Fusion-fission of superheavy nuclei at low excitation energies
International Nuclear Information System (INIS)
Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.
2000-01-01
The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied
Stability of superheavy nuclei
Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.
2018-03-01
The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.
Problem of ''deformed'' superheavy nuclei
International Nuclear Information System (INIS)
Sobiczewski, A.; Patyk, Z.; Muntian, I.
2000-08-01
Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)
Are there superheavy atomic nuclei
International Nuclear Information System (INIS)
Herrmann, G.
1982-04-01
The author presents a populary introduction to the formation of nuclei with special regards to superheavy nuclei. After a general description of the methods of physics the atomic hypothesis is considered. Thereafter the structure of the nucleus is discussed, and the different isotopes are considered. Then radioactivity is described as an element transmutation. Thereafter the thermonuclear reactions in the sun are considered. Then the synthesis of elements using heavy ion reactions is described. In this connection the transuranium elements and the superheavy elements are considered. (orig./HSI) [de
Perspectives of production of superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Adamian, G. G.; Antonenko, N. V., E-mail: antonenk@theor.jinr.ru; Bezbakh, A. N.; Sargsyan, V. V. [Joint Institute for Nuclear Research, RU–141980 Dubna (Russian Federation); Scheid, W. [Institut für Theoretische Physik der Justus-Liebig-Universität, D–35392 Giessen (Germany)
2016-07-07
Possible ways of production of superheavies are discussed. Impact of nuclear structure on the production of superheavy nuclei in complete fusion reactions is discussed. The proton shell closure at Z = 120 is discussed.
Energy Technology Data Exchange (ETDEWEB)
Heenen, P.H. [Universite Libre de Bruxelles, Service de Physique Nucleaire Theorique (Belgium); Nazarewicz, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics; Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej
2002-02-01
This article draws the long history of the discovery of new heavy nuclei since its beginning in 1940 when neptunium was found, and presents the current status of research in this field. The last 3 years have brought a number of experimental surprises which have truly rejuvenated the field. In January 1999, scientists from Dubna (Russia) reported the synthesis of 1 atom of element 114 ({sup 298}Uuq) in a hot fusion reaction between a {sup 48}Ca beam and a {sup 244}Pu target. This discovery was followed by 3 other reports from Dubna. First using the {sup 242}Pu({sup 48}Ca,3n) reaction, they produced {sup 287}Uuq. In 1999 the synthesis of another isotope of Z=114, the even-even {sup 288}Uuq was reported. The element Z=116 ({sup 292}Uuh) was discovered as a product of the {sup 248}Cm({sup 48}Ca,4n) reaction. The GSI (Germany) group found a new even isotope of the element 110: {sup 270}Uun and also {sup 272}Uuu (element 111) and {sup 277}Uub (element 112). 2 new isotopes of the element 107: {sup 266}Bh and {sup 267}Bh have been found at Berkeley (Usa). The synthesis of the new element Z=118 ({sup 293}Uuo) announced in 1999 by the Berkeley group was retracted 2 years later. The lifetimes reported for the elements {sup 284}Uub and {sup 280}Uun are by many orders of magnitude longer than those of the isotopes with Z{<=}112 previously discovered at GSI. (A.C.)
Nuclear treasure island [superheavy nuclei
CERN. Geneva
1999-01-01
Summary form only given. Soon after the experiments at Dubna, which synthesized element 114 and made the first footprints on the beach of the "island of nuclear stability", two new superheavy elements have been discovered at the Lawrence Berkeley National Laboratory. Element 118 and its immediate decay product, element 116, were manufactured at Berkeley's 88 inch cyclotron by fusing targets of lead-208 with an intense beam of 449 MeV krypton-86 ions. Although both new nuclei almost instantly decay into lighter ones, the decay sequence is consistent with theories that have long predicted the island of stability for nuclei with approximately 114 protons and 184 neutrons. Theorist Robert Smolanczuk, visiting from the Soltan Institute for Nuclear Studies in Poland, had calculated that this reaction should have particularly favourable production rates. Now that this route has been signposted, similar reactions could be possible: new elements and isotopes, tests of nuclear stability and mass models, and a new under...
Superheavy nuclei: a relativistic mean field outlook
International Nuclear Information System (INIS)
Afanasjev, A.V.
2006-01-01
The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP
Decay of heavy and superheavy nuclei
Indian Academy of Sciences (India)
April 2014 physics pp. 705–715. Decay of heavy and superheavy nuclei ... study on the feasibility of observing α decay chains from the isotopes of the ... studies on 284−286115 and 288−292117 will be a guide to future experiments. .... ratio of the α decay from the ground state of the parent nucleus to the level i of the.
Superheavy nuclei – cold synthesis and structure
Indian Academy of Sciences (India)
120 and Ж = 172 or 184, for superheavy nuclei. This result is discussed in ... 1980 [7] on the basis of the QMFT, once again prior to its observation in 1984. Thus, cold ... On the other hand, based on a rather complete deformed relativistic mean field (DRMF) calculation, using the NL1 parameter set, we [16] predicted. = 120.
Fission barriers of superheavy nuclei
International Nuclear Information System (INIS)
Burvenich, T.
2001-01-01
Full text: Self consistent microscopic mean-field models are powerful tools for the description of nuclear structure phenomena in the region of known elements, where they have reached a good quality. Especially the Skyrme-Hartree-Fock (SHF) method and the Relativistic Mean-Field (RMF) model will be considered in the discussion of the properties of these models. When it comes to extrapolation to the region of superheavy elements, though there is agreement concerning the global trends, these model exhibit significant differences in their predictions concerning fission barrier heights and structures. (Author)
From heavy nuclei to super-heavy nuclei
International Nuclear Information System (INIS)
Theisen, Ch.
2003-01-01
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)
Stability and production of superheavy nuclei
International Nuclear Information System (INIS)
Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.
1997-01-01
Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation
The Peculiarities of the Production and Decay of Superheavy Nuclei
International Nuclear Information System (INIS)
Itkis, M. G.; Bogachev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rusanov, A. Ya.; Sagaidak, R. N.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Behera, B. R.; Corradi, L.; Fioretto, E.
2006-01-01
The interest in the study of the fission process of superheavy nuclei mainly deals with the opportunity to obtain information about the cross-section of the compound nucleus (CN) formation at excitation energies E*≅15-30 MeV. It allows one to estimate the survival probability of the superheavy composite system after evaporation of 1-3 neutrons, i.e. in 'cold' or 'warm' fusion reactions. However, in order to solve this problem deeper understanding of the coalescence processes between colliding nuclei, the competition between fusion-fission and quasi-fission processes is needed. The characteristics of both processes, their manifestation in the experimental observables and the relative contribution to the capture cross-section in dependence on the excitation energies, reaction entrance channel etc were investigated for a wide range of target-projectile combinations. Results of the experiments devoted to the study of the fusion-fission and quasi-fission processes in the reactions of the formation of the superheavy nuclei with Z = 102-122 are presented. The heavy ions 26Mg, 48Ca, 50Ti, 58Fe and 64Ni were used as projectiles. The choice of the reactions with 48Ca and actinide-targets was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 in Dubna using the same reactions. The 50Ti, 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia) and the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) using the time-of-flight spectrometer of fission fragments CORSET. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed. The recent results on synthesis of
Theoretical description and predictions of the properties of superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Sobiczewski, A [Department of Theoretical Physics, Andrzej Soltan Institute for Nuclear Studies (Poland)
2009-12-31
Theoretical descriptions of superheavy atomic nuclei are shortly reviewed and illustrated by their results. Such properties of these nuclei as their shapes, masses, fission barriers, decay modes, decay energies, half-lives, are discussed. Special attention is given to the shell structure of the nuclei, due to which they exist. The role of the physical studies of the superheavy nuclei for the chemical research on the superheavy elements and, more generally, the relationship between these two kinds of investigation is underlined. This stresses the importance of close cooperation between physicists and chemists, experimentalists and theoreticians, in these studies.
On the thermalization achieved in the reactions involving superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Bansal, Rajni [Department of Physics, MCM DAV College for Women, Sector 36A, Chandigarh-160036, India rajnibansal.pu@gmail.com (India)
2016-05-06
In the present study, we aim to explore the role of Coulomb potential on the thermalization achieved in the reactions involving superheavy nuclei. Particularly, we shall study the degree of the equilibrium attained in a reaction by the 3D density plots, anisotropy ratio as well as by the rapidity distribution of the nucleons. Our study reveals that the degree of the equilibrium attained in the central reactions of the superheavy nuclei remains unaffected by the Coulomb potential.
Collisions of deformed nuclei and superheavy-element production
International Nuclear Information System (INIS)
Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa
1995-01-01
A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros
International Nuclear Information System (INIS)
Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.
2016-01-01
The synthesis of heavy and superheavy nuclei is generally carried out by using hot and cold fusion reaction mechanisms. It has been noticed that, the cold fusion reactions occur at relatively low excitation energies (E*_C_N ∼ 10-20 MeV) whereas, the hot fusion reactions occur at excitation energies of E*_C_N ∼ 30- 50 MeV. The fusion mechanism is quite different in both the processes. In the cold fusion process, the interaction of spherical targets (Pb and Bi) with deformed light mass projectiles occurs. On the other hand, the fusion of deformed actinide targets with spherical "4"8Ca projectile characterize the hot interaction processes. Hence the deformations and orientations of targets and projectiles play extremely important role in the superheavy fusion process. The present analysis is carried out to aggrandize the work of which illustrate the role of deformations and orientations on even superheavy nuclei. Here, we extend this analysis for odd superheavy nuclei. It is relevant to note that the temperature and angular momentum effects are not included in the present analysis
High-spin excitations of atomic nuclei
International Nuclear Information System (INIS)
Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing
2004-01-01
The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)
Collective motion in hot superheavy nuclei
Tveter, TS; Gaardhoje, JJ; Maj, A; Ramsoy, T; Atac, A; Bacelar, J; Bracco, A; Buda, A; Camera, F; Herskind, B; Korten, W; Krolas, W; Menthe, A; Million, B; Nifenecker, H; Pignanelli, M; Pinston, JA; vanderPloeg, H; Schussler, F; Sletten, G
1996-01-01
The superheavy nucleus (272)(108)Hs and its evaporation daughters have been produced using the reaction Th-232(Ar-40,gamma xn) with beam energies 10.5 and 15.0 MeV/A. The Giant Dipole Resonance gamma-radiation from the hot conglomerate system prior to fission has been isolated using a differential
French contribution to the super-heavy nuclei discovery
International Nuclear Information System (INIS)
Nifenecker, H.; Asghar, M.
1999-01-01
The research on super-heavy nuclei is a science in full operation for which the Berkeley physicist give proof of perseverance. The author wonders about the french absence in this domain. He recalls the strategical decisions concerning the research programs of the period and gives outline of the future with the interest of the ECR (Electronic Cyclotron Resonance) sources. (A.L.B.)
Fission dynamics of superheavy nuclei formed in uranium induced reactions
International Nuclear Information System (INIS)
Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.
2017-01-01
The compound nuclear system follows symmetric fission if the competing processes such as quasi-elastic, deep inelastic, quasi-fission etc are absent. The contribution of quasi fission events towards the fusion-fission mechanism depends on the entrance channel asymmetry of reaction partners, deformations and orientations of colliding nuclei beside the dependence on energy and angular momentum. Usually the 209 Bi and 208 Pb targets are opted for the production of superheavy nuclei with Z CN =104-113. The nuclei in same mass/charge range can also be synthesized using actinide targets + light projectiles (i.e. asymmetric reaction partners) via hot fusion interactions. These actinide targets are prolate deformed which prefer the compact configurations at above barrier energies, indicating the occurrence of symmetric fission events. Here an attempt is made to address the dynamics of light superheavy system (Z CN =104-106), formed via hot fusion interactions involving actinide targets
Superheavy Nuclei in the Quark-Meson-Coupling Model
Directory of Open Access Journals (Sweden)
Stone Jirina
2017-01-01
Full Text Available We present a selection of the first results obtained in a comprehensive calculation of ground state properties of even-even superheavy nuclei in the region of 96 < Z < 136 and 118 < N < 320 from the Quark-Meson-Coupling model (QMC. Ground state binding energies, the neutron and proton number dependence of quadrupole deformations and Qα values are reported for even-even nuclei with 100 < Z < 136 and compared with available experimental data and predictions of macro-microscopic models. Predictions of properties of nuclei, including Qα values, relevant for planning future experiments are presented.
Structural and decay properties of Z = 132, 138 superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Rather, Asloob A.; Ikram, M.; Usmani, A.A. [Aligarh Muslim University, Department of Physics, Aligarh (India); Kumar, Bharat; Patra, S.K. [Institute of Physics, Bhubaneswar (India); Homi Bhabha National Institute, Mumbai, Anushakti Nagar (India)
2016-12-15
In this paper, we analyze the structural properties of Z = 132 and Z = 138 superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL3* parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as α-decay, β-decay and spontaneous fission of the isotopic chain of superheavy nuclei with Z = 132 within the range 312 ≤ A ≤ 392 and 318 ≤ A ≤ 398 for Z = 138 is systematically analyzed within self-consistent relativistic mean-field model. From our analysis, we inferred that the α-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from β-decay as dominant mode of decay in {sup 318-322}138 isotopes. (orig.)
α decay chains in 271-294115 superheavy nuclei
International Nuclear Information System (INIS)
Santhosh, K. P.; Priyanka, B.; Joseph, Jayesh George; Sahadevan, Sabina
2011-01-01
α decay of 271-294 115 superheavy nuclei is studied using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The predicted α half-lives of 287 115 and 288 115 nuclei and their decay products are in good agreement with experimental values. Comparison of α and spontaneous fission half-lives predicts four-α chains and three-α chains, respectively, from 287 115 and 288 115 nuclei and are in agreement with experimental observation. Our study predicts two-α chains from 273,274,289 115, three-α chains from 275 115, and four-α chains consistently from 284,285,286 115 nuclei. These observations will be useful for further experimental investigation in this region.
Superheavy nuclei in the relativistic mean-field theory
International Nuclear Information System (INIS)
Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.
1996-01-01
We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)
From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds
Energy Technology Data Exchange (ETDEWEB)
Theisen, Ch
2003-01-01
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)
Fission properties of superheavy nuclei for r -process calculations
Giuliani, Samuel A.; Martínez-Pinedo, Gabriel; Robledo, Luis M.
2018-03-01
We computed a new set of static fission properties suited for r -process calculations. The potential energy surfaces and collective inertias of 3640 nuclei in the superheavy region are obtained from self-consistent mean-field calculations using the Barcelona-Catania-Paris-Madrid energy density functional. The fission path is computed as a function of the quadrupole moment by minimizing the potential energy and exploring octupole and hexadecapole deformations. The spontaneous fission lifetimes are evaluated employing different schemes for the collective inertias and vibrational energy corrections. This allows us to explore the sensitivity of the lifetimes to those quantities together with the collective ground-state energy along the superheavy landscape. We computed neutron-induced stellar reaction rates relevant for r -process nucleosynthesis using the Hauser-Feshbach statistical approach and study the impact of collective inertias. The competition between different reaction channels including neutron-induced rates, spontaneous fission, and α decay is discussed for typical r -process conditions.
Status and prospect of super-heavy nuclei research at IMP
International Nuclear Information System (INIS)
Xu Hushan; Sun Zhiyu; Zhan Wenlong; Zhou Xiaohong; Huang Wenxue; Zhang Hongbin; Gan Zaiguo; Li Junqing; Ma Xinwen; Qin Zhi; Xiao Guoqing; Guo Zhongyan; Li Zhihui; Zhang Yuhu; Jin Genming; Huang Tianheng; Hu Zhengguo; Zhang Xueheng; Zheng Chuan; Chinese Academy of Sciences, Beijing
2006-01-01
The history and the international status of the super-heavy nuclei synthesis are briefly described. The related research work carried out at the Institute of Modern Physics (IMP) has been reviewed. The prospect of the super-heavy nuclei research at IMP has been introduced. (authors)
Alpha Decay of Even-Even Superheavy Nuclei
International Nuclear Information System (INIS)
Oudih, M.R.; Hamza, Y.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.
2011-01-01
Alpha decay properties of even-even superheavy nuclei with 112.Z.120 have been investigated using the Hartree-Fock-Bogoliubov approach. The method is based on the SkP Skyrme interaction and the Lipkin-Nogami prescription for treating the pairing correlations. The alpha decay energies are extracted from the binding energies and then used for the calculation of the decay half-lives using a formula similar to that of Viola-Seaborg. The parameters of the formula were obtained through a least square fit to even-even heavy nuclei taken from the tables of Audi- Wapstra and some more recent references. The results are compared with other theoretical evaluations.
Alpha-decay chains of superheavy nuclei 292-296118
Singh, U. K.; Kumawat, M.; Saxena, G.; Kaushik, M.; Jain, S. K.
2018-05-01
We have employed relativistic mean-field plus BCS (RMF+BCS) approach for the study of even-even superheavy nuclei with Z = 118 which is the last and recent observed element in the periodic chart so far. Our study includes binding energies, Qα values, alpha-decay half-lives and spontaneous decay half-lives along with comparison of available experimental data and the results of FRDM calculations. We find an excellent match with the only known decay chain of 294118 for Z = 118 so far and predict decay chain of 292118 and 296118 in consistency with known experimental decay chains and FRDM results. These results may provide a very helpful insight to conduct experiments for realizing the presence of nuclei with Z = 118.
International Nuclear Information System (INIS)
Kalinkin, B.N.; Gareev, F.A.
1999-01-01
It is shown that it is just Dubna that possesses the priority both in the recent synthesis of a superheavy nucleus with charge Z=114 (Flerov Laboratory of Nuclear Reactions, JINR) and in its theoretical prediction (Bogolyubov Laboratory of Theoretical Physics, JINR) made 33 years ago. Possible sizes of the 'island of stability' of superheavy nuclei are discussed
Half-life predictions for decay modes of superheavy nuclei
International Nuclear Information System (INIS)
Duarte, S.B.; Tavares, O.A.P.; Goncalves, M.; Rodriguez, O.; Guzman, F.; Barbosa, T.N.; Garcia, F.; Dimarco, A.
2004-09-01
We applied the Effective Liquid Drop Model (ELDM) to predict the alpha-decay, cluster emission and cold fission half-life-values of nuclei in the region of Superheavy Elements (SHE). The present calculations have been made in the region of the ZN-plane defined by 155 <=N <=220 and 110<=Z<=135. Shell effects are included via the Q-value of the corresponding decay case. We report the results of a systematic calculation of the half-life for the three nuclear decay modes in a region of the ZN-plane where superheavy elements are expected to be found. Results have shown that, among the decay modes investigated here, the alpha decay is the dominant one. i.e, the decay mode of smallest half-lives. Half-life predictions for alpha decay, cluster emission and cold fission for the isotopic family of the most recent SHE detected of Z=115 and for the isotopic family of the already consolidated SHE of Z=111 are presented. (author)
Elementary excitations in nuclei
International Nuclear Information System (INIS)
Lemmer, R.H.
1987-01-01
The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited
Remarks on the fission barriers of super-heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)
2016-04-15
Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)
Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach
International Nuclear Information System (INIS)
Staszczak, A.; Wong, Cheuk-Yin
2009-01-01
Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum
Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei
Directory of Open Access Journals (Sweden)
Chowdhury P.
2016-01-01
nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154, we have populated high angular momentum states in a series of Pu (Z = 94, Cm (Z = 96 and Cf (Z = 98 nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.
Decay properties of {sup 256-339}Ds superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P.; Nithya, C. [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)
2017-09-15
The decay properties of 84 isotopes of darmstadtium superheavy nuclei (Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log{sub 10}T{sub 1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of {sup 256-339}Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future. (orig.)
How far are we on the way to the superheavy nuclei?
International Nuclear Information System (INIS)
Muenzenberg, G.
1989-10-01
The discovery of the elements 107, 108, and 109 in a region of dominating shell stabilization is the most important step on the way to the superheavy nuclei in recent years. These experiments leading to the presently upper end of the periodic table were possible with the velocity filter SHIP to separate the heavy nuclei produced in complete fusion reactions of heavy ions. The identification of the unknown nuclei was established by α-α mother-daughter correlation of the nuclei decaying after the implantation into position sensitive surface-barrier detectors. With this method it is possible to identify even single nuclei of unknown isotopes unambiguously. The limits of sensitivity are production cross-sections of a few picobarns and about 2 μs of nuclear lifetime. With this method the elements 107, 108, and 109 were observed for the first time by their α-decay and identified unambiguously. For element 107 the isotopes with masses 261 and 262, for the element 108 the isotopes with masses 264 and 265, and for element 109 the isotope with mass 266 were found. The halflives range from 0.1 ms to 0.1 s. The highly fissile transactinide nuclei were produced in cold fusion of heavy ions using 207,208 Pb and 209 Bi targets, respectively, and 50 Ti, 54 Cr, or 58 Fe beams. The evaluation of the excitation functions for the production of very heavy evaporation residues shows a strong decrease above 25 MeV excitation energy caused by a destruction of the groundstate shell effects at high excitation energies. The strong competition of barrier transmission and survival probability results in rather narrow excitation functions and small production cross sections. The maximum cross section is observed close to the Coulomb barrier and corresponding to projectile energies near 5 MeV/u. (orig.) [de
New semi-empirical formula for α-decay half-lives of the heavy and superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First Grade College, Department of Physics, Kolar, Karnataka (India)
2017-07-15
We have succesfully formulated the semi-empirical formula for α-decay half-lives of heavy and superheavy nuclei for different isotopes of the wide atomic-number range 94 < Z < 136. We have considered 2627 isotopes of heavy and superheavy nuclei for the fitting. The value produced by the present formula is compared with that of experiments and other eleven models, i.e. ImSahu, Sahu, Royer10, VS2, UNIV2, SemFIS2, WKB. Sahu16, Densov, VSS and Royer formula. This formula is exclusively for heavy and superheavy nuclei. α-decay is one of the dominant decay mode of superheavy nucleus. By identifying the α-decay mode superheavy nuclei can be detected. This formula helps in predicting the α-decay chains of superheavy nuclei. (orig.)
Critical angular momentum dependence of the fission barriers and the stability of superheavy nuclei
International Nuclear Information System (INIS)
Magda, M.T.; Sandulescu, A.
1978-10-01
Measured complete fusion and evaporation cross section data are used to determine the critical angular momenta for which the fission barriers are vanishing in the region of nuclei with Z = 102 - 116. It is shown that, in order to fit these data, larger values of the critical angular momenta are obtained for superheavy nuclei (Z = 110 - 112) than for heavy ones (Z = 102 - 107), which indicates a relatively higher stability against fission for superheavy nuclei, in agreement with the theoretically predicted island of stability. (author)
Structure of exotic nuclei and superheavy elements in meson field theory
International Nuclear Information System (INIS)
Linn, Khin Nyan
2008-07-01
In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)
Structure of exotic nuclei and superheavy elements in meson field theory
Energy Technology Data Exchange (ETDEWEB)
Linn, Khin Nyan
2008-07-15
In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)
Systematical calculations on the ground state properties of heavy and superheavy nuclei
International Nuclear Information System (INIS)
Ren, Z.Z.; Center of Theoretical Nuclear Physics, Lanzhou; Mao, Y.C.; Zhi, Q.J.; Xu, C.; Dong, T.K.
2007-01-01
The synthesis of superheavy elements is now a hot topic in nuclear physics. Alpha-decay and spontaneous fission are two main decay modes in heavy and superheavy regions. Theoretical studies on alpha radioactivity and spontaneous fission can provide useful information for experiments. We investigate the alpha-decay and spontaneous fission of heavy and superheavy nuclei with different models. This includes the alpha-decay energies, alpha decay half-lives, and half-lives of spontaneous fission. The theoretical alpha-decay half-lives are in good agreement with experimental ones. The calculated half-lives of spontaneous fission are in reasonable agreement with present data. The properties of unknown nuclei are predicted. (author)
The Transplutonium. The superheavy nuclei found in the micas of Madagascar and their interests
International Nuclear Information System (INIS)
Raoelina Andriambololona
1976-01-01
Since June 1976, evidence for the existence of superheavy elements is discussed about. After having recalled artificial elements with atomic numbers Z of wich go from Z=95 (Americium) to Z=107 (built in 1976), superheavy elements having Z greater than 110 are considered. They have been discovered by american searchers in giant halos seen in Madagascar micas. The samples have been recoked in the Fort-Dauphin region (Haut Mandrare). The corresponding numbers Z are 114, 115, 116, 124, 125, 125, 126, 127. It seems that the existence of Z=126 element should be accepted with a greater degree of confidence. But different experiences done by other groups seem to show the evidence of superheavy elements in micas looks weaker. Nevertheless, it is interesting to investigate the evidence or the non-evidence of those elements. We estimate the mass numbers A of those superheavy elements in the liquid drop model if we assume that they are stable versus β. The results thus obtained agree with the shell-model ones within 4 % approximation. We propose if the evidence of superheavies is confirmed to give the name of madagascarium to one of them (Z=126) by similitude with francium, lutetium, polonium, berkelium, americium, europium, ...Their evidence was first conjectured in Madagascar micas in 1976. Superheavy nuclei are to be distinguished from hypernuclei. [fr
Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions
International Nuclear Information System (INIS)
Zagrebaev, V.; Oganessian, Y.; Itkis, M.; Greiner, W.
2005-01-01
, may remain in contact rather long time. This time delay (up to 10 -19 s) could significantly increase the yield of the so-called spontaneous positron emission from super-strong electric field of quasi-atoms by a static QED process (transition from neutral to charged QED vacuum). This effect was searched sometime ago at GSI but no clear evidences of it have been found. New experiments may be performed now based on our new knowledge of collision dynamics of these nuclei. About twenty years ago damped collisions of very heavy nuclei have been used also for production of chemically separated long-lived actinides. The cross sections were found to be exponentially decreasing with increase of a charge number of heavier fragment, up to the level of 0.1 μb for production of Md isotopes in U + Cm collisions. A new effect, which we found here, is the 'inverse quasi-fission' process. In this process a superheavy nuclear system, say Th + Cf, travelling over the multidimensional potential energy surface, changes its mass asymmetry and may fall into the so-called lead valley. If Th comes to Pb, then Cf grows to the element 106. In spite of rather high excitation energy and low survival probability of residual fragments, this effect significantly increases the yield of nuclei complementary to lead and give us a new way for production of neutron rich (more close to the island of stability) superheavy elements in addition to the extensively used complete fusion reactions. These and some other prospects of subsequent theoretical and experimental studies along with possible collaborations in the field will be discussed in the talk
International Nuclear Information System (INIS)
Maslyuk, V.T.
2012-01-01
A new approach to the problem of nucleosynthesis based on assumption of a nuclear matter or superheavy nuclei series fragmentation up to atomic nuclei is proposed. It is shown that studies of the mass (charge) fragments yields (MCFY) after nuclear matter disintegration is possible within proposed statistical theory. The data of MCFY calculation for exotic superheavy nuclei multifragmentation with A=300, 900 and 1200 and arbitrary Z values are demonstrated
Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei
International Nuclear Information System (INIS)
Khalfallah, F.
2007-08-01
Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)
Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei
International Nuclear Information System (INIS)
Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz
2016-01-01
Fusion – fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.
Charge-exchange resonances and restoration of Wigner’s supersymmetry in heavy and superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Lutostansky, Yu. S., E-mail: lutostansky@yandex.ru; Tikhonov, V. N. [National Research Center Kurchatov Institute (Russian Federation)
2016-11-15
Various facets of the question of whether Wigner’s supersymmetry [SU(4) symmetry] may be restored in heavy and superheavy nuclei are analyzed on the basis of a comparison of the results of calculations with experimental data. The energy difference between the giant Gamow–Teller resonance and the analog resonance (the difference of E{sub G} and E{sub A}) according to calculations based on the theory of finite Fermi systems is presented for the case of 33 nuclei for which experimental data are available. The calculated difference ΔE{sub G–A} of E{sub G} and E{sub A} tends to zero in heavier nuclei, showing evidence of the restoration of Wigner’s SU(4) symmetry. Also, the isotopic dependence of the Coulomb energy difference between neighboring isobaric nuclei is analyzed within the SU(4) approach for more than 400 nuclei in the mass-number range of A = 5–244. The restoration of Wigner’s SU(4) symmetry in heavy nuclei is confirmed. It is shown that the restoration of SU(4) symmetry is compatible with the possible existence of the stability island in the region of superheavy nuclei.
In-beam separation and mass determination of superheavy nuclei
International Nuclear Information System (INIS)
Malyshev, O.N.; Eremin, A.V.; Popeko, A.G.
2003-01-01
Within the past fifteen years, the recoil separator VASSILISSA has been used for the investigations of evaporation residues produced in complete fusion reactions induced by heavy ions. The study of decay properties and formation cross sections of the isotopes of elements 110, 112 and 114 was performed using high intensity 48 Ca beams and 232 Th, 238 U, 242 Pu targets. For further experiments aimed at the synthesis of the superheavy element isotopes (Z≥110) with the use of intense 48 Ca extracted beams, improvements in the ion optical system of the separator and the focal plane detector system have been made. The results from the test reactions and new result for the isotope 283 112 are presented
Fission times of excited nuclei: An experimental overview
International Nuclear Information System (INIS)
Morjean, M.; Morjean, M.; Jacquet, D.
2009-01-01
An overview of selected recent experimental results on fission times is presented. Evidences for over-damped motion up to saddle point during the fission process of highly excited nuclei have been obtained independently through fission probability, pre-scission multiplicity and direct time measurements. In addition, strong clues have been found for a temperature dependency of friction. Experiments probing transient effects through fission probabilities are presented and the counterbalanced effects of friction and level density parameters are discussed. Promising perspectives for super-heavy stability studies, based on fission time measurements, are presented. (authors)
Collective excitations in nuclei
International Nuclear Information System (INIS)
Chomaz, Ph.
1998-01-01
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.
International Nuclear Information System (INIS)
Ngo, C.
1986-11-01
Experimental indications leading to the thought of a very excited nucleus fragmentation are resumed. Theoretical approaches are briefly described; they are used to explain the phenomenon in showing off they are based on a minimum information principle. This model is based on time dependent Thomas-Fermi calculation which allows the mean field effect description, and with a site-bound percolation model which allows the fluctuation description [fr
Transfer reaction studies in the region of heavy and superheavy nuclei at SHIP
Energy Technology Data Exchange (ETDEWEB)
Heinz, S; Comas, V; Hofmann, S; Ackermann, D; Heredia, J; Hessberger, F P; Khuyagbaatar, J; Kindler, B; Lommel, B; Mann, R, E-mail: s.heinz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)
2011-02-01
We studied multi-nucleon transfer reactions in the region of heavy and superheavy nuclei. The goal was to investigate these reactions as possibility to create new superheavy neutron-rich isotopes, which cannot be produced in fusion reactions. The experiments have been performed at the velocity filter SHIP at GSI. At SHIP we can detect and identify the heavy, target-like, transfer products. Due to the low background at the focal plane detector and the isotope identification via radioactive decays, the setup allows to reach an upper cross-section limit of 10 pb/sr within one day of beamtime. We investigated the systems {sup 58,64}Ni + {sup 207}Pb and {sup 48}Ca + {sup 248}Cm at beam energies below and up to 20% above the Coulomb barrier. At all energies we observed a massive transfer of protons and neutrons, where transfer products with up to eight neutrons more than the target nucleus could be identified.
α-decay chains and cluster-decays of superheavy 269-27110 nuclei
International Nuclear Information System (INIS)
Sushil Kumar; Rajesh Kumar; Balasubramaniam, M.; Gupta, Raj K.
2001-01-01
Due to the availability of radioactive nuclear beams (RNB) and the advancement in accelerator technology, it is now possible to synthesize very heavy elements (Z> 100), called superheavy elements. It is a well established fact that these superheavy elements, due to their shorter lifetime, decay via successive alpha emissions and at a later stage undergo spontaneous fission. Several such decay chains are now observed. An attempt is made to fit all such known decay chains and the results of the three observed α-decay chains of Z=110 ( 269-271 10) nuclei are presented. The model used is the preformed cluster model (PCM). Also, an attempt is made for the first time to find the possibility of any branching to heavy-cluster emissions in these chains
KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei
Lu , H.; Marchix , A.; Abe , Y.; Boilley , D.
2016-01-01
Submitted to Computer Physics Communications; International audience; KEWPIE — a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions — has been improved and rewritten in C++ programing language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission ...
Collective excitations in nuclei
International Nuclear Information System (INIS)
Chomaz, Ph.
1997-01-01
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph
1997-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.
International Nuclear Information System (INIS)
Patra, S.K.; Wu, Cheng-Li; Praharaj, C.R.; Gupta, Raj K.
1999-01-01
We have studied the structural properties of even-even, neutron deficient, Z=114-126, superheavy nuclei in the mass region A ∼ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z=80, 92, (114), 120 and 138, N=138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z=114 and N = 164 ∼ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z=120 and N=172 or N 184 double shell closure is also discussed
Exotic decay modes of odd-Z (105-119) superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Rajeswari, N.S. [Bharathiar University, Department of Physics, Coimbatore (India); Avinashilingam Institute for Home Science and Higher Education for Women - University, Department of Physics, Coimbatore (India); Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)
2014-06-15
Half-lives of proton emission for proton emitters with Z = 51 to 83 are calculated, in the frame-work of unified fission model with the penetrability calculated using the WKB approximation. For all the ground and isomeric state of the proton, the deformation degree of freedom is included. Calculated half-lives are in good agreement with the experimental ones. Experimentally for a few isotopes, proton and alpha branches are reported. Hence we have calculated the half-lives of alpha decay for these elements. For parent nuclei {sup 157}Ta, {sup 166}Ir, {sup 167}Ir, {sup 176}Tl and {sup 177}Tl, the alpha decay mode is preferred over the proton emission. Further, the calculations are extended to find half-lives of superheavy element with odd proton number in the range Z = 105 to 119, for both proton, alpha and for a few cluster decays. Calculations on superheavy elements reveal that cluster radioactivity has half-lives comparable with proton emissions. It is found that proton emission is the primary competing decay mode with respect to alpha decay for superheavy elements. Among considered clusters, {sup 12}C, {sup 20}Ne and {sup 24}Mg are found to have lowest half-lives among other N = Z clusters and for a few clusters the half-lives are found to be comparable with that of proton emission. (orig.)
Observation of superheavy primary cosmic ray nuclei with solid state track detectors and x-ray films
International Nuclear Information System (INIS)
Doke, Tadayoshi; Hayashi, Takayoshi; Ito, Kensai; Yanagimachi, Tomoki; Kobayashi, Shigeru.
1977-01-01
The measurements of energy spectra and the nuclear charge distribution of superheavy nuclei heavier than iron in primary cosmic ray can provide information on the origin, propagation and life time of the cosmic ray. Since incident particles are in the region of relativistic velocity (the low energy cosmic ray below the cutoff energy is forbidden from entering), the charges of cosmic ray nuclei can be determined without knowing the energy of particles. The balloon-borne solid state track detector and plastic and X-ray films were employed for the detection of superheavy cosmic ray, and the five events were detected with the cellulose nitrate film. The flux of superheavy nuclei is predicted from the present analysis. (Yoshimori, M.)
Approach synthesis of superheavy nuclei from some aspects of cross section calculations
International Nuclear Information System (INIS)
Liu Zuhua
2003-01-01
Several important aspects in the cross section calculations for the synthesis of superheavy nuclei have been inquired. They are the effects of the coupled-channels, the damping of shell correction energy, the collective enhancements in the level density and the spin distributions of evaporation residues. The channel coupling of relative motion with internal degrees of freedom will enhance significantly the capture cross section at sub-barrier energies. However, recent measurements of spin distributions for the survived compound nucleus show that only low partial waves contribute to the evaporation residues, which should at least partially cancel out the enhancement due to the effects of the channel coupling. The fission barriers are determined mainly by the shell correction energy in the case of superheavy nuclei. Therefore, it is especially important to determine as accurate as possible the damping parameter which describes the decrease of the shell effects influence. In addition, the collective enhancement factor in the level density also plays a very important role in the synthesis of heavy spherical nuclei
Contributions to the theory of alpha disintegration of heavy and superheavy nuclei
International Nuclear Information System (INIS)
Tarnoveanu, G.I.
1977-01-01
Alpha disintegration of heavy and super-heavy spherical nuclei is studied. When the new calculation technique for alpha intensities dependent on the shell-model has been applied, a technique which allows the use of a more complex structure of the alpha particle, the detailed calculation of the alpha half-times is performed for both radioactive alpha nuclei in the lead area and for the super-heavy nuclei, by using the R matrix theory of alpha disintegration independent of the channel radius. The relative values of overlap integrals calculated by means of the intrinsic function for the Gauss and Moshinsky type alpha particle are presented, as well as a comparison between them and the experiment values for 8.6, 9.00 and 9.6 fm channel radii in the case of Po, Ra, Rn and Th isotopes. Original contributions to the alpha disintegration theory are represented by the generalization of the Taylor series method expressing the transformations to the centre of mass, and the relative distance from two particles to four particles in the same harmonic oscillator potential, and by the development of the R matrix theory for alpha disintegration independent of the channel radius in the case of complex structured alpha particles. (author)
Neutron and Proton Diffusion in Fusion Reactions for the Synthesis of Superheavy Nuclei
International Nuclear Information System (INIS)
Ming-Hui, Huang; Zai-Guo, Gan; Zhao-Qing, Feng; Xiao-Hong, Zhou; Jun-Qing, Li
2008-01-01
The restriction of the one dimensional (1D) master equation (ME) with the mass number of the projectile-like fragment as a variable is studied, and a two-dimensional (2D) master equation with the neutron and proton numbers as independent variables is set up, and solved numerically. Our study showed that the 2D ME can describe the fusion process well in all projectile-target combinations. Therefore the possible channels to synthesize super-heavy nuclei can be studied correctly in wider possibilities. The available condition for employing 1D ME is pointed out
Effects of high-order deformation on high-K isomers in superheavy nuclei
International Nuclear Information System (INIS)
Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.
2011-01-01
Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β 6 deformation, we find remarkable effects of the high-order deformation on the high-K isomers in 254 No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of β 6 deformation significantly improves the description of the very heavy high-K isomers.
Systematic study of α half-lives of superheavy nuclei
Budaca, A. I.; Silisteanu, I.
2014-03-01
Two different descriptions of the α-decay process, namely, the shell model rate theory and phenomenological description are emphasized to investigate the α-decay properties of SHN. These descriptions are shortly presented and illustrated by their results. Special attention is given to the shell structure and resonance scattering effects due to which they exist and decay. A first systematics of α-decay properties of SHN was performed by studying the half-life vs. energy correlations in terms of atomic number and mass number. Such a systematics shows that the transitions between even-even nuclei are favored, while all other transitions with odd nucleons are prohibited. The accuracy of experimental and calculated α-half-lives is illustrated by the systematics of these results.
α -decay chains of superheavy nuclei with Z =125
Santhosh, K. P.; Nithya, C.
2018-04-01
The decay properties of the isotopes of Z =125 within the range 303 ≤ A ≤ 339 are investigated. The calculation of proton separation energies reveals that isotopes 125-309303 may decay through proton emission. Four different mass tables are used to show the sensitivity of the mass models used to calculate the Q values as well as the α-decay half-lives. α -decay chains are predicted by comparing the α half-lives calculated within the Coulomb and proximity potential model for deformed nuclei (CPPMDN) [Nucl. Phys. A 850, 34 (2011), 10.1016/j.nuclphysa.2010.12.002] with the spontaneous fission half-lives using the shell-effect-dependent formula [Phys. Rev. C 94, 054621 (2016), 10.1103/PhysRevC.94.054621]. It is seen that isotopes 125,311310 show 6α chains. 5α chains can be seen from isotopes 125-318312. Isotopes 125,320319 exhibit 2α chains and 323125 exhibits 1α chain. All the other isotopes, that is, 125 321 ,322 ,324 -339 may decay through spontaneous fission. The α half-lives using CPPMDN are compared with five other theoretical formalisms and are seen to be matching with each other. We hope that our studies will be helpful in designing future experiments to explore the island of stability.
Thermodynamical description of excited nuclei
International Nuclear Information System (INIS)
Bonche, P.
1989-01-01
In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core
Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions
Energy Technology Data Exchange (ETDEWEB)
Ghahramany, N.; Ansari, A. [Shiraz University, Department of Physics and Biruni Observatory, College of Science, Shiraz (Iran, Islamic Republic of)
2016-09-15
In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as {sup 48}Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature. (orig.)
Review of even element super-heavy nuclei and search for element 120
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Barth, W.; Burkhard, H.G.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Schoett, H.J.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Muenzenberg, G. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Antalic, S.; Saro, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbuilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)
2016-06-15
The reaction {sup 54}Cr + {sup 248}Cm was investigated at the velocity filter SHIP at GSI, Darmstadt, with the intention to study production and decay properties of isotopes of element 120. Three correlated signals were measured, which occurred within a period of 279ms. The heights of the signals correspond with the expectations for a decay sequence starting with an isotope of element 120. However, a complete decay chain cannot be established, since a signal from the implantation of the evaporation residue cannot be identified unambiguously. Measured properties of the event chain are discussed in detail. The result is compared with theoretical predictions. Previously measured decay properties of even element super-heavy nuclei were compiled in order to find arguments for an assignment from the systematics of experimental data. In the course of this review, a few tentatively assigned data could be corrected. New interpretations are given for results which could not be assigned definitely in previous studies. The discussion revealed that the cross-section for production of element 120 could be high enough so that a successful experiment seems possible with presently available techniques. However, a continuation of the experiment at SHIP for a necessary confirmation of the results obtained in a relatively short irradiation of five weeks is not possible at GSI presently. Therefore, we decided to publish the results of the measurement and of the review as they exist now. In the summary and outlook section we also present concepts for the continuation of research in the field of super-heavy nuclei. (orig.)
Non-equilibrium entropy in excited nuclei
International Nuclear Information System (INIS)
Betak, E.
1991-06-01
The time-dependent behaviour of entropy in excited nuclei is investigated. In distinction to recent claims, it is shown that no self-organization is involved in pre-equilibrium nuclear reactions. (author). 9 refs.; 4 figs
The synthesis of superheavy nuclei in the 48Ca + 244Pu reaction
International Nuclear Information System (INIS)
Oganesyan, Yu.Ts.; Utenkov, V.K.; Lobanov, Yu.V.
1999-01-01
In the bombardment of a 244 Pu target with 48 Ca ions, we observed a decay sequence consisting of an implanted heavy atom, three subsequent α-decays, and a spontaneous fission, all correlated in time and position. The measured α-energies and corresponding time intervals were: E α = 9.71 MeV (Δt = 30.4 s), 8.67 MeV (Δt = 15.4 min) and 8.83 MeV (Δt = 1.6 min); for the spontaneous fission (Δt = 16.5 min) the total deposited energy was approximately 190 MeV. The large alpha-particle energies together with the long decay times and spontaneous fission terminating the chain offer evidence of the decay of nuclei with high atomic numbers. This decay chain is a good candidate for originating from the α-decay of the parent nucleus 289 114, produced in the 3n-evaporation channel with a cross section of about 1 pb. The significant increase in the lifetimes of the new Z = 112 and 110 daughters of the Z = 114 nuclide (by a factor of ∼ 10 6 ) with respect to the known heaviest isotopes of elements 112 and 110 can be considered as a direct proof of the existence of the 'island of stability' of superheavy elements
Towards the island of superheavy stability - Prompt spectroscopy of 246Fm and 256Rf nuclei
International Nuclear Information System (INIS)
Piot, J.
2010-10-01
The region of trans-fermium nuclei (Z = 100 to 104) is the last region of the nuclides chart to be accessible to spectroscopic measurements. It therefore provides the ultimate anchor points for nuclear models. This region also lies on the path of the alpha-decay chains of the super-heavy elements. This region represents the limit of today's spectroscopic capabilities. It therefore requires technological developments in order to overcome these limits. My thesis focuses on various aspects of the spectroscopy of trans-fermium nuclei. I took part in the development of the TNT2D digital acquisition cards for germanium detectors. I validated their use on the gamma-ray spectrometer JUROGAM during an in-beam experiment and demonstrated the gain compared to an analogue acquisition system. These tests were part of the developments needed to secure a study of the prompt spectroscopy of 256 Rf. The preparation of this experiment also lead me to work on the development of a 50 Ti beam. For that purpose, I studied and tested the use of titanium organo-metallic compounds compatible with the MIVOC technique. In parallel, I studied the use of metallic and oxide titanium pellets with an inductive oven newly developed at the University of Jyvaeskylae. In addition to these developments, I had the opportunity to study the in-beam prompt spectroscopy of 246 Fm at the University of Jyvaeskylae. The measurements yielded a rotational band built on the ground state of 246 Fm. This band has been observed up to the level 16 + and shows a behaviour quite similar to the neighbouring even-even isotopes, except for the top of the band for which a wider statistics is necessary in order to conclude. (author)
Zhao, T. L.; Bao, X. J.; Guo, S. Q.
2018-02-01
Systematic calculations on the α decay half-lives are performed by using three analytical formulas and two semiclassical approaches. For the three analytical formulas, the experimental α decay half-lives and {Q}α values of the 66 reference nuclei have been used to obtain the coefficients. We get only four adjustable parameters to describe α decay half-lives for even-even, odd-A, and odd-odd nuclei. By comparison between the calculated values from ten analytical formulas and experimental data, it is shown that the new universal decay law (NUDL) foumula is the most accurate one to reproduce the experimental α decay half-lives of the superheavy nuclei (SHN). Meanwhile it is found that the experimental α decay half-lives of SHN are well reproduced by the Royer formula although many parameters are contained. The results show that the NUDL formula and the generalized liquid drop model (GLDM2) with consideration of the preformation factor can give fairly equivalent results for the superheavy nuclei.
Orientation of nuclei excited by polarized neutrons
International Nuclear Information System (INIS)
Lifshits, E.P.
1986-01-01
Polarization and radiation angular distribution of oriented nuclei in inelastic scattering of polarized neutrons were investigated. Nucleus orientation in the final state was described by polarization density matrix (PDM). If PDM is known, angular distributions, linear and circular polarization of γ-quanta emitted by a nucleus can be determined. Analytical expression for PDM, conditions of its diagonalization in the case of direct nucleus excitation and excitation by the stage of compound nucleus were obtained. Orientation of 12 C nuclei in the excited state 4.439 MeV, 2 + at energy of incident neutrons in the laboratory system from 4.8 MeV (excitation threshold) upt to 9 MeV was calculated as an example. Neutrons in initial state are completely polarized along Z axis. Calculations showed that excitation proceeds mainly by the stage of compound nucleus formation and 12 C nucleus is highly polarized in excited state
Hot nuclei, limiting temperatures and excitation energies
International Nuclear Information System (INIS)
Peter, J.
1986-09-01
Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei
Production and de excitation of hot nuclei
International Nuclear Information System (INIS)
Auger, F.; Faure, B.; Wirleczki, J.P.; Cunsolo, A.; Foti, A.; Plagnol, E.
1988-01-01
We studied Kr induced reactions on C, Al and Ti at 26.4, 34.4 and 45.4 MeV/nucleon. The aims of these experiments were to learn about the influence of the incident energy and asymmetry of the system on the incomplete fusion mechanism, that is on the characteristics (E,l) of the nuclei formed in the reactions and on the competition between massive transfer and preequilibrium emission. We also wanted to study the influence of excitation energy and angular momentum of the nuclei on their deexcitation modes, specially on the competition between light particles (n, p, α) and complex fragments (M>4). Considering the available energies (2.8 < ε < 10.5 MeV/nucleon), the grazing and the total masses (96 ≤ M ≤ 132), nuclei with masses around 100 are likely to be formed with very different excitation energies and angular momenta
Collective Quadrupole Excitations of Transactinide Nuclei
Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J
2003-01-01
The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.
Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.
2018-02-01
Experimental and theoretical results of the PCN fusion probability of reactants in the entrance channel and the Wsur survival probability against fission at deexcitation of the compound nucleus formed in heavy-ion collisions are discussed. The theoretical results for a set of nuclear reactions leading to formation of compound nuclei (CNs) with the charge number Z = 102- 122 reveal a strong sensitivity of PCN to the characteristics of colliding nuclei in the entrance channel, dynamics of the reaction mechanism, and excitation energy of the system. We discuss the validity of assumptions and procedures for analysis of experimental data, and also the limits of validity of theoretical results obtained by the use of phenomenological models. The comparison of results obtained in many investigated reactions reveals serious limits of validity of the data analysis and calculation procedures.
Multipole giant resonances in highly excited nuclei
International Nuclear Information System (INIS)
Xia Keding; Cai Yanhuang
1989-01-01
The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed
Isovector excitations of N ≠ Z nuclei
International Nuclear Information System (INIS)
Passos, E.J.V. de; Menezes, D.P.; Galeao, A.P.N.R.
1987-09-01
We show that the method based on the tensor coupling of an appropriate family of isovector excitation operators to the parent isospin multiplet can be used, to advantage, for the correct treatment of the isospin degree of freedom in non isoscalar nuclei. This method is applicable to any isovector excitation operator and for parent states which need not to be of the closed subshells type. As an illustration we apply it to the study of the Gamow-Teller transition strength in 90 Zr. (author) [pt
Fusion excitation functions involving transitional nuclei
Energy Technology Data Exchange (ETDEWEB)
Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others
1995-08-01
Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.
KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei
Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David
2016-03-01
KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.
Traces of heavy and superheavy cosmic nuclei in olivins of extraterrestial origin
International Nuclear Information System (INIS)
Ignatova, R.; Taneva, T.
1982-01-01
The paths of traces of WH nuclei from cosmic rays have been measured in olivines from the meteorites Maryalakhti, Eagle Stein, Liposki khutor with radiation ages 175, 45 and 220 million years respectively. 3 cm 3 olivines of these meteorites have been examined and more than 500 traces of nuclei with Z(>=)90 have been found measured including 3 traces 1.5-1.8 times longer than the traces created by the uranium and thorium nuclei. These traces may be left by nuclei with Z(>=)110. The crystals were chosen from localizations situated at 2-7 cm, 8-9 cm and 10-12 cm from the outside atmospheric surface of the meteorite. The abundancy of the Z(>=)50 nuclei in gigantic cosmic rays, averaged for a period of ( =)110 in galactic cosmic rays. It is 1.4 x 10 -9 from that of the iron group nuclei. (authors)
2013-01-01
Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy). New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are d...
New isotopes of elements 104, 106 and 108 - highly stable superheavy nuclei
International Nuclear Information System (INIS)
Oganessian, Yuri
1994-01-01
In April 1993, as part of a joint Dubna-Livermore experiment at the Flerov Laboratory of Nuclear Reactions, new heavy isotopes of elements 104 and 106 were synthesized - 262 104, 265 106 and 266 106. Compared with the known even-even isotopes of elements 104 and 106, the new nuclei are characterized by their extraordinary high resistance to spontaneous fission. This is a direct proof of the macro-microscopic theory predictions in its version calculated by A.Sobiczewski et al. regarding a substantial increase in the half-lives of heavy nuclei near deformed shells with atomic number (Z) 108 and neutron number (N) 162.
Cold transfer between deformed, Coulomb excited nuclei
International Nuclear Information System (INIS)
Bauer, H.
1998-01-01
The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)
Perspectives for nuclear structure research at GSI: from halo nuclei to superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Muenzenberg, G.
1997-11-01
After a brief overview on recent advances in the investigation of nuclei at the driplines and the upper end of the nuclear table key issues of nuclear structure research as adressed by new theoretical developments will be discussed in context with new developments in heavy-ion accelerators and experimental techniques. (orig.)
Perspectives for nuclear structure research at GSI--from halo nuclei to superheavy elements
International Nuclear Information System (INIS)
Munzenberg, G.
1997-01-01
After a brief overview on recent advances in the investigation of nuclei at the drip lines and the upper end of the nuclear table key issues of nuclear structure research as addressed by new theoretical developments will be discussed in context with new developments in heavy-ion accelerators and experimental techniques
Process to produce excited states of atomic nuclei
International Nuclear Information System (INIS)
Morita, M.; Morita, R.
The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment
Contributions to the study of heavy and superheavy nuclei stability in alpha-decay
International Nuclear Information System (INIS)
Silisteanu, I.
1978-01-01
Alpha-decay is treated in this work on the complete analogy of transfer reactions by means of nuclear shell models with continuous spectrum nucleons. Certain phenomenologically obtained or microscope evaluated data on low energy interactions between alpha-particles and nuclei, when related to nuclear structure data within the unified theory of nuclear reactions, allow of an improved accuracy in determining the alpha-particle wave function as well as of an estimation of alpha-probabilities in good keeping with experimental ones. The problem of alpha lifetimes thus narrows to the resolution of some homogeneous and inhomogeneous differential equations systems including the optic potential and the alpha formfactors. (author)
Strong electric and magnetic dipole excitations in deformed nuclei
International Nuclear Information System (INIS)
Kneissl, U.
1993-01-01
Systematic nuclear resonance fluorescence (NRF) experiments have been performed at the bremsstrahlung facility of the Stutgart dynamitron to investigate the distribution of magnetic and electric dipole excitations in deformed nuclei
Electron scattering and collective excitations in nuclei
International Nuclear Information System (INIS)
Goutte, D.
1989-01-01
Nuclear collective degrees of freedom are investigated through the study of the radial dependance of their wave function. Inelastic electron scattering is shown to be the appropriate tool to extract such a detailed information. Some recent results on spherical as well as deformed nuclei are discussed and the most recent extensions to the mean field approach are compared to these data in order to clarify the present status of our understanding of the dynamical properties of complex nuclei
International Nuclear Information System (INIS)
Marchix, A.
2007-11-01
The aim of this work is to study the influence of shell correction energy on the deexcitation of superheavy nuclei. For that purpose, a new statistical code, called Kewpie2, which is based on an original algorithm allowing to have access to very weak probabilities, was developed. The results obtained with Kewpie2 have been compared to the experimental data on residue cross sections obtained by cold fusion (Z=108 to Z=113) and by hot fusion (Z=112, Z=114 and Z=116), as well as data on fission times (Z=114, Z=120 and Z=126). Constraints on the microscopic structure of the studied nuclei have been obtained by means of the shell correction energy. By adjusting the intrinsic parameters of the models of fusion in order to reproduce the data on the fusion cross sections, this study shows the necessity of decreasing very strongly the shell correction energy predicted by the calculations of Moller and Nix, during the study of the residues cross sections as well for the nuclei produced by cold fusion as by hot fusion. On the other hand, during the confrontation of the results of Kewpie2 to the data on mean fission times, it is rather advisable to increase it. A shift of the proton shell closure predicted for Z=114 by the calculations of Moller and Nix towards larger Z would allow to explain these opposite conclusions. In this thesis, we also have shown the significant influence of the inclusion of isomeric states on fission times for the superheavy nuclei. (author)
New properties of giant resonances in highly excited nuclei
International Nuclear Information System (INIS)
Morsch, H.P.
1991-01-01
Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs
Hofmann, S
1999-01-01
The outstanding aim of experimental investigations of heavy nuclei is the exploration of spherical 'SuperHeavy Elements' (SHEs). On the basis of the nuclear shell model, the next double magic shell-closure beyond sup 2 sup 0 sup 8 Pb is predicted at proton numbers between Z=114 and 126 and at neutron number N=184. All experimental efforts aiming at identifying SHEs (Z>=114) were negative so far. A highly sensitive search experiment was performed in November-December 1995 at SHIP. The isotope sup 2 sup 9 sup 0 116 produced by 'radiative capture' was searched for in the course of a 33 days irradiation of a sup 2 sup 0 sup 8 Pb target with sup 8 sup 2 Se projectiles, however, only cross-section limits were measured. Positive results were obtained in experiments searching for elements from 110 to 112 using cold fusion and the 1n evaporation channel. The produced isotopes were unambiguously identified by means of alpha-alpha correlations. Not fission, but alpha emission is the dominant decay mode. The measurement ...
New excitation modes in halo nuclei
International Nuclear Information System (INIS)
Sagawa, H.
1992-01-01
Multipole resonances in exotic neutron-rich nuclei are addressed on the basis of microscopic calculations, i.e., in the framework of the self-consistent H-F + RPA theory. A bunch of resonances with multipoles J π = 0 + , 1 - and 2 + is found near the particle threshold E x ∼ 1 MeV in 10 He having significant portions of the sum rule values and narrow widths. The long tail of the loosely-bound neutrons is the cause of the threshold anomaly of these resonances
Collective excitation spectra of transitional even nuclei
International Nuclear Information System (INIS)
Quentin, P.; Paris-11 Univ., 91 - Orsay; Deloncle, I.; Libert, J.; Sauvage, J.
1990-01-01
This talk is dealing with the nuclear low energy collective motion as described in the context of microscopic versions of the Bohr Hamiltonian. Two different ways of building microscopically Bohr collective Hamiltonians will be sketched; one within the framework of the Generator Coordinate Method, the other using the Adiabatic Time-Dependent Hartree-Fock-Boholyubov approximation. A sample of recent results will be presented which pertains to the description of transitional even nuclei and to the newly revisited phenomenon of superdeformation at low spin
The quest for novel modes of excitation in exotic nuclei
Paar, N.
2010-06-01
This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.
Collective 0+, 1+ and 2+ excitations in rotating nuclei
International Nuclear Information System (INIS)
Balbutsev, E.B.; Piperova, J.
1988-01-01
The energies and B(Eγ) factors of the isoscalar and isovector 0 + and 2 + resonances are calculated with Skyrme interaction. A satisfactory agreement with experimental data is obtained. It is shown that in rotating nuclei the 2 + excitations split into five branches and also 5 low-lying excitations appear. Two of these low-lying modes are angular resonances and the theory reproduces their energies and B(M1) factors. The experimentally observed splitting of giant monopole resonance in deformed nuclei is confirmed. 34 refs.; 10 figs.; 1 tab
Fission-evaporation competition in excited uranium and fermium nuclei
International Nuclear Information System (INIS)
Sagajdak, R.N.; Chepigin, V.I.; Kabachenko, A.P.
1997-01-01
The production cross sections and excitation functions for the 223-226 U neutron deficient isotopes have been measured in the 20 Ne+ 208 Pb and 22 Ne+ 208 Pb reactions for (4,5)n and (4-7)n evaporation channels of the de-excitation of the compound nuclei 228 U* and 230 U*, respectively. The present study considers in addition the de-excitation via the (5,6)n evaporation channels of the 224 U* compound nucleus formed in the 27 Al+ 197 Au reaction. The production cross sections of 247g,246 Fm formed after evaporation of (5,6)n and (7,8)n from the 252 Fm* and 254 Fm* compound nuclei produced in the 20 Ne+ 232 Th and 22 Ne+ 232 Th reactions were also measured respectively. The evaporation residues emerging from the target were separated in-flight from the projectiles and background reaction products by the electrostatic recoil separator VASSILISSA [1]. The investigation regards the U and Fm compound nuclei in the 40-80 MeV excitation energy range. For the analysis of the (Hl, xn) evaporation cross sections the advanced statistical model [2] calculations were used. The angular momentum dependence of the shell correction to the fission barrier, and the effects of the nuclear viscosity and dynamical deformation for these fissile excited nuclei are considered. The n /Γ t > values at the initial steps of the de-excitation cascade for the U and Fm compound nuclei were derived from the measured excitation functions and discussed from the point of view of the consequences for the fission process dynamics
Method of producing excited states of atomic nuclei
International Nuclear Information System (INIS)
Morita, M.; Morita, R.
1976-01-01
A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation
Study of the properties of the superheavy nuclei Z=117 produced in the 249Bk + 48Ca reaction
International Nuclear Information System (INIS)
Oganessian, Y.T.; Abdullin, F.S.; Dmitriev, S.N.; Itkis, M.G.; Polyakov, A.N.; Sagaidak, R.N.; Shirokovsky, I.V.; Shumeiko, M.V.; Subbotin, V.G.; Sukhov, A.M.; Tsyganov, Y.S.; Utyonkov, V.K.; Voinov, A.A.; Vostokin, G.K.; Alexander, C.; Binder, J.; Boll, R.A.; Ezold, J.; Felker, K.; Miernik, K.; Roberto, J.B.; Rykaczewski, K.P.; Gostic, J.M.; Henderson, R.A.; Moody, K.J.; Shaughnessy, D.H.; Stoyer, M.A.; Stoyer, N.J.; Grzywacz, R.K.; Miller, D.; Hamilton, J.H.; Ramayya, A.V.; Ryabinin, M.A.
2014-01-01
The reaction of 249 Bk with 48 Ca have been reinvestigated to provide new evidence for the discovery of element 117 on a larger number of events. The experiments were performed at five projectile energies and with a total beam dose of 48 Ca of about 4.6*10 19 . Two isotopes 293,294 117 were synthesized in the 249 Bk+ 48 Ca reaction, providing excitation functions and α-decay spectra of the produced isotopes that establishes these nuclei to be the products of the 4n- and 3n-evaporation channels, respectively. Decay properties of 293,294 117 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time in 2010. The new 289 115 events, populated by a decay of 293 117, demonstrate the same decay properties as those observed for 289 115 produced in the 243 Am( 48 Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294 118 was observed from the reaction with 249 Cf - a result of the in-growth of 249 Cf in the 249 Bk target. (authors)
Aspects of data on the breakup of highly excited nuclei
International Nuclear Information System (INIS)
Warwick, A.I.; Wieman, H.H.; Gutbrod, H.H.; Ritter, H.G.; Stelzer, H.; Weik, F.; Kaufman, S.B.; Steinberg, E.P.; Wilkins, B.D.
1983-05-01
There is an awakening of theoretical interest in the mechanisms by which nuclear fragments (4 less than or equal to A less than or equal to 150) are produced in violent collisions of heavy ions. With this in mind we review some aspects of the available experimental data and point out some challenging features against which to test the models. The concept of evaporation is tremendously powerful when applied to pieces of nuclei of low excitation (1 or 2 MeV/u). Current interest focuses on higher excitations, at the point where the binding energy of the system vanishes. This is the transition from liquid nuclei to a gas of nucleons, and it may be that the critical phenomena that certainly exist in infinite nuclear matter will be manifest in finite nuclei under these conditions
Vibrational motions in rotating nuclei studied by Coulomb excitations
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)
International Nuclear Information System (INIS)
Kratz, J.V.
1980-03-01
In the present talk aspects of the reaction mechanism related to the survival probability of the heaviest fragments in 238 U + 238 U collisions are discussed first. This is followed by a description of the experiments that have been performed to search for surviving superheavy fragments in the 238 U + 238 U reaction and by a presentation of the results obtained so far. In a third section our recent first attempts with the 238 U + 248 Cm reaction are described and preliminary results are discussed. (orig.)
Fission mass yields of excited medium heavy nuclei
International Nuclear Information System (INIS)
Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.
1985-01-01
The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells
Some new approaches to the synthesis of heavy and superheavy elements
International Nuclear Information System (INIS)
Flerov, G.N.
1980-01-01
The results of work on the synthesis of heavy and superheavy elements are considered. It is shown that the new regularity of the systematics of spontaneous-fission half-lives, established for heavy nuclei at Dubna, has made it possible to extend the region of the nuclei being synthesized. In particular, it becomes possible to produce relatively long-lived heavy isotopes of Z>=107. The results of experiments to study the emission of energetic α-particles in the collision of heavy nuclei are presented. It is noted that such reactions can be used to produce atomic nuclei with low excitation energy and large angular momentum. The possible use of similar reactions in the synthesis of heavy and superheavy elements is discussed. In case the existence of a naturally occurring superheavy element has been established, a possibility will arise to synthesize in nuclear reactions a number of isotopes belonging to the island of stability, and to investigate their properties. The present state of work on the search for superheavy elements in nature is briefly described
A pilgrimage through superheavy valley
Indian Academy of Sciences (India)
gap p, average neutron pairing gap n, two-nucleon separation energy S2q and shell .... study has appeared as a powerful tool to study the shapes and collective properties of nuclei ... and identify the magic proton and neutron numbers in the superheavy region. ... pairing gap indicates the close shell structure of the nucleus.
Energy Technology Data Exchange (ETDEWEB)
Khalfallah, F
2007-08-15
Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No{sup 256} et Rf{sup 256} for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa{sup 223}. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)
The liquid to vapor phase transition in excited nuclei
Energy Technology Data Exchange (ETDEWEB)
Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.
2001-05-08
For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.
Particle-hole excitations in N=50 nuclei
International Nuclear Information System (INIS)
Johnstone, I.P.; Skouras, L.D.
1997-01-01
Energy levels in N=50 nuclei are calculated allowing single-particle excitations from the p 1/2 and g 9/2 shells into the d 5/2 , s 1/2 , d 3/2 , and g 7/2 shells. Important parts of the interaction are determined by least-squares fits to known levels. Agreement with experiment is very good. The high-spin particle-hole states appear to be mainly yrast levels in mass 93 and higher, but are not in 90 Zr. copyright 1997 The American Physical Society
The giant quadrupole resonance in highly excited rotating nuclei
International Nuclear Information System (INIS)
Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.
1983-01-01
The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)
Deexcitation of single excited nuclei in the QMD model
International Nuclear Information System (INIS)
Mueller, W.; Begemann-Blaich, M.; Aichelin, J.
1992-10-01
We investigate the emission pattern of a single excited nucleus in the QMD model and compare the results with several statistical and phenomenological models. We find that the number of intermediate mass fragments as a function of the excitation energy is in very good agreement with the results of statistical models in which the emission pattern is governed by phase space only. This allows two conclusions: (a) The microscopic dynamical description of the disintegration of static excited nuclei in the QMD yields directly the emission pattern expected from phase space decay. This is the case despite of the fact that nuclear level densities are not given directly but are modeled semiclassically by the nucleon-nucleon interaction. Thus there is no need to supplement the QMD calculations by an additional evaporation model. (b) Differences between the QMD results and the data are not due to insufficiencies in the description of the disintegration of excited systems. Thus other possible reasons, like a substantial change of the free cross section in the nuclear environment have to be investigated. (orig.)
Tests on the synthesis of superheavy elements
International Nuclear Information System (INIS)
Anon.
1981-01-01
The article briefly summarizes the study of superheavy elements, starting with speculations on the existence of relatively long-living nuclei via theoretical works to nuclear properties and chemical properties, search for the longest-living nuclei of the calculated stability island in nature, up to the attempts to produce such superheavy elements in large heavy ion accelerators (Berkely, Dubna, Darmstadt, Orsay). Principle and problems of the two methods to achieve a synthesis of such heavy nuclei, i. e. fusion reactions and transfer reactions, are briefly discussed. (RB) [de
On the Production of Superheavy Elements
Armbruster, P
2003-01-01
Since the discovery of Deformed Superheavy Nuclei (1983–85) a bridge connects the island of SHE to known isotopes of lighter elements. What we know experimentally and theoretically on the nuclear structure of SHE is reported in a first section. The making of the elements, with an analysis of production cross sections, and the macroscopic limitation to Z=112+ is presented in a second section. The break-down of fusion cross sections in the ‘Coulomb Falls’ within a range of about 10 elements is introduced as the universal limiting phenomenon. How the nuclear structure of the collision partners modifies the on-set of this limitation is presented in Section 3. Reactions induced by deformed nuclei are pushed by side collisions to higher excitation energies (4n- and 5n-channels), whereas reactions driven by the cluster-like, closed-shell nuclei, 208126Pb and 13882Ba, are kept at low excitation energies (1n- and 2n-channels). The on-set of production limitation for deformed collision partners is moved to smalle...
Isobar excitations and low energy spectra of light nuclei
International Nuclear Information System (INIS)
Czerski, P.
1984-01-01
The aim of this investigation is to study the possible influence of inner excitations of nucleons into the Δ(3,3)-resonance on the low lying spectra of light nuclei like 12 C and 16 O. Before we can study the effect of such exotic configurations one has to perform a reliable investigation within the normal nuclear model, which is based on a microscopic theory. This is achieved by performing RPA (Random Phase Approximation) calculations using a realistic residual interaction derived from the Brueckner G-matrix. An efficient parametrisation of the residual interaction is introduced and the reliability of the more phenomenological parametrisations which are generally used is discussed. Within such realistic calculations, the isobar effects are small. (orig.) [de
Directory of Open Access Journals (Sweden)
Minkov N.
2016-01-01
Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.
International Nuclear Information System (INIS)
Pivovarov, Yu.L.; Shirokov, A.A.; Vorobiev, S.A.
1990-01-01
The energy dependence of electromagnetic excitation and electromagnetic disintegration cross sections for relativistic nuclei passing through crystals is investigated both theoretically and by means of computer simulation. For electromagnetic excitation, resonant peaks are found at definite energy values. An increase of electromagnetic excitation and disintegration cross sections in crystals at very high energies is found to be due to coherent addition of amplitudes. Numerical results are presented for the electric dipole excitation of fluorine nuclei and electromagnetic deuteron disintegration. (orig.)
Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.
2018-03-01
Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.
Swimming back from the superheavy island
International Nuclear Information System (INIS)
Draculis, G.
1999-01-01
What's next in the series 108, 109, 110, 111, 112?The answer a couple of years ago looked like being not much. But major ripples are spreading in the Nuclear Physics community as news of the recent discoveries of the Superheavy element Z=118 and its daughters Z=116 and Z=114 was announced by a Berkeley group led by Victor Ninov [1]. Several pieces of news about Z=114 from studies at Dubna promoted by Yuri Oganessian [2,3] were circulating at about the same time.The 'not much' answer was because increasingly heroic efforts seemed to be needed to produce and identify each heavier element in the series. The problem is that such nuclei, if they exist in a stable or quasi-stable form are prone to fission, and so are any nuclei one might conceive as making to provide a path to one's nucleus of choice. The favoured reaction process used to make them is heavy-ion fusion which involves bombarding target nuclei of 208 PB (proton number Z=82), 238 U (Z=92) or even 244 Pu (Z=94) with medium weight (and relatively neutron-rich) beams such as 48 Ca (Z=20) and 86 Kr (Z=36) nuclei, accelerated to energies near or just above the Coulomb barrier, with the hope of the two nuclei overlapping and combining because of the highly attractive (strong) nuclear force. The catch is that putting sufficient energy in to get the nuclei together leaves the compound nucleus with excitation energy and spin, which dramatically increase its probability to fission, and therefore not survive further. As you go lower in beam energy, the probability for the initial fusion drops precipitously since the nuclei have to tunnel through a potential barrier caused by the repulsive Coulomb force between the nuclear charges, in order to make contact. Somewhere between the dramatically falling probability for fusion and steeply increasing probability for fission might be a window of production and survival
A probability of synthesis of the superheavy element Z = 124
Energy Technology Data Exchange (ETDEWEB)
Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First Grade College, Department of Physics, Kolar, Karnataka (India)
2017-10-15
We have studied the fusion cross section, evaporation residue cross section, compound nucleus formation probability (P{sub CN}) and survival probability (P{sub sur}) of different projectile target combinations to synthesize the superheavy element Z=124. Hence, we have identified the most probable projectile-target combination to synthesize the superheavy element Z = 124. To synthesize the superheavy element Z=124, the most probable projectile target combinations are Kr+Ra, Ni+Cm, Se+Th, Ge+U and Zn+Pu. We hope that our predictions may be a guide for the future experiments in the synthesis of superheavy nuclei Z = 124. (orig.)
Theisen, Christophe
2017-11-01
Several facilities or apparatus for the synthesis and spectroscopy of the Super-Heavy Nuclei (SHN) are presently under construction in the world, which reflect the large interest for this region of extreme mass and charge, but also for the need of even more advanced research infrastructures. Among this new generation, the GANIL/SPIRAL2 facility in Caen, France, will soon deliver very high intense ion beams of several tens of particle μA. The Super Separator Spectrometer S3 has been designed to exploit these new beams for the study of SHN after separation. It will provide the needed beam rejection, mass selection and full arsenal of state-of-the art detection setups. Still at GANIL, the AGATA new generation gamma-ray tracking array is being operated. The VAMOS high acceptance spectrometer is being upgraded as a gas-filled separator. Its coupling with AGATA will lower the spectroscopic limits for the prompt gamma-ray studies of heavy and super-heavy nuclei. In this proceeding, these new devices will be presented along with a selected physics case.
On the structure of spin-isospin excitations in nuclei
International Nuclear Information System (INIS)
Haerting, A.
1984-01-01
In this thesis properties of spin-isospin operators in nuclei are studied. Corresponding excited states carry the quantum numbers of the pion and couple therefore strongly to the virtual meson fields existing in the nucleus. The main emphasis in this thesis lies on the 1 + states in 48 Ca at 10.23 MeV and in 88 Sr at 3.48 MeV, the (e,e') form factors of which were measured over a large range of momentum transfers. Many-particle calculations yield against the one-particle model an essential improvement of the description of these form factors. But in the first maximum always by about a factor 2 too large values are obtained. Also the dependence on the momentum transfer cannot be explained correctly. The model space of these many-particle calculations must therefore be extended. We start from a shell-model calculation which regards many-particle-many-hole correlations completely in a relatively small model space and study furthermore nucleonic and non-nucleonic degrees of freedom. (orig./HSI) [de
Electric monopole transitions from low energy excitations in nuclei
Wood, J L; De Coster, C; Heyde, Kris L G
1999-01-01
Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.
Synthesis and investigation of superheavy elements - perspectives with radioactive beams
International Nuclear Information System (INIS)
Muenzenberg, G.
1997-09-01
The perspectives for the investigation of heavy and superheavy elements with intense beams of radioactive nuclei available from the new generation of secondary beam facilities in combination with modern experimental developments are the subject of this paper. The nuclear properties of the recently discovered shell nuclei centered at Z=108 and N=164 and predictions on the location of the superheavy region with improved theoretical models will be discussed. (orig.)
Alpha decay properties of heavy and superheavy elements
International Nuclear Information System (INIS)
Vigila Bai, G.M. Carmel; Umai Parvathiy, J.
2015-01-01
Analysing accurately the lifetimes of α-decay chains is an important tool to detect and study the properties of superheavy nuclei. 48 Ca is used in the synthesis of superheavy nuclei Z = 106-118 at Dubna. The experimental work of 48 Ca projectiles at Dubna has given an opportunity to study the superheavy element (SHE). Here, the α-decay properties for Z = 106-118 are evaluated using our CYE model and are compared with the available experimental and theoretical values. (author)
Studies of isovector excitations in nuclei by neutron-induced reactions
International Nuclear Information System (INIS)
Nilsson, L.
1987-01-01
In this paper isovector excitations in nuclei, in particular the giant isovector quadrupole resonance in spherical nuclei, will be discussed. Several methods to investigate this excitation have been used, e.g. inelastic electron scattering and charge-exchange reactions. An alternative method to study isovector E2 resonances in nuclei, based on the radiative capture of fast neutrons, will be presented. Results from such experiments performed at the tandem accelerator laboratories in Los Alamos and Uppsala will be presented and discussed in terms of the direct-semidirect capture model. As a separate issue, the preparations being undertaken at Uppsala for studies of isovector excitations in nuclei by means of the (n,p) reaction will be described. A schematic lay-out of the experiment will be presented together with some relevant neutron beam parameters. Among isovector excitations to be studied by this method are the isovector monopole resonance and the Gamow-Teller resonance. 54 references, 6 figures, 1 table
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...
Interplay of single particle and collective excitations in antimony nuclei
International Nuclear Information System (INIS)
Stan-Sion, C.
1987-01-01
The antimony nuclei are considered classical examples for coexisting spherical and well-deformed structures. The electromagnetic moment measurements presented in this paper provide direct evidence for shape coexistence. 8 refs., 3 figs. (M.F.W.)
Investigations of the isospin in the highly excited compound nuclei 52Cr and 58Co
International Nuclear Information System (INIS)
Roth, K.
1978-01-01
The influence of T states excited by p bombardment on the quantities in the correlation function is investigated by means of a fluctuation analysis of the excitation function in the p and α decay channels of the compound nuclei 52 Cr and 58 Co. (AH) [de
Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei
International Nuclear Information System (INIS)
Typel, S.; Baur, G.
2008-01-01
Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11 Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories. (orig.)
Neutron emission spectra of excited 126–140Sn nuclei
International Nuclear Information System (INIS)
Aggarwal, Mamta; Rajasekaran, M.
2004-01-01
We investigate one-neutron and two-neutron emission from 132 Sn and its neighboring isotopes due to thermal excitation. The rotational states of 132 Sn at different temperatures are investigated. The effects of separation energy and thermal excitation energy on neutron emission probability are studied. (author)
Gross properties of nuclei and nuclear excitations XXI
International Nuclear Information System (INIS)
Feldmeier, H.
1993-01-01
These proceedings contain the articles and contributed papers presented at the named workshop. They are concerned with highly excited nuclear matter and relativistic heavy ion reactions together with some related topics. See hints under the relevant topics. (HSI)
On the theory of deuteron disintegration with collective states excitation in nuclei
International Nuclear Information System (INIS)
Evlanov, M.V.
1981-01-01
Differential cross sections of diffraction disintegration of deuterons with excitation of collective states in nuclei have been theoretically investigated. Effects of nucleon-nucleon interaction as well as smearing of nucleus boundary on differential characteristics of deuteron disintegration accompanying with change in state of target- nuclei have been studied. Spectra of protons liberated during the reaction of 2 + level deuteron disintegration in 114 Cd nucleus are presented [ru
Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers
International Nuclear Information System (INIS)
Izosimov, I.N.
2015-01-01
It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.
Nuclei far from stability. Individual and collective excitations at low energy
International Nuclear Information System (INIS)
Meyer, M.
1984-01-01
The low energy structure of exotic nuclei is discussed in terms of self-consistent microscopic models. The experimental striking features of the spectroscopy of these nuclei are briefly surveyed and the schematic steps performed to obtain from effective N-N interactions their spectroscopic properties are presented. Their saturation and deformation properties are given by the Hartree-Fock approximation (HF). Then it is shown how to describe the dynamics of even-even exotic nuclei excited states by solving the complete Bohr Hamiltonian, built microscopically using the HF approximation and the adiabatic limit (and its derivatives) of the time-dependent HF approximation (ATDHF). The structure of odd and doubly odd nuclei is discussed in the framework of the unified model, ie the microscopic rotor + quasiparticles model. Finally possible future directions of experimental research concerning exotic nuclei are described and improvements or new theoretical approaches discussed [fr
International Nuclear Information System (INIS)
Hofmann, Sigurd
2007-01-01
The nuclear shell model predicts that the next doubly magic shell-closure beyond 208 Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical 'SuperHeavy Elements' (SHEs). Experimental methods are described, which allowed for the identification of elements produced on a cross-section level of about 1 pb. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission, not fission. Decay properties as well as reaction cross-sections are compared with results of theoretical investigations. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques, as for instance the precise mass measurement of the produced nuclei using ion traps. At increased sensitivity, the detailed exploration of the region of spherical SHEs will start, after first steps on the island were made in recent years. (Author)
Excited bands in even-even rare-earth nuclei
International Nuclear Information System (INIS)
Vargas, Carlos E.; Hirsch, Jorge G.
2004-01-01
The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands
Exclusive studies of the GDR in excited nuclei
International Nuclear Information System (INIS)
Nanal, V.
1998-01-01
The GDR in 164 Er at 62 MeV excitation energy has been studied in coincidence with the evaporation residues, selected using the Argonne fragment mass analyzer (FMA). The 164 Er* has a prolate shape with deformation statistical model fit to the data indicate that similar to the ground state
Probing clustering in excited alpha-conjugate nuclei
Energy Technology Data Exchange (ETDEWEB)
Borderie, B., E-mail: borderie@ipno.in2p3.fr [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); Raduta, Ad.R. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Ademard, G.; Rivet, M.F. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); De Filippo, E. [INFN, Sezione di Catania (Italy); Geraci, E. [INFN, Sezione di Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania (Italy); INFN, Sezione di Bologna and Dipartimento di Fisica, Università di Bologna (Italy); Le Neindre, N. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay (France); LPC, CNRS/IN2P3, Ensicaen, Université de Caen, Caen (France); Alba, R.; Amorini, F. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Cardella, G. [INFN, Sezione di Catania (Italy); Chatterjee, M. [Saha Institute of Nuclear Physics, Kolkata (India); Guinet, D.; Lautesse, P. [Institut de Physique Nucléaire, CNRS/IN2P3, Univ. Claude Bernard Lyon 1, Université de Lyon, Villeurbanne (France); La Guidara, E. [INFN, Sezione di Catania (Italy); CSFNSM, Catania (Italy); Lanzalone, G. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Facoltá di Ingegneria e Architettura, Università Kore, Enna (Italy); Lanzano, G. [INFN, Sezione di Catania (Italy); and others
2016-04-10
The fragmentation of quasi-projectiles from the nuclear reaction {sup 40}Ca+{sup 12}C at 25 MeV per nucleon bombarding energy was used to produce α-emission sources. From a careful selection of these sources provided by a complete detection and from comparisons with models of sequential and simultaneous decays, evidence in favor of α-particle clustering from excited {sup 16}O, {sup 20}Ne and {sup 24}Mg is reported.
Excitation of giant modes and decay of hot nuclei
International Nuclear Information System (INIS)
Chomaz, Ph.
1992-01-01
Several phenomena are discussed which can affect the properties of the Giant Dipole Resonance (GDR) built on excited states. The effect of the N over Z ratio is proposed in the entrance channel to test the hypothesis that the saturation of the GDR strength is due to preequilibrium effects. The important role of the compression is discussed both for the calculation of the temperature and for the other parameters of the Hot GDR. (K.A.) 15 refs.; 9 figs
Langevin description of fission fragment charge distribution from excited nuclei
Karpov, A V
2002-01-01
A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied
Thermodynamics of excited nuclei and nuclear level densities
International Nuclear Information System (INIS)
Ramamurthy, V.S.
1977-01-01
A review has been made of the different approaches that are being used for a theoretical calculation of nuclear level densities. It is pointed out that while the numerical calculations based on the partition function approach and shell model single particle level schemes have shed important insight into the influence of nuclear shell effects on level densities and its excitation energy dependence and have brought out the inadequacy of the conventional Bethe Formula, these calculations are yet to reach a level where they can be directly used for quantitative comparisons. Some of the important drawbacks of the numerical calculations are also discussed. In this context, a new semi-empirical level density formula is described which while retaining the simplicity of analytical formulae, takes into account nuclear shell effects in a more realistic manner. (author)
Fission of highly excited nuclei investigated in complete kinematic measurements
International Nuclear Information System (INIS)
Rodriguez-Sanchez, J. L.; Benlliure, J.; Taieb, J.; Avarez-Pol, H.; Audouin, L.; Ayyad, Y.; Belier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Laurent, B.; Martin, J. F.; Paradela, C.; Pellereau, E.; Pietras, B.; Prochazka, A.; Ramos, D.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.
2013-01-01
Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections. (authors)
Chemistry of superheavy elements
International Nuclear Information System (INIS)
Schaedel, M.
2012-01-01
The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)
One particle-hole excitations in p- and fp-shell nuclei
International Nuclear Information System (INIS)
Hees, A.G.M. van.
1982-01-01
Results are presented of shell model calculations of medium and light atomic nuclei. The influence of the allowance of one particle-hole excitations is investigated. This enables improved descriptions of intermediate mass nuclei in the fp-shell. For light p-shell nuclei one particle-hole excitations create exclusively situations with abnormal parity. The description of situations with normal parity is not changed by enlarging the model space. In the first chapter shell-model calculations are performed on the light Ni-isotopes (A = 57-59). One nucleon is allowed to be excited from the fsub(7/2) orbit to one of the other fp-shell orbits. The general observation in the enlarged model space is that one can use operators that require a much weaker 'renormalization' and the calculation requires only a selected set of matrix elements of the Hamiltonian. An additional advantage of the inclusion of one particle-hole excitations is that it allows a description of several intruder states, i.e. states that cannot be produced with the assumption of a closed 56 Ni core. In the second chapter the nuclei with mass number A = 52-55, i.e. a small number of holes in the 56 Ni core, are investigated similarly. In the third chapter much lighter nuclei (A = 4-16) are discussed. For a theoretical description of nonnormal-parity states one has to admit the excitation of at least one nucleon to a higher harmonic-oscillator major-shell. (Auth.)
Quasifission Dynamics in the Formation of Superheavy Elements
Directory of Open Access Journals (Sweden)
Hinde D.J.
2017-01-01
Full Text Available Superheavy elements are created through the fusion of two heavy nuclei. The large Coulomb energy that makes superheavy elements unstable also makes fusion forming a compact compound nucleus very unlikely. Instead, after sticking together for a short time, the two nuclei usually come apart, in a process called quasifission. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission. A systematic study of carefully chosen mass-angle distributions has provided information on the global trends of quasifission. Large deviations from these systematics at beam energies near the capture barrier reveal the major role played by the nuclear structure of the two colliding nuclei in determining the reaction outcome, and thus implicitly in hindering or favouring superheavy element synthesis.
Quasifission in heavy and superheavy element formation reactions
International Nuclear Information System (INIS)
Hinde, D.J.; Dasgupta, M.; Jeung, D.Y.; Mohanto, G.; Prasad, E.; Simenel, C.; Walshe, J.; Wahkle, A.; Williams, E.; Carter, I.P.; Cook, K.J.; Kalkal, Sunil; Rafferty, D.C.; Rietz, R. du; Simpson, E.C.; David, H.M.; Düllmann, Ch.E.; Khuyagbaatar, J.
2016-01-01
Superheavy elements are created in the laboratory by the fusion of two heavy nuclei. The large Coulomb repulsion that makes superheavy elements decay also makes the fusion process that forms them very unlikely. Instead, after sticking together for a short time, the two nuclei usually come apart, in a process called quasifission. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission. A systematic study of carefully chosen mass-angle distributions has provided information on the global trends of quasifission. Large deviations from these systematics reveal the major role played by the nuclear structure of the two colliding nuclei in determining the reaction outcome, and thus implicitly in hindering or favouring superheavy element production.
Structure of excited states in nuclei near doubly magic {sup 100}SN
Energy Technology Data Exchange (ETDEWEB)
Gorska, M.
1998-11-01
The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)
The Superheavy Elements and Anti-Gravity
Anastasovski, Petar K.
2004-02-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z Hawking, in honour of Stephen W. Hawking.
Study of the giant dipole resonance built on highly excited states in Sn and Dy nuclei
International Nuclear Information System (INIS)
Stolk, A.
1988-01-01
A study is presented of the giant dipole resonance built on highly excited states. The aim is to get more detailed information on the properties of the GDR and to use it as a tool for the investigation of nuclear structure at high excitation energy. The high energy γ-rays seen from the decay of excited state GDRs in heavy ion fusion reactions reflect the average properties of the states populated by the γ-emission. The measurements at different initial excitation energies of 114 Sn provide information on the nuclear level density near the particle separation energy at an average angular momentum of 10ℎ. The study of shape changes at very high spin in 152-156 Dy nuclei is presented. A theoretical model developed to describe fusion-evaporation reactions is presented. 149 refs.; 63 figs.; 13 tabs
Alpha particle emission as a probe of the level density in highly excited A∼200 nuclei
International Nuclear Information System (INIS)
Fabris, D.; Fioretto, E.; Viesti, G.; Cinausero, M.; Gelli, N.; Hagel, K.; Lucarelli, F.; Natowitz, J.B.; Nebbia, G.; Prete, G.; Wada, R.
1994-01-01
The alpha particle emission from 90 to 140 MeV 19 F+ 181 Ta fusion-evaporation reactions has been studied. The comparisons of the experimental spectral shapes and multiplicities with statistical model predictions indicate a need to use an excitation energy dependent level-density parameter a=A/K in which K increases with excitation energy. This increase is more rapid than that in lower mass nuclei. The effect of this change in level density on the prescission multiplicities in fission is significant
Neutron emission in fission of highly excited californium nuclei (E*=76 MeV)
International Nuclear Information System (INIS)
Blinov, M.V.; Bordyug, V.M.; Kozulin, Eh.M.; Mozhaev, A.N.; Levitovich, M.; Muzychka, Yu.A.; Penionzhkevich, Yu.Eh.; Pustyl'nik, B.I.
1990-01-01
The differential cross sections for neutron production in the fission of highly excited californium nuclei formed in the 238 U+ 12 C (105 MeV) reaction have been measured. From the analysis of the experimental data is follows that the number of pre-fission neutrons substantially exceeds the value obtained in the framework of the standard statistical model. The saddle-to-scission time of the excited nucleus is estimated on the basis of the neutron multiplicity. The dependences of the neutron number and neutron average energies upon the fragment mass are determined
Neutron emission in fission of highly excited californium nuclei (E* = 76 MeV)
International Nuclear Information System (INIS)
Blinov, M.V.; Bordyug, V.M.; Kozulin, E.M.; Levitovich, M.; Mozhaev, A.N.; Muzychka, Yu.A.; Penionzhkevich, Yu.E.; Pustyl'nik, B.I.
1990-01-01
Differential cross sections for neutron production have been measured in fission of excited californium nuclei produced in the reaction 238 U + 12 C (105 MeV). It follows from analysis of the experimental results that the number of neutrons emitted before fission considerably exceeds the number obtained in the framework of the standard statistical model. On the basis of the multiplicity of neutrons they authors have estimated the time of fission of the excited nucleus. The dependence of the number of neutrons and their average energies on the mass of the fragments is determined
Collective excitations in the transitional nuclei /sup 224,226,228,230 /Ra
Kurcewicz, W; Kaffrell, N; Nyman, G H; Ruchowska, E
1981-01-01
The gamma -rays following the beta -decay of /sup 224,226,228,230/Fr have been investigated by means of gamma -ray singles (including multispectrum analysis) and gamma gamma coincidence measurements using Ge(Li) spectrometers. The study of the excited levels in /sup 224,226,228,230/Ra is focused on the properties of collective states. The analysis of the results leads one to the conclusion that a ground- state octupole deformation is the most likely explanation for the special features of the collective excitations in Ra and some neighbouring nuclei in the N136 region. (15 refs).
Is neutron evaporation from highly excited nuclei a poisson random process
International Nuclear Information System (INIS)
Simbel, M.H.
1982-01-01
It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)
Surface boiling - an obvious but like no other decay mode of highly excited atomic nuclei
International Nuclear Information System (INIS)
Toke, J.
2012-01-01
Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments - the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation - a decay mode here named distillative spinodal vaporization
Simulation of statistical γ-spectra of highly excited rare earth nuclei
International Nuclear Information System (INIS)
Schiller, A.; Munos, G.; Guttormsen, M.; Bergholt, L.; Melby, E.; Rekstad, J.; Siem, S.; Tveter, T.S.
1997-05-01
The statistical γ-spectra of highly excited even-even rare earth nuclei are simulated applying appropriate level density and strength function to a given nucleus. Hindrance effects due to K-conservation are taken into account. Simulations are compared to experimental data from the 163 Dy( 3 He,α) 162 Dy and 173 Yb( 3 He,α) 172 Yb reactions. The influence of the K quantum number at higher energies is discussed. 21 refs., 7 figs., 2 tabs
International Nuclear Information System (INIS)
Kleymann, G.
1976-01-01
This paper is a compilation of results of experimental and theoretical studies on the term diagrams of odd-even nuclei from the isotope series of Nb, Tc, Rh and Ag, published until October 1975. As a relatively simple interpretation of the excitements of these nuclei, De Shalit proposed the coupling of a particle, whose quantum numbers may be derived from a shell model, to excited states of the core of the nucleus. (orig./BJ) [de
Search for isobar-analog states of superheavy hydrogen isotopes5-7He
Chernyshev, B. A.; Gurov, Yu B.; Korotkova, L. Yu; Kuznetsov, D. S.; Lapushkin, S. V.; Tel'kushev, M. V.; Schurenkova, T. D.
2016-02-01
Search for isobar-analog states (IAS) of superheavy hydrogen isotopes 5-7H was performed among the high-excited states of helium isotopes 5-7He. The excited spectra were measured in stopped pion absorption by light nuclei. The experiment was performed at low energy pion channel of LANL with two-arm multilayer semiconductor spectrometer. Excited states of 5-7He were observed in three-body reaction channels on 10,11B nuclei. Several excited levels were observed for the first time. 6He excited state with Ex = 27.0(8) MeV observed in 10B(π-,pt)X channel is an IAS candidate for 6H with Er ∼ 5.5 MeV. 7He excited state with Ex = 24.8(4) MeV observed in 10B(π-,pd)X, nB(π-,pt)X and nB(π-,dd)X channels is an IAS candidate for 7H with Er ∼ 3 MeV.
Coulomb Excitation of Neutron-Rich $A\\approx$140 Nuclei
Van duppen, P L E
2002-01-01
Investigating the isospin dependence of the product between the B( E2; 0$_{1}^{+} \\rightarrow 2_{1}^{+}$)-value and the 2$_{1}^{+}$-excitation energy E$_{2^{+}}$ in even-even nuclei around $A\\!\\approx$140 one observes a rather smooth trend close to the valley of stability but clear indication for a reduction from the extrapolated B(E2)-values by one order of magnitude for some very neutron-rich nuclei. While close to the valley of stability the strong neutron-proton interaction results in an equilibration of the neutron and proton deformations with a predominate isoscalar character of the collective 2$^{+}$ excitation, it is conceivable that more loosely bound neutrons cannot polarize a close-to-magic proton core that well any more. This might result in a decoupling of the shape of the outer neutrons from the core and in a strong isovector admixture to the lowest lying 2$^{+}$ level. In this way the 2$^{+}$ -energies could be further lowered in neutron-rich nuclei, while the quadrupole moments of the proton c...
Superheavy Element Synthesis and Nuclear Structure
International Nuclear Information System (INIS)
Ackermann, D.
2009-01-01
The search for the next closed proton and neutron shells beyond 2 08P b has yielded a number of exciting results in terms of the synthesis of new elements [1,2,3]. The superheavy elements (SHE), however, are a nuclear structure phenomenon. They owe their existence to the quantum mechanical origin of shell correction energies without which they would not be bound. In recent years the development of efficient experimental set-ups including separators and advanced particle and photon detection arrangements allowed for more and more detailed nuclear structure studies for nuclei at and beyond Z=100. A review of those recent achievements is given in ref. [4]. Among the most interesting features is the observation of K-isomeric states. Experimentally about 14 cases have been identified in the region of Z>96 as shown in Fig. 1. K-isomers or indications of their existence have been found for almost all even-Z elements in the region Z=100 to 110. We could recently establish and/or confirm such states in the even-even isotopes 2 52,254N o [5]. The heaviest nucleus where such a state was found is 2 70D s with Z=110 as we reported in 2001 [6]. Those nuclear structure studies lay out the grounds for a detailed understanding of these heavy and high-Z nuclear systems, and contribute at the same time valuable information to preparation of strategies to successfully continue the hunt for the localisation of the next spherical proton and neutron shells after 2 08P b. The recent activities for both SHE synthesis and nuclear structure investigations at GSI will be reported.(author)
Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei
Energy Technology Data Exchange (ETDEWEB)
Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Kuliev, Ali Akbar [Azerbaijan National Academy of Aviation, Baku (Azerbaijan)
2017-01-15
A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed {sup 229–233}Th and {sup 233–239}U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even {sup 228–232}Th and {sup 232–238}U nuclei. For {sup 235}U the summed M1 strength in the energy range 1.5–2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.
Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei
International Nuclear Information System (INIS)
Nishinaka, Ichiro
2009-01-01
Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)
Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei
Directory of Open Access Journals (Sweden)
Leoni S.
2016-01-01
Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.
Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei
Leoni, S.
2016-05-01
The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.
Resonant Coulomb excitation of atomic nuclei propagating through a crystal in the channeling mode
International Nuclear Information System (INIS)
Stepanov, A.V.
1996-01-01
The Coulomb-excitation total cross section and the distribution of decay products originating from a resonant state of a nucleus interacting with a crystal lattice has been calculated for the case of a single inelastic collision (with respect to internal degrees of freedom in a nucleus). These observables have been expressed in terms of time-dependent correlators which describe thermal oscillations of lattice nuclei and the motion of the center of mass of a nucleus propagating across a crystal target in the channelling mode. An expression generalizing the spectrum of equivalent photons calculated by the Weizsaecker-Williams method is given
A new methodology for measuring time correlations and excite states of atoms and nuclei
International Nuclear Information System (INIS)
Cavalcante, M.A.
1989-01-01
A system for measuring time correlation of physical phenomena events in the range of 10 -7 to 10 5 sec is proposed, and his results presented. This system, is based on a sequential time scale which is controlled by a precision quartz oscillator; the zero time of observation is set by means of a JK Flip-Flop, which is operated by a negative transition of pulse in coincidence with the pulse from a detector which marks the time zero of the event (precedent pulse). This electronic system (named digital chronoanalizer) was used in the measurement of excited states of nuclei as well as for the determination of time fluctuations in physical phenomena, such as the time lag in a halogen Geiger counter and is the measurement of the 60 KeV excited state of N P 237 . (author)
Excitation of the giant resonance in the radiative pion capture on lp shell nuclei
International Nuclear Information System (INIS)
Dogotar', G.E.
1978-01-01
The spin-dipole transitions in the (π - ,γ) reaction on 6 Li, 7 Li, 9 Be, 13 C and 14 N are calculated in the framework of shell model and are compared with experiment. The discussion includes the gross structure and the quantum numbers of the resonance, relative branchings, prominent partial transitions and total yields. General findings is that the calculated (π - ,γ) yield distributions describe the data well in those cases where also the photonuclear data are well reproduced, although the amplitudes of the elementary processes are different. In the case considered, the best agreement is obtained for A=9 and 14. The configurational splitting of the resonances is clearly seen in the A=6 and 7 cases, to somewhat less extent also for A=9. For heavier nuclei the contribution from hole excitation is small and is spread out. For A=7 and 11 the calculated main peaks are at too low intrinsic excitation energies as compared with histograms
One- and two-phonon excitations in strongly deformed triaxial nuclei
International Nuclear Information System (INIS)
Hagemann, G.B.
2003-01-01
The wobbling mode is uniquely related to triaxiality and introduces a series of bands with increasing wobbling phonon number, n ω , and a characteristic large Δ nω =1 E2 strength between the bands. The pattern of γ-transitions between the wobbling excitations will be influenced by the presence of an aligned particle. Evidence for the wobbling mode was obtained recently, and even a two-phonon wobbling excitation has now been identified in 163 Lu. The similarity of the data in 163 Lu to new strongly deformed triaxial bands and connecting transitions in the neighbouring nuclei, 165 Lu and 167 Lu, establishes wobbling as a more general phenomenon in this region. (author)
Beyond darmstadtium -Status and perspectives of superheavy element research
International Nuclear Information System (INIS)
Ackermann, D.
2005-01-01
The search for superheavy elements has yielded exciting results for both the ''cold fusion'' approach with reactions employing Pb and Bi targets and the ''hot fusion'' reactions with 48 Ca beams on actinide targets. In recent years the accelerator laboratories in Berkeley, Dubna and Darmstadt have been joined by new players in the game in France with GANIL, Caen, and in Japan with RIKEN, Tokyo. The latter yielding very encouraging results for the reactions on Pb/Bi targets which confirmed the data obtained at GSI. Beyond the successful synthesis, interesting features of the structure of the very heavy nuclei like the hint for a possible K-isomer in 270 Ds or the population of states at a spin of up to 22ℎ in 254 No give a flavor of the exciting physics we can expect in the region at the very extreme upper right of the nuclear chart. To get a hand on it, a considerable increase in sensitivity is demanded from future experimental set-ups. High intensity stable beam accelerators, mass measurement in ion traps and mass spectrometers, as well as the possible employment of unstable neutron-rich projectile species, initially certainly only for systematic studies of reaction mechanism and nuclear structure features for lighter exotic neutron-rich isotopes, are some of the technological challenges which have been taken on. (orig.)
Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN
Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.
2015-12-01
We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA
Description of excitations in odd nonmagic nuclei by the Green's function method
International Nuclear Information System (INIS)
Avdeenkov, A.V.; Kamerdzhiev, S.P.
1999-01-01
General equations for single-particle Green's functions in nonmagic nuclei have been derived. A pairing mechanism similar to the Bardeen-Cooper-Schrieffer mechanism is singled out explicitly in these equations. A refining procedure for phenomenological single-particle energies and for the gap has been developed to avoid doubly taking into account mixing with phonons for the situation in which the input data for the problem in question are formulated in terms of these phenomenological quantities. The resulting general equations are written within the second-order approximation in the phonon-creation amplitude. This corresponds to taking into account quasiparticle(multiply-in-circle sign)phonon configuration and is shown to be a fairly good approximation for semimagic nuclei. A secular equation for calculating excitations in odd nuclei that takes fully into account ground-state correlations and which is invariant under the reversal of the sign of the energy variable has been derived in this approximation. Distributions of single-particle strengths have been computed for 119 Sn and 121 Sn. Reasonably good agreement with available experimental data has been obtained
Low lying electric dipole excitations in nuclei of the rare earth region
International Nuclear Information System (INIS)
von Brentano, P.; Zilges, A.; Herzberg, R.D.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.
1992-01-01
From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J π ,K)=(l - ,0) and (J π ,K)=(l - ,1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus 142 Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3--octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus 141 Pr and found first evidence for the existence of 3 - times 2+circle-times particle-states
Do superheavy elements imply the existence of black holes
International Nuclear Information System (INIS)
Pringle, J.E.; Dearborn, D.S.P.; Fabian, A.C.
1976-01-01
Some comments are offered on the question of where superheavy elements, such as elements 116, 124 and 126, are likely to have been formed. Most of these elements are thought to have been produced under conditions of explosive nucleosynthesis by what is known as the 'r-process', and particularly in conventional supernova explosions, but it is stated that the ability of the r-process to produce superheavy elements is very uncertain, and the conditions necessary for synthesis of these elements are difficult to realise in astrophysical situations. It is thought that superheavy elements exist in the outer layers of neutron stars, and ideal conditions for the production of superheavy nuclei, such as high neutron flux and rapid β decays, occur in the disruption of a neutron star. Such disruption is possible in two ways, both of which involve a black hole. It is likely that a neutron star is disrupted when it accretes sufficient material for its mass to exceed the maximum mass for stability, and it then has no alternative but to collapse to form a black hole and it seems possible that some of the outer layers are thrown off during the process. It is thus argued that the most likely site for the production of superheavy elements is in the surface layers of a neutron star, and the most plausible means by which these layers can be returned to the interstellar medium involves the intervention or formation of a black hole. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Marchix, A
2007-11-15
The aim of this work is to study the influence of shell correction energy on the deexcitation of superheavy nuclei. For that purpose, a new statistical code, called Kewpie2, which is based on an original algorithm allowing to have access to very weak probabilities, was developed. The results obtained with Kewpie2 have been compared to the experimental data on residue cross sections obtained by cold fusion (Z=108 to Z=113) and by hot fusion (Z=112, Z=114 and Z=116), as well as data on fission times (Z=114, Z=120 and Z=126). Constraints on the microscopic structure of the studied nuclei have been obtained by means of the shell correction energy. By adjusting the intrinsic parameters of the models of fusion in order to reproduce the data on the fusion cross sections, this study shows the necessity of decreasing very strongly the shell correction energy predicted by the calculations of Moller and Nix, during the study of the residues cross sections as well for the nuclei produced by cold fusion as by hot fusion. On the other hand, during the confrontation of the results of Kewpie2 to the data on mean fission times, it is rather advisable to increase it. A shift of the proton shell closure predicted for Z=114 by the calculations of Moller and Nix towards larger Z would allow to explain these opposite conclusions. In this thesis, we also have shown the significant influence of the inclusion of isomeric states on fission times for the superheavy nuclei. (author)
International Nuclear Information System (INIS)
Bouchez, Emmanuelle
2003-01-01
The first part of this research thesis proposes an overview of the different theoretical calculations elaborated in the region of light krypton nuclei, and of published experimental results. The second part reports the electron and gamma isomeric spectroscopy of 72,74 Kr nuclei after fragmentation of the projectile by a magnetic separator (experimental installation, experimental results, discussion). The third part reports the study of the Coulomb excitation of the 76 Kr radioactive beam (method and experimental installation, data analysis and results in terms of germanium and silicon spectra, and form of the 76 Kr)
Experimental search for superheavy elements
International Nuclear Information System (INIS)
Wieloch, A.
2008-12-01
This work reports on the experimental search for superheavy elements (SHE). Two types of approaches for SHE production are studied i.e. '' cold '' fusion mechanism and massive transfer mechanism. First mechanism was studied in normal and inverse kinematics, by using Wien filter at the GANIL facility. The production of SHE elements with Z 106 and 108 is reported while negative results on the synthesis of SHE elements with Z 114 and 118 was received. The other approach i.e. reactions induced by heavy ion projectiles (e.g. 172 Yb, 197 Au) on fissile target nuclei (e.g. 238 U, 232 Th) at near Coulomb barrier incident energies was studied by using superconducting solenoid installed Texas A(and)M University. Preliminary results for the reaction 197 Au(7.5 MeV/u) - 232 Th are presented where three cases of the possible candidates for SHE elements were found. A dedicated detection setup for such studies is discussed and the detailed data analysis is presented. Detection of alpha and spontaneous fission radioactive decays is used to unambiguously identify the atomic number of SHE. Special statistical analysis for a very low detected number of α decays is applied to check consistency of the αradioactive chains. (author)
A united phenomenological description of quadrupole excitations in even-even nuclei
International Nuclear Information System (INIS)
Lipas, P.O.; Haapakoski, P.; Honkaranta, T.
1975-05-01
A phenomenological model is developed for the collective quadrupole properties of all even-even nuclei. Rotational, vibrational, and transitional nuclei are included in the model on an equal footing. A Bohr-type intrinsic Hamiltonian for harmonic quadrupole vibrations about an axially deformed shape is solved exactly. States of good angular momentum are projected out of the intrinsic states, and they are made orthogonal by a Schmidt scheme. The angular-momentum and phonon-number composition of the states is analyzed at various stages; states with K=1 are found spurious. Excitation energies for the ground, β and γ bands are calculated as expectation values of a radically simplified nuclear Hamiltonian in our projected and orthogonalized states. With increasing deformation the calculated energies evolve smoothly from the evenly spaced phonon spectrum to the Bohr-Mottelson rotational-vibrational spectrum according to the scheme of Sheline and Sakai. The basic model contains only two parameters (deformation d and energy scale) to fix the entire quadrupole spectrum of a nucleus. The results are given in the form of graphs suitable for immediate application; numerical results are readily produced by our computer code. The ground bands are fitted comparably to the VMI model, while the β and γ bands are reproduced qualitatively. The nuclei 152 Sm, 152 Gd, and 114 Cd are used as test cases. Quadrupole moments and E2 transition rates are also calculated. Intra-ground-band transition ratios and branching ratios from the β and γ bands are given in terms of the single parameter d. The results are applied to 152 Sm, with fair success. Finally the model to include two more parameters (anisotropy) is extended. The improvement over the basic model is modest in view of added parameters and computational effort. (author)
International Nuclear Information System (INIS)
Vanin, D.V.; Nadtochy, P.N.; Adeev, G.D.; Kosenko, G.I.
2000-01-01
A stochastic approach to fission dynamics is proposed. The approach, which is based on Langevin equations, is used to calculate the mass distributions of fragments originating from the fission of excited nuclei. The effect of viscosity and light-particle emission on the variance of mass distributions is studied. The results of the calculations based on the above approach reveal that, in order to obtain a simultaneous description of mass-distribution parameters and the multiplicities of prescission particles, it is necessary to use sufficiently large values of nuclear viscosity both for the one-body and for the two-body viscosity mechanism, anomalously large values of the viscosity coefficient being required in the latter case
Scissors and unique-parity modes of M1 excitation in deformed nuclei
International Nuclear Information System (INIS)
Otsuka, T.
1989-01-01
In this paper the possible modes of M1 excitation in deformed even-even nuclei are studied in terms of the particle-number-conserved Nilsson + BCS formalism with the standard parameters. The spurious motion with respect to the rotation is removed. In addition to the Scissors mode, the Unique-Parity Spin and Normal-Parity Spin modes are suggested, although the latter may be fragmented to a large extent. The Scissors mode carries most of the orbital strength, while the others the spin strength. The proton Unique-Parity (i.e. Oh 11/12 ) Spin mode for 164 Dy is obtained just below Ex = 3 MeV with B(M1) ∼ 0.2 μ 2 N ) in the sum rule limit. This is in a good agreement to the recent experimental data
Testing two-nucleon transfer reaction mechanism with elementary modes of excitation in exotic nuclei
Broglia, R A; Idini, A; Barranco, F; Vigezzi, E
2015-01-01
Nuclear Field Theory of structure and reactions is confronted with observations made on neutron halo dripline nuclei, resulting in the prediction of a novel (symbiotic) mode of nuclear excitation, and on the observation of the virtual effect of the halo phenomenon in the apparently non-halo nucleus $^7$Li. This effect is forced to become real by intervening the virtual process with an external (t,p) field which, combined with accurate predictive abilities concerning the absolute differential cross section, reveals an increase of a factor 2 in the cross section due to the presence of halo ground state correlations, and is essential to reproduce the value of the observed $d \\sigma(^7$Li(t,p)$^9$Li)/d$\\Omega$.
Decay properties of rare earth nuclei at high excitation and low spin
International Nuclear Information System (INIS)
Atac, A.
1989-01-01
The purpose of this study was to examine the decay pattern of highly excited rare earth nuclei for which the decay process is expected to be governed by statistical laws. The aim was to investigate how good the statistical model describes the nuclear system and to search for possible deviation from it. It is shown that the gamma decay spectra following both the ( 3 He,α) pick-up reactions and the inelastic ( 3 He, 3 He') reactions reveal similar type of bumps. This leads to the conclusion that the bump structures are not a result of a particular reaction mechanism, but that they have a more general origin. The study is mainly devoted to an examination of the nature of the bumps. 22 refs
Statistical fission parameters for nuclei at high excitation and angular momenta
International Nuclear Information System (INIS)
Blann, M.; Komoto, T.A.
1982-01-01
Experimental fusion/fission excitation functions are analyzed by the statistical model with modified rotating liquid drop model barriers and with single particle level densities modeled for deformation for ground state (a/sub ν/) and saddle point nuclei (a/sub f/). Values are estimated for the errors in rotating liquid drop model barriers for the different systems analyzed. These results are found to correlate well with the trends predicted by the finite range model of Krappe, Nix, and Sierk, although the discrepancies seem to be approximately 1 MeV greater than the finite range model predictions over the limited range tested. The a priori values calculated for a/sub f/ and a/sub ν/ are within +- 2% of optimum free parameter values. Analyses for barrier decrements explore the importance of collective enhancement on level densities and of nuclear deformation in calculating transmission coefficients. A calculation is performed for the 97 Rh nucleus for which a first order angular momentum scaling is used for the J = 0 finite range corrections. An excellent fit is found for the fission excitation function in this approach. Results are compared in which rotating liquid drop model barriers are decremented by a constant energy, or alternatively multiplied by a constant factor. Either parametrization is shown to be capable of satisfactorily reproducing the data although their J = 0 extrapolated values differ markedly from one another. This underscores the dangers inherent in arbitrary barrier extrapolations
Energy Technology Data Exchange (ETDEWEB)
Bouneau, Sandra [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)
1997-04-11
This work aims at the study of different excitation modes, individual and collective, in superdeformed (SD) nuclei in the mass 190 region. The study of {sup 193}Tl and {sup 195,196,197}Bi SD nuclei brought information concerning individual excitation around the proton and neutron SD gaps Z = 80 - 82 and N = 112. Also, the study of the nucleus {sup 196}Pb revealed excited SD states built on collective vibrations. Concerning the isotope {sup 193}Tl, magnetic property analysis has been performed and allowed us to identify the proton intruder orbital {pi}i{sub 13/2} on which the two known SD the bands of the nucleus are build. It was possible to separate experimentally the relative contribution of proton and neutron pairing to the dynamic moment of inertia. Several {gamma} transition of high energy (about 3 MeV) linking SD states to normal deformed states (ND) and three new SD bands have been found in this nucleus. These SD bands have been interpreted in terms of individual excitations of the single proton on different orbitals identified above the proton SD gap Z = 80. An interaction between the states of two excited SD band have been observed and its strength measured. All these results (gyromagnetic factor, the role of nuclear pairing, excitation energy of the SD well, the interaction between two orbitals) represent information of theoretical interest. In each isotope {sup 195-197}Bi, one SD band has been discovered. They have been also interpreted in terms of individual excitation implying the same proton state. The study of this nuclei brought the first experimental proof that the superdeformation phenomenon persists above the shell closure Z = 82. In {sup 196}Pb nucleus a new excited SD band has been discovered. Observations are mentioned suggesting that we have to consider excitations different from those based on individual ones. An interpretation based on vibrational modes can explain both the low energy measured of the excited states in respect with the SD
The Superheavy Elements and Anti-Gravity
International Nuclear Information System (INIS)
Anastasovski, Petar K.
2004-01-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking
International Nuclear Information System (INIS)
Nesterenko, V.O.; Kleinig, W.
1995-01-01
The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)
Superheavy Elements and Beyond: - Supercritical Coulomb Field and Giant Quasiatoms
International Nuclear Information System (INIS)
Greiner, Walter
2007-01-01
The status of theory of Superheavy Nuclei is reviewed. Based with the Two-Center Shell Model Potential Energy Surfaces are calculated. Fusion, fission, quasifission and other processes are discussed. I particular time-delay during the formation of giant quasi atoms/molecules will be crucial for observing the change of the Dirac vacuum in supercritical Coulomb fields by spontaneous positron emission. It will be shown how the various phenomena are interrelated
International Nuclear Information System (INIS)
Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.
2016-01-01
We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission
Energy Technology Data Exchange (ETDEWEB)
Marinello, M. [Universidade Federal de Itajubá, Rua Doutor Pereira Cabral 1303, 37500-903, Itajubá, MG (Brazil); Rodríguez-Ardila, A.; Garcia-Rissmann, A. [Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, Itajubá, MG, 37504-364 (Brazil); Sigut, T. A. A. [The University of Western Ontario, London, ON N6A 3K7 (Canada); Pradhan, A. K., E-mail: murilo.marinello@gmail.com [McPherson Laboratory, The Ohio State University, 140 W. 18th Ave., Columbus, OH 43210-1173 (United States)
2016-04-01
We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.
On superheavy elements, what did we achieve
International Nuclear Information System (INIS)
Armbruster, P.
1986-03-01
The properties of the heaviest isotopes are discussed using recent results on α-energies, halflives, and branchings between the different decay modes. From the data on α- and spontaneous fission halflives and absolute masses, fission barriers and barrier widths are deduced. Shell corrections of the heaviest nuclei are obtained and compared to recent calculations. The concept of superheavy elements is examined, and it is shown that the heaviest isotopes known must be classified 'superheavy'. The production cross sections are summarized and within the extra-push model the reduced fusion probabilities in the entrance channel are discussed. It is shown that besides nuclear structure effects in the collision partners are of importance. It is concluded that targets around 208 Pb give a double gain, on the one hand from the fact that fusion is relatively cold (1n- and 2n-channels), and on the other hand that the extra-push limitation is setting in later than the model predicts. The possibilities to make still heavier elements are restricted not by their groundstate instability but by the principal limitations of their production. (orig.)
Positron creation in superheavy quasi-molecules
International Nuclear Information System (INIS)
Mueller, B.
1976-01-01
The review of positron creation in superheavy quasi-molecules includes spontaneous positron emission from superheavy atoms, supercritical quasi-molecules, background effects, and some implications of the new ground state. 66 references
International Nuclear Information System (INIS)
Almaliev, A.N.; Batkin, I.S.; Kopytin, I.V.
1987-01-01
The process of exciting atoms and atomic nuclei by relativistic electrons and positrons bound in a one-dimensional potential is investigated theoretically. It is shown that a pole corresponding to the emergence of a virtual photon on a bulk surface occurs in the matrix interaction element under definite kinematic relationships. It is obtained that the probability of the excitation process depends on the lifetime of the level being excited, the virtual photon, and the charged particle in a definite energetic state. An estimate of the magnitude of the excitation section of low-lying nuclear states yields a value exceeding by several orders the section obtained for charged particles in the absence of a binding potential
Energy Technology Data Exchange (ETDEWEB)
Gorelik, M.L.; Shlomo, S. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Tulupov, B.A. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Institute for Nuclear Research, RAS, Moscow 117312 (Russian Federation); Urin, M.H., E-mail: urin@theor.mephi.ru [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)
2016-11-15
The particle–hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in {sup 208}Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron–nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.
International Nuclear Information System (INIS)
Boneva, S.T.; Khitrov, V.A.; Sukhovoj, A.M.; Vojnov, A.V.
1990-01-01
Intensities of two-quanta cascades are obtained for 2-3 final low-lying levels of the following nuclei 146 Nd, 174 Yb and 183 W. These measured intensities are compared with the intensities calculated in the frame of various models at primary transition energies ranging from 0.5 MeV to the neutron binding energy. Some excitation energy intervals are revealed, experimentally obtained intensities of cascade are inconsistent with model calculations. 15 refs.; 7 figs
Recent searches for superheavy elements in deep-inelastic reactions
International Nuclear Information System (INIS)
Hulet, E.K.; Lougheed, R.W.; Nitschke, J.M.
1980-10-01
New attempts have been made to synthesize superheavy elements (SHE) by nuclear reactions that may possibly form the products at low excitation energies. Survival of the superheavy elements would then be enhanced because of reduced losses from prompt fission. Classical and diffusion-model calculations of deep-inelastic reactions indicate there should be detectable yields of SHE formed with less than 30 MeV of excitation energy. Accordingly, superheavy elements have been sought in such reactions where targets of 248 Cm and 238 U have been irradiated with 136 Xe and 238 U ions. In the most recent experiments, targets of 248 Cm metal (3.5 to 7 mg-cm -2 ) were bombarded with 1.8-GeV 238 U ions from the UNILAC accelerator. The longer-lived SHE and actinides near the target Z were chemically separated, and the yields of a number of isotopes of Bk, Cf, Es, and Fm were measured. An upper limit of 30 nb was obtained for the formation of 1-h 259 No. In addition to the off-line chemical recovery and search for SHE, an on-line experiment was performed to detect volatile SHE with half-lives of a minute or more. All experiments to produce and detect superheavy elements were much less than optimum because of premature failures in the Cm-metal targets. The outcome and status of these experiments and the implications of the actinide yields in estimating the chances for forming superheavy elements in the 248 Cm + 238 U reactions are discussed. 5 figures, 1 table
Manifestation of the structure of heavy nuclei in their alpha decays
Energy Technology Data Exchange (ETDEWEB)
Adamian, G. G., E-mail: adamian@theor.jinr.ru; Antonenko, N. V.; Bezbakh, A. N.; Malov, L. A. [Joint Institute for Nuclear Research (Russian Federation)
2016-11-15
Low-lying one- and two-quasiparticle states of heavy nuclei are predicted. Alpha-decay chains, including those that proceed through isomeric states, are examined on the basis of the predicted properties of superheavy nuclei.
The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei
Energy Technology Data Exchange (ETDEWEB)
Ghumman, S. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology (Deemed University), Longowal, Sangrur-148106, Punjab, India s-ghumman@yahoo.com (India)
2015-08-28
The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.
Global and local approaches to population analysis: Bonding patterns in superheavy element compounds
Oleynichenko, Alexander; Zaitsevskii, Andréi; Romanov, Stepan; Skripnikov, Leonid V.; Titov, Anatoly V.
2018-03-01
Relativistic effective atomic configurations of superheavy elements Cn, Nh and Fl and their lighter homologues (Hg, Tl and Pb) in their simple compounds with fluorine and oxygen are determined using the analysis of local properties of molecular Kohn-Sham density matrices in the vicinity of heavy nuclei. The difference in populations of atomic spinors with the same orbital angular momentum and different total angular momenta is demonstrated to be essential for understanding the peculiarities of chemical bonding in superheavy element compounds. The results are fully compatible with those obtained by the relativistic iterative version of conventional projection analysis of global density matrices.
Study of the de-excitation of the 44Ti nuclei light charged particles
International Nuclear Information System (INIS)
Papka, Paul
2003-01-01
The deexcitation process of the 44 Ti compound nuclei, produced by fusion-evaporation reactions, has been studied at bombarding energies E lab 44 Ti has been populated through two reactions: 16 O + 28 Si at bombarding energies E lab ( 16 O) = 76, 96 and 112 MeV, and 32 S + 12 C at E lab ( 32 S) = 180 and 225 MeV. The exclusive experimental data, angular and energy distributions, have been analysed with the statistical code CACARIZO. The well identified evaporation channels have been precisely studied to determine the energy distributions of the residual nuclei. The calculations reproduce the sequential emission of α particles in the deexcitation chains, however, the emission of nucleons is partially misunderstood. In both reactions, the energy distribution of the protons indicates a temperature in residual nuclei lower than predicted. The dynamical deformation induced for the highest angular momenta has been quantified with an axis ratio of 2:1. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Jacobsen, T.; Breivik, F.O.; Soerensen, S.O. (Oslo Univ. (Norway). Inst. for Teoretisk Fysikk)
1980-01-01
The angular distribution of the tracks of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei.
International Nuclear Information System (INIS)
Jacobsen, T.; Breivik, F.O.; Soerensen, S.O.
1980-01-01
The angular distribution of the tracs of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei. (author)
International Nuclear Information System (INIS)
Djalali, C.; Marty, N.; Morlet, M.
1982-01-01
In a series of seventeen nuclei ranging from 51 V to 140 Ca, broad resonance structures are observed at energies between 8 and 10 MeV, nearly mass independent. These resonances have very forward peaked angular distributions which imply that they are populated by an angular momentum transfer of zero. This together with the observed excitation energies suggests an M1 character for these resonances. In 51 V, 58 Ni, 60 Ni, 62 Ni, a sharp peak located at an excitation energy above the threshold for neutron emission is interpreted as a part of the T 0+1 component of the M1 resonances. Cross-sections are given for all the M1 resonances. For 58 Ni, 90 Zr, 92 Mo, 120 Sn and 140 Ca, an ''attenuation'' factor for the cross-sections is extracted in a OWIA calculation assuming simple shell model structures for these resonances
Fayache, M. S.; Sharma, S. Shelley; Zamick, L.
1996-10-01
Shell model calculations are performed for magnetic dipole excitations in8Be and10Be, first with a quadrupole-quadrupole interaction (Q·Q) and then with a realistic interaction. The calculations are performed both in a 0pspace and in a large space which includes all 2ℏωexcitations. In the 0pwithQ·Qwe have an analytic expression for the energies of all states. In this limit we find that in10Be theL=1S=0 scissors mode with isospinT=1 is degenerate with that ofT=2. By projection from an intrinsic state we can obtain simple expressions forB(M1) to the scissors modes in8Be and10Be. We plot cumulative sums for energy-weighted isovector orbital transitions fromJ=0+ground states to the 1+excited states. These have the structure of a low-energy plateau and a steep rise to a high-energy plateau. The relative magnitudes of these plateaux are discussed. By comparing8Be and10Be we find that contrary to the behaviour in heavy deformed nuclei,B(M1)orbitalis not proportional toB(E2). On the other hand, a sum rule which relatesB(M1) to the difference (B(E2)isoscalar-B(E2)isovector) succeeds in describing the difference in behaviours in the two nuclei. The results forQ·Qand the realistic interactions are compared, as are the results in the 0pspace and the large (0p+2ℏω) space. The Wigner supermultiplet scheme is a very useful guide in analyzing the shell model results.
Mean-field models and exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)
1998-06-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Mean-field models and exotic nuclei
International Nuclear Information System (INIS)
Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.
1998-01-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Description of rotational excitations of odd nuclei by the method of projection
International Nuclear Information System (INIS)
Mazepus, V.V.
1981-01-01
We have carried out a projection on the angular-momentum operator eigenspace for deformed nuclei. The space of the trial wave functions is chosen to be broader than in the ordinary projection approach. It is shown that this method of projection leads to the particle + rotor model but not to the cranking model. A comparison is made with the method of approximate projection
International Nuclear Information System (INIS)
Kamanin, V.V.; Karamyan, S.A.
1980-01-01
A possibility to obtain parameters of nuclear temperature and critical angular momentum for the compound nucleus production on the base of the (HI, xn) reaction excitation function description are considered for the case of weakly fissioning nuclei. Experimental data on 152 Sm( 12 C, 2n) 162 Er, 148 Nd( 16 O, 3n) 161 Er, sup(150)Nd(sup(16)O, 3-5n)sup(163-161)Er, sup(148)Nd(sup(18)O, 4-5n)sup(162,161)Er, sup(118)Sn(sup(40)Ar, 5-6n)sup(153,152)Er and sup(74)Ge(sup(84)Kr, 5-6n)sup(153,152)Er reactions are discussed. The formulae, taking into accout the distribution of compound nuclei in angular momentum and competition between channels of the neutron and γ-ray emission, are given. The formulae are applied for the description of the excitation functions, characterized by a good accuracy of the particle energy measuring. A satisfactory accordance between the calculation and experiment is achieved. The conclusion on sensitivity of the nuclear temperature values to exact evaluation of competition between the neutron and γ-ray emission channels is drawn
Investigations of collective and single-particle aspects of excitation in 1fsub(7/2) shell nuclei
International Nuclear Information System (INIS)
Styczen, J.
1976-01-01
Experimental data are presented which were obtained in spectroscopic studies on 1fsub(7/2) shell nuclei in the following reactions: 30 Si( 16 0,pn) 44 Sc, 44 Ca(p,n) 44 Sc, 42 Ca(α,p) 45 Sc, 42 Ca(α,n) 45 Sc, 45 Sc(α,pn) 47 Ti, 46 Ti(α,p) 49 V, 47 Ti(α,pn) 49 V, and 49 Ti(p,n) 49 V. Experimental reduced transition probabilities B(M1) and B(E2) have been systematically compared for inband transitions of Ksup(π)=3/2 + bands in sup(43,45,47)Sc, 45 Ti and sup(47,49)V nuclei. In the framework of the pure rotational model, intrinsic quadrupole moments |Qsub(o)| and |gsub(K)-gsub(R)| ratios have been derived. Band mixing calculations in a strong coupling model treating more correctly the j 2 term in the hamiltonian and hole excitations, have been indertaken on properties of negativeparity states in the cross-conjugate nuclei 47 Ti- 49 V and V 47 - 49 Dr. There is an overall good agreement between the experimental data and the theoretical predictions. The strong coupling model has been also used to study possible regions of stable deformation for the positive parity states of the odd nuclei in the 1fsub(7/2) shell. Band mixing calculations performed for these states have shown that the experimental data are well reproduced in the calculations with a deformation parameter corresponding to a minimum of the static potential energy. (author)
A study of the disintegration of highly excited nuclei with the Vlasov-Uehling-Uhlenbeck equation
International Nuclear Information System (INIS)
Vinet, L.; Gregoire, C.; Schuck, P.; Remaud, B.; Sebille, F.
1987-01-01
The disintegration of hot and/or compressed nuclei is studied using (i) the Vlasov equation (VE) with imposed spherical symmetry, (ii) the VE in three dimensions (3D) and (iii) the VE in three dimensions supplemented by the Uehling-Uhlenbeck collision term (VUU). We find that case (ii) is slightly more unstable with respect to disintegration compared to case (i) whereas (iii) tends to make nuclei more stable. In all cases the thermal energies (15-20 MeV per nucleon) needed to totally disintegrate a nucleus seem to be higher than those found in static and hydrodynamic calculation. On the contrary, compressional energy very much helps disintegration. Some comments on the introduction of fluctuations and corresponding fragmentation are added. (orig.)
The Chemistry of Superheavy Elements
Schädel, M
2003-01-01
The chemistry of transactinide or superheavy elements has reached element 108. Preparations are under way to leap to element 112 and beyond. The current status of this atom-at-a-time chemical research and its future perspectives are reviewed from an experimental point of view together with some of the interesting results from n -rich nuclides near and at the N=162 neutron shell. Experimental techniques and important results enlightening typical chemical properties of elements 104 through 108 are presented in an exemplary way. From the results of these experiments it is justified to place these elements in the Periodic Table of the Elements in to groups 4 through 8, respectively. However, mainly due to the influence of relativistic effects, it is no longer possible to deduce detailed chemical properties of these superheavy elements simply from this position.
Energy Technology Data Exchange (ETDEWEB)
Christillin, P [Scuola Normale Superiore, Pisa (Italy); Lipparini, E; Stringari, S [Dipartimento Matematica e Fisica, Trento, Italy
1978-09-25
A sum-rule approach is used to study the influence of surface thickness upon the splitting of dipole and isoscalar quadrupole energies in deformed nuclei. It is shown that hydrodynamic model results are recovered in the case of a deformed skin thickness. A constant skin thickness leads in the dipole case to slightly different predictions which seem in better agreement with experiments. The splitting of the isoscalar quadrupole mode is not sensitive to the surface thickness shape.
Axial asymmetry of excited heavy nuclei as essential feature for the prediction of level densities
Energy Technology Data Exchange (ETDEWEB)
Grosse, Eckart [Institute of Nuclear and Particle Physics, Technische Universitaet Dresden (Germany); Junghans, Arnd R. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Massarczyk, Ralph [Los Alamos National Laboratory, New Mexico (United States)
2016-07-01
In previous studies a considerable improvement of predictions for neutron resonance spacings by a modified back-shifted Fermi-gas model (BSFM) was found. The modifications closely follow the basic principles for a gas of weakly bound Fermions as given in text books of statistical physics: (1) Phase transition at a temperature defined by theory, (2) pairing condensation independent of A, and (3) proportionality of entropy to temperature (and thus the level density parameter) fixed by the Fermi energy. For finite nuclei we add: (4) the back-shift energy is defined by shell correction and (5) the collective enhancement is enlarged by allowing the axial symmetry to be broken. Nearly no parameter fitting is needed to arrive at a good reproduction of level density information obtained by various methods for a number of nuclei in a wide range of A and E. To that end the modified BSFM is complemented by a constant temperature approximation below the phase transition point. The axial symmetry breaking (5), which is an evidently essential feature, will also be regarded with respect to other observables for heavy nuclei.
Mixing of the odd-parity excitations in Nd, Sm and Gd nuclei with 86 and 87 neutrons
International Nuclear Information System (INIS)
Hammaren, Esko.
1978-08-01
The low- and medium-spin structure of the four nuclei 148 Sm 86 , 147 Nd 87 , 149 Sm 87 and 151 Gd 87 has been investigated experimentally and theoretically. The low-spin states of 151 Gd were obtained in the EC and β + decay of 151 Tb. The proposed level scheme, based on gamma-gamma coincidence and conversion-electron measurements, contains several new energy levels, among them a 5/2 - state at 427 keV. Nanosecond lifetimes of the states in 147 Nd were studied using the reaction 146 Nd(d,pγ) 147 Nd with 10 MeV deuterons. The reactions sup(148,150)Nd( 3 He,xn) at Esup(3sub(He)) = 19 - 27 MeV were used to study excited states in the nuclei 148 Sm and 149 Sm. Gamma-ray excitation fuctions, angular and time distributions, gamma-gamma coincidences and conversion electrons were measured. The presence of the Z = 64 closed proton core is proposed to be important for the structure of the even and odd isotones considered. Calculations performed for 148 Sm using the interacting-boson-approximation model and related to the N = 82, Z = 64 and N = 82, Z = 50 cores are discussed. The properties of the negative-parity low-spin states of the N = 87 isotones are explained with an axial particle-plus-rotor model. The calculated B(M1) and B(E2) probabilities are compared with a compilation of experimental values. Most of the spectroscopic factors of 149 Sm are reproduced well in the calculation. The consequences of nonaxiality are discussed for the fsub(7/2)- and hsub(9/2)-based excitations. The standard Meyer-ter-Vehn model calculation indicates different asymmetries for the fsub(7/2) and hsub(9/2) shells. (author)
Collisions between complex atomic nuclei
International Nuclear Information System (INIS)
Vaagen, J. S.
1977-08-01
The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)
We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{142}$Ba and $^{144}$Ba ion beams from the HIE-ISOLDE facility to enable the Coulomb excitation of the first 3$^-$ state in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^-$ state using the MINIBALL array, we can obtain the interesting transition matrix element. The results will give quantitative information about octupole correlations in these nuclei.
Analysis of some modes of multibody decays of low excited actinide nuclei
International Nuclear Information System (INIS)
Pyatkov, Yu V; Lavrova, J E; Kamanin, D V; Alexandrov, A A; Alexandrova, I A; Goryainova, Z I; Kuznetsova, E A; Strekalovsky, A O; Strekalovsky, O V; Zhuchko, V E; Mkaza, N; Malaza, V
2017-01-01
Careful studies of the fission fragments mass correlation distributions let us to reveal specific linear structures in the region of a big missing mass. It became possible due to applying of effective cleaning of this region from the background linked with scattered fragments. One of the most pronounced structure looks like a rectangle bounded by the magic nuclei. The fission events aggregated in the rectangle show a very low total kinetic energy. We propose possible scenario of forming and decay of the multi-cluster prescission configuration decisive for the experimental findings. This approach is valid as well for treating of another rare decay modes discovered in the past. (paper)
Collective excitations in neutron-rich nuclei within the model of a Fermi liquid drop
International Nuclear Information System (INIS)
Kolomietz, V.M.; Magner, A.G.
2000-01-01
We discuss a new mechanism of splitting of giant multipole resonances (GMR) in spherical neutron-rich nuclei. This mechanism is associated with the basic properties of an asymmetric drop of nuclear Fermi liquid. In addition to well-known isospin shell-model predictions, our approach can be used to describe the GMR splitting phenomenon in the wide nuclear-mass region A ∼ 40-240. For the dipole isovector modes, the splitting energy, the relative strength of resonance peaks, and the contribution to the energy-weighted sum rules are in agreement with experimental data for the integrated cross sections for photonuclear (γ, n) and (γ, p) reactions
Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force
International Nuclear Information System (INIS)
Zint, P.G.
1975-01-01
It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de
Subnanosecond lifetime measurements of excited states in nuclei far from stability
International Nuclear Information System (INIS)
Nettles, W.G.; Ramayya, A.V.; Hamilton, J.H.; Avignone, F.T. III; Carter, H.K.
1979-01-01
A system was developed to measure the lifetimes of nuclear states in the range of 0.05 to 1 nanosecond in nuclei far from stability. A Gerholm magnetic lens was placed on-line with the UNISOR mass separator to observe conversion electrons in coincidence with γ rays detected in a plastic scintillator. With this system, the half-life of the 522 keV, O + level in 186 Hg was measured to be 155 +- 70 picoseconds. Improvements in this system should make possible on-line measurements of half-lives as short as approx. = 50 picoseconds. 12 references
Subnanosecond lifetime measurements of excited states in nuclei far from stability
International Nuclear Information System (INIS)
Nettles, W.G.; Ramayya, A.V.; Hamilton, J.H.; Avignone, F.T. III; Carter, H.K.
1980-01-01
A system has been developed to measure the lifetimes of nuclear states in the range of 0.05 to 1 nanosecond in nuclei far from stability. A Gerholm magnetic lens was placed on-line with the UNISOR mass separator to observe conversion electrons in coincidence with γ rays detected in a plastic scintillator. With this system, the half-life of the 522 keV, 0 + level in 186 Hg was measured to be 155 +- 70 picoseconds. Improvements in this system should make possible on-line measurements of half-lives as short as approximately 50 picoseconds. (Auth.)
Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data
Energy Technology Data Exchange (ETDEWEB)
Grosse, E.; Massarczyk, R. [Technische Universitaet Dresden, Institute of Nuclear and Particle Physics, Dresden (Germany); Junghans, A.R. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)
2017-11-15
A recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated in energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected. (orig.)
International Nuclear Information System (INIS)
Chen Qibo; Yao Jiangming; Meng Jie; Zhang Shuangquan; Qi Bin
2010-01-01
Since the occurrence of chirality was originally suggested in 1997 by Frauendorf and Meng [1] and experimentally observed in 2001 [2] , the investigation of chiral symmetry in atomic nuclei becomes one of the most important topics in nuclear physics. More and more chiral doublet bands [3-7] in atomic nuclei [8] have been reported. There are also many discussions about the fingerprints of chirality. In the pioneer paper [1] , the two lowest near degenerate bands given by the particle-rotor model (PRM) are interpreted as chiral doublet bands. If the nucleus has chiral geometry with proper configuration, the character of chiral rotation may appear not only in the two lowest bands, but also in the other bands. Therefore, it is interesting to search for the character of chiral rotation, Based on the PRM model with configuration corresponding to A ∼ 130 mass region, we examine the theoretical spectroscopy of higher excited bands (band3, band4, band5 and band6) beyond the two lowest bands (bandl and band2), including energies, spin-alignments, projection of total angular momentum and electromagnetic transition probabilities. The results show that band3 and band4 have characters of chirality in some spin region. (authors)
Exotic nuclei: another aspect of nuclear structure
International Nuclear Information System (INIS)
Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.
2002-01-01
This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements
Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential
Energy Technology Data Exchange (ETDEWEB)
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Sciences Semlalia, Marrakesh (Morocco); Hamzavi, M. [University of Zanjan, Department of Physics, Zanjan (Iran, Islamic Republic of)
2017-07-15
In this paper, we present new analytical solutions of the Bohr Hamiltonian problem that we derived with the Tietz-Hua potential, here used for describing the β-part of the nuclear collective potential plus that of the harmonic oscillator for the γ-part. Also, we proceed to a systematic comparison of the numerical results obtained with this kind of β-potential with others which are widely used in such a framework as well as with the experiment. The calculations are carried out for energy spectra and electromagnetic transition probabilities for γ-unstable and axially symmetric deformed nuclei. In the same frame, we show the effect of the shape flatness of the β-potential beyond its minimum on transition rates calculations. (orig.)
Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation
We propose to exploit the unique capability of HIE-ISOLDE to provide post-accelerated $^{221,222}$Rn and $^{222,226,228}$Ra ion beams for the study of octupole collectivity in these nuclei. We will measure E3 transition moments in $^{222}$Rn and $^{222,226,228}$Ra in order to fully map out the variation in E3 strength in the octupole mass region with Z$\\thicksim$88 and N$\\thicksim$134. This will validate model calculations that predict different behaviour as a function of N. We will also locate the position of the parity doublet partner of the ground state in $^{221}$Rn, in order to test the suitability of odd-A radon isotopes for EDM searches.
Effect of the Pauli principle on the excited states of doubly-even deformed nuclei
International Nuclear Information System (INIS)
Jolos, R.V.; Molina, J.L.; Soloviev, V.G.
1980-01-01
It is shown that the commutation relations between the quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The doubly-even deformed nuclei with the isoscalar and isovector multipole-multipole forces are studied. The exact and approximate secular equations are derived. It is shown that the two-phonon poles in the secular equation are shifted due to the Pauli principle. These shifts are large for the two identical collective phonons. In some cases pronounced shifts are found for the poles composed of a low-lying collective phonon and a collective phonon forming the giant resonance. In other cases the shifts are not large, as a rule. (orig.) 891 FKS/orig. 892 MB
Analysis of collective excitations of rapidly rotating nuclei in an oscillator potential
International Nuclear Information System (INIS)
Akbarov, A.; Ignatyuk, A.V.; Mikhailov, I.N.; Molina, K.L.; Nazmitdinov, R.G.; Janssen, D.
1981-01-01
The spectrum of positive-parity collective excitations is analyzed in the random phase approximation for a wide range of angular momenta. The Hamiltonian of the model is taken in the form of a spherical harmonic-oscillator potential and isoscalar quadrupole forces. This model permits a description of the known data on the position of a giant quadrupole resonance for small spins and allows the variation of the resonance characteristics to be followed as the spin increases. It is shown that as the rotation velocity increases the energy of one of the branches of the resonance decreases to zero while the state remains strongly collectivized. The model also reproduces the low energy vibration mode which is related to the precession mode. The excitation energy and the B(E2) factor corresponding to this mode differ considerably from the estimates obtained in the rigid rotator model
Wobbling excitations in odd-A nuclei with high-j aligned particles
International Nuclear Information System (INIS)
Hamamoto, Ikuko
2002-01-01
Using the particle-rotor model in which one high-j quasiparticle is coupled to the core of triaxial shape, wobbling excitations are studied. The family of wobbling phonon excitations can be characterized by: (a) very similar intrinsic structure while collective rotation shows the wobbling feature; (b) strong B(E2;I→I-1) values for Δn w =1 transitions where n w expresses the number of wobbling phonons. For the Fermi level lying below the high-j shell with the most favorable triaxiality γ≅+20 deg., the wobbling phonon excitations may be more easily identified close to the yrast line, compared with the Fermi level lying around the middle of the shell with γ≅-30 deg. The spectroscopic study of the yrast states for the triaxial shape with -60 deg. <γ<0 are illustrated by taking a representative example with γ=-30 deg., in which a quantum number related with the special symmetry is introduced to help the physics understanding
Tensor force and delta excitation for the structure of light nuclei
International Nuclear Information System (INIS)
Horii, K; Myo, T; Toki, H
2014-01-01
We treat explicitly Δ(1232) isobar degrees of freedom using a bare nucleon-nucleon interaction for few-body systems, where Δ excitations can be the origin of the three-body force via the pion exchange. We adopt the Argonne two-body potential including Δ, named as AV28 potential, and study the role of Δ explicitly in two-body and three-body systems. It was found that the additional Δ states generate strong tensor correlations caused by the transitions between N and Δ states, and change tensor matrix elements largely from the results with only nucleons. We studied the effects of three-body force in the triton and obtained 0.8 MeV attraction due to the intermediate Δ excitation. Due to the lack of the total binding energy for the triton in the delta model, we further studied carefully the effects of the delta excitation in various two body channels and compared with the nucleon only model in the AV14 potential. We modified slightly the AV28 potential in the singlet S channel so that we could reproduce the triton binding energy due to the appropriate amount of the three-body force effects
Proton capture to the ground and excited states in light nuclei
International Nuclear Information System (INIS)
Anghinolfi, M.; Corvisiero, P.; Guarnone, M.; Ricco, G.; Sanzone, M.; Taiuti, M.; Zucchiatti, A.
1984-01-01
Proton capture experiments, when performed with good resolution, generally provide two different kinds of physical information; the ground-state pγ/sub o/ cross section, which is related, through the detailed balance, to the inverse photonuclear γp/sub o/ reaction; the advantage of capture experiments is the definite kinematics, corresponding to monochromatic photons in γp reactions, and a more precise beam monitoring. The pγ/sub x/ cross section to the various excited states of the final nucleus; this information is typical of capture experiments, since excited nuclear targets are not available. Many laboratories performed extensive capture experiments at excitation energies up to the GDR region, but only recently few groups (Ohio, Triangle and Genova Universities) extended the investigation to energies above the GDR. In fact more severe experimental problems arise at higher energies: since the pγ differential cross sections range in this energy region between 0.1 and 1Γb/sr, while competitive reactions have two or three order of magnitude higher cross sections, the signal-to-background ratio is very low. The data analysis strongly depends on the detector line shape, scarsely known at photon energies above 20 MeV; a very accurate knowledge of the detector response function is therefore necessary
International Nuclear Information System (INIS)
Hoffmann, B.
1984-07-01
In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de
Energy Technology Data Exchange (ETDEWEB)
Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.
1980-01-01
A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.
Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei
Directory of Open Access Journals (Sweden)
Valdré S.
2014-03-01
Indeed, in this mass region (A ~ 100 models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.
Fission dynamics of excited nuclei within the liquid-drop model
International Nuclear Information System (INIS)
Radionov, S.V.; Ivanyuk, F.A.; Kolomietz, V.M.; Magner, A.G.
2002-01-01
The temperature T scis at the scission point and the saddle-to-scission time τ scis for the fission of heated nuclei is evaluated. The classical Lagrange-like equations of motion within the liquid-drop model are used. The nuclear surface is parametrized by the two-parametric family of the Lawrence shapes. Conservative forces are defined through the free energy of the nucleus at finite temperatures. The friction tensor derived from the Navier-Stokes momentum flux tensor taking into account the boundary conditions on the nuclear surface is used. The scission line is determined from the instability condition of the nuclear shape with respect to the variations of the neck radius. The numerical solution of the dynamical equations is performed for the nucleus 236 U. The viscosity coefficient μ was obtained from the comparison of the experimental data for the kinetic energy for the fission fragments with the computed one. A significant deviation of μ, obtained by used approach, from μ of the standard hydrodynamical model is found [ru
Fission dynamics of excited nuclei within the liquid-drop model
Radionov, S V; Kolomietz, V M; Magner, A G
2002-01-01
The temperature T sub s sub c sub i sub s at the scission point and the saddle-to-scission time tau sub s sub c sub i sub s for the fission of heated nuclei is evaluated. The classical Lagrange-like equations of motion within the liquid-drop model are used. The nuclear surface is parametrized by the two-parametric family of the Lawrence shapes. Conservative forces are defined through the free energy of the nucleus at finite temperatures. The friction tensor derived from the Navier-Stokes momentum flux tensor taking into account the boundary conditions on the nuclear surface is used. The scission line is determined from the instability condition of the nuclear shape with respect to the variations of the neck radius. The numerical solution of the dynamical equations is performed for the nucleus sup 2 sup 3 sup 6 U. The viscosity coefficient mu was obtained from the comparison of the experimental data for the kinetic energy for the fission fragments with the computed one. A significant deviation of mu, obtained ...
The proton-neutron symmetry in collective excitation of medium-heavy nuclei
International Nuclear Information System (INIS)
Frank, W.
1990-01-01
In the present thesis explicit formulas were given, which allow the projection of arbitrary one- and two-particle IBM-2 operators to IBM-1 operators, i.e. the results are not confined to the usual sd or sdg space, but are valid for arbitrary spatial multipolarities of the bosons. By this projection of the Hamiltonian and the transition operators could be derived. Explicitely the sd and sdg Hamiltonian were treated. By the projection formalism the dependence of the M1 and E2 matrix elements on the boson numbers N π and N ν could be determined if their sum is constant. The nuclei with constant total boson number form a F-spin multiplet. The results were applied to the A ≅ 50 region. In order to test the correctness of the projection formulae comprehensive, numerical tests for the sd case were performed. The projection method is valid for practical application, as far as the F spin is a good quantum number. A large number of experimental data shows that the F spin is approximatively conserved. As example served the analysis of 58 Fe. (orig./HSI) [de
Kugler, E; Ratzinger, U; Wenander, F J C
2002-01-01
% IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.
Possible conservation of the K-quantum number in excited rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Bracco, A.; Bosetti, P.; Leoni, S. [Universita di Milano (Italy)]|[INFN, Milano (Italy)] [and others
1996-12-31
The {gamma}-cascades feeding into low-K and high-K bands in the nucleus {sup 163}Er are investigated by analyzing variances and covariances of the spectrum fluctuations. The study of the covariance between pairs of gated spectra reveals that the cascades feeding into the low-K bands are completely different from those feeding the high-K bands. In addition, the number of decay paths obtained analyzing the ridge and the valley in spectra gated by high-K transitions is different than that deduced from the total spectrum. This result is well reproduced with microscopic calculations of strongly interacting bands. It is concluded that the K-selection rules are effective for the excited rotational bands within the angular momentum region probed by the experiment, 30{Dirac_h} {le} I {le} 40{Dirac_h}.
Sekizawa, Kazuyuki; Wlazłowski, Gabriel; Magierski, Piotr
2017-11-01
Recently, we have reported a novel role of pairing in low-energy heavy ion reactions at energies above the Coulomb barrier, which may have a detectable impact on reaction outcomes, such as the kinetic energy of fragments and the fusion cross section [arXiv:1611.10261, arXiv:1702.00069]. The phenomenon mimics the one studied experimentally with ultracold atomic gases, where two clouds of fermionic superfluids with different phases of the pairing fields are forced to merge, inducing various excitation modes of the pairing field. Although it originates from the phase difference of the pairing fields, the physics behind it is markedly different from the so-called Josephson effect. In this short contribution, we will briefly outline the results discussed in our recent papers and explain relations with the field of ultracold atomic gases.
Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Dutia, Mayank B; Pettorossi, Vito E
2007-07-01
In rat brainstem slices, we investigated the influence of the neurosteroids tetrahydrodeoxycorticosterone (THDOC) and allopregnanolone (ALLO) on the synaptically driven and spontaneous activity of vestibular neurons, by analysing their effects on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation and on the spontaneous firing rate of MVN neurons. Furthermore, the interaction with gamma-aminobutyric acid (GABA) and glutamate receptors was analysed by using specific antagonists for GABA(A) (bicuculline), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/ kainate [2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide disodium salt (NBQX)], N-methyl-D-aspartate (NMDA) [D-(-)-2-amino-5-phosphonopentanoic acid (AP-5)] and group I metabotropic glutamate receptors (mGlu-I) [(R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA)] receptors. THDOC and ALLO evoked two opposite long-lasting effects, consisting of either a potentiation or a reduction of field potential and firing rate, which showed early and late components, occurring in conjunction or separately after neurosteroid application. The depressions depended on GABA(A) receptors, as they were abolished by bicuculline, while early potentiation involved glutamate AMPA/kainate receptors, as NBQX markedly reduced the incidence of early firing rate enhancement and, in the case of ALLO, even provoked depression. This suggests that THDOC and ALLO enhance the GABA(A) inhibitory influence on the MVN neurons and facilitate the AMPA/kainate facilitatory one. Conversely, a late potentiation effect, which was still induced after glutamate and GABA(A) receptor blockade, might involve a different mechanism. We conclude that the modulation of neuronal activity in the MVN by THDOC and ALLO, through their actions on GABA(A) and AMPA/kainate receptors, may have a physiological role in regulating the vestibular system function under normal
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.
Chemical experiments with superheavy elements.
Türler, Andreas
2010-01-01
Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.
Superheavy element research at the velocity filter ship
International Nuclear Information System (INIS)
Heinz, S.
2012-01-01
The Separator for Heavy Ion Reaction Products (SHIP) is a velocity filter located at the UNILAC accelerator of GSI Darmstadt, Germany. For about 35 years a broad experimental program in the field of superheavy element research is running at SHIP. During the last years particularly investigations in the region of the heaviest known nuclei were performed. In fusion reactions of 48 Ca + 248 Cm → 296 116* a total of six decay chains was observed which could be attributed to the evaporation residues 292 116 and 293 116. In this experiment, data measured previously on the same isotopes in Dubna were well confirmed. Besides, two attempts were made to synthesize isotopes of the still unobserved element Z = 120 in reactions of 64 Ni + 238 U and 54 Cr + 248 Cm. No events were observed in these experiments leading to one-event cross-section limits of 90 fb and 560 fb, respectively. For future superheavy element research, a new superconducting continuous wave LINAC is planned at GSI which shall deliver beam intensities of up to 1014 particles per second. In this context we are developing a next generation separator and new detection techniques
Excitation of contained modes by high energy nuclei and correlated cyclotron emission
International Nuclear Information System (INIS)
Coppi, B.; Penn, G.; Riconda, C.
1997-01-01
In experiments with fusing plasmas, enhanced radiation emission at the harmonics of the cyclotron frequency of fusion reaction products has been observed. A theory is presented that explains key features of these observations and indicates the possibility of extracting significant information about the fusion product population distribution, both in velocity space and over the plasma cross section. The considered model is consistent in particular with the fact that, in DT plasmas, the radiation peaks occur at frequencies corresponding to harmonics of the α particles cyclotron frequency Ω a evaluated at the outer edge of the plasma column, and that a transition to a open-quotes continuumclose quotes spectrum at high frequencies (ω approx-gt 7Ω α ) can be identified. In this model, the radiation is the result of the excitation of radially open-quotes containedclose quotes modes which are driven unstable by the fusion products. The modes considered to be responsible for the discrete part of the spectrum are spatially localized near the plasma edge. The radial containment, which is associated mainly with the inhomogeneity of the plasma density, is in fact a fundamental characteristic since only contained modes can grow out of a relatively weak mode-particle interaction and justify the detected emission power levels. The contained mode is a solution to a set of macroscopic equations, in which the electron motion is tied to that of the magnetic field (Hall effect). The growth rate has been evaluated considering the particle orbits in a toroidal confinement configuration and modelling the distribution function of the interacting particles with the energy at birth before slowing down occurs. The growth rate depends linearly on the α-particle density and can be larger than, or of the order of, the bounce frequency of the magnetically trapped α-particles, which can have a resonant interaction with the mode. According to the theoretical model presented, the discrete
Electronic structure theory of the superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Eliav, Ephraim, E-mail: ephraim@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel); Fritzsche, Stephan, E-mail: s.fritzsche@gsi.de [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany); Kaldor, Uzi, E-mail: kaldor@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel)
2015-12-15
High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac–Coulomb–Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental–computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.
Study of some excited states in 21Ne-21Na, 18O-18F and 15N-15O nuclei
International Nuclear Information System (INIS)
Drain, D.
1977-01-01
The study of 21 Ne- 21 Na, 18 O- 18 F and 15 N- 15 O nuclei was performed through proton capture and transfer reactions and allows to determine the spins and parities of some excited states, give the gamma deexcitation schemes of these levels, compute the neutron and proton reduced width γ 2 sub(n) and γ 2 sub(p). The levels studied are: in 21 Na 4.15 20 Ne(p,p), (p,p'), (p,p'γ) and (pγ) reactions) and in 21 Ne: E(exc)=4.73, 5.69 and 5.78 MeV ( 20 Ne (p,p) reaction); in 18 O: E(exc) 17 O(d,p) reaction); in 15 O: 8.92 MeV doublet and 8.98 MeV level (angular correlation 14 N(p,γγ) and in 15 N: 9.05 14 N(d,p) reaction). A comparison with theoretical results is discussed and analog states are pointed out [fr
Exotic nuclei in self-consistent mean-field models
International Nuclear Information System (INIS)
Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.
1999-01-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics
True ternary ﬁssion and quasifission of superheavy nuclear systems
Directory of Open Access Journals (Sweden)
Greiner Walter
2011-10-01
Full Text Available We found that a true ternary ﬁssion with formation of a heavy third fragment (a new kind of radioactivity is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The three-body quasifission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by detection of two coincident lead-like fragments in low-energy U+U collisions.
Energy Technology Data Exchange (ETDEWEB)
Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)
2016-01-15
In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)
International Nuclear Information System (INIS)
Maj, A.
2000-01-01
This work entitled ''Properties of hot and fast rotating atomic nuclei studied by means of Giant Dipole Resonance in exclusive experiments'', is the habilitation thesis of dr. Adam Maj. It consists of the review (in Polish) of performed research and of attached reprints from 16 original publications (in English) which A. Maj is the main or one of the main authors. All the studies were performed in collaboration with the groups from Milano and Copenhagen, using the HECTOR array equipment (described in chapter V). The Giant Dipole Resonance couples to the quadrupole degrees of freedom of the nucleus, and therefore constitutes a unique probe to test the shapes of atomic nuclei. In addition, the γ decay of the GDR from highly excited nuclei is a very fast process, it can compete with other modes of nuclear decay, and therefore can provide the information on the initial stages of excited nuclei. The presented investigations were concentrated on the following aspects: the shapes and thermal shape fluctuations, the origin of the behaviour of the GDR width, the properties of some exotic nuclei (Jacobi shapes, superdeformation, superheavy nuclei) and on ''entrance channel'' effects. The GDR γ decay was measured for nuclei with very different masses: from light nuclei with A≅45, through A≅110, 145,170,190, up to superheavy nuclei with A≅270. The shapes of hot nuclei are not fixed but fluctuate. The extent of these fluctuations and their influence on the measured quantities (GDR strength function, angular distribution and effective shape) is discussed in chapter VI.1. The observed width of the GDR is found to arise from the interplay of two effects: the thermal shape fluctuations, which are controlled by the nuclear temperature, and the deformation effects, controlled by the angular momentum. The ''collisional damping'' effect, which should influence the intrinsic GDR width, was found to be negligible (chapter VI.2). The GDR γ decay from hot superheavy nucleus 272 Hs
Nuclear spectroscopy with Geant4. The superheavy challenge
Sarmiento, Luis G.
2016-12-01
The simulation toolkit Geant4 was originally developed at CERN for high-energy physics. Over the years it has been established as a swiss army knife not only in particle physics but it has seen an accelerated expansion towards nuclear physics and more recently to medical imaging and γ- and ion- therapy to mention but a handful of new applications. The validity of Geant4 is vast and large across many particles, ions, materials, and physical processes with typically various different models to choose from. Unfortunately, atomic nuclei with atomic number Z > 100 are not properly supported. This is likely due to the rather novelty of the field, its comparably small user base, and scarce evaluated experimental data. To circumvent this situation different workarounds have been used over the years. In this work the simulation toolkit Geant4 will be introduced with its different components and the effort to bring the software to the heavy and superheavy region will be described.
Dissipative dynamics of the synthesis of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Wada, Takahiro; Aritomo, Y.; Tokuda, T.; Okazaki, K.; Ohta, M. [Konan Univ., Kobe (Japan). Dept. of Physics; Abe, Y.
1997-07-01
Fusion-fission process in heavy systems are analyzed by Smoluchowski equation taking into account the temperature dependent shell correction energy. The evaporation residue cross sections of superheavy elements have been shown to have an optimum value at a certain temperature, due to the balance between the diffusibility for fusion at high temperature and the restoration of the shell correction energy against fission at low temperature. The isotope dependence of the evaporation residue cross section is found to be very strong. Neutron rich compound system with small neutron separation energy is favorable for larger cross section because of the quick restoration of the shell correction energy. The Z-dependence is discussed for the formation of the compound nuclei with Z=102 to Z=114. (author)
Cheoun, Myung-Ki; Ha, Eunja
2013-07-01
With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76Ge,82Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states.
International Nuclear Information System (INIS)
Cheoun, Myung-Ki; Ha, Eunja
2013-01-01
With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76 Ge, 82 Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states
Chemistry of the superheavy elements.
Schädel, Matthias
2015-03-13
The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Barloutaud, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-06-15
The following nuclei were excited by protons of 5 MeV maximum energy: {sup 182}W - {sup 184}W - {sup 186}W - {sup 186}Os - {sup 188}Os - {sup 189}Os - {sup 190}Os - {sup 192}Os - {sup 194}Pt - {sup 196}Pt - {sup 198}Pt - {sup 198}Hg - {sup 200}Hg - {sup 202}Hg - {sup 204}Hg - {sup 206}Pb. The reduced probabilities of the various transitions were deduced from the coulomb excitation cross-section measurements. For some even-even nuclei two 2 + levels were excited. The properties of the excited levels are interpreted in terms of the collective model. (author) [French] Au moyen de protons d'energie inferieure a 5 MeV, l'excitation coulombienne des noyaux suivants a ete etudiee: {sup 182}W - {sup 184}W - {sup 186}W - {sup 186}Os - {sup 188}Os - {sup 189}Os - {sup 190}Os - {sup 192}Os - {sup 194}Pt - {sup 196}Pt - {sup 198}Pt - {sup 198}Hg - {sup 200}Hg - {sup 202}Hg - {sup 204}Hg - {sup 206}Pb. La mesure de la section efficace d'excitation coulombienne a permis de deduire les -probabilites reduites des diverses transitions observees. Dans certains noyaux pair-pair, deux niveaux de caractere 2 + ont ete excites. L'interpretation de ces niveaux en termes de niveaux de rotation et de niveaux de vibration a l'aide du modele collectif est discutee. En particulier, la variation des proprietes de ces niveaux avec la deformation nucleaire permet de fixer des limites a la validite des diverses hypotheses entrant dans le modele collectif. (auteur)
Prelas, M. A.; Hora, H.; Miley, G. H.
2014-07-01
Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.
Butler, P; Cederkall, J A; Reiter, P; Wiens, A; Blazhev, A A; Kruecken, R; Voulot, D; Kalkuehler, M; Wadsworth, R; Gernhaeuser, R A; Hess, H E; Holler, A; Finke, F; Leske, J; Huyse, M L; Seidlitz, M
We propose to study the properties of neutron-rich nuclei $^{28,29,30}$Na via Coulomb excitation experiments using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Reliable B(E2,0$^{+}$ $\\rightarrow$ 2$^{+}$) values for $^{30,32}$Mg were obtained at ISOLDE. Together with recent new results on $^{31}$Mg, collective and single particle properties are probed for Z=12 at the N=20 neutron closed shell, the 'island of inversion'. We would like to extend this knowledge to the neighbouring $^{28,29,30}$Na isotopes where a different transition from the usual filling of the neutron levels into the region with low lying 2p-2h cross shell configurations is predicted by theory. Detailed theoretical predictions on the transition strength in all three Na nuclei are awaiting experimental verification and are the subject of this proposal. At REX beam energies of 3.0 MeV /nucleon the cross-sections for Coulomb excitation are sufficient. Moreover the results from the close-by $^{30,31,32}$Mg nuclei de...
Energy Technology Data Exchange (ETDEWEB)
Manohar, Swarnima; Scoville, Nick [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)
2017-02-01
We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO{sup +}, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecular gas is concentrated between the nuclei rather than on them. We calculated molecular H{sub 2} densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO{sup +} in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H{sub 2} volume densities are ∼5 × 10{sup 4} cm{sup −3} in the Arp 220 nuclei and ∼10{sup 4} cm{sup −3} in NGC 6240.
Energy Technology Data Exchange (ETDEWEB)
Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)
2014-12-01
The dynamics of fission of excited nuclei has been studied by solving four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. The projection of the total spin of the compound nucleus to the symmetry axis, K, was considered as the fourth dimension in Langevin dynamical calculations. The average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy have been calculated in a wide range of fissile parameter for compound nuclei {sup 162}Yb, {sup 172}Yb, {sup 215}Fr, {sup 224}Th, {sup 248}Cf, {sup 260}Rf and results compared with the experimental data. Calculations were performed with a constant dissipation coefficient of K, {sub γK} (MeV zs){sup -1/2}, and with a non-constant dissipation coefficient. Comparison of the theoretical results for the average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy with the experimental data showed that the results of four-dimensional Langevin equations with a non-constant dissipation coefficient are in better agreement with the experimental data. Furthermore, the difference between the results of two models for compound nuclei with low fissile parameter is low whereas, for heavy compound nuclei, is high. (orig.)
Fusion probability and survivability in estimates of heaviest nuclei production
Directory of Open Access Journals (Sweden)
Sagaidak Roman N.
2012-02-01
Full Text Available Production of the heavy and heaviest nuclei (from Po to the region of superheavy elements close to Z=114 and N=184 in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing model coupled with the statistical model (SM of de-excitation of a compound nucleus (CN. Excitation functions for fission and evaporation residues (ER measured in very asymmetric combinations can be described rather well. One can scale and fix macroscopic (liquid-drop fission barriers for nuclei involved in the calculation of survivability with SM. In less asymmetric combinations, effects of fusion suppression caused by quasi-fission (QF are starting to appear in the entrance channel of reactions. QF effects could be semi-empirically taken into account using fusion probabilities deduced as the ratio of measured ER cross sections to the ones obtained in the assumption of absence of the fusion suppression in corresponding reactions. SM parameters (fission barriers obtained at the analysis of a very asymmetric combination leading to the production of (nearly the same CN should be used for this evaluation.
Silicon vertex detector for superheavy elements identification
Directory of Open Access Journals (Sweden)
Bednarek A.
2012-07-01
Full Text Available Silicon vertex detector for superheavy elements (SHE identification has been proposed. It will be constructed using very thin silicon detectors about 5 μm thickness. Results of test of 7.3 μm four inch silicon strip detector (SSD with fission fragments and α particles emitted by 252Cf source are presented
Alpha-Decay Half-Lives of Superheavy Nuclei
International Nuclear Information System (INIS)
Budaca, A. I.; Silisteanu, I.; Silisteanu, A. O.; Anghel, C. I.
2010-01-01
Half-lives given by self-consistent models for the α-clustering and resonance scattering are calculated and compared with data and empirical estimates. The major influence of the pairing, deformed shell closures and screening corrections is evidenced in the systematics of half-lives and provides a convenient basis for the interpretation of observed trends of the data and for prediction of new results. The very small widths of α-resonances observed experimentally in fusion-evaporation reactions, are interpreted as resonance levels of radioactive products, and such a correlation contributes directly to the study of the nuclear structure on the basis of decay data.
Probable cluster decays from 298-336126 superheavy nuclei
International Nuclear Information System (INIS)
Priyanka, B.; Santhosh, K.P.
2015-01-01
The present paper deals with an investigation on the cluster decay of even clusters 4 He, 8,10 Be, 14 C, 18,20,22 O , 22,24,26 Ne, 28,30 Mg and odd clusters 15 N, 23 F, 25 Ne, 29 Mg from both the even-even and even-odd isotopes of Z=126, which has helped in predicting the neutron magicity beyond N=126
Superheavy elements and decay properties
Indian Academy of Sciences (India)
chains from 294118 and, it can be seen that our predictions on the α decay ... The Coulomb and proximity potential model for deformed nuclei (CPPMDN) .... Here the half-life is in seconds, Q-value is in MeV and Z is the atomic number of the.
Superheavy elements and decay properties
Indian Academy of Sciences (India)
2015-08-04
Aug 4, 2015 ... The decay properties of the isotopes of = 115, 117, 118 and 119 have been extensively investigated, focussing on the newly synthesized isotopes within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The half-lives have also been evaluated using the Viola–Seaborg ...
Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135
Santhosh, K. P.; Nithya, C.
2018-05-01
The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.
Existence of halo-structure for the first excited levels of both the 13C-13N and the 17O-17F nuclei
International Nuclear Information System (INIS)
Gridnev, K.A.; Novatskij, B.G.
2003-01-01
From calculated the Coulomb shifts difference for the carbon and oxygen isotopes analog levels the valent nucleons the orbit radius values R C and the density parameter r 0 are presented. It is shown that the density parameter values are slightly varying for the all analog nuclear pairs. The exception constitutes the first excited states of the 13 C- 13 N and the 17 O- 17 F nuclei, whose valent nucleons populate the 2s-shell (L=0). These states one can to consider as structures with brightly distinguished of the ( 13 C * , 17 O * ) neutron halo and the( 13 N * , 17 F * ) proton halo
International Nuclear Information System (INIS)
Benlliure, J.; Armbruster, P.; Bernas, M.
2001-09-01
197 Au(800 A MeV)-on-proton collisions are used to investigate the fission dynamics at high excitation energy. The kinematic properties together with the isotopic identification of the fission fragments allow to determine the mass, charge and excitation energy of the fissioning nucleus at saddle. The comparison of these observables and the measured total fission cross section with model calculations evidences a clear hindrance of fission at high excitation energy that can be explained in terms of nuclear dissipation. Assuming a statistical evaporation for other de-excitation channels than fission, an estimated value of the transient time of fission of (3 ± 1) . 10 -21 s is obtained. (orig.)
A novel approach to the island of stability of super-heavy elements search
Directory of Open Access Journals (Sweden)
Wieloch A.
2016-01-01
Full Text Available It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.
2002-01-01
We propose to perform Coulomb excitation experiments of neutron-rich nuclei in the vicinity of $^{68}$Ni towards $^{78}$Ni using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Major changes in the structure of the atomic nucleus are expected around the N = 40 subshell closure. Recent B(E2) measurements suggested that $^{68}$Ni behaves like a doubly magic nucleus while neutron-rich Zn isotopes with N>38 exhibit a sudden increase of B(E2) values which may be the signature of deformation. We would like to check and test these predictions for neutron-rich nuclei in the vicinity of N = 40 and N = 50 shell closures like $^{72}$Zn, $^{74}$Zn, $^{76}$Zn, $^{68}$Ni, $^{70}$Ni. Our calculations show that an energy upgrade from 2.2 to 3 MeV/nucleon will be of crucial importance for a part of our study while some nuclei can still be very efficiently studied at an energy of 2.2 MeV/nucleon. Therefore, to perform our experiment in an efficient way, we request 21 shifts of beam time before the ene...
Superheavy contributions to FCNC in the flipped SU(5) x U(1)
Energy Technology Data Exchange (ETDEWEB)
Gabbiani, F.; Masiero, A.
1988-08-04
In the supersymmetric GUT's the presence of the superheavy fields yields new contributions to flavour-changing neutral-current effects at low energy. We analyse this phenomenon in the context of the flipped SU(5) x U(1) superstring (-inspired) model. We show that possibly sizeable flavour leptonic changes (..mu.. -> e..gamma.., ..mu.. -> eeanti e, ..mu..-e conversion in nuclei) are generated. K-anti K, B-anti B mixings and b -> s..gamma.. constrain new couplings at the superlarge scale, which are unrelated to the standard Yukawa coefficients.
Status of the low-energy super-heavy element facility at RIKEN
Energy Technology Data Exchange (ETDEWEB)
Schury, P., E-mail: schury@riken.jp [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M.; Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Kaji, D. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Kimura, S. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Morimoto, K.; Haba, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Jeong, S. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Koura, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Miyatake, H. [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Morita, K.; Reponen, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Sonoda, T.; Takamine, A. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Dept. Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States)
2016-06-01
In order to investigate nuclei produced via fusion–evaporation reactions, especially super-heavy elements (SHE), we have begun construction of a facility for conversion of fusion–evaporation residues (EVR) to low-energy beams. At the base of this facility is a small cryogenic gas cell utilizing a traveling wave RF-carpet, located directly following the gas-filled recoil ion separator GARIS-II, which will thermalize EVRs to convert them into ion beams amenable to ion trapping. We present here the results of initial studies of this small gas cell.
Formation and de-excitation of very hot nuclei in Ar + Au collisions at 30 and 60 MeV/nucleon
International Nuclear Information System (INIS)
Hamdani, T.
1993-10-01
The study of the formation and the de-excitation of very hot nuclei by using collisions between Ar and Au at 30 and 60 MeV/u is presented in this work. The detection system consisted of three multidetectors for fragments (DELF) or light particles (TONNEAU+MUR) plus two groups of four detectors (Silicium, CsI). This system and the triggering conditions adopted allowed the selection of two classes of events: semiperipheral collisions and central collisions. The studies presented using global variables, show clearly that the fragments produced in the reactions are emitted from an equilibrated source. Hence, an event generator based on the statistical model was employed to verify the method of calculation of the excitation energy of the source. It also provides information concerning experimental biases and the sensitivity of some of the global variables used in the experimental analysis. A detailed study of the temperatures of hot nuclei is presented using the data recorded with the CsI detectors. The temperatures measured reached up to 7 MeV for the reaction at 60 MeV/u. (orig.)
Temperature and excitation energy of hot nuclei in the reaction of 40Ar+197Au at 25 MeV/nucleon
International Nuclear Information System (INIS)
Wu, H.; Jin, G.; Li, Z.; Dai, G.; Qi, Y.; He, Z.; Luo, Q.; Duan, L.; Wen, W.; Zhang, B.
1997-01-01
The coincidence measurements between heavy fission fragments and light charged particles with Z ≤2 were carried out for the 40 Ar+ 197 Au reaction at 25 MeV/nucleon, to study the properties of hot nuclei in heavy ion induced reactions. The linear momentum transfers (LMTs) were deduced from the folding angle and the time-of-flight difference between two fission fragments of heavy residues. The relationship of the nuclear temperature (slope parameter of the energy spectrum) and the excitation energy was determined independently from the measurement of the kinetic energy spectra in the frames of the emitting sources and from the LMT analysis. Both the temperature and the excitation energy increase with decreasing impact parameter, which suggests that a plateau temperature of 5.5 MeV is reached at an excitation energy of 3.1 MeV/nucleon. The result was also compared with various statistical models that explain the plateau by the multifragmentation process, where the excitation energy is assumed to be stored in compression and expansion effects. (orig.)
Electronic structure and chemical properties of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Pershina, V [Gesellschaft fuer Schwerionenforschung (GSI), Helmholtzzentrum fuer Schwerionenforschung Gmbh (Germany)
2009-12-31
Relativistic electronic structure calculations of superheavy elements (Z>=104) are analyzed. Preference is given to those related to experimental research. The role of relativistic effects is discussed.
The delta in nuclei. Experiments
International Nuclear Information System (INIS)
Roy-Stephan, M.
1989-01-01
Experimental aspects of the Δ excitation will be presented. The Δ excitation in nuclei will be compared to the free Δ excitation. Various probes will be reviewed and their specific features will be underlined [fr
International Nuclear Information System (INIS)
Gillet, V.; Giraud, B.; Rho, M.
1976-01-01
The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr
Superheavy Elements Challenge Experimental and Theoretical Chemistry
Zvára, I
2003-01-01
When reflecting on the story of superheavy elements, the an experimenter, acknowledges the role, which the predictions of nuclear and chemical theories have played in ongoing studies. Today, the problems of major interest for experimental chemistry are the studies of elements 112 and 114 including their chemical identification. Advanced quantum chemistry calculations of atoms and molecules would be of much help. First experiments with element 112 evidence that the metal is much more volatile and inert than mercury.
International Nuclear Information System (INIS)
Ayoub, N.Y.
1980-02-01
The ground and some excited O + (J=O, T=O positive parity) energy levels of closed-shell nuclei are examined, in an oscillator basis, using matrix techniques. The effect of states outside the mixed (O+2(h/2π)ω). model space in 4 He (namely configurations at 4(h/2π)ω excitation) are taken into account by renormalization using the generalized Rayleigh-Schroedinger perturbation expressions for a mixed multi-configurational model space, where the resultant non-symmetric energy matrices are diagonalized. It is shown that the second-order renormalized O + energy spectrum is close to the corresponding energy spectrum obtained by diagonalizing the O+2+4(h/2π)ω 4 He energy matrix. The effect, on the ground state and the first few low-lying excited O + energy levels, of renormalizing certain parts of the model space energy matrix up to second order in various approximations is also studied in 4 He and 16 O. It is found that the low-lying O + energy levels in these various approximations behave similarly in both 4 He and 16 O. (author)
Partial level density of the n-quasiparticle excitations in the nuclei of the 40≤A≤200 region
International Nuclear Information System (INIS)
Sukhovoj, A.M.; Khitrov, V.A.
2005-01-01
Level density and radiative strength functions are obtained from the analysis of two-step cascades intensities following the thermal neutron capture. The data on level density are approximated by the sum of the partial level densities corresponding to n-quasiparticle excitations. The most probable values of the collective enhancement factor of the level density are found together with the thresholds of the next Cooper nucleons pair breaking. These data allow one to calculate the level density of practically any nucleus in given spin window in the framework of model concepts, taking into account all known nuclear excitation types. The presence of an approximation results discrepancy with theoretical statements specifies the necessity of rather essentially developing the level density models. It also indicates the possibilities to obtain the essentially new information on nucleon correlation functions of the excited nucleus from the experiment
International Nuclear Information System (INIS)
Mukherjee, G.; Sharma, S.K.
1984-03-01
A microscopic description of the recent data on the Coulomb form factors for the Osub(gnd) + →2 2 + transitions in the nuclei 48 Ti and 50 Cr is attempted in terms of the prolate and oblate intrinsic states resulting from realistic effective interactions operating in the 2p-1f shell. The results for the higher momentum-transfer region show dramatic improvements compared to the form factor estimates obtained in some recent shell model calculations involving the fsub(7/2)sup(n)+fsub(7/2)sup(n-1)psub(3/2) configurations. (author)
Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations
Energy Technology Data Exchange (ETDEWEB)
Gregor, E.T.; Scheck, M.; Chapman, R.; Gaffney, L.P.; Keatings, J.; Mashtakov, K.R.; O' Donnell, D.; Smith, J.F.; Spagnoletti, P.; Wiseman, C. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); SUPA, Scottish Universities Physics Alliance, Glasgow (United Kingdom); Thuerauf, M.; Werner, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2017-03-15
For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment. (orig.)
Fusion probability and survivability in estimates of heaviest nuclei production
International Nuclear Information System (INIS)
Sagaidak, Roman
2012-01-01
A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation
Development of a model for the description of highly excited states in odd-A deformed nuclei
International Nuclear Information System (INIS)
Malov, L.A.; Soloviev, V.G.
1975-01-01
An approximate method is suggested for solution of the set of equations, obtained earlier for describing the structure of intermediate-and high-excitation states within the framework of the model taking into account quasiparticle-phonon interaction. The analysis is conducted for the case of an odd deformed nucleus, when several one-quasiparticle components are simultaneously taken into account
Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136
Santhosh, K. P.; Nithya, C.
2018-01-01
The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.
Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei
Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.
2018-02-01
Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely
Energy Technology Data Exchange (ETDEWEB)
Alexeev, Victor; Kalinina, Galina; Pavlova, Tatyana, E-mail: aval37@mail.ru, E-mail: gakalin@mail.ru, E-mail: pavlova4tat@mail.ru [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., Moscow 119991 (Russian Federation); and others
2016-10-01
The aim of the OLIMPIYA experiment is to search for and identify traces of heavy and superheavy nuclei of galactic cosmic rays (GCR) in olivine crystals from stony–iron meteorites serving as nuclear track detectors. The method is based on layer-by-layer grinding and etching of particle tracks in these crystals. Unlike the techniques of other authors, this annealing-free method uses two parameters: the etching rate along the track ( V {sub etch}) and the total track length ( L ), to identify charge Z of a projectile. A series of irradiations with different swift heavy ions at the accelerator facilities of GSI (Darmstadt) and IMP (Lanzhou) were performed in order to determine and calibrate the dependence of projectile charge on V {sub etch} and L . To date, one of the most essential results of the experiment is the obtained charge spectrum of GCR nuclei within the range of Z > 40, based on about 11.6 thousand processed tracks. As the result of data processing, 384 nuclei with charges Z ≥ 75 have been identified, including 10 nuclei identified as actinides (90 < Z < 103). Three tracks were identified to be produced by nuclei with charges 113 < Z < 129. Such nuclei may be part of the Island of Stability of transfermium elements.
New approach to description of fusion-fission dynamics in super-heavy element formation
International Nuclear Information System (INIS)
Zagrebaev, V.I.
2002-01-01
A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)
International Nuclear Information System (INIS)
Schnier, C.
2001-01-01
There are many indications for the existence of superheavy elements (SHE) in the Earth's crust. The appropriate detection methods are X-ray fluorescence (XRF) using the high energy synchrotron radiation and the mass spectrometry. The characteristic X-rays of each element up to Z >120 (corresponding binding energy of the K-electrons E b >230 keV) can be precisely excited with synchrotron XRF. Up to now, the XRF with high energy photons has never been applied to the quest for SHE. New methods of mass spectrometry eg using resonance ionization (RIMS) are promising to detect unambiguously atomic masses about 300 in solid matrices. It is proposed to restart the quest for SHE in the nature. Finding a SHE in the Earth's crust would be very important, because of what it will tell us about the origin of the elements eg about the nucleosynthesis during a super nova explosion, the structure of the atomic nuclei and the site of SHE in the periodic table of elements. (orig.) [de
International Nuclear Information System (INIS)
Wloch, Marta; Gour, Jeffrey R; Piecuch, Piotr; Dean, David J; Hjorth-Jensen, Morten; Papenbrock, Thomas
2005-01-01
We discuss large-scale ab initio calculations of ground and excited states of 16 O and preliminary calculations for 15 O and 17 O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we are able to obtain the virtually converged results for 16 O and promising results for 15 O and 17 O at the level of two-body interactions. The calculated properties other than binding and excitation energies include charge radius and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to seven or eight major oscillator shells, for which nontruncated shell-model calculations for nuclei with A = 15-17 active particles are presently not possible
Theoretical Predictions of Cross-Sections of the Super-Heavy Elements
Bouriquet, B.; Kosenko, G.; Abe, Y.
The evaluation of the residue cross-sections of reactionssynthesising superheavy elements has been achieved by the combination of the two-step model for fusion and the evaporation code (KEWPIE) for survival probability. The theoretical scheme of those calculations is presented, and some encouraging results are given, together with some difficulties. With this approach, the measured excitation functions of the 1n reactions producing elements with Z=108, 110, 111 and 112 are well reproduced. Thus, the model has been used to predict the cross-sections of the reactions leading to the formation of the elements with Z=113 and Z=114.
Theoretical predictions of cross-sections of the super-heavy elements
International Nuclear Information System (INIS)
Bouriquet, B.; Abe, Y.; Kosenko, G.
2004-01-01
The evaluation of the residue cross-sections of reactions synthesising superheavy elements has been achieved by the combination of the two-step model for fusion and the evaporation code (KEWPIE) for survival probability. The theoretical scheme of those calculations is presented, and some encouraging results are given, together with some difficulties. With this approach, the measured excitation functions of the 1n reactions producing elements with Z = 108, 110, 111 and 112 are well reproduced. Thus, the model has been used to predict the cross-sections of the reactions leading to the formation of the elements with Z = 113 and Z = 114. (author)
International Nuclear Information System (INIS)
Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.
1996-01-01
Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed
Mean-field models and superheavy elements
International Nuclear Information System (INIS)
Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.
2001-03-01
We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)
Superheavy Element Synthesis And Nuclear Structure
International Nuclear Information System (INIS)
Ackermann, D.; Block, M.; Burkhard, H.-G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Mann, R.; Maurer, J.; Antalic, S.; Saro, S.; Venhart, M.; Hofmann, S.; Leino, M.; Uusitalo, J.; Nishio, K.; Popeko, A. G.; Yeremin, A. V.
2009-01-01
After the successful progress in experiments to synthesize superheavy elements (SHE) throughout the last decades, advanced nuclear structure studies in that region have become feasible in recent years thanks to improved accelerator, separation and detection technology. The means are evaporation residue(ER)-α-α and ER-α-γ coincidence techniques complemented by conversion electron (CE) studies, applied after a separator. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the studies of K-isomers observed in 252,254 No and in 270 Ds.
Electronic structure and properties of superheavy elements
International Nuclear Information System (INIS)
Pershina, V.
2015-01-01
Spectacular developments in the relativistic quantum theory and computational algorithms in the last few decades allowed for accurate calculations of properties of the superheavy elements (SHE) and their compounds. Often conducted in a close link to the experimental research, these investigations helped predict and interpret an outcome of sophisticated and expensive experiments with single atoms. Most of the works, particularly those related to the experimental studies, are overviewed in this publication. The role of relativistic effects being of paramount importance for the heaviest elements is elucidated.
International Nuclear Information System (INIS)
Janssens, R.V.F.; Khoo, T.L.
1991-01-01
Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states
International Nuclear Information System (INIS)
Kotthaus, Tanja
2010-01-01
In this thesis five heavy deformed isotopes from the mass region A≥230, namely 234 U, 233 U, 231 Th, 230 Pa and 232 Pa, were investigated by means of deuteron-induced neutron transfer reactions. The even-even isotope 234 U has been studied with the 4π-γ-spectrometer MINIBALL at the Cologne Tandem accelerator. Excited nuclei in the isotope 234 U were produced using the reaction 235 U(d,t) at a beam energy of 11 MeV. The target thickness was 3.5 mg/cm 2 . The analysis of the γγ-coincidence data yielded a reinterpretation of the level scheme in 12 cases. Considering its decay characteristics, the 4 + state at an excitation energy of 1886.7 keV is a potential candidate for a two-phonon vibrational state. The isotopes 233 U, 231 Th, 230 Pa and 232 Pa were investigated at the Munich Q3D spectrometer. For each isotope an angular distribution with angles between 5 and 45 were measured. In all four cases the energy of the polarized deuteron beam (vector polarization of 80%) was 22 MeV. As targets 234 U (160 μg/cm 2 ), 230 Th (140 μg/cm 2 ) and 231 Pa (140 μg/cm 2 ) were used. The experimental angular distributions were compared to results of DWBA calculations. For the odd isotope 233 U spin and parity for 33 states are assigned and in the other odd isotope 231 Th 22 assignments are made. The excitation spectra of the two odd-odd isotopes 230 Pa and 232 Pa were investigated for the first time. For the isotope 230 Pa 63 states below an excitation energy of 1.5 MeV are identified. Based on the new experimental data the Nilsson configuration of the ground state is either 1/2[530] p -5/2[633] n or 1/2[530] p +3/2[631] n . In addition 12 rotational bands are proposed and from this six values for the GM splitting energy are deduced as well as two new values for the Newby shift. In the other odd-odd isotope 232 Pa 40 states below an excitation energy of 850 keV are observed and suggestions for the groundstate band and its GM partner are made. From this one GM splitting
Superheavy element chemistry. Achievements and perspectives
International Nuclear Information System (INIS)
Schaedel, M.
2007-01-01
Superheavy elements have been synthesized and chemically characterized one-atom-at-a-time up to element 108. Presently, the quest for element 112 is one of the hottest topics in this field. The transactinide elements 104 to 108 are members of group 4 to 8 of the Periodic Table and element 112 belongs into group 12. Chemical properties of some of these elements, like elements 104 and 105, show stunning deviations from simple extrapolations within their respective group while others exhibit great similarities with their lighter homologues elements. First experiments to investigate seaborgium (Sg, element 106) in aqueous solution were performed. Again, in large international collaborations at the GSI, several gas-phase chemistry experiments were performed with hassium (Hs, element 108). Recently, the highly efficient and very clean separation of Hs was applied for nuclear studies of various Hs nuclides investigating their cross section and their nuclear decay properties in the region of the doubly-magic 270 Hs (Z=108, N=162). To overcome certain limitations of the presently used on-line chemical separations the new TransActinide Separation and Chemistry Apparatus (TASCA) - with a gas-filled recoil separator as a front-end tool - was designed and built at the GSI in a collaborative effort. Presently in its commissioning phase, TASCA shall be a key instrument for a big leap into quantitatively and qualitatively new experiments in the region of superheavy elements. (author)
Gravitational production of superheavy dark matter
International Nuclear Information System (INIS)
Chung, Daniel J. H.; Crotty, Patrick; Kolb, Edward W.; Riotto, Antonio
2001-01-01
The dark matter in the universe can be in the form of a superheavy matter species (wimpzilla). Several mechanisms have been proposed for the production of wimpzilla particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of wimpzilla gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega X h 2 ∼(M X /10 11 GeV) 2 (T RH /10 9 GeV), so long as M X I , where M X is the wimpzilla mass, T RH is the reheat temperature, and H I is the expansion rate of the universe during inflation
International Nuclear Information System (INIS)
Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.
1991-01-01
The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters
Fission times studies of the Z=124 superheavy nucleus by X-ray fluorescence
International Nuclear Information System (INIS)
Airiau, Maud
2016-01-01
Since the 1960's nuclear structure model have predicted the existence of an island of stability of superheavy elements. It should be located around the next magic numbers expected at N=172 or 184 and between Z=114 and 126 depending on the model. Very high fission barrier of a few MeV are predicted to be generated by microscopic effects for those nuclei for which large fission times distributions extended to very high fission times are induced. Fission time measurements of the superheavy element Z=124 have been made by us using the X-ray fluorescence technique, a method based on the filling of inner-shell electronic vacancies created during the collision leading to the formation of the compound nucleus. The aim of this experiment was to detect in coincidence both fission fragments and characteristic X-rays from the Z=124, created by the reaction 238 U+ 70,76 Ge. The main difficulty was to identify those X-rays due to the fact that gamma-rays from fission fragments were emitted in the same energy range, which affected our photon multiplicities for any fragment selection. This new difficulty brings an important limitation to the study of some particular superheavy elements by the X-ray fluorescence method. K X-rays spectra have been simulated using MCDF (Multi-Configuration-Dirac-Fock) and then compared to the experimental ones in order to get a maximal K X-ray multiplicity compatible with our data. The extracted results were about 6-7% for 76 Ge and from 12 to 14% for 70 Ge. Those values remain compatible with the experimental signature of long lifetime component observed for the same system but using a blocking technique in single crystals. (author) [fr
International Nuclear Information System (INIS)
Angelique, J.C.; Orr, N.A.
1997-01-01
The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed
International Nuclear Information System (INIS)
Mueller, Peter
2010-01-01
We discuss the great theoretical insights on nuclear stability that emerged in the late 1960s, especially the realization that observable nuclei might include a superheavy island 20+ protons beyond uranium with 92 protons. However, we now realize that the early models were not sufficiently quantitative to yield definite conclusions. Further groundwork for such models was laid in the 1970s. Around 1980 more quantitative, global and universal models appeared and together with experimental advances the mapping of the superheavy island, or as it turns out now, continent started in earnest. We review these early developments and conclude with some examples of our current insights. In particular, 1) some theoretical models do have predictive capabilities for nuclear properties such as ground-state masses, shapes, and half-lives 10 or more neutrons and protons away from previously known regions and 2) the superheavy island may be a continent connected to the actinides by a narrow land bridge; the continent itself may extend from about proton number Z = 110 to Z = 120 or slightly beyond. (author)
Frontiers of heavy-ion physics and superheavy elements
International Nuclear Information System (INIS)
Muenzenberg, G.
2003-01-01
This contribution will focus on three topics of GSI nuclear structure research: superheavy elements, direct mass measurements in the storage ring, and studies of fission in reversed kinematics. The GSI project for a new synchrotron facility will be outlined
Pettorossi, V E; Dieni, C V; Scarduzio, M; Grassi, S
2011-07-28
Using intracellular recordings, we investigated the effects of high frequency stimulation (HFS) of the primary vestibular afferents on the evoked excitatory postsynaptic potential (EPSP) and intrinsic excitability (IE) of type-A and type-B neurons of the medial vestibular nucleus (MVN), in male rat brainstem slices. HFS induces long-term potentiation (LTP) of both EPSP and IE, which may occur in combination or separately. Synaptic LTP is characterized by an increase in the amplitude, slope and decay time constant of EPSP and IE-LTP through enhancements of spontaneous and evoked neuron firing and of input resistance (Rin). Moreover, IE-LTP is associated with a decrease in action potential afterhyperpolarization (AHP) amplitude and an increase in interspike slope steepness (ISS). The more frequent effects of HFS are EPSP-LTP in type-B neurons and IE-LTP in type-A neurons. In addition, the development of EPSP-LTP is fast in type-B neurons but slow in type-A, whereas IE-LTP develops slowly in both types. We have demonstrated that activation of N-methyl-d aspartate receptors (NMDARs) is only required for EPSP-LTP induction, whereas metabotropic glutamate receptors type-1 (mGluR1) are necessary for IE-LTP induction as well as the full development and maintenance of EPSP-LTP. Taken together, these findings demonstrate that brief and intense activation of vestibular afferent input to the MVN neurons may provoke synaptic LTP and/or IE-LTP that, induced in combination or separately, may assure the different selectivity of the MVN neuron response enhancement to the afferent signals. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Buschkamp, Peter; Förster Schreiber, Natascha M.; Kurk, Jaron; Rosario, David; Davies, Ric; Eisenhauer, Frank; Lutz, Dieter [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Gnat, Orly [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Lilly, Simon J.; Carollo, C. Marcella [Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, ETH, CH-8093 Zürich (Switzerland); Burkert, Andreas [Universitäts-Sternwarte Ludwig-Maximilians-Universität (USM), Scheinerstr. 1, D-81679 München (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Hicks, Erin K. S., E-mail: sfnewman@berkeley.edu [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); and others
2014-01-20
Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the 'composite' region of the z ∼ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass-metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration.
Recent searches for superheavy elements at the superhilac
International Nuclear Information System (INIS)
Hulet, E.K.
1978-01-01
The results of the search for superheavy elements are negative with respect to the finding of such elements. However, by assuming 2 spontaneous fission events as the lower limit of detection, the limits to their formation cross sections are calculated and plotted. It is noted that the half-life limits, also shown are easily within the huge uncertainties of the theoretical predicted half lives for any superheavy element nuclides produced in the experiment. 19 references
International Nuclear Information System (INIS)
McGowan, F.K.; Stelson, P.H.
1974-01-01
The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)
Structure of superheavy elements with Meson field theory and beyond
International Nuclear Information System (INIS)
Walter Greiner
2005-01-01
The extension of the periodic system into various new areas is investigated. Experiments for the synthesis of superheavy elements and the predictions of magic numbers with modern meson field theories are reviewed. Furtheron, different channels of nuclear decay are discussed including cluster radioactivity, cold fission and cold multifragmentation. A perspective for future research is given. We also study the possibility of producing a new kind of nuclear system that in addition to ordinary nucleons contains a few antibaryons. The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from 4 He to 208 Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus, resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by a factor of 3-4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that owing to significant reduction of the reaction Q values, the in-medium annihilation rates should be strongly suppressed, leading to relatively long-lived antibaryon- nucleus systems. Multinucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound antibaryon-nucleus systems in antiproton- nucleus reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing cold multi-quark-antiquark clusters is discussed. This opens the possibility for cold compression of nuclear matter - in contrast to the creation of hot and dense nuclear matter in nuclear shock waves created in
Superheavy magnetic monopoles and the standard cosmology
International Nuclear Information System (INIS)
Turner, M.S.
1984-10-01
The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are very interesting obsects, both from the point of view of particle physics, as well as from astrophysics and cosmology. Astrophysical and cosmological considerations have proved to be invaluable in studying the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs (so many that the Universe should have reached a temperature of 3 0 K at the tender age of approx. = 10,000 yrs), the simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies (E greater than or equal to 10 14 GeV) and about the earliest moments (t less than or equal to 10 -34 s) of the Universe. In this talk the author reviews the cosmological consequences of GUT monopoles within the context of the standard hot big bang model. 46 references
Superheavy thermal dark matter and primordial asymmetries
Energy Technology Data Exchange (ETDEWEB)
Bramante, Joseph [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Unwin, James [Department of Physics, University of Illinois at Chicago,845 W Taylor St, Chicago, IL 60607 (United States)
2017-02-23
The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10{sup 10} GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.
Superheavy thermal dark matter and primordial asymmetries
International Nuclear Information System (INIS)
Bramante, Joseph; Unwin, James
2017-01-01
The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10 10 GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.
Superheavy dark matter through Higgs portal operators
Kolb, Edward W.; Long, Andrew J.
2017-11-01
The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.
Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model
International Nuclear Information System (INIS)
Erler, Jochen
2011-01-01
Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for α, β-decay and spontaneous fission in a very wide range with proton numbers 86 ≤ Z ≤ 120 and neutron numbers up to N ∼ 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate β-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute β-transition matrix elements and so to provide an estimation of half-lives. (orig.)
Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model
Energy Technology Data Exchange (ETDEWEB)
Erler, Jochen
2011-01-31
Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)
Physics of superheavy dark matter in supergravity
Addazi, Andrea; Marciano, Antonino; Ketov, Sergei V.; Khlopov, Maxim Yu.
New trends in inflationary model building and dark matter production in supergravity are considered. Starobinsky inflation is embedded into 𝒩 = 1 supergravity, avoiding instability problems, when the inflaton belongs to a vector superfield associated with a U(1) gauge symmetry, instead of a chiral superfield. This gauge symmetry can be spontaneously broken by the super-Higgs mechanism resulting in a massive vector supermultiplet including the (real scalar) inflaton field. Both supersymmetry (SUSY) and the R-symmetry can also be spontaneously broken by the Polonyi mechanism at high scales close to the inflationary scale. In this case, Polonyi particles and gravitinos become superheavy, and can be copiously produced during inflation by the Schwinger mechanism sourced by the universe expansion. The Polonyi mass slightly exceeds twice the gravitino mass, so that Polonyi particles are unstable and decay into gravitinos. Considering the mechanisms of superheavy gravitino production, we find that the right amount of cold dark matter composed of gravitinos can be achieved. In our scenario, the parameter space of the inflaton potential is directly related to the dark matter one, providing a new unifying framework of inflation and dark matter genesis. A multi-superfield extension of the supergravity framework with a single (inflaton) superfield can result in a formation of primordial nonlinear structures like mini- and stellar-mass black holes, primordial nongaussianity, and the running spectral index of density fluctuations. This framework can be embedded into the SUSY GUTs inspired by heterotic string compactifications on Calabi-Yau three-folds, thus unifying particle physics with quantum gravity.
Cluster radioactivity of Z=125 super heavy nuclei
International Nuclear Information System (INIS)
Manjunatha, H.C.; Seenappa, L.
2015-01-01
For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125
International Nuclear Information System (INIS)
Nagano, K.; Aoki, Y.; Kishimoto, T.; Yagi, K.
1983-01-01
Vector analyzing powers A(theta) and differential cross sections σ(theta) have been measured, with the use of a polarized proton beam of 22.0 MeV and a magnetic spectrograph, for (p,t) reactions leading to the first-excited 2 + (2 1 + ) states of the following eighteen nuclei of N = 50 - 82: sup(92,94,96)Mo, sup(98,100,102)Ru, sup(102,104,106,108)Pd, sup(110,112,114)Cd, 116 Sn, sup(120,126,128)Te, and 136 Ba. In addition A(theta) and σ(theta) for sup(104,110)Pd(p,t) sup(102,108) Pd(0sub(g) + ,2 1 + ) transitions have been measured at Esub(p) = 52.2 MeV. The experimental results are analyzed in terms of the first- and second-order DWBA including both inelastic two-step processes and sequential transfer (p,d)(d,t) two-step processes. Inter-ference effect between the direct and the two-step processes is found to play an essential role in the (p,t) reactions. A sum-rule method for calculating the (p,d)(d,t) spectroscopic amplitudes has been developed so as to take into account the ground-state correlation in odd-A nuclei. The nuclear-structure wave functions are constructed under the boson expansion method and the quasiparticle random phase approximation (qp RPA) method by using the monopole-pairing, quadrupole-pairing, and QQ forces. The characteristic features of the experimental A(theta) and σ(theta) are better explained in terms of the boson expansion method than in terms of the qp RPA. Dependence of the (p,t) analyzing powers on the static electric quadrupole moment of the 2 1 + state is found to be strong because of the reorientation (anharmonic) effect in the 2 1 + yiedls 2 1 + transfer process. (J.P.N.)
Energy Technology Data Exchange (ETDEWEB)
Dobaczewski, J [Warsaw Univ., Institute of Theoretical Physics (Poland); Blumenfeld, Y; Flocard, H; Garcia Borge, M J; Nowacki, F; Rombouts, S; Theisen, Ch; Marques, F M; Lacroix, D; Dessagne, P; Gaeggeler, H
2002-07-01
This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements.
First prompt in-beam γ-ray spectroscopy of a superheavy element: the 256Rf
International Nuclear Information System (INIS)
Rubert, J; Dorvaux, O; Gall, B J P; Asfari, Z; Piot, J; Greenlees, P T; Grahn, T; Herzan, A; Jakobsson, U; Jones, P; Julin, R; Juutinen, S; Andersson, L L; Cox, D M; Herzberg, R-D; Asai, M; Dechery, F; Hauschild, K; Henning, G; Heßberger, F P
2013-01-01
Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 h, was discovered in the nucleus 256 Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50 Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256 Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a significant deformed shell gap at Z = 104.
International Nuclear Information System (INIS)
Koopman, R.P.
1977-01-01
A series of experiments was performed in which gamma-ray spectra were measured, using a Ge(Li) detector, for incident 7 to 26-MeV protons on the even-even vibrational nuclei 56 Fe, 62 Ni, 64 Zn, 108 Pd, 110 Cd, 114 Cd, 116 Cd, 116 Sn, 120 Sn, and 206 Pb, and for incident 14-MeV neutrons on natural Fe, Ni, Zn, Cd, Sn, and Pb. These measurements yielded gamma-ray cross sections from which it was inferred that almost all of the gamma cascades from (p,p') and (n,n') reactions passed down through the first 2 + levels. Consequently, the strength of the 2 + → 0 + gamma transitions were found to be an indirect measure of the (p,p') or (n,n') cross sections. Several types of nuclear model calculations were performed and compared with experimental results. These calculations included coupled-channel calculations to reproduce the direct, collective excitation of the low-lying levels, and statistical plus pre-equilibrium model calculations to reproduce the (p,p') and the (n,n') cross sections for comparison with the 2 + → 0 + gamma measurements. The agreement between calculation and experiment was generally good except at high energies, where pre-equilibrium processes dominate (i.e. around 26-MeV). Here discrepancies between calculations from the two different pre-equilibrium models and between the data and the calculations were found. Significant isospin mixing of T/sub greater than/ into T/sub less than/ states was necessary in order to have the calculations match the data for the (p,p') reactions, up to about 18-MeV
Shell stabilization of super- and hyperheavy nuclei without magic gaps
International Nuclear Information System (INIS)
Bender, M.; Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.; Reinhard, P.G.; Oak Ridge National Lab., TN
2001-05-01
Quantum stabilization of superheavy elements is quantified in terms of the shell-correction energy. We compute the shell correction using self-consistent nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the relativistic mean-field model, for a number of parametrizations. All the forces applied predict a broad valley of shell stabilization around Z = 120 and N = 172-184. We also predict two broad regions of shell stabilization in hyperheavy elements with N ∼ 258 and N ∼ 308. Due to the large single-particle level density, shell corrections in the superheavy elements differ markedly from those in lighter nuclei. With increasing proton and neutron numbers, the regions of nuclei stabilized by shell effects become poorly localized in particle number, and the familiar pattern of shells separated by magic gaps is basically gone. (orig.)
International Nuclear Information System (INIS)
Aaberg, S.; Uhrenholt, H.
2009-01-01
We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.
Synthesis and properties of superheavy elements
Hofmann, S
2003-01-01
The nuclear shell model predicts that the next doubly magic shell-closure beyond sup 2 sup 0 sup 8 Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 172 or 184. The outstanding of experimental investigations is the exploration of this region of spherical 'SuperHeavy Elements' (SHEs). Experimental methods are described which allowed for the identification of elements 107 to 112 in studies of cold fusion reactions based on lead and bismuth targets. Also presented are data which were obtained on the synthesis of elements 112, 114, and 116 in investigation of hot fusion reactions using actinide targets. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission, not fission. Decay properties as well as reaction cross- sections are compared with the results of theoretical studies. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques. At a higher sensitivity, the exploration of the regio...
Actinide targets for the synthesis of super-heavy elements
International Nuclear Information System (INIS)
Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.
2015-01-01
Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.
International Nuclear Information System (INIS)
Guerreau, D.
1993-01-01
A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs
Multifragmentation of hot nuclei
International Nuclear Information System (INIS)
Tamain, B.
1990-10-01
It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established
Nuclear structure studies towards superheavy elements and perspectives with AGATA
International Nuclear Information System (INIS)
Korichi, A.
2005-01-01
A variety of theoretical approaches have been used to calculate the shell closure of spherical Super Heavy Elements (SHE) but the predictions of the location of the 'island of stability' vary from Z=114 to 120 and 126, with neutron numbers around N=172 or N=184 depending on the model employed. A deformed minimum around Z=108 and N=162 is predicted and an increase of the half-life of Hassium (Z=108) is experimentally observed when approaching the neutron number N=162. Super heavy nuclei are produced with very low cross-section (a few picobarns) and this makes their spectroscopic study impossible with today's beam intensities and detectors. However, important information can be obtained from the structure of mid-shell deformed nuclei (Z∼104) where selected single particle orbitals, which lie close to the spherical shell gap in SHE, are close to the Fermi level. The information will come from decay and in-beam spectroscopy. A promising area of progress, using the state-of-the art instruments, is represented by the observation of rotational gamma-ray transitions in No and Fm isotopes showing the deformed character of these nuclei. One of the objectives and focus of the nuclear structure community is related to the investigation of Single particle excitations beyond the N=152 neutron gap and collective properties of heavier systems towards Z∼104. The IN2P3-JINR collaboration has launched a project of electron and gamma-ray spectroscopy studies of heavy nuclei at the FLNR. This project benefits from the radioactive actinide targets uniquely available at Dubna and from the very intense stable beams provided by the U400 cyclotron. This offers a unique opportunity for the study of nuclei above Z=100 along an isotopic chain approaching N=162. In this contribution, the emphasis will be on the GABRIELA project and its issues. I will finally point out the perspectives with the new generation of gamma detectors such as AGATA
International Nuclear Information System (INIS)
Scharff-Goldhaber, G.
1979-01-01
It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
KEWPIE: a dynamical cascade code for decaying exited compound nuclei
Bouriquet, Bertrand; Abe, Yasuhisa; Boilley, David
2003-01-01
A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical...
KEWPIE: A dynamical cascade code for decaying exited compound nuclei
Bouriquet, Bertrand; Abe, Yasuhisa; Boilley, David
2004-05-01
A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is of the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical and dynamical observables. Results are successfully compared to experimental data.
Role of ternary fission in synthesis of bypassed nuclei
International Nuclear Information System (INIS)
Kramarovskij, Ya.M.; Chechev, V.P.
1983-01-01
A possible influence of ternary fission with escape of neutron-enriched light charged particles on the synthesis of bypassed nuclides is considered. It is shown that this concept cannot give explanation of bypassed isotope concentrations, but it can make some contribution, if the probability of ternary fission for superheavy nuclei grows sharply with Z 2 /A parameter. The account of β-delayed fission contributes to the shift of ternary fission fragments into the region of neutron-deficient isotopes. Consistent consideration of the ternary fission role in the nucleosynthesis is possible only with an important accumulation of experimental and theoretical data on this process, particularly for the nuclei with Z > 100
Dynamics of light, intermediate, heavy and superheavy nuclear ...
Indian Academy of Sciences (India)
2014-05-01
May 1, 2014 ... Various features related to the dynamics of competing decay modes of nuclear systems are explored by addressing the experimental data of a number of reactions in light, intermediate, heavy and superheavy mass regions. The DCM, being a non-statistical description for the decay of a com- pound nucleus ...
Salam-Weinberg symmetry breaking with superheavy Higgs particles
International Nuclear Information System (INIS)
Misra, S.P.
1986-09-01
We discuss here the possibility of the breaking of the Salam-Weinberg symmetry by Higgs particles which are superheavy. The symmetry-breaking is associated with a nonzero vacuum expectation value of fermion condensates. This mechanism, if operative in nature, will imply the absence of Higgs particles at the weak scale. (author)
The extension of the Periodic System: superheavy - superneutronic
Energy Technology Data Exchange (ETDEWEB)
Greiner, W [Frankfurt Institute for Advanced Studies, J.W.Goethe University (Germany); Zagrebaev, V [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation)
2009-12-31
Nuclear reactions leading to formation of new superheavy elements and isotopes are discussed. The scope and limitations of different nuclear reactions ('cold' and 'hot' synthesis, fusion of fission fragments, transfer reactions and reactions with radioactive ion beams) are analyzed, trying to find most promising reactions which may be used at available facilities.
Level structures in Yb nuclei far from stable nuclei
International Nuclear Information System (INIS)
Hashizume, Akira
1982-01-01
Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)
Exotic Nuclei and Yukawa's Forces
International Nuclear Information System (INIS)
Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka
2008-01-01
In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces
Transfer involving deformed nuclei
International Nuclear Information System (INIS)
Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.
1985-03-01
Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs
Energy Technology Data Exchange (ETDEWEB)
Ali, M A [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Sukhovoj, A M; Khitrov, V A [Joint institute for nuclear research Frank laboratory of Neutron physics, Dubna, (Russian Federation)
1996-03-01
The compound state gamma-decays, after thermal neutron capture, in the {sup 156,158} Gd, {sup 164} Dy, and {sup 174} Yb deformed nuclei and the {sup 196} Pt transitional nucleus were measured and analysed in a search for giant magnetic dipole resonances (GMDR) levels built on the ground states of these nuclei. The two-step cascade intensities for these nuclei are given and the level densities are deduced. The results obtained are compared with theoretical predictions. For the deformed nuclei, the analysis shows that these GMDR levels built on the ground state are not or probably very weakly populated. The enhancements experimentally observed in the two-step gamma-decay of the compound state of the {sup 196} Pt nucleus to its ground state can be explained qualitatively by the presence of GMDR states at an energy of about 2.8 MeV, with a full width at half maximum of about 1 MeV. 3 tabs.
Boiling points of the superheavy elements 117 and 118
International Nuclear Information System (INIS)
Takahashi, N.
2001-01-01
It has been shown that the relativistic effect on the electrons reveal in the heavy element region. What kind of changes will appear in the heavy elements because of the relativistic effects? Can we observe the changes? We observed that the boiling points of astatine and radon are lower than that extrapolated values from lighter elements in the same groups. Systematic behavior of the elements on the boiling point was examined and a new method for the estimation of the boiling points of the superheavy elements in the halogen and rare gases has been found. The estimated values of the elements 117 and 118 are 618 and 247 K, respectively which are considerably lower than those obtained until now. If these values are correct the production of the superheavy elements with heavy ions reaction may be affected. Further, the chemical properties may be fairly different from the lighter elements. (author)
Era of superheavy-particle dominance and big bang nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Polnarev, A.G.; Khlopov, M.Y.
1982-01-01
The observed primordial He/sup 4/ abundance imposes astrophysical constraints on the possible departures from radiation dominance in the big bang universe during the neutron hardening era (at epoch t roughly-equal1 sec). Limits are obtained which, along with the data on the spectrum of the cosmic background radiation, practically rule out any stages of superheavy stable-particle dominance in the era 1< or approx. =t<10/sup 10/ sec, thereby setting restrictions on current elementary-particle theories.
Q-value effects in the synthesis of superheavy elements
International Nuclear Information System (INIS)
Graeger, Reimar
2010-01-01
Superheavy elements (Z>or similar 104) only exist due to nuclear shell effects, which stabilize them against spontaneous fission (SF). Theoretical calculations predict these shell stabilization effects to reach a maximum at the closures of the next spherical proton and neutron shells, which are anticipated in the region between Z=114 and Z=126 and at N=184. More recent calculations, that also consider deformed nuclear shapes extended this picture and predicted deformed shell closures at Z=108 and at N=162, creating a region of enhanced stability around 270 Hs, confirmed in recent Hs chemistry experiments by measuring the decay of 270 Hs for the first time. Recently, the formation of deformed doubly-magic 270 Hs in the 4n evaporation channel in the fusion reactions 248 Cm( 26 Mg,4n), 244 Pu( 30 Si,4n), 238 U( 36 S,4n), and 226 Ra( 48 Ca,4n) was studied theoretically using a two-parameter Smoluchowski equation. Simple entrance channel arguments make compound nucleus (CN) formation appear favorable for systems with larger mass asymmetry. However, due to a lower reaction Q value, the reactions 238 U( 36 S,4n) 270 Hs and 226 Ra( 48 Ca,4n) 270 Hs are predicted to have higher cross sections compared to the reactions 248 Cm( 26 Mg,4n) 270 Hs and 244 Pu( 30 Si,4n) 270 Hs. The aim of the research done in the framework of this thesis was to study the influence of the reaction (B-Q)-value on the yield of SHE produced in nuclear fusion reactions. Therefore the most promising reactions 36 S+ 238 U and 48 Ca+ 226 Ra have been investigated and compared with the already measured reaction 26 Mg+ 248 Cm. The reaction 36 S+ 238 U was investigated at two beam energies. One correlated decay chain attributed to 270 Hs was found at E * =51 MeV resulting in a cross section of 0.8 -0.7 +2.6 pb. The reaction 48 Ca+ 226 Ra was investigated at three beam energies. Six correlated decay chains attributed to 270 Hs were detected at E * =40 MeV corresponding to a cross section of 8.3 -3.7 +6.7 pb
International Nuclear Information System (INIS)
Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1983-01-01
Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)
Isomeric States in the Second and Third Well of the Potential and Long-Lived Superheavy Element
International Nuclear Information System (INIS)
Marinov, A.; Gelberg, S.; Kolb, D.
1999-01-01
Recently, in a study of the 16 O + 197 Au and 28 Si + 181 Ta reactions near and below the Coulomb barrier, long-lived high spin isomeric states have been found by us in the second and third well of the potential-energy surfaces. Such isomeric states have very unusual physical properties. In addition to their very long lifetimes, much longer than of their corresponding ground states, they have very unusual decay properties. They may decay by 5 to 7 orders of magnitude enhanced alpha particles, in transitions from the second or third well of the potential in the parent nuclei to the respective well in the daughters, or by very retarded alpha particles, in transitions from the second well in the parent nucleus to normal states in the daughter, or from the third well in the parent to the second well in the daughter. They also may decay by long-lived proton activities, in transitions from the second well in the parent nucleus to the normal states in the daughter. Experimental evidences for all these new phenomena will be presented in the conference. The existence of long-lived isomeric states in the second and third well of the potential is very important when the production of superheavy elements is considered. Because of the very much reduced extra-push energy needed for their production, they may be produced much easier than the normal states, in reactions between very heavy nuclei. In particular, the discovery of the long-lived superheavy element with Z = 112 can consistently be understood
International Nuclear Information System (INIS)
Dudek, J.
1990-01-01
Results of the first calculations aiming at determination of the exotic shape effects at large elongations are presented. After discussing some formal aspects of our generalised approach based on the deformed Woods-Saxon potential, the overall trends in the quantal (shell) effects leading to the deformation driving forces in terms of Y λ=3,μ multipole components are presented. Finally, the nuclei are identified in which (at least at a low spin limit) the predicted exotic shape effects should manifest themselves in the most pronounced way. 10 figs
International Nuclear Information System (INIS)
Villari, A.C.C.
1990-01-01
The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)
International Nuclear Information System (INIS)
Ismail, M.
1998-01-01
Excitation functions and a few isomeric cross section ratios for production of (1) 192 Au, 193 Au, 194 Au, 195 Au and 192 Ir nuclides in α-induced reactions on 191,193 Ir, (2) 197 Tl, 197m Hg, 198m.g Tl, 199 Tl and 200 Tl nuclides in α-induced reaction in 197 Au and (3) 183 Re and 184m.g Re nuclides in α-induced reaction in 181 Ta and 185 Re are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross section ratios for nuclear reaction 181 Ta (α,n) 184m.g Re are compared with the theoretical calculation using the code Stapre which is based on exciton model for pre-equilibrium phase and Hauser-Feshbach formalism taking angular momentum and parity into account for the equilibrium phase of the nuclear reaction. All other experimental excitation functions are compared with the calculations considering equilibrium as well as pre-equilibrium reaction mechanism according to the geometry dependent hybrid (GDH) model and hybrid model of Blann using the code Alice/91. The high energy part of the excitation functions are dominated by pre-equilibrium reaction mechanism whereas the low energy parts are dominated by equilibrium evaporation with its characteristic peak. The GDH model provides a potentially better description of the physical process (i.e. a higher probability for peripheral collisions to undergo precompound decay than for central collisions) compared to hybrid model. However in the energy range of present measurement most of the excitation functions are fitted reasonably well by both GDH model and hybrid model with initial exciton number N 0 =4 (N n =2, N p =2, N h =0). Barring a few reactions we have found the overall agreement between theory and experiment is reasonably good taking the limitations of the theory into account. (author)
International Nuclear Information System (INIS)
Sakuta, S.B.; Novatskij, B.G.; Stepanov, D.N.; Aleksandrov, D.V.; Glukhov, Yu.A.; Nikol'skij, E.Yu.
2002-01-01
( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions on the 6 Li, 7 Li nuclei have been investigated in the angular range of 0-20 deg in laboratory system at the 93-MeV 6 Li energy. Besides low-lying states of 5,6 He and 5,6 Li nuclei, broad structures have been observed in the measured spectra close to the t( 3 He) + d and t( 3 He) + t threshold at excitation energies of 16.75 (3/2 + ) and ∼ 20 MeV ( 5 He), 16.66 (3/2 + ) and ∼ 20 MeV ( 5 Li), 14.0 and 25 MeV ( 6 He), and ∼ 20 MeV ( 6 Li). Angular distributions, which have been measured for transitions to the ground (0 + ) and exited states at E x =1.8 MeV (2 + ) and 14.0 MeV of the 6 He nucleus in the 7 Li( 6 Li, 7 Be) 6 He reaction, have been analyzed in the framework of the finite-range distorted-waves method assuming the 1p- and 1s-proton pick-up mechanism. It has been shown that ( 6 Li, 7 Be) and ( 6 Li, 7 Li) reactions predominately proceed by one-step pick-up mechanism and broad structures which are observed at high excitation energies should be considered as quasimolecular states of the t( 3 He) + d and t( 3 He) + t type [ru
Synthesis of superheavy elements by cold fusion
Energy Technology Data Exchange (ETDEWEB)
Hofmann, S [Gesellschaft fuer Schwerionenforschung (GSI), Helmholtzzentrum fuer Schwerionenforschung Gmbh (Germany)
2009-12-31
The nuclear shell model predicts that the next doubly magic shell-closure beyond {sup 208}Pb is at the proton number Z=114, 120, or 126 and at the neutron number N=172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical 'Super Heavy Elements' (SHEs). Using cold fusion reactions which are based on lead and bismuth targets, the new elements from 107 to 112 were synthesized at GSI in Darmstadt, Germany. Some of these results were confirmed at RIKEN in Wako, Japan, where also a relatively neutron-deficient isotope of element 113 was synthesized. In hot fusion reactions of {sup 48}Ca projectiles with actinide targets, a more neutron-rich isotope of element 112 and the new elements from 113 to 116 and even 118 were produced at FLNR in Dubna, Russia. Recently, part of these hot fusion data, which represent the first identification of nuclei located on the predicted island of SHEs, were confirmed in two independent experiments. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission rather than fission. The decay properties as well as reaction cross-sections are compared with results of theoretical studies.
Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.
2013-10-01
Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.
Studies on the synthesis of isotopes of superheavy element Lv (Z = 116)
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P.; Safoora, V. [Kannur University, School of Pure and Applied Physics, Payyanur (India)
2017-11-15
The probable projectile-target combinations for the synthesis of superheavy nucleus {sup 296}Lv found in the cold valley of {sup 296}Lv have been identified by studying the interaction barrier of the colliding nuclei, probability of compound nucleus formation, P{sub CN}, and survival probability W{sub sur}. At energies near and above the Coulomb barrier, the capture, fusion and evaporation residue (ER) cross sections for the probable combinations for the hot and cold fusion reactions are systematically investigated. By considering intensities of the projectile beams, availabilities of the targets and half lives of the colliding nuclei, the combination {sup 48}Ca + {sup 248}Cm is found to be the most probable projectile-target pair for the synthesis of {sup 296}Lv. The calculated maximum value of 2n, 3n, 4n and 5n channel cross section for the reaction {sup 48}Ca + {sup 248}Cm are 0.599 pb, 5.957 pb, 4.805 pb, and 0.065 pb, respectively. Moreover, the production cross sections for the synthesis of isotopes {sup 291-295,298}Lv using {sup 48}Ca projectile on {sup 243-247,250}Cm targets are calculated. Among these reactions, the reactions {sup 48}Ca + {sup 247}Cm → {sup 295}Lv and {sup 48}Ca + {sup 250}Cm → {sup 298}Lv have maximum production cross section in 3n (10.697 pb) and 4n (12.006 pb) channel, respectively. Our studies on the SHE Lv using the combinations {sup 48}Ca + {sup 245}Cm → {sup 293}Lv and {sup 48}Ca + {sup 248}Cm → {sup 296}Lv are compared with available experimental data and with other theoretical studies. Our studies are in agreement with experimental data and we hope that these studies will be a guide for the future experiments to synthesize the isotopes of Lv. (orig.)
International Nuclear Information System (INIS)
Li Zuyu; He Zhiyong; Duan Limin; Jin Genming; Wu Heyu; Zhang Baoguo; Wen Wanxin; Qi Yujin; Luo Qingzheng; Dai Guangxi; Wang Hongwei
1997-01-01
Nuclear temperatures extracted from excited state populations were measured as a function of linear momentum transfer (LMT) for 40 Ar+ 197 Au reactions at 25MeV/nucleon. The emission temperatures increased slightly with increasing linear momentum transfer or decreasing impact parameter. Taking into account the corrections of detection efficiency and sequential feeding from higher-lying states, a temperature of T∼4MeV was deduced for central collisions. For peripheral collisions the extracted temperatures increased with the energy of the particles. (orig.)
Spin-isospin excitation in sd-shell nuclei studied by the (d,2He) reaction at Ed=270MeV
International Nuclear Information System (INIS)
Niizeki, T.; Ohnuma, H.; Yamamoto, T.; Katoh, K.; Yamashita, T.; Hara, Y.; Okamura, H.; Sakai, H.; Ishida, S.; Sakamoto, N.; Otsu, H.; Wakasa, T.; Uesaka, T.; Satou, Y.; Fujita, T.; Ichihara, T.; Orihara, H.; Toyokawa, H.; Hatanaka, K.; Kato, S.; Kubono, S.; Yosoi, M.
1994-01-01
The (d, 2 He) reactions on 24 Mg, 26 Mg and 28 Si were studied at E d =270MeV. The 0 cross sections obtained for the 1 + states from the 24 Mg, 28 Si(d, 2 He) reactions show a good correlation with those from the mirror (p,n) reactions. Four peaks were identified in the 26 Mg(d, 2 He) 26 Ne reaction as being due to the 1 + excitation. The B(GT + ) values for these transitions were estimated and compared with the shell model prediction. ((orig.))
Decay properties of heavier nuclei and mass formula
International Nuclear Information System (INIS)
Uno, Masahiro
2000-01-01
The stabilities of heavy nuclei, including super-heavy elements, are governed by alpha decay and fission. Some exotic types of decay, such as heavy cluster decay, which does not occur so frequently as to govern stability, have been also reported. The half-time estimations of various types of decay are reviewed. And the possibility of decay, mainly in case of heavy cluster decay, is discussed with Q-value obtained from mass formulae as well. Some topics concerning other types of exotic decay are presented. Recent trends in the research on mass formula are reviewed from the historical point of view, to get perspectives of future development. (Yamamoto, A.)
Decay properties of heavier nuclei and mass formula
Energy Technology Data Exchange (ETDEWEB)
Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)
2000-03-01
The stabilities of heavy nuclei, including super-heavy elements, are governed by alpha decay and fission. Some exotic types of decay, such as heavy cluster decay, which does not occur so frequently as to govern stability, have been also reported. The half-time estimations of various types of decay are reviewed. And the possibility of decay, mainly in case of heavy cluster decay, is discussed with Q-value obtained from mass formulae as well. Some topics concerning other types of exotic decay are presented. Recent trends in the research on mass formula are reviewed from the historical point of view, to get perspectives of future development. (Yamamoto, A.)
Superheavy Elements: Theoretical Expectations and Related Fundamental Issues
International Nuclear Information System (INIS)
Greiner, W.
2008-01-01
I discuss the theory for superheavy elements, based on the Two Center Shell Model. Potential energy surfaces, cold valleys, cold fusion, quasi fusion and other processes will be discussed. The experimental results from GSI, Dubna and Japan are presented. Finally, utilizing the theory of mass-exchange in dynamical encounters by Zagrebaev and myself, I will outline the possibility of long time delays of giant molecular/atomic systems (e.g. U + U, U + Cm, etc) and its relevance for observing the supercritical decay of the QED-vacuum
International Nuclear Information System (INIS)
Ohkubo, Makio
2003-01-01
From the requirement of the time periodicity of a (quasi) stable state, frequencies of the normal modes, which compose the state, are commensurable (integer ratios) with each other, and the excitation energies E x are written as a sum of inverse integers. We propose an expression: E x = GΣ1/n, where n = integers and G = 34.5 MeV. Recurrence time is defined as LCM(n j ) x τ o , where τ 0 = 2πℎ/G = 1.20 x 10 -22 s. LCM vs. E x are illustrated for all possible n j of 2 and 3 normal modes. In 16 O +n resonances, integer ratios are found between the recurrence frequencies of 17 O and the de Broglie wave frequencies of incident neutron, meaning time coherency between them. A simple branch pattern is found in 16 O +n resonance levels. (author)
Search for superheavy elements in the bombardment of 248Cm with 48Ca
International Nuclear Information System (INIS)
Hulet, E.K.; Lougheed, R.W.; Wild, J.F.; Landrum, J.H.; Stevenson, P.C.; Ghiorso, A.; Nitschke, J.M.; Otto, R.J.; Morrissey, D.J.; Baisden, P.A.; Gavin, B.F.; Lee, D.; Silva, R.J.; Fowler, M.M.; Seaborg, G.T.
1977-01-01
We have searched for superheavy elements 110 to 116 with half-lives between 10 4 and 10 8 s in fractions chemically separated after each of a series of bombardments of 248 Cm made with 267-MeV 48 Ca ions. After 6 months of α and spontaneous-fission counting, our results provide no persuasive evidence for the presence of super-heavy elements. The most plausible explanation for not finding the superheavy elements is that they have either short half-lives or very small formation cross sections
International Nuclear Information System (INIS)
Hamilton, J.H.
1987-01-01
Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185 Au, and competing triaxial and prolate shapes in 71 Se and 176 Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152 Dy, 132 Ce and 135 Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68 Ge and 70 Se. The differences are thought to be related to the competing shell gaps in these nuclei
Energy Technology Data Exchange (ETDEWEB)
Venhart, M., E-mail: martin.venhart@savba.sk [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Wood, J.L. [Department of Physics, Georgia Institute of Technology, Atlanta GA 30332 (United States); Boston, A.J. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Cocolios, T.E. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); KU Leuven, Instituut voor Kern, en Stralingsfysica, B-3001 Leuven (Belgium); Harkness-Brennan, L.J.; Herzberg, R.-D.; Joss, D.T.; Judson, D.S. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Kliman, J.; Matoušek, V. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Motyčák, Š. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, SK-812 19 Bratislava (Slovakia); Page, R.D.; Patel, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Petrík, K.; Sedlák, M.; Veselský, M. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia)
2017-03-21
A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of {sup 183}Hg decay. Mass-separated samples of {sup 183}Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of {sup 183}Hg from those due to the daughter decays.
Energy Technology Data Exchange (ETDEWEB)
Khadiri, Najia [Institut de Recherche Subatomique, CNRS-IN2P3 - Universite Louis Pasteur, 67 - Strasbourg (France)
1997-10-17
This work is devoted to nuclear structure studies of superdeformed states in the second potential well. Under focus are the gadolinium isotopes and in particular the {sup 147}Gd nucleus. High spin states in {sup 147}Gd have been populating by {sup 122}Sn ({sup 30}Si,5n){sup 147}Gd fusion-evaporation reaction with a silicon beam of 158 MeV delivered by the VIVITRON accelerator of the Institut de Recherches Subatomiques. The nucleus {gamma} de-excitations have been measured using the EUROGAM II {gamma}-ray multidetector. On the basis of multiple coincidences, four new superdeformed (SD) rotational bands have been assigned to {sup 147}Gd nucleus. Nuclear structures corresponding to these bands have been investigated by shell model calculations using a harmonic oscillator potential with cranking, in the Nilsson Strutinsky formalism. Comparison of dynamical moments of inertia of band (1) and (5) in {sup 147}Gd with {sup 148}Gd(2) and {sup 146}Gd(1) SD bands has fixed the role of the [651 1/2]{alpha} = -1/2 orbital crossing frequency. Theoretical calculations reproduce quite well the {sup 148}Gd(2), {sup 127}Gd(1,5) and G{sup 146}Gd(1) dynamical moments of inertia. Using the particle hole excitation nature of {sup 149,148,147,146}Gd bands, effective spin alignment of [651 1/2]{alpha}= {+-}1/2, [770 1/2]{alpha} = -1/2 and [441 1/2]{alpha} = +1/2 orbitals have been deduced from the experiment in agreement with the theoretical values. Of particular interest, the spin alignment measured for the [441 1/2]{alpha} +1/2 orbital, with a value close to zero, is in contradiction with the value predicted by the Pseudo SU(3) model, formalism often used to explain the identical band phenomenon. (author) 68 refs., 41 figs., 17 tabs.
ORNL actinide materials and a new detection system for superheavy nuclei
Directory of Open Access Journals (Sweden)
Rykaczewski Krzysztof P.
2016-01-01
Full Text Available The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.
International Nuclear Information System (INIS)
Royer, G.
2012-01-01
A particular version of the liquid drop model taking into account both the mass and charge asymmetries, the proximity energy, the rotational energy, the shell and pairing energies and the temperature has been developed to describe smoothly the transition between one and two-body shapes in entrance and exit channels of nuclear reactions. In the quasi-molecular shape valley where the proximity energy is optimized, the calculated l-dependent fusion and fission barriers, alpha and cluster radioactivity half-lives as well as actinide half-lives are in good agreement with the available experimental data. In this particular deformation path, double-humped potential barriers begin to appear even macroscopically for heavy nuclear systems due to the influence of the proximity forces and, consequently, quasi-molecular isomeric states can survive in the second minimum of the potential barriers in a large angular momentum range
Shell effects in fission and quasi-fission of heavy and superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Itkis, M.G. E-mail: itkis@flnr.jinr.ru; Aeystoe, J.; Beghini, S.; Bogachev, A.A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I.M.; Jandel, M.; Kliman, J.; Khlebnikov, S.V.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu.Ts.; Pokrovsky, I.V.; Prokhorova, E.V.; Rowley, N.; Rubchenya, V.A.; Rusanov, A.Ya.; Sagaidak, R.N.; Scarlassara, F.; Stefanini, A.M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W.H.; Vakhtin, D.N.; Vinodkumar, A.M.; Voskressenski, V.M.; Zagrebaev, V.I
2004-04-05
Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions {sup 12}C+{sup 204}Pb, {sup 48}Ca+{sup 144,154}Sm, {sup 168}Er, {sup 208}Pb, {sup 244}Pu, {sup 248}Cm; {sup 58}Fe+{sup 208}Pb, {sup 244}Pu, {sup 248}Cm, and {sup 64}Ni+{sup 186}W, {sup 242}Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes {sup 283}112, {sup 289}114 and {sup 283}116 at Dubna [1],[2] using the same reactions. The {sup 58}Fe and {sup 64}Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.
Synthesis of superheavy elements and dinuclear-system concept of compound-nucleus formation
Energy Technology Data Exchange (ETDEWEB)
Antonenko, N.V.; Adamian, G.G.; Cherepanov, E.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)] [and others
1996-12-31
Dinuclear system concept is applied to the analysis of reactions used for the synthesis of elements with Z = 110, 112, 114, and 116. The inner fusion barriers obtained for these reactions are in good agreement with the experimental estimations resulted from the excitation energies of compound nuclei. A model is suggested for the calculation of the competition between complete fusion and quasifission in reactions with heavy nuclei. The fusion rate through the inner fusion barrier in mass asymmetry is found by using the multidimensional Kramers-type stationary solution of the Fokker-Planck equation. The influence of dissipative effects on the dynamics of nuclear fusion is considered.
Laser method of free atom nuclei orientation
International Nuclear Information System (INIS)
Barabanov, A.L.
1987-01-01
Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained
Understanding Nuclei in the upper sd - shell
Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.
2013-01-01
Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...
Seal coat damage evaluation due to superheavy load moves based on a mechanistic-empirical approach.
2010-03-01
The number of superheavy load (SHL) moves has increased drastically within the past 5 years in : Texas. Along with the increasing SHL moves, the Texas Department of Transportation (TxDOT) has : become increasingly aware of the rising concerns associa...
Upper Limit of the Periodic Table and Synthesis of Superheavy Elements
Directory of Open Access Journals (Sweden)
Khazan A.
2007-04-01
Full Text Available For the first time, using the heaviest possible element, the diagram for known nuclides and stable isotopes is constructed. The direction of search of superheavy elements is indicated. The Periodic Table with an eighth period is tabulated.
Static and dynamical properties of hot nuclei
International Nuclear Information System (INIS)
Suraud, E.
1990-01-01
We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent
Rotational damping motion in nuclei
International Nuclear Information System (INIS)
Egido, J.L.; Faessler, A.
1991-01-01
The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)
Estimation of atomic masses of heavy and superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)
1997-07-01
To estimate unknown atomic masses of heavy and superheavy elements, three kinds of formula: FRDM (finite range droplet model by Moeller et al.), TUYY (an empirical formula by Tachibana et al.) and our KUTY are explained. KUTY estimates the crude shell energies of spherical nucleus from sum of single-particle energies. Then, the refined shell energies in due consideration of paring and deformation are obtained by mixing with the functions of the crude shell energies. Experimental values of U and Fm isotopes were compared with estimation mass of KUTY and FRDM. In the field with experimental values of U isotopes, the value of KUTY and FRDM separated the same difference from the experimental value. The behavior of KUTY and FRDM for Fm isotopes were same as that of U, but ETFSI deviated a little from the experimental values. (S.Y.)
Attempts in search for superheavy elements in nature II
International Nuclear Information System (INIS)
Langrock, E.-J.; Vater, P.; Brandt, R.; Langrock, G.; Schumer, F.; Schreck, P.
1999-01-01
The search for superheavy elements is continued. We chose minerals for long-time exposure in a sandwich arrangement (PAD [polyallyldiglycol carbonate] and mica). In a first step we investigated samples of manganese concretions from the Pacific Ocean, enriched samples from Salton Sea and a volatile by product - fraction of copper - shale (Kupferschiefer) from Mansfeld ('Theisenschlamm'). After an exposure time of 535 days or 326 days, respectively, and proper etching, the SSNTD's were scanned using an optical microscope. Tracks due to the fission fragments could be seen neither at the PAD nor at the mica surface. The most hopeful sample 'Theisenschlamm' gives about 1.2x10 6 tracks of α-particles at PAD. This can be explained by the uranium content. The exposure will be continued and other samples will be investigated, too
International Nuclear Information System (INIS)
Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu
2005-01-01
New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)
Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction
International Nuclear Information System (INIS)
Oganessian, Yu Ts; Abdullin, F Sh; Dmitriev, S N; Itkis, M G; Polyakov, A N; Alexander, C; Binder, J; Boll, R A; Ezold, J; Felker, K; Grzywacz, R K; Miernik, K; Roberto, J B; Gostic, J M; Henderson, R A; Moody, K J; Hamilton, J H; Ramayya, A V; Miller, D; Ryabinin, M A
2015-01-01
The reaction of 249 Bk with 48 Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48 Ca ions of about 9x10 19 The experiments yielded data on a-decay characteristics and excitation functions of the produced nuclei that establish these to be 293 117 and 294 117 – the products of the 4n- and 3n-evaporation channels, respectively. In total, we have observed 20 decay chains of Z=117 nuclides. The cross sections were measured to be 1.1 pb for the 3n and 2.4 pb for the 4n-reaction channel. The new 289 115 events, populated by α decay of 117, demonstrate the same decay properties as those observed for 115 produced in the 243 Am( 48 Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294 118 was observed from the reaction with 249 Cf – a result of the in-growth of 249 Cf in the 249 Bk target. The observed decay chain of 294 118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249 Cf( 48 Ca,3n) 294 118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number N=184
International Nuclear Information System (INIS)
Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene
1995-09-01
This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)
International Nuclear Information System (INIS)
Mitchel, G.; Shriner, J.
2005-01-01
Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The
Synthesis and radioactive properties of the heaviest nuclei
International Nuclear Information System (INIS)
Oganesyan, Yu.Ts.
1996-01-01
Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs
Gross properties of nuclei and nuclear excitations
International Nuclear Information System (INIS)
Feldmeier, H.
1992-01-01
Heavy ion reactions are the main topics of the workshop. The different aspects that are discussed are: nuclear matter at relativistic energies, the transformation to quark matter, particle production, spallation and theoretical models for nuclear reaction kinetics. (BBOE)
Gross properties of nuclei and nuclear excitations
International Nuclear Information System (INIS)
Feldmeier, H.
1991-01-01
These proceedings contain the articles presented at the named workshop. They deal with nuclear multifragmentation, heavy ion reaction kinetics, breakup and transfer processes in heavy ion reactions, the production of hypernuclei, nuclear structure in the framework of the quark model and QCD, and particle production in nuclear reactions. (HSI)
Gross properties of nuclei and nuclear excitations
International Nuclear Information System (INIS)
Feldmeier, H.
1990-01-01
The workshop contains discussions about theory and experiments with heavy ions at intermediate and relativistic energies, spallation, quark matter production and other nuclear matter properties. (BBOE)
Gross properties of nuclei and nuclear excitations
International Nuclear Information System (INIS)
Feldmeier, H.
1989-01-01
These proceedings contain the articles presented at the named workshop. These concern new developments in nuclear structure studies, relativistic heavy ion reactions, and advanced techniques for nuclear spectroscopy. (HSI)
Gross properties of nuclei and nuclear excitations
International Nuclear Information System (INIS)
Feldmeier, H.
1986-01-01
These proceedings contain the invited and contributed papers presented at the named workshop. They deal with special topics in high- and intermediate-energy nuclear physics. Especially considered are the quark-gluon plasma, ultrarelativistic heavy ion reactions, and the application of QCD to nuclear structure calculations. (HSI)
Gross properties of nuclei and nuclear excitations
International Nuclear Information System (INIS)
Feldmeier, H.
1988-01-01
These proceedings contain the articles presented at the named workshop. They are concerned with the application of the results from high-energy physics to nuclear structure calculations, thermodynamics of nuclear matter, and kinetics of heavy ion reactions with special regard to relativistic processes. (HSI)
Extract relation between structures of proton and nuclei
International Nuclear Information System (INIS)
Gareev, E.A.; Gareeva, G.; )
2001-01-01
-momentum. These observations allow us to formulate a strategy of experimental searches for new states, new nuclei and systematize the already known ones - for example, we predict new type ultra-low energy (eV) states in nuclei and we suggest some method to identify the unknown nuclei (say, superheavy ones). Thereby we bring some arguments in favour to mechanism - ORDER from ORDER, declared by Schrodinger, it is well-known that nuclei with Z=8, 20, 28, 50, 82 (for neutrons N=126) are exceptionally stable. This phenomenon can be interpreted in the framework of the shell model and above mentioned arguments. The theoretical prediction of a superheavy nucleus with Z=114, formulated for the first time at Dubna, that has allowed a goal-directed experimental search has been testified
On-line mass separator of superheavy atoms
International Nuclear Information System (INIS)
Oganesyan, Yu.Ts.
2002-01-01
The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T 1/2 ≥ 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/ΔM ∼ 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected α-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams
On-Line Mass Separator of Superheavy Atoms
Oganessian, Yu T
2002-01-01
The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T_{1/2}\\ge 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/\\Delta M\\sim 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected alpha-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams.
International Nuclear Information System (INIS)
Anon.
1995-01-01
The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to
Phonon operators in deformed nuclei
International Nuclear Information System (INIS)
Soloviev, V.G.
1981-01-01
For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru
Phonon operators for deformed nuclei
International Nuclear Information System (INIS)
Solov'ev, V.G.
1982-01-01
The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator
Fission barriers of light nuclei
International Nuclear Information System (INIS)
Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.
1989-01-01
Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems
Search for superheavy elements in monazite from Beach sands of South India
International Nuclear Information System (INIS)
Kapoor, S.S.; Ramamurthy, V.S.; Lal, R.; Kataria, S.K.
1977-01-01
Monazite minerals obtained from beach of South India were examined for the presence of superheavy elements with photon-induced x-ray fluorescence method. The accumulated data of a number of runs each of several days duration do not show any convicing peaks above the background at the expected locations for superheavy elements which are above the present sensitivity of detection of about 10 ppm by weight for element 126. However, some intriguing features pertaining to structures in the x-ray spectra around 27 kev were observed, which are of interest for further investigations. (author)
Energy Technology Data Exchange (ETDEWEB)
Ledoux, X.
1995-04-01
We are studying the formation and the de-excitation of hot nuclei created in reactions induced by light high energy projectiles. These reactions, described in a two step model: an intranuclear cascade followed by an evaporation phase, produce nuclei in which the collective modes (compression, rotation, deformation) are weakly excited. By measuring the neutron multiplicities, event by event with ORION, and the light charged particle energies and multiplicities one can evaluate the excitation energy distribution of the nuclei. At the same time, theoretical simulations are carried out using the intranuclear cascade code developed by J. Cugnon and the statistical de-excitation code GEMINI. The good agreement with experimental results indicate that 10% of the p-nucleus interactions lead to temperatures greater than 5 MeV. The observation of the fission of a nucleus with a temperature close to 5 MeV shows that the nucleus behaves as a set of bound nucleons and, that the temperature stability limit is not yet reached. The observed decline of fission probability at high excitation energies is most likely to be correlated to the appearance of an other de-excitation process (evaporation residues emission or multifragmentation) which could not be experimentally detected. Finally, in the last chapter, we briefly present the principle of transmutation for long-lived nuclear waste with a proton accelerator and underline the interest of the present work in such studies. (author). 54 refs., 80 figs., 13 tabs.
Electron scattering off nuclei
International Nuclear Information System (INIS)
Gattone, A.O.
1989-01-01
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es
Electro-magnetic properties of heavy nuclei
International Nuclear Information System (INIS)
Otsuka, Takaharu
1989-01-01
Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)
Structure and clusters of light unstable nuclei
International Nuclear Information System (INIS)
En'yo, Yoshiko
2010-01-01
As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)
Coulomb energy differences in mirror nuclei
International Nuclear Information System (INIS)
Lenzi, Silvia M
2006-01-01
By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells
Superheavy elements in D I Mendeleev's Periodic Table
Energy Technology Data Exchange (ETDEWEB)
Oganessian, Yury Ts; Dmitriev, Sergey N [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow Region (Russian Federation)
2009-12-31
The results on the synthesis of new superheavy elements, synthesized in complete fusion reactions of {sup 48}Ca ions with actinide targets, are summarized and analyzed. The perspectives for the synthesis of element 117, as well as of elements with Z>=118 are also considered.
Relativistic quantum chemistry of the superheavy elements. Closed-shell element 114 as a case study
International Nuclear Information System (INIS)
Schwerdtfeger, Peter; Seth, Michael
2002-01-01
The chemistry of superheavy element 114 is reviewed. The ground state of element 114 is closed shell [112]7s 2 7p 1/2 2 and shows a distinct chemical inertness (low reactivity). This inertness makes it rather difficult to study the atom-at-a-time chemistry of 114 in the gas or liquid phase. (author)
Symmetry structure in neutron deficient xenon nuclei
International Nuclear Information System (INIS)
Govil, I. M.
1998-01-01
The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei ( 122,124 Xe) by recoil Distance Method (RDM). The lifetimes of the 2 + state in 122 Xe agrees with the RDM measurements but for 124 Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76( 130 Xe) to N=64( 118 Xe)
Symmetry structure in neutron deficient xenon nuclei
Govil, I. M.
1998-12-01
The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei (122,124Xe) by recoil Distance Method (RDM). The lifetimes of the 2+ state in 122Xe agrees with the RDM measurements but for 124Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76(130Xe) to N=64(118Xe).
Nuclear spectroscopy in nuclei with Z ≥ 110
Energy Technology Data Exchange (ETDEWEB)
Ackermann, D., E-mail: D.Ackermann@gsi.de
2015-12-15
The nuclear structure of species at the extreme of highest atomic numbers Z and nuclear masses A promises to reveal intriguing new features of this exotic hadronic matter. Their stability itself they owe to quantum-mechanic effects only. They form metastable states which, governed by the subtle interplay of α decay and spontaneous fission versus quantum-mechanic stabilization via shell effects, are in some cases more robust against disintegration than their ground states. Following the isotopic and isotonic trends of single particle levels, as well as collective features like deformation, may reveal the path towards the gap in the level densities, expected for the next closed proton and neutron shells at the so-called “island of stability” of spherical superheavy nuclei. Their atomic configuration offers via X-ray spectroscopy a tool to identify the atomic number of heavy species, where other more traditional methods like evaporation residue (ER)–α correlation are not applicable.
Energy Technology Data Exchange (ETDEWEB)
Prelas, M.A. [University of Missouri, Columbia, MO (United States); Hora, H. [University of New South Wales, Sydney (Australia); Miley, G.H. [University of Illinois, Urbana-Champaign (United States)
2014-07-04
Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q{sub α}, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus {sup 310}X{sub 126} was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing.
International Nuclear Information System (INIS)
Prelas, M.A.; Hora, H.; Miley, G.H.
2014-01-01
Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q α , arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus 310 X 126 was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing
Fusion-fission dynamics and synthesis of the superheavy elements
International Nuclear Information System (INIS)
Abe, Yasuhisa
2003-01-01
given by a product of the sticking and the formation probabilities. The former is that for the system to overcome the Coulomb barrier to stick each other, while the latter that for the system to overcome the conditional saddle to form the spherical shape. Residue cross sections for the superheavy elements are predicted by combining the survival probability which is calculated with the statistical theory of decay. Some examples will be presented on Z=110, 111, 112 and 113. (author)
Mendeleev's principle against Einstein's relativity: news from the chemistry of superheavy elements
Energy Technology Data Exchange (ETDEWEB)
Gaeggeler, Heinz W [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland)
2009-12-31
The review briefly considers the problems of synthesis and chemical identification of superheavy elements. The specific features of their properties are determined by the relativistic effects. The synthesis and chemical investigations into bohrium and element 112 are discussed as examples.
Superheavy-element spectroscopy: Correlations along element 115 decay chains
Rudolph, D.; Forsberg, U.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.
2016-05-01
Following a brief summary of the region of the heaviest atomic nuclei yet created in the laboratory, data on more than hundred α-decay chains associated with the production of element 115 are combined to investigate time and energy correlations along the observed decay chains. Several of these are analysed using a new method for statistical assessments of lifetimes in sets of decay chains.
International Nuclear Information System (INIS)
Casten, R.F.; Warner, D.D.
1982-01-01
The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics
Polarized electrons, trions, and nuclei in charged quantum dots
Bracker, A. S.; Tischler, J. G.; Korenev, V. L.; Gammon, D.
2003-07-01
We have investigated spin polarization in GaAs quantum dots. Excitons and trions are polarized directly by optical excitation and studied through polarization of photoluminescence. Electrons and nuclei are polarized indirectly through subsequent relaxation processes. Polarized electrons are identified by the Hanle effect for exciton and trion photoluminescence, while polarized nuclei are identified through the Overhauser effect in individual charged quantum dots.
Giant dipole resonances built on excited states
International Nuclear Information System (INIS)
Snover, K.A.
1983-01-01
The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references
High energy spin isospin modes in nuclei
International Nuclear Information System (INIS)
Chanfray, G.; Ericson, M.
1984-01-01
The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch
Thomas-Fermi model of warm nuclei
International Nuclear Information System (INIS)
Buchler, J.R.; Epstein, R.I.
1980-01-01
The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed
Electron form factors of deformable nuclei
International Nuclear Information System (INIS)
Tartakovskii, V.K.; Isupov, V.Yu.
1988-01-01
Using the smallness of the deformation parameter of the nucleus, we obtain simple explicit expressions for the form factors of electroexcitation of the low-lying rotation-vibration states of light, deformable, even-even nuclei. The expressions satisfactorily describe the experimental data on the excitation of collective nuclear states by the inelastic scattering of fast electrons
Understanding nuclei in the upper sd - shell
Energy Technology Data Exchange (ETDEWEB)
Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)
2014-08-14
Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.
Symmetry and Phase Transitions in Nuclei
International Nuclear Information System (INIS)
Iachello, F.
2009-01-01
Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)
Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei
Ramayya, A V; ICFN5
2014-01-01
These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.
Formation of heavy compound nuclei, their survival and correlation with longtime-scale fission
International Nuclear Information System (INIS)
Karamyan, S.A.; Yakushev, A.B.
2006-01-01
Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z c 110-118 nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94 Kr or 100 Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed
Spontaneous-fission half-lives for even nuclei with Z> or =92
International Nuclear Information System (INIS)
Randrup, J.; Larsson, S.E.; Moller, P.; Nilsson, S.G.; Pomorski, K.; Sobiczewski, A.
1976-01-01
The spontaneous-fission process for doubly even nuclei with Z> or =92 is studied in a semiempirical WKB framework. One-dimensional fission barrier potentials are established from theoretical deformation-energy surfaces based on the droplet model and the modified-oscillator model. The effects of axial asymmetry as well as reflection asymmetry have been taken into account. Macroscopic (irrotational flow) inertial-mass functions and, alternatively, microscopic (cranking model) inertial mass parameters have been employed for the calculation of the fission half-lives. With one over-all normalization parameter it is possible to fit the experimental half-lives to within a factor of 20 on the average. The resulting effective inertial-mass functions are used to estimate the stability of the transactinide elements. Only minor differences with previous estimates for the r process and superheavy nuclei are encountered
On the fate of superheavy magnetic monopoles in a neutron star
International Nuclear Information System (INIS)
Kuzmin, V.A.; Rubakov, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)
1983-02-01
We propose two possible scenarios of the behaviour of superheavy magnetic monopoles in a neutron star, in which the monopole-antimonopole annihilation rate is sufficiently large to prevent the enormous heating of a neutron star due to the monopole induced neutron decays. We find that the galactic monopole flux of order 10 -16 cm -2 s -1 ster -1 can be compatible with the observational limit on the X-ray luminosity of neutron stars. (author)
Lu , H.; Boilley , D.; Abe , Y.; Shen , C.
2016-01-01
13 pages, 13 figures, submitted for publication in PRC; International audience; Background: Synthesis of super-heavy elements is performed by heavy-ion fusion-evaporation reactions. However , fusion is known to be hindered with respect to what can be observed with lighter ions. Thus some delicate ambiguities remain on the fusion mechanism that eventually lead to severe discrepancies in the calculated formation probabilities coming from different fusion models. Purpose: In the present work, we...
Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element
Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.
1983-01-01
Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.
State of art in experimental studies and theory of superheavy elements
International Nuclear Information System (INIS)
Zvara, I.
2002-01-01
Recent years have seen remarkable progress in synthesizing new, superheavy' elements (SHE). Researchers at Dubna reached the slopes of the expected 'island of stability' (around Z = 114 and N = 184) in a 'sea' of nuclides with very short partial half-lives against spontaneous fission and/or alpha decay. In long bombardments (weeks to months) of isotopes of U, Pu and Cm by very intense (3x10 12 s -1 ) beams of 48 Ca projectiles, they have discovered mostly alpha active isotopes of previously unknown elements 116 and 114, as well as of element 112, all with unusually long half-lives - up to minutes. Only physical methods have been used for isolation and identification of the produced new nuclei. These findings give an impetus to chemical studies. Feasibility of experiments critically depends on half-lives and production cross section. Lifetimes of the order of a second or more are necessary for some gas phase chemistry studies, but at least some 10 seconds for solution chemistry. The production rates of observable atoms might be higher in chemical studies, because chemists can make use of thicker targets, and achieve higher (chemical) yield and detection efficiency than in physical experiments. Work on chemical identification of the 3-min 283 112 is in progress at Dubna and planned in other laboratories. Being a homologue of Hg, element 112 must be even more volatile metal. Thanks to this, hopefully, its single atoms, will be easily separated from interfering activities simultaneously produced in the bombardment. Quantum (theoretical) chemistry studies aim at solving the problem of 'relativistic effects' in chemical properties of SHE; such effects increase with higher Z's. As the available calculational resources fast and steadily grow (unlike the beam time available at accelerators) one can hope that quantum chemists will once be able to advise the experimenters which kind of studies to do to obtain most important and interesting results. This is not yet possible
Photon interactions with nuclei
International Nuclear Information System (INIS)
Thornton, S.T.; Sealock, R.M.
1989-01-01
This document is a progress report for DOE Grant No. FG05-89ER40501, A000. The grant began March, 1989. Our primary research effort has been expended at the LEGS project at Brookhaven National Laboratory. This report will summarize our present research effort at LEGS as well as data analysis and publications from previous experiments performed at SLAC. In addition the principal investigators are heavily involved in the CLAS collaboration in Hall B at CEBAF. We have submitted several letters of intent and proposals and have made commitments to construct experimental equipment for CEBAF. We expect our primary experimental effort to continue at LEGS until CEBAF becomes operational. This report will be divided into separate sections describing our progress at LEGS, SLAC, and CEBAF. We will also discuss our significant efforts in the education and training of both undergraduate and graduate students. Photon detectors are described as well as experiments on delta deformation in nuclei of quasielastic scattering and excitation of the delta by 4 He(e,e')
SP (4,R) symmetry in light nuclei
International Nuclear Information System (INIS)
Peterson, D.R.
1979-01-01
A classification of nuclear states according to the noncompact sympletic Lie algebras sp(2n,R), n = 1, 2, 3, is investigated. Such a classification has recently been shown to be physically meaningful. This classification scheme is the appropriate generalization fo Elliott's SU 3 model of rotational states in deformed light nuclei to include core excitations. A restricted classification according to the Lie algebra, sp(4,R), is motivated. Truncation of the model space to a single sp(4,R) irreducible representation allows the inclusion of states possessing very high excitation energy. An sp(4,R) model study is performed on S = T = 0 positive-parity rotational bands in the deformed light nuclei 16 O and 24 Mg. States are included in the model space that possess up to 10h ω in excitation energy. Results for the B(E2) transition rates compare favorable with experiment, without resort to effective charges
International Nuclear Information System (INIS)
Soloviev, V.G.
1995-01-01
Order and chaos and order-to-chaos transition are treated in terms of nuclear wave functions. A quasiparticle-phonon interaction is responsible for the fragmentation of one- and many-quasiparticle and phonon states and for the mixing of closely spaced states. Complete damping of one-quasiparticle states cannot be considered as a transition to chaos due to large many-quasiparticle or quasiparticle-phonon terms in their wave functions. An experimental investigation of the strength distribution of many-quasiparticle and quasiparticle-phonon states should uncover a new region of a regularity in nuclei at intermediate excitation energy. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. ((orig.))
Super-heavy dark matter – Towards predictive scenarios from inflation
Energy Technology Data Exchange (ETDEWEB)
Kannike, Kristjan [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Racioppi, Antonio, E-mail: antonio.racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Raidal, Martti [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia)
2017-05-15
A generic prediction of the Coleman–Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman–Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.
Microstructure Evolution and Surface Cracking Behavior of Superheavy Forgings during Hot Forging
Directory of Open Access Journals (Sweden)
Zhenhua Wang
2018-01-01
Full Text Available In recent years, superheavy forgings that are manufactured from 600 t grade ingots have been applied in the latest generation of nuclear power plants to provide good safety. However, component production is pushing the limits of the current free-forging industry. Large initial grain sizes and a low strain rate are the main factors that contribute to the deformation of superheavy forgings during forging. In this study, 18Mn18Cr0.6N steel with a coarse grain structure was selected as a model material. Hot compression and hot tension tests were conducted at a strain rate of 10−4·s−1. The essential nucleation mechanism of the dynamic recrystallization involved low-angle grain boundary formation and subgrain rotation, which was independent of the original high-angle grain boundary bulging and the presence of twins. Twins were formed during the growth of dynamic recrystallization grains. The grain refinement was not obvious at 1150°C. A lowering of the deformation temperature to 1050°C resulted in a fine grain structure; however, the stress increased significantly. Crack-propagation paths included high-angle grain boundaries, twin boundaries, and the insides of grains, in that order. For superheavy forging, the ingot should have a larger height and a smaller diameter.
Super-heavy dark matter – Towards predictive scenarios from inflation
Directory of Open Access Journals (Sweden)
Kristjan Kannike
2017-05-01
Full Text Available A generic prediction of the Coleman–Weinberg inflation is the existence of a heavy particle sector whose interactions with the inflaton, the lightest state in this sector, generate the inflaton potential at loop level. For typical interactions the heavy sector may contain stable states whose relic abundance is generated at the end of inflation by the gravity alone. This general feature, and the absence of any particle physics signal of dark matter so far, motivates us to look for new directions in the dark sector physics, including scenarios in which dark matter is super-heavy. In this article we study the possibility that the dark matter is even heavier than the inflaton, its existence follows from the inflaton dynamics, and its abundance today is naturally determined by the weakness of gravitational interaction. This implies that the super-heavy dark matter scenarios can be tested via the measurements of inflationary parameters and/or the CMB isocurvature perturbations and non-Gaussianities. We explicitly work out details of three Coleman–Weinberg inflation scenarios, study the systematics of super-heavy dark matter production in those cases, and compute which parts of the parameter spaces can be probed by the future CMB measurements.
International Nuclear Information System (INIS)
Okuma, Yasuhiko
1992-01-01
The isobaric analog states (IAS's) T=0, 1, 2 and 2 in isobars 60 Zn (Tz=0), 60 Cu (Tz=1) and 60 Ni (Tz=2) were studied by the three types of two-nucleon (2p, pn, 2n) stripping transfer reactions induced by the same beams 16 O and targets 58 Ni at an incident energy 80 MeV. The excitation energies of observed IAS's are in good fits with those calculated theoretically. The g'nd state 2 + , T=1 in 60 Cu may not be populated vy the ( 16 O, 14 N) reaction. The mutual excitation ( 16 O, 14 N * ) may be considered in the present population in 50 Cu. The isospin aspects of these reactions are quite prominent. All angular distributions of these IAS's have a forward peaked shape. Those of the O + states show a strongly oscillated pattern. Those of the 2 + states have no evidences of the clear oscillations. The similarities are observed between the angular distributions of IAS's. The EFR-DWBA calculations, in which the direct one-step cluster transferrs of two nucleons are assumed, reproduce reasonably the data points. The similarities between the heavy and the light ion induced two-nucleon stripping transfer reactions appear in both the reaction mechanisms and the spectroscopies of residual nuclei. The excitations of these IAS's will be an appearances of the single particle properties of transferred two-nucleons. (author)
International Nuclear Information System (INIS)
Sugimoto, Kenzo
1982-01-01
An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)
New Fragment Separation Technology for Superheavy Element Research
International Nuclear Information System (INIS)
Shaughnessy, D A; Moody, K J; Henderson, R A; Kenneally, J M; Landrum, J H; Lougheed, R W; Patin, J B; Stoyer, M A; Stoyer, N J; Wild, J F; Wilk, P A
2008-01-01
This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physically separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of ±0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the 244 Pu+ 48 Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that
Superheavy hydrogen 5H. Spectroscopy of 7He
International Nuclear Information System (INIS)
Korsheninnikov, A.A.; Golovkov, M.S.; Ozawa, A.
2002-01-01
Recent experiments with radioactive beams for spectroscopy of 5 H and 7 He are presented. It is studied the reaction p( 6 He, pp) 5 H. Preliminary results show a peak which is a good candidate for the resonance 5 H. In study of the reaction p( 8 He, d) 7 He, it is observed an excited state of 7 He which decays into 4 He + 3n [ru
Decay of giant resonances states in radiative pion capture by 1p shell nuclei
International Nuclear Information System (INIS)
Dogotar, G.E.
1978-01-01
The decay of the giant resonance states excited in tthe radiative pion capture on the 9 Be, 11 B, 13 C and 14 N nuclei is considered in the shell model with intermediate coupling. It is shown that the excited states in the daughter nuclei (A-1, Z-1) are mainly populated by intermediate states with spin by two units larger than the spin of the target nuclei. Selected coincidence experiments are proposed
3rd International conference on nuclei far from stability, Cargese, Corsica, 19-26 May 1976
International Nuclear Information System (INIS)
1976-01-01
These conference proceedings contain 103 contributions which are grouped under the following headings: Experimental methods and techniques; Perspectives in research on exotic nuclei; Nuclear masses - experiment and theory; Nuclear spins, moments, and radii; Light nuclei; Delayed particle emission and statistical aspects; Excited states of neutron-deficient nuclei; Excited states of fission products and other neutron-rich isotopes; Heavy elements and astrophysical aspects. Also included are the Scientific programme and a List of participants. (AJ)
Hadronic interaction and structure of exotic nuclei
International Nuclear Information System (INIS)
Otsuka, Takaharu
2009-01-01
I will overview recent studies on the evolution of the shell structure in stable and exotic nuclei, and will show its relevance to hadronic interaction, including nuclear forces. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The shell structure and existing limit of nuclei depend also on the three-body interaction in a specific way. I will sketch how the Δ-hole excitation induced three-body force (Fujita-Miyazawa force) modifies them. (author)
Kinetics of the excited muonic hydrogen in the mixtures of hydrogen isotopes in helium
International Nuclear Information System (INIS)
Bystritskij, V.M.; Kravtsov, A.V.; Popov, N.P.
1989-01-01
De-excitation of the excited muonic hydrogen in the mixture of hydrogen isotopes and helium is considered. The method is proposed which allows one to determine the rates of the muon transfer from the excited muonic hydrogen to helium nuclei, as well as the probability of the direct muon atomic capture by nuclei of hydrogen isotopes. 20 refs.; 4 figs
Directory of Open Access Journals (Sweden)
Kedziora David J.
2011-10-01
Full Text Available Collisions of actinide nuclei form, during very short times of few zs (10−21 s, the heaviest ensembles of interacting nucleons available on Earth. Such collisions are used to produce super-strong electric ﬁelds by the huge number of interacting protons to test spontaneous positron-electron pair emission (vacuum decay predicted by the quantum electrodynamics (QED theory. Multi-nucleon transfer in actinide collisions could also be used as an alternative way to fusion in order to produce neutron-rich heavy and superheavy elements thanks to inverse quasiﬁssion mechanisms. Actinide collisions are studied in a dynamical quantum microscopic approach. The three-dimensional time-dependent Hartree-Fock (TDHF code tdhf3d is used with a full Skyrme energy density functional to investigate the time evolution of expectation values of one-body operators, such as fragment position and particle number. This code is also used to compute the dispersion of the particle numbers (e.g., widths of fragment mass and charge distributions from TDHF transfer probabilities, on the one hand, and using the BalianVeneroni variational principle, on the other hand. A ﬁrst application to test QED is discussed. Collision times in 238U+238U are computed to determine the optimum energy for the observation of the vacuum decay. It is shown that the initial orientation strongly affects the collision times and reaction mechanism. The highest collision times predicted by TDHF in this reaction are of the order of ~ 4 zs at a center of mass energy of 1200 MeV. According to modern calculations based on the Dirac equation, the collision times at Ecm > 1 GeV are suﬃcient to allow spontaneous electron-positron pair emission from QED vacuum decay, in case of bare uranium ion collision. A second application of actinide collisions to produce neutron-rich transfermiums is discussed. A new inverse quasiﬁssion mechanism associated to a speciﬁc orientation of the nuclei is proposed to
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
International Nuclear Information System (INIS)
Chomaz, Ph.
2000-01-01
This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information
Deformation and shape coexistence in medium mass nuclei
International Nuclear Information System (INIS)
Meyer, R.A.
1985-01-01
Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Investigation of copper nuclei
International Nuclear Information System (INIS)
Delfini, M.G.
1983-01-01
An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)
α -decay chains of superheavy Mt-279265 isotopes
Santhosh, K. P.; Nithya, C.
2017-10-01
The α -decay chains of the isotopes Mt-279265 are predicted by comparing the α half-lives calculated within the Coulomb and proximity potential model for deformed nuclei of Santhosh et al. [Nucl. Phys. A 850, 34 (2011)], 10.1016/j.nuclphysa.2010.12.002 with the spontaneous fission half-lives using the shell-effect-dependent formula of Santhosh and Nithya [Phys. Rev. C 94, 054621 (2016)], 10.1103/PhysRevC.94.054621. α half-lives also are calculated using different theoretical formalisms for comparison. The predicted half-lives and decay modes match well with the experimental results. The use of four different mass tables for calculating the α - decay energies indicates that the mass table of Wang et al. [Chin. Phys. C 41, 030003 (2017)], 10.1088/1674-1137/41/3/030003, which is based on the AME2016 atomic mass evaluation, is in better agreement with experimental results. The paper predicts long α chains from 265,267-269,271-273MT with half-lives within experimental limits. The isotopes 274-276,278Mt exhibit 2α chains followed by spontaneous fission. The 2α chain of 266Mt and the 4α chain of 270Mt end with electron capture. The isotopes Mt,279277 decay via spontaneous fission. We hope that the paper will open up new areas in this field.
Search for superheavy elements in the reaction 238U+9.6 MeV/N 63Cu,65Cu
International Nuclear Information System (INIS)
Esterlund, R.A.; Molzahn, D.; Brandt, R.; Patzelt, P.; Vater, P.; Boos, A.H.
1976-01-01
According to calculations of NIX and others, the formation of superheavy elements might occur in heavy-ion reaction systems such as the one under investigation in the present work i.e., 238 U + 63 Cu and 65 Cu at 9.6 MeV/nucleon. Since previous experiments have indicated that upper limits to the production cross-section for superheavy elements are extremely low, two rather long irradiations of 27 hrs and 42 hrs, respectively, have been carried out at the University of Manchester LINAC. The first run has already been reported on in the literature. In the case of the second run, after chemical separation into HgS, CdS, and La(OH) 3 fractions, the samples were assayed simultaneously and continuously over a period of 6 months for alpha- and spontaneous-fission activity, using Si surface-barrier detector. Each sample was at the same time mounted on mica, for the purpose of scanning for fission tracks at a later date. No indications from the data have so far been found that superheavy elements were produced. Possible reasons for the failure to detect superheavy elements in this experiment are: The half-life of any product is either too short (a few hours) or too long (a few years); the chemical properties of the superheavy elements are very different from those predicted; the position of the superheavy island is not where it is commonly assumed to be and may, for example, be at Z>=114 and N>=184, as predicted by ROUBEN et al. (T.G.)
Multiple electromagnetic excitations of relativistic projectiles
International Nuclear Information System (INIS)
Llope, W.J.; Braun-Munzinger, P.
1992-01-01
Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data
Nuclear wobbling-phonon excitations with alignments
International Nuclear Information System (INIS)
Hamamoto, I.
2003-01-01
Wobbling-phonon excitations, which are recently observed in 71 163 Lu 92 , are studied. The presence of alignments in nuclei makes it easier for wobbling excitations to appear at lower angular momenta of the yrast spectra. A family of rotational bands with wobbling excitations, which have nearly the same nuclear intrinsic structure, have been pinned down by observing specific electromagnetic decay properties between them. The triaxiality parameter γ = +20 deg. is obtained for the nuclear shape from measured E2 transition probabilities
Critical and shape-unstable nuclei
Cailliau, M; Husson, J P; Letessier, J; Mang, H J
1973-01-01
The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).
Rotational-vibrational states of nonaxial deformable even-even nuclei
International Nuclear Information System (INIS)
Porodzinskii, Yu.V.; Sukhovitskii, E.Sh.
1991-01-01
The rotational-vibrational excitations of nonaxial even-even nuclei are studied on the basis of a Hamiltonian operator with five dynamical variables. Explicit forms of the wave functions and energies of the rotational-vibrational excitations of such nuclei are obtained. The experimental energies of excited positive-parity states of the 238 U nucleus and those calculated in terms of the model discussed in the article are compared
Order in nuclei and transition to chaos
International Nuclear Information System (INIS)
Soloviev, V.G.
1995-01-01
Based on the statement that there is order in the large and chaos in the small components of nuclear wave functions, the order-to-chaos transition is treated as a transition from the large to small components of wave functions. Therefore, experimental investigation of fragmentation of the many-quasiparticle and quasiparticle-phonon states plays a decisive role. The mixing of closely-spaced states having the same K π in the doubly even well-deformed nuclei is investigated. The quasiparticle-phonon interaction is responsible for fragmentation of the quasiparticle and phonon states and therefore for their mixing. Experimental investigation of the strength distribution of the many-quasiparticle and quasiparticle-phonon states should discover a new region of regularity in nuclei at intermediate excitation energies. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. (author). 21 refs., 1 fig., 1 tab
Order in nuclei and transition to chaos
International Nuclear Information System (INIS)
Soloviev, V.G.
1995-01-01
Based on the statement that there is order in the large and chaos in the small components of nuclear wave functions, the order-to-chaos transition is treated as a transition from the large to small components of wave functions. Therefore, experimental investigation of fragmentation of the many-quasiparticle and quasiparticle-phonon states a decisive role. The mixing of closely-spaced states having the same K π in the doubly even well-deformed nuclei is investigated. The quasiparticle-phonon interaction is responsible for fragmentation of the quasiparticle and phonon states and therefore for their mixing. Experimental investigation of the strength distribution of the many-quasiparticle and quasiparticle-phonon states should discover a new region of regularity in nuclei at intermediate excitation energies. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. (author). 21 refs., 1 fig., 1 tab
Nuclei with exotic constituents
International Nuclear Information System (INIS)
Yamazaki, Toshimitsu.
1990-08-01
We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)
International Nuclear Information System (INIS)
Foucher, R.
1979-01-01
If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed
International Nuclear Information System (INIS)
Arenhoevel, H.
1977-01-01
The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de
International Nuclear Information System (INIS)
Liu, L.C.
1987-01-01
The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model
Spectroscopic Studies of Exotic Nuclei at ISOLDE
2002-01-01
Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...
Superheavy particles in cosmology and evolution of inhomogeneities in the early universe
International Nuclear Information System (INIS)
Khlopov, M. Yu.; Polnarev, A.G.
1983-01-01
The stages of dominance of superheavy metastable particles, predicted by GUTs, are shown to result in the formation of primordial black holes (PBH) in the course of evolution of small initial inhomogeneities. The minimal probability of PBH formation is estimated. The relationship between the spectrum of these PBH, the spectrum of initial metric fluctuations and the parameters of the GUTs is established. Observational astrophysical restrictions on the PBH spectrum then provide a number of restrictions on the parameters of the GUTs depending on the amplitude of initial metric perturbations. (author)
Charge quantization without superheavy masses in a Kaluza--Klein description of electromagnetism
International Nuclear Information System (INIS)
Ross, D.K.
1987-01-01
A scalar matter field coupled to general relativity and electromagnetism in a five-dimensional Kaluza--Klein model is considered. The five-dimensional space is assumed to be a fiber bundle as in the usual description of a gauge theory and not a more general manifold. Properly taking this into account allows one to use a Lagrangian density for the scalar field which includes charge quantization but not the unphysical superheavy masses found by other authors. A natural, satisfactory explanation of why charge is quantized results
What can we learn from the fission time of the super-heavy elements?
Boilley, D.; Marchix, A.; Wilgenbus, D.; Lallouet, Y.; Gimbert, F.; Abe, Y.
2007-01-01
International audience; Recent experiments performed at GANIL with a crystal blocking technique have shown direct evidences of long fission times in the Super-Heavy Elements (SHE) region. Aimed to localize the SHE island of stability, can these experiments give access to the fission barrier and then to the shell-correction energy? In this paper, we calculate the fission time of heavy elements by using a new code, KEWPIE2, devoted to the study of the SHE.We also investigate the effect of poten...
Superheavy-element fission tracks in iron meteorites, and reply by Bull, R.K
International Nuclear Information System (INIS)
Runcorn, S.K.
1980-01-01
Comment is made on the lack of superheavy element (SHE) fission tracks observed in silicates from the class IA Odessa iron meteorite by Bull (Nature; 282:393 (1979)). Two explanations are suggested. Firstly, a thermal history for Odessa can be constructed in which the meteorite reaches track retention temperatures only after a time corresponding to many half lives for the SHEs (taken to be approximately 100 Myr) has elapsed and secondly that the IA irons never took up many SHEs. These suggestions are discussed in a reply by Bull. (U.K.)
RPA ground state correlations in nuclei
International Nuclear Information System (INIS)
Lenske, H.
1990-01-01
Overcounting in the RPA theory of ground state correlations is shown to be avoided if exact rather than quasiboson commutators are used. Single particle occupation probabilities are formulated in a compact way by the RPA Green function. Calculations with large configuration spaces and realistic interactions are performed with 1p1h RPA and second RPA (SRPA) including 2p2h mixing in excited states. In 41 Ca valence hole states are found to be quenched by about 10% in RPA and up to 18% in SRPA. Contributions from low and high lying excitations and their relation to long and short range correlations in finite nuclei are investigated. (orig.)
Electromagnetic properties of nuclei at high spins
International Nuclear Information System (INIS)
Leander, G.A.
1986-01-01
A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs
Shell model calculations for exotic nuclei
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1991-01-01
A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs
Giant dipole resonance in hot nuclei
International Nuclear Information System (INIS)
Mau, N.V.
1993-01-01
Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs
Pancholi, S C
2011-01-01
By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...
Complex fragment emission from hot compound nuclei
International Nuclear Information System (INIS)
Moretto, L.G.
1986-03-01
The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs
Electromagnetic interactions with nuclei and nucleons
International Nuclear Information System (INIS)
Thornton, S.T.; Sealock, R.M.
1990-01-01
This report discusses the following topics: general LEGS work; photodisintegration of the deuteron; progress towards other experiments; LEGS instrumentation; major LEGS software projects; NaI detector system; nucleon detector system; waveshifting fibers; EGN prototype detector for CEBAF; photon beam facility at CEBAF; delta electroproduction in nuclei; quasielastic scattering and excitation of the Delta by 4 He(e,e'); and quasielastic scattering at high Q 2
Soft radiative strength in warm nuclei
International Nuclear Information System (INIS)
Becker, J A; Bernstein, L A; Garrett, P E; Nelson, R O; Schiller, A; Voinov, A; Agvaanluvsan, U; Algin, E; Belgya, T; Chankova, R; Guttormsen, M; Mitchell, G E; Rekstad, J; Siem, S
2004-01-01
Unresolved transitions in the nuclear γ-ray cascade produced in the decay of excited nuclei are best described by statistical concepts: a continuous radiative strength function (RSF) and level density yield mean values of transition matrix elements. Data on the soft (E γ < 3-4 MeV) RSF for transitions between warm states (i.e. states several MeV above the yrast line) have, however, remained elusive
Modeling level structures of odd-odd deformed nuclei
International Nuclear Information System (INIS)
Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.
1984-01-01
A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs
Chaos in nuclei: Theory and experiment
Muñoz, L.; Molina, R. A.; Gómez, J. M. G.
2018-05-01
During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.
The synthesis of the deformed superheavy elements 107 to 111
International Nuclear Information System (INIS)
Armbuster, P.
1995-01-01
By inflight separation, implantation into Si-detector arrays, and correlation analysis of subsequent α-decay chains many isotopes were discovered at GSI since 1980, among others the elements Nielsbohriurn, Hassium and Meitnerium. The sensitivity of the method allows to identify an element by one decay chain, as we demonstrated for the case of 266 Mt. After a break of our work during the time when the new accelerator system SIS-FRS-ESR was installed (1989-1993) at GSI, and many improvements of our system EZR-UNILAC-SHIP accomplished, we restarted element synthesis in 1994. The synthesis of the isotopes 269 110, 271 110, and 272 111 of the new elements Z--110 and Z=l11 was a first success at the end of 1994. This discovery is in the center of this presentation. The reaction mechanism, a one-step, cold and compact rearrangement process at a level of some 10 -36 cm 2 is discussed. Cross sections and excitation functions systematically studied allow to extrapolate to the next element Z=112, which seems not to be out of reach
Quasi-molecular states in sd-shell nuclei
International Nuclear Information System (INIS)
Kubono, S.; Ikeda, N.; Nomura, T.
1988-08-01
Quasi-molecular states near and below the threshold of the molecular configuration in sd-shell nuclei are discussed using recent experimental data with particle-gamma coincidence method and particle-particle coincidence method. Possible quasi-molecular states have been identified in 24 Mg as well as in 28 Si and 32 S. The important role of quasi-molecular states are discussed, specifically for the shape evolution of nuclei as a function of excitation energy and angular momentum. (author)
International Nuclear Information System (INIS)
Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.
1990-01-01
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr
Dynamic polarisation of nuclei
International Nuclear Information System (INIS)
Borghini, M.; Abragam, A.
1961-01-01
In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr
Neutrino masses and superheavy dark matter in the 3-3-1-1 model
Energy Technology Data Exchange (ETDEWEB)
Huong, D.T.; Dong, P.V. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam)
2017-04-15
In this work, we interpret the 3-3-1-1 model when the B - L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the new neutral fermions. Additionally, all the new particles have large masses in the inflation scale. The lightest particle among the W-particles that have abnormal (i.e., wrong) B - L number in comparison to those of the standard model particles may be superheavy dark matter as it is stabilized by W-parity. The dark matter candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to gravitational effects on the vacuum or thermal production after cosmic inflation. (orig.)
Mcpeak, W. L.
1975-01-01
A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.
The role of quasiparticles in rotating transitional nuclei
International Nuclear Information System (INIS)
Frauendorf, Stefan
1984-01-01
The yrast sequency of nuclei rotating about the symmetry axis is classified in analogy to class I and II superconductors, where the quasiparticles play the role of the quantized flux in metals. The experimental spectra show a class I behaviour. The ω-dependence of the quasiparticle excitation energy in collectively rotating nuclei is used as evidence for magnitude of the pair correlations and the occurrence of triaxial shapes. A transition from triaxial to oblate shape explains the experimental spectra and E2-transition probabilities in the N=88-90 nuclei. (author)
Energy spectra of odd nuclei in the generalized model
Directory of Open Access Journals (Sweden)
I. O. Korzh
2015-04-01
Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.
International Nuclear Information System (INIS)
Roberts, R.G.
1984-11-01
The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)
International Nuclear Information System (INIS)
Mackintosh, R.S.
1977-01-01
For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)
Energy Technology Data Exchange (ETDEWEB)
Deloncle, I.
1989-10-23
In this study we have built the quadrupolar collective Bohr Hamiltonian in a purely microscopic way by using an approximation of the time-dependant Hartree-Fock adiabatic approach. The purpose of this work was to obtain a quantitative description of the collective properties in the low energy range of intermediate and heavy nuclei by using a 2-body effective interaction of Skyrme-type. We consider low energy processes as dynamic regimes in which the collective movement is adiabatic when compared with modes associated to individual freedom. In the N-body solution we propose, we have assumed that: -) a mean field exists at any moment, -) some collective variables exist whose temporal variations include all the dynamics, and -) the collective movement is adiabatic. This work is a microscopic formulation and an efficient approach to resolve the Bohr and Mottelson unified model. Low energy spectra have been computed for 4 nuclei: Ge{sup 74}, Se{sup 76}, Cd{sup 110} and Pt{sup 186} and they agree well with experimental data.
International Nuclear Information System (INIS)
Nomura, T.
1990-10-01
The (HI, αxn) reaction, in which precompound α particle emission takes place, is shown to occur significantly even near the Coulomb barrier. Because the α emission can efficiently cool down a highly excited nucleus both in energy and angular momentum, it is considered to be very effective for production of heavy elements like SHE. However, the angular distributions of residual nuclei produced in this reaction are side-peaked, requiring a recoil-type separator with large angular acceptance when it is applied for collection of the relevant nuclei. A brief description is given about a gas-filled separator recently constructed at RIKEN, which meets the above requirement. (author)
Neutron emission probability at high excitation and isospin
International Nuclear Information System (INIS)
Aggarwal, Mamta
2005-01-01
One-neutron and two-neutron emission probability at different excitations and varying isospin have been studied. Several degrees of freedom like deformation, rotations, temperature, isospin fluctuations and shell structure are incorporated via statistical theory of hot rotating nuclei
Particle-rotation coupling in atomic nuclei
International Nuclear Information System (INIS)
Almberger, J.
1980-01-01
Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)
El strength function at high spin and excitation energy
International Nuclear Information System (INIS)
Barrette, J.
1983-04-01
Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed
Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei
2002-01-01
% PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.
Kinematic separation and mass analysis of heavy recoiling nuclei
International Nuclear Information System (INIS)
Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.
2002-01-01
Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors
Spectroscopy of N approximately 82 nuclei near the proton drip line
International Nuclear Information System (INIS)
Daly, P.J.
1984-01-01
The yrast spectroscopy of Z>64 nuclei close to the proton drip line is discussed. This is a region of shell model nuclei in which high-spin excitations are accessible with heavy ion beams, and the occurrence of many isomers will facilitate future spectroscopic study of these nuclei to much higher spins that were observed in these investigations. The study of πhsub(11/2)sup(n) excitations in n=82 nuclei above 146 Gd provided particularly interesting results, since in certain respects their properties match shell model predictions better than those of jsup(n) states near traditional doubly magic nuclei. First results for N=81 nuclei above Z=64 were also reported, but much work remains to be done in the Z>64, N<82 quadrant
International Nuclear Information System (INIS)
Schramm, D.N.
1995-01-01
Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))
Microscopic description of the three major bands in transitional nuclei
International Nuclear Information System (INIS)
Pineda S, R.L.
1986-01-01
The author has extended the Coherent Phonon Model to the description of the three major bands in medium heavy transitional nuclei. The model assumes an axially symmetric deformed ground intrinsic state for the description of the low lying yrast levels of the ground band, while the excited bands are generated by intrinsic excitations of the ground band. Good angular momentum states are generated by the Peierls-Yoccoz angular momentum projection method
National Research Council Canada - National Science Library
Holzricher, John
2004-01-01
To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...
Wright, Bradford L.
1975-01-01
Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)
Lim, Edward C
1974-01-01
Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab
On the spectroscopy of the 1ssigma-orbital in superheavy collision systems
International Nuclear Information System (INIS)
Stiebing, K.E.; Schmidt-Boecking, H.; Schadt, W.; Bethge, K.; Mokler, P.H.; Bosch, F.; Liesen, D.; Vincent, P.
1982-01-01
The probability for the emission of quasimolecular K-radiation (K-MO-radiation) in superheavy collision systems was measured in the system 208 Pb + 208 Pb as function of the scattering angle and the photon energy for incident energies of 4.3 and 4.8 MeV/u. In the present article these measurements and their evaluation are extensively described. The results are discussed with special regards to the contributions from the 1ssigma-molecular orbital, because there exists a great interest on an utmost precise knowledge of the binding energy of these most strongly bound electrons. For this a survey about the dynamical model of the emission of quasimolecular X-radiation in the configuration formalism is given. (orig./HSI) [de