamics of dye molecules not only dissolved in THF but also grafted on the surface of oxide nanoparticles. Excited state relaxation and electron injection both occur on a similar timescale, resulting in a very distributive kinetics of electron injection. It is also found that the carbazyl ancillary electron-donor causes a faster electron injection, which over-compensates the adverse impact of a slightly shorter lifetime of the equilibrium excited state. Nanosecond transient absorption and transient photovoltage decay measurements have shown that conjugating carbazyl to PC can effectively slow down the kinetics of charge recombination of electrons in titania with both photo-oxidized dye molecules and triiodide anions, improving the cell photovoltage.

  11. Transient Development of Excited State Densities in Atomic Helium Plasmas

    Science.gov (United States)

    1976-03-01

    n s t i t u e n t s caus ing a t . ransfer to bound e l e c t r o n s b e t w e e n the l o w - l y i n g s t a t e s and u p p e r s t a t...r y and t h e s e a r e d i s c u s s e d in de ta i l . 4.1 ENERGY LEVELS The h e l i u m e n e r g y l e v e l s u s e d in th i s s...e t h e n d e t e r m i n e d f r o m t h e s e v a l u e s . 4] AEDC-TR-76-5 Table 1. Helium Energy Lwel$ State g E (i/cm) State g E (i

  12. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    Science.gov (United States)

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  13. Enumerating molecules.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (, . Tennessee Technological University, Cookeville, TN); Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  14. Ultrafast time-resolved transient structures of solids and liquids by means of extended X-ray absorption fine structure.

    Science.gov (United States)

    Tomov, Ivan V; Rentzepis, Peter M

    2004-01-23

    Detection of ultrafast transient structures and the evolution of ultrafast structural intermediates during the course of reactions has been a long standing goal of chemists and biologists. This article will be restricted to nanosecond, picosecond and shorter time-resolved extended X-ray absorption fine structure (EXAFS) studies, its aim being to present the progress and problems encounter in measurements and understanding the structure of transients. The recent advances in source technology has stimulated a wide variety of novel experiments using both synchrotrons and smaller laboratory size systems. With more efficient X-ray lenses and detectors many of the previously difficult experiments to perform, because of the exposure time required and weak signals, will now be easily performed. The experimental system for the detection of ultrafast, time-resolved EXAFS spectra of molecules in liquids is described and the method for the analysis of EXAFS spectra to yield transient structures is given. We believe that utilizing our table-top ultrafast X-ray source and the polycapillary optics in conjunction with dispersive spectrometer and charge coupled devices (CCD) we will be able to determine the structure of many reaction intermediates and excited states of chemical and biological molecules in solid and liquid state.

  15. Channelopathies of skeletal muscle excitability

    Science.gov (United States)

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  16. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...... and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition....

  17. Tunable Holstein model with cold polar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Felipe; Krems, Roman V. [Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)

    2011-11-15

    We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external dc electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer can be modified by tuning experimental parameters.

  18. Molecular Wring Resonances in Chain Molecules

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    It is shown that the eigenfrequency of collective twist excitations in chain molecules can be in the megahertz and gigahertz range. Accordingly, resonance states can be obtained at specific frequencies, and phenomena that involve structural properties can take place. Chain molecules can alter the...

  19. Ultrafast multiphoton transient absorption of {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Buckup, Tiago [Philipps University Marburg, Department of Chemistry, D-35043 Marburg (Germany); Ruprecht-Karls University Heidelberg, Physical-Chemistry Institute, D-69120 (Germany); Weigel, Alexander; Hauer, Juergen [Philipps University Marburg, Department of Chemistry, D-35043 Marburg (Germany); Motzkus, Marcus, E-mail: Marcus.Motzkus@pci.uni-heidelberg.de [Philipps University Marburg, Department of Chemistry, D-35043 Marburg (Germany); Ruprecht-Karls University Heidelberg, Physical-Chemistry Institute, D-69120 (Germany)

    2010-07-19

    Multiphoton spectroscopy is able to directly excite electronic states, which are one-photon forbidden. Under single photon conditions, such one-photon forbidden states are exclusively populated via internal relaxation. Hence, transient absorption with two-photon excitation has the potential of clarifying complex relaxation networks by using aimed excitation. In this work we exploited ultrafast two-photon spectroscopy to investigate the excitation of dark states of {beta}-carotene in solution. After direct excitation of the vibronic manifold of S{sub 1}(2A{sub g}{sup -}) from S{sub 0} via two-photon transition, the characteristic internal conversion via hot-S{sub 1} {yields} S{sub 1} {yields} S{sub 0} was observed in the respective spectral region. Additional slow dynamics in the blue-wing of excited-state absorption (ESA) and in the NIR were detected, which is not directly observable with one-photon excitation transient absorption. These features are associated here to resonant multiphoton processes, which lead simultaneously to ultrafast intersystem crossing between singlet and triplet systems as well as to excitation of doublet states. Furthermore, we identify a 340-400 fs relaxation component in the near-infrared region after two-photon resonant excitation and discuss the role of additional dark states (3A{sub g}{sup -} and 1B{sub u}{sup -}) in this process.

  20. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  1. Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes.

    Science.gov (United States)

    Riedle, Eberhard; Bradler, Maximilian; Wenninger, Matthias; Sailer, Christian F; Pugliesi, Igor

    2013-01-01

    Complex multi-stage relaxation and reaction pathways after the optical excitation of molecules makes the disentanglement of the underlying mechanisms challenging. We present four examples that a new transient spectrometer with excitation fully tunable from the deep UV to the IR and 225 to 1700 nm probing allows for an analysis with greatly reduced ambiguity. The temporal resolution of about 50 fs allows us to resolve all relevant processes. For each example there is a new twist in the sequence of relaxation steps that had previously been overlooked. In malachite green it appears that the importance of the phenyl twisting has been overemphasized and rather a charge transfer state should be considered. In TINUVIN-P the predicted twisting as the driving motion for the ultrafast IC is confirmed and leads to a resolution of the earlier puzzle that the sub-5 ps regime shows kinetics deviating from a pure cooling process despite the sub-ps proton transfer cycle. For the bond cleavage of Ph2CH-Cl and Ph2CH-Br the degree of electron transfer within the radical pair can now be determined quantitatively and leads to a profound understanding of the long-term cation yield. For the first time coherent wavepacket motion in the photoproducts is reported. Last but not least the measurement of the GSB recovery in the deep UV allows for the surprising result, that even after S2 excitation of cyclopentenones the triplet states are reached with near unity probability within a few picoseconds.

  2. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  3. Emission and fs/ns-TRANSIENT Absorption of Organometallic Complexes Bound to a Dinuclear Metal Center

    Science.gov (United States)

    Durr, Christopher B.; Brown-Xu, Samantha E.; Chisholm, Malcolm H.

    2012-06-01

    Compounds containing a MM quadruple bond (M = Mo or W) of the form M2L2L'2, where L and L' are conjugated organic ligands, show interesting photophysical properties along with a metal-to-ligand charge transfer (MLCT) band that is tunable throughout the UV-Vis-NIR spectra. Recently, our attention has shifted towards ligands that incorporate a secondary transition metal complex bound to an organic moiety. Along with allowing for a second tunable MLCT band for better coverage of the solar spectrum, these hybrid molecules show unique spectroscopic properties that were explored using fs/ns-transient absorption and UV-Vis/NIR emission. These techniques allow for the elucidation of the electronic character of the excited states as well as their lifetimes. This knowledge will be put to use in the design of new materials that could later be incorporated into next generation photovoltaic devices.

  4. Dual electron transfer pathways from the excited C60 radical anion: enhanced reactivities due to the photoexcitation of reaction intermediates.

    Science.gov (United States)

    Fujitsuka, Mamoru; Ohsaka, Tatsuya; Majima, Tetsuro

    2015-12-14

    In the present study, electron transfer (ET) processes from excited radical anions have been investigated using dyad molecules including C60. The deactivation process of excited C60˙(-), including the internal conversion from the D1 to the D0 state and the cooling process of the vibrationally hot ground state (D), was observed spectroscopically for the first time. These processes could be unambiguously distinguished by the observation of the stimulated emission from the D1 state. The intramolecular ET processes from the excited C60˙(-) were confirmed by the transient absorption spectra. Clearly, both D1 and D states acted as precursors for the ET, i.e., dual ET pathways were confirmed. The driving force dependence of the ET rates was well characterized by the Marcus theory, which revealed that the forward ET processes are located at the top region of the Marcus parabola. In addition, the ET from the excited imide radical anion to C60 and that from the ground state C60˙(-) to imide were examined. The ET rate from the excited imide radical anion and that from ground state C60˙(-) did not follow the Marcus parabola estimated for the ET from the excited C60˙(-). The observed difference can be attributed to the difference in the energy required to form the reduced spacer (Δ) in the superexchange mechanism. Because the Δ value tends to become smaller for ET processes from excited radical ions, fast and efficient ET processes are expected from these states as demonstrated in the present study.

  5. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Molecule Matters - N-Heterocyclic Carbenes - The Stable Form of R2 C: Anil J Elias. Feature Article Volume 13 Issue 5 May 2008 pp 456-467. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Molecule Matters - Carbon Dioxide: Molecular States and Beyond. T P Radhakrishnan. Feature Article Volume 11 Issue 11 November 2006 pp 88-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. ps-TRIR covers all the bases--recent advances in the use of transient IR for the detection of short-lived species in nucleic acids.

    Science.gov (United States)

    Towrie, Michael; Doorley, Gerard W; George, Michael W; Parker, Anthony W; Quinn, Susan J; Kelly, John M

    2009-07-01

    Recent developments of the picosecond transient absorption infrared technique and its ability to elucidate the nature and kinetic behaviour of transient species formed upon pulsed laser excitation of nucleic acids are described.

  9. Inner-shell excitation spectroscopy of peroxides

    NARCIS (Netherlands)

    Harding, K. L.; Kalirai, S.; Hayes, R.; Ju, V.; Cooper, G.; Hitchcock, A. P.; Thompson, M. R.

    2015-01-01

    O 1s inner-shell excitation spectra of a number of vapor phase molecules containing peroxide bonds - hydrogen peroxide (H2O2), di-t-butylperoxide ((BuOBu)-Bu-t-Bu-t), benzoyl peroxide, ((C6H5(CO)O)(2)), luperox-F [1,3(4)-bis(tertbutylperoxyisopropyl)benzene], and analogous, non-peroxide compounds -

  10. Isovector monopole excitation energies

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.D.; Lipparini, E.; Stringary, S.

    1987-11-05

    Using a hydrodynamical model whose parameters have been adjusted to fit the polarizability and excitation energy of the giant dipole nuclear resonance we predict excitation energies of the isovector monopole resonance. The predicted values are in good agreement with experimental data. The mass dependence of the excitation energy is strongly influenced by nuclear geometry.

  11. Transient Current Spectroscopy of a Si Quantum Dot

    Science.gov (United States)

    Xiao, Ming; Jiang, Hongwen

    2009-03-01

    We present a transient current spectroscopy study of a Si-MOS based quantum dot. The study was conducted in the few electron region. A voltage pulse pumped the electrons into an excited orbital state and the non-equilibrium transient current through the dot was recorded. The evolution of the excited state as a function of magnetic field shows signatures of a transition from a spin singlet state to a triplet state of an electron pair. A pump-and-probe technique was employed to set a lower limit of the triplet-singlet relaxation time. The work was sponsored by United States Department of Defense.

  12. Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

    Directory of Open Access Journals (Sweden)

    Mihai E. Vaida

    2011-09-01

    Full Text Available The photodissociation of small organic molecules, namely methyl iodide, methyl bromide, and methyl chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump–probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was prepared as an ultrathin film on Mo(100. The molecular adsorption behavior was characterized by coverage dependent temperature programmed desorption spectroscopy. Submonolayer preparations were irradiated with UV light of 266 nm wavelength and the subsequently emerging methyl fragments were probed by photoionization and mass spectrometric detection. A strong dependence of the excitation mechanism and the light-induced dynamics on the type of molecule was observed. Possible photoexcitation mechanisms included direct photoexcitation to the dissociative A-band of the methyl halide molecules as well as the attachment of surface-emitted electrons with transient negative ion formation and subsequent molecular fragmentation. Both reaction pathways were energetically possible in the case of methyl iodide, yet, no methyl fragments were observed. As a likely explanation, the rapid quenching of the excited states prior to fragmentation is proposed. This quenching mechanism could be prevented by modification of the gold surface through pre-adsorption of iodine atoms. In contrast, the A-band of methyl bromide was not energetically directly accessible through 266 nm excitation. Nevertheless, the one-photon-induced dissociation was observed in the case of methyl bromide. This was interpreted as being due to a considerable energetic down-shift of the electronic A-band states of methyl bromide by about 1.5 eV through interaction with the gold substrate. Finally, for methyl chloride no photofragmentation could be detected at all.

  13. Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

    Science.gov (United States)

    Righetto, Marcello; Privitera, Alberto; Franco, Lorenzo; Bozio, Renato

    2017-08-01

    Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

  14. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  15. Cell imaging by transient fluorescence detected infrared microscopy

    Science.gov (United States)

    Ohmori, Tsutomu; Sakai, Makoto; Ishihara, Miya; Kikuchi, Makoto; Fujii, Masaaki

    2008-02-01

    Transient fluorescence detected infrared (TFD-IR) microscopy was developed to overcome the diffraction limit of infrared (IR) light without a near-field system. This microscopic technique is based on TFD-IR spectroscopy, which converts information on IR absorption to fluorescence intensity by further electronic excitation of vibrationally excited molecules by a probing UV/visible light. Roots of Arabidopsis thaliana and living A549 cells with fluorescent dyes were chosen as samples. In the measurements using the TFD-IR microscope, tunable IR picosecond laser pulses were used in the wavelength range from 2700 to 3700 nm, corresponding to CH, NH, and OH stretching modes. Fluorescence images of the root cells of A. thaliana by the TFD-IR scheme were obtained with super-resolution compared with the resolution of conventional IR microscopy. The resolution is estimated to be less than 2.6 μm by fitting of a gaussian function. However, the TFD-IR images were dominated mainly by the fluorescent dyes because they were almost the same as a conventional fluorescence image. To investigate other contributions hidden by that of fluorescent dyes, we plotted the fluorescence intensity in several 5 μm squares at various IR wavelengths, called a TFD-IR spectrum. For root cells of A. thaliana, the TFD-IR spectra show shapes similar to those of a conventional IR absorption spectrum of the fluorescent dye. Therefore, the TFD-IR images are not due to the cellular components. For an A549 cell, the TFD-IR spectra were different from a conventional IR absorption spectrum of fluorescent dyes in the wavelength region shorter than 3100 nm. We speculate that the spectral difference is due to the cellular components, possibly assigned to the combination band related to amino groups of cellular components bonded covalently to the fluorescent dyes.

  16. [Transient epileptic amnesia].

    Science.gov (United States)

    Muramatsu, Kazuhiro; Yoshizaki, Takahito

    2016-03-01

    Transient amnesia is one of common clinical phenomenon of epilepsy that are encountered by physicians. The amnestic attacks are often associated with persistent memory disturbances. Epilepsy is common among the elderly, with amnesia as a common symptom and convulsions relatively uncommon. Therefore, amnesia due to epilepsy can easily be misdiagnosed as dementia. The term 'transient epileptic amnesia (TEA)' was introduced in the early 1990s by Kapur, who highlighted that amnestic attacks caused by epilepsy can be similar to those occurring in 'transient global amnesia', but are distinguished by features brevity and recurrence. In 1998, Zeman et al. proposed diagnostic criteria for TEA.

  17. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    Science.gov (United States)

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spin-dependent rectification in the C59N molecule

    Indian Academy of Sciences (India)

    2013-02-05

    Feb 5, 2013 ... Spin-dependent electron transport; C60 molecule; C59N molecule; rectification effect; tunnel magnetoresistance. PACS Nos 72.25.−b; 72.80.Rj; 73.40.Ei. 1. Introduction. The azafullerene, C59N, represents an exciting addition to the family of fullerene deriva- tives. In this molecule, a single carbon atom of ...

  19. Transient Ischemic Attack

    Medline Plus

    Full Text Available ... TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an ... a short time. The only difference between a stroke and TIA is that with TIA the blockage ...

  20. Transient tic disorder

    Science.gov (United States)

    ... makes 1 or many brief, repeated, movements or noises (tics). These movements or noises are involuntary (not on purpose). Causes Transient tic ... less than a year. Other disorders such as anxiety , attention deficit hyperactivity disorder ( ADHD ), uncontrollable movement ( myoclonus ), ...

  1. Transient Ischemic Attack

    Medline Plus

    Full Text Available ... Ischemic Attack TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an artery for a short time. The only difference between a stroke ...

  2. Transient Microcavity Sensor

    CERN Document Server

    Shu, Fang-Jie; Özdemir, Şahin Kaya; Yang, Lan; Guo, Guang-Can

    2015-01-01

    A transient and high sensitivity sensor based on high-Q microcavity is proposed and studied theoretically. There are two ways to realize the transient sensor: monitor the spectrum by fast scanning of probe laser frequency or monitor the transmitted light with fixed laser frequency. For both methods, the non-equilibrium response not only tells the ultrafast environment variance, but also enable higher sensitivity. As examples of application, the transient sensor for nanoparticles adhering and passing by the microcavity is studied. It's demonstrated that the transient sensor can sense coupling region, external linear variation together with the speed and the size of a nanoparticle. We believe that our researches will open a door to the fast dynamic sensing by microcavity.

  3. Millimeterwave spectroscopy of transient molecules produced in a ...

    Indian Academy of Sciences (India)

    The spectrometer has been used to study the millimeterwave spectrum of carbon monosulfide (CS) and fluorine cyanide (FCN) produced inside the cell in a low pressure DC discharge of precursor gases. The quadrupole hyperfine structures of 33S and 14N nucleus of CS and FCN have been resolved, measured and ...

  4. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  5. IMPROVING THE TRANSIENT STABILITY OF NIGERIAN 330KV ...

    African Journals Online (AJOL)

    The study is performed using commercially available software Dig SILENT Power Factory. The overloaded lines which could excite instability in the network are identified. Fixed capacitor thyristor controlled reactor is used to model the SVC and is appropriately sized and located within the network. Transient stability of the ...

  6. Relaxation of the excited -(2-hydroxy benzylidene) aniline ...

    Indian Academy of Sciences (India)

    The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation ...

  7. Tddft Calculations of Transient IR Spectra of DNA

    Science.gov (United States)

    Richard, Ryan M.; Herbert, John M.

    2011-06-01

    Establishment of ultraviolet radiation's role in DNA mutation has led to an increasing interest in understanding the electronic excited state dynamics of DNA. It is known that upon excitation of the ground state, the DNA bases are excited to an optically bright ππ^* state that then quickly decays back to the ground state; however, further investigations have shown that there are long-lived states within the excited state manifolds, which may be able to influence the excited state dynamics. The goal of our study is to calculate, with the aid of time-dependent density functional theory, several transient infrared spectra of double stranded and single stranded DNA in both gas phase and in solution, in order to help sort out the exact role of these states in the relaxation processes of DNA by comparison to available experimental data.

  8. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...... is verified by comparison with recent experimental measurements of the transient optical properties in combination with ablation-depth determinations. The excitation process from the first creation of conduction-band electrons at low intensities to the formation of a highly-excited plasma and associated...

  9. Transmitter modulation of spike-evoked calcium transients in arousal related neurons

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Leonard, Christopher S

    2006-01-01

    -evoked intracellular calcium transients dampen excitability and stimulate NO production in these neurons. In this study, we investigated the action of several arousal-related neurotransmitters and the role of specific calcium channels in these LDT Ca(2+)-transients by simultaneous whole-cell recording and calcium...

  10. Recent progress in electron scattering from atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brunger, M. J. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Buckman, S. J. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia and Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Sullivan, J. P.; Palihawadana, P. [Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Chiari, L.; Pettifer, Z. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Lopes, M. C. A. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Duque, H. V. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Masin, Z.; Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Garcia, G. [Instituto de Fisica Fundamental, CSIC, Madrid E-28006 (Spain); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-03-05

    We present and discuss recent results, both experimental and theoretical (where possible), for electron impact excitation of the 3s[3/2 ]{sub 1} and 3s′[1/2 ]{sub 1} electronic states in neon, elastic electron scattering from the structurally similar molecules benzene, pyrazine, and 1,4-dioxane and excitation of the electronic states of the important bio-molecule analogue α-tetrahydrofurfuryl alcohol. While comparison between theoretical and experimental results suggests that benchmarked cross sections for electron scattering from atoms is feasible in the near-term, significant further theoretical development for electron-molecule collisions, particularly in respect to discrete excitation processes, is still required.

  11. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  12. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses.

    Science.gov (United States)

    Chakravarty, Prerona; Qian, Wei; El-Sayed, Mostafa A; Prausnitz, Mark R

    2010-08-01

    A major barrier to drug and gene delivery is crossing the cell's plasma membrane. Physical forces applied to cells via electroporation, ultrasound and laser irradiation generate nanoscale holes in the plasma membrane for direct delivery of drugs into the cytoplasm. Inspired by previous work showing that laser excitation of carbon nanoparticles can drive the carbon-steam reaction to generate highly controlled shock waves, we show that carbon black nanoparticles activated by femtosecond laser pulses can facilitate the delivery of small molecules, proteins and DNA into two types of cells. Our initial results suggest that interaction between the laser energy and carbon black nanoparticles may generate photoacoustic forces by chemical reaction to create transient holes in the membrane for intracellular delivery.

  13. Nanoscale control of phonon excitations in graphene

    Science.gov (United States)

    Kim, Hyo Won; Ko, Wonhee; Ku, Jiyeon; Ryu, Seunghwa; Hwang, Sung Woo

    Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realizing graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron-phonon excitations, further influencing phonon-assisted inelastic electron tunneling.

  14. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  15. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  16. Nuclear expansion with excitation

    Energy Technology Data Exchange (ETDEWEB)

    De, J.N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Samaddar, S.K. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Vinas, X. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Centelles, M. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: mario@ecm.ub.es

    2006-07-06

    The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM{sup *} force as the nuclear effective two-body interaction. The calted results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of {approx}9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates, however, nuclear disassembly above an excitation energy of {approx}4 MeV/u.

  17. A targeting drug-delivery model via interactions among cells and liposomes under ultrasonic excitation

    Science.gov (United States)

    Xi, Xiaoyu; Yang, Fang; Chen, Di; Luo, Yi; Zhang, Dong; Gu, Ning; Wu, Junru

    2008-06-01

    In our previous work, it was found that acoustic cavitation might play a role in improving the cell permeability to microparticles when liposomes were used in an in vitro experiment. The purpose of this project is to expand our study and to learn other possible mechanisms by which cells may interact with liposomes under ultrasound (US) excitation and become transiently permeable to microparticles. It is further hypothesized that two possible scenarios may be involved in in vitro experiments: (1) drug-carrying liposomes transiently overcome the cell membrane barrier and enter into a cell while the cell is still viable; (2) the liposomes incorporate with a cell at its membrane through a fusing process. To prove this hypothesis, liposomes of two different structures were synthesized: one has fluorescent molecules encapsulated into liposomes and the other has fluorescent markers incorporated into the shells of liposomes. Liposomes of each kind were mixed with human breast cancer cells (MCF7-cell line) in a suspension at 5 (liposomes) : 1 (cell) ratio and were then exposed to a focused 1 MHz ultrasound beam at its focal region for 40 s. The US signal contained 20 cycles per tone-burst at a pulse-repetition-frequency of 10 kHz; the spatial peak acoustic pressure amplitude was 0.25 MPa. It was found that the possible mechanisms might include the acoustic cavitation, the endocytosis and cell-fusion. Acoustic radiation force might make liposomes collide with cells effectively and facilitate the delivery process.

  18. A targeting drug-delivery model via interactions among cells and liposomes under ultrasonic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Xi Xiaoyu; Zhang Dong [Institute of Acoustics, Lab of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Yang Fang; Gu Ning [State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Chen Di; Wu Junru [Department of Physics, The University of Vermont, Burlington, VT 05405 (United States); Luo Yi [State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093 (China)], E-mail: Jun-ru.wu@uvm.edu

    2008-06-21

    In our previous work, it was found that acoustic cavitation might play a role in improving the cell permeability to microparticles when liposomes were used in an in vitro experiment. The purpose of this project is to expand our study and to learn other possible mechanisms by which cells may interact with liposomes under ultrasound (US) excitation and become transiently permeable to microparticles. It is further hypothesized that two possible scenarios may be involved in in vitro experiments: (1) drug-carrying liposomes transiently overcome the cell membrane barrier and enter into a cell while the cell is still viable; (2) the liposomes incorporate with a cell at its membrane through a fusing process. To prove this hypothesis, liposomes of two different structures were synthesized: one has fluorescent molecules encapsulated into liposomes and the other has fluorescent markers incorporated into the shells of liposomes. Liposomes of each kind were mixed with human breast cancer cells (MCF7-cell line) in a suspension at 5 (liposomes) : 1 (cell) ratio and were then exposed to a focused 1 MHz ultrasound beam at its focal region for 40 s. The US signal contained 20 cycles per tone-burst at a pulse-repetition-frequency of 10 kHz; the spatial peak acoustic pressure amplitude was 0.25 MPa. It was found that the possible mechanisms might include the acoustic cavitation, the endocytosis and cell-fusion. Acoustic radiation force might make liposomes collide with cells effectively and facilitate the delivery process.

  19. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  20. Ultracold molecule assembly with photonic crystals

    Science.gov (United States)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  1. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  2. From membrane excitability to metazoan psychology.

    Science.gov (United States)

    Cook, Norman D; Carvalho, Gil B; Damasio, Antonio

    2014-12-01

    Unlike the nonexcitable cell membranes that are ubiquitous in all domains of life, excitable membranes are found almost exclusively in animal organisms (Protozoa and Metazoa). Their transient permeability to ion flow makes possible the rapid detection of, and response to, external stimuli, and results in the phenomena that most clearly distinguish fauna from flora: perception, cognition, and motor activity. Interestingly, all known forms of membrane excitability are a consequence of one unique mechanism: the influx of positively charged ions into the normally alkaline cytoplasm. Here, we suggest that the sudden reversal of the membrane potential during the sensory potential and the action potential is an electrostatic disturbance of homeostasis that is the necessary first step in the processes of 'sentience' and 'irritability'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Statistical dynamo theory: Mode excitation.

    Science.gov (United States)

    Hoyng, P

    2009-04-01

    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .

  4. Excitation Dynamics and Relaxation in a Molecular Heterodimer

    CERN Document Server

    Balevicius, V; Abramavicius, D; Mancal, T; Valkunas, L

    2011-01-01

    The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the energy gap of the molecular excitation, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer.

  5. Study on the adjustment capability of the excitation system located inside superconducting machine electromagnetic shield

    Science.gov (United States)

    Xia, D.; Xia, Z.

    2017-12-01

    The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.

  6. Photoinduced excitation and charge transfer processes of organic dyes with siloxane anchoring groups: a combined spectroscopic and computational study.

    Science.gov (United States)

    Castellucci, Elena; Monini, Marco; Bessi, Matteo; Iagatti, Alessandro; Bussotti, Laura; Sinicropi, Adalgisa; Calamante, Massimo; Zani, Lorenzo; Basosi, Riccardo; Reginato, Gianna; Mordini, Alessandro; Foggi, Paolo; Di Donato, Mariangela

    2017-06-14

    Dye-sensitized solar cells (DSSCs) have attracted significant interest in the last few years as effective low-cost devices for solar energy conversion. We have analyzed the excited state dynamics of several organic dyes bearing both cyanoacrylic acid and siloxane anchoring groups. The spectroscopic properties of the dyes have been studied both in solution and when adsorbed on a TiO2 film using stationary and time-resolved techniques, probing the sub-picosecond to nanosecond time interval. The comparison between the spectra registered in solution and on the solid substrate evidences different pathways for energy and electron relaxation. The transient spectra of the TiO2-adsorbed dyes show the appearance of a long wavelength excited state absorption band, attributed to the cationic dye species, which is absent in the spectra measured in solution. Furthermore, the kinetic traces of the samples adsorbed on the TiO2 film show a long decay component not present in solution which constitutes indirect evidence of electron transfer between the dye and the semiconductor. The interpretation of the experimental results has been supported by theoretical DFT calculations of the excited state energies and by the analysis of molecular orbitals of the analyzed dye molecules.

  7. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  8. Transient cavitation in pipelines

    NARCIS (Netherlands)

    Kranenburg, C.

    1974-01-01

    The aim of the present study is to set up a one-dimensional mathematical model, which describes the transient flow in pipelines, taking into account the influence of cavitation and free gas. The flow will be conceived of as a three-phase flow of the liquid, its vapour and non-condensible gas. The

  9. Persistent Histamine Excitation of Glutamatergic Preoptic Neurons

    Science.gov (United States)

    Tabarean, Iustin V.

    2012-01-01

    Thermoregulatory neurons of the median preoptic nucleus (MnPO) represent a target at which histamine modulates body temperature. The mechanism by which histamine excites a population of MnPO neurons is not known. In this study it was found that histamine activated a cationic inward current and increased the intracellular Ca2+ concentration, actions that had a transient component as well as a sustained one that lasted for tens of minutes after removal of the agonist. The sustained component was blocked by TRPC channel blockers. Single-cell reverse transcription-PCR analysis revealed expression of TRPC1, TRPC5 and TRPC7 subunits in neurons excited by histamine. These studies also established the presence of transcripts for the glutamatergic marker Vglut2 and for the H1 histamine receptor in neurons excited by histamine. Intracellular application of antibodies directed against cytoplasmic sites of the TRPC1 or TRPC5 channel subunits decreased the histamine-induced inward current. The persistent inward current and elevation in intracellular Ca2+ concentration could be reversed by activating the PKA pathway. This data reveal a novel mechanism by which histamine induces persistent excitation and sustained intracellular Ca2+ elevation in glutamatergic MnPO neurons. PMID:23082195

  10. Molecular excitations: a new way to detect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    2014-09-01

    We believe that the Dark Matter (DM) search should be expanded into the domain of detectors sensitive to molecular excitations, and so that we should create detectors which are more sensitive to collisions with very light WIMPs. In this paper we investigate in detail diatomic molecules, such as fused silica material with large OH-molecule content, and water molecules. Presently, we do not have suitable low-cost IR detectors to observe single photons, however some OH-molecular excitations extend to visible and UV wavelengths and can be measured by bialkali photocathodes. There are many other chemical substances with diatomic molecules, or more complex oil molecules, which could be also investigated. This idea invites searches in experiments having large target volumes of such materials coupled to a large array of single-photon detectors with bialkali or infrared-sensitive photocathodes.

  11. Molecular excitations: a new way to detect Dark Matter

    Directory of Open Access Journals (Sweden)

    J. Va'vra

    2014-09-01

    Full Text Available We believe that the Dark Matter (DM search should be expanded into the domain of detectors sensitive to molecular excitations, and so that we should create detectors which are more sensitive to collisions with very light WIMPs. In this paper we investigate in detail diatomic molecules, such as fused silica material with large OH-molecule content, and water molecules. Presently, we do not have suitable low-cost IR detectors to observe single photons, however some OH-molecular excitations extend to visible and UV wavelengths and can be measured by bialkali photocathodes. There are many other chemical substances with diatomic molecules, or more complex oil molecules, which could be also investigated. This idea invites searches in experiments having large target volumes of such materials coupled to a large array of single-photon detectors with bialkali or infrared-sensitive photocathodes.

  12. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  13. Extracting the polarizability anisotropy from the transient alignment of HBr.

    Science.gov (United States)

    Pinkham, D; Vogt, T; Jones, R R

    2008-08-14

    We use 40 fs, 780 nm laser pulses to transiently align HBr molecules. We study the temporal dynamics of the resultant rotational wavepacket to gain insight into the electronic properties of the molecule. We show that the HBr polarization anisotropy can be extracted by comparing the time dependence of the HBr alignment with both the analogous alignment behavior of N(2) and the predictions of a rigid-rotor model.

  14. Laser Control of Atoms and Molecules

    CERN Document Server

    Letkhov, V S

    2007-01-01

    This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.

  15. On the determination of the mean excitation energy of water

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods ...... for determining numerical values for a mean excitation energy for water, both theoretical and experimental. Here the factors affecting the determination of the value of the mean excitation energy of water, especially from experiment, are discussed.......Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods...

  16. Transient FDTD simulation validation

    OpenAIRE

    Jauregui Tellería, Ricardo; Riu Costa, Pere Joan; Silva Martínez, Fernando

    2010-01-01

    In computational electromagnetic simulations, most validation methods have been developed until now to be used in the frequency domain. However, the EMC analysis of the systems in the frequency domain many times is not enough to evaluate the immunity of current communication devices. Based on several studies, in this paper we propose an alternative method of validation of the transients in time domain allowing a rapid and objective quantification of the simulations results.

  17. Transient cerebral ischemia.

    OpenAIRE

    Cusimano, M D; Ameli, F M

    1989-01-01

    Stroke is a major cause of disability and death in North America. About 30% to 40% of patients with stroke have had transient ischemic attacks (TIAs). The recognition and treatment of TIAs and possibly of asymptomatic stenoses of the carotid arteries may be beneficial in preventing stroke. We review the epidemiologic features, natural history, pathogenetic features, clinical presentation, methods of investigation and management of patients with TIAs.

  18. Advanced PFBC transient analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.S. [Parsons Power Group, Inc., Reading, PA (United States); Bonk, D.L.; Rogers, L. [USDOE Morgantown Energy Technology Center, WV (United States)

    1996-12-31

    Transient modeling and analysis of Advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigative study by the United States Department of Energy`s Morgantown Energy Technology Center (METC). The object of the effort is to identify key operating parameters affecting plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper summarizes and describes the development of a series of TRAX-based transient models of Advanced PFBC power plants. These power plants generate a high temperature flue gas by burning coal or other suitable fuel in a PFBC. The high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When utilized, low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to generate and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

  19. Advanced PFBC transient analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.S. [Parsons Power Group, Inc., Reading, PA (United States); Bonk, D.L. [USDOE Federal Energy Technology Center, Morgantown, WV (United States)

    1997-05-01

    Transient modeling and analysis of advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigation by the US Department of Energy`s Federal Energy Technology Center (FETC). The object of the effort is to identify key operating parameters that affect plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX{trademark}, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper describes the development of a series of TRAX-based transient models of advanced PFBC power plants. These power plants burn coal or other suitable fuel in a PFBC, and the high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When it is utilized, the low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to raise and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

  20. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  1. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Two-photon excitation of rubidium atoms inside porous glass

    Science.gov (United States)

    Amy, L.; Lenci, L.; Villalba, S.; Failache, H.; Lezama, A.

    2017-10-01

    We study the two-photon laser excitation to the 5 D5 /2 energy level of 85Rb atoms contained in the interstices of a porous material made from sintered ground glass with typical pore dimensions in the 10-100 μ m range. The excitation spectra show unusual flat-top line shapes, which are shown to be the consequence of wave-vector randomization of the laser light in the porous material. For large atomic densities, the spectra are affected by radiation trapping around the D2 transitions. The effect of the transient atomic response limited by the time of flight between pores walls appears to have a minor influence in the excitation spectra. It is however revealed by the shortening of the temporal evolution of the emitted blue light following a sudden switch-off of the laser excitation.

  3. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: vibrations and structure of its excited S(1)(π,π(*)) electronic state.

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J; Kim, Sunghwan; Laane, Jaan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π(*)) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π(*)) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π(*)) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π(*)) excited state.

  4. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  5. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  6. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state.

  7. Contrasting the excited state reaction pathways of phenol and para-methylthiophenol in the gas and liquid phases.

    Science.gov (United States)

    Zhang, Yuyuan; Oliver, Thomas A A; Ashfold, Michael N R; Bradforth, Stephen E

    2012-01-01

    To explore how the solvent influences primary aspects of bond breaking, the gas and solution phase photochemistries of phenol and ofpara-methylthiophenol are directly compared using, respectively, H (Rydberg) atom photofragment translation spectroscopy and femtosecond transient absorption spectroscopy. Approaches are demonstrated that allow explicit comparisons of the nascent product energy disposals and dissociation mechanisms in the two phases. It is found, at least for the case of the weakly perturbing cyclohexane environment, that most aspects of the primary reaction dynamics of the isolated molecule are reproduced in solution. Specifically, in the gas phase, both molecules can undergo fast X-H (X = O, S) bond dissociation upon excitation with short wavelengths (193 sigma*)) state. Product electronic branching, vibrational and translational energy disposals are determined. Photolysis of phenol and para-methylthiophenol in solution at 200 nm results in formation of vibrationally excited radicals on a timescale shorter than 200 fs. Excitation of para-methylthiophenol at 267 nm reaches close to the S1 (1 1(pipi*))/S2 (11(pi sigma*)) conical intersection (CI): ultrafast dissociation is observed in both the isolated and solution systems-again indicating direct dissociation on the S2 potential energy surface. Comparing results for this precursor at different excitation energies, the extent of geminate recombination and the derived H-atom ejection lengths in the condensed phase photolyses are in qualitative agreement with the translational energy release measured in the gas phase studies. Conversely, excitation of phenol at 267 nm prepares the system in its S1 state at an energy well below its S1/S2 CI; the slow O-H bond fission inferred in the gas phase experiments is observed directly in the time-resolved studies in cyclohexane solution via the appearance of phenoxyl radical absorption after -1 ns, with only S1 excited state absorption discernible at earlier delay

  8. Excitations in organic solids

    CERN Document Server

    Agranovich, Vladimir M

    2009-01-01

    During the last decade our expertise in nanotechnology has advanced considerably. The possibility of incorporating in the same nanostructure different organic and inorganic materials has opened up a promising field of research, and has greatly increased the interest in the study of properties of excitations in organic materials. In this book not only the fundamentals of Frenkel exciton and polariton theory are described, but also the electronic excitations and electronic energytransfers in quantum wells, quantum wires and quantum dots, at surfaces, at interfaces, in thin films, in multilayers,

  9. Excitation Methods for Bridge Structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  10. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  11. Positron excitation of neon

    Science.gov (United States)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  12. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  13. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  14. Spectroscopic and Raman excitation profile studies of 3-benzoylpyridine

    Science.gov (United States)

    Sett, Pinaky; Datta, Shirsendu; Chowdhury, Joydeep; Ghosh, Manash; Mallick, Prabal Kumar

    2017-07-01

    In the present work IR, UV absorption and Raman spectra including Raman excitation profiles and structure of 3-benzoyl pyridine have been investigated. Detailed studies on the vibrational and electronic properties of the molecule have been carried out. All these studies are aided with valuable quantum chemical calculations. The structural changes encountered on excitation to the low lying excited states have been investigated. Theoretical profiles determined by the sum-over-states method based on pertinent Franck-Condon and Herzberg-Teller terms have satisfactorily simulated the experimentally measured relative Raman intensities and these are also in compliance with the structural changes and potential energy distributions.

  15. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  16. Thermal lens spectrometry: Optimizing amplitude and shortening the transient time

    Science.gov (United States)

    Silva, Rubens; de Araújo, Marcos A. C.; Jali, Pedro; Moreira, Sanclayton G. C.; Alcantara, Petrus; de Oliveira, Paulo C.

    2011-06-01

    Based on a model introduced by Shen et al. for cw laser induced mode-mismatched dual-beam thermal lens spectrometry (TLS), we explore the parameters related with the geometry of the laser beams and the experimental apparatus that influence the amplitude and time evolution of the transient thermal lens (TL) signal. By keeping the sample cell at the minimum waist of the excitation beam, our results show that high amplitude TL signals, very close to the optimized value, combined with short transient times may be obtained by reducing the curvature radius of the probe beam and the distance between the sample cell and the detector. We also derive an expression for the thermal diffusivity which is independent of the excitation laser beam waist, considerably improving the accuracy of the measurements. The sample used in the experiments was oleic acid, which is present in most of the vegetable oils and is very transparent in the visible spectral range.

  17. Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation.

    Science.gov (United States)

    Dereka, Bogdan; Vauthey, Eric

    2017-07-01

    The fluorescence quenching of organic dyes via H-bonding interactions is a well-known phenomenon. However, the mechanism of this Hydrogen-Bond Induced Nonradiative Deactivation (HBIND) is not understood. Insight into this process is obtained by probing in the infrared the O-H stretching vibration of the solvent after electronic excitation of a dye with H-bond accepting cyano groups. The fluorescence lifetime of this dye was previously found to decrease from 1.5 ns to 110 ps when going from an aprotic solvent to the strongly protic hexafluoroisopropanol (HFP). Prompt strengthening of the H-bond with the dye was identified by the presence of a broad positive O-H band of HFP, located at lower frequency than the O-H band of the pure solvent. Further strengthening occurs within a few picoseconds before the excited H-bonded complex decays to the ground state in 110 ps. The latter process is accompanied by the dissipation of energy from the dye to the solvent and the rise of a characteristic hot solvent band in the transient spectrum. Polarization-resolved measurements evidence a collinear alignment of the nitrile and hydroxyl groups in the H-bonded complex, which persists during the whole excited-state lifetime. Measurements in other fluorinated alcohols and in chloroform/HFP mixtures reveal that the HBIND efficiency depends not only on the strength of the H-bond interactions between the dye and the solvent but also on the ability of the solvent to form an extended H-bond network. The HBIND process can be viewed as an enhanced internal conversion of an excited complex consisting of the dye molecule connected to a large H-bond network.

  18. Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus

    Science.gov (United States)

    Martiskainen, Jari; Linnanto, Juha; Kananavičius, Robertas; Lehtovuori, Viivi; Korppi-Tommola, Jouko

    2009-07-01

    Chlorosomes from green photosynthetic bacteria Chloroflexus aurantiacus have been studied by time-resolved femtosecond transient absorption spectroscopy. The fastest kinetics of 200-300 fs resolved, was interpreted to stem for intra-chlorosomal excitation energy transfer. Energy transfer from the antenna to the baseplate appeared as a major 9.2 ps rise component detected at the baseplate probe wavelength. Excitation energy transfer rates were evaluated for a model chlorosome. Calculated rod to rod, and rods to baseplate rate constants of 200-400 fs and 10-20 ps, respectively, are in accord with the experimental results.

  19. Familial Transient Global Amnesia

    Directory of Open Access Journals (Sweden)

    R.Rhys Davies

    2012-12-01

    Full Text Available Following an episode of typical transient global amnesia (TGA, a female patient reported similar clinical attacks in 2 maternal aunts. Prior reports of familial TGA are few, and no previous account of affected relatives more distant than siblings or parents was discovered in a literature survey. The aetiology of familial TGA is unknown. A pathophysiological mechanism akin to that in migraine attacks, comorbidity reported in a number of the examples of familial TGA, is one possibility. The study of familial TGA cases might facilitate the understanding of TGA aetiology.

  20. [Transient removable dentures].

    Science.gov (United States)

    Kouadio, A A; Jordana, F; N'Goran, J K; Le Bars, P

    2015-09-01

    Removable dentures are always transient current. The epidemiology and causes of tooth gaps demonstrate the need to master the different prosthetic treatment. This made whether to propose treatment plans that take into account psychological, physiological and technical support for this patient. Different situations may arise. A gradual transition may be considered or immediate passage to the total edentulous according to general criteria, local and desiderata of patients. After tooth extraction, the transitional prosthesis can control bone lysis thereby it is part of a complete treatment before prosthesis. It also facilitates a good psychological and physiological integration before the prosthesis use.

  1. Ultrafast Degenerate Transient Lens Spectroscopy in Semiconductor Nanosctructures

    Directory of Open Access Journals (Sweden)

    Leontyev A.V.

    2015-01-01

    Full Text Available We report the non-resonant excitation and probing of the nonlinear refractive index change in bulk semiconductors and semiconductor quantum dots through degenerate transient lens spectroscopy. The signal oscillates at the center laser field frequency, and the envelope of the former in quantum dots is distinctly different from the one in bulk sample. We discuss the applicability of this technique for polarization state probing in semiconductor media with femtosecond temporal resolution.

  2. Self-assembly patterning of organic molecules on a surface

    Science.gov (United States)

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  3. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Science.gov (United States)

    Kneipp, Katrin; Wang, Yang; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving; Dasari, Ramachandra R.; Feld, Michael S.

    1997-03-01

    By exploiting the extremely large effective cross sections ( 10-17-10-16 cm2/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2×105 W/cm2 nonresonant near-infrared excitation show a clear ``fingerprint'' of its Raman features between 700 and 1700 cm-1. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules.

  4. Transient dimers of allergens.

    Directory of Open Access Journals (Sweden)

    Juha Rouvinen

    Full Text Available BACKGROUND: Allergen-mediated cross-linking of IgE antibodies bound to the FcepsilonRI receptors on the mast cell surface is the key feature of the type I allergy. If an allergen is a homodimer, its allergenicity is enhanced because it would only need one type of antibody, instead of two, for cross-linking. METHODOLOGY/PRINCIPAL FINDINGS: An analysis of 55 crystal structures of allergens showed that 80% of them exist in symmetric dimers or oligomers in crystals. The majority are transient dimers that are formed at high protein concentrations that are reached in cells by colocalization. Native mass spectrometric analysis showed that native allergens do indeed form transient dimers in solution, while hypoallergenic variants of them exist almost solely in the monomeric form. We created a monomeric Bos d 5 allergen and show that it has a reduced capability to induce histamine release. CONCLUSIONS/SIGNIFICANCE: The results suggest that dimerization would be a very common and essential feature for allergens. Thus, the preparation of purely monomeric variants of allergens could open up novel possibilities for specific immunotherapy.

  5. Transient regional osteoporosis

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Transient osteoporosis of the hip and regional migratory osteoporosis are uncommon and probably underdiagnosed bone diseases characterized by pain and functional limitation mainly affecting weight-bearing joints of the lower limbs. These conditions are usually self-limiting and symptoms tend to abate within a few months without sequelae. Routine laboratory investigations are unremarkable. Middle aged men and women during the last months of pregnancy or in the immediate post-partum period are principally affected. Osteopenia with preservation of articular space and transitory edema of the bone marrow provided by magnetic resonance imaging are common to these two conditions, so they are also known by the term regional transitory osteoporosis. The appearance of bone marrow edema is not specific to regional transitory osteoporosis but can be observed in several diseases, i.e. trauma, reflex sympathetic dystrophy, avascular osteonecrosis, infections, tumors from which it must be differentiated. The etiology of this condition is unknown. Pathogenesis is still debated in particular the relationship with reflex sympathetic dystrophy, with which regional transitory osteoporosis is often identified. The purpose of the present review is to remark on the relationship between transient osteoporosis of the hip and regional migratory osteoporosis with particular attention to the bone marrow edema pattern and relative differential diagnosis.

  6. Effect of optical excitation energy on the red luminescence of Eu3+ in GaN

    Science.gov (United States)

    Peng, H. Y.; Lee, C. W.; Everitt, H. O.; Lee, D. S.; Steckl, A. J.; Zavada, J. M.

    2005-01-01

    Photoluminescence (PL) excitation spectroscopy mapped the photoexcitation wavelength dependence of the red luminescence (D05→F27) from GaN:Eu. Time-resolved PL measurements revealed that for excitation at the GaN bound exciton energy, the decay transients are almost temperature insensitive between 86 K and 300 K, indicating an efficient energy transfer process. However, for excitation energies above or below the GaN bound exciton energy, the decaying luminescence indicates excitation wavelength- and temperature-dependent energy transfer influenced by intrinsic and Eu3+-related defects.

  7. Global Transient Stability and Voltage Regulation for Multimachine Power Systems

    DEFF Research Database (Denmark)

    Gordon, Mark; Hill, David J.

    2008-01-01

    This paper addresses simultaneously the major fundamental and difficult issues of nonlinearity, uncertainty, dimensionality and globality to derive performance enhancing power system stability control. The main focus is on simultaneous enhancement of transient stability and voltage regulation...... Linearization (DFL) technique together with the robust control theory has been further developed and applied to design nonlinear excitation compensators which selectively eliminate system nonlinearities and deal with plant uncertainties and interconnections between generators. Then the so called global control...... law is implemented to coordinate transient stabilizer and voltage regulator for each machine. Digital simulation studies show that global control scheme achieves unified transient stability and voltage regulation in the presence of parametric uncertainties and significant sudden changes in the network...

  8. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  9. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.

    Science.gov (United States)

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T

    2008-03-27

    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  10. Excitable scale free networks

    Science.gov (United States)

    Copelli, M.; Campos, P. R. A.

    2007-04-01

    When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.

  11. Transients induced by pulses on transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Canavero, F.G.; Daniele, V.; Graglia, R.D. (Politecnico di Torino, Turin (Italy). Dipt. di Elettronica)

    1989-02-01

    This paper deals with the derivation of analytical expressions for transients in lossless lines loaded by linear non-reactive elements and excited by interfering disturbances. The telegrapher's equation model is adopted and the equivalent circuit of the n-conductor line is shown to the valid for both internal and external sources. Crosstalk is accounted for via the coupled equations of the line while the external interference is represented by a source of electromagnetic waves. Closed-form solutions in the time domain are derived, and therefore no numerical inversion of Laplace transform is required in the solution process. Our results, besides being directly applicable in many practical cases, provide an insight into the electromagnetic mechanisms of the interferences and constitute a valid check for more complex all-numerical simulations.

  12. Investigating molecule-semiconductor interfaces with nonlinear spectroscopies

    Science.gov (United States)

    Giokas, Paul George

    Knowledge of electronic structures and transport mechanisms at molecule-semiconductor interfaces is motivated by their ubiquity in photoelectrochemical cells. In this dissertation, optical spectroscopies are used uncover the influence of electronic coupling, coherent vibrational motion, and molecular geometry, and other factors on dynamics initiated by light absorption at such interfaces. These are explored for a family of ruthenium bipyridyl chromophores bound to titanium dioxide. Transient absorption measurements show molecular singlet state electron injection in 100 fs or less. Resonance Raman intensity analysis suggests the electronic excitations possess very little charge transfer character. The connections drawn in this work between molecular structure and photophysical behavior contribute to the general understanding of photoelectrochemical cells. Knowledge of binding geometry in nanocrystalline films is challenged by heterogeneity of semiconductor surfaces. Polarized resonance Raman spectroscopy is used to characterize the ruthenium chromophore family on single crystal titanium dioxide . Chromophores display a broad distribution of molecular geometries at the interface, with increased variation in binding angle due to the presence of a methylene bridge, as well as additional phosphonate anchors. This result implies multiple binding configurations for chromophores which incorporate multiple phosphonate ligands, and indicates the need for careful consideration when developing surface-assembled chromophore-catalyst cells. Electron transfer transitions occurring on the 100 fs time scale challenge conventional second-order approximations made when modeling these reactions. A fourth-order perturbative model which includes the relationship between coincident electron transfer and nuclear relaxation processes is presented. Insights provided by the model are illustrated for a two-level donor molecule. The presented fourth-order rate formula constitutes a rigorous

  13. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Plasmonic toroidal excitation with engineering metamaterials

    Science.gov (United States)

    Wu, Pin Chieh; Hsiao, Hui-Hsin; Liao, Chun Yen; Chung, Tsung Lin; Wu, Pei Ru; Savinov, Vassili; Zheludev, Nikolay I.; Tsai, Din Ping

    2017-08-01

    Natural toroidal molecules, such as biomolecules and proteins, possess toroidal dipole moments that are hard to be detected, which leads to extensive studies of artificial toroidal materials. Recently, toroidal metamaterials have been widely investigated to enhance toroidal dipole moments while the other multipoles are eliminated due to the spacial symmetry. In this talk, we will show several cases on the plasmonic toroidal excitation by engineering the near-field coupling between metamaterials, including their promising applications. In addition, a novel design for a toroidal metamaterial with engineering anapole mode will also be discussed.

  15. A Combination of Chemometrics and Quantum Mechanics Methods Applied to Analysis of Femtosecond Transient Absorption Spectrum of Ortho-Nitroaniline

    Science.gov (United States)

    Yi, Jing; Xiong, Ying; Cheng, Kemei; Li, Menglong; Chu, Genbai; Pu, Xuemei; Xu, Tao

    2016-01-01

    A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts.

  16. Response of variable impedance stripline to pulse excitation

    Energy Technology Data Exchange (ETDEWEB)

    McWright, G.

    1984-12-15

    We describe a simple method to predict the transient response of variable impedance stripline to pulse excitation. The method uses a finite difference based, quasi-static impedance formulation to calculate the reflection coefficient at each point along the direction of pulse propagation and the subsequent short pulse behavior of a variable impedance structure. A Fortran computer program is written to determine the quasi-static impedance. Excellent agreement of better than 1% between the finite difference impedance predictions and experimental results is noted. A second computer program is written utilizing previous results but essentially incorporating reflection and transmission from several discontinuities to analyze the transient response of the structure. This transient analysis yields good agreement between predictions and results obtained by means of time domain reflectometry.

  17. Nonstationary Transient Vibroacoustic Response of a Beam Structure

    Science.gov (United States)

    Caimi, R. E.; Margasahayam, R. N.; Nayfeh, Jamal F.

    1997-01-01

    This study consists of an investigation into the nonstationary transient response of the Verification Test Article (VETA) when subjected to random acoustic excitation. The goal is to assess excitation models that can be used in the design of structures and equipment when knowledge of the structure and the excitation is limited. The VETA is an instrumented cantilever beam that was exposed to acoustic loading during five Space Shuttle launches. The VETA analytical structural model response is estimated using the direct averaged power spectral density and the normalized pressure spectra methods. The estimated responses are compared to the measured response of the VETA. These comparisons are discussed with a focus on prediction conservatism and current design practice.

  18. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    WINTEC

    Pramanik et al proposed the twisted intramolecular charge transfer (TICT) process in the S1 state, which .... trile clearly suggests that a photon of 400 nm light excites the molecule to its S2 state, the higher energy emission .... 400 nm photon as well as the dynamics of the re- laxation processes taking place in the S1 state. At.

  19. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    WINTEC

    Quantum control of vibrational excitations in a heteronuclear diatomic molecule. SITANSH SHARMA, PURSHOTAM SHARMA and HARJINDER SINGH* ... electric field is calculated and used for the subsequent quantum dynamics, within the dipole approxima- tion. ... properties of interference of dynamical paths to regulate ...

  20. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Calculation of vibrational excitation cross-sections in resonant electron-molecule scattering using the time-dependent wave packet (TDWP) approach with application to the 2 CO- shape resonance. Raman Kumar Singh Manabendra Sarma Ankit Jain ...

  1. Coherent excitation of vibrational levels using ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, LE

    2009-07-01

    Full Text Available The purpose of this study was to develop a model of the coherent excitation of the first few vibrational modes in the electronic ground state of the molecule. The model will be used in combination with an optimization algorithm to optimize a...

  2. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    Optimal control theory is applied to obtain infrared laser pulses for selective vibrational excitation in a heteronuclear diatomic molecule. The problem of finding the optimized field is phrased as a maximization of a cost functional which depends on the laser field. A time dependent Gaussian factor is introduced in the field ...

  3. Multipole plasmon excitations of C{sub 60} dimers

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-07-14

    We study the multipole plasmon mode frequencies of a pair of C{sub 60} molecules by means of the linearized hydrodynamic theory for electronic excitations on the each C{sub 60} surface. We apply the two-center spherical coordinate system for mathematical convenience and find an explicit form of the surface plasmon energies. Numerical result shows when approaching the two C{sub 60} molecules, the coupling between the bare plasmon modes leads to the appearance of additional modes having energies that are different from those of the isolated C{sub 60} molecules.

  4. Transient Go: A Mobile App for Transient Astronomy Outreach

    Science.gov (United States)

    Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.

    2016-12-01

    Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.

  5. A Simple Hubbard Model for the Excited States of Dibenzoterrylene

    CERN Document Server

    Sadeq, Z S

    2016-01-01

    We use a simple Hubbard model to characterize the electronic excited states of the dibenzoterrylene (DBT) molecule; we compute the excited state transition energies and oscillator strengths from the ground state to several singlet excited states. We consider the lowest singlet and triplet states of the molecule, examine their wavefunctions, and compute the density correlation functions that describe these states. We find that the DBT ground state is mostly a closed shell singlet with very slight radical character. We predict a relatively small singlet-triplet splitting of 0.75 eV, which is less than the mid-sized -acenes but larger than literature predictions for this state; this is because the Hubbard interaction makes a very small correction to the singlet and triplet states.

  6. [Biophysics of single molecules].

    Science.gov (United States)

    Serdiuk, I N; Deriusheva, E I

    2011-01-01

    The modern methods of research of biological molecules whose application led to the development of a new field of science, biophysics of single molecules, are reviewed. The measurement of the characteristics of single molecules enables one to reveal their individual features, and it is just for this reason that much more information can be obtained from one molecule than from the entire ensample of molecules. The high sensitivity of the methods considered in detail makes it possible to come close to the solution of the basic problem of practical importance, namely, the determination of the nucleotide sequence of a single DNA molecule.

  7. Frequency-Domain Transient Imaging.

    Science.gov (United States)

    Jingyu Lin; Yebin Liu; Jinli Suo; Qionghai Dai

    2017-05-01

    A transient image is the optical impulse response of a scene, which also visualizes the propagation of light during an ultra-short time interval. In contrast to the previous transient imaging which samples in the time domain using an ultra-fast imaging system, this paper proposes transient imaging in the frequency domain using a multi-frequency time-of-flight (ToF) camera. Our analysis reveals the Fourier relationship between transient images and the measurements of a multi-frequency ToF camera, and identifies the causes of the systematic error-non-sinusoidal and frequency-varying waveforms and limited frequency range of the modulation signal. Based on the analysis we propose a novel framework of frequency-domain transient imaging. By removing the systematic error and exploiting the harmonic components inside the measurements, we achieves high quality reconstruction results. Moreover, our technique significantly reduces the computational cost of ToF camera based transient image reconstruction, especially reduces the memory usage, such that it is feasible for the reconstruction of transient images at extremely small time steps. The effectiveness of frequency-domain transient imaging is tested on synthetic data, real data from the web, and real data acquired by our prototype camera.

  8. Pressure transients in pipeline systems

    DEFF Research Database (Denmark)

    Voigt, Kristian

    1998-01-01

    This text is to give an overview of the necessary background to do investigation of pressure transients via simulations. It will describe briefly the Method of Characteristics which is the defacto standard for simulating pressure transients. Much of the text has been adopted from the book Pressure...

  9. Ultrafast Dynamics of Hydrogen Bond Breaking and Making in the Excited State of Fluoren-9-one: Time-Resolved Visible Pump-IR Probe Spectroscopic Study.

    Science.gov (United States)

    Ghosh, Rajib; Mora, Aruna K; Nath, Sukhendu; Palit, Dipak K

    2017-02-09

    The fluoren-9-one (FL) molecule, with a single hydrogen bond-accepting site (C═O group), has been used as a probe for investigation of the dynamics of a hydrogen bond in its lowest excited singlet (S1) state using the subpicosecond time-resolved visible pump-IR probe spectroscopic technique. In 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), a strong hydrogen bond-donating solvent, the formation of an FL-alcohol hydrogen-bonded complex in the ground electronic (S0) state is nearly complete, with a negligible concentration of the FL molecule remaining free in solution. In addition to the presence of a band due to the hydrogen-bonded complex in the transient IR spectrum recorded immediately after photoexcitation of FL in HFIP solution, appearance of the absorption band due to a free C═O stretch provides confirmatory evidence of ultrafast photodissociation of hydrogen bonds in some of the complexes formed in the S0 state. The peak-shift dynamics of the C═O stretch bands reveal two major relaxation pathways, namely, vibrational relaxation in the S1 state of the free FL molecules and the solvent reorganization process in the hydrogen-bonded complex. The latter process follows bimodal exponential dynamics involving hydrogen bond-making and hydrogen bond-reorganization processes. The similar lifetimes of the S1 states of the FL molecules, both free and hydrogen-bonded, suggest establishment of a dynamic equilibrium between these two species in the excited state. However, investigations in two other weaker hydrogen bond-donating solvents, namely, trifluoroethanol (TFE) and perdeuterated methanol (CD3OD), reveal different features of peak-shift dynamics because of the prominence of the vibrational relaxation process over the hydrogen bond-reorganization process during the early time.

  10. Dynamic Coherence in Excitonic Molecular Complexes under Various Excitation Conditions

    CERN Document Server

    Chenu, Aurélia; Mancal, Tomáš

    2013-01-01

    In this paper, we investigate the relevance of dynamic electronic coherence under conditions natural to light-harvesting systems. We formulate the results of a quantum mechanical treatment of a weak light-matter interaction in terms of experimental observable, such as the incident light spectrum and the absorption spectrum of the material, and we derive the description of the incoherent F\\"orster type energy transfer fully from the wave function formalism. We demonstrate that excitation of a coherent superposition of electronic eigenstates of natural light-harvesting complexes by sunlight or by excitation transfer from a neighboring antenna is unlikely and that dynamical coherence therefore cannot play any significant role in natural photosynthesis, regardless of their life time. Dynamical coherence as a transient phenomenon must be strictly distinguished from the effect of excited state delocalization (also termed quantum coherence in the literature) which is established by interaction between the pigments a...

  11. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  12. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    Science.gov (United States)

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  13. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  14. CD molecules 2005: human cell differentiation molecules

    Czech Academy of Sciences Publication Activity Database

    Zola, H.; Swart, B.; Nicholson, I.; Aasted, B.; Bensussan, A.; Boumsell, L.; Buckley, C.; Clark, G.; Drbal, Karel; Engel, P.; Hart, D.; Hořejší, Václav; Isacke, C.; Macardle, P.; Malavasi, F.; Mason, D.; Olive, D.; Saalmüller, A.; Schlossman, S.F.; Schwartz-Albiez, R.; Simmons, P.; Tedder, T.F.; Uguccioni, M.; Warren, H.

    2005-01-01

    Roč. 106, č. 9 (2005), s. 3123-3126 ISSN 0006-4971 Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules * leukocyte antigen Subject RIV: EC - Immunology Impact factor: 10.131, year: 2005

  15. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    Science.gov (United States)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  16. Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We demonstrate: the use of an ultrafast scanning tunneling microscope on a semiconductor surface. Laser-induced transient signals with 1.8 ps rise time are detected, The investigated sample is a low-temperature grown GaAs layer plated on a sapphire substrate with a thin gold layer that serves as st...... by the nonuniform carrier density created by the absorption of the light (photo Dember effect). The transient depends in sign and in shape on the direction of optical excitation. This signal is the dominating transient in tunneling mode. The signals are explained by a capacitive coupling across the tunneling gap...

  17. Molecule Formation on Interstellar Grains

    Science.gov (United States)

    Vidali, G.

    2011-05-01

    The first experiments that were expressively designed to be applicable to hydrogen formation reactions in the ISM measured the efficiency of formation of molecular hydrogen on a polycrystalline olivine (Pirronello et al. (1997a)). It soon turned out that more was needed, and research began on the mechanism of reaction, on the in uence of the surface morphology, and on the excitation of the just- ormed molecule. In this review, I summarize what we learned from these and other experiments, and where more work is needed: in the elementary steps of reaction, in the bridging of the laboratory-ISM gap (large ux/large surface - small ux/small grain) using simulations, and in using realistic samples of dust grains. Understanding what experiments can and cannot deliver will help in designing and targeting observations, and vice-versa.

  18. Excitation energy transfer in the photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Andrew N

    2012-09-25

    Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in the transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.

  19. Optical and Transport Properties of Organic Molecules: Methods and Applications

    Science.gov (United States)

    Strubbe, David Alan

    -harmonic generation with TDDFT with a real-space grid, finding good agreement with calculations using localized bases and with experimental measurements, and that the response is very long-ranged in space. 5. N C 60 is an endohedral fullerene, a sphere of carbon containing a single N atom inside, which is weakly coupled electronically. I show with TDDFT calculations that a laser pulse can excite the vibrational mode of this N atom, transiently turning on and off the system's ability to undergo second-harmonic generation. The calculated susceptibility is as large as some commercially used frequency-doubling materials. 6. A crucial question in understanding experimental measurements of nonlinear optics and their relation to device performance is the effect of the solution environment on the properties of the isolated molecules. I will consider possible explanations for the large enhancement of the hyperpolarizability of chloroform in solution, demonstrate an ab initio method of calculating electrostatic effects with local-field factors, and derive the equations necessary for a full calculation of liquid chloroform. 7. Many-body perturbation theory, in the GW approximation for quasiparticle band-structure and Bethe-Salpeter equation for optical properties, is a powerful method for calculations in solids, nanostructures, and molecules. The BerkeleyGW code is a freely available implementation of this methodology which has been extensively tested and efficiently parallelized for use on large systems. 8. Molecular junctions, in which a single molecule is contacted to two metallic leads, are interesting systems for studying nanoscale transport. I will present a method called DFT+Sigma which approximates many-body perturbation theory to enable accurate and efficient calculations of the conductance of these systems. 9. Azobenzene is a molecule with the unusual property that it can switch reversible between two different geometries, cis and trans, upon absorption of light. I have calculated the

  20. Probing Photophysical Processes in Individual Multichromophoric Dendrimers by Single-Molecule Spectroscopy

    NARCIS (Netherlands)

    Hofkens, Johan; Maus, Michael; Gensch, Thomas; Vosch, Tom; Cotlet, Mircea; Köhn, Fabian; Herrmann, Andreas; Müllen, Klaus; Schryver, Frans De

    2000-01-01

    Individual multichromophoric dendrimer molecules, bearing eight perylenecarboximide chromophores at the rim, immobilized in a thin polyvinylbutyral (PVB) film were studied by far-field fluorescence microscopy. Fluorescence intensity trajectories as a function of time (transients), spectra, and decay

  1. Transient Stability Improvement of IEEE 9 Bus System Using Power World Simulator

    Directory of Open Access Journals (Sweden)

    Kaur Ramandeep

    2016-01-01

    Full Text Available The improvement of transient stability of power system was one of the most challenging research areas in power engineer.The main aim of this paper was transient stability analysis and improvement of IEEE 9 bus system. These studies were computed using POWER WORLD SIMULATOR. The IEEE 9 bus system was modelled in power world simulator and load flow studies were performed to determine pre-fault conditions in the system using Newton-Raphson method. The transient stability analysis was carried out using Runga method during three-phase balanced fault. For the improvement transient stability, the general methods adopted were fast acting exciters, FACT devices and addition of parallel transmission line. These techniques play an important role in improving the transient stability, increasing transmission capacity and damping low frequency oscillations.

  2. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  3. STUDY OF TRANSIENT AND STATIONARY OPERATION MODES OF SYNCHRONOUS SYSTEM CONSISTING IN TWO MACHINES

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2017-01-01

    Full Text Available The solution of the problem of reliable functioning of an electric power system (EPS in steady-state and transient regimes, prevention of EPS transition into asynchronous regime, maintenance and restoration of stability of post-emergency processes is based on formation and realization of mathematical models of an EPS processes. During the functioning of electric power system in asynchronous regime, besides the main frequencies, the currents and voltages include harmonic components, the frequencies of which are multiple of the difference of main frequencies. At the two-frequency asynchronous regime the electric power system is being made equivalent in a form of a two-machine system, functioning for a generalized load. In the article mathematical models of transient process of a two-machine system in natural form and in d–q coordinate system are presented. The mathematical model of two-machine system is considered in case of two windings of excitement at the rotors. Also, in the article varieties of mathematical models of EPS transient regimes (trivial, simple, complete are presented. Transient process of a synchronous two-machine system is described by the complete model. The quality of transient processes of a synchronous machine depends on the number of rotor excitation windings. When there are two excitation windings on the rotor (dual system of excitation, the mathematical model of electromagnetic transient processes of a synchronous machine is represented in a complex form, i.e. in coordinate system d, q, the current of rotor being represented by a generalized vector. In asynchronous operation of a synchronous two-machine system with two excitation windings on the rotor the current and voltage systems include only harmonics of two frequencies. The mathematical model of synchronous steady-state process of a two-machine system is also provided, and the steady-state regimes with different structures of initial information are considered.

  4. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  5. Machine Classification of Transient Images

    Science.gov (United States)

    Buisson, Lise Du; Sivanandam, Navin; Bassett, Bruce A.; Smith, Mathew

    2014-05-01

    Using transient imaging data from the 2nd and 3rd years of the SDSS supernova survey, we apply various machine learning techniques to the problem of classifying transients (e.g. SNe) from artefacts, one of the first steps in any transient detection pipeline, and one that is often still carried out by human scanners. Using features mostly obtained from PCA, we show that we can match human levels of classification success, and find that a K-nearest neighbours algorithm and SkyNet perform best, while the Naive Bayes, SVM and minimum error classifier have performances varying from slightly to significantly worse.

  6. Transient light-induced intracellular oxidation revealed by redox biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kolossov, Vladimir L., E-mail: viadimer@illinois.edu [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Beaudoin, Jessica N. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Hanafin, William P. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); DiLiberto, Stephen J. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Kenis, Paul J.A. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (United States); Rex Gaskins, H. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61801 (United States); Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  7. Subsurface excitations in a metal

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Sosolik, C. E.

    2009-01-01

    We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given...... by the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....

  8. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    of electromagnetic phenomena associated to their operation, among them electromagnetic transients, increased as well. Transient phenomena have been studied since the beginning of power systems, at first using only analytical approaches, which limited studies to more basic phenomena; but as computational tools became...... more powerful, the analyses started to expand for the more complex phenomena. Being old phenomena, electromagnetic transients are covered in many publications, and classic books such as the 40-year-old Greenwood’s ‘‘Electric Transients in Power Systems’’ are still used to this day. However...... example.However, the book is not only intended for students . It can also be used by engineers who work in this area and need to understand the challenges/problems they are facing or who need to learn how to prepare their simulation models as well as their function. It also shows how to calculate...

  9. Transient heating of moving objects

    Directory of Open Access Journals (Sweden)

    E.I. Baida

    2014-06-01

    Full Text Available A mathematical model of transient and quasistatic heating of moving objects by various heat sources is considered. The mathematical formulation of the problem is described, examples of thermal calculation given.

  10. Transient thyrotoxicosis during nivolumab treatment

    NARCIS (Netherlands)

    van Kooten, M. J.; van den Berg, G.; Glaudemans, A. W. J. M.; Hiltermann, T. J. N.; Groen, H. J. M.; Rutgers, A.; Links, T. P.

    Two patients presented with transient thyrotoxicosis within 2-4 weeks after starting treatment with nivolumab. This thyrotoxicosis turned into hypothyroidism within 6-8 weeks. Temporary treatment with a beta blocker may be sufficient.

  11. Transient Tsunamis in Lakes

    Science.gov (United States)

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  12. Oriented Molecule Interactions with Atoms and Surfaces.

    Science.gov (United States)

    Mackay, R. Scott

    Mutual orientation of reagents is second only to the energy requirement for a chemical reaction to take place. Since the introduction of the hexapole field focusing and orientation of symmetric-top molecules in 1965, considerable insight has been gained on the role of orientation in reactive scattering dynamics. The degree of laboratory orientation has been measured for (CH_3) _3CBr and has been found to follow the sequence (CH_3)_3CBr > (CH_3) _3CI > CH_3 I for previous measurements. Oriented molecule beams of thirteen different molecules have been scattered by a graphite(0001) surface. The results show a large diversity in the sign and magnitude of the steric effect (i.e., "heads" vs. "tails"). It appears from the bulk of data that the origin of the steric effect is the anisotropic molecule-graphite interaction potential, which is governed by the charge density distribution of the molecule. The steric effects have been quantitatively measured for seven of the molecules and have been analyzed in terms of a two component model which yields estimates for the anisotropy of the trapping probability. An effusive oven of Sr was used in a crossed beam reaction of Sr + CH_3I. In order to detect weak product signal, a sensitive detection technique utilizing single photon ionization of the reaction product was developed. By changing the relative velocity of the reactants, the excitation function (reactive cross section vs. collision energy) was measured. The experimental results were simulated by a modified angle dependent line -of-centers model, which gives the reaction potential energy surface. Excitation functions of other alkyl halides reactions, Sr + RX (R = H, CH_3, C_2H _5,C_3H_7, C_4H_9; X = Br, I), were also explored.

  13. Axonal Excitability in Amyotrophic Lateral Sclerosis : Axonal Excitability in ALS.

    Science.gov (United States)

    Park, Susanna B; Kiernan, Matthew C; Vucic, Steve

    2017-01-01

    Axonal excitability testing provides in vivo assessment of axonal ion channel function and membrane potential. Excitability techniques have provided insights into the pathophysiological mechanisms underlying the development of neurodegeneration and clinical features of amyotrophic lateral sclerosis (ALS) and related neuromuscular disorders. Specifically, abnormalities of Na+ and K+ conductances contribute to development of membrane hyperexcitability in ALS, thereby leading to symptom generation of muscle cramps and fasciculations, in addition to promoting a neurodegenerative cascade via Ca2+-mediated processes. Modulation of axonal ion channel function in ALS has resulted in significant symptomatic improvement that has been accompanied by stabilization of axonal excitability parameters. Separately, axonal ion channel dysfunction evolves with disease progression and correlates with survival, thereby serving as a potential therapeutic biomarker in ALS. The present review provides an overview of axonal excitability techniques and the physiological mechanisms underlying membrane excitability, with a focus on the role of axonal ion channel dysfunction in motor neuron disease and related neuromuscular diseases.

  14. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  15. Investigation and Improvement of Transient Response of DVR at Medium Voltage Level

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Wei Li, Yun; Chaing Loh, Poh

    2007-01-01

    An area of interest for dynamic voltage restorer (DVR) research is the damping of transient oscillations initiated at the start and at the recovery instant from a voltage sag. Nonlinear loads, with harmonic currents close to the DVR filter resonance frequency, can also excite the resonance...

  16. Transient dynamics of secondary radiation from an HF pumped magnetized space plasma

    NARCIS (Netherlands)

    Norin, L.; Grach, S. M.; Thide, B.; Sergeev, E. N.; Leyser, T. B.

    2007-01-01

    In order to systematically analyze the transient wave and radiation processes that are excited when a high-frequency (HF) radio wave is injected into a magnetized space plasma, we have measured the secondary radiation, or stimulated electromagnetic emission ( SEE), from the ionosphere,

  17. Spectroscopy and dissociation dynamics of simple polyatomic molecules

    CERN Document Server

    Jones, N C

    2000-01-01

    coincidence experiment (MECE) designed to investigate the dissociation dynamics of a molecule is also presented. Energy loss electrons are detected in coincidence with metastable excited state neutral fragments formed via dissociative excitation in an electron impact process. This technique is used to learn more about the energy levels in the parent molecule. This thesis presents results obtained from the investigation of the spectroscopy of molecules of atmospheric interest. The techniques of photoabsorption spectroscopy and electron energy loss spectroscopy (EELS) used to probe the absorption properties of these molecules are described. Using a closed cell configuration of the Daresbury laboratory molecular spectroscopy absorption apparatus (DLMSAA) the photoabsorption spectra for C sub 2 H sub 5 I, C sub 2 H sub 5 Br and the short lived OCI radical, have been recorded and are presented here. A Rydberg analysis of the spectra of the alkyl halides has been carried out and assignments have been made for the R...

  18. Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment

    Directory of Open Access Journals (Sweden)

    A. Kou

    2017-08-01

    Full Text Available Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.

  19. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature...... of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic...

  20. Ultracold Polar Molecules

    Science.gov (United States)

    2016-04-01

    formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging...produce at high densities. We revealed broad Feshbach resonances that we hope will allow production of higher-density 85Rb clouds. We are now...attempting to achieve the next step, formation of 85RbCs molecules. 15. SUBJECT TERMS EOARD, ultracold polar molecules, Feshbach resonance 16. SECURITY

  1. Topological excitations in magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Doria, M.M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Rodrigues, E.I.B. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-05-20

    In this work we propose a new route to describe topological excitations in magnetic systems through a single real scalar field. We show here that spherically symmetric structures in two spatial dimensions, which map helical excitations in magnetic materials, admit this formulation and can be used to model skyrmion-like structures in magnetic materials.

  2. Sub-Kelvin scanning tunneling microscopy on magnetic molecules

    OpenAIRE

    Zhang, Lei

    2012-01-01

    Magnetic molecules have attracted lots interest. In this work, an ultra-stable and low noise scanning tunneling microscopy operating at 400 mK using He-3 (930 mK using He-4) has been developed. The magnetic behavior of different magnetic molecules on substrates, especially the exchange interaction between the magnetic ions, the magnetic anisotropy on the surface, the magnetic excitations as well as the Kondo effect, were studied by using STM.

  3. Ultrafast carrier dynamics of titanic acid nanotubes investigated by transient absorption spectroscopy.

    Science.gov (United States)

    Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto

    2010-12-01

    Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

  4. Transient Newton rings in dielectrics upon fs laser ablation

    CERN Document Server

    Garcia-Lechuga, Mario; Hernandez-Rueda, Javier; Solis, Javier

    2014-01-01

    We report the appearance of transient Newton rings in dielectrics (sapphire and lead-oxide glass) during ablation with single fs laser pulses. Employing femtosecond microscopy with 800 nm excitation and 400 nm illumination, we observe a characteristic ring pattern that dynamically changes for increasing delay times between pump and probe pulse. Such transient Newton rings have been previously observed in metals and semiconductors at fluences above the ablation threshold and were related to optical interference of the probe beam reflected at the front surface of the ablating layer and at the interface of the non-ablating substrate. Yet, it had been generally assumed that this phenomenon cannot be (and has not been) observed in dielectrics due to the different ablation mechanism and optical properties of dielectrics. The fact that we are able to observe them has important consequences for the comprehension of the ablation mechanisms in dielectrics and provides a new method for investigating these mechanisms in ...

  5. Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Ma, Yuchen; Rohlfing, Michael

    2012-03-13

    Excited states of dicyanovinyl-substituted oligothiophenes are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. By varying the number of oligomer repeat units, we investigate the effects of resonant-antiresonant transition coupling, dynamical screening, and molecular conformations on calculated excitations. We find that the full dynamically screened Bethe-Salpeter equation yields absorption and emission energies in good agreement with experimental data. The effect of resonant-antiresonant coupling on the first singlet π → π* excitation monotonically decreases with increasing size of the molecule, while dynamical screening effects uniformly lower the excitation energies.

  6. Enhanced negative ion formation via electron attachment to electronically-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, L.A. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  7. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    Science.gov (United States)

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  8. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.

    Science.gov (United States)

    Taylor, Adam B; Zijlstra, Peter

    2017-08-25

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.

  9. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Energy Technology Data Exchange (ETDEWEB)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Yang, Ji-Ping [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); School of Sciences, Hefei University of Technology, Hefei 230009 (China); Vonderach, Matthias [Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Huang, Dao-Ling; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Kruppa, Sebastian; Riehn, Christoph [Fachbereich Chemie und Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Kappes, Manfred M., E-mail: manfred.kappes@kit.edu [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  10. Recent development of transient electronics

    Directory of Open Access Journals (Sweden)

    Huanyu Cheng

    2016-01-01

    Full Text Available Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

  11. Molecule of the Month

    Indian Academy of Sciences (India)

    The most logical way to reduce the reactivity of a molecule of 1 would be to put a single molecule of 1 in an unreactive "cage". Chemistry Nobel winner Donald J. Cram (1987) has shown that it is indeed possible (Angew. Chem. Int. Ed. Engl., 30, 1028. 1991)!. Cram and co-workers synthesized a variety of spheroidal molecu-.

  12. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Algebraic theory of molecules

    CERN Document Server

    Iachello, F

    1995-01-01

    1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters

  14. ISOLATED MOLECULES IN METALS

    NARCIS (Netherlands)

    1992-01-01

    In this paper, some results obtained on the formation of isolated molecules of composition SnOx in silver and SnFx in copper-are reviewed. Hyperfine interaction and ion beam interaction techniques were used for the identification of these molecules.

  15. Electrons in Molecules

    Indian Academy of Sciences (India)

    “What are electrons doing in molecules?” This is a deceptively simple question that scientists have been trying to answer for more than eighty years. With the advent of quantum mechanics in 1926, it became clear that we must understand the dynamics of electronic motion in atoms, molecules and solids in order to explain ...

  16. Molecule of the Month

    Indian Academy of Sciences (India)

    Atoms in a molecule generally prefer, particularly among the neighbouring ones, certain optimmn geometrical relationships. These are manifested in specific ranges of bond lengths, bond angles, torsion angles etc. As it always happens, chemists are interested in making molecules where these 'standard relationships' are ...

  17. Generation of Vibrationally Excited HCP from a Stable Synthetic Precursor

    Science.gov (United States)

    Hull, Alexander W.; Jiang, Jun; Erickson, Trevor J.; Womack, Carrie; Nava, Matthew; Cummins, Christopher; Field, Robert W.

    2015-06-01

    HCP belongs to a class of reactive small molecules with much interest to spectroscopists. It bears certain similarities to HCN, including a strong {A}(bent) - {X}(linear) ultraviolet transition, associated with the HCP-HPC isomerization pathway. HCP has traditionally been generated by the in situ reaction of PH_3 and acetylene. In this talk, we will discuss a recently developed synthetic precursor molecule, 1,1-((triphenylphosphoranylidene)methyl)-9,10-phosphanoanthracene. At temperatures above 200 degrees Celsius, this precursor is thought to release HCP in a vibrationally excited state. We will present preliminary spectra on this system obtained by LIF and chirped pulse millimeter wave spectroscopy.

  18. Increasing average power in medical ultrasonic endoscope imaging system by coded excitation

    Science.gov (United States)

    Chen, Xiaodong; Zhou, Hao; Wen, Shijie; Yu, Daoyin

    2008-12-01

    Medical ultrasonic endoscope is the combination of electronic endoscope and ultrasonic sensor technology. Ultrasonic endoscope sends the ultrasonic probe into coelom through biopsy channel of electronic endoscope and rotates it by a micro pre-motor, which requires that the length of ultrasonic probe is no more than 14mm and the diameter is no more than 2.2mm. As a result, the ultrasonic excitation power is very low and it is difficult to obtain a sharp image. In order to increase the energy and SNR of ultrasonic signal, we introduce coded excitation into the ultrasonic imaging system, which is widely used in radar system. Coded excitation uses a long coded pulse to drive ultrasonic transducer, which can increase the average transmitting power accordingly. In this paper, in order to avoid the overlapping between adjacent echo, we used a four-figure Barker code to drive the ultrasonic transducer, which is modulated at the operating frequency of transducer to improve the emission efficiency. The implementation of coded excitation is closely associated with the transient operating characteristic of ultrasonic transducer. In this paper, the transient operating characteristic of ultrasonic transducer excited by a shock pulse δ(t) is firstly analyzed, and then the exciting pulse generated by special ultrasonic transmitting circuit composing of MD1211 and TC6320. In the final part of the paper, we designed an experiment to validate the coded excitation with transducer operating at 5MHz and a glass filled with ultrasonic coupling liquid as the object. Driven by a FPGA, the ultrasonic transmitting circuit output a four-figure Barker excitation pulse modulated at 5MHz, +/-20 voltage and is consistent with the transient operating characteristic of ultrasonic transducer after matched by matching circuit. The reflected echo from glass possesses coded character, which is identical with the simulating result by Matlab. Furthermore, the signal's amplitude is higher.

  19. Laser-induced stress transients: applications for molecular delivery

    Science.gov (United States)

    Flotte, Thomas J.; Lee, Shun; Zhang, Hong; McAuliffe, Daniel J.; Douki, Tina; Doukas, Apostolos G.

    1995-05-01

    Lasers can be used to enhance the delivery of a number of molecules. Other investigators have demonstrated local release of molecules from liposomes following laser irradiation, microbeam disruption of the cell membrane to increase cell transport, microbeam ablation of the zona pellucida surrounding the ovum to increase the chances of fertilization, and increased transcutaneous transport following ablation of the stratum corneum. Our experiments have shown that laser-induced stress transients can be utilized as a vector for intracellular delivery of molecules that may or may not normally cross the cell membrane. These two conditions have been tested with Photofrin and DNA. This technology may have applications in cell and molecular biology, cancer therapy, gene therapy, and others.

  20. Single molecule electronic devices.

    Science.gov (United States)

    Song, Hyunwook; Reed, Mark A; Lee, Takhee

    2011-04-12

    Single molecule electronic devices in which individual molecules are utilized as active electronic components constitute a promising approach for the ultimate miniaturization and integration of electronic devices in nanotechnology through the bottom-up strategy. Thus, the ability to understand, control, and exploit charge transport at the level of single molecules has become a long-standing desire of scientists and engineers from different disciplines for various potential device applications. Indeed, a study on charge transport through single molecules attached to metallic electrodes is a very challenging task, but rapid advances have been made in recent years. This review article focuses on experimental aspects of electronic devices made with single molecules, with a primary focus on the characterization and manipulation of charge transport in this regime. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Response of Launch Pad Structures to Random Acoustic Excitation

    Directory of Open Access Journals (Sweden)

    Ravi N. Margasahayam

    1994-01-01

    Full Text Available The design of launch pad structures, particularly those having a large area-to-mass ratio, is governed by launch-induced acoustics, a relatively short transient with random pressure amplitudes having a non-Gaussian distribution. The factors influencing the acoustic excitation and resulting structural responses are numerous and cannot be predicted precisely. Two solutions (probabilistic and deterministic for the random vibration problem are presented in this article from the standpoint of their applicability to predict the response of ground structures exposed to rocket noise. Deficiencies of the probabilistic method, especially to predict response in the low-frequency range of launch transients (below 20 Hz, prompted the development of the deterministic analysis. The relationship between the two solutions is clarified for future implementation in a finite element method (FEM code.

  2. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  3. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  4. LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments

    Science.gov (United States)

    Walker, Kyle M.

    2017-06-01

    While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.

  5. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  6. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  7. Regulation of DNA Metabolism by DNA-Binding Proteins Probed by Single Molecule Spectroscopy

    Science.gov (United States)

    2006-12-05

    Recent advances in single - molecule force spectroscopy of DNA make it possible to study the thermodynamics and kinetics of DNA binding proteins under...to transient single-stranded DNA regions due to thermal fluctuations. The model is used to analyze recent single - molecule spectroscopy data of this system.

  8. Probing excited electronic states and ionisation mechanisms of fullerenes

    OpenAIRE

    Johansson, Olof; Campbell, Eleanor E. B.

    2013-01-01

    Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively s...

  9. Explosive and Radio-Selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    In India, active research is going on in transient astronomy, especially in the fields of supernovae, gamma ray .... to ∼9 as of now. We currently understand them as catastrophic events generating a central engine which ..... bubbles blown by hot progenitor or with complex circumstellar environments set up by variable winds.

  10. Explosive and Radio-Selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of Gamma Ray Bursts (GRBs) with SKA will uncover not only much fainter ...

  11. Rotovibrational states of the water molecule on the sun.

    Science.gov (United States)

    Leite, Bruno S; Bastos, Cristiano C; Pavão, Antonio C

    2016-12-01

    The infrared spectrum of water observed in sunspots is complex and dense, with bands separated by approximately 0.01 cm-1. For top asymmetrical molecules, there is no theoretical approach that allows for the calculation of rotovibrational energy with such precision. Experimentally derived rotovibracional energy levels of water at high temperatures combined with variational calculations have been used for the band assignments. These energy levels are employed to refine the analysis of a small portion of the infrared absorption spectrum. Such procedure has allowed for the identification of additional 55 bands to the 70 already identified as rotovibrational transitions of the water molecule. Our new assignments, which include pure and cross transitions, offer additional evidence of the existence of water on the sun, but above all they illustrate the complexity of the solar spectrum that involves states with higher levels of rotational excitation. Given the conditions on the sun, more molecules of water would occur in excited electronic states, which include apolar and paramagnetic states, generating intense bands in the spectrum. Since there is an analytical solution for the rotovibrational transitions of linear molecules, we were able to identify 16 bands relative to the excited electronic states 1B2 and 3A1 in the sunspot spectrum. Density functional B3LYP/AUG-cc-pVTZ calculations of the electric and magnetic dipole are employed to discuss some consequences of the presence of excited states of water in the dynamics of sunspots and solar magnetic field.

  12. Kinetics of hydrogen molecules in MAGNUM-PSI

    NARCIS (Netherlands)

    Baeva, M.; W. J. Goedheer,; Cardozo, N. J. L.

    2008-01-01

    Results from simulations of plasma and neutrals under conditions predictively characterizing the detached plasma regime in the linear machine MAGNUM-PSI are presented. The relaxation of the vibrationally excited hydrogen molecules is investigated in order to establish a relation between their

  13. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    CERN Document Server

    Heyden, Stefanie

    2015-01-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  14. Dynamics of UV-excited uracil, thymine, and cytosine

    Science.gov (United States)

    Hudock, Hanneli

    The excited state dynamics of nucleic acids has been a subject of much experimental and theoretical interest. Nucleic acid bases readily absorb UV radiation, which can lead to mutagenic dimer formation. The dynamics of UV-excited nucleic acids is an important step in understanding how these dimers form. The pyrimidine bases (uracil, thymine, and cytosine) have been studied with ab initio multiple spawning molecular dynamics and high level electronic structure methods. This work has involved both gas-phase and aqueous dynamics as well as simulation of the time-resolved photoelectron spectrum, transient absorption, fluorescence, and reaction rates. With these findings, complete relaxation mechanisms are proposed for the pyrimidines and comparisons are made directly to experimental results.

  15. Fragmentation of HCl following excitation at the chlorine K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L.; Arrasate, M.E. [Univ. of Nevada, Las Vegas, NV (United States); Cotter, J.P. [Univ. of Nevada, Reno, NV (United States)] [and others

    1997-04-01

    A space-focused time-of-flight (TOF) mass spectrometer was used to study the relaxation dynamics of HCl following excitation in the vicinity of the Cl-K edge ({approximately}2.8 keV) using x-rays from B.L. 9.3.1. At the lowest resonant excitation to a {sigma}{sup *} antibonding orbital (1{sigma} {r_arrow} 6{sigma}), a significant fraction of the excited molecules decay by emission of a neutral H atom. While neutral-H emission has been observed for shallow core levels (e.g., Cl 2p in HCl), the authors believe this to be the first observation of neutral-atom emission as a significant decay channel following resonant excitation of a deep core hole. The dissociation of neutral hydrogen atoms raises the issue of how effectively dissociation competes with Auger decay in the relaxation of these deep core levels (i.e., Cl 1s). Graphical evidence is presented to support the dissociation agrument. In addition, trends in fractional ion yields from Photo-Ion Photo-Ion COincidence (PIPICO) spectra suggest the presence of post-collision interaction (PCI). While, electron spectroscopy studies are required to confirm the observation of this effect, the authors believe this to be the first evidence of PCI moderated dissociation in molecules.

  16. The Zwicky Transient Facility Galactic Plane Survey

    Science.gov (United States)

    Prince, Thomas; Zwicky Transient Facility (ZTF) Project Team

    2018-01-01

    The Zwicky Transient Faciility (ZTF) is a new survey camera mounted on the 1.2m Oschin Schmidt Telescope on Mount Palomar. The camera has a 47 square degree field of view and is expected to start public survey observations in early 2018. The public surveys are undertaken with support provided by the NSF MSIP program. One of the two public surveys is a twice nightly scan of the central Galactic Plane visible from Mount Palomar, one scan in r-band and one in g-band. Publicly accessible data from the survey will be one of two types: (1) prompt alerts of variable activity of Galactic Plane sources using image difference source identification, and (2) photometric light curves of Galactic Plane sources extracted from calibrated images. Data will be made accessible through the Caltech Image Processing and Analysis Center (IPAC). The ZTF Galactic Plane Survey, combined with Gaia and PanSTARRS data, will be an exciting new resource for time domain astronomy observations of Galactic sources.We will describe the details of the ZTF Galactic Plane survey, including estimated coverage of the plane and light curve sampling. We will also describe plans for public access to the data, as well as comment on some of the important science that will be possible using the survey data.

  17. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  18. Excited state carbene formation from UV irradiated diazomethane.

    Science.gov (United States)

    Lee, Hosik; Miyamoto, Yoshiyuki; Tateyama, Yoshitaka

    2009-01-16

    The laser flash photolysis process of diazomethane has been studied by using a real time propagation time-dependent density functional theory (RTP-TDDFT) combined with molecular dynamics. The activation energy barrier for disintegrating diazomethane into nitrogen (N(2)) and carbene (CH(2)) molecules significantly decreases in the electronic excited S(1) state compared to that in the S(0) ground state. Furthermore, the produced carbene molecule can be in the electronic excited state of (1)CH(2) ((1)B(1)) instead of the lowest state among singlet states (1)CH(2) ((1)A(1)), which is evident in the wave function characteristics of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) throughout the disintegration. This is regarded as the initial stage of the rearrangement in the excited state (RIES), the evidence of which has been given by experiments in the past decade. In the RIES mechanism scheme, we suggest that the photoreaction in the S(1) state contributes considerably to the photochemistry of carbene formation. The passing near the S(1)/S(0) conical intersection, which allows the transition to ground state diazomethane producing the lowest singlet state carbene molecule, is considered a rare event from our molecular dynamics, although this has been regarded as the dominant mechanism in previous theoretical studies.

  19. Transient Response of Thin Wire above a Layered Half-Space Using TDIE/FDTD Hybrid Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2012-01-01

    Full Text Available The TDIE/FDTD hybrid method is applied to calculate the transient responses of thin wire above a lossy layered half-space. The time-domain reflection of the layered half space is computed by one-dimensional modified FDTD method. Then, transient response of thin wire induced by two excitation sources (the incident wave and reflected wave is calculated by TDIE method. Finally numerical results are given to illustrate the feasibility and high efficiency of the presented scheme.

  20. Indirect excitation of ultrafast demagnetization

    National Research Council Canada - National Science Library

    Vodungbo, B; Tudu, B; Perron, J; Delaunay, R; Müller, L; Berntsen, M.H; Grübel, G; Malinowski, G; Weier, C; Gautier, J; Lambert, G; Zeitoun, P; Gutt, C; Jal, E; Reid, A.H; Granitzka, P.W; Jaouen, N; Dakovski, G.L; Moeller, S; Minitti, M.P; Mitra, A; Carron, S; Pfau, B; von Korff Schmising, C; Schneider, M; Eisebitt, S; Lüning, J

    2016-01-01

    .... Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer...

  1. Transport waves as crystal excitations

    Science.gov (United States)

    Cepellotti, Andrea; Marzari, Nicola

    2017-09-01

    We introduce the concept of transport waves by showing that the linearized Boltzmann transport equation admits excitations in the form of waves that have well-defined dispersion relations and decay times. Crucially, these waves do not represent single-particle excitations, but are collective excitations of the equilibrium distribution functions. We study in detail the case of thermal transport, where relaxons are found in the long-wavelength limit, and second sound is reinterpreted as the excitation of one or several temperature waves at finite frequencies. Graphene is studied numerically, finding decay times of the order of microseconds. The derivation, obtained by a spectral representation of the Boltzmann equation, holds in principle for any crystal or semiclassical transport theory and is particularly relevant when transport takes place in the hydrodynamic regime.

  2. Heavy exotic molecules

    Science.gov (United States)

    Liu, Yizhuang; Zahed, Ismail

    We briefly review the formation of pion-mediated heavy-light exotic molecules with both charm and bottom, under the general structures of chiral and heavy quark symmetries. The charm isosinglet exotic molecules with JPC = 1++ binds, which we identify as the reported neutral X(3872). The bottom isotriplet exotic with JPC = 1+1 binds, and is identified as a mixed state of the reported charged exotics Zb+(10610) and Zb-(10650). The bound bottom isosinglet molecule with JPC = 1++ is a possible neutral Xb(10532) to be observed.

  3. Indirect excitation of ultrafast demagnetization

    OpenAIRE

    Boris Vodungbo; Bahrati Tudu; Jonathan Perron; Renaud Delaunay; Leonard Müller; Berntsen, Magnus H.; Gerhard Grübel; Grégory Malinowski; Christian Weier; Julien Gautier; Guillaume Lambert; Philippe Zeitoun; Christian Gutt; Emmanuelle Jal; Reid, Alexander H.

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a ne...

  4. Stochastic Hierarchical Systems: Excitable Dynamics

    OpenAIRE

    Leonhardt, Helmar; Zaks, Michael A.; Falcke, Martin; Schimansky-Geier, Lutz

    2008-01-01

    We present a discrete model of stochastic excitability by a low-dimensional set of delayed integral equations governing the probability in the rest state, the excited state, and the refractory state. The process is a random walk with discrete states and nonexponential waiting time distributions, which lead to the incorporation of memory kernels in the integral equations. We extend the equations of a single unit to the system of equations for an ensemble of globally coupled oscillators, derive...

  5. Autowaves in moving excitable media

    Directory of Open Access Journals (Sweden)

    V.A.Davydov

    2004-01-01

    Full Text Available Within the framework of kinematic theory of autowaves we suggest a method for analytic description of stationary autowave structures appearing at the boundary between the moving and fixed excitable media. The front breakdown phenomenon is predicted for such structures. Autowave refraction and, particulary, one-side "total reflection" at the boundary is considered. The obtained analytical results are confirmed by computer simulations. Prospects of the proposed method for further studies of autowave dynamics in the moving excitable media are discussed.

  6. Have Gluonic Excitations Been Found?

    OpenAIRE

    Page, Philip R.

    1996-01-01

    New experimental information on the non-exotic J^PC = 0^-+ isovector seen at 1.8 GeV by VES yields convincing evidence of its excited gluonic (hybrid) nature when a critical study of alternative quarkonium assignments is made in the context of ^3 P_0 decay by flux-tube breaking. Production of this gluonic excitation via meson exchange is promising, although its two photon production vanishes.

  7. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  8. Excitation-transcription coupling in parvalbumin-positive interneurons employs a novel CaM Kinase-dependent pathway distinct from excitatory neurons

    Science.gov (United States)

    Cohen, Samuel M.; Ma, Huan; Kuchibhotla, Kishore V.; Watson, Brendon O.; Buzsáki, György; Froemke, Robert C.; Tsien, Richard W.

    2016-01-01

    Properly functional CNS circuits depend on inhibitory interneurons that in turn rely upon activity-dependent gene expression for morphological development, connectivity and excitatory-inhibitory coordination. Despite its importance, excitation-transcription coupling in inhibitory interneurons is poorly understood. Here, we report that PV+ interneurons employ a novel CaMK-dependent pathway to trigger CREB phosphorylation and gene expression. As in excitatory neurons, voltage-gated Ca2+ influx through CaV1 channels triggers CaM nuclear translocation via local Ca2+ signaling. However, PV+ interneurons are distinct in that nuclear signaling is mediated by γCaMKI, not γCaMKII. CREB phosphorylation also proceeds with slow, sigmoid kinetics, rate-limited by paucity of CaMKIV, protecting against saturation of phospho-CREB in the face of higher firing rates and bigger Ca2+ transients. Our findings support the generality of CaM shuttling to drive nuclear CaMK activity, and are relevant to disease pathophysiology, insofar as dysfunction of PV+ interneurons and molecules underpinning their excitation-transcription coupling both relate to neuropsychiatric disease. PMID:27041500

  9. Coherent Excitations Induced by Pumping a Mott System

    Science.gov (United States)

    Wang, Yao; Claassen, Martin; Moritz, Brian; Devereaux, Thomas

    Time-domain or non-equilibrium dynamics of correlated materials has attracted attention due to the possibility to characterize, tune and create complex ordered states. To understand how single and multi-particle excitations develop in a strongly-correlated systems during a pulsed pump, we perform a time-resolved exact-diagonalization study on a single-band Hubbard model. Starting from the Mott insulator at half-filling, we observe the suppression of antiferromagnetism and development of low-energy charge excitations through a series of Floquet-like sidebands. By correlating with the numerically evaluated single-particle spectra in non-equilibrium, the transient dynamics of multi-particle excitations can be attributed to the interplay between virtual Floquet sidebands and change of density of states due to the existence of strong correlations. The autocorrelation of this time-dependent spectral function reflects that it is the resonance of floquet states and upper Hubbard band that causes the remnant change of charge and spin excitations. This nonperturbative, nonequilibrium and nonstatic study reveals the underlying physical process while correlated electrons are pumped in experiment and provide the opportunity of designing nonequilibrium state of matter by a short pulsed laser.

  10. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  11. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  12. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  13. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  14. Instantaneous Frequency and Damping from Transient Ring-Down Data

    Energy Technology Data Exchange (ETDEWEB)

    Kuether, Robert J.; Brake, Matthew Robert

    2015-10-01

    Broadband impact excitation in structural dynamics is a common technique used to detect and characterize nonlinearities in mechanical systems since it excites many frequencies of a structure at once and can be applied with a variety of boundary conditions. Non-stationary time signals from transient ring-down measurements require time-frequency analysis tools to observe variations in frequency and energy dissipation as the response evolves. This work uses the short-time Fourier transform to estimate the instantaneous frequency and damping ratio from either measured or simulated transient ring-down data. By combining the discrete Fourier transform with an expanding or contracting window function that moves along the time axis, the resulting spectrum is used to estimate the instantaneous frequencies, damping and complex Fourier coefficients. This method is demonstrated on a multi-degree-of-freedom beam with a cubic spring attachment, and investigates the amplitudefrequency dependence in connection to the undamped nonlinear normal modes. A second example shows the results from experiment ring-down response on a beam with a lap joint, and reveals how the system behaves as energy dissipates.

  15. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.

  16. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. [George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)]|[Department of Physics, Technical University of Berlin, D 10623 Berlin (Germany)

    1997-03-01

    By exploiting the extremely large effective cross sections (10{sup -17}{endash}10{sup -16}cm{sup 2}/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2{times}10{sup 5}W/cm{sup 2} nonresonant near-infrared excitation show a clear {open_quotes}fingerprint{close_quotes} of its Raman features between 700 and 1700cm{sup -1}. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules. {copyright} {ital 1997} {ital The American Physical Society}

  17. Static trapping of polar molecules in a traveling wave decelerator.

    Science.gov (United States)

    Quintero-Pérez, Marina; Jansen, Paul; Wall, Thomas E; van den Berg, Joost E; Hoekstra, Steven; Bethlem, Hendrick L

    2013-03-29

    We present experiments on decelerating and trapping ammonia molecules using a combination of a Stark decelerator and a traveling wave decelerator. In the traveling wave decelerator, a moving potential is created by a series of ring-shaped electrodes to which oscillating high voltages (HV) are applied. By lowering the frequency of the applied voltages, the molecules confined in the moving trap are decelerated and brought to a standstill. As the molecules are confined in a true 3D well, this kind of deceleration has practically no losses, resulting in a great improvement on the usual Stark deceleration techniques. The necessary voltages are generated by amplifying the output of an arbitrary wave generator using fast HV amplifiers, giving us great control over the trapped molecules. We illustrate this by experiments in which we adiabatically cool trapped NH3 and ND3 molecules and resonantly excite their motion.

  18. Equation of Motion Theory for Excited States in Variational Monte Carlo and the Jastrow Antisymmetric Geminal Power in Hilbert Space.

    Science.gov (United States)

    Zhao, Luning; Neuscamman, Eric

    2016-08-09

    An equation of motion formalism for excited states in variational Monte Carlo is derived, and a pilot implementation for the Jastrow-modified antisymmetric geminal power is tested. In single excitations across a range of small molecules, this combination is shown to be intermediate in accuracy between configuration interaction singles and equation of motion coupled cluster with singles and doubles. For double excitations, energy errors are found to be similar to those for coupled cluster.

  19. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  20. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna.

    Science.gov (United States)

    Kühn, Sergei; Håkanson, Ulf; Rogobete, Lavinia; Sandoghdar, Vahid

    2006-07-07

    We investigate the coupling of a single molecule to a single spherical gold nanoparticle acting as a nanoantenna. Using scanning probe technology, we position the particle in front of the molecule with nanometer accuracy and measure a strong enhancement of more than 20 times in the fluorescence intensity simultaneous to a 20-fold shortening of the excited state lifetime. Comparisons with three-dimensional calculations guide us to decipher the contributions of the excitation enhancement, spontaneous emission modification, and quenching. Furthermore, we provide direct evidence for the role of the particle plasmon resonance in the molecular excitation and emission processes.

  1. Sadomasochism, sexual excitement, and perversion.

    Science.gov (United States)

    Kernberg, O F

    1991-01-01

    Sadomasochism, an ingredient of infantile sexuality, is an essential part of normal sexual functioning and love relations, and of the very nature of sexual excitement. Sadomasochistic elements are also present in all sexual perversions. Sadomasochism starts out as the potential for erotic masochism in both sexes, and represents a very early capacity to link aggression with the libidinal elements of sexual excitement. Sexual excitement may be considered a basic affect that overcomes primitive splitting of love and hatred. Erotic desire is a more mature form of sexual excitement. Psychoanalytic exploration makes it possible to uncover the unconscious components of sexual excitement: wishes for symbiotic fusion and for aggressive penetration and intermingling; bisexual identifications; the desire to transgress oedipal prohibitions and the secretiveness of the primal scene, and to violate the boundaries of a teasing and withholding object. The relation between these wishes and the development of erotic idealization processes in both sexes is explored in the context of a critical review of the pertinent psychoanalytic literature.

  2. Coulomb excitation of (31)Mg

    CERN Document Server

    Seidlitz, M; Reiter, P; Bildstein, V; Blazhev, A; Bree, N; Bruyneel, B; Cederkall, J; Clement, E; Davinson, T; van Duppen, P; Ekstrom, A; Finke, F; Fraile, L M; Geibel, K; Gernhauser, R; Hess, H; Holler, A; Huyse, M; Ivanov, O; Jolie, J; Kalkuhler, M; Kotthaus, T; Krucken, R; Lutter, R; Piselli, E; Scheit, H; Stefanescu, I; van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A

    2011-01-01

    The ground state properties of ^3^1Mg indicate a change of nuclear shape at N=19 with a deformed J^@p=1/2^+ intruder state as a ground state, implying that ^3^1Mg is part of the ''island of inversion''. The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive ^3^1Mg beam. De-excitation @c-rays were detected by the MINIBALL @c-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of ^3^1Mg was extended. Spin and parity assignment of the 945 keV state yielded 5/2^+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of ^3^0^,^3^1^,^3^2Mg establishes that for th e N=19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.

  3. Stationary and Transient Response Statistics

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Krenk, Steen

    1982-01-01

    for the covariance functions are obtained. In case of white noise excitations the expressions simplify considerably, and an approximative method for including the main effects of an actual spectral density function is derived based on a white noise analogy. The theory is applied to a multistory frame structure...

  4. Calculation of surface impedance effects on transient antenna radiation

    Science.gov (United States)

    Booker, S. M.; Lambert, A. P.; Smith, P. D.

    1996-11-01

    A numerical time domain approach to radiation and scattering problems is introduced for surfaces of arbitrary conductivity. This approach is based upon a method of moments solution of the electric field integral equation. The problem is posed as a second-kind integral equation in discrete time for those regions of the surface with finite conductivity; it is shown that this formulation possesses desirable stability properties. The numerical method introduced is used to determine the far field radiation of both directive and nondirective transient antennas excited by temporally compact, ultrawideband pulses when the antenna surfaces are subject to a Wu-King surface impedance profile. Such loads are shown to suppress the "late time ringing" resulting from reflected surface currents without significantly affecting the initial radiated waveform. In the case of nondirective transient radiators, such as the bicone or bow tie antenna, the presence of a surface loading has no effect on the peak radiated field strength. In the case of a directive transient radiator, such as a transverse electromagnetic horn, the introduction of a surface impedance reduces the radiated field strength somewhat. The difference in the physical behavior of these two classes of antenna is accounted for.

  5. Transient-absorption phases with strong probe and pump pulses

    Science.gov (United States)

    Becquet, Vadim; Cavaletto, Stefano M.

    2018-02-01

    The quantum dynamics of a system of Rb atoms, modeled by a V-type three-level system interacting with intense probe and pump pulses, are studied. The time-delay-dependent transient-absorption spectrum of an intense probe pulse is thus predicted, simulating pump-probe experiments in which this is preceded or followed by a strong pump pulse. Numerical results are interpreted in terms of an analytical model based on interaction operators, which quantify the transformation undergone by the system under the action of an intense pulse. The oscillating features of the resulting transient-absorption spectra, due to the coupling of several excited states, are thus interpreted in terms of the atomic population and phase changes imposed by the pump and probe pulses. Strong-field-induced phases and their influence on the resulting transient-absorption spectra are thereby investigated for different values of pump and probe intensities and frequencies, focusing on the atomic properties which are encoded in the absorption line shapes for positive and negative time delays.

  6. Nonlinear transient and chaotic interactions in disc brake squeal

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2015-04-01

    In automotive disc-brake squeal, most numerical studies have been focussed on the prediction of unstable vibration modes in the frequency domain using the complex eigenvalue analysis. However, the magnitude of the positive real part of a complex eigenvalue is an unreliable indicator of squeal occurrence. Although nonlinearities have been shown to play a significant role in brake squeal, transient nonlinear time domain analyses have rarely been applied owing to high computational costs. Here the complex eigenvalue analysis, the direct steady-state analysis and the transient nonlinear time domain analysis are applied to an isotropic pad-on-disc finite element model representing a simple model of a brake system. While in this investigation, in-plane pad-mode instabilities are not detected by the complex eigenvalue analysis, the dissipated energy obtained by the direct steady-state analysis of the model subjected to harmonic contact pressure excitation is negative at frequencies of pad modes, indicating a potential for instabilities. Transient nonlinear time domain analysis of the pad and disc dynamics reveal that in-plane pad vibrations excite a dominant out-of-plane disc mode. For intermittently chaotic pad motion, the disc dynamics is quasi-periodic; and for chaotic motion of the pad, a toroidal attractor is found for the disc's out-of-plane motion. Nonlinear interactions between the pad and the disc highlight that different parts in a brake system display different dynamic behaviour and need to be analysed separately. The type II intermittency route to chaos could be the cause for the experimentally observed instantaneous mode squeal.

  7. J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide

    KAUST Repository

    Kar, Haridas

    2015-03-12

    Herein we reveal a straightforward supramolecular design for the H-bonding driven J-aggregation of an amine-substituted cNDI in aliphatic hydrocarbons. Transient absorption spectroscopy reveals sub-ps intramolecular electron transfer in isolated NDI molecules in a THF solution followed by a fast recombination process, while a remarkable extension of the excited state lifetime by more than one order of magnitude occurred in methylcyclohexane likely owing to an increased charge-separation as a result of better delocalization of the charge-separated states in J-aggregates. We also describe unique solvent-effects on the macroscopic structure and morphology. While J-aggregation with similar photophysical characteristics was noticed in all the tested aliphatic hydrocarbons, the morphology strongly depends on the “structure” of the solvents. In linear hydrocarbons (n-hexane, n-octane, n-decane or n-dodecane), formation of an entangled fibrillar network leads to macroscopic gelation while in cyclic hydrocarbons (methylcyclohexane or cyclohexane) although having a similar polarity, the cNDI exhibits nanoscale spherical particles. These unprecedented solvent effects were rationalized by establishing structure-dependent specific interactions of the solvent molecules with the cNDI which may serve as a general guideline for solvent-induced morphology-control of structurally related self-assembled materials.

  8. Students Excited by Stellar Discovery

    Science.gov (United States)

    2011-02-01

    In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second -- an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU). The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. "Every day, I told myself, 'I have to find a pulsar. I better find a pulsar before this class ends,'" said Mabry. When she actually made the discovery, she could barely contain her excitement. "I started screaming and jumping up and down." Thompson was similarly expressive. "After three years of searching, I hadn't found a single thing," he said, "but when I did, I threw my hands up in the air and said, 'Yes!'." Snider said, "It actually feels really neat to be the first person to ever see something like that. It's an uplifting feeling." As part of the PSC, the students analyze real data from NRAO's Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students' teachers -- Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School -- all introduced the PSC in their classes, and interested students formed teams to continue the work. Even before the discovery, Mabry simply enjoyed the search. "It just feels like you're actually doing something," she said. "It's a good feeling." Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the

  9. Supergiant Fast X-Ray Transients: Swift Results and Theoretical Progress

    Science.gov (United States)

    Farinelli, Ruben; Romano, Patrizia; Vercellone, Stefano; Ceccobello, C.; Titarchuk, L.

    We present an overview of our Supergiant Fast X-ray Transients (SFXT) project, by highlighting the unique observational contribution Swift is giving to this exciting new field. Since 2007 Swift has been detecting outbursts from these fast transients with the BAT and following them intensively for days with the XRT so that we now have a firm estimate of the time SFXTs spend in each intensity phase. We summarize some preliminary results on our XSPEC model that numerically solves the bulk-motion radiative transfer equation with a strong magnetic field, in the Fokker-Planck approximation.

  10. RF control at transient beamloading for high-duty-factor linacs

    Energy Technology Data Exchange (ETDEWEB)

    Chernogubovsky, M.A.; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    An effective RF control with the transient beamloading is the major issue in the operation of the high-duty-factor linacs to suppress the undesirable beam loss. The RF control method is considered to obtain the control principle and the state equation, under the analysis of electrodynamical properties of the excitation in the resonator of the linac due to the transient beamloading. The concept of the directional selective coupling is applied for the RF system to define the main characteristics and to optimize the RF control parameters. (author)

  11. Transient Stability Enhancement in Power System Using Static VAR Compensator (SVC

    Directory of Open Access Journals (Sweden)

    Youssef MOULOUDI

    2012-12-01

    Full Text Available In this paper, an indirect adaptive fuzzy excitation and static VAR (unit of reactive power, volt-ampere reactive compensator (SVC controller is proposed to enhance transient stability for the power system, which based on input-output linearization technique. A three-bus system, which contains a generator and static VAR compensator (SVC, is considered in this paper, the SVC is located at the midpoint of the transmission lines. Simulation results show that the proposed controller compared with a controller based on tradition linearization technique can enhance the transient stability of the power system under a large sudden fault, which may occur nearly at the generator bus terminal.

  12. Nonlinear Diffusion and Transient Osmosis

    Science.gov (United States)

    Akira, Igarashi; Lamberto, Rondoni; Antonio, Botrugno; Marco, Pizzi

    2011-08-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call “transient osmosis". We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes.

  13. Indirect excitation of ultrafast demagnetization

    Science.gov (United States)

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H.; Granitzka, Patrick W.; Jaouen, Nicolas; Dakovski, Georgi L.; Moeller, Stefan; Minitti, Michael P.; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.

  14. Magnetic excitations in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik

    1995-08-01

    Cross sections for inelastic electron scattering and energy distributions of M1 and E2 strengths of K{sup {pi}} - 1{sup +} excitations in titanium, rare-earth, and actinide nuclei are studied microscopically within QRPA. The spin M1 strength has two peaks, isoscalar and isovector, residing between the low-and high-energy orbital M1 strength. The latter is strongly fragmented and lies in the region of the IVGQR, where the (e,e`) cross sections are almost one order of magnitude larger for E2 than for M1 excitations. Comparison with the quantized isovector rotor allows the interpretation of all the orbital M1 excitations at both low and high energies as manifestation of the collective scissors mode. (author).

  15. Excitation optimization for damage detection

    Energy Technology Data Exchange (ETDEWEB)

    Bement, Matthew T [Los Alamos National Laboratory; Bewley, Thomas R [UCSD

    2009-01-01

    A technique is developed to answer the important question: 'Given limited system response measurements and ever-present physical limits on the level of excitation, what excitation should be provided to a system to make damage most detectable?' Specifically, a method is presented for optimizing excitations that maximize the sensitivity of output measurements to perturbations in damage-related parameters estimated with an extended Kalman filter. This optimization is carried out in a computationally efficient manner using adjoint-based optimization and causes the innovations term in the extended Kalman filter to be larger in the presence of estimation errors, which leads to a better estimate of the damage-related parameters in question. The technique is demonstrated numerically on a nonlinear 2 DOF system, where a significant improvement in the damage-related parameter estimation is observed.

  16. Indirect excitation of ultrafast demagnetization.

    Science.gov (United States)

    Vodungbo, Boris; Tudu, Bharati; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H; Granitzka, Patrick W; Jaouen, Nicolas; Dakovski, Georgi L; Moeller, Stefan; Minitti, Michael P; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.

  17. Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation

    KAUST Repository

    Ji, Minbiao

    2009-03-11

    We have spectrally resolved the intraband transient absorption of photogenerated excitons to quantify the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited in a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally integrated. With spectral integration, we observe efficient multiple exciton generation In colloidal PbSe QDs. © 2009 American Chemical Society.

  18. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1993-01-01

    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...... is tested on the established sphere in a cylinder benchmark problem, and an extension of the problem to transient flow is proposed....

  19. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation...... in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed....

  20. MOLECULES IN {eta} CARINAE

    Energy Technology Data Exchange (ETDEWEB)

    Loinard, Laurent; Menten, Karl M.; Guesten, Rolf [Max-Planck Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Zapata, Luis A.; Rodriguez, Luis F. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 3-72, 58090 Morelia, Michoacan (Mexico)

    2012-04-10

    We report the detection toward {eta} Carinae of six new molecules, CO, CN, HCO{sup +}, HCN, HNC, and N{sub 2}H{sup +}, and of two of their less abundant isotopic counterparts, {sup 13}CO and H{sup 13}CN. The line profiles are moderately broad ({approx}100 km s{sup -1}), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO{sup +} do not appear to be underabundant in {eta} Carinae. On the other hand, molecules containing nitrogen or the {sup 13}C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of {eta} Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  1. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  2. Cortical computations via transient attractors.

    Directory of Open Access Journals (Sweden)

    Oliver L C Rourke

    Full Text Available The ability of sensory networks to transiently store information on the scale of seconds can confer many advantages in processing time-varying stimuli. How a network could store information on such intermediate time scales, between typical neurophysiological time scales and those of long-term memory, is typically attributed to persistent neural activity. An alternative mechanism which might allow for such information storage is through temporary modifications to the neural connectivity which decay on the same second-long time scale as the underlying memories. Earlier work that has explored this method has done so by emphasizing one attractor from a limited, pre-defined set. Here, we describe an alternative, a Transient Attractor network, which can learn any pattern presented to it, store several simultaneously, and robustly recall them on demand using targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such functionality could be usefully embedded within sensory cortex, and allow for a flexibly-gated short-term memory, as well as conferring the ability of the network to perform automatic de-noising, and separation of input signals into distinct perceptual objects. We demonstrate that the stored information can be refreshed to extend storage time, is not sensitive to noise in the system, and can be turned on or off by simple neuromodulation. The diverse capabilities of transient attractors, as well as their resemblance to many features observed in sensory cortex, suggest the possibility that their actions might underlie neural processing in many sensory areas.

  3. Igniter heater EMI transient test

    Science.gov (United States)

    Cook, M.

    1989-01-01

    Testing to evaluate Redesigned Solid Rocket Motor igniter heater electromagnetic interference (EMI) effects on the Safe and Arm (S and A) device was completed. It was suspected that EMI generated by the igniter heater and it's associated electromechanical relay could cause a premature firing of the NASA Standard Initiators (NSIs) inside the S and A. The maximum voltage induced into the NSI fire lines was 1/4 of the NASA specified no-fire limit of one volt (SKB 26100066). As a result, the igniter heaters are not expected to have any adverse EMI effects on the NSIs. The results did show, however, that power switching causes occasional high transients within the igniter heater power cable. These transients could affect the sensitive equipment inside the forward skirt. It is therefore recommended that the electromechanical igniter heater relays be replaced with zero crossing solid state relays. If the solid state relays are installed, it is also recommended that they be tested for EMI transient effects.

  4. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  5. CC2 oscillator strengths within the local framework for calculating excitation energies (LoFEx)

    Science.gov (United States)

    Baudin, Pablo; Kjærgaard, Thomas; Kristensen, Kasper

    2017-04-01

    In a recent work [P. Baudin and K. Kristensen, J. Chem. Phys. 144, 224106 (2016)], we introduced a local framework for calculating excitation energies (LoFEx), based on second-order approximated coupled cluster (CC2) linear-response theory. LoFEx is a black-box method in which a reduced excitation orbital space (XOS) is optimized to provide coupled cluster (CC) excitation energies at a reduced computational cost. In this article, we present an extension of the LoFEx algorithm to the calculation of CC2 oscillator strengths. Two different strategies are suggested, in which the size of the XOS is determined based on the excitation energy or the oscillator strength of the targeted transitions. The two strategies are applied to a set of medium-sized organic molecules in order to assess both the accuracy and the computational cost of the methods. The results show that CC2 excitation energies and oscillator strengths can be calculated at a reduced computational cost, provided that the targeted transitions are local compared to the size of the molecule. To illustrate the potential of LoFEx for large molecules, both strategies have been successfully applied to the lowest transition of the bivalirudin molecule (4255 basis functions) and compared with time-dependent density functional theory.

  6. Transient combustion in hybrid rockets

    Science.gov (United States)

    Karabeyoglu, Mustafa Arif

    1998-09-01

    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement

  7. Transient mid-IR study of electron dynamics in TiO2 conduction band.

    Science.gov (United States)

    Sá, Jacinto; Friedli, Peter; Geiger, Richard; Lerch, Philippe; Rittmann-Frank, Mercedes H; Milne, Christopher J; Szlachetko, Jakub; Santomauro, Fabio G; van Bokhoven, Jeroen A; Chergui, Majed; Rossi, Michel J; Sigg, Hans

    2013-04-07

    The dynamics of TiO2 conduction band electrons were followed with a novel broadband synchrotron-based transient mid-IR spectroscopy setup. The lifetime of conduction band electrons was found to be dependent on the injection method used. Direct band gap excitation results in a lifetime of 2.5 ns, whereas indirect excitation at 532 nm via Ru-N719 dye followed by injection from the dye into TiO2 results in a lifetime of 5.9 ns.

  8. Excited State Properties of 3'-Hydroxyechinenone in Solvents and in the Orange Carotenoid Protein from Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz M. [Washington Univ., St. Louis, MO (United States); Liu, Haijun [Washington Univ., St. Louis, MO (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States)

    2014-06-12

    The orange carotenoid protein (OCP) is a 35 kDa water-soluble protein involved in a photoprotective mechanism of the photosynthetic apparatus of cyanobacteria. The OCP contains a single molecule of the carotenoid 3'-hydroxyechinenone (3'-hECN). We have performed transient absorption studies at 77 K in the visible and near-infrared spectral ranges on 3'-hECN in solvent glass and in both inactive (orange) and active (red) forms of OCP. In the OCP the cryogenic temperature prohibited the protein from spontaneous conversion between activity stages and allowed us to study well-defined spectral forms of the protein. The studies show that each form of the OCP consists of two protein subpopulations having different photophysical properties of the bound 3'-hECN. At 77 K the inactive OCP reveals two lifetimes of the first excited state of 3'-hECN of 5.2 and 11 ps while in the active form of OCP these are 3.2 and 7.1 ps. We have also determined the energy of the first excited singlet state of 3'-hECN in long-lived subpopulations of both OCP forms at 77 K. This is 13,750 cm–1 in the inactive OCP and 12,300 cm-1 in the active OCP. Shortening of the lifetime and decrease of the energy of the first excited singlet state of 3'-hECN confirm the lengthening of the effective conjugation of the carotenoid upon the inactive-to-active conversion of OCP.

  9. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shelby, Megan L. [Chemical; Department; Lestrange, Patrick J. [Department; Jackson, Nicholas E. [Department; Haldrup, Kristoffer [Physics; Mara, Michael W. [Chemical; Department; Stickrath, Andrew B. [Chemical; Zhu, Diling [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Lemke, Henrik T. [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Chollet, Matthieu [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Hoffman, Brian M. [Department; Li, Xiaosong [Department; Chen, Lin X. [Chemical; Department

    2016-07-06

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  10. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  11. Our Galactic Neighbor Hosts Complex Organic Molecules

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    small amounts of methanol, the parentmolecule of the two newly-discovered compounds. By revealing the spectral signatures of dimethyl ether and methyl formate, Sewio and collaboratorsfurther prove thatorganic chemistry is hard at work in hot cores in the LMC.This discovery is momentous because dwarf galaxies like theLMC tend to have a lower abundance of the heavy elements that make up complex organic molecules most importantly, oxygen, carbon, and nitrogen. Beyond lacking the raw materials necessary to create complex molecules, the gas of low-metallicity galaxies does a poorer job preventing the penetration of high-energy photons. The impinging photons warm dust grains, resulting in a lower probability of forming and maintaining complex organic molecules. Despite this, organic molecules appear to beable todevelop and persist which has exciting implications for organic chemistry in low-metallicity environments.ALMA observation of emission by methyl formate in a hot core in the LMC.[Adapted from Sewio et al. 2018]A Lens into the PastIn the early universe, before the budding galaxies have had time to upcycle their abundant hydrogen into heavier elements, organic chemistry is thought to proceed slowly or not at all. The discovery of complex organic molecules in a nearby low-metallicity galaxy upends this theory and propels us toward a better understanding of the organic chemistry in the early universe.CitationMarta Sewio et al 2018ApJL853L19. doi:10.3847/2041-8213/aaa079

  12. Transient noise suppression algorithm in speech system

    Science.gov (United States)

    Cao, Keyu; Wang, Mingjiang

    2017-08-01

    In this paper, I mainly introduce the algorithm of transient noise suppression in speech system. Firstly, it divides into impulsive noise and other types of transient noise according to the characteristics of transient noise. In the impulse noise suppression algorithm, I mainly use the averaging energy threshold method to detect the impulse noise, and then I use the amplitude threshold method to reduce the impulse noise which was detected. In the other types of transient noise suppression algorithm, I mainly use the Optimally Modified-Log Spectral Amplitude estimation (OM-LSA) algorithm and the Minimum Control Recursive Average (MCRA) algorithm to suppress the transient noise.

  13. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Molecule of the Month Isomers of Benzene - Still Pursuing Dreams. J Chandrasekhar. Feature Article Volume 1 Issue 2 February 1996 pp 80-83. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Electrons in Molecules

    Indian Academy of Sciences (India)

    etc.) as well as explain the variations in bond lengths, bond angles, conformational angles, barriers to internal rotation! inversion, stretching!bending force constants, etc. However, when a molecule is quite large, with many occupied MOs, it is not advisable to bypass the actual computation of forces. As another application of ...

  15. Molecule-based magnets

    Indian Academy of Sciences (India)

    Keywords. Molecular lattices; spin–spin interaction; photo-induced magnetism; single molecule magnets. ... Since the first successful synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be categorized on the basis of the chemical nature of the magnetic units involved: organic-, ...

  16. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  17. Quantum Interference of Molecules

    Indian Academy of Sciences (India)

    IAS Admin

    GENERAL │ ARTICLE. Quantum Interference of Molecules. Probing the Wave Nature of Matter. Anu Venugopalan. Keywords. Matter waves, wave-particle du- ality, electron interference, decoherence. Anu Venugopalan is on the faculty of the School of. Basic and Applied. Sciences, GGS. Indraprastha University,. Delhi.

  18. On quark molecules

    CERN Document Server

    Dolgov, A D; Okun, Lev Borisovich

    1974-01-01

    A nonrelativistic quark model with three triplets and an octet of coloured gluons is considered. The interaction energy is calculated for some quark molecules. It is shown that states of the type qqqq and qqqqq are bounded more tightly than qq and qqq, respectively. This may indicate an existence of exotic particles in the nature or, perhaps, that the model is invalid. (11 refs).

  19. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  20. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule of the Month - Molecular-Chameleon: Solvatochromism at its Iridescent Best! Photon Rao. Volume 16 Issue 12 December 2011 pp 1303-1306. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Molecule of the Month

    Indian Academy of Sciences (India)

    attempting to adapt the success of organic chemistry in the study of organosilicon compounds. Nevertheless chemists persisted with a sense of doggedness to try and mimic organic molecules with non- carbon elements. The year 1981 marks a watershed in the efforts to prepare and stabilise multiply-bonded compounds of ...

  2. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    2015-11-10

    Nov 10, 2015 ... Module 3: Interaction of electromagnetic radiation with matter: Quantum theory of radiation, spontaneous, stimulated emission and absorption probabilities, electric dipole selection rules, Einstein A and B coefficients, Rabi coefficients, Thomson Scattering, Jaynes-Cummings Model. Module 4: Molecules ...

  3. Molecule of the Month

    Indian Academy of Sciences (India)

    ethanol, blue in isopropyl alcohol, green in acetone and greenish-yellow in anisole. The electronic absorption spectrum of a molecule often depends on the solvent used. The change in position (and, sometimes, intensity) of the UVNis band accompanying a change in the polarity of the medium is called solvatochromism.

  4. Excitons: Molecules in flatland

    Science.gov (United States)

    Yao, Wang

    2015-06-01

    Forming molecules from atoms is commonplace in dense atomic gases. But it now seems that some two-dimensional materials provide a suitable environment for creating complex molecular states from the hydrogen-like electron-hole pairs that form in semiconductors.

  5. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Molecule of the Month Adamantane - A Plastic Piece of Diamond. J Chandrasekhar. Feature Article Volume 1 Issue 9 September 1996 pp 66-71. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    a heterogeneous medium the local environment of each molecule may be different. This gives rise to large vari- ations of those properties which depend on the medium. (e.g., local polarity or viscosity). For instance, in a bio- logical cell the local environment at the membrane may be drastically different from that in the ...

  7. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule of the Month - Adamantane - A Plastic Piece of Diamond. J Chandrasekhar. Volume 16 Issue 12 December 2011 pp 1232-1237. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Single-Molecule Imaging of GPCR Interactions.

    Science.gov (United States)

    Calebiro, Davide; Sungkaworn, Titiwat

    2018-02-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of great interest as pharmacological targets. Although the occurrence of GPCR signaling nanodomains has long been hypothesized based on indirect evidence, this and other fundamental aspects of GPCR signaling have been difficult to prove. The advent of single-molecule microscopy methods, which allow direct visualization of individual membrane proteins with unprecedented spatiotemporal resolution, provides unique opportunities to address several of these open questions. Indeed, recent single-molecule studies have revealed that GPCRs and G proteins transiently interact with each other as well as with structural components of the plasma membrane, leading to the formation of dynamic complexes and 'hot spots' for GPCR signaling. Whereas we are only beginning to understand the implications of this unexpected level of complexity, single-molecule approaches are likely to play a crucial role to further dissect the protein-protein interactions that are at the heart of GPCR signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dependence of optoacoustic transients on exciting laser parameters for real-time monitoring of retinal photocoagulation

    Science.gov (United States)

    Langejürgen, J.; Schlott, K.; Bever, M.; Hausmann, K.; Koinzer, S.; Ptaszynski, L.; Roider, J.; Birngruber, R.; Brinkmann, R.

    2009-07-01

    The extent of retinal laser coagulations depends on the temperature increase at the fundus and the time of irradiation. Due to light scattering within the eye and variable fundus pigmentation the induced temperature increase and therefore the extent of the coagulations cannot be predicted solely from the laser parameters. We use optoacoustics to monitor the temperature rise in real-time in vivo (rabbit) and ex vivo (porcine eye) and to automatically control the coagulation strength. Continuous wave treatment laser radiation and pulsed probe laser light (1-1100 ns) are coupled into the same fibre and are imaged onto the retina by a laser slit lamp. The temperature dependent pressure waves are detected by an ultrasonic transducer embedded in a customary contact lens. Below the coagulation threshold the increase in acoustic amplitude due to thermal tissue expansion is up to 40 %. Best signal to noise ratios > 10 are achieved with probe pulse durations of 1 to 75 ns. Further a time critical algorithm is developed which automatically ceases laser treatment when a certain preset coagulation strength is achieved. Coagulations with similar extent are obtained with this method in vitro and in vivo even when varying the power of the treatment laser by 50 %. These preliminary results are very promising, thus this method might be suitable for an automatic feedback controlled photocoagulation with adjustable coagulation strength.

  10. Excitation of a biconical line

    Science.gov (United States)

    Goshin, G. G.

    1985-01-01

    The Kontorovich-Lebedev integral transformation is used to obtain in an analytic form a rigorous solution to the quasi-three-dimensional problem involving the excitation of a biconical surface with ideally conducting boundaries by slotted ring sources that are phased according to the traveling-wave law. The results can be used in the design of elliptical-polarization biconical antennas.

  11. Performance of thermally excited resonators

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van Ouwerkerk, R.H.; Bouwstra, S.; Bouwstra, S.; Fluitman, J.H.J.

    A study of electrothermal excitation of micro-machined silicon beams is reported. The temperature distribution is calculated as a function of the position of the transducer, resulting in stress in the structure which reduces the resonance frequency. Test samples are realized and measurements or

  12. Indirect excitation of ultrafast demagnetization

    NARCIS (Netherlands)

    Vodungbo, B.; Tudu, B.; Perron, J.; Delaunay, R.; Müller, L.; Berntsen, M.H.; Grübel, G.; Malinowski, G.; Weier, C.; Gautier, J.; Lambert, G.; Zeitoun, P.; Gutt, C.; Jal, E.; Reid, A.H.; Granitzka, P.W.; Jaouen, N,; Dakovski, G.L.; Moeller, S.; Minitti, M.P.; Mitra, A.; Carron, S.; Pfau, B.; von Korff Schmising, C.; Schneider, M.; Eisebitt, S.; Lüning, J.

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium

  13. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  14. Quantum Monte Carlo Calculations of Excitations in Hydrogenated Germanium Clusters

    Science.gov (United States)

    Vincent, Jordan; Kim, Jeongnim; Martin, Richard

    2006-03-01

    Quantum Monte Carlo (QMC) calculations are presented for energies of ground and excited states of Ge atom and hydrogen passivated closed-shell molecules and clusters: GeH4, Ge2H6, Ge5H12, Ge10H16 and Ge29H36. We compare the results for excitations with previous QMC and time-dependant Density Functional Theory (TD- DFT) done for the corresponding Silicon clusters [1,2]; in particular; we find that preliminary results for lowest excitation enregy of Ge29H36 5.08[29]eV is lower than the gap 5.4eV reported for Si[2]. Core-valence partitioning for Ge is implemented by replacing the core-states with a Hartree-Fock pseudopotential plus a Core Polarization Potential (CPP)[3]. Core-valence correlation treated by the CPP is shown to be essential for accurate atomic energies and significant for the molecules, but smaller in the clusters. [1] Porter et. al., PRB 64, 035320 (2001). [2] Williamson et. al., PRL 89, 196803 (2002). [3] Shirley and Martin, PRB 47, 15413 (1993)

  15. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    -dependent response to the IR fields is due to the anharmonicity of the potential. A subsequent ultraviolet laser pulse in resonance at the outer turning point of the vibrational motion can then dissociate the oscillating molecules, all with the same orientation, leading to spatial control of the photofragment......Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...

  16. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  17. Stimulated Raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation

    Science.gov (United States)

    Schippers, W.; Gershnabel, E.; Burgmeier, J.; Katz, O.; Willer, U.; Averbukh, I. S.; Silberberg, Y.; Schade, W.

    2011-11-01

    Molecular alignment of linear molecules (O2, N2, CO2 and CO) is measured photoacoustically in the gas phase. The rotational excitation is accomplished using a simple femtosecond stimulated Raman excitation scheme, employing two femtosecond pulses with variable delay between the pulses. Molecular alignment is determined directly by measuring the energy dumped into the gas by quartz-enhanced photoacoustic spectroscopy (QEPAS), utilizing a quartz tuning fork as a sensitive photoacoustic transducer. The experimental results demonstrate for the first time the use of a tuning fork for resonant photoacoustic detection of Raman spectra excited by femtosecond double pulses and match both simulation and literature values.

  18. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    Science.gov (United States)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  19. Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique.

    Science.gov (United States)

    Bindhu, C V; Harilal, S S

    2001-01-01

    A dual-beam transient thermal-lens technique was employed for the determination of absolute fluorescence quantum-yield measurements of Rhodamine B laser dye in different solvents. We investigated the effect of excitation on the absolute fluorescence quantum yield of Rhodamine B. 514 nm radiation from an argon ion laser was used as a cw excitation source and 532 nm pulses from a Q-switched Nd:YAG laser were used as a pulsed excitation source. The fluorescence quantum-yield values were found to be strongly influenced by environmental effects as well as the transient nature of the excitation beam. Our results also indicate that parameters, like the concentration of the dye solution, aggregate formation and excited state absorption, affect the absolute values of the fluorescence yield significantly.

  20. OMG: Open Molecule Generator

    Directory of Open Access Journals (Sweden)

    Peironcely Julio E

    2012-09-01

    Full Text Available Abstract Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG, which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.