WorldWideScience

Sample records for excited states time-dependent

  1. Time-dependent theory of Raman scattering for systems with several excited electronic states: Application to a H+3 model system

    International Nuclear Information System (INIS)

    Heather, R.; Metiu, H.

    1989-01-01

    The time-dependent formulation of Raman scattering theory is used to study how nonadiabatic interactions affect the Raman spectrum of a model H + 3 system, which has two excited electronic states. We start with a formula derived by Heller which gives the Raman scattering cross section as the Fourier transform (over time) of a time-dependent overlap integral. The latter is calculated with a method proposed by Fleck, Morris, and Feit, and extended to curve crossing by Alvarellos and Metiu. In performing these calculations we are especially interested in displaying effects typical of systems having more than one upper state. If the incident laser populates two electronic states there are several ways (i.e., excite to state one and emit from state two, excite to state one, and emit from state one, etc.) by which the Raman process can reach a given final state, and this leads to quantum interference. This interference is manifested in the Raman cross section as approximate selection rules controlling which final states can be reached through the Raman process. These selection rules depend on the relative orientation of the transition dipoles that radiatively couple the ground electronic state with the excited electronic states. The magnitude of the nonadiabatic contribution to the Raman emission, e.g., the contribution from absorbing to state one and emitting from state two, can be determined from the polarization dependence of the Raman emission if the transition dipoles have neither parallel nor antiparallel relative orientation

  2. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  3. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  4. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    Science.gov (United States)

    Xu, Wenhua; Ma, Jianyi; Peng, Daoling; Zou, Wenli; Liu, Wenjian; Staemmler, Volker

    2009-02-01

    The perrhenate anion, ReO4-, is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted.

  5. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    International Nuclear Information System (INIS)

    Xu Wenhua; Ma Jianyi; Peng Daoling; Zou Wenli; Liu Wenjian; Staemmler, Volker

    2009-01-01

    The perrhenate anion, ReO 4 - , is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3 T 1 and 3 T 2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted

  6. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. I. General formalism and application to open-shell states.

    Science.gov (United States)

    Miranda, R P; Fisher, A J; Stella, L; Horsfield, A P

    2011-06-28

    The solution of the time-dependent Schrödinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest.

  7. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study.

    Science.gov (United States)

    Komoto, Keenan T; Kowalczyk, Tim

    2016-10-06

    To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.

  8. Application of the Real-Time Time-Dependent Density Functional Theory to Excited-State Dynamics of Molecules and 2D Materials

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Rubio, Angel

    2018-04-01

    We review our recent developments in the ab initio simulation of excited-state dynamics within the framework of time-dependent density functional theory (TDDFT). Our targets range from molecules to 2D materials, although the methods are general and can be applied to any other finite and periodic systems. We discuss examples of excited-state dynamics obtained by real-time TDDFT coupled with molecular dynamics (MD) and the Ehrenfest approximation, including photoisomerization in molecules, photoenhancement of the weak interatomic attraction of noble gas atoms, photoenhancement of the weak interlayer interaction of 2D materials, pulse-laser-induced local bond breaking of adsorbed atoms on 2D sheets, modulation of UV light intensity by graphene nanoribbons at terahertz frequencies, and collision of high-speed ions with the 2D material to simulate the images taken by He ion microscopy. We illustrate how the real-time TDDFT approach is useful for predicting and understanding non-equilibrium dynamics in condensed matter. We also discuss recent developments that address the excited-state dynamics of systems out of equilibrium and future challenges in this fascinating field of research.

  9. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rüger, Robert, E-mail: rueger@scm.com [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Lenthe, Erik van [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Heine, Thomas [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Visscher, Lucas [Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  10. Natural excitation orbitals from linear response theories : Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory

    NARCIS (Netherlands)

    Van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2017-01-01

    Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In

  11. Formation of Bonded Exciplex in the Excited States of Dicyanoanthracene-Pyridine System : Time Dependent Density Functional Theory Study

    NARCIS (Netherlands)

    Setiawan, D.; Sethio, D.; Martoprawiro, M.A.; Filatov, M.; Gaol, FL; Nguyen, QV

    2012-01-01

    Strong quenching of fluorescence was recently observed in pyridine solutions of 9,10-dicyanoanthracene chromophore. It was hypothesized that quenching may be attributed to the formation of bound charge transfer complexes in the excited states of the molecules. In this work, using time-dependent

  12. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    Science.gov (United States)

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-09

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.

  13. Decay of hollow states in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Wismarsche Str. 43-45, Universitaet Rostock, Rostock-18051 (Germany)

    2012-07-01

    Hollow or multiply excited states are inaccessible in time dependent density functional theory (TDDFT) using adiabatic Kohn-Sham potentials. We determine the exact Kohn Sham (KS) potential for doubly excited states in an exactly solvable model Helium atom. The exact single-particle density corresponds to the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose origin is traced back to phase of the exact KS orbital. The potential controls the barrier height and width in order for the density to tunnel out and decay with the same rate as the doubly excited state in the ab initio time-dependent Schroedinger calculation. Instead, adiabatic KS potentials only show direct photoionization but no autoionization. A frequency-dependent linear response kernel would be necessary in order to capture the decay of autoionizing states.

  14. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  15. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    Science.gov (United States)

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  16. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

    Science.gov (United States)

    Hutter, Jürg

    2003-03-01

    An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

  17. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    Science.gov (United States)

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  18. Shaping charge excitations in chiral edge states with a time-dependent gate voltage

    Science.gov (United States)

    Misiorny, Maciej; Fève, Gwendal; Splettstoesser, Janine

    2018-02-01

    We study a coherent conductor supporting a single edge channel in which alternating current pulses are created by local time-dependent gating and sent on a beam-splitter realized by a quantum point contact. The current response to the gate voltage in this setup is intrinsically linear. Based on a fully self-consistent treatment employing a Floquet scattering theory, we analyze the effect of different voltage shapes and frequencies, as well as the role of the gate geometry on the injected signal. In particular, we highlight the impact of frequency-dependent screening on the process of shaping the current signal. The feasibility of creating true single-particle excitations with this method is confirmed by investigating the suppression of excess noise, which is otherwise created by additional electron-hole pair excitations in the current signal.

  19. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.

  20. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  1. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kumar, Venkatraman; Ariese, Freek; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in [Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012 (India)

    2016-03-21

    The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T{sub 1} and T{sub 2} states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S{sub 0} state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S{sub 0}, T{sub 1}, and T{sub 2} states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ{sup ∗} triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents.

  2. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  3. Assessment of time-dependent density functional theory with the restricted excitation space approximation for excited state calculations of large systems

    Science.gov (United States)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-06-01

    The restricted excitation subspace approximation is explored as a basis to reduce the memory storage required in linear response time-dependent density functional theory (TDDFT) calculations within the Tamm-Dancoff approximation. It is shown that excluding the core orbitals and up to 70% of the virtual orbitals in the construction of the excitation subspace does not result in significant changes in computed UV/vis spectra for large molecules. The reduced size of the excitation subspace greatly reduces the size of the subspace vectors that need to be stored when using the Davidson procedure to determine the eigenvalues of the TDDFT equations. Furthermore, additional screening of the two-electron integrals in combination with a reduction in the size of the numerical integration grid used in the TDDFT calculation leads to significant computational savings. The use of these approximations represents a simple approach to extend TDDFT to the study of large systems and make the calculations increasingly tractable using modest computing resources.

  4. On excited states in real-time AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Botta-Cantcheff, Marcelo; Martínez, Pedro J.; Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2016-02-25

    The Skenderis-van Rees prescription, which allows the calculation of time-ordered correlation functions of local operators in CFT’s using holographic methods is studied and applied for excited states. Calculation of correlators and matrix elements of local CFT operators between generic in/out states are carried out in global Lorentzian AdS. We find the precise form of such states, obtain an holographic formula to compute the inner product between them, and using the consistency with other known prescriptions, we argue that the in/out excited states built according to the Skenderis-Van Rees prescription correspond to coherent states in the (large-N) AdS-Hilbert space. This is confirmed by explicit holographic computations. The outcome of this study has remarkable implications on generalizing the Hartle-Hawking construction for wave functionals of excited states in AdS quantum gravity.

  5. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  6. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  7. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede; Usman, Anwar; Alzayer, Maytham; Hamdi, Ghada A.; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  8. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  9. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    International Nuclear Information System (INIS)

    Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert

    2016-01-01

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate

  10. On the dynamics of excited atoms in time dependent electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Foerre, Morten

    2004-06-01

    This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such

  11. On the dynamics of excited atoms in time dependent electromagnetic fields

    International Nuclear Information System (INIS)

    Foerre, Morten

    2004-06-01

    This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such

  12. Time dependence of resonance γ-radiation modulated by acoustic excitations

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Arakelyan, A.R.; Gabrielyan, R.G.; Kocharyan, L.A.; Grigoryan, G.R.; Slavinskii, M.M.

    1984-01-01

    Experimental investigations of the time dependence of the γ-resonance absorption line intensity in case of modulation by acoustic waves are presented. 57 Co was used as source and a stainless steel foil was chosen as an absorber. The time dependences of the counting rate of the resonant γ-quanta corresponding to excitations with 3400 Hz and with 1.5 or 7 V at the vibrosystem transducer are plotted. The measurements show that the method has principal advantages over the conventional Moessbauer spectroscopy

  13. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.

    2010-06-17

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  14. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.; Andrews, S. R.

    2010-01-01

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  15. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  16. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  17. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  18. Triplet state photochemistry and the three-state crossing of acetophenone within time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Huix-Rotllant, Miquel, E-mail: miquel.huix@gmail.com; Ferré, Nicolas, E-mail: nicolas.ferre@univ-amu.fr [Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, 13397 Marseille Cedex 20 (France)

    2014-04-07

    Even though time-dependent density-functional theory (TDDFT) works generally well for describing excited states energies and properties in the Franck-Condon region, it can dramatically fail in predicting photochemistry, notably when electronic state crossings occur. Here, we assess the ability of TDDFT to describe the photochemistry of an important class of triplet sensitizers, namely, aromatic ketones. We take acetophenone as a test molecule, for which accurate ab initio results exist in the literature. Triplet acetophenone is generated thanks to an exotic three-state crossing involving one singlet and two triplets states (i.e., a simultaneous intersystem crossing and triplet conical intersection), thus being a stringent test for approximate TDDFT. We show that most exchange-correlation functionals can only give a semi-qualitative picture of the overall photochemistry, in which the three-state crossing is rather represented as a triplet conical intersection separated from the intersystem crossing. The best result overall is given by the double hybrid functional mPW2PLYP, which is even able to reproduce quantitatively the three-state crossing region. We rationalize this results by noting that double hybrid functionals include a larger portion of double excitation character to the excited states.

  19. Dependence of Excited State Potential Energy Surfaces on the Spatial Overlap of the Kohn-Sham Orbitals and the Amount of Nonlocal Hartree-Fock Exchange in Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Plötner, Jürgen; Tozer, David J; Dreuw, Andreas

    2010-08-10

    Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.

  20. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    Science.gov (United States)

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.

  1. Low-lying excited states by constrained DFT

    Science.gov (United States)

    Ramos, Pablo; Pavanello, Michele

    2018-04-01

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  2. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    Science.gov (United States)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  3. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    Science.gov (United States)

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  4. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    International Nuclear Information System (INIS)

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-01-01

    Resonance Raman and electronic absorption spectra are reported for the S 0 and T 1 states of the carotenoids β-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C 50 )-β-carotene, β-apo-8'-carotenal, and ethyl β-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S 0 and T 1 , regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S 0 and T 1 reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T 1 states of carotenoids and in the S 1 states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S 1 lifetime (of the 1 B/sub u/ and/or the 1 A/sub g/* states) of β-carotene in benzene is less than 1 ps

  5. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence

    Science.gov (United States)

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-09-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp2-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  6. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence.

    Science.gov (United States)

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-12-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp(2)-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  7. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  8. Coherent states for certain time-dependent systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1989-01-01

    Hartley and Ray have constructed and studied coherent states for the time-dependent oscillator. Here we show how to construct states for more general time-dependent systems. We also show that these states are equivalent to the well-known squeezed states. (author) [pt

  9. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory★

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-11-01

    We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80329-7.

  10. Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Sfaxi, L.; Baira, M.; Maaref, H.; Bru-Chevallier, C.

    2011-01-01

    Self-assembled InAs/GaAs (001) quantum dots (QDs) were grown by molecular beam epitaxy using ultra low-growth rate. A typical dot diameter of around 28 ± 2 nm and a typical height of 5 ± 1 nm are observed based on atomic force microscopy image. The photoluminescence (PL) spectra, their power and temperature dependences have been studied for ground (GS) and three excited states (1–3ES) in InAs QDs. By changing the excitation power density, we can significantly influence the distribution of excitons within the QD ensemble. The PL peak energy positions of GS and ES emissions bands depend on an excitation light power. With increasing excitation power, the GS emission energy was red-shifted, while the 1–3ES emission energies were blue-shifted. It is found that the full width at half maximum of the PL spectra has unusual relationship with increasing temperature from 9 to 300 K. The temperature dependence of QD PL spectra shown the existence of two stages of PL thermal quenching and two distinct activation energies corresponding to the temperature ranges I (9–100 K) and II (100–300 K).

  11. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  12. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  13. Rydberg energies using excited state density functional theory

    International Nuclear Information System (INIS)

    Cheng, C.-L.; Wu Qin; Van Voorhis, Troy

    2008-01-01

    We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.

  14. Benchmarking the stochastic time-dependent variational approach for excitation dynamics in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Chorošajev, Vladimir [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania); Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania); Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio 3, 10222 Vilnius (Lithuania); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania)

    2016-12-20

    Highlights: • The Davydov ansatze can be used for finite temperature simulations with an extension. • The accuracy is high if the system is strongly coupled to the environmental phonons. • The approach can simulate time-resolved fluorescence spectra. - Abstract: Time dependent variational approach is a convenient method to characterize the excitation dynamics in molecular aggregates for different strengths of system-bath interaction a, which does not require any additional perturbative schemes. Until recently, however, this method was only applicable in zero temperature case. It has become possible to extend this method for finite temperatures with the introduction of stochastic time dependent variational approach. Here we present a comparison between this approach and the exact hierarchical equations of motion approach for describing excitation dynamics in a broad range of temperatures. We calculate electronic population evolution, absorption and auxiliary time resolved fluorescence spectra in different regimes and find that the stochastic approach shows excellent agreement with the exact approach when the system-bath coupling is sufficiently large and temperatures are high. The differences between the two methods are larger, when temperatures are lower or the system-bath coupling is small.

  15. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  16. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.; Laptenok, Sergey P.; DeSa, Richard J.; Naumov, Pance; Solntsev, Kyril M.

    2016-01-01

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  17. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  18. An isotope dependent study of acetone in its lowest excited triplet state

    International Nuclear Information System (INIS)

    Gehrtz, M.; Brauchle, C.; Voitlaender, J.

    1984-01-01

    The lowest excited triplet state T 1 of acetone-h 6 and acetone-d 6 was investigated with a pulsed dye laser equipped ODMR spectrometer. Acetone is found to be bent in T 1 and the out-of-plane distortion angle is estimated to be approx.= 38 0 . The observed zero-field splitting (ZFS) is surprisingly small. Both the spin-spin and the spin-orbit (SO) contribution to the ZFS are evaluated. The SO tensor contribution is calculated from a correlation between the deuterium effects on the ZFS parameters and the population rates. The sub-level selective kinetics of the acetone T 1 is largely determined by the mixing of the x- and z-level characteristics owing to magnetic axis rotation caused by the excited state out-of-plane distortion. Considerable deuterium effects are observed on the kinetic data and on the microwave transition frequencies. In all cases the spin-specific isotope effects (due to the promoting modes) and the global effects (due to the Franck-Condon factors) are specified. For the population rates and the SO contribution to ZFS, the inverse global isotope effects (deuterium factor > 1) was found for the first time. Based on the isotope dependence of the rates, the mechanisms of (vibrationally induced) SO coupling in acetone are discussed. It is concluded that non-adiabatic contributions have to be taken into account for the smallest population rate only, but that otherwise the adiabatic SO coupling mechanisms by far dominates in the acetone photophysics. (author)

  19. Excited states rotational effects on the behavior of excited molecules

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also

  20. Particle hole excitations coupled to complex states in heavy-ion collisions

    International Nuclear Information System (INIS)

    Jolos, R.V.; Schmidt, R.

    1982-01-01

    The excitation of uncorrelated 1p-1h states in one nucleus due to the action of the time-dependent mean field of the other nucleus was studied earlier. No statistical assumptions or average procedures were made. Such a mechanism can be responsible for an appreciable excitation of the two nuclei during the short approach phase of the reaction (E* approximately> 100 MeV). The reversibility of the equations of motion leads to a deexcitation of the initially stored excitation energy into that of the relative motion for later times. This feedback behaviour of the internal excitation energy which results in particular to the deexcitation of high energetic 1p-1h pairs is probably not realistic due to the coupling of this states to more complex states with high density. It is studied the influence of this coupling due to the residual interaction between the nucleons on the dynamics of two colliding heavy ions

  1. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  2. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    Science.gov (United States)

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  3. Watching excitons move: the time-dependent transition density matrix

    Science.gov (United States)

    Ullrich, Carsten

    2012-02-01

    Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.

  4. Linear-scaling quantum mechanical methods for excited states.

    Science.gov (United States)

    Yam, ChiYung; Zhang, Qing; Wang, Fan; Chen, GuanHua

    2012-05-21

    The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and

  5. A new methodology for measuring time correlations and excite states of atoms and nuclei

    International Nuclear Information System (INIS)

    Cavalcante, M.A.

    1989-01-01

    A system for measuring time correlation of physical phenomena events in the range of 10 -7 to 10 5 sec is proposed, and his results presented. This system, is based on a sequential time scale which is controlled by a precision quartz oscillator; the zero time of observation is set by means of a JK Flip-Flop, which is operated by a negative transition of pulse in coincidence with the pulse from a detector which marks the time zero of the event (precedent pulse). This electronic system (named digital chronoanalizer) was used in the measurement of excited states of nuclei as well as for the determination of time fluctuations in physical phenomena, such as the time lag in a halogen Geiger counter and is the measurement of the 60 KeV excited state of N P 237 . (author)

  6. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    Science.gov (United States)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  7. Time dependent resonating Hartree-Bogoliubov theory

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Fukutome, Hideo.

    1989-01-01

    Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)

  8. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  9. Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol (TBA): alcohol mole fraction dependence.

    Science.gov (United States)

    Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit

    2008-02-07

    The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.

  10. Density-dependent phonoriton states in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang; Nguyen Minh Khue; Nguyen Que Huong

    1995-09-01

    The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton-exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors. (author). 18 refs, 3 figs

  11. Effects of reagent rotational excitation on the H + CHD3 → H2 + CD3 reaction: A seven dimensional time-dependent wave packet study

    International Nuclear Information System (INIS)

    Zhang, Zhaojun; Zhang, Dong H.

    2014-01-01

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD 3 in J 0 = 1, 2 rotationally excited initial states with k 0 = 0 − J 0 (the projection of CHD 3 rotational angular momentum on its C 3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K 0 ) equal to k 0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD 3 with respect to the relative velocity between the reagents H and CHD 3 . However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K 0 specified cross sections for the K 0 = k 0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K 0 averaging for the J 0 = 1, 2 initial states with all different k 0 are essentially identical to the corresponding CS and CC results for the J 0 = 0 initial state, meaning that the initial rotational excitation of CHD 3 up to J 0 = 2, regardless of its initial k 0 , does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J 0 = 1, 2 initial states are the same as those for the J 0 = 0 initial state

  12. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  13. The excitation of an independent-particle gas - classical or quantal - by a time-dependent potential well

    International Nuclear Information System (INIS)

    Blocki, J.; Skalski, J.; Swiatecki, W.J.

    1995-01-01

    A systematic numerical investigation of the excitation of a classical or quantal gas of non-interacting particles in a time-dependent potential well is described. The excitation energy was followed in time for one oscillation around the sphere for six types of deformation: spheroidal shapes and Legendre polynomial ripples P 2 , P 3 , P 4 , P 5 , P 6 , with relative rms amplitudes of 0.2. Ten different speeds of deformation and eleven different values of the diffuseness of the potential well were studied, making altogether 660 quantal and 660 classical time-dependent calculations. In the upper range of deformation speeds the quantal results for the non-integrable shapes P 3 -P 6 agree approximately with the wall formula for dissipation, the deviations being largely accounted for by the wave-mechanical suppression factor of Koonin et al. For low deformation speeds the dissipation becomes dominated by one or two avoided level crossings. (orig.)

  14. Time-dependent problems in quantum-mechanical state reconstruction

    International Nuclear Information System (INIS)

    Leonhardt, U.; Bardroff, P. J.

    1997-01-01

    We study the state reconstruction of wave packets that travel in time-dependent potentials. We solve the problem for explicitly time-dependent potentials. We solve the problem for explicitly time-dependent harmonic oscillators and sketch a general adaptive technique for finding the wave function that matches and observed evolution. (authors)

  15. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...

  16. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  17. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  18. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  19. Cathodoluminescence imaging and spectroscopy of excited states in InAs self-assembled quantum dots

    International Nuclear Information System (INIS)

    Khatsevich, S.; Rich, D.H.; Kim, Eui-Tae; Madhukar, A.

    2005-01-01

    We have examined state filling and thermal activation of carriers in buried InAs self-assembled quantum dots (SAQDs) with excitation-dependent cathodoluminescence (CL) imaging and spectroscopy. The InAs SAQDs were formed during molecular-beam epitaxial growth of InAs on undoped planar GaAs (001). The intensities of the ground- and excited-state transitions were analyzed as a function of temperature and excitation density to study the thermal activation and reemission of carriers. The thermal activation energies associated with the thermal quenching of the luminescence were measured for ground- and excited-state transitions of the SAQDs, as a function of excitation density. By comparing these activation energies with the ground- and excited-state transition energies, we have considered various processes that describe the reemission of carriers. Thermal quenching of the intensity of the QD ground- and first excited-state transitions at low excitations in the ∼230-300-K temperature range is attributed to dissociation of excitons from the QD states into the InAs wetting layer. At high excitations, much lower activation energies of the ground and excited states are obtained, suggesting that thermal reemission of single holes from QD states into the GaAs matrix is responsible for the observed temperature dependence of the QD luminescence in the ∼230-300-K temperature range. The dependence of the CL intensity of the ground-and first excited-state transition on excitation density was shown to be linear at all temperatures at low-excitation density. This result can be understood by considering that carriers escape and are recaptured as excitons or correlated electron-hole pairs. At sufficiently high excitations, state-filling and spatial smearing effects are observed together with a sublinear dependence of the CL intensity on excitation. Successive filling of the ground and excited states in adjacent groups of QDs that possess different size distributions is assumed to

  20. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    Science.gov (United States)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  1. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  2. Three-body treatment of the Z-dependence for excitation cross sections in Aq+ + H(1s) collisions - Excitation from the ground to the 2s and 3s states

    International Nuclear Information System (INIS)

    Fathi, R.; Akbarabadi, F.S.; Bolorizadeh, M.A.; Brunger, M.J.

    2015-01-01

    A 3-body Faddeev type formalism is applied to calculate the total excitation cross sections in the collision of a bare ion, A q+ (1 ≤ q ≤ 4), with atomic hydrogen, leading to the excitation of its 2s and 3s states. These calculations were undertaken at energies in the range 1 MeV-7 MeV. The first order electronic and nuclear amplitudes are included in the model, in order to calculate the differential and total excitation cross sections leading to the first order form factors. The present results are compared with the available data in the literature, specifically those from mono-centric close-coupling calculations. The Z-dependence of the 2s and 3s excitation cross sections are also determined, and compared with corresponding data available in the literature. Saturation is observable in the excitation cross sections in the 1-7 MeV energy region, which depends on the ratio of projectile's and target's nuclear charge. (authors)

  3. Doubly and triply excited states for different plasma sources

    International Nuclear Information System (INIS)

    More, R.M.; Safronova, U.I.

    2000-01-01

    Autoionizing rates of doubly excited states as nln'l' configurations with n=2-9 and n'=2-9 are calculated. Analytical expressions of decay amplitude for two-electron system are derived. Expressions for autoionizing rates with averaging over LS are obtained for many-electron systems. The n and l dependence of doubly excited states as nln'l' configurations are investigated. (author)

  4. Faraday waves under time-reversed excitation.

    Science.gov (United States)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  5. Local density approximation for exchange in excited-state density functional theory

    OpenAIRE

    Harbola, Manoj K.; Samal, Prasanjit

    2004-01-01

    Local density approximation for the exchange energy is made for treatment of excited-states in density-functional theory. It is shown that taking care of the state-dependence of the LDA exchange energy functional leads to accurate excitation energies.

  6. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  7. Ultrafast excited state relaxation in long-chain polyenes

    International Nuclear Information System (INIS)

    Antognazza, Maria Rosa; Lueer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-01-01

    Graphical abstract: Excited state dynamics of a long-chain polyene studied by femtosecond pump-probe spectroscopy. - Abstract: We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2 , followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  8. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.

    Science.gov (United States)

    Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-05-14

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.

  9. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    International Nuclear Information System (INIS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-01-01

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline

  10. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  11. Excited-state density functional theory

    International Nuclear Information System (INIS)

    Harbola, Manoj K; Hemanadhan, M; Shamim, Md; Samal, P

    2012-01-01

    Starting with a brief introduction to excited-state density functional theory, we present our method of constructing modified local density approximated (MLDA) energy functionals for the excited states. We show that these functionals give accurate results for kinetic energy and exchange energy compared to the ground state LDA functionals. Further, with the inclusion of GGA correction, highly accurate total energies for excited states are obtained. We conclude with a brief discussion on the further direction of research that include the construction of correlation energy functional and exchange potential for excited states.

  12. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-01-12

    A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters.

  13. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy

    Science.gov (United States)

    Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; Glover, William J.; Mori, Toshifumi; Schultz, Thomas; Schuurman, Michael S.; Martínez, Todd J.; Stolow, Albert

    2018-04-01

    The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1(21Ag) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11Bu and 21Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2(11Bu) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.

  14. Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian; Zhang, Yong; Suo, Bingbing

    2011-04-07

    The excited states of open-shell systems calculated by unrestricted Kohn-Sham-based time-dependent density functional theory (U-TD-DFT) are often heavily spin-contaminated and hence meaningless. This is solved ultimately by the recently proposed spin-adapted time-dependent density functional theory (TD-DFT) (S-TD-DFT) [J. Chem. Phys. 133, 064106 (2010)]. Unlike the standard restricted open-shell Kohn-Sham-based TD-DFT (R-TD-DFT) which can only access the singlet-coupled single excitations, the S-TD-DFT can capture both the singlet- and triplet-coupled single excitations with the same computational effort as the U-TD-DFT. The performances of the three approaches (U-TD-DFT, R-TD-DFT, and S-TD-DFT) are compared for both the spin-conserving and spin-flip excitations of prototypical open-shell systems, the nitrogen (N(2)(+)) and naphthalene (C(10)H(8)(+)) cations. The results show that the S-TD-DFT gives rise to balanced descriptions of excited states of open-shell systems.

  15. Dependence of the giant dipole strength function on excitation energy

    International Nuclear Information System (INIS)

    Draper, J.E.; Newton, J.O.; Sobotka, L.G.; Lindenberger, H.; Wozniak, G.J.; Moretto, L.G.; Stephens, F.S.; Diamond, R.M.; McDonald, R.J.

    1982-01-01

    Spectra of γ rays associated with deep-inelastic products from the 1150-MeV 136 Xe+ 181 Ta reaction have been measured. The yield of 10--20-MeV γ rays initially increases rapidly with the excitation energy of the products and then more slowly for excitation energies in excess of 120 MeV. Statistical-model calculations with ground-state values of the giant dipole strength function fail to reproduce the shape of the measured γ-ray spectra. This suggests a dependence of the giant dipole strength function on excitation energy

  16. The momentum transfer dependence of double excitations of helium

    International Nuclear Information System (INIS)

    Zhu Lin-Fan; Liu Xiao-Jing; Yuan Zhen-Sheng; Xu Ke-Zun

    2005-01-01

    The momentum transfer dependence of fundamental double excitation processes of helium is studied with high resolution and fast electron impact. It elucidates the dynamical correlations, in terms of internal correlation quantum numbers, K, T and A. The Fano profile parameters q, f a , ρ 2 , f and S of doubly excited states 2 (1,0) 2 +1se , 2 (0,1) 2 +1p0 and 2 (1,0) 2 +1De are determined as functions of momentum transfer K 2 . (author)

  17. Subgeometric Ergodicity Analysis of Continuous-Time Markov Chains under Random-Time State-Dependent Lyapunov Drift Conditions

    Directory of Open Access Journals (Sweden)

    Mokaedi V. Lekgari

    2014-01-01

    Full Text Available We investigate random-time state-dependent Foster-Lyapunov analysis on subgeometric rate ergodicity of continuous-time Markov chains (CTMCs. We are mainly concerned with making use of the available results on deterministic state-dependent drift conditions for CTMCs and on random-time state-dependent drift conditions for discrete-time Markov chains and transferring them to CTMCs.

  18. Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd2@C78]- and [Gd2@C80]-

    Science.gov (United States)

    Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.

    2017-09-01

    The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.

  19. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  20. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ingu; Pang, Yoonsoo; Lee, Sebok

    2014-01-01

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states

  1. Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals

    Science.gov (United States)

    Sears, John S.; Koerzdoerfer, Thomas; Zhang, Cai-Rong; Brédas, Jean-Luc

    2011-10-01

    Long-range corrected hybrids represent an increasingly popular class of functionals for density functional theory (DFT) that have proven to be very successful for a wide range of chemical applications. In this Communication, we examine the performance of these functionals for time-dependent (TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are particularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange included in these functionals. As such, the use of standard long-range corrected functionals for the description of triplet states at the TDDFT level is not recommended.

  2. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Mennucci, Benedetta, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  3. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, David N. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Asher, Jason C. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Fischer, Sean A. [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA; Cramer, Christopher J. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Govind, Niranjan [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA

    2017-01-01

    Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.

  4. Wave packet dynamics and photofragmentation in time-dependent quadratic potentials

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1996-01-01

    We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...

  5. Magnetic resonance described in the excitation dependent rotating frame of reference.

    Science.gov (United States)

    Tahayori, Bahman; Johnston, Leigh A; Mareels, Iven M Y; Farrell, Peter M

    2008-01-01

    An excitation dependent rotating frame of reference to observe the magnetic resonance phenomenon is introduced in this paper that, to the best of our knowledge, has not been used previously in the nuclear magnetic resonance context. The mathematical framework for this new rotating frame of reference is presented based on time scaling the Bloch equation after transformation to the classical rotating frame of reference whose transverse plane is rotating at the Larmor frequency. To this end, the Bloch equation is rewritten in terms of a magnetisation vector observed from the excitation dependent rotating frame of reference. The resultant Bloch equation is referred to as the time scaled Bloch equation. In the excitation dependent rotating frame of reference whose coordinates are rotating at the instantaneous Rabi frequency the observed magnetisation vector is a much slower signal than the true magnetisation in the rotating frame of reference. As a result the ordinary differential equation solvers have the ability to solve the time scaled version of the Bloch equation with a larger step size resulting in a smaller number of samples for solving the equation to a desired level of accuracy. The simulation results for different types of excitation are presented in this paper. This method may be used in true Bloch simulators in order to reduce the simulation time or increase the accuracy of the numerical solution. Moreover, the time scaled Bloch equation may be employed to determine the optimal excitation pattern in magnetic resonance imaging as well as designing pulses with better slice selectivity which is an active area of research in this field.

  6. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation.

    Science.gov (United States)

    Zeng, Qiao; Liang, WanZhen

    2015-10-07

    The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.

  7. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    Science.gov (United States)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  8. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  9. An excited state underlies gene regulation of a transcriptional riboswitch

    Science.gov (United States)

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  10. Electron impact excitation of xenon from the metastable state to the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jun; Dong Chenzhong; Xie Luyou; Zhou Xiaoxin [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Jianguo [Institute of Applied Physics and Computational Mathematic, Beijing 100088 (China)], E-mail: dongcz@nwnu.edu.cn

    2008-12-28

    The electron impact excitation cross sections from the lowest metastable state 5p{sup 5}6sJ = 2 to the six lowest excited states of the 5p{sup 5}6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.

  11. Visible-Light-Mediated Excited State Relaxation in Semi-Synthetic Genetic Alphabet: d5SICS and dNaM.

    Science.gov (United States)

    Bhattacharyya, Kalishankar; Datta, Ayan

    2017-08-25

    The excited state dynamics of an unnatural base pair (UBP) d5SICS/dNaM were investigated by accurate ab-initio calculations. Time-dependent density functional and high-level multireference calculations (MS-CASPT2) were performed to elucidate the excitation of this UBP and its excited state relaxation mechanism. After excitation to the bright state S 2 (ππ*), it decays to the S 1 state and then undergoes efficient intersystem crossing to the triplet manifold. The presence of sulfur atom in d5SICS leads to strong spin-orbit coupling (SOC) and a small energy gap that facilitates intersystem crossing from S 1 (n s π*) to T 2 (ππ*) followed by internal conversion to T 1 state. Similarly in dNaM, the deactivation pathway follows analogous trends. CASPT2 calculations suggest that the S 1 (ππ*) state is a dark state below the accessible S 2 (ππ*) bright state. During the ultrafast deactivation, it exhibits bond length inversion. From S 1 state, significant SOC leads the population transfer to T 3 due to a smaller energy gap. Henceforth, fast internal conversion occurs from T 3 to T 2 followed by T 1 . From time-dependent trajectory surface hopping dynamics, it is found that excited state relaxation occurs on a sub-picosecond timescale in d5SICS and dNaM. Our findings strongly suggest that there is enough energy available in triplet state of UBP to generate reactive oxygen species and induce phototoxicity with respect to cellular DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms.

    Science.gov (United States)

    Perkins, R; Williamson, C; Lavaud, J; Mouget, J-L; Campbell, D A

    2018-04-16

    Photoacclimation by strains of Haslea "blue" diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction-recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m -2  s -1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σ PSII ') or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σ PSII ' in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. Q A - oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction-recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.

  13. Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N2.

    Science.gov (United States)

    Ajay, Jayanth S; Komarova, Ksenia G; Remacle, Francoise; Levine, R D

    2018-05-21

    Isotopic fractionation in the photodissociation of N 2 could explain the considerable variation in the 14 N/ 15 N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N 2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.

  14. Bound state and localization of excitation in many-body open systems

    Science.gov (United States)

    Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.

    2018-04-01

    We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.

  15. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    , we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  16. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...

  17. Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices

    Science.gov (United States)

    Kogan, V. G.

    2018-03-01

    The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v . The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional to v2. To minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.

  18. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  19. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  20. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  1. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    International Nuclear Information System (INIS)

    Shamim, Md; Harbola, Manoj K

    2010-01-01

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  2. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  3. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    Science.gov (United States)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  4. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  5. Hydrodynamic perspective on memory in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Thiele, M.; Kuemmel, S.

    2009-01-01

    The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.

  6. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  7. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.

    Science.gov (United States)

    Hesselmann, Andreas; Görling, Andreas

    2011-01-21

    A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.

  8. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  9. Triplet Excited States as a Source of Relevant (Bio)Chemical Information

    OpenAIRE

    Jiménez Molero, María Consuelo; Miranda Alonso, Miguel Ángel

    2014-01-01

    The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and alpha(1)-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external...

  10. Noisy time-dependent spectra

    International Nuclear Information System (INIS)

    Shore, B.W.; Eberly, J.H.

    1983-01-01

    The definition of a time-dependent spectrum registered by an idealized spectrometer responding to a time-varying electromagnetic field as proposed by Eberly and Wodkiewicz and subsequently applied to the spectrum of laser-induced fluorescence by Eberly, Kunasz, and Wodkiewicz is here extended to allow a stochastically fluctuating (interruption model) environment: we provide an algorithm for numerical determination of the time-dependent fluorescence spectrum of an atom subject to excitation by an intense noisy laser and interruptive relaxation

  11. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase

    International Nuclear Information System (INIS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoit

    2008-01-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states

  12. Thermality and excited state Rényi entropy in two-dimensional CFT

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng-Li [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Wang, Huajia [Department of Physics, University of Illinois,Urbana-Champaign, IL 61801 (United States); Zhang, Jia-ju [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)

    2016-11-21

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  13. Remarkable solvent-dependent excited-state chirality : A molecular modulator of circularly polarized luminescence

    NARCIS (Netherlands)

    van Delden, Richard A.; Huck, N.P.M.; Piet, J.J.; Warman, J.M.; Meskers, S.C.J.; Dekkers, H.P J M; Feringa, B.L.

    2003-01-01

    The photochemical control of ground- and excited-state chirality of (M)-cis-(1) and (P)-trans(2)-2-nitro-7-(dimethylamino)-9-(2',3'-dihydro-1'H-naphtho[2,1-b]-thiopyran-1'-ylidene)-9H-thioxanthene is described. It is shown that while ground state chirality can be controlled photochemically by

  14. Remarkable solvent-dependent excited-state chirality : a molecular modulator of circularly polarized luminescence

    NARCIS (Netherlands)

    Delden, van R.A.; Huck, H.P.M.; Piet, J.J.; Warman, J.M.; Meskers, S.C.J.; Dekkers, H.P.J.M.; Feringa, B.L.

    2003-01-01

    The photochemical control of ground- and excited-state chirality of (M)-cis-(1) and (P)-trans-(2)-2-nitro-7-(dimethylamino)-9-(2',3' -dihydro-1'H-naphtho[2,1-b]-thiopyran-1'-ylidene)-9H-thioxanthene is described. It is shown that while ground state chirality can be controlled photochemically by

  15. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.

    Science.gov (United States)

    Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong

    2018-04-17

    The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

  16. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  17. Quantum entanglement of localized excited states at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2015-01-20

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  18. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua

    2012-01-01

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  19. Statistical density of nuclear excited states

    Directory of Open Access Journals (Sweden)

    V. M. Kolomietz

    2015-10-01

    Full Text Available A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* < m is used. The approach provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small temperatures T ≤ 1 MeV but reduce strongly the results for the excitation energy at high temperatures. By use of standard Woods - Saxon potential and nucleon effective mass m* = 0.7m the A-dependency of the statistical level density parameter K was evaluated in a good qualitative agreement with experimental data.

  20. Maitra-Burke example of initial-state dependence in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Holas, A.; Balawender, R.

    2002-01-01

    In a recent paper, Maitra and Burke [Phys. Rev. A 63, 042501 (2001); 64, 039901(E) (2001)] have given an interesting and instructive example that illustrates a specific feature of the time-dependent density-functional theory--the dependence of the reconstructed time-dependent potential not only on the electron density, but also on the initial state of the system. However, a concise form of its presentation by these authors is insufficient to reveal all its peculiarities. Our paper represents a very detailed study of this valuable example, intended to facilitate a better understanding and appreciation

  1. Excitation of autoionizing states of helium by 100 keV proton impact: II. Excitation cross sections and mechanisms of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L. [Department of Physics, Tulane University, New Orleans, LA 70118-5698 (United States); Ivanov, P.B.; Schipakov, V.A. [Troitsk Institute of Innovation and Fusion Research Troitsk, Moscow region, 142092 (Russian Federation); Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS-Universite Paul Sabatier, 31062 Toulouse Cedex (France)

    2000-03-14

    Mechanisms of two-electron excitation of the (2s{sup 2}){sup 1} S, (2p{sup 2} ){sup 1} D and (2s2p){sup 1} P autoionizing states of helium are studied both experimentally and theoretically. It is shown that an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive parametrization of experimental cross sections of ionization, allowing one to extract cross sections of excitation of autoionizing states. Using a new fitting procedure together with the proposed parametrization made it possible to obtain the excitation cross sections and magnetic sublevel population from electron spectra as well as, for the first time, to resolve the contribution of resonance and interference components to resonance profiles. Interference with direct ionization is shown to contribute significantly into resonance formation even for backward ejection angles. We demonstrate theoretically that the excitation cross sections thus extracted from experimental electron spectra hold information about the interaction of autoionizing states with an adjacent continuum. (author)

  2. The effects of static quartic anharmonicity on the quantum dynamics of a linear oscillator with time-dependent harmonic frequency: Perturbative analysis and numerical calculations

    International Nuclear Information System (INIS)

    Sarkar, P.; Bhattacharyya, S.P.

    1995-01-01

    The effects of quartic anharmonicity on the quantum dynamics of a linear oscillator with time-dependent force constant (K) or harmonic frequency (ω) are studied both perturbatively and numerically by the time-dependent Fourier grid Hamiltonian method. In the absence of anharmonicity, the ground-state population decreases and the population of an accessible excited state (k = 2.4, 6 ... ) increases with time. However, when anharmonicity is introduced, both the ground- and excited-state populations show typical oscillations. For weak coupling, the population of an accessible excited state at a certain instant of time (short) turns out to be a parabolic function of the anharmonic coupling constant (λ), when all other parameters of the system are kept fixed. This parabolic nature of the excited-state population vs. the λ profile is independent of the specific form of the time dependence of the force constant, K t . However, it depends upon the rate at which K t relaxes. For small anharmonic coupling strength and short time scales, the numerical results corroborate expectations based on the first-order time-dependent perturbative analysis, using a suitably repartitioned Hamiltonian that makes H 0 time-independent. Some of the possible experimental implications of our observations are analyzed, especially in relation to intensity oscillations observed in some charge-transfer spectra in systems in which the dephasing rates are comparable with the time scale of the electron transfer. 21 refs., 7 figs., 1 tab

  3. The effect of decaying atomic states on integral and time differential Moessbauer spectra

    International Nuclear Information System (INIS)

    Kankeleit, E.

    1975-01-01

    Moessbauer spectra for time dependent monopole interaction have been calculated for the case that the nuclear transition feeding the Moessbauer state excites an electric state of the atom. This is assumed to decay in a time comparable with the lifetime of the Moessbauer state. Spectra have been calculated for both time differential and integral experiments. (orig.) [de

  4. Clustered chimera states in systems of type-I excitability

    International Nuclear Information System (INIS)

    Vüllings, Andrea; Omelchenko, Iryna; Hövel, Philipp; Hizanidis, Johanne

    2014-01-01

    The chimera state is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras have been found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative of neural excitability type I. We obtain chimera states with multiple coherent regions (clustered chimeras/multi-chimeras) depending on the distance from the excitability threshold, the range of nonlocal coupling and the coupling strength. A detailed stability diagram for these chimera states and other interesting coexisting patterns (like traveling waves) is presented. (paper)

  5. Propagators for the time-dependent Kohn-Sham equations

    International Nuclear Information System (INIS)

    Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    2004-01-01

    In this paper we address the problem of the numerical integration of the time-dependent Schroedinger equation i∂ t φ=Hφ. In particular, we are concerned with the important case where H is the self-consistent Kohn-Sham Hamiltonian that stems from time-dependent functional theory. As the Kohn-Sham potential depends parametrically on the time-dependent density, H is in general time dependent, even in the absence of an external time-dependent field. The present analysis also holds for the description of the excited state dynamics of a many-electron system under the influence of arbitrary external time-dependent electromagnetic fields. Our discussion is separated in two parts: (i) First, we look at several algorithms to approximate exp(A), where A is a time-independent operator [e.g., A=-iΔtH(τ) for some given time τ]. In particular, polynomial expansions, projection in Krylov subspaces, and split-operator methods are investigated. (ii) We then discuss different approximations for the time-evolution operator, such as the midpoint and implicit rules, and Magnus expansions. Split-operator techniques can also be modified to approximate the full time-dependent propagator. As the Hamiltonian is time dependent, problem (ii) is not equivalent to (i). All these techniques have been implemented and tested in our computer code OCTOPUS, but can be of general use in other frameworks and implementations

  6. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    International Nuclear Information System (INIS)

    Berardo, Enrico; Hu, Han-Shi; Van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-01-01

    We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes' shift

  7. Electronic Structure and Excited-State Dynamics of an Arduengo-Type Carbene and its Imidazolone Oxidation Product.

    Science.gov (United States)

    Schmitt, Hans-Christian; Flock, Marco; Welz, Eileen; Engels, Bernd; Schneider, Heidi; Radius, Udo; Fischer, Ingo

    2017-03-02

    We describe an investigation of the excited-state dynamics of isolated 1,3-di-tert-butyl-imidazoline-2-ylidene (tBu 2 Im, C 11 H 20 N 2 , m/z=180), an Arduengo-type carbene, by time- and frequency-resolved photoionization using a picosecond laser system. The energies of several singlet and triplet excited states were calculated by time-dependent density functional theory (TD-DFT). The S 1 state of the carbene deactivates on a 100 ps time scale possibly by intersystem crossing. In the experiments we observed an additional signal at m/z=196, that was assigned to the oxidation product 1,3-di-tert-butyl-imidazolone, tBu 2 ImO. It shows a well-resolved resonance-enhanced multiphoton ionization (REMPI) spectrum with an origin located at 36951 cm -1 . Several low-lying vibrational bands could be assigned, with a lifetime that depends strongly on the excitation energy. At the origin the lifetime is longer than 3 ns, but drops to 49 ps at higher excess energies. To confirm formation of the imidazolone we also performed experiments on benzimidazolone (BzImO) for comparison. Apart from a redshift for BzImO the spectra of the two compounds are very similar. The TD-DFT values display a very good agreement with the experimental data. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    Science.gov (United States)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  9. Nonlinear electronic excitations in crystalline solids using meta-generalized gradient approximation and hybrid functional in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2015-12-14

    We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.

  10. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  11. Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics

    International Nuclear Information System (INIS)

    Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    The dynamic process of fragmentation of CO q+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C + -O + fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C + -O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.

  12. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.

    Science.gov (United States)

    Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho

    2018-03-06

    Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To

  13. Photoionization dynamics of excited molecular states

    International Nuclear Information System (INIS)

    Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.

    1987-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs

  14. Collisional excitation transfer between Rb(5P) states in 50–3000 Torr of 4He

    International Nuclear Information System (INIS)

    Sell, J F; Gearba, M A; Patterson, B M; Byrne, D; Jemo, G; Meeter, R; Knize, R J; Lilly, T C

    2012-01-01

    Measurements of the mixing rates and cross sections for collisional excitation transfer between the 5P 1/2 and 5P 3/2 states of rubidium (Rb) in the presence of 4 He buffer gas are presented. Selected pulses from a high repetition rate, mode-locked femtosecond laser are used to excite either Rb state with the fluorescence due to collisional excitation transfer observed by time-correlated single-photon counting. The time dependence of this fluorescence is fitted to the solution of rate equations which include the mixing rate, atomic lifetimes and any quenching processes. The variation in the mixing rate over a large range of buffer gas densities allows the determination of both the binary collisional transfer cross section and a three-body collisional transfer rate. We do not observe any collisional quenching effects at 4 He pressures up to 6 atm and discuss in detail other systematic effects considered in the experiment. (paper)

  15. Timing analysis of safety properties using fault trees with time dependencies and timed state-charts

    International Nuclear Information System (INIS)

    Magott, Jan; Skrobanek, Pawel

    2012-01-01

    Behavior in time domain is often crucial for safety critical systems. Standard fault trees cannot express time-dependent behavior. In the paper, timing analysis of safety properties using fault trees with time dependencies (FTTDs) and timed state-charts is presented. A new version of timed state-charts (TSCs) is also proposed. These state-charts can model the dynamics of technical systems, e.g. controllers, controlled objects, and people. In TSCs, activity and communication times are represented by time intervals. In the proposed approach the structure of FTTD is fixed by a human. Time properties of events and gates of FTTD are expressed by time intervals, and are calculated using TSCs. The minimal and maximal values of these time intervals of FTTD can be calculated by finding paths with minimal and maximal time lengths in TSCs, which is an NP-hard problem. In order to reduce the practical complexity of computing the FTTD time parameters, some reductions of TSCs are defined in the paper, such as sequential, alternative, loop (iteration), and parallel. Some of the reductions are intuitive, in case of others—theorems are required. Computational complexity of each reduction is not greater than linear in the size of reduced TSC. Therefore, the obtained results enable decreasing of the costs of FTTD time parameters calculation when system dynamics is expressed by TSCs. Case study of a railroad crossing with a controller that controls semaphores, gate, light-audio signal close to the gate will be analyzed.

  16. Observation of Broadband Time-Dependent Rabi Shifting in Microplasmas

    International Nuclear Information System (INIS)

    Compton, Ryan; Filin, Alex; Romanov, Dmitri A.; Levis, Robert J.

    2009-01-01

    Coherent broadband radiation in the form of Rabi sidebands is observed when a ps probe laser propagates through a weakly ionized, electronically excited microplasma generated in the focus of an intense pump beam. The sidebands arise from the interaction of the probe beam with pairs of excited states of a constituent neutral atom via the probe-induced Rabi oscillation. Sideband shifting of >90 meV from the probe carrier frequency results in an effective bandwidth of 200 meV. The sidebands are controlled by the intensity and temporal profile of the probe pulse; with amplitude and shift in agreement with the predictions of a time-dependent generalized Rabi cycling model.

  17. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  18. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  19. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  20. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  1. Excited State s-cis Rotamers Produced by Extreme Red Edge Excitation of all-trans-1,4-Diphenyl-1,3-butadiene

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Møller, Søren; Goldbeck, Robert A.

    1993-01-01

    with the wavelength independence observed for the excited singlet-state absorption and fluorescence emission spectra of 1,5-diphenyl-2,3,4,6,7,8- hexahydronaphthalene and for the fluorescence emission spectra of 1,4diphenyl-1,3-cyclopentadiene, s-trans and s-cis structural analogs of DPB, respectively. The spectral...... changes in DPB can be explained in terms of an excitation wavelength-dependent production of s-cis and s-trans rotamer populations in the excited state. The DPB fluorescence emission spectrum was resolved into s-cis and s-trans components. The vibronic structure of the s-cis fluorescence spectrum...... is similar to that of s-trans, but the band origin is red-shifted and there is a slightly larger amplitude on the red edge. The excited-state absorption spectrum of s-cis DPB appears to be red-shifted relative to that of s-trans DPB as well....

  2. Excited-state imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Vredenbregt, E.J.D.; Scholten, R.E.; Deshmukh, P.C.; Chakraborty, P.; Williams, J.F.

    2007-01-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes

  3. Optical studies of multiply excited states

    International Nuclear Information System (INIS)

    Mannervik, S.

    1989-01-01

    Optical studies of multiply-excited states are reviewed with emphasis on emission spectroscopy. From optical measurements, properties such as excitation energies, lifetimes and autoionization widths can be determined with high accuracy, which constitutes a challenge for modern computational methods. This article mainly covers work on two-, three- and four-electron systems, but also sodium-like quartet systems. Furthermore, some comments are given on bound multiply-excited states in negative ions. Fine structure effects on transition wavelengths and lifetimes (autoionization) are discussed. In particular, the most recent experimental and theoretical studies of multiply-excited states are covered. Some remaining problems, which require further attention, are discussed in more detail. (orig.) With 228 refs

  4. Entanglement entropy of excited states

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale

    2009-01-01

    We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling

  5. Exactly solvable quantum state reduction models with time-dependent coupling

    International Nuclear Information System (INIS)

    Brody, Dorje C; Constantinou, Irene C; Dear, James D C; Hughston, Lane P

    2006-01-01

    A closed-form solution to the energy-based stochastic Schroedinger equation with a time-dependent coupling is obtained. The solution is algebraic in character, and is expressed directly in terms of independent random data. The data consist of (i) a random variable H which has the distribution P(H=E i ) = π i , where π i is the transition probability vertical bar (ψ 0 vertical bar Φ i ) vertical bar 2 from the initial state vertical bar ψ 0 ) to the Lueders state vertical bar Φ i ) with energy E i , and (ii) an independent P-Brownian motion, where P is the physical probability measure associated with the dynamics of the reduction process. When the coupling is time independent, it is known that state reduction occurs asymptotically-that is to say, over an infinite time horizon. In the case of a time-dependent coupling, we show that if the magnitude of the coupling decreases sufficiently rapidly, then the energy variance will be reduced under the dynamics, but the state need not reach an energy eigenstate. This situation corresponds to the case of a 'partial' or 'incomplete' measurement of the energy. We also construct an example of a model where the opposite situation prevails, in which complete state reduction is achieved after the passage of a finite period of time

  6. Excited States and Photodebromination of Selected Polybrominated Diphenyl Ethers: Computational and Quantitative Structure—Property Relationship Studies

    Directory of Open Access Journals (Sweden)

    Jin Luo

    2015-01-01

    Full Text Available This paper presents a density functional theory (DFT/time-dependent DFT (TD-DFT study on the lowest lying singlet and triplet excited states of 20 selected polybrominateddiphenyl ether (PBDE congeners, with the solvation effect included in the calculations using the polarized continuum model (PCM. The results obtained showed that for most of the brominated diphenyl ether (BDE congeners, the lowest singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* excitation. In triplet excited states, structure of the BDE congeners differed notably from that of the BDE ground states with one of the specific C–Br bonds bending off the aromatic plane. In addition, the partial least squares regression (PLSR, principal component analysis-multiple linear regression analysis (PCA-MLR, and back propagation artificial neural network (BP-ANN approaches were employed for a quantitative structure-property relationship (QSPR study. Based on the previously reported kinetic data for the debromination by ultraviolet (UV and sunlight, obtained QSPR models exhibited a reasonable evaluation of the photodebromination reactivity even when the BDE congeners had same degree of bromination, albeit different patterns of bromination.

  7. Characterization of weakly excited final states by shakedown spectroscopy of laser-excited potassium

    International Nuclear Information System (INIS)

    Schulz, J.; Heinaesmaeki, S.; Aksela, S.; Aksela, H.; Sankari, R.; Rander, T.; Lindblad, A.; Bergersen, H.; Oehrwall, G.; Svensson, S.; Kukk, E.

    2006-01-01

    3p shakedown spectra of laser excited potassium atoms as well as direct 3p photoemission of ground state potassium have been studied. These two excitation schemes lead to the same final states and thereby provide a good basis for a detailed study of the 3p 5 (4s3d) 1 configurations of singly ionized potassium and the photoemission processes leading to these configurations. The comparison of direct photoemission from the ground state and conjugate shakedown spectra from 4p 1/2 laser excited potassium made it possible to experimentally determine the character of final states that are only weakly excited in the direct photoemission but have a much higher relative intensity in the shakedown spectrum. Based on considerations of angular momentum and parity conservation the excitation scheme of the final states can be understood

  8. Luminescence and excited state dynamics in Bi3+-doped LiLaP4O12 phosphates

    International Nuclear Information System (INIS)

    Babin, V.; Chernenko, K.; Demchenko, P.; Mihokova, E.; Nikl, M.; Pashuk, I.; Shalapska, T.; Voloshinovskii, A.; Zazubovich, S.

    2016-01-01

    Photo- and X-ray-excited luminescence characteristics of Bi-doped LiLaP 4 O 12 phosphates with different bismuth contents (from 1 to 25 at% in the melt) are investigated in the 4.2–300 K temperature range and compared with the characteristics of the undoped LiLaP 4 O 12 phosphate. The broad 2.95 eV emission band of LiLaP 4 O 12 :Bi excited around 5.4 eV is found to arise from the bismuth dopant. Relatively large FWHM and Stokes shift of the emission band and especially the data on the low-temperature decay kinetics of the 2.95 eV emission and its temperature dependence, indicating a very small spin-orbit splitting energy of the corresponding excited state, allow the conclusion that this emission arises from the radiative decay of the triplet state of an exciton localized around a Bi 3+ ion. No spectral bands are observed, arising from the electron transitions between the energy levels of Bi 3+ ions. Phenomenological model is proposed for the description of the excited state dynamics of the Bi 3+ -related localized exciton in LiLaP 4 O 12 :Bi and the parameters of the triplet localized exciton state are determined. Keywords: Photoluminescence; Time-resolved spectroscopy; Excited states; Bi 3+ centers; LiLaP 4 O 12 :Bi powders

  9. Attosecond Two-Photon Interferometry for Doubly Excited States of Helium

    International Nuclear Information System (INIS)

    Feist, J.; Nagele, S.; Burgdoerfer, J.; Ticknor, C.; Collins, L. A.; Schneider, B. I.

    2011-01-01

    We show that the correlation dynamics in coherently excited doubly excited resonances of helium can be followed in real time by two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible noncoincident single-electron spectra. We analyze the interferometric signal in terms of a semianalytical model which is validated by a numerical solution of the time-dependent two-electron Schroedinger equation in its full dimensionality.

  10. Two-electron Rabi oscillations in real-time time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.

    2014-01-01

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation

  11. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  12. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  13. Energy dependence phase shift analysis of PI4He elastic scattering and the possibility of the (PI4He) excited states existence

    International Nuclear Information System (INIS)

    Nichitiu, F.; Falomkin, I.V.; Sapozhnikov, M.G.; Shcherbakov, Yu.A.; Piragino, G.

    1981-06-01

    In the 24 MeV-260 MeV kinetic energy interval, the energy dependent phase shift analysis of π 4 He elastic scattering is done. The eneray dependence is given by the rational fraction approximants of the partial S matrix. The search for the stable S matrix zero-pole pairs in the k and √s complex plane give some proofs for the existence of the (π 4 He) excited states in the S, P and probably D partial waves. (authors)

  14. Excited states configurations of the quantum Toda lattice

    International Nuclear Information System (INIS)

    Matsuyama, A.

    2001-01-01

    Excited states configurations of the quantum Toda lattice are studied by the direct diagonalization of the Hamiltonian. The most probable configurations of one-hole and one-particle excitations are shown to be similar to the profiles of classical phonon and soliton excitations, respectively. One-hole excitation states, which are always ground states of definite E m -symmetry of the dihedral group D N , change those structures abruptly with the potential range varied. One-particle excitations, which are buried in complicated excitation spectra, have well-defined configurations similar to the conoidal profile of the classical periodic Toda lattice. The relationship that the hole (particle) excitations in quantum mechanics correspond to the phonon (soliton) excitations in classical mechanics, which has been suggested based on the similarity of dispersion relations, is confirmed in a geometrically understandable way. Based on the study of one-soliton and two-soliton states, the structure of multi-soliton states in quantum mechanics can be conjectured

  15. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  16. Energy dependence of isovector and isoscalar 1+ excitations in 28Si(p,p/sup '/) between 200 and 400 MeV

    International Nuclear Information System (INIS)

    Haeusser, O.; Sawafta, R.; Jeppesen, R.G.

    1988-01-01

    Forward-angle cross sections for 1 + , T = 1 and 1 + , T = 0 states in 28 Si excited by the (p,p') reaction have been measured to determine the energy dependence of important pieces of the effective nucleon-nucleus interaction. The isovector spin-transfer transitions depend on energy as expected from distorted-wave impulse approximation calculations based on the dominant V/sub Σ//sub tau/ part of the Franey-Love interaction. The parts of this interaction responsible for exciting the 9.5 MeV isosca- lar spin-flip transition predict a weaker energy dependence than is observed experimentally. The summed Gamow-Teller strength for isovector transitions below 14.5 MeV is found to be (0.89 +- 0.09) times the result of large-scale shell model calculations

  17. Excitation of nuclear states by synchrotron radiation

    International Nuclear Information System (INIS)

    Olariu, Albert

    2003-01-01

    We study the excitation of nuclear states by gamma ray beams of energy up to 200 keV produced as synchrotron radiation. We consider the possibility to populate an excited state |i> in two steps, from the ground state |g> to an intermediary state |n> which decays by gamma emission or internal conversion to a lower state |i>. The aim of this study is to establish that the probability P 2 of the two-step transition |g> → |n> → |i> should be greater than the probability P 1 of the direct transition |g> → |i>. The probabilities P 1 and P 2 correspond to a radiation pulse of duration equal to the half-time of the state |i>. We have written a computer program in C++ which computes the probability P 2 , the ratio P 2 /P 1 and the rate C 2 of the two-step transitions for any nuclei and different configurations of states. The program uses a database which contains information on the energy levels, half-lives, spins and parities of nuclear states and on the relative intensities of the nuclear transitions. If the half-lives or the relative intensities are not known the program uses the Weisskopf estimates for the transition half-lives. An interpolation program of internal conversion coefficients has also been used. We listed the values obtained for P 2 , P 2 /P 1 and C 2 in a number of cases in which P 2 is significant from the 2900 considered cases. The states |i> and |n> have the energies E i and E n , the corresponding half-lives being t i and t n . The spectral density of the synchrotron radiation has been considered to be 10 12 photons cm -2 s -1 eV -1 . We listed only the cases for which the relative intensities of the transitions from levels |n> and |i> to lower states are known. The calculations carried out in this study allowed us to identify nuclei for which P 2 has relatively great values. In the listed cases P 2 /P 1 >>1, so that the two-step excitation by synchrotron radiation is more efficient than the direct excitation |g> → |i>. For a sample having 10

  18. Numerical simulations of oscillating soliton stars: Excited states in spherical symmetry and ground state evolutions in 3D

    International Nuclear Information System (INIS)

    Balakrishna, Jayashree; Bondarescu, Ruxandra; Daues, Gregory; Bondarescu, Mihai

    2008-01-01

    Excited state soliton stars are studied numerically for the first time. The stability of spherically symmetric S-branch excited state oscillatons under radial perturbations is investigated using a 1D code. We find that these stars are inherently unstable either migrating to the ground state or collapsing to black holes. Higher excited state configurations are observed to cascade through intermediate excited states during their migration to the ground state. This is similar to excited state boson stars [J. Balakrishna, E. Seidel, and W.-M. Suen, Phys. Rev. D 58, 104004 (1998).]. Ground state oscillatons are then studied in full 3D numerical relativity. Finding the appropriate gauge condition for the dynamic oscillatons is much more challenging than in the case of boson stars. Different slicing conditions are explored, and a customized gauge condition that approximates polar slicing in spherical symmetry is implemented. Comparisons with 1D results and convergence tests are performed. The behavior of these stars under small axisymmetric perturbations is studied and gravitational waveforms are extracted. We find that the gravitational waves damp out on a short time scale, enabling us to obtain the complete waveform. This work is a starting point for the evolution of real scalar field systems with arbitrary symmetries

  19. Kinetic studies following state-selective laser excitation: Progress report, March 15, 1988--March 14, 1989

    International Nuclear Information System (INIS)

    Keto, J.W.

    1988-11-01

    The objective of this contract is the study of state-to-state, electronic energy transfer reactions following two-photon laser excitation. We have chosen to study reactions of Xe 5p 5 np because of their relevance to the XeCl excimer laser. We are studying deactivation reactions in collisions with heavy atoms such as Ar, Kr, and Xe and reactive collisions with chlorides. The reactants are excited by multiphoton laser absorption. Product channels are observed by their fluorescence, or by laser induced fluorescence using a second color laser. Reaction rates are measured by observing the time dependent decay of signals from reactant and product channels. In addition we measure interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra are obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. 11 refs. 4 figs., 3 tabs

  20. Electric quadrupole excitation of the first excited state of 11B

    International Nuclear Information System (INIS)

    Fewell, M.P.; Spear, R.H.; Zabel, T.H.; Baxter, A.M.

    1980-02-01

    The Coulomb excitation of backscattered 11 B projectiles has been used to measure the reduced E2 transition probability B(E2; 3/2 - →1/2 - ) between the 3/2 - ground state and the 1/2 - first excited state of 11 B. It is found that B(E2; 3/2 - →1/2 - ) = 2.1 +- 0.4 e 2 fm 4 , which agrees with shell-model predictions but is a factor of 10 larger than the prediction of the core-excitation model

  1. Proton emission from high spin states of proton rich excited 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    Recent observation of direct 1P and 2P decay of 21 + isomer in proton rich 94 Ag has led to the present theoretical investigation of proton radioactivity from 94 Ag in ground state and excited state and it's dependence on the structural transitions

  2. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    Science.gov (United States)

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  3. Photoionization of furan from the ground and excited electronic states.

    Science.gov (United States)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  4. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  5. A note on calm excited states of inflation

    International Nuclear Information System (INIS)

    Ashoorioon, Amjad; Shiu, Gary

    2011-01-01

    We identify a two-parameter family of excited states within slow-roll inflation for which either the corrections to the two-point function or the characteristic signatures of excited states in the three-point function — i.e. the enhancement for the flattened momenta configurations– are absent. These excited states may nonetheless violate the adiabaticity condition maximally. We dub these initial states of inflation calm excited states. We show that these two sets do not intersect, i.e., those that leave the power-spectrum invariant can be distinguished from their bispectra, and vice versa. The same set of calm excited states that leave the two-point function invariant for slow-roll inflation, do the same task for DBI inflation. However, at the level of three-point function, the calm excited states whose flattened configuration signature is absent for slow-roll inflation, will lead to an enhancement for DBI inflation generally, although the signature is smaller than what suggested by earlier analysis. This example also illustrates that imposing the Wronskian condition is important for obtaining a correct estimate of the non-Gaussian signatures

  6. Time delay for resonant vibrational excitation in electron--molecule collisions

    International Nuclear Information System (INIS)

    Gauyacq, J.P.

    1990-01-01

    An analysis of the time delay associated with vibrational excitation in electron--molecule collision is presented. It consists of a direct study of the time dependence of the process for three model systems. An electron wave packet, that is narrow in time, is sent on the target and the amplitudes in the different inelastic channels are studied as functions of time. The time delay is found to correspond to very different time effects: broadenings, shifts in time of the wave packet, but also complex distortions that cannot be represented by a time delay. The direct analysis of the scattered wave also provides new insights into the vibrational excitation process. It should be a useful tool to analyze complex collision processes

  7. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    Science.gov (United States)

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  8. Competition between excited core states and 1homega single-particle excitations at comparable energies in {sup 207}Pb from photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)

    2009-10-26

    The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.

  9. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator ...

  10. Process to produce excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment

  11. Time-resolved resonance raman spectrum of all-trans-diphenylbutadiene in the lowest excited singlet state

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Langkilde, F.W.

    1984-01-01

    The resonance Raman spectrwn of all-trans-diphenylbutadiene in its lowest excited S1 state excited in resonance with the S1 → Sn absorption band at 650 nm in non-polar solvents is reported. Three vibrational bands at 1572, 1481 and 1165 cm−1 are observed. A possible assignment of the the 1481 cm−...

  12. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization

  13. Time-dependent density functional theory study of the luminescence properties of gold phosphine thiolate complexes.

    Science.gov (United States)

    Guidez, Emilie B; Aikens, Christine M

    2015-04-09

    The origin of the emission of the gold phosphine thiolate complex (TPA)AuSCH(CH3)2 (TPA = 1,3,5-triaza-7-phosphaadamantanetriylphosphine) is investigated using time-dependent density functional theory (TDDFT). This system absorbs light at 3.6 eV, which corresponds mostly to a ligand-to-metal transition with some interligand character. The P-Au-S angle decreases upon relaxation in the S1 and T1 states. Our calculations show that these two states are strongly spin-orbit coupled at the ground state geometry. Ligand effects on the optical properties of this complex are also discussed by looking at the simple AuP(CH3)3SCH3 complex. The excitation energies differ by several tenths of an electronvolt. Excited state optimizations show that the excited singlet and triplet of the (TPA)AuSCH(CH3)2 complex are bent. On the other hand, the Au-S bond breaks in the excited state for the simple complex, and TDDFT is no longer an adequate method. The excited state energy landscape of gold phosphine thiolate systems is very complex, with several state crossings. This study also shows that the formation of the [(TPA)AuSCH(CH3)2]2 dimer is favorable in the ground state. The inclusion of dispersion interactions in the calculations affects the optimized geometries of both ground and excited states. Upon excitation, the formation of a Au-Au bond occurs, which results in an increase in energy of the low energy excited states in comparison to the monomer. The experimentally observed emission of the (TPA)AuSCH(CH3)2 complex at 1.86 eV cannot be unambiguously assigned and may originate from several excited states.

  14. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    International Nuclear Information System (INIS)

    Lévêque, Camille; Madsen, Lars Bojer

    2017-01-01

    We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)

  15. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  16. The properties of 4'-N,N-dimethylaminoflavonol in the ground and excited states

    Science.gov (United States)

    Moroz, V. V.; Chalyi, A. G.; Roshal, A. D.

    2008-09-01

    The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.

  17. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  18. Time dependent theory of two-step absorption of two pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rebane, Inna, E-mail: inna.rebane@ut.ee

    2015-09-25

    The time dependent theory of two step-absorption of two different light pulses with arbitrary duration in the electronic three-level model is proposed. The probability that the third level is excited at the moment t is found in depending on the time delay between pulses, the spectral widths of the pulses and the energy relaxation constants of the excited electronic levels. The time dependent perturbation theory is applied without using “doorway–window” approach. The time and spectral behavior of the spectrum using in calculations as simple as possible model is analyzed. - Highlights: • Time dependent theory of two-step absorption in the three-level model is proposed. • Two different light pulses with arbitrary duration is observed. • The time dependent perturbation theory is applied without “door–window” approach. • The time and spectral behavior of the spectra is analyzed for several cases.

  19. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....

  20. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  1. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  2. Classicalization times of parametrically amplified 'Schroedinger cat' states coupled to phase-sensitive reservoirs

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Valverde, C.; Souza, L.S.; Baseia, B.

    2011-01-01

    The exact Wigner function of a parametrically excited quantum oscillator in a phase-sensitive amplifying/attenuating reservoir is found for initial even/odd coherent states. Studying the evolution of negativity of the Wigner function we show the difference between the 'initial positivization time' (IPT), which is inversely proportional to the square of the initial size of the superposition, and the 'final positivization time' (FPT), which does not depend on this size. Both these times can be made arbitrarily long in maximally squeezed high-temperature reservoirs. Besides, we find the conditions when some (small) squeezing can exist even after the Wigner function becomes totally positive. -- Highlights: → We study parametric excitation of a quantum oscillator in phase-sensitive baths. → Exact time-dependent Wigner function for initial even/odd coherent states is found. → The evolution of negativity of Wigner function is compared with the squeezing dynamics. → The difference between initial and final 'classicalization times' is emphasized. → Both these times can be arbitrarily long for rigged reservoirs at infinite temperature.

  3. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  4. Molecular-alignment dependence in the transfer excitation of H2

    International Nuclear Information System (INIS)

    Wang, Y.D.; McGuire, J.H.; Weaver, O.L.; Corchs, S.E.; Rivarola, R.D.

    1993-01-01

    Molecular-alignment effects in the transfer excitation of H 2 by high-velocity heavy ions are studied using a two-step mechanism with amplitudes evaluated from first-order perturbation theory. Two-electron transfer excitation is treated as a result of two independent collision processes (excitation and electron transfer). Cross sections for each one-electron subprocess as well as the combined two-electron process are calculated as functions of the molecular-alignment angle. Within the independent-electron approximation, the dynamic roles of electron excitation and transfer in conjunction with molecular alignment are explored. While both excitation and transfer cross sections may strongly depend on molecular alignment, it is electron transfer that is largely responsible for the molecular-alignment dependence in the transfer excitation process. Interpretation of some experimental observations based on this model will also be discussed

  5. Excited states in stochastic electrodynamics

    International Nuclear Information System (INIS)

    Franca, H.M.; Marshall, T.W.

    1987-12-01

    It is shown that the set of Wigner functions associated with the excited states of the harmonic oscillator constitute a complete set of functions over the phase space. An arbitraty distribution can be expanded in terms of these Wigner functions. By studying the time evolution, according to Stochastic Electrodynamics, of the expansion coefficients, becomes feasible to separate explicity the contributionsof the radiative reaction and the vaccuum field to the Einsten. A coefficients for this system. A simple semiclassical explanation of the Weisskopf-Heitler phenomenon in resonance fluorescence is also supplied. (author) [pt

  6. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    Science.gov (United States)

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  7. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  8. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav

    2015-01-01

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  9. Excitation dependence of photoluminescence in silicon quantum dots

    International Nuclear Information System (INIS)

    Wen Xiaoming; Lap Van Dao; Hannaford, Peter; Cho, E-C; Cho, Young H; Green, Martin A

    2007-01-01

    We have studied the optical properties of silicon quantum dots (QDs) embedded in a silicon oxide matrix using photoluminescence (PL) and time-resolved PL. A broad luminescence band is observed in the red region, in which the time evolution exhibits a stretched exponential decay. With increasing excitation intensity a significant saturation effect is observed. Direct electron-hole recombination is the dominant effect in the red band. A relatively narrow peak appears around 1.5 eV, which is attributed to the interface states overlapping with transition from the ground state of the silicon QDs. The saturation factor increases slowly with detection photon energy between 1.5 and 1.8 eV, which is attributed to the emission from zero-phonon electron-hole recombination. At higher photon energies the significantly increased saturation factor suggests a different emission mechanism, most likely the defect states from silicon, silicon oxide or silicon rich oxide

  10. Nonlinear phenomena in the highly excited state of C60

    International Nuclear Information System (INIS)

    Byrne, H.J.; Maser, W.K.; Kaiser, M.; Akselrod, L.; Anders, J.; Ruehle, W.W.; Zhou, X.Q.; Mittelbach, A.; Roth, S.

    1993-01-01

    Under high intensity illumination, the optical and electronic properties of fullerenes are seen to undergo dramatic, nonlinear changes. The photoluminescence emission is seen to increase with approximately the third power of the input intensity above an apparent threshold intensity. Associated with this nonlinear increase is the emergence of a long lifetime emission component and a redshifting of the emission spectrum. Above the threshold intensity the photoconductive response increases with approximately the cube of the input power. In the highly excited state, the photoconductive response becomes relatively temperature independent compared to the thermally activated behaviour observed at low intensities. The characteristics of the temperature dependence are associated with a metallic-like phase in the highly excited state and therefore an optically driven insulator to metal transition is proposed as a description of the observed phenomena. (orig.)

  11. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables

  12. Fission times of excited nuclei: An experimental overview

    International Nuclear Information System (INIS)

    Morjean, M.; Morjean, M.; Jacquet, D.

    2009-01-01

    An overview of selected recent experimental results on fission times is presented. Evidences for over-damped motion up to saddle point during the fission process of highly excited nuclei have been obtained independently through fission probability, pre-scission multiplicity and direct time measurements. In addition, strong clues have been found for a temperature dependency of friction. Experiments probing transient effects through fission probabilities are presented and the counterbalanced effects of friction and level density parameters are discussed. Promising perspectives for super-heavy stability studies, based on fission time measurements, are presented. (authors)

  13. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    International Nuclear Information System (INIS)

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-01-01

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  14. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    Science.gov (United States)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  15. Effects of optical pumping in the photo-excitation of organic triplet states

    International Nuclear Information System (INIS)

    Lin, Tien-Sung; Yang, Tran-Chin; Sloop, David J.

    2013-01-01

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping

  16. Effects of optical pumping in the photo-excitation of organic triplet states

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Sung, E-mail: lin@wustl.edu; Yang, Tran-Chin; Sloop, David J.

    2013-08-30

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping.

  17. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    Science.gov (United States)

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  18. Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

    International Nuclear Information System (INIS)

    Lee, Sang Uck

    2013-01-01

    The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry

  19. Orientation-dependent imaging of electronically excited quantum dots

    Science.gov (United States)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  20. Localized excitations and the geometry of the 1nπ* excited states of pyrazine

    International Nuclear Information System (INIS)

    Kleier, D.A.; Martin, R.L.; Wadt, W.R.; Moomaw, W.R.

    1982-01-01

    Previous theoretical work has shown that the lowest excited singlet state of pyrazine, the π* 1 B 3 u state, is best described in terms of interacting excitations localized on each nitrogen. The present work refines the localized excitation model and considers its implications for the geometry of the 1 B 3 u state. Hartree-Fock calculations show that the best single configuration description of the nπ* state has broken ( 1 B 1 ) symmetry with the excitation strongly localized at one end of the molcule. If the symmetry-restricted hf result is used for reference, this localization describes an important correlation effect. The excited-state geometry was probed using configuration interaction wave functions based on the symmetry-restricted orbitals, as well as properly symmetrized ''valance-bond'' wave functions based on the broken symmetry solutions. Both descriptions lead to a very flat potential for a b/sub 1u/ vibrational mode. This mode reduces the molecular geometry from D/sub 2h/ to C/sub 2v/. We present spectroscopic evidence of our own and of other workers which is consistent with such a flat potential

  1. Radiative and Excited State Charmonium Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek

    2007-07-30

    Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.

  2. Study of excitation energy dependence of nuclear level density parameter

    International Nuclear Information System (INIS)

    Mohanto, G.; Nayak, B.K.; Saxena, A.

    2016-01-01

    In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei

  3. State-age-dependent maintenance policies for deteriorating systems with Erlang sojourn time distributions

    International Nuclear Information System (INIS)

    Yeh, R.H.

    1997-01-01

    This paper investigates state-age-dependent maintenance policies for multistate deteriorating systems with Erlang sojourn time distributions. Since Erlang distributions are serial combinations of exponential phases, the deteriorating process can be modeled by a multi-phase Markovian model and hence easily analyzed. Based on the Markovian model, the optimal phase-dependent inspection and replacement policy can be obtained by using a policy improvement algorithm. However, since phases are fictitious and can not be identified by inspections, two procedures are developed to construct state-age-dependent policies based on the optimal phase-dependent policy. The properties of the constructed state-age-dependent policies are further investigated and the performance of the policy is evaluated through a numerical example

  4. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...... of randomly oriented heteronuclear diatomic molecules can be obtained under simultaneous irradiation by a resonant and an off-resonant intense IR laser pulse: Molecules with one initial orientation will be vibrationally excited, while those with the opposite orientation will be at rest. The orientation-dependent...... distribution. (C) 2000 American Institute of Physics....

  5. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    International Nuclear Information System (INIS)

    Tomin, Vladimir I.; Ushakou, Dzmitryi V.

    2015-01-01

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  6. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.

    2015-10-15

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  7. Investigation of unstable periodic space-time states in distributed active system with supercritical current

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru

  8. Observation of excited state charge transfer with fs/ps-CARS

    International Nuclear Information System (INIS)

    Blom, Alex Jason

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles

  9. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  10. The triplet excited state of Bodipy: formation, modulation and application.

    Science.gov (United States)

    Zhao, Jianzhang; Xu, Kejing; Yang, Wenbo; Wang, Zhijia; Zhong, Fangfang

    2015-12-21

    Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet-triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were

  11. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  12. Nuclear quantum effects on the nonadiabatic decay mechanism of an excited hydrated electron

    Science.gov (United States)

    Borgis, Daniel; Rossky, Peter J.; Turi, László

    2007-11-01

    We present a kinetic analysis of the nonadiabatic decay mechanism of an excited state hydrated electron to the ground state. The theoretical treatment is based on a quantized, gap dependent golden rule rate constant formula which describes the nonadiabatic transition rate between two quantum states. The rate formula is expressed in terms of quantum time correlation functions of the energy gap and of the nonadiabatic coupling. These gap dependent quantities are evaluated from three different sets of mixed quantum-classical molecular dynamics simulations of a hydrated electron equilibrated (a) in its ground state, (b) in its first excited state, and (c) on a hypothetical mixed potential energy surface which is the average of the ground and the first excited electronic states. The quantized, gap dependent rate results are applied in a phenomenological kinetic equation which provides the survival probability function of the excited state electron. Although the lifetime of the equilibrated excited state electron is computed to be very short (well under 100fs), the survival probability function for the nonequilibrium process in pump-probe experiments yields an effective excited state lifetime of around 300fs, a value that is consistent with the findings of several experimental groups and previous theoretical estimates.

  13. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  14. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.

    2009-01-01

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  15. Studies of time dependence of fields in TEVATRON superconducting dipole magnets

    International Nuclear Information System (INIS)

    Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.

    1988-01-01

    The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs

  16. Position-dependent deuterium isotope effect on photoisomerization of ammineaquarhodium(III) complexes: identification of the excited-state vibronic deactivation mode

    International Nuclear Information System (INIS)

    Skibsted, L.H.

    1987-01-01

    cis to trans Photoisomerization quantum yields are increased by a factor of approximately two by deuteriation of co-ordinated water in tetra-amminediaquarhodium, but are almost insensitive to deuteriation of co-ordinated water in tetra-ammineaquachlororhodium and to deuteriation of co-ordinated ammonia in either complex; this identifies the dominating nonradiative deactivation mode (competing with the excited-state rearrangement) as a hydrogen-oxygen vibration in an excited-state intermediate of reduced co-ordination number. (author)

  17. Field dependence of magnetic order and excitations in the Kitaev candidate alpha-RuCl3

    Science.gov (United States)

    Banerjee, Arnab; Kelley, Paula; Winn, Barry; Aczel, Adam; Lumsden, Mark; Mandrus, David; Nagler, Stephen

    The search for new quantum states of matter has been one of the forefront endeavors of condensed matter physics. The two-dimensional Kitaev quantum spin liquid (QSL) is of special interest as an exactly solvable spin-liquid model exhibiting exotic fractionalized excitations. Recently, alpha-RuCl3 has been identified as a candidate system for exhibiting some aspects of Kitaev QSL physics. The spins in this material exhibit zig-zag order at low temperatures, and show both low energy spin wave excitation arising from the ordered state as well as a continuum excitation extending to higher energies that has been taken as evidence for QSL relate Majorana fermions. In this talk, we show that the application of an in-plane magnetic field suppresses the zig-zag order possibly resulting in a state devoid of long-range order. Field-dependent inelastic neutron scattering on single-crystal shows a remarkable effect on the excitation spectrum above the critical field. The work is supported by US-DOE, Office of Science, Basic Energy Sciences and User Facilities Divisions, and also the Gordon and Betty Moore Foundation EPiQS Grant GBFM4416.

  18. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  19. Excitation of lowest electronic states of thymine by slow electrons

    Science.gov (United States)

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  20. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  1. An experimental and theoretical investigation into the excited electronic states of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B.; Chiari, L. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2014-08-21

    We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.

  2. Seismic structural response analysis for multiple support excitation

    International Nuclear Information System (INIS)

    Shaw, D.E.

    1975-01-01

    In the seismic analysis of nuclear power plant equipment such as piping systems situations often arise in which piping systems span between adjacent structures or between different elevations in the same structure. Owing to the differences in the seismic time history response of different structures or different elevations of the same structure, the input support motion will differ for different supports. The concept of a frequency dependent participation factor and rotational response spectra accounting for phase differences between support excitations is developed by using classical equations of motion to formulate the seismic response of a structure subjected to multiple support excitation. The essence of the method lies in describing the seismic excitation of a multiply excited structure in terms of translational and rotational spectra used at every support and a frequency dependent spatial distribution function derived from the phase relationships of the different support time histories. In this manner it is shown that frequency dependent participation factors can be derived from the frequency dependent distribution functions. Examples are shown and discussed relative to closed form solutions and the state-of-the-art techniques presently being used for the solution of problems of multiply excited structures

  3. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    Science.gov (United States)

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  4. Excited state redox properties of phthalocyanines: influence of the axial ligand on the rates of relaxation and electron-transfer quenching of the lowest /sup 3/. pi pi. /sup */ excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ferraudi, G J; Prasad, D R

    1874-01-01

    Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.

  5. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    Science.gov (United States)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  6. Triplet excited States as a source of relevant (bio)chemical information.

    Science.gov (United States)

    Jiménez, M Consuelo; Miranda, Miguel A

    2014-01-01

    The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and α1-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external quenchers. With proteins, formation of spatially confined triplet excited states is favored over competitive processes affording ionic species. Remarkably, under aerobic atmosphere, the triplet decay of drug@protein complexes is dramatically longer than in bulk solution. This offers a convenient dynamic range for assignment of different triplet populations or for stereochemical discrimination. In this review, selected examples of the application of the laser flash photolysis technique are described, including drug distribution between the bulk solution and the protein cavities, or between two types of proteins, detection of drug-drug interactions inside proteins, and enzyme-like activity processes mediated by proteins. Finally, protein encapsulation can also modify the photoreactivity of the guest. This is illustrated by presenting an example of retarded photooxidation.

  7. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study.

    Science.gov (United States)

    Guo, Xugeng; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Zhang, Jinglai

    2016-04-21

    Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S1 state, which may undergo an ultrafast non-radiative deactivation to the S0 state. The lifetime of the S1 state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solventwater has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in watersolution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.

  8. Doubly excited circular Ba(6pj, 21c) states: e-e interaction effects in weak external fields

    International Nuclear Information System (INIS)

    Chen, L.; Cheret, M.; Poirier, M.; Roussel, F.; Bolzinger, T.; Spiess, G.

    1992-01-01

    The behaviour of doubly excited circular atoms in weak parallel electric and magnetic fields has been studied. The Hamiltonian, including the e-e interaction between the two excited electrons, Stark and Zeeman effects, is diagonalized in a truncated basis. The Rydberg electron, initially in a circular state, experiences a mixing of its orbital and magnetic quantum numbers, due to the presence of the external fields and to the excitation of the inner electron. This mixing depends on the spatial symmetry of the excited core and on the amplitude of the electric field. It can be detected by the field-ionization method which provides a new way for studying non-autoionizing doubly excited states. (orig.)

  9. EPR studies of excited state exchange and crystal-field effects in rare earth compounds

    International Nuclear Information System (INIS)

    Huang, C.Y.; Sugawara, K.; Cooper, B.R.

    1976-01-01

    EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig

  10. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  11. Magnetic excitations in intermediate valence semiconductors with singlet ground state

    International Nuclear Information System (INIS)

    Kikoin, K.A.; Mishchenko, A.S.

    1994-01-01

    The explanation of the origin inelastic peaks in magnetic neutron scattering spectra of the mixed-valent semiconductor SmB 6 is proposed. It is shown that the excitonic theory of intermediate valence state not only gives the value of the peak frequency but also explains the unusual angular dependence of intensity of inelastic magnetic scattering and describes the dispersion of magnetic excitations in good agreement with experiment

  12. Near-infrared spectroscopy (NIRS - electroencephalography (EEG based brain-state dependent electrotherapy (BSDE: A computational approach based on excitation-inhibition balance hypothesis

    Directory of Open Access Journals (Sweden)

    Snigdha Dagar

    2016-08-01

    Full Text Available Stroke is the leading cause of severe chronic disability and the second cause of death worldwide with 15 million new cases and 50 million stroke survivors. The post stroke chronic disability may be ameliorated with early neuro rehabilitation where non-invasive brain stimulation (NIBS techniques can be used as an adjuvant treatment to hasten the effects. However, the heterogeneity in the lesioned brain will require individualized NIBS intervention where innovative neuroimaging technologies of portable electroencephalography (EEG and functional-near-infrared spectroscopy (fNIRS can be leveraged for Brain State Dependent Electrotherapy (BSDE. In this hypothesis and theory article, we propose a computational approach based on excitation-inhibition (E-I balance hypothesis to objectively quantify the post stroke individual brain state using online fNIRS-EEG joint imaging. One of the key events that occurs following Stroke is the imbalance in local excitation-inhibition (that is the ratio of Glutamate/GABA which may be targeted with NIBS using a computational pipeline that includes individual forward models to predict current flow patterns through the lesioned brain or brain target region. The current flow will polarize the neurons which can be captured with excitation-inhibition based brain models. Furthermore, E-I balance hypothesis can be used to find the consequences of cellular polarization on neuronal information processing which can then be implicated in changes in function. We first review evidence that shows how this local imbalance between excitation-inhibition leading to functional dysfunction can be restored in targeted sites with NIBS (Motor Cortex, Somatosensory Cortex resulting in large scale plastic reorganization over the cortex, and probably facilitating recovery of functions. Secondly, we show evidence how BSDE based on inhibition–excitation balance hypothesis may target a specific brain site or network as an adjuvant treatment

  13. Collective excitation frequencies and vortices of a Bose-Einstein condensed state with gravitylike interatomic attraction

    International Nuclear Information System (INIS)

    Ghosh, Tarun Kanti

    2002-01-01

    We study the collective excitations of a neutral atomic Bose-Einstein condensate with gravitylike 1/r interatomic attraction induced by an electromagnetic wave. Using the time-dependent variational approach, we derive an analytical spectrum for monopole and quadrupole mode frequencies of a gravitylike self-bound Bose condensed state at zero temperature. We also analyze the excitation frequencies of the Thomas-Fermi-gravity (TF-G) and gravity (G) regimes. Our result agrees excellently with that of Giovanazzi et al. [Europhysics Lett., 56, 1 (2001)], which is obtained within the sum-rule approach. We also consider the vortex state. We estimate the superfluid coherence length and the critical angular frequencies to create a vortex around the z axis. We find that the TF-G regime can exhibit the superfluid properties more prominently than the G regime. We find that the monopole mode frequency of the condensate decreases due to the presence of a vortex

  14. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    Science.gov (United States)

    Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver

    2017-08-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.

  15. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  16. Luminescence and excited state dynamics in Bi{sup 3+}-doped LiLaP{sub 4}O{sub 12} phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Chernenko, K., E-mail: nuclearphys@yandex.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Peter the Great Saint-Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St.Petersburg (Russian Federation); Demchenko, P. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Mihokova, E.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Pashuk, I. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Shalapska, T. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Voloshinovskii, A. [Ivan Franko National University of Lviv, Kyryla i Mefodiya 8a, 79005 Lviv (Ukraine); Zazubovich, S. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-08-15

    Photo- and X-ray-excited luminescence characteristics of Bi-doped LiLaP{sub 4}O{sub 12} phosphates with different bismuth contents (from 1 to 25 at% in the melt) are investigated in the 4.2–300 K temperature range and compared with the characteristics of the undoped LiLaP{sub 4}O{sub 12} phosphate. The broad 2.95 eV emission band of LiLaP{sub 4}O{sub 12}:Bi excited around 5.4 eV is found to arise from the bismuth dopant. Relatively large FWHM and Stokes shift of the emission band and especially the data on the low-temperature decay kinetics of the 2.95 eV emission and its temperature dependence, indicating a very small spin-orbit splitting energy of the corresponding excited state, allow the conclusion that this emission arises from the radiative decay of the triplet state of an exciton localized around a Bi{sup 3+} ion. No spectral bands are observed, arising from the electron transitions between the energy levels of Bi{sup 3+} ions. Phenomenological model is proposed for the description of the excited state dynamics of the Bi{sup 3+}-related localized exciton in LiLaP{sub 4}O{sub 12}:Bi and the parameters of the triplet localized exciton state are determined. Keywords: Photoluminescence; Time-resolved spectroscopy; Excited states; Bi{sup 3+} centers; LiLaP{sub 4}O{sub 12}:Bi powders.

  17. Study of a Quantum Dot in an Excited State

    Science.gov (United States)

    Slamet, Marlina; Sahni, Viraht

    We have studied the first excited singlet state of a quantum dot via quantal density functional theory (QDFT). The quantum dot is represented by a 2D Hooke's atom in an external magnetostatic field. The QDFT mapping is from an excited singlet state of this interacting system to one of noninteracting fermions in a singlet ground state. The results of the study will be compared to (a) the corresponding mapping from a ground state of the quantum dot and (b) to the similar mapping from an excited singlet state of the 3D Hooke's atom.

  18. Time dependent mean field approximation to the many-body S-matrix

    International Nuclear Information System (INIS)

    Alhassid, Y.; Koonin, S.E.

    1980-01-01

    Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures

  19. Large-Scale Quantum Many-Body Perturbation on Spin and Charge Separation in the Excited States of the Synthesized Donor-Acceptor Hybrid PBI-Macrocycle Complex.

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-03-17

    The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Time-dependent Hartree approximation and time-dependent harmonic oscillator model

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1982-01-01

    We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schroedinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory. (orig.)

  1. Intramolecular evolution from a locally excited state to an excimer-like state in a multichromophoric dendrimer evidenced by a femtosecond fluorescence upconversion study

    NARCIS (Netherlands)

    Karni, Y.; Jordens, S.; Belder, G. De; Schweitzer, G.; Hofkens, J.; Gensch, T.; Maus, M.; Schryver, F.C. De; Herrmann, A.; Müllen, K.

    1999-01-01

    A time-resolved fluorescence upconversion study on a polyphenylene dendrimer with eight peryleneimide chromophores on the surface and on a monochromophoric model compound is reported. The time-dependent fluorescence spectra of the dendrimer show that the initial excitation is into a locally excited

  2. Excited eigenmodes in magnetic vortex states of soft magnetic half-spheres and spherical caps

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myoung-Woo; Lee, Jae-Hyeok; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr [National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-12-14

    We studied the magnetization dynamics of excitation modes in special geometrical confinements of soft magnetic half-spheres and spherical caps in magnetic vortex states using finite-element micromagnetic numerical calculations. We found additional fine features of the zeroth- and first-order gyrotropic modes and asymmetric m = +1 and m = −1 azimuthal spin-wave modes, which detailed information is unobtainable from two-dimensional mesh-cell based numerical calculations. Moreover, we examined the perpendicular bias field dependence of the excited eigenmodes, which data provide for an efficient means of control over the excited modes. Such numerical calculations offer additional details or new underlying physics on dynamic features in arbitrary-shape magnetic nano-elements such as half-spheres and spherical caps in magnetic vortex states.

  3. On time transformations for differential equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2014-01-01

    Roč. 12, č. 2 (2014), s. 298-307 ISSN 1895-1074 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : differential equations * state-dependent delay * time transformations Subject RIV: BD - Theory of Information Impact factor: 0.578, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/rezunenko-0429130.pdf

  4. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre.

    Science.gov (United States)

    Smit, Jacoba E; Hanekom, Tania; Hanekom, Johan J

    2009-08-01

    The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.

  5. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    Science.gov (United States)

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  6. On the violation of the exponential decay law in atomic physics: ab initio calculation of the time-dependence of the He-1s2p24P non-stationary state

    International Nuclear Information System (INIS)

    Nicolaides, C.A.; Mercouris, T.

    1996-01-01

    The detailed time dependence of the decay of a three-electron autoionizing state close to threshold has been obtained ab initio by solving the time-dependent Schrodinger equation (TDSE). The theory allows the definition and computation of energy-dependent matrix elements in terms of the appropriate N-electron wavefunctions, representing the localized initial state, Ψ O , the stationary scattering states of the continuous spectrum, U( e psilon ) , and the localized excited states, Ψ n , of the effective Hamiltonian QHQ, where Q ''ident to'' |Ψ O > O |. The time-dependent wavefunction is expanded over these states and the resulting coupled equations with time-dependent coefficients (in the thousands) are solved to all orders by a Taylor series expansion technique. The robustness of the method was verified by using a model interaction in analytic form and comparing the results from two different methods for integrating the TDSE (appendix B). For the physically relevant application, the chosen state was the He - 1s2p 24 P shape resonance, about which very accurate theoretical and experimental relevant information exists. Calculations using accurate wavefunctions and an energy grid of 20.000 points in the range 0.0-21.77 eV show that the effective interaction depends on energy in a state-specific manner, thereby leading to state-specific characteristics of non-exponential decay over about 6 x 10 4 au of time, from which a width of Γ = 5.2 meV and a lifetime of 1.26 x 10 -13 s is deduced. The results suggest that either in this state or in other autoionizing states close to threshold, NED may have sufficient presence to make the violation of the law of exponential decay observable. (Author)

  7. Theoretical Insights Into the Excited State Double Proton Transfer Mechanism of Deep Red Pigment Alkannin.

    Science.gov (United States)

    Zhao, Jinfeng; Dong, Hao; Zheng, Yujun

    2018-02-08

    As the most important component of deep red pigments, alkannin is investigated theoretically in detail based on time-dependent density functional theory (TDDFT) method. Exploring the dual intramolecular hydrogen bonds (O1-H2···O3 and O4-H5···O6) of alkannin, we confirm the O1-H2···O3 may play a more important role in the first excited state than the O4-H5···O6 one. Infrared (IR) vibrational analyses and subsequent charge redistribution also support this viewpoint. Via constructing the S 1 -state potential energy surface (PES) and searching transition state (TS) structures, we illuminate the excited state double proton transfer (ESDPT) mechanism of alkannin is the stepwise process that can be first launched by the O1-H2···O3 hydrogen bond wire in gas state, acetonitrile (CH 3 CN) and cyclohexane (CYH) solvents. We present a novel mechanism that polar aprotic solvents can contribute to the first-step proton transfer (PT) process in the S 1 state, and nonpolar solvents play important roles in lowering the potential energy barrier of the second-step PT reaction.

  8. Spectroscopic and DFT studies of calix[4]arene: time-dependent DFT calculations for elucidating the variation in the excitation energies with geometry

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Bong Hyun; Kwak, Hae Ran; Hong, Seung Ki [Chungnam National University, Daejeon (Korea, Republic of); Park, Chan Jo [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); No, Kwang Hyun [Sookmyung Womens University, Seoul (Korea, Republic of)

    2010-08-15

    We have searched low-lying conformers of calix[4]arene and found one global minimum having a cone shape, together with three conformers such as partial cone-shape conformers. We then elucidated the thermodynamics for the conformational changes by performing density-functional theory (DFT) calculations. The time-dependent DFT calculation enabled us to assign the absorption spectrum and to reveal a variation of the excitation energies with geometry.

  9. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB080310

    DEFF Research Database (Denmark)

    Vreeswijk, P.M.; De Cia, A.; Jakobsson, P.

    2013-01-01

    .42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied...

  10. Kinetic studies following state-selective laser excitation: Annual performance report for the period March 15, 1987-March 14, 1988

    International Nuclear Information System (INIS)

    Keto, J.W.

    1987-11-01

    The objective of this contract is the study of state-to-state, electronic energy transfer reactions following two-photon laser excitation. We have specifically been studying reactions of Xe 5p 5 6p because of their relevance to the XeCl excimer laser. We are studying deactivation reactions in collisions with heavy atoms such as Ar, Kr, and Xe and reactive collisions with chlorides. The reactants are excited by multiphoton laser absorption. Product channels are observed by their fluorescence, or in experiments in the coming months by laser induced fluorescence using a second color laser. Reaction rates are measured by observing the time dependent decay of signals from reactant and product channels. In addition we measure interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra are obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. 4 figs

  11. Lifetime measurements of the excited states in {sup 145} Sm

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, A M; Abdel Samie, Sh; Ahmad, A A [Depatment of Physics, Faculty of Science, ElMinia University, ElMinia, (Egypt); Kuroyanagi, T; Odahara, A; Gono, Y; Morinobu, S [Tandem Accelerator Laboratory, Department of Physics, Kyushu University, (Japan)

    1997-12-31

    Lifetime of the excited levels in {sup 145} Sm has been measured through the {sup 139} La ({sup 10} B, 4 n){sup 145} Sm nuclear reaction. The optimal beam energy of 49 MeV was determined from the measurements of the excitation function and Cascade program. With the possibility of studying lifetime of this nucleus a conventional plunger system have been designed and constructed at kyushu University tandem accelerator laboratory. A La target of 0.22 mg/cm{sup 2} thickness which was evaporated onto a Au foil of 2 mg/cm{sup 2} thickness was used. Since the recoil velocity was estimated to be 1.76 mm/ns (beta 0.00585), the measurable time range resulted in the range from 5 Ps to 5 ns. The single spectra measurements were performed at the 20 plunger positions in the range from 10 {mu} to 10 mm. Analyses of the data were carried using hypermet and/or GF2 program to obtain the lifetimes. A new list of lifetimes for 12 excited states up to 3.922 MeV excitations for {sup 145} Sm were determined for the first time. Decay curves of the these transitions are discussed. The new lifetimes of excited states in {sup 145} Sm enabled us to understand the electromagnetic properties. The deduced transition probabilities were established and compared with that of N = 83 isotones and the closed shell nucleus {sup 144} Sm. In addition, a nuclear structure of {sup 145} Sm have been discussed and proposed in framework of the shell model. 4 figs., 1 tab.

  12. Excited-state dynamics of the medicinal pigment curcumin in a hydrogel.

    Science.gov (United States)

    Harada, Takaaki; Lincoln, Stephen F; Kee, Tak W

    2016-10-12

    Curcumin is a yellow polyphenol with multiple medicinal effects. These effects, however, are limited due to its poor aqueous stability and solubility. A hydrogel of 3% octadecyl randomly substituted polyacrylate (PAAC18) has been shown to provide high aqueous stability for curcumin under physiological conditions, offering a route for photodynamic therapy. In this study, the excited-state photophysics of curcumin in the PAAC18 hydrogel is investigated using a combination of femtosecond transient absorption and fluorescence upconversion spectroscopy. The transient absorption results reveal a multiexponential decay in the excited-state kinetics with fast (1 ps & 15 ps) and slow (110 ps & ≈5 ns) components. The fast decay component exhibits a deuterium isotope effect with D 2 O in the hydrogel, indicating that the 15 ps decay component is attributable to excited-state intramolecular hydrogen atom transfer of curcumin in the PAAC18 hydrogel. In addition, solvent reorganisation of excited-state curcumin is investigated using multiwavelength femtosecond fluorescence upconversion spectroscopy. The results show that the dominant solvation response (τ = 0.08 ps) is a fast inertial motion owing to the presence of bulk-like water in the vicinity of the hydrophobic octadecyl substituents of the PAAC18 hydrogel. The results also show an additional response with longer time constants of 1 and 6 ps, which is attributable to translational diffusion of confined water molecules in the three-dimensional, cross-linking network of the octadecyl substituents of PAAC18. Overall, we show that excited-state intramolecular hydrogen atom transfer and solvent reorganisation are major photophysical events for curcumin in the PAAC18 hydrogel.

  13. Lifetime measurements of excited states in 196Pt

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Katayama, Ichiro; Sakai, Hideyuki; Fujita, Yoshitaka; Fujiwara, Mamoru

    1979-01-01

    The lifetimes of six excited states in 196 Pt up to an excitation energy of 1525 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 220 MeV 58 Ni ion beams. The measured lifetimes of the 2 1 + , 4 1 + , 6 1 + , 2 2 + , 4 2 + and 0 2 + states and the B(E2) values inferred for the depopulating transitions from these levels are presented. With the exception of the 2 1 + state, the meanlives of all other levels are the first such direct experimental determinations to be reported. (author)

  14. Lifetime measurements of excited states in 73As

    International Nuclear Information System (INIS)

    Singh, K.P.; Kavakand, T.; Hajivaliei, M.

    2004-01-01

    The excited states of 73 As have been investigated via the 73 Ge(p, nγ) 73 As reaction with proton beam energies from 2.5–4.3 MeV. The lifetimes of the levels at 769.6, 860.5, 1177.8, 1188.7, 1274.9, 1344.1, 1557.1 and 1975.2 keV excitation energies have been measured for the first time using the Doppler shift attenuation method. The angular distributions have been used to assign the spins and the multipole mixing ratios using statistical theory for compound nuclear reactions. The ambiguity in the spin values for the various levels has been removed. The multipole mixing ratios for eight γ-transitions have been newly measured. (author)

  15. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    Science.gov (United States)

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  16. Substituent effects on the excited states of phenyl-capped phenylene vinylene tetramers

    NARCIS (Netherlands)

    Candeias, L.P.; Gelinck, G.H.; Piet, J.J.; Piris, J.; Wegewijs, B.; Peeters, E.; Wildeman, J.; Hadziioannou, G.; Müllen, K.

    2001-01-01

    The singlet and triplet excited states of phenyl-capped tetramers of phenylene vinylene with different alkyl, alkoxy or cyano substituents, were investigated in benzene solution. The lowest singlet states were studied by laser flash-photolysis with time-resolved microwave conductivity and

  17. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  18. Computing correct truncated excited state wavefunctions

    Science.gov (United States)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  19. Probability of collective excited state decay

    International Nuclear Information System (INIS)

    Manykin, Eh.A.; Ozhovan, M.I.; Poluehktov, P.P.

    1987-01-01

    Decay mechanisms of condensed excited state formed of highly excited (Rydberg) atoms are considered, i.e. stability of so-called Rydberg substance is analyzed. It is shown that Auger recombination and radiation transitions are the basic processes. The corresponding probabilities are calculated and compared. It is ascertained that the ''Rydberg substance'' possesses macroscopic lifetime (several seconds) and in a sense it is metastable

  20. Bond Shortening (1.4 Å) in the Singlet and Triplet Excited States of [Ir2(dimen)4]2+ in Solution Determined by Time-Resolved X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Harlang, Tobias; Christensen, Morten

    2011-01-01

    Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)42+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different ti...

  1. Excited-state dynamics of pentacene derivatives with stable radical substituents.

    Science.gov (United States)

    Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio

    2014-06-23

    The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study on the characteristics of sup(163,165,167)Tm excited states

    International Nuclear Information System (INIS)

    Adam, I.; Alikov, B.A.; Badalov, Kh.N.

    1985-01-01

    On the basis of analysis of transition intensities, de-excitation nature and systematics of sup(163,1965, 167)Tm nucleus level energy the interpretation of some excited states of studied isotopes is suggested. Results of calculations within the framework of an independent quasiparticle model and quasiparticle-phonon model confirm the suggested interpretation and show that taking account of quasiparticle-phonon interaction improves agreement of theoretical energy values with experimental as compared with the independent quasiparticle model. The calculation of energy of rotational states within the framework of a non adi batic rotational model shows that it is possible to obtain rather good agreement with experiment. It is noted that taking account of correctly the difference in deformations of one-particle states can result in the improvement of agreement of theory and experiment. When calculating rotational spectra for the description of high-lying states it is desirable to consider dependence of collective parameters, for example, inertia momentum, on spin

  3. Size-dependent piezoelectric energy-harvesting analysis of micro/nano bridges subjected to random ambient excitations

    Science.gov (United States)

    Radgolchin, Moeen; Moeenfard, Hamid

    2018-02-01

    The construction of self-powered micro-electro-mechanical units by converting the mechanical energy of the systems into electrical power has attracted much attention in recent years. While power harvesting from deterministic external excitations is state of the art, it has been much more difficult to derive mathematical models for scavenging electrical energy from ambient random vibrations, due to the stochastic nature of the excitations. The current research concerns analytical modeling of micro-bridge energy harvesters based on random vibration theory. Since classical elasticity fails to accurately predict the mechanical behavior of micro-structures, strain gradient theory is employed as a powerful tool to increase the accuracy of the random vibration modeling of the micro-harvester. Equations of motion of the system in the time domain are derived using the Lagrange approach. These are then utilized to determine the frequency and impulse responses of the structure. Assuming the energy harvester to be subjected to a combination of broadband and limited-band random support motion and transverse loading, closed-form expressions for mean, mean square, correlation and spectral density of the output power are derived. The suggested formulation is further exploited to investigate the effect of the different design parameters, including the geometric properties of the structure as well as the properties of the electrical circuit on the resulting power. Furthermore, the effect of length scale parameters on the harvested energy is investigated in detail. It is observed that the predictions of classical and even simple size-dependent theories (such as couple stress) appreciably differ from the findings of strain gradient theory on the basis of random vibration. This study presents a first-time modeling of micro-scale harvesters under stochastic excitations using a size-dependent approach and can be considered as a reliable foundation for future research in the field of

  4. Steady state and time-resolved spectroscopic investigations on the photoreactions involved within the electronically excited electron acceptor 9-cyanoanthracene in presence of benzotriazole and benzimidazole donors

    International Nuclear Information System (INIS)

    Bhattacharya, Sudeshna; Bardhan, Munmun; Ganguly, Tapan

    2010-01-01

    The electrochemical, 'steady-state' and 'time-resolved' spectroscopic investigations were made on the well-known electron acceptor 9-cyanoanthracene (CNA) when interacted with the electron donors benzotriazole (BZT) and benzimidazole (BMI) molecules. Though electrochemical measurements indicate the thermodynamical possibility of occurrences of photoinduced electron transfer reactions within these reacting systems in the lowest excited singlet state (S 1 ) of the acceptor CNA but the steady-state and time-resolved measurements clearly demonstrate only the triplet-initiated charge separation reactions. It was reported earlier that in the cases of disubstituted indole molecules the occurrences of photoinduced electron transfer reactions were apparent both in the excited singlet and triplet states of the acceptor 9-cyanoanthracene, but the similarly structured present donor molecules benzotriazole (and benzimidazole) behave differently from indoles. The weak ground state complex formations within the presently studied reacting systems appear to be responsible for the observed static quenching phenomena as evidenced from the time-resolved fluorescence studies. Time-resolved spectroscopic investigations demonstrate the formation of the ground state of the reacting components (donor and acceptor) through recombination of triplet ion-pairs via formations of contact neutral radical produced by H-abstraction mechanism.

  5. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  6. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  7. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  8. Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation

    Science.gov (United States)

    Zhu, Ying; Herbert, John M.

    2018-01-01

    The "real time" formulation of time-dependent density functional theory (TDDFT) involves integration of the time-dependent Kohn-Sham (TDKS) equation in order to describe the time evolution of the electron density following a perturbation. This approach, which is complementary to the more traditional linear-response formulation of TDDFT, is more efficient for computation of broad-band spectra (including core-excited states) and for systems where the density of states is large. Integration of the TDKS equation is complicated by the time-dependent nature of the effective Hamiltonian, and we introduce several predictor/corrector algorithms to propagate the density matrix, one of which can be viewed as a self-consistent extension of the widely used modified-midpoint algorithm. The predictor/corrector algorithms facilitate larger time steps and are shown to be more efficient despite requiring more than one Fock build per time step, and furthermore can be used to detect a divergent simulation on-the-fly, which can then be halted or else the time step modified.

  9. Lifetime measurements of highly excited Rydberg states of strontium. Pt. 1

    International Nuclear Information System (INIS)

    Kunze, S.; Hohmann, R.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Stenner, J.; Stratmann, K.; Wendt, K.; Zimmer, K.

    1993-01-01

    Lifetimes of Rydberg states of triplet-series 5s ns 3 S 1 with n=19-23, 35 and 5s nd 3 D 3 with n=18-20, 23-28 in the spectrum of neutral strontium have been determined. Observation of the exponential decay after excitation by a pulsed laser in a fast atomic beam and subsequent state-selective field ionization was employed. The lifetimes of the states of the 3 S 1 -series show the expected n* 3 dependence on the effective principal quantum number, while the 3 D 3 -series is disturbed by configuration mixing. Furthermore, state re-populations induced by black-body radiation have been observed. (orig.)

  10. Event-Based $H_\\infty $ State Estimation for Time-Varying Stochastic Dynamical Networks With State- and Disturbance-Dependent Noises.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E

    2017-10-01

    In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.

  11. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  12. Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2010-08-14

    The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin

  13. The formation and decay of triply excited He- states in e-He scattering

    International Nuclear Information System (INIS)

    Heideman, H.G.M.

    1988-01-01

    A description is given of doubly and triply excited negative-ion states and their effects on the electron impact excitation of atomic states. Mechanisms for indirect excitation of singly excited states are discussed with respect to:- negative-ion resonance, autoionisation and post-collision interaction, and excitation of an autoionising state via a negative ion resonance. A classification of doubly excited states is considered. Experimental results on the excitation of the n'S states of helium as a function of the incident electron energy are presented, along with theoretical PCI (post collision interaction) profiles in excitation functions, and an interpretation of the results. (UK)

  14. Dynamic study of excited state hydrogen-bonded complexes of harmane in cyclohexane-toluene mixtures.

    Science.gov (United States)

    Carmona, Carmen; Balón, Manuel; Galán, Manuel; Guardado, Pilar; Muñoz, María A

    2002-09-01

    Photoinduced proton transfer reactions of harmane or 1-methyl-9H-pyrido[3,4-b]indole (HN) in the presence of the proton donor hexafluoroisopropanol (HFIP) in cyclohexane-toluene mixtures (CY-TL; 10% vol/vol of TL) have been studied. Three excited state species have been identified: a 1:2 hydrogen-bonded proton transfer complex (PTC), between the pyridinic nitrogen of the substrate and the proton donor, a hydrogen-bonded cation-like exciplex (CL*) with a stoichiometry of at least 1:3 and a zwitterionic exciplex (Z*). Time-resolved fluorescence measurements evidence that upon excitation of ground state PTC, an excited state equilibrium is established between PTC* and the cationlike exciplex, CL*, lambdaem approximately/= 390 nm. This excited state reaction is assisted by another proton donor molecule. Further reaction of CL* with an additional HFIP molecule produces the zwitterionic species, Z*, lambda(em) approximately/= 500 nm. From the analysis of the multiexponential decays, measured at different emission wavelengths and as a function of HFIP concentration, the mechanism of these excited state reactions has been established. Thus, three rate constants and three reciprocal lifetimes have been determined. The simultaneous study of 1,9-dimethyl-9H-pyrido[3,4-b]indole (MHN) under the same experimental conditions has helped to understand the excited state kinetics of these processes.

  15. Excitation and decay of correlated atomic states

    International Nuclear Information System (INIS)

    Rau, A.R.P.

    1992-01-01

    Doubly excited states of atoms and ions in which two electrons are excited from the ground configuration display strong radial and angular electron correlations. They are prototypical examples of quantum-mechanical systems with strong coupling. Two distinguishing characteristics of these states are: (1) their organization into successive families, with only weak coupling between families, and (2) a hierarchical nature of this coupling, with states from one family decaying primarily to those in the next lower family. A view of the pair of electrons as a single entity, with the electron-electron repulsion between them divided into a adiabatic and nonadiabatic piece, accounts for many of the dominant features. The stronger, adiabatic part determines the family structure and the weaker, nonadiabatic part the excitation and decay between successive families. Similar considerations extend to three-electron atomic states, which group into five different classes. They are suggestive of composite models for quarks in elementary particle physics, which exhibit analogous groupings into families with a hierarchical arrangement of masses and electroweak decays. 49 refs., 6 figs., 2 tabs

  16. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  17. Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers

    International Nuclear Information System (INIS)

    Zojer, E.; Knupfer, M.; Shuai, Z.; Fink, J.; Bredas, J.L.; Hoerhold, H.-H.; Grimme, J.; Scherf, U.; Benincori, T.; Leising, G.

    2000-01-01

    The electronic structure of periodic materials is usually described on the basis of band-structure models, in which each state is not only characterized by its energy but also by the corresponding electron momentum. In this paper we present investigations of momentum-dependent excitation processes in a number of molecular crystals and amorphous thin films. For our studies we have chosen ladder-type quinquephenyl (5LP), distyrylbenzene (3PV), a substituted quinquephenylenevinylene (5PV), and a bridged quarterthienyl (4TB). These substances are representative for several classes of conjugated organic materials. Their physical properties are dominated by the molecular building blocks. The investigated films, however, also allow us to study differences in the characteristics of crystalline (3PV and 4TB), partly amorphous (5LP) and fully amorphous (5PV) systems. Momentum-dependent excitations are induced by inelastic electron scattering in electron-energy-loss spectroscopy (EELS) experiments. The experimental data are compared to molecule based post-Hartree-Fock quantum-chemical simulations performed with the intermediate neglect of differential overlap (INDO) approach coupled to a configuration interaction (CI) technique applying the proper momentum-dependent transition matrix elements. Our results show that even in relatively small systems the molecular electronic states can be characterized by an associated range in momentum space. In addition, differences between inelastic electron scattering spectra for low values of momentum transfer and the optical data obtained for the crystalline samples underline the strong impact of light propagation on the absorption characteristics of highly anisotropic crystalline materials

  18. Pulsed laser study of excited states of aromatic molecules absorbed in globular proteins

    International Nuclear Information System (INIS)

    Cooper, M.; Thomas, J.K.

    1977-01-01

    Pyrene and several derivatives of pyrene such as pyrene sulfonic acid, and pyrene butyric acid were incorporated into bovine serum albumin (BSA) in aqueous solution. The pyrene chromophore was subsequently excited by a pulse of uv light (lambda = 3471 A) from a Q switched frequency doubled ruby laser. The lifetime of the pyrene excited singlet and triplet states were monitored by time resolved spectrophotometry. Various molecules, such as O 2 and I - , dissolved in the aqueous phase, diffused into the protein and quenched pyrene excited states. The rates of these reactions were followed under a variety of conditions such as pH and temperature and in the presence of inert additives. The rates of pyrene excited-state quenching were often considerably smaller than the rates observed in simple solutions. A comparison of the rates in the protein and homogeneous solutions gives information on the factors such as temperature, charge, and pH that control the movement of small molecules in and into BSA

  19. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2012-03-08

    We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations

  20. Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State

    OpenAIRE

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S.; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J. P.

    2005-01-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO2 nanoparticles in the colloidal solution. The LH2/TiO2 assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO2. The possibility that the decrease of the LH2 excited-state lifetime being caused by ...

  1. Time-dependent--S-matrix Hartree-Fock theory of complex reactions

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1980-01-01

    Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations

  2. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modele...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  3. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...

  4. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  5. Electronic properties of excited states in single InAs quantum dots

    International Nuclear Information System (INIS)

    Warming, Till

    2009-01-01

    The application of quantum-mechanical effects in semiconductor nanostructures enables the realization of novel opto-electronic devices. Examples are given by single-photon emitters and emitters of entangled photon pairs, both being essential for quantum cryptography, or for qubit systems as needed for quantum computing. InAs/GaAs quantum dots are one of the most promising candidates for such applications. A detailed knowledge of the electronic properties of quantum dots is a prerequisite for this development. The aim of this work is an experimental access to the detailed electronic structure of the excited states in single InAs/GaAs quantum dots including few-particle effects and in particular exchange interaction. The experimental approach is micro photoluminescence excitation spectroscopy (μPLE). One of the main difficulties using μPLE to probe single QDs is the unambiguous assignment of the observed resonances in the spectrum to specific transitions. By comparing micro photoluminescence (μPL) and μPLE spectra, the identification of the main resonances becomes possible. The key is given by the fine structure of the hot trion. Excitation spectroscopy on single charged QDs enables for the first time the complete observation of a non-trivial fine structure of an excitonic complex in a QD, the hot trion. Modelling based on eight-band k.p theory in combination with a configuration interaction scheme is in excellent agreement. Therewith the simulation also enables realistic predictions on the fine structure of the ground-state exciton which is of large importance for single quantum dot devices. Theory concludes from the observed transitions that the structural symmetry of the QDs is broken. Micro photoluminescence excitation spectroscopy combined with resonantly excited micro photoluminescence enables an optical access to the single particle states of the hole without the influence of few-particle coulomb interactions. Based on this knowledge the exciton binding

  6. Electron-tunneling observation of localized excited states in superconducting manganese-doped lead

    International Nuclear Information System (INIS)

    Tsang, J.; Ginsberg, D.M.

    1980-01-01

    We have made electron-tunneling measurements on a dilute, superconducting lead-manganese alloy. A well-defined structure was observed in the ac-conductance--voltage curves, indicating excited states within the BCS energy gap. These states were partially accounted for by Shiba theory when spin-dependent s-, p-, and d-wave scattering were included. The phase shifts used in doing that were the results of band calculations. The experimental data also show the existence of a broad background density of states in the energy gap, which cannot be accounted for by the theory

  7. Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays.

    Science.gov (United States)

    Şaylı, Mustafa; Yılmaz, Enes

    2015-08-01

    In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence and global exponential stability of periodic solution are obtained. Previous results are improved and extended. Finally, we give an illustrative example with numerical simulations to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2011-11-21

    The recently proposed spin-adapted time-dependent density functional theory (S-TD-DFT) [Z. Li and W. Liu, J. Chem. Phys. 133, 064106 (2010)] resolves the spin-contamination problem in describing singly excited states of high spin open-shell systems. It is an extension of the standard restricted open-shell Kohn-Sham-based TD-DFT which can only access those excited states due to singlet-coupled single excitations. It is also far superior over the unrestricted Kohn-Sham-based TD-DFT (U-TD-DFT) which suffers from severe spin contamination for those excited states due to triplet-coupled single excitations. Nonetheless, the accuracy of S-TD-DFT for high spin open-shell systems is still inferior to TD-DFT for well-behaved closed-shell systems. The reason can be traced back to the violation of the spin degeneracy conditions (SDC) by approximate exchange-correlation (XC) functionals. Noticing that spin-adapted random phase approximation (S-RPA) can indeed maintain the SDC by virtue of the Wigner-Eckart theorem, a hybrid ansatz combining the good of S-TD-DFT and S-RPA can immediately be envisaged. The resulting formalism, dubbed as X-TD-DFT, is free of spin contamination and can also be viewed as a S-RPA correction to the XC kernel of U-TD-DFT. Compared with S-TD-DFT, X-TD-DFT leads to much improved results for the low-lying excited states of, e.g., N(2)(+), yet with much reduced computational cost. Therefore, X-TD-DFT can be recommended for routine calculations of excited states of high spin open-shell systems.

  9. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin

    2015-06-07

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  10. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    International Nuclear Information System (INIS)

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-01-01

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ 1 ,T ~ 2 ,λ 3 )) along the population time (T ~ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ 1 ,ν ~ 2 ,λ 3 )). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν ~ 2 ) in the rephasing beating map and at negative frequency (−ν ~ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems

  11. Radiative and nonradiative lifetimes in excited states of Ar, Kr and Xe atoms in Ne matrix

    International Nuclear Information System (INIS)

    Hahn, U.; Schwentner, N.

    1979-10-01

    Synchrotron radiation with its intense continuum and its excellent time structure has been exploited for time resolved luminescence spectroscopy in the solid state. By selective excitation of n = 1, n' = 1 and n = 2 exciton states of Xe, Kr and Ar atoms in Ne matrix we were able to identify the emitting states involved. Lifetimes within the cascade of radiative and radiationless relaxation between excited states as well as the radiative lifetimes for transitions to the ground state have been derived from the decay curves. Energy positions and radiative lifetimes of the emitting states correspond quite well with those of the free atoms. Radiative and radiationless relaxation processes take place within the manifold of excited states of the guest atoms. The rate constants for radiationless decay confirm an energy gap law. The order of the radiationless processes reaches in some cases extremely high values. Selection rules for spin and angular momentum are essential to understand the observed radiationless transition rates. (orig.)

  12. Computer experiments of the time-sequence of individual steps in multiple Coulomb-excitation

    International Nuclear Information System (INIS)

    Boer, J. de; Dannhaueser, G.

    1982-01-01

    The way in which the multiple E2 steps in the Coulomb-excitation of a rotational band of a nucleus follow one another is elucidated for selected examples using semiclassical computer experiments. The role a given transition plays for the excitation of a given final state is measured by a quantity named ''importance function''. It is found that these functions, calculated for the highest rotational state, peak at times forming a sequence for the successive E2 transitions starting from the ground state. This sequential behaviour is used to approximately account for the effects on the projectile orbit of the sequential transfer of excitation energy and angular momentum from projectile to target. These orbits lead to similar deflection functions and cross sections as those obtained from a symmetrization procedure approximately accounting for the transfer of angular momentum and energy. (Auth.)

  13. First excited states in doubly-odd 110Sb: Smooth band termination in the A ∼ 110 region

    International Nuclear Information System (INIS)

    Lane, G.J.; Fossan, D.B.; Thorslund, I.

    1996-01-01

    Excited states have been identified for the first time in 110 Sb in a comprehensive series of γ-spectroscopy experiments, including recoil-mass and neutron-field measurements. Three high-spin decoupled bands with configurations based on 2p-2h excitations across the Z = 50 shell gap, are observed to show the features of smooth band termination, the first such observation in an odd-odd nucleus. The yrast intruder band has been connected to the low spin levels and is tentatively identified up to its predicred termination at I π = (45 + ). Detailed configuration assignments are made through comparison with configuration-dependent cranked Nilsson-Strutinsky calculations; excellent agreement with experiment is obtained. The systematic occurrence of smoothly terminating bands in the neighboring isotopes is discussed

  14. Inelastic scattering of 9Li and excitation mechanism of its first excited state

    International Nuclear Information System (INIS)

    Al Falou, H.; Kanungo, R.; Andreoiu, C.; Cross, D.S.; Davids, B.; Djongolov, M.; Gallant, A.T.; Galinski, N.; Howell, D.; Kshetri, R.; Niamir, D.; Orce, J.N.; Shotter, A.C.; Sjue, S.; Tanihata, I.; Thompson, I.J.; Triambak, S.; Uchida, M.; Walden, P.; Wiringa, R.B.

    2013-01-01

    The first measurement of inelastic scattering of 9 Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution

  15. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  16. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    Science.gov (United States)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  17. On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2

    International Nuclear Information System (INIS)

    Troudet, T.; Paris-11 Univ., 91 - Orsay

    1986-01-01

    We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)

  18. Systematics in Rydberg state excitations for ion-atom collisions

    International Nuclear Information System (INIS)

    Andresen, B.; Jensen, K.; Petersen, N.B.; Veje, E.

    1976-01-01

    Rydberg state excitations in the Ne + , Mg + -He collisions have been studied in the projectile energy range 10-75 keV by means of optical spectrometry in a search for systematic trends. The relative excitation cross sections for levels of a Rydberg term series are found to follow a general (nsup(x))sup(P) behaviour with P < approximately -3 varying with collision energy and particles, regardless of whether the excited state population results from direct excitation, single electron transfer, or double electron transfer. At higher collision energies P is approximately -3 as predicted by theory. Polarization of the emitted line radiation indicates that there is no general rule for the relative excitation of the different magnetic substates of the same level. A statistical distribution of excitation is found for levels within the same term when the fine structure splitting is small. (Auth.)

  19. Excited states in 146Sm and 147Sm

    International Nuclear Information System (INIS)

    Kownacki, J.; Sujkowski, Z.; Hammaren, E.; Liukkonen, E.; Piiparinen, M.; Lindblad, Th.; Ryde, H.

    1979-10-01

    The sup(144,146)Nd(α,xn) and sup(146,148)Nd( 3 He,xn) reactions with Esub(α) = 20 - 43 MeV and E 3 sub(He) = 19 - 27 MeV are used to investigate excited states in the isotopes 146 Sm and 147 Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three parameter (E sub(γ)E sub(γ) time) coincidences. From these experiments information is obtained for states with spin up to I = 13 + and I = 27/2 - , respectively, These states are interpeted within the framework of the cluster-vibration model (CVM) as well as the shell model. (author)

  20. σ-SCF: A direct energy-targeting method to mean-field excited states.

    Science.gov (United States)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy

    2017-12-07

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  1. Simulation of spatially dependent excitation rates and power deposition in RF discharges for plasma processing

    International Nuclear Information System (INIS)

    Kushner, M.J.; Anderson, H.M.; Hargis, P.J.

    1985-01-01

    In low pressure, radio frequency (RF) discharges of the type used in plasma processing of semiconductor materials, the rate of electron impact excitation and energy transfer processes depends upon both the phase of the RF excitation and position in the discharge. Electron impact collisions create radicals that diffuse or drift to the surfaces of interest where they are adsorbed or otherwise react. To the extent that these radicals have a finite lifetime, their transport time from point of creation to surface of interest is an important parameter. The spatial dependence of the rate of the initial electron impact collisions is therefore also an important parameter. The power that sustains the discharge is coupled into the system by two mechanisms: a high energy e-beam component of the electron distribution resulting from electrons falling through or being accelerated by the sheaths, and by joule heating in the body of the plasma. In this paper, the authors discuss the spatial dependence of excitation rates and the method of power deposition iin RF discharges of the type used for plasma processing

  2. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effect of the time spent by the photon in the absorbed state on the time-dependent transfer of radiation

    International Nuclear Information System (INIS)

    Rao, D.M.; Rangarajan, K.E.; Peraiah, A.

    1990-01-01

    The time-dependent transfer equation is derived for a two-level atomic model which takes both bound-bound and bound-free transitions into account. A numerical scheme is proposed for solving the monochromatic time-dependent transfer equation when the time spent by the photon in the absorbed state is significant. The method can be easily extended to solve the problem of time-dependent line formation of the bound-free continuum. It is used here to study three types of boundary conditions of the incident radiation incident on a scattering atmosphere. The quantitative results show that the relaxation of the radiation field depends on the optical depth of the medium and on the ray's angle of emergence. 21 refs

  4. From fusion hierarchy to excited state TBA

    International Nuclear Information System (INIS)

    Juettner, G.; Kluemper, A.

    1998-01-01

    Functional relations among the fusion hierarchy of quantum transfer matrices give a novel derivation of the TBA equations, namely without string hypothesis. This is demonstrated for two important models of 1D highly correlated electron systems, the supersymmetric t-J model and the supersymmetric extended Hubbard model. As a consequence, ''the excited state TBA'' equations, which characterize correlation lengths, are explicitly derived for the t-J model. To the authors' knowledge, this is the first explicit derivation of excited state TBA equations for 1D lattice electron systems. (orig.)

  5. Theoretical investigation on properties of the ground and lowest excited states of a red emitter with donor-π-acceptor structure

    International Nuclear Information System (INIS)

    Liu Xiaojun; Zhang Xiao; Hou Yanbing; Teng Feng; Lou Zhidong

    2011-01-01

    Graphical abstract: Within the 10 hybrids, M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy to investigate DCDPC. The figure displays absorption (red dash) and emission (green solid) spectra calculated in acetone for DCDPC using TD-M06 functional. Inserts are the structure of DCDPC. Research highlights: → Red emitter DCDPC is studied by density functional theory (DFT) and time dependent (TD)DFT. → The electronic and geometrical structures for the ground and first excited state are given. → The experimental absorption and fluorescence spectra are reproduced by calculations. → The performance of 10 exchange-correlation functionals is given. → M06 emerges as the most effective functionals. - Abstract: The ground and excited state properties of DCDPC, particularly designed as a red emitter for organic light emitting diodes applications have been studied by means of density functional theory (DFT) and time-dependent (TD)DFT. The electronic and geometrical structures of DCDPC in acetone, tetrahydrofuran and benzene solvents are reported for the first time. The experimental absorption and fluorescence spectra are reproduced by calculations. By comparison with experimental data, insight on the performance of 10 exchange correlation functionals is also given. M06 in the frame of DFT and TDDFT with a polarizable continuum model and a medium sized basis set emerges as the most effective strategy. Beside the good agreement between the calculational and experimental spectra proving the accuracy of the strategy, the calculations allow further insights into the electronic structure for the family of isophorone-based light emitting materials with D-π-A structure, especially the electronic and geometrical structures for the excited states.

  6. Excited-state inter- and intramolecular proton transfer in methyl 3-hydroxy-2-quinoxalinate: effects of solvent and acid or base concentrations

    International Nuclear Information System (INIS)

    Dogra, S.K.

    2005-01-01

    Absorption, fluorescence excitation and fluorescence spectroscopy, combined with time-dependent spectroscopy and semi-empirical (AM1) and density functional theory using Gaussian 98 program calculations have been used to study the effects of solvent and acid or base concentration on the spectral characteristics of methyl 3-hydroxy-2-quinoxalinate (M3HQ). M3HQ is present as enol in less polar solvents and as keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to the phototautomer, formed by the excited-state intramolecular proton transfer, whereas fluorescence is only observed from keto in the polar solvents. In aqueous and polar solvents the monocation (MC5/MC6) is formed by protonating the carbonyl oxygen atom in the ground (S 0 ) and the first excited singlet states (S 1 ). Dication is formed by protonating one of ?N- atom of MC5/MC6. Monoanion is formed by deprotonating the phenolic proton of enol in the basic solution. pK a values for different prototropic equilibriums were determined in S 0 and S 1 states and discussed

  7. Dynamics of Excited State Proton Transfer in Nitro Substituted 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Marciak, H; Hristova, S.; Deneva, V

    2017-01-01

    The ground state tautomerism and excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ) and its nitro derivatives, 7-nitrobenzo[h]quinolin-10-ol (2) and 7,9-dinitrobenzo[h]quinolin-10-ol (3), have been studied in acetonitrile using steady state as well as time d...

  8. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  9. Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen

    Science.gov (United States)

    Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.

    2012-12-01

    .82eV. This effort is to provide improved cross sections for these RV states, in particular for the b‧ 1Σu+ and c‧4 1Σu+ states, with inclusion of more upper vibrational levels. Future optical emission work should include re-measurements of excitation shape functions of the singlet ungerade states utilizing better spectral resolution than past determinations (e.g., [2,4]) to avoid uncertainties associated with unresolved and/or blended spectral features as well as J-dependent predissociation. Further development of theoretical treatments of N2 excitation is also in need. We will also present analysis of our new low-energy, near-threshold excitation cross sections for the valence states of N2, including a 1Πg (v‧) levels. Acknowledgement: This work was performed at CSUF and JPL, Caltech, under contract with NASA. We gratefully acknowledge financial support through NASA's OPR and PATM programs and NSF-PHY-RUI-0096808 & -0965793 and NSF-AGS-0938223. References: [1] Ajello, J. M., M. H. Stevens, I. Stewart, et al. (2007), GRL, 34, L24204 [2] Ajello, J. M., G. K. James, and B. O. Franklin (1989), PRA, 40, 3524-56 [3] Heays, A. N., B. R. Lewis, S. T. Gibson, et al. (2012), PRA, 85, 012705 [4] James, G. K., J. M. Ajello, B. Franklin, and D. E. Shemansky (1990), JPB, 23, 2055-81 [5] Khakoo, M. A., C. P. Malone, P. V. Johnson, et al. (2008), PRA, 77, 012704 [6] Malone, C. P., P. V. Johnson, X. Liu, et al. (2012), PRA, 85, 062704

  10. Electron impact excitation of the lowest doublet and quartet core-excited autoionizing states in Rb atoms

    International Nuclear Information System (INIS)

    Borovik, A; Roman, V; Zatsarinny, O; Bartschat, K

    2013-01-01

    Electron impact excitation of the (4p 5 5s 2 ) 2 P 3/2,1/2 and (4p 5 4d5s) 4 P 1/2,3/2,5/2 autoionizing states in rubidium atoms was studied experimentally by measuring the ejected-electron excitation functions and theoretically by employing a fully relativistic Dirac B-spline R-matrix (close-coupling) model. The experimental data were collected in an impact energy range from the respective excitation thresholds up to 50 eV with an incident electron energy resolution of 0.2 eV and an observation angle of 54.7°. Absolute values of the excitation cross sections were obtained by normalizing to the theoretical predictions. The observed near-threshold resonance structures were also analysed by comparison with theory. For the 2 P 3/2,1/2 doublet states, a detailed analysis of the R-matrix results reveals that the most intense resonances are related to odd-parity negative-ion states with dominant configurations 4p 5 5s5p 2 and 4p 5 4d5s6s. The measured excitation functions for the 2 P 1/2 and 4 P J states indicate a noticeable cascade population due to the radiative decay from high-lying autoionizing states. A comparative analysis with similar data for other alkali atoms is also presented.

  11. Time-dependent density functional theory beyond Kohn-Sham Slater determinants.

    Science.gov (United States)

    Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T

    2016-08-03

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.

  12. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    Science.gov (United States)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  13. Electromagnetic-field dependence of the internal excited state of the polaron and the qubit in quantum dot with thickness

    Science.gov (United States)

    Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu

    2017-06-01

    The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.

  14. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  15. Excited state populations and charge-exchange of fast ions in solids

    International Nuclear Information System (INIS)

    Miller, P.D.; Sofield, C.J.; Woods, C.J.

    1984-01-01

    Excited state populations and charge state fractions of 445 MeV Cl ions have been measured for a range of thicknesses of solid C targets. Cross sections for electron capture, loss, excitation and excited state quenching have been determined and these data are found to predict a quantitative difference between equilibrium charge state distributions from gases and solids for a special case of the Bohr-Lindhard density effect model. 8 references, 1 figure, 1 table

  16. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L

    2012-06-13

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  17. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  18. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    International Nuclear Information System (INIS)

    Andrade, Xavier; Aspuru-Guzik, Alán; Alberdi-Rodriguez, Joseba; Rubio, Angel; Strubbe, David A; Louie, Steven G; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Marques, Miguel A L

    2012-01-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures. (topical review)

  19. Entanglement entropy with a time-dependent Hamiltonian

    Science.gov (United States)

    Sivaramakrishnan, Allic

    2018-03-01

    The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.

  20. The excitation of an independent-particle gas by a time dependent potential well

    Directory of Open Access Journals (Sweden)

    J. P. Błocki

    2010-09-01

    Full Text Available The order-to-chaos transition in the dynamics of independent classical particles gas was studied by means of the numerical simulations. The excitation of the gas for containers whose surfaces are rippled according to Legendre polynomials P2 , P3, P4 , P5 , P6 was followed for ten periods of oscillations. Spheroidal deformations were also considered. Poincare sections and Lyapunov exponents have been calculated showing different degrees of chaoticity depending on the shape and amplitude of oscillations. For 2 P polynomial the reaction of a gas to the periodic container deformation is mostly elastic as 2 P deformation especially for not very big deformations is almost like an integrable spheroid. For other polynomials the situation is more or less chaotic with a chaoticity increasing with the increasing order of the polynomial.

  1. Proton capture to the ground and excited states in light nuclei

    International Nuclear Information System (INIS)

    Anghinolfi, M.; Corvisiero, P.; Guarnone, M.; Ricco, G.; Sanzone, M.; Taiuti, M.; Zucchiatti, A.

    1984-01-01

    Proton capture experiments, when performed with good resolution, generally provide two different kinds of physical information; the ground-state pγ/sub o/ cross section, which is related, through the detailed balance, to the inverse photonuclear γp/sub o/ reaction; the advantage of capture experiments is the definite kinematics, corresponding to monochromatic photons in γp reactions, and a more precise beam monitoring. The pγ/sub x/ cross section to the various excited states of the final nucleus; this information is typical of capture experiments, since excited nuclear targets are not available. Many laboratories performed extensive capture experiments at excitation energies up to the GDR region, but only recently few groups (Ohio, Triangle and Genova Universities) extended the investigation to energies above the GDR. In fact more severe experimental problems arise at higher energies: since the pγ differential cross sections range in this energy region between 0.1 and 1Γb/sr, while competitive reactions have two or three order of magnitude higher cross sections, the signal-to-background ratio is very low. The data analysis strongly depends on the detector line shape, scarsely known at photon energies above 20 MeV; a very accurate knowledge of the detector response function is therefore necessary

  2. Theoretical Study of the Relationships between Excited State Geometry Changes and Emission Energies of Oxyluciferin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong Wei; Min, Chun Gang; Ren, Ai Min; Feng, Ji Kang [Jilin University, Changchun (China); Guo, Jing Fu [Northeast Normal University, Jilin (China); Goddard, John D. [University of Guelph, Ontario (Canada); Zuo, Liang [North China Mineral and Geology Testing Center of CNNC, Tianjin (China)

    2010-04-15

    In order to find a relationship between firefly luciferases structure and bioluminescence spectra, we focus on excited substrate geometries which may be affected by rigid luciferases. Density functional theory (DFT) and time dependent DFT (TDDFT) were employed. Changes in only six bond lengths of the excited substrate are important in determining the emission spectra. Analysis of these bonds suggests the mechanism whereby luciferases restrict more or less the excited substrate geometries and to produce multicolor bioluminescence.

  3. Excited states of open strings from N=4 SYM

    International Nuclear Information System (INIS)

    Dzienkowski, Eric

    2015-01-01

    We continue the analysis of building open strings stretched between giant gravitons from N=4 SYM by going to second order in perturbation theory using the three-loop dilatation generator from the field theory. In the process we build a Fock-like space of states using Cuntz oscillators which can be used to access the excited open string states. We find a remarkable cancellation among the excited states that shows the ground state energy is consistent with a fully relativistic dispersion relation.

  4. Relaxation of excited surface states of thin Ge-implanted silica films probed by OSEE spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, A.F., E-mail: a.f.zatsepin@urfu.ru [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Buntov, E.A.; Mikhailovich, A.P.; Slesarev, A.I. [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Schmidt, B. [Research Center Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, D-01314 Dresden (Germany); Czarnowski, A. von; Fitting, Hans-Joachim [Institute of Physics, University of Rostock, Universitätsplatz 3, D-18051 Rostock (Germany)

    2016-01-15

    As an example of thin silica films, 30 nm SiO{sub 2}–Si heterostructures implanted with Ge{sup +} ions (10{sup 16} cm{sup −2} fluence) and rapid thermally annealed (RTA) at 950 °C are studied by means of optically stimulated electron emission (OSEE) in the spectral region of optical transparency for bulk silica. Quartz glass samples were used as references. Experimental data revealed a strong dependence between electron emission spectral features and RTA annealing time. The spectral contributions of both surface band tail states and interband transitions were clearly distinguished. The application of emission Urbach rule as well as Kane and Pässler equations allowed to analyze the OSEE spectra at different optical excitation energy ranges and to retrieve the important microstructural and energy parameters. The observed correlations between parameter values of Urbach- and Kane-related models suggest the implantation-induced conversion of both the vibrational subsystem and energy band of surface and interface electronic states. - Highlights: • Peculiarities of electron emission from excited surface states of SiO{sub 2}:Ge structures are studied. • Spectral contributions of surface band tails and interband transitions are distinguished. • Urbach and Kane models allow to examine photo-thermal emission mechanism. • Surface energy gap and structural disorder parameters are determined.

  5. σ-SCF: A direct energy-targeting method to mean-field excited states

    Science.gov (United States)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy

    2017-12-01

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  6. Field-orientation dependence of low-energy quasiparticle excitations in the heavy-electron superconductor UBe(13).

    Science.gov (United States)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige

    2015-04-10

    Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

  7. Lifetime measurements of highly excited Rydberg states of strontium. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, S.; Hohmann, R.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Stenner, J.; Stratmann, K.; Wendt, K.; Zimmer, K. (Mainz Univ. (Germany). Inst. fuer Physik)

    1993-06-01

    Lifetimes of Rydberg states of triplet-series 5s ns[sup 3]S[sub 1] with n=19-23, 35 and 5s nd[sup 3]D[sub 3] with n=18-20, 23-28 in the spectrum of neutral strontium have been determined. Observation of the exponential decay after excitation by a pulsed laser in a fast atomic beam and subsequent state-selective field ionization was employed. The lifetimes of the states of the [sup 3]S[sub 1]-series show the expected n*[sup 3] dependence on the effective principal quantum number, while the [sup 3]D[sub 3]-series is disturbed by configuration mixing. Furthermore, state re-populations induced by black-body radiation have been observed. (orig.).

  8. Inelastic scattering of {sup 9}Li and excitation mechanism of its first excited state

    Energy Technology Data Exchange (ETDEWEB)

    Al Falou, H. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Kanungo, R., E-mail: ritu@triumf.ca [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Andreoiu, C.; Cross, D.S. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Davids, B.; Djongolov, M. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Gallant, A.T. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of British Columbia, British Columbia V6T 1Z4 (Canada); Galinski, N.; Howell, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Kshetri, R.; Niamir, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Orce, J.N. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 (South Africa); Shotter, A.C. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Sjue, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Tanihata, I. [Research Center for Nuclear Physics, Osaka University, Mihogaoka, Ibaraki, Osaka 567 0047 (Japan); Thompson, I.J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Triambak, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Uchida, M. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Walden, P. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Wiringa, R.B. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-04-25

    The first measurement of inelastic scattering of {sup 9}Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution.

  9. 2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich Carsten

    2008-09-19

    Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.

  10. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  11. The Sommerfeld enhancement for dark matter with an excited state

    International Nuclear Information System (INIS)

    Slatyer, Tracy R.

    2010-01-01

    We present an analysis of the Sommerfeld enhancement to dark matter annihilation in the presence of an excited state, where the interaction inducing the enhancement is purely off-diagonal, such as in models of exciting or inelastic dark matter. We derive a simple and accurate semi-analytic approximation for the s-wave enhancement, which is valid provided the mass splitting between the ground and excited states is not too large, and discuss the cutoff of the enhancement for large mass splittings. We reproduce previously derived results in the appropriate limits, and demonstrate excellent agreement with numerical calculations of the enhancement. We show that the presence of an excited state leads to generically larger values of the Sommerfeld enhancement, larger resonances, and shifting of the resonances to lower mediator masses. Furthermore, in the presence of a mass splitting the enhancement is no longer a monotonic function of velocity: the enhancement where the kinetic energy is close to that required to excite the higher state can be up to twice as large as the enhancement at zero velocity

  12. The excited states of 79Kr

    International Nuclear Information System (INIS)

    Liptak, J.; Kristiak, J.; Kristiakova, K.

    1977-01-01

    The β + -decay of 79 Rb has been studied with Ge(Li) detectors in single and coincidence modes. The half-life of the 147.06 keV level in 79 Kr has been determined to be (78+-6) ns. The relative electron intensities of seventeen transitions have been measured with a magnetic Si(Li) spectrometer. The internal conversion coefficients have been determined. The transition multipolarities have been deduced. The spin-parity assignments have been made for excited states of 79 Kr and a β-decaying sta 79 Rb(5/2 + ). The structure of excited states in 79 Kr is discussed in the framework of the Alaga and Coriolis coupling models. It is shown that the properties of some levels in 79 Kr can be explained by the existence of relatively pure rotational bands

  13. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  14. Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces.

    Science.gov (United States)

    Kowalski, Karol

    2009-05-21

    In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.

  15. Recurrence of the excited states of nuclei and time coherency of the de Broglie wave in 16O+n resonances

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    2003-01-01

    From the requirement of the time periodicity of a (quasi) stable state, frequencies of the normal modes, which compose the state, are commensurable (integer ratios) with each other, and the excitation energies E x are written as a sum of inverse integers. We propose an expression: E x = GΣ1/n, where n = integers and G = 34.5 MeV. Recurrence time is defined as LCM(n j ) x τ o , where τ 0 = 2πℎ/G = 1.20 x 10 -22 s. LCM vs. E x are illustrated for all possible n j of 2 and 3 normal modes. In 16 O +n resonances, integer ratios are found between the recurrence frequencies of 17 O and the de Broglie wave frequencies of incident neutron, meaning time coherency between them. A simple branch pattern is found in 16 O +n resonance levels. (author)

  16. Examination of excited state populations in sputtering using Multiphoton Resonance Ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper the authors examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed

  17. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    Science.gov (United States)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  18. Structure of excited states in nuclei near doubly magic {sup 100}SN

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M.

    1998-11-01

    The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)

  19. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    Joo, T.; Kim, C.H.

    2006-01-01

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I 440 -I 490 )/(I 440 +I 490 ) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S 1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by

  20. SYNTH-C, Steady-State and Time-Dependent 3-D Neutron Diffusion with Thermohydraulic Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Brega, E [ENEL-CRTN, Bastioni di Porta Volta 10, Milan (Italy); Salina, E [A.R.S. Spa, Viale Maino 35, Milan (Italy)

    1980-04-01

    1 - Description of problem or function: SYNTH-C-STEADY and SYNTH-C- TRANS solve respectively the steady-state and time-dependent few- group neutron diffusion equations in three dimensions x,y,z in the presence of fuel temperature and thermal-hydraulic feedback. The neutron diffusion and delayed precursor equations are approximated by a space-time (z,t) synthesis method with axially discontinuous trial functions. Three thermal-hydraulic and fuel heat transfer models are available viz. COBRA-3C/MIT model, lumped parameter (WIGL) model and adiabatic fuel heat-up model. 2 - Method of solution: The steady-state and time-dependent synthesis equations are solved respectively by the Wielandt's power method and by the theta-difference method (in time), both coupled with a block factorization technique and double precision arithmetic. The thermal-hydraulic model equations are solved by fully implicit finite differences (WIGL) or explicit-implicit difference techniques with iterations (COBRA-EC/MIT). 3 - Restrictions on the complexity of the problem: Except for the few- group limitation, the programs have no other fixed limitation so the ability to run a problem depends only on the available computer storage.

  1. Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic broken-symmetry random-phase approximation

    International Nuclear Information System (INIS)

    Strinati, G.C.; Pieri, P.

    2004-01-01

    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations

  2. Excited State Assignment and Laser Action in π-Conjugated Polymers

    Science.gov (United States)

    Vardeny, Z. V.

    1998-03-01

    We have applied a variety of ps transient and cw spectroscopies to elucidate the ground and excited electronic states of luminescent and nonluminescent thin films and solutions of π-conjugated polymers. These techniques include photoinduced absorption (PA), photoluminescence (PL), resonant Raman scattering (RRS), electro-absorption (EA), two photon absorption (TPA), and PA detected magnetic resonance. We found that the luminescence efficiency, the resonant and subgap third-order nonlinear optical properties and the RRS dispersion in these polymers are determined by the energies and symmetries of a subset of the excited states, including a series of singlet excitons with odd (B_u) and even (A_g) parity lying below a continuum band. Among them, the lowest Bu exciton (1B_u) and two other dominant Ag excitons (mAg and kA_g) are particularly important in determining the EA, TPA, and excitonic ps PA spectra.(S.V. Frolov, M. Liess, P.A. Lane, W. Gellermann, Z.V. Vardeny, M. Ozaki, and K. Yoshino, Phys. Rev. Lett). 78, 4285 (1997). We also found(M. Ozaki, E. Ehrenfreund, R.E. Benner, T.J. Baron, K. Yoshino, and Z.V. Vardeny, Phys. Rev. Lett). 79, 1762 (1997). that the RRS phonon dispersion with the laser excitation energy is governed by the dependence of lowest Ag exciton (2A_g) on the chain length distribution in the polymer. This leads to stronger RRS dispersion in nonluminescent polymers. Moreover the relative energies of the 1Bu and 2Ag excitons determine the PL quantum efficiency η, regardless of the ground state degeneracy. If E(2A_g) < E(1B_u) then η is small because of the dipole forbidden character of the lowest singlet. We will give examples of nonluminescent polymers which belong to this class with both degenerate and nondegenerate ground state, respectively. On the other hand, if E(1B_u) < E(2A_g) then η is large and the polymer might be considered as active material for display applications. Again we give examples of highly luminescent polymers with

  3. Analytical study of doubly excited ridge states

    International Nuclear Information System (INIS)

    Wong, H.Y.

    1988-01-01

    Two different non-separable problems are explored and analyzed. Non-perturbative methods need to be used to handle them, as the competing forces involved in these problems are equally strong and do not yield to a perturbative analysis. The first one is the study of doubly excited ridge states of atoms, in which two electrons are comparably excited. An analytical wavefunction for such states is introduced and is used to solve the two-electron Hamiltonian in the pair coordinates called hyperspherical coordinates variationally. The correlation between the electrons is built in analytically into the structure of the wavefunction. Sequences of ridge states out to very high excitation are computed and are organized as Rydberg series converging to the double ionization limit. Numerical results of such states in He and H - are compared with other theoretical calculations where available. The second problem is the analysis of the photodetachment of negative ions in an electric field via the frame transformation theory. The presence of the electron field requires a transformation from spherical to cylindrical symmetry for the outgoing photoelectron. This gives an oscillatory modulating factor as the effect of the electric field on cross-sections. All of this work is derived analytically in a general form applicable to the photodetachment of any negative ion. The expressions are applied to H - and S - for illustration

  4. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Energy Technology Data Exchange (ETDEWEB)

    Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)

    2016-03-07

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  5. Dinamical polarizability of highly excited hydrogen-like states

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.

    1982-01-01

    Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered

  6. Excitability of jcBNST neurons is reduced in alcohol-dependent animals during protracted alcohol withdrawal.

    Directory of Open Access Journals (Sweden)

    Attila Szücs

    Full Text Available Alcohol dependence and withdrawal has been shown to cause neuroadaptive changes at multiple levels of the nervous system. At the neuron level, adaptations of synaptic connections have been extensively studied in a number of brain areas and accumulating evidence also shows the importance of alcohol dependence-related changes in the intrinsic cellular properties of neurons. At the same time, it is still largely unknown how such neural adaptations impact the firing and integrative properties of neurons. To address these problems, here, we analyze physiological properties of neurons in the bed nucleus of stria terminalis (jcBNST in animals with a history of alcohol dependence. As a comprehensive approach, first we measure passive and active membrane properties of neurons using conventional current clamp protocols and then analyze their firing responses under the action of simulated synaptic bombardment via dynamic clamp. We find that most physiological properties as measured by DC current injection are barely affected during protracted withdrawal. However, neuronal excitability as measured from firing responses under simulated synaptic inputs with the dynamic clamp is markedly reduced in all 3 types of jcBNST neurons. These results support the importance of studying the effects of alcohol and drugs of abuse on the firing properties of neurons with dynamic clamp protocols designed to bring the neurons into a high conductance state. Since the jcBNST integrates excitatory inputs from the basolateral amygdala (BLA and cortical inputs from the infralimbic and the insular cortices and in turn is believed to contribute to the inhibitory input to the central nucleus of the amygdala (CeA the reduced excitability of the jcBNST during protracted withdrawal in alcohol-dependent animals will likely affect ability of the jcBNST to shape the activity and output of the CeA.

  7. Excitation of non-normal parity states by inelastic proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Emery, G. T. [Indiana Univ. (USA). Cyclotron Facility; Ikegami, Hidetsugu; Muraoka, Mitsuo [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    This is a review of the works done at the Indiana University Cyclotron Facility. The purposes of works are to find excitations that should have especially simple particle-hole structure in proton inelastic scattering, to use the data on these excitations to try to understand the mechanism and the effective interaction for the (p, p') reaction in this energy range, and to go on to study the nuclear structure involved in less simple excitation. As an example, the single-nucleon level diagram for the region of Si-28 is presented. A high spin state was made, and its spin-parity was 6/sup -/. It was tried to interpret the data in terms of a on-step distorted-wave impulse approximation. The optical model parameters derived from the extensive and precise elastic scattering results were used. The cross sections for the excitation of the 6/sup -/ states found in various reactions were not large. The T = 1 state is mainly excited by the direct tensor interaction, while the T = 0 state gets its strength mainly from the knock-on exchange contribution of both the tensor and spin-orbit interactions. Experiments on Pb-208 and Fe-54 are being performed.

  8. Examination of excited state populations in sputtering using multiphoton resonance ionization

    International Nuclear Information System (INIS)

    Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.

    1984-01-01

    Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper we examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed. 8 refs., 4 figs

  9. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    Science.gov (United States)

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  10. One-dimensional multiple-well oscillators: A time-dependent

    Indian Academy of Sciences (India)

    ... quantum mechanical multiple-well oscillators. An imaginary-time evolution technique, coupled with the minimization of energy expectation value to reach a global minimum, subject to orthogonality constraint (for excited states) has been employed. Pseudodegeneracy in symmetric, deep multiple-well potentials, probability ...

  11. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  12. DILEPTON YIELD FROM THE DECAY OF EXCITED SI-28 STATES

    NARCIS (Netherlands)

    BACELAR, JC; BUDA, A; BALANDA, A; KRASZNAHORKAY, A; VANDERPLOEG, H; SUJKOWSKI, Z; VANDERWOUDE, A

    1994-01-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in Si-28, with an initial excitation energy E* = 50 MeV, were populated via the isospin T = 0 reaction He-4 + Mg-24 and the

  13. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    Science.gov (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  14. Interference between radiative emission and autoionization in the decay of excited states of atoms

    International Nuclear Information System (INIS)

    Armstrong, L. Jr.; Theodosiou, C.E.; Wall, M.J.

    1978-01-01

    An excited state of an atom which can autoionize can also undergo radiative decay. We consider the interaction between the final states resulting from these two modes of decay, and its effects on such quantities as the fluorescence yield of the excited state, excitation profile of the excited state, and the spectra of the emitted photons and electrons. It is shown that the fraction of decays of the excited state resulting in a photon (fluorescence yield) is particularly sensitive to the details of the final-state interaction. In lowest order in the final-state interaction, the fluorescence yield is increased by a factor (1 + 1/q 2 ) from the traditional value, where q is the Fano q parameter relating to the excited state and the final atomic state

  15. Evidence for excited state intramolecular charge transfer reaction in donor-acceptor molecule 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester: Experimental and quantum chemical approach

    International Nuclear Information System (INIS)

    Kumar Paul, Bijan; Samanta, Anuva; Kar, Samiran; Guchhait, Nikhil

    2010-01-01

    Intramolecular charge transfer (ICT) reaction has been investigated in 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester (DPDAME) using spectroscopic techniques. The molecule DPDAME shows local emission in non-polar solvent and dual emission in polar solvents. Solvatochromic effects on the Stokes shifted emission band clearly demonstrate the charge transfer character of the excited state. Quantum chemical calculations have been performed at Hartree-Fock (HF) and density functional theoretical (DFT) levels to correlate the experimental findings. Potential energy curves (PECs) for the ICT reaction have been evaluated along the donor twist angle at DFT and time dependent density functional theory (TDDFT) levels for the ground and excited states, respectively, using B3LYP hybrid functional and 6-31G** basis set. The solvent effects on the spectral properties have been explored theoretically at the same level with time dependent density functional theory-polarized continuum model (TDDFT-PCM) and the theoretical results are found to well substantiate the solvent polarity dependent Stokes shifted emission of DPDAME. Huge enhancement of dipole moment (Δμ=16.42 D) of the molecule following photoexcitation dictates the highly polar character of the excited state. Although elucidation of PECs does not exactly predict the operation of ICT according to twisted intramolecular charge transfer (TICT) model in DPDAME, lowering of vertical transition energy as a function of the donor twist coordinate scripts the occurrence of red shifted emission as observed experimentally.

  16. Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation

    Directory of Open Access Journals (Sweden)

    Sho Kojima

    2018-01-01

    Full Text Available We investigated the effects of different patterns of mechanical tactile stimulation (MS on corticospinal excitability by measuring the motor-evoked potential (MEP. This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5–20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.

  17. Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation.

    Science.gov (United States)

    Kojima, Sho; Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Sasaki, Ryoki; Nakagawa, Masaki; Kirimoto, Hikari; Tamaki, Hiroyuki

    2018-01-01

    We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5-20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.

  18. The influence of autoionizing states on the excitation of helium by electrons

    International Nuclear Information System (INIS)

    Ittersum, T. van

    1976-01-01

    The work described in this thesis deals with resonance effects in the scattering of electrons by helium at energies near the threshold of the autoionizing states (50-70 eV). The investigation is performed by studying light emission following the excitation of singly excited states. In some cases, the polarization of the radiation was also investigated. The purpose of the research was (i) to enlarge our knowledge of triply excited negative ion states, i.e. resonance states which are formed by temporary binding of the incident electron to a doubly excited (autoionizing) state of neutral helium, and (ii) to clear up the nature of some resonance structures which could not be explained in terms of negative ion resonances

  19. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    Science.gov (United States)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  20. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  1. Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption

    NARCIS (Netherlands)

    Larsen, D.S.; Papagiannakis, E.; van Stokkum, I.H.M.; Vengris, M.; Kennis, J.T.M.; van Grondelle, R.

    2003-01-01

    The excited-state dynamics of β-carotene in hexane was studied with dispersed ultrafast transient absorption techniques. A new excited state is produced after blue-edge excitation. Pump-repump-probe and pump-dump-probe measurements identified and characterized this state, termed S‡, which exhibits a

  2. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał; Kijak, Michał; Piwonski, Hubert Marek; Herbich, Jerzy; Waluk, Jacek

    2017-01-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  3. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  4. Fundamentals of time-dependent density functional theory

    International Nuclear Information System (INIS)

    Marques, Miguel A.L.; Rubio, Angel

    2012-01-01

    There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. (orig.)

  5. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy) 2 ] 2+

    International Nuclear Information System (INIS)

    Vanko, Gyorgy; Bordage, Amelie; Papai, Matyas; Haldrup, Kristoffer; March, Anne Marie; Galler, Andreas; Assefa, Tadesse; Cabaret, Delphine; Juhin, Amelie; Driel, Tim B. van; Gallo, Erik; Rovezzi, Mauro; Nemeth, Zoltan; Rozsalyi, Emese; Rozgonyi, Tamas; Uhlig, Jens; Gawelda, Wojciech

    2015-01-01

    Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy) 2 ] 2+ . The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy) 2 ] 2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy) 2 ] 2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations

  6. The MSINDO-sCIS and MSINDO-UCIS methods. Procedures for the calculation of properties of excited states in molecules and periodic systems by a semiempirical approach

    International Nuclear Information System (INIS)

    Gadaczek, Immanuel Patrick

    2013-01-01

    Theoretical background, parameterization and performance of the newly developed semiempirical configuration interaction singles (CIS) method MSINDO-sCIS (scaled configuration interaction singles) are presented. The CIS Hamiltonian is modified by scaling of the Coulomb and exchange integrals and a semiempirical correction of the diagonal elements. For a recently proposed benchmark set of 28 medium-sized organic molecules, vertical excitation energies for singlet and triplet states have been calculated and statistically evaluated. A full reparameterization of the MSINDO method for both ground and excited state properties was performed. The results of the reparameterized MSINDO-sCIS method are compared to the currently best semiempirical method for excited states, OM3-CISDTQ by Thiel et al., and to other standard methods, such as time-dependent density- functional theory. The mean absolute deviation with respect to the theoretical best estimates (TBEs) for MSINDO-sCIS is 0.44 eV, comparable to the OM3 method but significantly smaller than for Zerner's INDO/S. The computational effort is strongly reduced compared to OM3-CISDTQ and OM3-MRCISD, since only single excitations are taken into account. Higher excitations are implicitly included by parameterization and the empirical correction term. By application of the Davidson-Liu block diagonalization method high computational efficiency is achieved. Furthermore it is demonstrated, that the MSINDO-sCIS method correctly describes charge-transfer (CT) states, that represent a crucial problem for time-dependent density functional theory (TD-DFT) methods. Additionally this method is extended to open-shell systems by the UCIS (unrestricted CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The sCIS/UCIS equations are solved for a cluster with periodic

  7. Excited-state lifetime measurement of silicon vacancy centers in diamond by single-photon frequency upconversion

    Science.gov (United States)

    Rong, Youying; Ma, Jianhui; Chen, Lingxiao; Liu, Yan; Siyushev, Petr; Wu, Botao; Pan, Haifeng; Jelezko, Fedor; Wu, E.; Zeng, Heping

    2018-05-01

    We report a method with high time resolution to measure the excited-state lifetime of silicon vacancy centers in bulk diamond avoiding timing jitter from the single-photon detectors. Frequency upconversion of the fluorescence emitted from silicon vacancy centers was achieved from 738 nm to 436 nm via sum frequency generation with a short pump pulse. The excited-state lifetime can be obtained by measuring the intensity of upconverted light while the pump delay changes. As a probe, a pump laser with pulse duration of 11 ps provided a high temporal resolution of the measurement. The lifetime extracted from the pump–probe curve was 0.755 ns, which was comparable to the timing jitter of the single-photon detectors.

  8. Dielectronic recombination rate coefficients to the excited states of CI from CII

    International Nuclear Information System (INIS)

    Dubau, J.; Kato, T.; Safronova, U.I.

    1998-01-01

    The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated including 1s 2 2l 1 2l 2 2l 3 nl (n=2-6, l≤(n-1)) states. The values for the excited states higher than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The rate coefficients to the excited states are fitted to an analytical formula and the fit parameters are given. (author)

  9. Experimental study on the kinetically induced electronic excitation in atomic collisional cascades

    International Nuclear Information System (INIS)

    Meyer, S.

    2006-01-01

    the present thesis deals with the ion-collision-induced electronic excitation of metallic solids. For this for the first time metal-insulator-metal layer systems are used for the detection of this electronic excitation. The here applied aluminium/aluminium oxide/silver layer sytems have barrier heights of 2.4 eV on the aluminium respectively 3.3 eV on the silver side. With the results it could uniquely be shown that the electronic excitation is generated by kinetic processes, this excitation dependenc on the kinetic energy of the colliding particles, and the excitation dependes on the charge state of the projectile

  10. On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, V.L.; Apolonio, F.A.; Oliveira-Neto, N.M.

    2013-01-01

    We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry. -- Highlights: •Applying the anisotropic Heisenberg model on curved surfaces. •Appearance of topological solitons on curved surfaces with cylindrical symmetry. •Calculus of the vortex energy, which depends on curvature. •Discussion on features of non-topological helical-like states. •Vortex stability ensured by the anisotropy parameter value

  11. Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband

    Science.gov (United States)

    Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.

    2006-01-01

    Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.

  12. Excited state properties of aryl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Fuciman, M.; Chábera, P.; Župčanová, Anita; Hříbek, P.; Arellano, J.B.; Vácha, František; Pšenčík, J.; Polívka, Tomáš

    2010-01-01

    Roč. 12, č. 13 (2010), s. 3112-3120 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited-states * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 3.454, year: 2010

  13. Formation and role of excited states in radiolysis - a foreword

    International Nuclear Information System (INIS)

    Singh, A.

    1976-01-01

    It is stated that the choice of contributions to the special issue of this Journal has been limited to those which bear on the details of the mechanisms of excited state formation and are likely to be useful to radiation chemists. Since more than half the energy deposited in radiolysis goes into excitation, studies on the fate of the excited species formed are very important. A brief reference is made to the subject matter of each of the fifteen contributions, and its significance to the development of the technique of radiolysis is outlined. (U.K.)

  14. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  15. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  16. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  17. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases.

    Science.gov (United States)

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E; Kohler, Bern

    2008-07-29

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.

  18. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  19. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    International Nuclear Information System (INIS)

    Haverkort, Maurits W.

    2016-01-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)

  20. Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence...

  1. Dielectronic recombination rate coefficients to the excited states of CI from CII

    Energy Technology Data Exchange (ETDEWEB)

    Dubau, J. [Observatoire of Paris, 92 MEUDON (France); Kato, T.; Safronova, U.I.

    1998-01-01

    The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated including 1s{sup 2}2l{sub 1}2l{sub 2}2l{sub 3}nl (n=2-6, l{<=}(n-1)) states. The values for the excited states higher than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The rate coefficients to the excited states are fitted to an analytical formula and the fit parameters are given. (author)

  2. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    International Nuclear Information System (INIS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-01-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports

  3. ON THE ANISOTROPIC NORM OF DISCRETE TIME STOCHASTIC SYSTEMS WITH STATE DEPENDENT NOISE

    Directory of Open Access Journals (Sweden)

    Isaac Yaesh

    2013-01-01

    Full Text Available The purpose of this paper is to determine conditions for the bound-edness of the anisotropic norm of discrete-time linear stochastic sys-tems with state dependent noise. It is proved that these conditions canbe expressed in terms of the feasibility of a specific system of matrixinequalities.

  4. Inelastic Neutron Scattering Study of the Rotational Excitations in (KBr)l-x (KCN)x in the Paraelastic and Structural Glass State

    DEFF Research Database (Denmark)

    Loidl, A.; Feile, R.; Knorr, K.

    1984-01-01

    The coupled rotational-translational excitations in (KBr)1-x(KCN)x were studied by inelastic neutron scattering for concentrations 0.008≤x≤0.20. We followed the A1g-T2g tunneling transition and the A1g-Eg librational excitation through the transition from the paraelastic to the structural glass...... state. We found that these two excitations and their coupling to the lattice strains exhibit a very different temperature dependence in the glass state. While the tunneling transition, which triggers reorientations of the CN- ions, shows a drastic reduction of the T2g rotation-translation coupling...

  5. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  6. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  7. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories

    International Nuclear Information System (INIS)

    Nakatsuji, H.

    1979-01-01

    The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are involved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory is much more critical for excited states than for ground states. (Auth.)

  8. Single-electron capture into Ar+ excited states in Ar2 + Na collision below 12 keV, 2

    International Nuclear Information System (INIS)

    Matsumoto, Atsushi; Tsurubuchi, Seiji; Okuno, Kazuhiko; Ohtani, Shunsuke; Iwai, Tsuruji.

    1979-08-01

    Excitation cross-sections are obtained for each term of the ArII nl-states (nl = 4p, 4p' and 4d) at 4 and 8 keV. The relative population distribution among the terms of a given nl-state can be interpreted in terms of statistics based on the building-up principle of molecule under radial coupling scheme. The relative population distribution among the multiplets in a given term is proportional to their statistical weight; spin-orbit recoupling at large internuclear separations is responsible for the population mechanism. The energy dependence of excitation cross-sections is discussed in connection with the Landau-Zener theory. (author)

  9. Recent History of Effector Use Modulates Practice-Dependent Changes in Corticospinal Excitability but Not Motor Learning.

    Science.gov (United States)

    Hussain, Sara J; Darling, Warren G; Cole, Kelly J

    2016-01-01

    The theory of homeostatic metaplasticity has significant implications for human motor cortical plasticity and motor learning. Previous work has shown that the extent of recent effector use before exogenously-induced plasticity can affect the direction, magnitude and variability of aftereffects. However, the impact of recent effector use on motor learning and practice-dependent plasticity is not known. We hypothesized that reducing effector use for 8 hours via hand/wrist immobilization would facilitate practice-dependent changes in corticospinal excitability and TMS-evoked thumb movement kinematics, while also promoting 24-hour retention of a ballistic motor skill. Subjects participated in a crossover study involving two conditions. During the immobilization condition, subjects wore a splint that restricted motion of the left hand and thumb for 8 hours. While wearing the splint, subjects were instructed to avoid using their left hand as much as possible. During the control condition, subjects did not wear a splint at any time nor were they instructed to avoid hand use. After either an 8 hour period of immobilization or normal hand use, we collected MEP and TMS-evoked thumb movement recruitment curves, and subjects practiced a ballistic motor skill involving rapid thumb extension. After motor practice, MEP and TMS-evoked thumb movement recruitment curves were re-tested. Retention of the motor skill was tested 30 minutes and 24 hours after motor practice. Reduced effector use did not impact pre-practice corticospinal excitability but did facilitate practice-dependent changes in corticospinal excitability, and this enhancement was specific to the trained muscle. In contrast, reducing effector use did not affect practice-dependent changes in TMS-evoked thumb movements nor did it promote acquisition or retention of the skill. Finally, we detected some associations between pre-practice excitability levels, plasticity effects and learning effects, but these did not reach

  10. Photoluminescence and excited state structure in Bi3+-doped Y2SiO5 single crystalline films

    International Nuclear Information System (INIS)

    Babin, V.; Gorbenko, V.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.

    2013-01-01

    Single crystalline films of Bi-doped Y 2 SiO 5 are studied at 4.2–350 K by the time-resolved luminescence methods under excitation in the 3.8–6.2 eV energy range. Ultraviolet luminescence of Y 2 SiO 5 :Bi (≈3.6 eV) is shown to arise from the radiative decay of the metastable and radiative minima of the triplet relaxed excited state (RES) of Bi 3+ centers which are related to the 3 P 0 and 3 P 1 levels of a free Bi 3+ ion, respectively. The lowest-energy excitation band of this emission, located at ≈4.5 eV, is assigned to the 1 S 0 → 3 P 1 transitions of a free Bi 3+ ion. The phenomenological model is proposed to describe the excited-state dynamics of Bi 3+ centers in Y 2 SiO 5 :Bi, and parameters of the triplet RES are determined. -- Highlights: •Luminescence of Y 2 SiO 5 :Bi is investigated for the first time. •Ultraviolet emission arises from Bi 3+ ions located in Y lattice sites. •The triplet relaxed excited states parameters of Bi 3+ centers are determined

  11. Microscopic description and excitation of unitary analog states

    Energy Technology Data Exchange (ETDEWEB)

    Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-12-05

    A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.

  12. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    Science.gov (United States)

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  13. Localizations in cellular automata with mutualistic excitation rules

    International Nuclear Information System (INIS)

    Adamatzky, Andrew

    2009-01-01

    Every cell of two-dimensional cellular automaton with eight-cell neighborhood takes three states: resting, excited and refractory, and updates excited to refractory and refractory to resting states unconditionally. A resting cell excites depending on number of excited and refractory neighbors. We made exhaustive study of spatio-temporal excitation dynamics for all rules of this type and selected several classes of rules. The classes supporting self-localizations are studied in details. We uncover basic types of mobile (gliders) and stationary localizations, and characterize their morphology and dynamics.

  14. First 3- excited state of 56Fe

    International Nuclear Information System (INIS)

    Fotiades, N.; Nelson, R. O.; Devlin, M.

    2010-01-01

    There is no reliable evidence for the existence of the 3.076 MeV (3 - ) level adopted in the ENSDF evaluation for 56 Fe although it has been reported in a few experiments. Previous reports of the observation of this level appear to be based on an incorrect assignment in early (e,e ' ) work. Recent neutron inelastic scattering measurements by Demidov et al. [Phys. At. Nucl. 67, 1884, (2004)] show that the assigned γ-ray decay of this state does not occur at a level consistent with known properties of inelastic scattering. In the present work the 56 Fe(n,n ' γ) reaction was used to populate excited states in 56 Fe. Neutrons in the energy range from 1 to 250 MeV were provided by the pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility. Deexciting γ rays were detected with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. The γ-γ data obtained with GEANIE were used to establish coincidence relations between transitions. All previously reported levels up to E x =3.6 MeV excitation energy were observed except for the 3.076 MeV (3 - ) level. The 991- and 2229-keV transitions, previously reported to deexcite this level, were not observed in the γ-γ coincidence data obtained in the present experiment. The present work supports the assignment of the 4509.6 keV level as the first 3 - excited state in 56 Fe by observation of two previously known transitions deexciting this state.

  15. Time Evolution of the Excimer State of a Conjugated Polymer Laser

    Directory of Open Access Journals (Sweden)

    Wafa Musa Mujamammi

    2017-11-01

    Full Text Available An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl (PFO, under several concentrations in benzene were investigated. These solutions were optically pumped by intense pulsed third-harmonic Nd:YAG laser (355-nm to obtain the amplified spontaneous emission (ASE spectra of a monomer and an excimer with bandwidths of 6 and 7 nm, respectively. The monomer and excimer ASEs were dependent on the PFO concentration, pump power, and temperature. Employing a sophisticated picosecond spectrometer, the time evolution of the excimer state of this polymer, which is over 400 ps, can be monitored.

  16. Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.

    Science.gov (United States)

    Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Adamo, Carlo

    2009-09-08

    Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.

  17. Excited state hydrogen bonding fluorescent probe: Role of structure and environment

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Debarati, E-mail: debaratidey07@gmail.com [Department of Chemistry, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006 (India); Sarangi, Manas Kumar [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Ray, Angana; Bhattacharyya, Dhananjay [Computational Science Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Maity, Dilip Kumar [Department of Chemistry, University College of Science and Technology, 92 A.P.C. Road, Kolkata 700009 (India)

    2016-05-15

    An environment sensitive fluorescent probe, 11-benzoyl-dibenzo[a,c]phenazine (BDBPZ), has been synthesized and characterized that acts via excited state hydrogen bonding (ESHB). On interaction with hydrogen bond donating solvents the fluorescence intensity of BDBPZ increases abruptly with a concomitant bathochromic shift. The extent of fluorescence increment and the red-shift of λ{sub max} depend on hydrogen bond donating ability of the solvent associated. ESHB restricts the free rotation of the benzoyl group and hence blocks the non-radiative deactivation pathway. BDBPZ forms an exciplex with organic amine in nonpolar medium that readily disappears on increasing the polarity of the solvent. In polar environment the fluorescence of both the free molecule and excited state hydrogen bonded species are quenched on addition of amine unlike its parent dibenzo[a,c]phenazine (DBPZ), that remains very much inaccessible towards the solvent as well as quencher molecules due to its structure. This newly synthesized derivative BDBPZ is much more interactive due to the benzoyl group that is flanked outside the skeletal aromatic rings of DBPZ, which helps to sense the environment properly and thus shows better ESHB capacity than DBPZ.

  18. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  19. Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states

    International Nuclear Information System (INIS)

    Power, E.A.; Thirunamachandran, T.

    1993-01-01

    Spatial correlations between electromagnetic fields arising from neutral sources with electric-dipole transition moments are calculated using nonrelativistic quantum electrodynamics in the multipolar formalism. Expressions for electric-electric, magnetic-magnetic, and electric-magnetic correlation functions at two points r and r' are given for a source molecule in either a ground or an excited state. In contrast to the electric-electric and magnetic-magnetic cases there are no electric-magnetic correlations for a ground-state molecule. For an excited molecule the downward transitions contribute additional terms which have modulating factors depending on (r-r')/λ. From these correlation functions electric and magnetic energy densities are found by setting r=r'. These energy densities are then used in a response formalism to calculate intermolecular energy shifts. In the case of two ground-state molecules this leads to the Casimir-Polder potential. However, for a pair of molecules, one or both excited, there are additional terms arising from downward transitions. An important feature of these energies is that they exhibit an R -2 dependence for large intermolecular separations R. This dependence is interpreted in terms of the Poynting vector, which itself can be obtained by setting r=r' in the electric-magnetic correlation function

  20. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    Science.gov (United States)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  1. Temperature-dependent luminescence dynamics in ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Priller, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany)]. E-mail: heiko.priller@physik.uni-karlsruhe.de; Hauschild, R. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Zeller, J. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Klingshirn, C. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kalt, H. [Institut fuer Angewandte Physik, Universitaet Karlsruhe and Center for Functional Nanostructures (CFN), Wolfgang-Gaede-Str. 1, D-76131 Karlsruhe (Germany); Kling, R. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Reuss, F. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Kirchner, Ch. [Abteilung Halbleiterphysik, Universitaet Ulm, Albert-Einstein Allee 45, 89081 Ulm (Germany); Waag, A. [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany)

    2005-04-15

    We report on an experimental study of the temporal photoluminescence dynamics of high-quality ZnO nanopillars from 10 K to room temperature. We find that defect states play an important role in the time evolution of the photoluminescence signal. At low excitation intensities capture into defects dominates the time dependence of the PL, at higher intensities they are saturated and the intrinsic excitation decay is observed. We separate the intrinsic exciton decay from the fast nonlinear M-band with the method of decay associated spectra and obtain the temperature dependence of the intrinsic exciton decay. High excitation measurements show a reduced exciton-exciton scattering in these thin nanorods.

  2. Embedding potentials for excited states of embedded species

    International Nuclear Information System (INIS)

    Wesolowski, Tomasz A.

    2014-01-01

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed

  3. Electronic excitations in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Burgdoerfer, J.

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs

  4. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1978-01-01

    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  5. Does the excited state of the 3He nucleus exist?

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1994-01-01

    The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases

  6. Excited electronic states of MnO{sub 4}{sup −}: Challenges for wavefunction and density functional response theories

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Nuno M.S.; McKinlay, Russell G.; Paterson, Martin J., E-mail: m.j.paterson@hw.ac.uk

    2015-01-13

    Highlights: • Linear response coupled cluster hierarchy CCS, CC2, CCSD, CC3 applied to lowest excited states of MnO{sub 4}{sup −}. • Unphysical results obtained for approximate CCn methods. • Failure traced to very large singles amplitudes. • HF and RASSCF calculations on ground state show strong correlations give very poor HF single particle picture. • TD-CAM-B3LYP describes LMCT states with reasonable accuracy. - Abstract: The lowest excited electronic states of the permanganate ion MnO{sub 4}{sup −} are calculated using a hierarchy of coupled cluster response approaches, as well as time-dependent density functional theory. It is shown that while full linear response coupled cluster with singles and doubles (or higher) performs well, that permanganate represents a stern test for approximate coupled cluster response models, and that problems can be traced to very large orbital relaxation effects. TD-DFT is reasonably robust although errors around 0.6 eV are still observed. In order to further investigate the strong correlations prevalent in the electronic ground state large-scale RASSCF calculations were also performed. Again very large orbital relaxation in the correlated wavefunction is observed. Although the system can qualitatively be described by a single configuration, multi-reference diagnostic values show that care must be taken in this and similar metal complexes.

  7. Supersymmetric quantum mechanics and higher excited states of a non-polynomial potential

    International Nuclear Information System (INIS)

    Drigo Filho, E.; Ricotta, R.M.

    1989-03-01

    Supersymmetric quantum mechanics is used to evaluate new excited states of a non-polynomial potential. This illustrates a method of evaluating higher excited states of quantum mechanical potentials. (A.C.A.S.) [pt

  8. Coulomb excitation of rotational states in the 162Dy nucleus in the framework of the generalized semiclassical approximation

    International Nuclear Information System (INIS)

    Bolotin, Yu.L.; Gonchar, V.Yu.; Chekanov, N.A.

    1985-01-01

    Coulomb excitation of rotational states induced in heavyion collisions is treated in the framework of the generalized semiclassical approximation. The Hamiltonian of the system under consideration involves not only Coulomb forces (monopole, quadrupole, and hexadecapole) but as well a real nuclear potential in the form of the deformed Woods-Saxon potential. Strong dependence of the excitation probability on the interference between the Coulomb and nuclear interactions is shown. Calculations are carried out for the reaction 40 Ar+ 162 Dy at E=148.6 MeV. The calculated Coulomb excitation probabilities agree satisfactory with the corresponding experimental values

  9. The interference effects in the alignment and orientation of the Kr II 4p45p states following Kr I 3d9np resonance excitation

    International Nuclear Information System (INIS)

    Lagutin, B M; Petrov, I D; Sukhorukov, V L; Demekhin, Ph V; Zimmermann, B; Mickat, S; Kammer, S; Schartner, K-H; Ehresmann, A; Shutov, Yu A; Schmoranzer, H

    2003-01-01

    The energy dependence of the alignment parameter A 20 for the Kr II 4p 4 5p(E 1 J 1 ) states following excitation in the Raman regime with the exciting-photon energy passing through the Kr I 3dJ 9 barnpjbar resonances was investigated theoretically and experimentally. Interference between the resonance and direct photoionization channels explains the dependence of A 20 on the excitation energy. Experimentally, A 20 was determined after the analysis of 5p-5s fluorescence decay of the 4p 4 5p(E 1 J 1 ) states excited with monochromatized synchrotron radiation. The band pass of the synchrotron radiation was set to 10 meV which is smaller than the natural width of the 3d 9 np resonances (∼83 meV). Additionally, a strong energy dependence was predicted for the orientation parameter O 10 as well as for the angular distribution parameter of photoelectrons, β e , for several 4p 4 5p(E 1 J 1 ) ionic states

  10. North American NGL exciting times are just ahead

    International Nuclear Information System (INIS)

    Gist, R.L.; Otto, K.W.

    1998-01-01

    Although it is a fairly conservative consulting company, Purvin and Gertz believes that exciting times are just ahead for the North American NGL industry. In the United States, NGL production will be rising rapidly, particularly in the Gulf of Mexico offshore from Louisiana. Demand will also be increasing in many sectors, with the largest increases as petrochemical feedstocks. Similarly, in Canada natural gas export pipelines will result in higher gas and NGL production. Petrochemicals will also play a large role in rapidly rising demand for NGL. Lastly, in Mexico quickly growing demand for natural gas to produce electrical power will push up NGL production

  11. Optimal control of peridinin excited-state dynamics

    Czech Academy of Sciences Publication Activity Database

    Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 129-136 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  12. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    Science.gov (United States)

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  13. Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone

    Directory of Open Access Journals (Sweden)

    Marco Lamperti

    2014-08-01

    Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  14. Influence of different environments on the excited-state proton transfer and dual fluorescence of fisetin

    Science.gov (United States)

    Guharay, Jayanti; Dennison, S. Moses; Sengupta, Pradeep K.

    1999-05-01

    The influence of different protic and aprotic solvent environments on the excited-state intramolecular proton transfer (ESIPT) leading to a dual fluorescence behaviour of a biologically important, naturally occurring, polyhydroxyflavone, fisetin (3,3',4',7-tetrahydroxyflavone), has been investigated. The normal fluorescence band, in particular, is extremely sensitive to solvent polarity with νmax shifting from 24 510 cm -1 in dioxane ( ET(30)=36.0) to 20 790 cm -1 in methanol ( ET(30)=55.5). This is rationalized in terms of solvent dipolar relaxation process, which also accounts for the red edge excitation shifts (REES) observed in viscous environments such as glycerol at low temperatures. Significant solvent dependence of the tautomer fluorescence properties ( νmax, yield and decay kinetics) reveals the influence of external hydrogen bonding perturbation on the internal hydrogen bond of the molecule. These excited-state relaxation phenomena and their relevant parameters have been used to probe the microenvironment of fisetin in a membrane mimetic system, namely AOT reverse micelles in n-heptane at different water/surfactant molar ratio ( w0).

  15. Time-Dependent Impurity in Ultracold Fermions: Orthogonality Catastrophe and Beyond

    Directory of Open Access Journals (Sweden)

    Michael Knap

    2012-12-01

    Full Text Available The recent experimental realization of strongly imbalanced mixtures of ultracold atoms opens new possibilities for studying impurity dynamics in a controlled setting. In this paper, we discuss how the techniques of atomic physics can be used to explore new regimes and manifestations of Anderson’s orthogonality catastrophe (OC, which could not be accessed in solid-state systems. Specifically, we consider a system of impurity atoms, localized by a strong optical-lattice potential, immersed in a sea of itinerant Fermi atoms. We point out that the Ramsey-interference-type experiments with the impurity atoms allow one to study the OC in the time domain, while radio-frequency (RF spectroscopy probes the OC in the frequency domain. The OC in such systems is universal, not only in the long-time limit, but also for all times and is determined fully by the impurity-scattering length and the Fermi wave vector of the itinerant fermions. We calculate the universal Ramsey response and RF-absorption spectra. In addition to the standard power-law contributions, which correspond to the excitation of multiple particle-hole pairs near the Fermi surface, we identify a novel, important contribution to the OC that comes from exciting one extra particle from the bottom of the itinerant band. This contribution gives rise to a nonanalytic feature in the RF-absorption spectra, which shows a nontrivial dependence on the scattering length, and evolves into a true power-law singularity with the universal exponent 1/4 at the unitarity. We extend our discussion to spin-echo-type experiments, and show that they probe more complicated nonequilibirum dynamics of the Fermi gas in processes in which an impurity switches between states with different interaction strength several times; such processes play an important role in the Kondo problem, but remained out of reach in the solid-state systems. We show that, alternatively, the OC can be seen in the energy-counting statistics

  16. Anisotropy of electronic states excited in ion-atom collisions

    International Nuclear Information System (INIS)

    Boskamp, E.B.

    1983-01-01

    The author reports coincidence measurements made on the He + + Ne and He + + He systems. The complex population amplitudes for the magnetic sublevels of the investigated excited states, Ne(2p 4 3s 2 ) 1 D and He(2p 2 ) 1 D, were completely determined and possible excitation mechanisms are described. (Auth.)

  17. Anomalous temperature dependence of excitation transfer between quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 325-330 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    Carew, J.F.; Neogy, P.

    1983-01-01

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  19. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman; Doiron, Curtis; Sears, John S.; Bré das, Jean-Luc

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  20. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  1. Andreev Bound States Formation and Quasiparticle Trapping in Quench Dynamics Revealed by Time-Dependent Counting Statistics.

    Science.gov (United States)

    Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy

    2016-12-23

    We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.

  2. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    Science.gov (United States)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  3. Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    2005-01-01

    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method

  4. Production of autoionizing di-excited states of barium with high angular momentum

    International Nuclear Information System (INIS)

    Roussel, F.; Breger, P.; Gounand, F.; Spiess, G.

    1988-01-01

    Autoionizing di-excited states Ba(6p 1/2 27l) with 7 ≤l≤26, have been experimentally detected. They have been produced by a method combining excitation by two lasers and l-mixing collisions between barium and xenon. Results show that a long delay between the two laser excitation steps is favourable to the production of these states. The method has proved to be very efficient (measured cross-section: σ = 3.1 . 10 -13 cm 2 ) for populating high-angular-momentum autoionizing states of barium

  5. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2017-03-29

    Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH 3 synthesis from N 2 and H 2 is notoriously energy intensive. This is due to the difficulty of N 2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N 2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N 2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N 2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N 2 , with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.

  6. Electron energy distribution functions and thermalization times in methane and in argon--methane mixtures: An effect of vibrational excitation processes

    International Nuclear Information System (INIS)

    Krajcar-Bronic, I.; Kimura, M.

    1995-01-01

    Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics

  7. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  8. Giant dipole resonances built on excited states

    International Nuclear Information System (INIS)

    Snover, K.A.

    1983-01-01

    The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references

  9. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  10. Thermal effects on the stability of excited atoms in cavities

    International Nuclear Information System (INIS)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2010-01-01

    An atom, coupled linearly to an environment, is considered in a harmonic approximation in thermal equilibrium inside a cavity. The environment is modeled by an infinite set of harmonic oscillators. We employ the notion of dressed states to investigate the time evolution of the atom initially in the first excited level. In a very large cavity (free space) for a long elapsed time, the atom decays and the value of its occupation number is the physically expected one at a given temperature. For a small cavity the excited atom never completely decays and the stability rate depends on temperature.

  11. Deciphering excited state evolution in halorhodopsin with stimulated emission pumping.

    Science.gov (United States)

    Bismuth, Oshrat; Komm, Pavel; Friedman, Noga; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford

    2010-03-04

    The primary photochemical dynamics of Hb. pharaonis Halorhodopsin (pHR) are investigated by femtosecond visible pump-near IR dump-hyperspectral probe spectroscopy. The efficiency of excited state depletion is deduced from transient changes in absorption, recorded with and without stimulated emission pumping (SEP), as a function of the dump delay. The concomitant reduction of photocycle population is assessed by probing the "K" intermediate difference spectrum. Results show that the cross section for stimulating emission is nearly constant throughout the fluorescent state lifetime. Probing "K" demonstrates that dumping produces a proportionate reduction in photocycle yields. We conclude that, despite its nonexponential internal conversion (IC) kinetics, the fluorescent state in pHR constitutes a single intermediate in the photocycle. This contrasts with conclusions drawn from the study of primary events in the related chloride pump from Hb. salinarum (sHR), believed to produce the "K" intermediate from a distinct short-lived subpopulation in the excited state. Our discoveries concerning internal conversion dynamics in pHR are discussed in light of recent expectations for similar excited state dynamics in both proteins.

  12. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...

  13. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  14. Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale

    OpenAIRE

    Schöne, Wolf-Dieter; Ekardt, Walter

    2000-01-01

    Experiments determining the lifetime of excited electrons in crystalline copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\\it et al.}, Phys. Rev. B {\\bf 55}, 10869 (1997)]. In this article we propose a model which explains these states as transient excitonic states in metals. The physical background of transient excitons is the finite time a system needs to react to an external perturbation, in other words, the time which is needed to build up a polarization cloud. ...

  15. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  16. A Ratio-Analysis Method to the Dynamics of Excited State Proton Transfer: Pyranine in Water and Micelles.

    Science.gov (United States)

    Sahu, Kalyanasis; Nandi, Nilanjana; Dolai, Suman; Bera, Avisek

    2018-06-05

    Emission spectrum of a fluorophore undergoing excited state proton transfer (ESPT) often exhibits two distinct bands each representing emissions from protonated and deprotonated forms. The relative contribution of the two bands, best represented by an emission intensity ratio (R) (intensity maximum of the protonated band / intensity maximum of the deprotonated band), is an important parameter which usually denotes feasibility or promptness of the ESPT process. However, the use of ratio is only limited to the interpretation of steady-state fluorescence spectra. Here, for the first time, we exploit the time-dependence of the ratio (R(t)), calculated from time-resolved emission spectra (TRES) at different times, to analyze ESPT dynamics. TRES at different times were fitted with a sum of two lognormal-functions representing each peaks and then, the peak intensity ratio, R(t) was calculated and further fitted with an analytical function. Recently, a time-resolved area-normalized emission spectra (TRANES)-based analysis was presented where the decay of protonated emission or the rise of deprotonated emission intensity conveniently accounts for the ESPT dynamics. We show that these two methods are equivalent but the new method provides more insights on the nature of the ESPT process.

  17. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO) 2I 2 complex

    Science.gov (United States)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkiö, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [ trans-I-Ru(dcbpy)(CO) 2I 2] (dcbpy= 4,4 '-dicarboxy-2,2 '-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [ cis-I-Ru(dcbpy)(CO)(Sol)I 2] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  18. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO)2I2 complex

    International Nuclear Information System (INIS)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-01-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO) 2 I 2 ] (dcbpy4,4 ' -dicarboxy-2,2 ' -bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I 2 ] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1 ) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes

  19. Excited-state formation as H+ and He+ ions scatter from metal surfaces

    International Nuclear Information System (INIS)

    Baird, W.E.; Zivitz, M.; Thomas, E.W.

    1975-01-01

    Impact of 10-to30KeV H + or He + ions on polycrystalline metal surfaces causes some projectiles to be backscattered in a neutral excited state. These projectiles subsequently radiatively decay, emitting Doppler-broadened spectral lines. By analysis of the spectral shape of these lines, we are able to determine the probability of radiationless deexcitation of the excited backscattered atoms. Quantitative measurements of spectral intensity indicate that less than 1% of all projectiles are backscattered in an excited state. The relative variation of total spectral line intensity with angle of projectile incidence and with projectile primary energy has been successfully predicted using a model which assumes that the probability for excited-state formation is independent of the scattered projectile's energy and direction. The variation in total spectral line intensity with target atomic number is predicted, and the sputtering and excitation of Al under He + impact is briefly examined

  20. Di-lepton yield from the decay of excited 28Si states

    International Nuclear Information System (INIS)

    Bacelar, J.C.; Buda, A.; Balanda, A.; Krasznahorkay, A.; Ploeg, H. van der; Sujkowski, Z.; Woude, A. van der

    1994-01-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28 Si, with an initial excitation energy E * =50 MeV, were populated via the isospin T=0 reaction 4 He+ 24 Mg and the mixed-isospin 3 He+ 25 Mg reaction. In both reactions the dilepton (e + e - ) and photon decay yields were measured concurrently. An excess of counts in the e + e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states. (orig.)

  1. Fast-timing lifetime measurements of excited states in Cu67

    Science.gov (United States)

    NiÅ£ǎ, C. R.; Bucurescu, D.; Mǎrginean, N.; Avrigeanu, M.; Bocchi, G.; Bottoni, S.; Bracco, A.; Bruce, A. M.; Cǎta-Danil, G.; Coló, G.; Deleanu, D.; Filipescu, D.; GhiÅ£ǎ, D. G.; Glodariu, T.; Leoni, S.; Mihai, C.; Mason, P. J. R.; Mǎrginean, R.; Negret, A.; Pantelicǎ, D.; Podolyak, Z.; Regan, P. H.; Sava, T.; Stroe, L.; Toma, S.; Ur, C. A.; Wilson, E.

    2014-06-01

    The half-lives of the 9/2+, 13/2+, and 15/2+ yrast states in the neutron-rich Cu67 nucleus were determined by using the in-beam fast-timing technique. The experimentally deduced E3 transition strength for the decay of the 9/2+ level to the 3/2- ground state indicates that the wave function of this level might contain a collective component arising from the coupling of the odd proton p3/2 with the 3- state in Ni66. Theoretical interpretations of the 9/2+ state are presented within the particle-vibration weak-coupling scheme involving the unpaired proton and the 3- state from Ni66 and within shell-model calculations with a Ni56 core using the jj44b residual interaction. The shell model also accounts reasonably well for the other measured electromagnetic transition probabilities.

  2. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  3. Sensitivity of (α,α') cross sections to excited-state quadrupole moments

    International Nuclear Information System (INIS)

    Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.

    1977-01-01

    Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2

  4. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach.

    Science.gov (United States)

    Casanova, David

    2012-08-28

    The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to

  5. Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom

    International Nuclear Information System (INIS)

    Jin Shiqi; Gong Shangqing; Li Ruxin; Xu Zhizhan

    2004-01-01

    Coherent population transfer and superposition of atomic states via a technique of stimulated Raman adiabatic passage in an excited-doublet four-level atomic system have been analyzed. It is shown that the behavior of adiabatic passage in this system depends crucially on the detunings between the laser frequencies and the corresponding atomic transition frequencies. Particularly, if both the fields are tuned to the center of the two upper levels, the four-level system has two degenerate dark states, although one of them contains the contribution from the excited atomic states. The nonadiabatic coupling of the two degenerate dark states is intrinsic, it originates from the energy difference of the two upper levels. An arbitrary superposition of atomic states can be prepared due to such nonadiabatic coupling effect

  6. Tailoring of motional states in double-well potentials by time-dependent processes

    International Nuclear Information System (INIS)

    Haerkoenen, Kari; Kaerki, Ollijuhani; Suominen, Kalle-Antti

    2006-01-01

    We show that the vibrational state tailoring method developed for molecular systems can be applied for cold atoms in optical lattices. The original method is based on a three-level model interacting with two strong laser pulses in a counterintuitive sequence [M. Rodriguez et al., Phys. Rev. A 62, 053413 (2000)]. Here we outline the conditions for achieving similar dynamics with single time-dependent potential surfaces. It is shown that guided switching between diabatic and adiabatic evolution has an essential role in this system. We also show that efficient and precise tailoring of motional states in optical lattices can be achieved, for instance, simply by superimposing two lattices and moving them with respect to each other

  7. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    Science.gov (United States)

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF

  9. The boomerang effect in electron-hydrogen molecule scattering as determined by time-dependent calculations

    Science.gov (United States)

    Ben-Asher, Anael; Moiseyev, Nimrod

    2017-05-01

    The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.

  10. Excitation of isomeric states 1h11/2 in (γ, n) reactions

    International Nuclear Information System (INIS)

    Tonchev, A.P.; Gangrskij, Yu.P.; Belov, A.G.

    1995-01-01

    The cross sections of (γ, n) reactions were measured for ground and isomeric states 1h 11/2 in 16 isotopes of Pd, Cd, Sn, Te, Ba, Ce, Nd and Sm. The energy of γ-rays was placed in the region of Giant Dipole Resonance. An activation method of measurements has been used. IR dependence of neutron and proton number in nucleus was detected and of excitation energy of residual nucleus as well. Different factors influencing the values of the isomeric ratios are discussed. 20 refs., 5 figs., 2 tabs

  11. Development and implementation of theoretical methods for the description of electronically core-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Jan

    2016-03-23

    My PhD project mainly consists of two important parts. One was to enhance and develop variants of the core-valence-separation-algebraic-diagrammatic-construction (CVS-ADC) method and implement all approaches efficiently in the adcman program, which is part of the Q-chem program package. Secondly, I benchmarked these implementations and simulated X-ray absorption spectra of small- and medium-sized molecules from different fields. In this thesis, I present my implementations, as well as the results and applications obtained with the CVS-ADC methods and give a general introduction into quantum chemical methods. At first, I implemented the CVS-ADC approach up to the extended second in an efficient way. The program is able to deal with systems up to 500 basis functions in an adequate computational time, which allows for accurate calculations of medium-sized closed-shell molecules, e.g. acenaphthenequinone (ANQ). Afterwards, the CVS-ADC implementation was extended for the first time to deal with open-shell systems, i.e. ions and radicals, which implies a treatment of unrestricted wave functions and spin-orbitals. The resulting method is denoted as CVS-UADC(2)-x. For the first time, I applied the CVS approximation to the the third order ADC scheme, derived the working equations, and implemented the CVS-ADC(3) method in adcman. As the last step, I applied the CVS formalism for the first time to the ISR approach to enable calculations of core-excited state properties and densities. To benchmark all restricted and unrestricted CVS-ADC/CVS-ISR methods up to third order in perturbation theory, I chose a set of small molecules, e.g. carbon monoxide (CO). The calculated values of core-excitation energies, transition moments and static dipole moments are compared with experimental data or other approaches, thereby estimating complete basis set (CBS) limits. Furthermore, a comprehensive study of different basis sets is performed. In combination with the CBS limit of the aug

  12. A model for studying time dependent quantum mechanical processes and its application for quasi-stationary states

    International Nuclear Information System (INIS)

    Revai, Janos.

    1988-10-01

    A model was attempted to construct which, on one hand, is flexible enough to imitate certain physical properties of real systems and, on the other hand, allows exact solution of its time dependent dynamics. This double goal is proposed to achieve by using separable interactions. A particle moving in an external field consisting of a stationary attractive and a time dependent repulsive part is proposed for the model in question. Due to the use of separable interactions, the time evolution dynamics can be solved exactly, and the model can be applied for studying time evolution of quasi-stationary states. (R.P.) 7 figs

  13. Energies and lifetimes of excited states in copperlike Kr VIII

    International Nuclear Information System (INIS)

    Livingston, A.E.; Curtis, L.J.; Schectman, R.M.; Berry, H.G.

    1980-01-01

    The spectrum of Kr VIII has been observed between 180 and 2000 A by using foil excitation of 2.5--3.5-MeV krypton ions. Twenty new transitions have been classified and eleven new excited-state energies have been determined within the n=4 --7 shells. The ionization potential is derived to be 1 015 800 +- 200 cm -1 . The excited-state energies and fine structures are compared with recent relativistic Hartree-Fock calculations. The 4p-state lifetime has been measured by performing a simultaneous analysis of decay data for the 4p level and for its dominant cascade-repopulating levels. The 4p lifetime is found to be 30% shorter than previously measured values and is in excellent agreement with the result of a recent multiconfiguration Hartree-Fock calculation. The source of the discrepancy between this result and earlier measurements is discussed

  14. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    Science.gov (United States)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  15. Cross sections for the vibrational excitation of the H2 X 1Σ+g(v) levels generated by electron collisional excitation of the higher singlet states

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The excitation cross sections, σ(v,v double-prime), for an H 2 molecule initially in any one of the 15 vibrational levels, v belonging to the ground electronic state and excited to a final vibrational level, v double-prime are evaluated for direct excitations via all members of the excited electronic singlet spectrum. Account is taken of predissociation, autoionization, and radiative decay of the excited electronic spectrum that leads to a final population distribution for the ground electronic state, X 1 Σ + g (v double-prime). For v=0, account is taken explicitly of transitions via the B, C, B', and D electronic states in evaluating the cross sections. The additional contribution of excitations via all Rydberg states lying above the D state enhances these cross sections by approximately 10%. For v>0, cross sections are evaluated taking explicit account of transitions through the B and C states; higher singlet excitations enhance these values by 25%. The choice of the reference total cross sections remains a subjective one, causing the values calculated here to have a possible uncertainty of +20% -30% . For excitations occurring within a hydrogen discharge, collisional excitation-ionization events among the intermediate singlet states will effectively quench the v, v double-prime excitation process for discharge densities in excess of the range 10 15 --10 16 electrons/cm -3

  16. Watson-Crick base pairing controls excited-state decay in natural DNA.

    Science.gov (United States)

    Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2014-10-13

    Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  18. Ioniclike energy structure of neutral core-excited states in free Kr clusters

    International Nuclear Information System (INIS)

    Peredkov, S.; Sorensen, S.L.; Kivimaeki, A.; Schulz, J.; Maartensson, N.; Oehrwall, G.; Lundwall, M.; Rander, T.; Lindblad, A.; Bergersen, H.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2005-01-01

    The development of electronic states in krypton clusters is investigated by high-resolution core-level electron spectroscopy. The energy ordering of bulk versus surface 3d -1 np(n>5) core-excited states in neutral clusters is demonstrated to be reversed to the 3d -1 5p level situation. The cluster 3d -1 6p,7p states are proven to be at a lower energy than the corresponding atomic levels. These findings reveal the ioniclike energy structure of the neutral cluster core-excited levels. The phenomenon is explained by a spatial spread of the excited orbitals over the cluster lattice

  19. Excited state fluorescence quenching of the U O2++ ion by monovalent anions

    International Nuclear Information System (INIS)

    Santarine, G.A.

    1987-01-01

    The reactions of the Uranyl ion U O 2 ++ in the excited state with the monovalent inorganic ions N O 3 - and I O 3 - in aqueous solutions at normal temperature were studied, using three techniques: Fluorescence in the steady state - Flash photolysis - Fluorescence decay after excitation. With increasing concentration of these ions it was observed a decrease in the normalized intensity and a decrease in the decay time of the fluorescence of the Uranyl ion in the solution and a corresponding appearance of the radicals N O 3 . or I O 3 . . In each case the radical was identified by its optical absorption spectrum. These results suggest that the quenching of fluorescence of the Uranyl ion in each case is owing to an electron transfer reaction. In the case of the Nitrate ion the transfer may occur after the formation of an ionic par (U O 2 + ...N O 3 ) in the ground state. Evidence for static quenching in the system Uranyl iodate was not forthcoming. A mechanism for the determination of the velocity constant (probability per ion pair per unit time) is proposed for each of the systems. (author)

  20. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation.

    Science.gov (United States)

    Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano

    2017-10-26

    The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.

  1. Partial radiative recombination cross sections for excited states of hydrogen

    International Nuclear Information System (INIS)

    Fazio, P.M.

    1984-01-01

    In calculating the radiative recombination cross sections for interstellar H II regions, usually only the electric dipole term in the expansion of the interaction Hamiltonian is kept. The dipole and quadrupole transition strengths in closed analytical form are calculated here using the Coulomb wave functions because results for any electron energy and for recombination into any angular momentum state of hydrogen are needed. Several interesting effects are found. First, the transition probabilities are maximum for recombination into specific intermediate angular momentum states at low energies (w < 2eV) and where the free state angular momentum is greater than that of the bound state. Further, that specific intermediate angular momentum state depends on the kinetic energy of the free electron. This behavior is in contrast to the normal behavior of the transition strengths where recombination into s states is greatest and decreases with increasing angular momentum. Second, the quadrupole matrix elements vanish for certain velocities of the free electron. This leads to minima in the corresponding quadrupole cross sections when plotted as a function of the free electron's kinetic energy. Finally, the partial cross sections for highly excited states are greater than previously calculated because of the additional effects of the quadrupole transitions

  2. The triplet excited state of bilirubin

    International Nuclear Information System (INIS)

    Land, E.J.

    1976-01-01

    Pulse radiolysis of benzene solutions of 40 μM bilirubin alone or with 0.1 M biphenyl has yielded evidence for the formation of the triplet excited state of bilirubin. Measurements were made of a number of properties, including the absorption spectrum (lambdasub(max)500nm), lifetime 9μs), extinction coefficient (8800 M -1 cm -1 ), energy level (approximately 150 kJ mol -1 ) and the rate of quenching by oxygen (rate constant, 8.2 x 10 8 M -1 s -1 ). An upper limit of 0.1 has also been obtained for the singlet to triplet crossover efficiency of bilirubin following excitation by 353 nm radiation. Consideration is given to the relevance of these data to the mechanism of bilirubin photo-destruction, both in vivo and in vitro. (U.K.)

  3. Time varying behavior of the loudspeaker suspension: Displacement level dependency

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Pedersen, Bo Rohde

    2009-01-01

    The compliance of the loudspeaker suspension is known to depend on the recent excitation level history. Previous investigations have shown that the electrical power as well as displacement and velocity plays a role. In this paper the hypothesis that the changes in compliance are caused mainly...... by how much the suspension has been stretched, i.e. the maximum displacement, is investigated. For this purpose the changes in compliance are measured when exposing the speaker to different levels and types of electrical excitation signals, as well as mechanical excitation only. For sinusoidal excitation...... the change in compliance is shown to depend primarily on maximum displacement. But for square pulse excitation the duration of the excitation also plays an important role...

  4. Technique for description of nonrotational excited states in a semiphenomenological nuclear theory

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    A non-standard technique for microscopic description of excited nonrotational states is considered; it is suitable for inseparable force application. Besides, an additional binding operator, mixing quasi-particle excitations and E1-resonance states, is considered. Instead of the standard technique of state ''collectivization'' of the random phase approximation type it is used the so-called ''method of bound amplitudes''

  5. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  6. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  7. New results for double-beta decay of 100Mo to excited final states of 100Ru using the TUNL-ITEP apparatus

    International Nuclear Information System (INIS)

    Kidd, M.F.; Esterline, J.H.; Tornow, W.; Barabash, A.S.; Umatov, V.I.

    2009-01-01

    The coincidence detection efficiency of the TUNL-ITEP apparatus designed for measuring half-life times of two-neutrino double-beta (2νββ) decay transitions to excited final states in daughter nuclei has been measured with a factor of 2.4 improved accuracy. In addition, the previous measuring time of 455 days for the study of the 100 Mo 2νββ decay to the first excited 0 1 + state in 100 Ru has been increased by 450 days, and a new result (combined with the previous measurement obtained with the same apparatus) for this transition is presented: T 1/2 =[5.5 -0.8 +1.2 (stat)±0.3(syst)]x10 20 yr. Measured 2νββ decay half-life times to excited states can be used to test the reliability of nuclear matrix element calculations needed for determining the effective neutrino mass from zero-neutrino double-beta decay data. We also present new limits for transitions to higher excited states in 100 Ru which, if improved, may be of interest for more exotic conjectures, like a bosonic component to neutrino statistics.

  8. A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature

    International Nuclear Information System (INIS)

    Majima, H.; Suzuki, A.

    2006-01-01

    We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators

  9. Lifetime measurement of the cesium 6P3/2 state using ultrafast laser-pulse excitation and ionization

    International Nuclear Information System (INIS)

    Sell, J. F.; Patterson, B. M.; Ehrenreich, T.; Brooke, G.; Scoville, J.; Knize, R. J.

    2011-01-01

    We report a precision measurement of the cesium 6P 3/2 excited-state lifetime. Two collimated, counterpropagating thermal Cs beams cross perpendicularly to femtosecond pulsed laser beams. High timing accuracy is achieved from having excitation and ionization laser pulses which originate from the same mode-locked laser. Using pulse selection we vary the separation in time between excitation and ionization laser pulses while counting the ions produced. We obtain a Cs 6P 3/2 lifetime of 30.460(38) ns, which is a factor of two improvement from previous measurements and with an uncertainty of 0.12%, is one of the most accurate lifetime measurements on record.

  10. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.

    1982-01-01

    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  11. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Time-dependent scattering in resonance lines

    International Nuclear Information System (INIS)

    Kunasz, P.B.

    1983-01-01

    A numerical finite-difference method is presented for the problem of time-dependent line transfer in a finite slab in which material density is sufficiently low that the time of flight between scatterings greatly exceeds the relaxation time of the upper state of the scattering transition. The medium is assumed to scatter photons isotropically, with complete frequency redistribution. Numerical solutions are presented for a homogeneous, time-independent slab illuminated by an externally imposed radiation field which enters the slab at t = 0. Graphical results illustrate relaxation to steady state of trapped internal radiation, emergent energy, and emergent profiles. A review of the literature is also given in which the time-dependent line transfer problem is discussed in the context of recent analytical work

  13. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  14. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  15. Some studies on the formation of excited states of aromatic solutes in hydrocarbons and other solvents

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, G A [Leeds Univ. (UK). Cookridge High Energy Radiation Research Centre

    1976-01-01

    This paper reviews the work of the author and his co-workers on the radiation-induced formation of excited states of aromatic compounds in solution. The experimental methods used are surveyed and in particular the method of measuring the yields of triplet and singlet excited states of the solute are described. The problems discussed are: (1) the effect of solvent on the yields of excited states, (2) formation of excited states in cyclohexane and other alicyclic hydrocarbons, (3) the formation of excited states in benzene and (4) the identification of T-T absorption spectra.

  16. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency

    Science.gov (United States)

    Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.

    2015-09-01

    We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.

  17. Excitation of spin-1 states in 166168170Er using bremsstrahlung

    International Nuclear Information System (INIS)

    Metzger, F.R.

    1976-01-01

    Some 40 states in 166 , 168 , 170 Er, most of them previously unknown, have been excited using bremsstrahlung with < or =4.2 MeV endpoint energy. For all but three of these levels, the angular distribution of the resonantly scattered radiation favors the assignment of spin 1. For some of the strongly excited levels, linear polarization measurements have been performed. They indicate that these levels have positive parity. The branching ratios further characterize them as K=1 excitations

  18. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  19. Energy-dependent collisional deactivation of vibrationally excited azulene

    International Nuclear Information System (INIS)

    Shi, J.; Barker, J.R.

    1988-01-01

    Collisional energy transfer parameters for highly vibrationally excited azulene have been deduced from new infrared fluorescence (IRF) emission lifetime data with an improved calibration relating IRF intensity to vibrational energy [J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, XXXX (1988), preceding paper]. In addition, data from previous experiments [M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983)] have been reanalyzed based on the improved calibration. Inversion of the IRF decay curves produced plots of energy decay, which were analyzed to determine , the average energy transferred per collision. Master equation simulations reproduced both the original IRF decays and the deduced energy decays. A third (simple) method of determination agrees well with the other two. The results show to be nearly directly proportional to the vibrational energy of the excited azulene from ∼8000 to 33 000 cm -1 . At high energies, there are indications that the energy dependence may be slightly reduced

  20. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...