International Nuclear Information System (INIS)
Balakrishna, Jayashree; Bondarescu, Ruxandra; Daues, Gregory; Bondarescu, Mihai
2008-01-01
Excited state soliton stars are studied numerically for the first time. The stability of spherically symmetric S-branch excited state oscillatons under radial perturbations is investigated using a 1D code. We find that these stars are inherently unstable either migrating to the ground state or collapsing to black holes. Higher excited state configurations are observed to cascade through intermediate excited states during their migration to the ground state. This is similar to excited state boson stars [J. Balakrishna, E. Seidel, and W.-M. Suen, Phys. Rev. D 58, 104004 (1998).]. Ground state oscillatons are then studied in full 3D numerical relativity. Finding the appropriate gauge condition for the dynamic oscillatons is much more challenging than in the case of boson stars. Different slicing conditions are explored, and a customized gauge condition that approximates polar slicing in spherical symmetry is implemented. Comparisons with 1D results and convergence tests are performed. The behavior of these stars under small axisymmetric perturbations is studied and gravitational waveforms are extracted. We find that the gravitational waves damp out on a short time scale, enabling us to obtain the complete waveform. This work is a starting point for the evolution of real scalar field systems with arbitrary symmetries
Classification of a Supersolid: Trial Wavefunctions, Symmetry Breakings and Excitation Spectra
Chen, Yu; Ye, Jinwu; Tian, Guangshan
2012-11-01
A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.
Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads
Whited, Matthew T.; Patel, Niral M.; Roberts, Sean T.; Allen, Kathryn; Djurovich, Peter I.; Bradforth, Stephen E.; Thompson, Mark E.
2012-01-01
We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.
Symmetry-enhanced supertransfer of delocalized quantum states
International Nuclear Information System (INIS)
Lloyd, Seth; Mohseni, Masoud
2010-01-01
Coherent hopping of excitation relies on quantum coherence over physically extended states. In this work, we consider simple models to examine the effect of symmetries of delocalized multi-excitation states on the dynamical timescales, including hopping rates, radiative decay and environmental interactions. While the decoherence (pure dephasing) rate of an extended state over N sites is comparable to that of a non-extended state, superradiance leads to a factor of N enhancement in decay and absorption rates. In addition to superradiance, we illustrate how the multi-excitonic states exhibit 'supertransfer' in the far-field regime-hopping from a symmetrized state over N sites to a symmetrized state over M sites at a rate proportional to MN. We argue that such symmetries could play an operational role in physical systems based on the competition between symmetry-enhanced interactions and localized inhomogeneities and environmental interactions that destroy symmetry. As an example, we propose that supertransfer and coherent hopping play a role in recent observations of anomalously long diffusion lengths in nano-engineered assembly of light-harvesting complexes.
Localized excitations and the geometry of the 1nπ* excited states of pyrazine
International Nuclear Information System (INIS)
Kleier, D.A.; Martin, R.L.; Wadt, W.R.; Moomaw, W.R.
1982-01-01
Previous theoretical work has shown that the lowest excited singlet state of pyrazine, the π* 1 B 3 u state, is best described in terms of interacting excitations localized on each nitrogen. The present work refines the localized excitation model and considers its implications for the geometry of the 1 B 3 u state. Hartree-Fock calculations show that the best single configuration description of the nπ* state has broken ( 1 B 1 ) symmetry with the excitation strongly localized at one end of the molcule. If the symmetry-restricted hf result is used for reference, this localization describes an important correlation effect. The excited-state geometry was probed using configuration interaction wave functions based on the symmetry-restricted orbitals, as well as properly symmetrized ''valance-bond'' wave functions based on the broken symmetry solutions. Both descriptions lead to a very flat potential for a b/sub 1u/ vibrational mode. This mode reduces the molecular geometry from D/sub 2h/ to C/sub 2v/. We present spectroscopic evidence of our own and of other workers which is consistent with such a flat potential
Ni-Ni ion pair excitation transfer in D sub(3h) symmetry
International Nuclear Information System (INIS)
Terrile, M.C.
1990-01-01
The mechanisms contributing to excitation transfer are examined for Ni-Ni ion pairs in order to explain the delocalized character of electronic excitations observed in CsNiF sub(3). Using both first-and second-order perturbation theory and from symmetry arguments, the kind of interactions giving matrix elements between states connecting different sites for the position of the excitation are discussed. (author)
Symmetry characterization of electrons and lattice excitations
Directory of Open Access Journals (Sweden)
Schober H.
2012-03-01
Full Text Available Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external periodic potential while phonons exemplify a decoupled system of interacting particles. The way we develop the argument gives as by-product a short account of molecular orbitals and molecular vibrations.
Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States
Andreoiu, C; Napiorkowski, P J; Iwanicki, J S
2002-01-01
We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...
Energy Technology Data Exchange (ETDEWEB)
Arulmozhiraja, Sundaram, E-mail: raja@cat.hokudai.ac.jp; Coote, Michelle L. [ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, 2601 ACT (Australia); Hasegawa, Jun-ya [Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021 (Japan)
2015-11-28
Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.
Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College
2014-07-01
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.
Excited states configurations of the quantum Toda lattice
International Nuclear Information System (INIS)
Matsuyama, A.
2001-01-01
Excited states configurations of the quantum Toda lattice are studied by the direct diagonalization of the Hamiltonian. The most probable configurations of one-hole and one-particle excitations are shown to be similar to the profiles of classical phonon and soliton excitations, respectively. One-hole excitation states, which are always ground states of definite E m -symmetry of the dihedral group D N , change those structures abruptly with the potential range varied. One-particle excitations, which are buried in complicated excitation spectra, have well-defined configurations similar to the conoidal profile of the classical periodic Toda lattice. The relationship that the hole (particle) excitations in quantum mechanics correspond to the phonon (soliton) excitations in classical mechanics, which has been suggested based on the similarity of dispersion relations, is confirmed in a geometrically understandable way. Based on the study of one-soliton and two-soliton states, the structure of multi-soliton states in quantum mechanics can be conjectured
Microscopic description and excitation of unitary analog states
Energy Technology Data Exchange (ETDEWEB)
Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
1977-12-05
A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.
Quantum phase transitions between a class of symmetry protected topological states
Energy Technology Data Exchange (ETDEWEB)
Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai
2015-07-01
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.
σ-SCF: A direct energy-targeting method to mean-field excited states.
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy
2017-12-07
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.
2017-06-01
The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.
Symmetry-breaking and high-spin states
Energy Technology Data Exchange (ETDEWEB)
Khanna, F C [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)
1992-08-01
Spontaneous symmetry breaking in nuclear matter would require Nambu-Goldstone bosons in the system. A model calculation gives the nature of these excitations. In finite nuclei the excitations will be a mixture of rotational, surface vibrations and pseudo-Goldstone bosons. A search for such excitations would be fruitful. (author). 5 refs.
Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina
2018-05-01
Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.
International Nuclear Information System (INIS)
Chun-Yu, Zhao; Yi-Min, Zhang; Bang-Chun, Wen
2010-01-01
We derive the non-dimensional coupling equation of two exciters, including inertia coupling, stiffness coupling and load coupling. The concept of general dynamic symmetry is proposed to physically explain the synchronisation of the two exciters, which stems from the load coupling that produces the torque of general dynamic symmetry to force the phase difference between the two exciters close to the angle of general dynamic symmetry. The condition of implementing synchronisation is that the torque of general dynamic symmetry is greater than the asymmetric torque of the two motors. A general Lyapunov function is constructed to derive the stability condition of synchronisation that the non-dimensional inertia coupling matrix is positive definite and all its elements are positive. Numeric results show that the structure of the vibrating system can guarantee the stability of synchronisation of the two exciters, and that the greater the distances between the installation positions of the two exciters and the mass centre of the vibrating system are, the stronger the ability of general dynamic symmetry is
Symmetry-breaking in the response of the parametrically excited pendulum model
International Nuclear Information System (INIS)
Bishop, S.R.; Sofroniou, A.; Shi, P.
2005-01-01
A planar pendulum is considered which is parametrically excited by a periodic vertical force. The amplitude and frequency of the excitation are used as control parameters. The downward, hanging and the upward, inverted positions correspond to equilibrium positions if we only consider the variation in angle measured from the downward position. For moderate levels of forcing, there are zones that exist in the space of control parameters, where the downward hanging position is unstable and initial conditions that are close to the hanging position lead to steady state oscillations of period-2. To review this situation, this paper describes the development of these oscillations as the amplitude of forcing is varied. In the largest zone, a symmetry-breaking occurs which brings about a pair of asymmetric oscillations. This break in symmetry of the period-2 solution can lead to either an increase or decrease in the amplitude of the forthcoming swing and reference to the experimental significance of this angle change is noted in this paper. Typically, further increases of the parameter produce a cascade of period doubling bifurcations, before most oscillating solutions eventually lose their stability so that the system must experience a rotation. As a result, symmetry-breaking becomes an effective precursor to escape from the local potential well around the hanging position. Here we compare this behaviour with that in other resonance zones. The change of geometric structure when the symmetry-breaking bifurcation occurs is examined and graphically represented as a 'pinched' cylinder-like shape, compared with the Moebius strip that has been associated with the period-doubling bifurcation. The paper also refers to practical problems, where the introduction of nonlinearity means that potentially all frequencies below the main zone of the control space lead to dangerous effects and in some scenarios disastrous outcomes
Direct conversion of graphite into diamond through electronic excited states
Nakayama, H
2003-01-01
An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...
Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer
2018-04-01
Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.
Quasiparticle-phonon model and quadrupole mixed-symmetry states of 96Ru
Directory of Open Access Journals (Sweden)
Stoyanov Ch.
2016-01-01
Full Text Available The structure of low-lying quadrupole states of 96Ru was calculated within the Quasiparticle-Phonon Model. It is shown that symmetric and mixed-symmetry properties manifest themselves via the structure of the excited states. The first 2+ state is collective and neutron and proton transition matrix elements Mn and Mp are in-phase, while the neutron and proton transition matrix elements Mn and Mp have opposite signs for the third 2+ state. This property of the third 2+ state leads to a large M1 transition between the first and third 2+ states. It is an unambigous demonstration of the mixed-symmetry nature of the third 2+ state. The structure of the first 1+ state is calculated. The state is a member of the two-phonon multiplet generated by the coupling of the [21+]QRPA and the [22+]QRPA states.
International Nuclear Information System (INIS)
Ehara, Masahiro; Piecuch, Piotr; Lutz, Jesse J.; Gour, Jeffrey R.
2012-01-01
Graphical abstract: Electronically excited states of CuCl 4 2- and CuBr 4 2- are determined using the scalar relativistic symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster calculations. The results are compared with experimental spectra. Highlights: ► Electronic spectra of CuCl 4 2- and CuBr 4 2- are examined by SAC-CI and EOMCC methods. ► Relativistic SAC-CI and EOMCC results are compared with experimental spectra. ► An assignment of bands in the CuCl 4 2- and CuBr 4 2- absorption spectra is obtained. ► Relativistic effects affect excitation energies and ground-state geometries. ► The effect of relativity on the oscillator strengths is generally small. - Abstract: The valence excitation spectra of the copper tetrachloride and copper tetrabromide open-shell dianions, CuCl 4 2- and CuBr 4 2- , respectively, are investigated by a variety of symmetry-adapted-cluster configuration-interaction (SAC-CI) and equation-of-motion coupled-cluster (EOMCC) methods. The valence excited states of the CuCl 4 2- and CuBr 4 2- species that correspond to transitions from doubly occupied molecular orbitals (MOs) to a singly occupied MO (SOMO), for which experimental spectra are available, are examined with the ionized (IP) variants of the SAC-CI and EOMCC methods. The higher-energy excited states of CuCl 4 2- and CuBr 4 2- that correspond to transitions from SOMO to unoccupied MOs, which have not been characterized experimentally, are determined using the electron-attached (EA) SAC-CI and EOMCC approaches. An emphasis is placed on the scalar relativistic SAC-CI and EOMCC calculations based on the spin-free part of the second-order Douglass–Kroll–Hess Hamiltonian (DKH2) and on a comparison of the results of the IP and EA SAC-CI and EOMCC calculations with up to 2-hole-1-particle (2h-1p) and 2-particle-1-hole (2p-1h) excitations, referred to as the IP-SAC-CI SD-R and IP-EOMCCSD(2h-1p) methods in the IP case and EA-SAC-CI SD-R and EA
International Nuclear Information System (INIS)
Fukuda, Ryoichi; Ehara, Masahiro
2015-01-01
The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents
Studies of photoionization processes from ground-state and excited-state atoms and molecules
International Nuclear Information System (INIS)
Ederer, D.L.; Parr, A.C.; West, J.B.
1982-01-01
Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described
International Nuclear Information System (INIS)
Li Wenfei; Zhang Fengshou; Chen Liewen
2001-01-01
Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments
Structure of transition nuclei states in fermion dynamic-symmetry model
International Nuclear Information System (INIS)
Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.
2007-01-01
In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
Directory of Open Access Journals (Sweden)
Christian Appold
2010-06-01
Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.
Role of particle-hole symmetry in mirror energy difference
International Nuclear Information System (INIS)
Kumar, V.; Kumar, S.; Hasan, Z.; Kumar, D.; Koranga, B.S.; Rohitash; Singh, D.; Negi, D.; Angus, L.
2011-01-01
Charge symmetry between protons and neutrons means that they can be viewed as two states of the same particle, the nucleon, characterized by different projections of the isospin quantum number. In the hypothesis of charge symmetry expected identical behaviour of excited states of two nuclei with the same total number of nucleons (isobaric nuclei). The nuclei with magic number are considered to be spherical. When the number of particles/holes increase, the nucleus try towards more deformed upto mid-shell. It shows symmetry between particles and holes towards the deformation. The hypothesis of Particle-hole symmetry expected identical behaviour of excited states of two nuclei close to magic number. It is worthwhile to examine the shape of mirror energy difference (MED) close to magic number nuclei, which will also an example of particle-hole symmetry
σ-SCF: A direct energy-targeting method to mean-field excited states
Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy
2017-12-01
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.
Particle-hole symmetry and composite fermions in fractional quantum Hall states
Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh
2018-05-01
We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.
Optimized RVB states of the 2-d antiferromagnet: ground state and excitation spectrum
Chen, Yong-Cong; Xiu, Kai
1993-10-01
The Gutzwiller projection of the Schwinger-boson mean-field solution of the 2-d spin- {1}/{2} antiferromagnet in a square lattice is shown to produce the optimized, parameter-free RVB ground state. We get -0.6688 J/site and 0.311 for the energy and the staggered magnetization. The spectrum of the excited states is found to be linear and gapless near k≅0. Our calculation suggests, upon breaking of the rotational symmetry, ɛ k≅2JZ r1-γ 2k with Zr≅1.23.
Analytical study of doubly excited ridge states
International Nuclear Information System (INIS)
Wong, H.Y.
1988-01-01
Two different non-separable problems are explored and analyzed. Non-perturbative methods need to be used to handle them, as the competing forces involved in these problems are equally strong and do not yield to a perturbative analysis. The first one is the study of doubly excited ridge states of atoms, in which two electrons are comparably excited. An analytical wavefunction for such states is introduced and is used to solve the two-electron Hamiltonian in the pair coordinates called hyperspherical coordinates variationally. The correlation between the electrons is built in analytically into the structure of the wavefunction. Sequences of ridge states out to very high excitation are computed and are organized as Rydberg series converging to the double ionization limit. Numerical results of such states in He and H - are compared with other theoretical calculations where available. The second problem is the analysis of the photodetachment of negative ions in an electric field via the frame transformation theory. The presence of the electron field requires a transformation from spherical to cylindrical symmetry for the outgoing photoelectron. This gives an oscillatory modulating factor as the effect of the electric field on cross-sections. All of this work is derived analytically in a general form applicable to the photodetachment of any negative ion. The expressions are applied to H - and S - for illustration
Schleicher, F; Halisdemir, U; Lacour, D; Gallart, M; Boukari, S; Schmerber, G; Davesne, V; Panissod, P; Halley, D; Majjad, H; Henry, Y; Leconte, B; Boulard, A; Spor, D; Beyer, N; Kieber, C; Sternitzky, E; Cregut, O; Ziegler, M; Montaigne, F; Beaurepaire, E; Gilliot, P; Hehn, M; Bowen, M
2014-08-04
Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.
Dynamic generation of light states with discrete symmetries
Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.
2018-01-01
A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .
Multiparticle excitations in the 149 Gd superdeformed nucleus. Signature of new C4 nucleus symmetry
International Nuclear Information System (INIS)
Theisen, C.
1995-01-01
The use of 8 π and EUROGAM phase I multi-detectors for the study of high spin states of 149 Gd nucleus has revealed unexpected new phenomenons about the superdeformation in this nucleus. The new excited bands confirm the omnipresence of twin bands phenomenon. A new multi-particle excitation (two protons and one neutron) has been discovered. Thanks to the second generation EUROGAM detector, unexpected discoveries such as C 4 symmetry, level interactions, complete backbending were obtained for the second potential well. The knowledge of interacting levels gives informations about the nucleon-nucleon residual interaction and could allow the determination of SD bands excitation energy. The complex processing and analysis of high multiplicity events has led to the development of new computing tools. An automatic band research program has been written for the discovery of new excited bands, and an exact method for the elimination of uncorrected events has been developed. The improvements of multi-detector performances should allow the discovery of more exceptional phenomenons and new anomalies in the SD bands. (J.S.). 222 refs., 86 figs., 38 tabs
Symmetry energy II: Isobaric analog states
Danielewicz, Pawel; Lee, Jenny
2014-02-01
Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, representing a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from aa˜10 MeV at mass A˜10 to aa˜22 MeV at A˜240. Variation with mass can be understood in terms of dependence of nuclear symmetry energy on density and the rise in importance of low densities within nuclear surface in smaller systems. At A≳30, the dependence of coefficients on mass can be well described in terms of a macroscopic volume-surface competition formula with aaV≃33.2 MeV and aaS≃10.7 MeV. Our further investigation shows, though, that the fitted surface symmetry coefficient likely significantly underestimates that for the limit of half-infinite matter. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In our further analysis, we retain only those parametrizations which yield systems that are adequately stable both in the long- and short-wavelength limits. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (±2.4 MeV) constraints on the symmetry-energy values S(ρ) at 0.04≲ρ≲0.13 fm. Towards normal density the constraints significantly widen, but the normal value of energy aaV and the slope parameter L are found to be strongly correlated. To narrow the constraints, we reach for the
Lim, Edward C
2013-01-01
Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo
An excited-state approach within full configuration interaction quantum Monte Carlo
International Nuclear Information System (INIS)
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-01-01
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available
Doubly excited circular Ba(6pj, 21c) states: e-e interaction effects in weak external fields
International Nuclear Information System (INIS)
Chen, L.; Cheret, M.; Poirier, M.; Roussel, F.; Bolzinger, T.; Spiess, G.
1992-01-01
The behaviour of doubly excited circular atoms in weak parallel electric and magnetic fields has been studied. The Hamiltonian, including the e-e interaction between the two excited electrons, Stark and Zeeman effects, is diagonalized in a truncated basis. The Rydberg electron, initially in a circular state, experiences a mixing of its orbital and magnetic quantum numbers, due to the presence of the external fields and to the excitation of the inner electron. This mixing depends on the spatial symmetry of the excited core and on the amplitude of the electric field. It can be detected by the field-ionization method which provides a new way for studying non-autoionizing doubly excited states. (orig.)
International Nuclear Information System (INIS)
Giambiagi, M.S. de; Giambiagi, M.
1982-01-01
Direct PPP-type calculations of self-consistent (SC) density matrices for excited states are described and the corresponding 'thawn' molecular orbitals (MO) are discussed. Special attention is addressed to particular solutions arising in conjugated systems of a certain symmetry, and to their chemical implications. The U(2) and U(3) algebras are applied respectively to the 4-electron and 6-electron cases: a natural separation of excited states in different cases follows. A simple approach to the convergence problem for excited states is given. The complementarity relations, an alternative formulation of the pairing theorem valid for heteromolecules and non-alternant systems, allow some fruitful experimental applications. Together with the extended pairing relations shown here, they may help to rationalize general trends. (Author) [pt
Collective states and crossing symmetry
International Nuclear Information System (INIS)
Heiss, W.D.
1977-01-01
Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out
International Nuclear Information System (INIS)
Burda, Oleksiy
2007-07-01
The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in 94 Mo and the second one to the astrophysical relevant line shape of the first excited 1/2 + state in 9 Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2 + states in 94 Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles Θ e =93 -165 . In dispersion-matching mode an energy resolution Δ E =30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles Θ p =4.5 -26 . Typical energy resolutions were Δ E ≅35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2 + states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2 + state in 9 Be is studied. Spectra of the 9 Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E x =8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant 9 Be(γ,n) cross sections have been extracted from the (e,e') data. The resonance parameters of the first excited 1/2 + state in 9 Be are derived in a one-level R-matrix approximation. The deduced
Lim, Edward C
1982-01-01
Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho
International Nuclear Information System (INIS)
Oppermann, R.; Rosenow, B.
1997-10-01
We report large effects of Parisi replica permutation symmetry breaking (RPSB) on elementary excitations of fermionic systems with frustrated magnetic interactions. The electronic density of states is obtained exactly in the zero temperature limit for (K = 1)- step RPSB together with relations for arbitrary breaking K, which lead to a new fermionic and dynamical Parisi solution at K = ∞. The Ward identity for charge conservation indicates RPSB-effects on the conductivity in metallic quantum spin glasses. This implies that RPSB is essential for any fermionic system showing spin glass sections within its phase diagram. An astonishing similarity with a neural network problem is also observed. (author)
Lim, Edward C
1974-01-01
Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab
New excited states in sd-shell nucleus {sup 33}P
Energy Technology Data Exchange (ETDEWEB)
Fu, B.; Reiter, P.; Arnswald, K.; Hess, H.; Hirsch, R.; Lewandowski, L.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wendt, A.; Wolf, K. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)
2015-07-01
Isospin-symmetry breaking in nuclear physics is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD-calculations successfully reproduce MED for T=1,3/2,2 sd-shell nuclei. Refined tests of theory are given by lifetime measurements in order to deduce transition-strength values. In order to study the mirror pair {sup 33}Ar and {sup 33}P, the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV was measured at the Cologne tandem accelerator and the HORUS spectrometer employing the Doppler-Shift-Attenuation-Method (DSAM). First results yielded new γ-ray transitions in {sup 33}P and {sup 33}S. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV. Spins and parities of the new levels were determined exploiting γγ-angular correlations. Together with values from the proton-rich T{sub z} = - 3/2 partner, the levels are compared to shell model calculations, describing excitation energies of sd -shell mirror pairs. The understanding of isospin symmetry and isospin-symmetry breaking is a fundamental question in nuclear physics. Isospin-symmetry breaking is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD{sup m}{sub 1,2,3}-calculations successfully reproduced MED for the mirror nuclei {sup 33}Ar and {sup 33}P. Both {sup 33}P and {sup 33}S were produced at the Cologne FN tandem accelerator employing the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV and spectroscopically investigated using 14 HPGe detectors. Several new energy states (in {sup 33}P) and γ-ray transitions (in {sup 33}P and {sup 33}S) were detected. Spins and parities of the new levels in {sup 33}P were determined exploiting γγ-angular correlations. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV.
Sensitive lifetime measurement of excited states of {sup 98}Ru via the (p,p{sup '}γ) reaction
Energy Technology Data Exchange (ETDEWEB)
Vielmetter, Vera; Hennig, Andreas; Derya, Vera; Pickstone, Simon G.; Prill, Sarah; Spieker, Mark; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)
2016-07-01
The one-phonon mixed-symmetry quadrupole excitation 2{sup +}{sub ms} is a well established excitation mode in near-spherical nuclei, especially in the A ∼ 100 mass region. However, it is largely unknown how mixed-symmetry states evolve along shape-transitional paths, e.g. from spherical to deformed shapes. The chain of stable ruthenium isotopes is well suited for this study since it exhibits a smooth transition from spherical ({sup 96,98}Ru) to deformed shapes ({sup 104}Ru). To identify the 2{sup +}{sub ms} state of {sup 98}Ru on the basis of absolute M1 and E2 transition strengths, we performed a proton-scattering experiment on {sup 98}Ru using the SONIC rate at HORUS setup at the University of Cologne. Lifetimes of excited states were measured via the Doppler-shift attenuation method (DSAM), which benefits from the acquired pγ-coincidence data. First results of this experiment are presented and compared to the neighbouring nuclei {sup 96}Ru and {sup 100}Ru.
International Nuclear Information System (INIS)
Carvalho-Santos, V.L.; Apolonio, F.A.; Oliveira-Neto, N.M.
2013-01-01
We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry. -- Highlights: •Applying the anisotropic Heisenberg model on curved surfaces. •Appearance of topological solitons on curved surfaces with cylindrical symmetry. •Calculus of the vortex energy, which depends on curvature. •Discussion on features of non-topological helical-like states. •Vortex stability ensured by the anisotropy parameter value
Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry
DEFF Research Database (Denmark)
Wölms, Konrad Udo Hannes
In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... phase the edge excitations are called Majorana bound states and they are interesting in themselves. There has been a lot of eort in detecting Majorana bound states in the lab. One reason is that these excitations provide evidence that a system is indeed in a topological phase. It is therefore required...... to have unambiguous experimental evidence for the presence Majorana bound states, which in turn requires a good theoretical understanding of the physics associated with Majorana bound states. In particular for the most common experimental methods that are used to study them, the signature of Majorana...
Giant resonances on excited states
International Nuclear Information System (INIS)
Besold, W.; Reinhard, P.G.; Toepffer, C.
1984-01-01
We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)
Splitting of the luminescent excited state of the uranyl ion
International Nuclear Information System (INIS)
Flint, C.D.; Sharma, P.; Tanner, P.A.
1982-01-01
The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds
Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study
Xu, Wenhua; Ma, Jianyi; Peng, Daoling; Zou, Wenli; Liu, Wenjian; Staemmler, Volker
2009-02-01
The perrhenate anion, ReO4-, is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted.
Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study
International Nuclear Information System (INIS)
Xu Wenhua; Ma Jianyi; Peng Daoling; Zou Wenli; Liu Wenjian; Staemmler, Volker
2009-01-01
The perrhenate anion, ReO 4 - , is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3 T 1 and 3 T 2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted
Ishii, Kazuyuki; Itoya, Hatsumi; Miwa, Hideya; Fujitsuka, Mamoru; Ito, Osamu; Kobayashi, Nagao
2005-07-07
We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology
Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules
Energy Technology Data Exchange (ETDEWEB)
Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others
1997-04-01
Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.
Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry
International Nuclear Information System (INIS)
Estienne, Benoit; Bernevig, B. Andrei
2012-01-01
We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wavefunctions and their quasihole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at filling fraction ν=(2k)/(2r-1) and generalizes the (k,r) spin-polarized Jack polynomial states. The NASS and Halperin spin-singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained, allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k,r) spin-singlet Jack states.
Mixed-symmetry states and shape coexistence in N=52-56 Mo isotopes
Energy Technology Data Exchange (ETDEWEB)
Werner, V. [IKP, TU Darmstadt (Germany); WNSL, Yale Univ. (United States); Thomas, T. [WNSL, Yale Univ. (United States); IKP, Univ. Koeln (Germany); Jolie, J.; Duckwitz, H.; Fitzler, A.; Fransen, C.; Linnemann, A. [IKP, Univ. Koeln (Germany); Nomura, K. [GANIL (France); Univ. Zagreb (Croatia); Ahn, T. [WNSL, Yale Univ. (United States); Univ. Notre Dame (United States); Cooper, N.; Hinton, M.; Ilie, G. [WNSL, Yale Univ. (United States); Gade, A. [IKP, Univ. Koeln (Germany); NSCL, Michigan State Univ. (United States); Jessen, K. [IKP, Univ. Koeln (Germany); LMU Muenchen (Germany); Petkov, P. [IKP, Univ. Koeln (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Pietralla, N. [IKP, TU Darmstadt (Germany); Radeck, D. [IKP, Univ. Koeln (Germany); PTB Braunschweig (Germany)
2016-07-01
Angular correlation experiments have been performed on {sup 96}Mo and {sup 98}Mo at the IKP, Universitaet zu Koeln, and at WNSL, Yale University. Lifetimes of excited states have been determined from line shape analyses. The extensive data set, compared to IBM-2 configuration mixing calculations based on microscopic EDFs, reveals the occurrence of coexistence of near-spherical and deformed configurations in both Mo isotopes. Furthermore, the main fragments of one-phonon mixed-symmetry 2{sup +} states have been identified. The systematic of their decay behavior in the Mo chain from N=52 to 56, namely the crossing of the strongest M1 decay branch to the first and second 2{sup +} states as a function of neutron number, suggests a new signature for shape coexistence.
Roca-Maza, X; Colò, G; Sagawa, H
2018-05-18
We analyze and propose a solution to the apparent inconsistency between our current knowledge of the equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy nucleus such as ^{208}Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction that is successful in reproducing the IAS excitation energy without compromising other properties of finite nuclei.
Jayakiruba, S; Chandrasekaran, S Selva; Murugan, P; Lakshminarasimhan, N
2017-07-05
Eu 3+ activated phosphors are widely used as red emitters in various display devices and light emitting diodes (LEDs). The emission characteristics of Eu 3+ depend on the local site symmetry. The present study demonstrates the role of excitation-dependent local symmetry changes due to the structural reorganization on the emission colour tuning of Eu 3+ from orange-red to orange in single host lattices, Ba 2 Mg(BO 3 ) 2 and Ba 2 Ca(BO 3 ) 2 . The choice of these lattices was based on the difference in the extent of strain experienced by the oxygen atoms. The samples with Eu 3+ at Ba or Mg (Ca) sites were synthesized using the conventional high-temperature solid-state reaction method. The samples were characterized using powder XRD, 11 B MAS-NMR, FT-IR, and diffuse reflectance UV-Vis spectroscopic techniques. The room temperature photoluminescence (PL) recorded using different excitation wavelengths revealed a clear difference in the PL emission features due to symmetry reversal from non-inversion to inversion symmetry around Eu 3+ . The reorganization of highly strained oxygen atoms leads to such symmetry reversal. First-principles calculations were used to deduce the optimized structures of the two borate host lattices, and local geometries and their distortions upon Eu 3+ substitution. The outcomes of these calculations support the experimental findings.
Hadrons of arbitrary spin and heavy quark symmetry
International Nuclear Information System (INIS)
Hussain, F.; Thompson, G.; Koerner, J.G.
1993-11-01
We present a general construction of the spin content of the Bethe-Salpeter amplitudes (covariant wave functions) for heavy hadrons with arbitrary orbital excitations, using representations of l x O(3, 1). These wave functions incorporate the symmetries manifest in the heavy quark limit. In the baryonic sector we clearly differentiate between the Λ and Σ-type excited baryons. We then use the trace formalism to evaluate the weak transitions of ground state heavy hadrons to arbitrary excited heavy hadrons. The contributions of excited states to the Bjorken sum rule are also worked out in detail. (author). 21 refs
Excited-state density functional theory
International Nuclear Information System (INIS)
Harbola, Manoj K; Hemanadhan, M; Shamim, Md; Samal, P
2012-01-01
Starting with a brief introduction to excited-state density functional theory, we present our method of constructing modified local density approximated (MLDA) energy functionals for the excited states. We show that these functionals give accurate results for kinetic energy and exchange energy compared to the ground state LDA functionals. Further, with the inclusion of GGA correction, highly accurate total energies for excited states are obtained. We conclude with a brief discussion on the further direction of research that include the construction of correlation energy functional and exchange potential for excited states.
New particle-hole symmetries and the extended interacting boson model
De Coster, C; Decroix, B; Heyde, Kris L G; Oros, A M
1998-01-01
We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently $SU(4)$ multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the $U(5)$-$SU(3)$ dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes.
International Nuclear Information System (INIS)
Nielsen, S.E.; Andersen, N.
1988-01-01
This paper reports coupled channel model calculations of direct transitions in Li-He collisions among excited Li-states of negative reflection symmetry in the scattering plane. Using the natural coordinate frame, transition probabilities and orientation and alignment parameters are predicted as functions of impact energy and impact parameter for various initial states. It is found that for geometrical reasons transition probabilities are one to two orders of magnitude smaller than for corresponding states with positive reflection symmetry. Some experimental consequences of this finding are pointed out. (orig.)
Prodhan, Suryoday; Ramasesha, S.
2018-05-01
The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this bottleneck. The new method incorporates end-to-end interchange symmetry (C2) , electron-hole symmetry (J ) , and parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s, it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge structures.
Alternative Experimental Evidence for Chiral Restoration in Excited Baryons
International Nuclear Information System (INIS)
Glozman, L. Ya.
2007-01-01
It has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature and density (effective symmetry restoration). Using very general chiral symmetry arguments, it is shown that those excited nucleons that are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only weakly decay into the Nπ channel (f N*Nπ /f NNπ ) 2 NNπ . It turns out that for all those well-established excited nucleons which can be classified into chiral doublets the ratio is (f N*Nπ /f NNπ ) 2 ∼0.1 or much smaller for the high-spin states. In contrast, the only well-established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the Nπ channel that is comparable with f NNπ
Electron impact excitation of xenon from the metastable state to the excited states
Energy Technology Data Exchange (ETDEWEB)
Jiang Jun; Dong Chenzhong; Xie Luyou; Zhou Xiaoxin [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Jianguo [Institute of Applied Physics and Computational Mathematic, Beijing 100088 (China)], E-mail: dongcz@nwnu.edu.cn
2008-12-28
The electron impact excitation cross sections from the lowest metastable state 5p{sup 5}6sJ = 2 to the six lowest excited states of the 5p{sup 5}6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.
Symmetry structure in neutron deficient xenon nuclei
International Nuclear Information System (INIS)
Govil, I. M.
1998-01-01
The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei ( 122,124 Xe) by recoil Distance Method (RDM). The lifetimes of the 2 + state in 122 Xe agrees with the RDM measurements but for 124 Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76( 130 Xe) to N=64( 118 Xe)
Symmetry structure in neutron deficient xenon nuclei
Govil, I. M.
1998-12-01
The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei (122,124Xe) by recoil Distance Method (RDM). The lifetimes of the 2+ state in 122Xe agrees with the RDM measurements but for 124Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76(130Xe) to N=64(118Xe).
Electronic properties of excited states in single InAs quantum dots
International Nuclear Information System (INIS)
Warming, Till
2009-01-01
The application of quantum-mechanical effects in semiconductor nanostructures enables the realization of novel opto-electronic devices. Examples are given by single-photon emitters and emitters of entangled photon pairs, both being essential for quantum cryptography, or for qubit systems as needed for quantum computing. InAs/GaAs quantum dots are one of the most promising candidates for such applications. A detailed knowledge of the electronic properties of quantum dots is a prerequisite for this development. The aim of this work is an experimental access to the detailed electronic structure of the excited states in single InAs/GaAs quantum dots including few-particle effects and in particular exchange interaction. The experimental approach is micro photoluminescence excitation spectroscopy (μPLE). One of the main difficulties using μPLE to probe single QDs is the unambiguous assignment of the observed resonances in the spectrum to specific transitions. By comparing micro photoluminescence (μPL) and μPLE spectra, the identification of the main resonances becomes possible. The key is given by the fine structure of the hot trion. Excitation spectroscopy on single charged QDs enables for the first time the complete observation of a non-trivial fine structure of an excitonic complex in a QD, the hot trion. Modelling based on eight-band k.p theory in combination with a configuration interaction scheme is in excellent agreement. Therewith the simulation also enables realistic predictions on the fine structure of the ground-state exciton which is of large importance for single quantum dot devices. Theory concludes from the observed transitions that the structural symmetry of the QDs is broken. Micro photoluminescence excitation spectroscopy combined with resonantly excited micro photoluminescence enables an optical access to the single particle states of the hole without the influence of few-particle coulomb interactions. Based on this knowledge the exciton binding
A density matrix renormalization group study of low-lying excitations ...
Indian Academy of Sciences (India)
Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited 2 symmetry and spin parity of the system to obtain excited states of ...
Green, S.
1972-01-01
Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.
Effective field theory of emergent symmetry breaking in deformed atomic nuclei
International Nuclear Information System (INIS)
Papenbrock, T; Weidenmüller, H A
2015-01-01
Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band. (paper)
Energy Technology Data Exchange (ETDEWEB)
Burda, Oleksiy
2007-07-15
The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in {sup 94}Mo and the second one to the astrophysical relevant line shape of the first excited 1/2{sup +} state in {sup 9}Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2{sup +} states in {sup 94}Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles {theta}{sub e}=93 -165 . In dispersion-matching mode an energy resolution {delta}{sub E}=30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles {theta}{sub p}=4.5 -26 . Typical energy resolutions were {delta}{sub E}{approx_equal}35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2{sup +} states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2{sup +} state in {sup 9}Be is studied. Spectra of the {sup 9}Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E{sub x}=8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant {sup 9}Be({gamma},n) cross sections have been extracted from the (e,e') data. The
Excited-state molecular photoionization dynamics
International Nuclear Information System (INIS)
Pratt, S.T.
1995-01-01
This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)
Excited states in biological systems
International Nuclear Information System (INIS)
Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.
1979-01-01
Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt
High-energy symmetries of string theory
International Nuclear Information System (INIS)
Lee Jenchi.
1990-01-01
The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation
Unexpected Symmetry in the Nodal Structure of the He Atom
International Nuclear Information System (INIS)
Bressanini, Dario; Reynolds, Peter J.
2005-01-01
The nodes of even simple wave functions are largely unexplored. Motivated by their importance to quantum simulations of fermionic systems, we have found unexpected symmetries in the nodes of several atoms and molecules. Here, we report on helium. We find that in both ground and excited states the nodes have simple forms. In particular, they have higher symmetry than the wave functions they come from. It is of great interest to understand the source of these new symmetries. For the quantum simulations that motivated the study, these symmetries may help circumvent the fermion sign problem
Constraining the physical state by symmetries
Energy Technology Data Exchange (ETDEWEB)
Fatibene, L., E-mail: lorenzo.fatibene@unito.it [Department of Mathematics, University of Torino (Italy); INFN - Sezione Torino - IS QGSKY (Italy); Ferraris, M.; Magnano, G. [Department of Mathematics, University of Torino (Italy)
2017-03-15
After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.
Directory of Open Access Journals (Sweden)
Meng Cheng
2016-12-01
Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.
International Nuclear Information System (INIS)
Schrader, D.M.
2004-01-01
We work out the complete symmetry and spin problem for diatomic positronium Ps 2 for the ground and singly excited states of zero orbital angular momentum. The general form of the wave function for each state is given, with due regard to charge conjugation parity. Annihilation rates are discussed, and correlations to dissociation products are deduced. We indicate how the approach is extensible to larger aggregates: i.e., PsPs n , n>2
Zero-norm states and stringy symmetries
International Nuclear Information System (INIS)
Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Yang Yi; Teraguchi, Shunsuke
2006-01-01
We identify spacetime symmetry charges of string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculation. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory
Zero-norm states and stringy symmetries
International Nuclear Information System (INIS)
Chan, C-T; Ho, P-M; Lee, J-C; Teraguchi, Shunsuke; Yang Yi
2006-01-01
We identify spacetime symmetry charges of 26D open bosonic string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculations. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory
Oyarzabal, I; Ruiz, J; Ruiz, E; Aravena, D; Seco, J M; Colacio, E
2015-08-11
The trinuclear complex [ZnCl(μ-L)Dy(μ-L)ClZn]PF6 exhibits a single-molecule magnetic behaviour under zero field with a relatively large effective energy barrier of 186 cm(-1). Ab initio calculations reveal that the relaxation of the magnetization is symmetry-driven (the Dy(III) ion possesses a C2 symmetry) and occurs via the second excited state.
Extended Lagrangian Excited State Molecular Dynamics.
Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N
2018-02-13
An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).
Photoionization dynamics of excited molecular states
International Nuclear Information System (INIS)
Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.
1987-01-01
Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs
Kinetics studies following state-selective laser excitation
International Nuclear Information System (INIS)
Keto, J.W.
1994-04-01
The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy
Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method
DEFF Research Database (Denmark)
Lorentsen, Louise; Kristensen, Lars Michael
2001-01-01
The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space.......The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate...
Globally symmetric topological phase: from anyonic symmetry to twist defect
International Nuclear Information System (INIS)
Teo, Jeffrey C Y
2016-01-01
Topological phases in two dimensions support anyonic quasiparticle excitations that obey neither bosonic nor fermionic statistics. These anyon structures often carry global symmetries that relate distinct anyons with similar fusion and statistical properties. Anyonic symmetries associate topological defects or fluxes in topological phases. As the symmetries are global and static, these extrinsic defects are semiclassical objects that behave disparately from conventional quantum anyons. Remarkably, even when the topological states supporting them are Abelian, they are generically non-Abelian and powerful enough for topological quantum computation. In this article, I review the most recent theoretical developments on symmetries and defects in topological phases. (topical review)
On the particle excitations in the XXZ spin chain
Energy Technology Data Exchange (ETDEWEB)
Ovchinnikov, A.A., E-mail: ovch@ms2.inr.ac.ru
2013-12-09
We continue to study the excited states for the XXZ spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to π/2. We propose the particle–hole symmetry which relates the eigenstates build up from the two different pseudovacuum states. We find the XXX spin chain limit for the eigenstates with the complex roots. We also comment on the low-energy excited states for the XXZ spin chain.
The mechanisms of Excited states in enzymes
DEFF Research Database (Denmark)
Petersen, Frederic Nicolas Rønne; Bohr, Henrik
2010-01-01
Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....
Energy Technology Data Exchange (ETDEWEB)
Theisen, C
1995-01-01
The use of 8 {pi} and EUROGAM phase I multi-detectors for the study of high spin states of {sup 149} Gd nucleus has revealed unexpected new phenomenons about the superdeformation in this nucleus. The new excited bands confirm the omnipresence of twin bands phenomenon. A new multi-particle excitation (two protons and one neutron) has been discovered. Thanks to the second generation EUROGAM detector, unexpected discoveries such as C{sub 4} symmetry, level interactions, complete backbending were obtained for the second potential well. The knowledge of interacting levels gives informations about the nucleon-nucleon residual interaction and could allow the determination of SD bands excitation energy. The complex processing and analysis of high multiplicity events has led to the development of new computing tools. An automatic band research program has been written for the discovery of new excited bands, and an exact method for the elimination of uncorrected events has been developed. The improvements of multi-detector performances should allow the discovery of more exceptional phenomenons and new anomalies in the SD bands. (J.S.). 222 refs., 86 figs., 38 tabs.
Excited state Intramolecular Proton Transfer in Anthralin
DEFF Research Database (Denmark)
Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens
1998-01-01
Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....
Symmetry Energy as a Function of Density and Mass
International Nuclear Information System (INIS)
Danielewicz, Pawel; Lee, Jenny
2007-01-01
Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a a V = (31.5-33.5) MeV for the volume coefficient and a a S = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L∼95 MeV and K sym ∼25 MeV
Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, M.; /SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS; He, R.-H.; /aff SIMES, Stanford /Stanford U., Geballe Lab.; Tanaka, K.; /aff SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS /Osaka U.; Testaud, J.P.; /SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS; Meevasana1, W.; Moore, R.G.; Lu, D.H.; /SIMES, Stanford /Stanford U., Geballe Lab.; Yao, H.; /SIMES, Stanford; Yoshida, Y.; Eisaki, H.; /AIST, Tsukuba; Devereaux, T.P.; /SIMES, Stanford /Stanford U., Geballe Lab.; Hussain, Z.; /LBNL, ALS; Shen, Z.-X.; /SIMES, Stanford /Stanford U., Geballe Lab.
2011-08-19
In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (T{sub c}), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-T{sub c} cuprate superconductors above T{sub c}, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.
Excited-state imaging of cold atoms
Sheludko, D.V.; Bell, S.C.; Vredenbregt, E.J.D.; Scholten, R.E.; Deshmukh, P.C.; Chakraborty, P.; Williams, J.F.
2007-01-01
We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes
Optical studies of multiply excited states
International Nuclear Information System (INIS)
Mannervik, S.
1989-01-01
Optical studies of multiply-excited states are reviewed with emphasis on emission spectroscopy. From optical measurements, properties such as excitation energies, lifetimes and autoionization widths can be determined with high accuracy, which constitutes a challenge for modern computational methods. This article mainly covers work on two-, three- and four-electron systems, but also sodium-like quartet systems. Furthermore, some comments are given on bound multiply-excited states in negative ions. Fine structure effects on transition wavelengths and lifetimes (autoionization) are discussed. In particular, the most recent experimental and theoretical studies of multiply-excited states are covered. Some remaining problems, which require further attention, are discussed in more detail. (orig.) With 228 refs
Entanglement entropy of excited states
International Nuclear Information System (INIS)
Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale
2009-01-01
We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling
Stuchbery, A. E.; Ryan, C. G.; Bolotin, H. H.; Morrison, I.; Sie, S. H.
1981-07-01
The enhanced transient hyperfine field manifest at the nuclei of swiftly recoiling ions traversing magnetized ferromagnetic materials was utilized to measure the gyromagnetic ratios of the 2 +1, 2 +2 and 4 +1 states in 198Pt by the thin-foil technique. The states of interest were populated by Coulomb excitation using a beam of 220 MeV 58Ni ions. The results obtained were: g(2 +1) = 0.324 ± 0.026; g(2 +2) = 0.34 ± 0.06; g(4 +1) = 0.34 ± 0.06. In addition, these measurements served to discriminate between the otherwise essentially equally probable values previously reported for the E2/M1 ratio of the 2 +2 → 2 +1 transition in 198Pt. We also performed interacting boson approximation (IBA) model-based calculations in the O(6) limit symmetry, with and without inclusion of a small degree of symmetry breaking, and employed the M1 operator in both first- and second-order to obtain M1 selection rules and to calculate gyromagnetic ratios of levels. When O(6) symmetry is broken, there is a predicted departure from constancy of the g-factors which provides a good test of the nuclear wave function. Evaluative comparisons are made between these experimental and predicted g-factors.
Characterization of weakly excited final states by shakedown spectroscopy of laser-excited potassium
International Nuclear Information System (INIS)
Schulz, J.; Heinaesmaeki, S.; Aksela, S.; Aksela, H.; Sankari, R.; Rander, T.; Lindblad, A.; Bergersen, H.; Oehrwall, G.; Svensson, S.; Kukk, E.
2006-01-01
3p shakedown spectra of laser excited potassium atoms as well as direct 3p photoemission of ground state potassium have been studied. These two excitation schemes lead to the same final states and thereby provide a good basis for a detailed study of the 3p 5 (4s3d) 1 configurations of singly ionized potassium and the photoemission processes leading to these configurations. The comparison of direct photoemission from the ground state and conjugate shakedown spectra from 4p 1/2 laser excited potassium made it possible to experimentally determine the character of final states that are only weakly excited in the direct photoemission but have a much higher relative intensity in the shakedown spectrum. Based on considerations of angular momentum and parity conservation the excitation scheme of the final states can be understood
G-Boson renormalizations and mixed symmetry states
International Nuclear Information System (INIS)
Scholten, O.
1986-01-01
In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed
Quantum symmetry for pedestrians
International Nuclear Information System (INIS)
Mack, G.; Schomerus, V.
1992-03-01
Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)
Fluctuation relations for equilibrium states with broken discrete or continuous symmetries
International Nuclear Information System (INIS)
Lacoste, D; Gaspard, P
2015-01-01
Isometric fluctuation relations are deduced for the fluctuations of the order parameter in equilibrium systems of condensed-matter physics with broken discrete or continuous symmetries. These relations are similar to their analogues obtained for non-equilibrium systems where the broken symmetry is time reversal. At equilibrium, these relations show that the ratio of the probabilities of opposite fluctuations goes exponentially with the symmetry-breaking external field and the magnitude of the fluctuations. These relations are applied to the Curie–Weiss, Heisenberg, and XY models of magnetism where the continuous rotational symmetry is broken, as well as to the q-state Potts model and the p-state clock model where discrete symmetries are broken. Broken symmetries are also considered in the anisotropic Curie–Weiss model. For infinite systems, the results are calculated using large-deviation theory. The relations are also applied to mean-field models of nematic liquid crystals where the order parameter is tensorial. Moreover, their extension to quantum systems is also deduced. (paper)
(d -2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States
Song, Zhida; Fang, Zhong; Fang, Chen
2017-12-01
We study fourfold rotation-invariant gapped topological systems with time-reversal symmetry in two and three dimensions (d =2 , 3). We show that in both cases nontrivial topology is manifested by the presence of the (d -2 )-dimensional edge states, existing at a point in 2D or along a line in 3D. For fermion systems without interaction, the bulk topological invariants are given in terms of the Wannier centers of filled bands and can be readily calculated using a Fu-Kane-like formula when inversion symmetry is also present. The theory is extended to strongly interacting systems through the explicit construction of microscopic models having robust (d -2 )-dimensional edge states.
Characterizing symmetries in a projected entangled pair state
Energy Technology Data Exchange (ETDEWEB)
Perez-Garcia, D; Gonzalez-Guillen, C E [Departamento Analisis Matematico and IMI, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sanz, M; Cirac, J I [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Wolf, M M [Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)], E-mail: dperez@mat.ucm.es
2010-02-15
We show that two different tensors defining the same translational invariant injective projected entangled pair state (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.
Excited states rotational effects on the behavior of excited molecules
Lim, Edward C
2013-01-01
Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also
Electric quadrupole excitation of the first excited state of 11B
International Nuclear Information System (INIS)
Fewell, M.P.; Spear, R.H.; Zabel, T.H.; Baxter, A.M.
1980-02-01
The Coulomb excitation of backscattered 11 B projectiles has been used to measure the reduced E2 transition probability B(E2; 3/2 - →1/2 - ) between the 3/2 - ground state and the 1/2 - first excited state of 11 B. It is found that B(E2; 3/2 - →1/2 - ) = 2.1 +- 0.4 e 2 fm 4 , which agrees with shell-model predictions but is a factor of 10 larger than the prediction of the core-excitation model
International Nuclear Information System (INIS)
Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.
1981-01-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1 + levels in 196 198 Pt were determined by the rcoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220-MeV 58 Ni ion beams and the measurements carried out in coincidence with backscattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194 - 198 Pt isotopes, are critically compared with our structure calculations employing the Interacting Boson Approximation (IBA) model incorporating a symmetry-breaking quadrupole force. Evaluative comparisons are also made with Boson Expansion Theory (BET) calculations
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study
Energy Technology Data Exchange (ETDEWEB)
Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)
2016-11-15
Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.
A note on calm excited states of inflation
International Nuclear Information System (INIS)
Ashoorioon, Amjad; Shiu, Gary
2011-01-01
We identify a two-parameter family of excited states within slow-roll inflation for which either the corrections to the two-point function or the characteristic signatures of excited states in the three-point function — i.e. the enhancement for the flattened momenta configurations– are absent. These excited states may nonetheless violate the adiabaticity condition maximally. We dub these initial states of inflation calm excited states. We show that these two sets do not intersect, i.e., those that leave the power-spectrum invariant can be distinguished from their bispectra, and vice versa. The same set of calm excited states that leave the two-point function invariant for slow-roll inflation, do the same task for DBI inflation. However, at the level of three-point function, the calm excited states whose flattened configuration signature is absent for slow-roll inflation, will lead to an enhancement for DBI inflation generally, although the signature is smaller than what suggested by earlier analysis. This example also illustrates that imposing the Wronskian condition is important for obtaining a correct estimate of the non-Gaussian signatures
From physical symmetries to emergent gauge symmetries
International Nuclear Information System (INIS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-01-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene
Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike
2017-03-01
A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Process to produce excited states of atomic nuclei
International Nuclear Information System (INIS)
Morita, M.; Morita, R.
The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
Dawadi, Mahesh B; Bhatta, Ram S; Perry, David S
2013-12-19
Two torsion-inversion tunneling models (models I and II) are reported for the CH-stretch vibrationally excited states in the G12 family of molecules. The torsion and inversion tunneling parameters, h(2v) and h(3v), respectively, are combined with low-order coupling terms involving the CH-stretch vibrations. Model I is a group theoretical treatment starting from the symmetric rotor methyl CH-stretch vibrations; model II is an internal coordinate model including the local-local CH-stretch coupling. Each model yields predicted torsion-inversion tunneling patterns of the four symmetry species, A, B, E1, and E2, in the CH-stretch excited states. Although the predicted tunneling patterns for the symmetric CH-stretch excited state are the same as for the ground state, inverted tunneling patterns are predicted for the asymmetric CH-stretches. The qualitative tunneling patterns predicted are independent of the model type and of the particular coupling terms considered. In model I, the magnitudes of the tunneling splittings in the two asymmetric CH-stretch excited states are equal to half of that in the ground state, but in model II, they differ when the tunneling rate is fast. The model predictions are compared across the series of molecules methanol, methylamine, 2-methylmalonaldehyde, and 5-methyltropolone and to the available experimental data.
Approximate symmetries in atomic nuclei from a large-scale shell-model perspective
Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.
2015-05-01
In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.
Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.
1981-11-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.
International Nuclear Information System (INIS)
Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.
1981-01-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 + 1 levels in sup(196, 198)Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58 Ni ion beams and the measurements were carried out in coincidence with backscattering projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even sup(194-198)Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations. (orig.)
Photoionization of excited molecular states using multiphoton excitation techniques
International Nuclear Information System (INIS)
Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.
1984-01-01
Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization
Ultrafast excited state relaxation in long-chain polyenes
International Nuclear Information System (INIS)
Antognazza, Maria Rosa; Lueer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio
2010-01-01
Graphical abstract: Excited state dynamics of a long-chain polyene studied by femtosecond pump-probe spectroscopy. - Abstract: We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2 , followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
Borges, L. H. C.; Barone, F. A.
2016-02-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)
2016-02-15
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
International Nuclear Information System (INIS)
Borges, L.H.C.; Barone, F.A.
2016-01-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)
Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes
DEFF Research Database (Denmark)
Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov
2014-01-01
excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...
Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme
International Nuclear Information System (INIS)
Theophilou, Iris; Tassi, M.; Thanos, S.
2014-01-01
Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations
Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes
DEFF Research Database (Denmark)
Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren
1994-01-01
indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
Universal quantum computing using (Zd) 3 symmetry-protected topologically ordered states
Chen, Yanzhu; Prakash, Abhishodh; Wei, Tzu-Chieh
2018-02-01
Measurement-based quantum computation describes a scheme where entanglement of resource states is utilized to simulate arbitrary quantum gates via local measurements. Recent works suggest that symmetry-protected topologically nontrivial, short-ranged entangled states are promising candidates for such a resource. Miller and Miyake [npj Quantum Inf. 2, 16036 (2016), 10.1038/npjqi.2016.36] recently constructed a particular Z2×Z2×Z2 symmetry-protected topological state on the Union Jack lattice and established its quantum-computational universality. However, they suggested that the same construction on the triangular lattice might not lead to a universal resource. Instead of qubits, we generalize the construction to qudits and show that the resulting (d -1 ) qudit nontrivial Zd×Zd×Zd symmetry-protected topological states are universal on the triangular lattice, for d being a prime number greater than 2. The same construction also holds for other 3-colorable lattices, including the Union Jack lattice.
Photoionization of excited molecular states using multiphoton excitation techniques
International Nuclear Information System (INIS)
Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.
1984-01-01
Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables
Exploiting Stabilizers and Parallelism in State Space Generation with the Symmetry Method
DEFF Research Database (Denmark)
Lorentsen, Louise; Kristensen, Lars Michael
2001-01-01
The symmetry method is a main reduction paradigm for alleviating the state explosion problem. For large symmetry groups deciding whether two states are symmetric becomes time expensive due to the apparent high time complexity of the orbit problem. The contribution of this paper is to alleviate th...... the negative impact of the orbit problem by the specification of canonical representatives for equivalence classes of states in Coloured Petri Nets, and by giving algorithms exploiting stabilizers and parallelism for computing the condensed state space....
Heavy-residue isoscaling as a probe of the symmetry energy of hot fragments
International Nuclear Information System (INIS)
Souliotis, G.A.; Shetty, D.V.; Keksis, A.; Bell, E.; Jandel, M.; Veselsky, M.; Yennello, S.J.
2006-01-01
The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86 Kr (25 MeV/nucleon) 64 Ni (25 MeV/nucleon), and 136 Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coefficient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission (E * /A=2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters α that, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ∼25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova
Ab initio calculation on the low-lying excited states of Si2+ cation including spin–orbit coupling
International Nuclear Information System (INIS)
Liu, Yanlei; Zhai, Hongsheng; Zhang, Xiaomei; Liu, Yufang
2013-01-01
Highlights: • 24 Λ–S states are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ) are first reported. • The dissociation energies of the calculated electronic states are predicted in our work. • It is first time that the entire 54 Ω states generated from the 24 Λ–S states have been studied. • PECs of Λ–S and Ω states are depicted with the aid of avoided crossing rule between the same symmetry. - Abstract: Ab initio all-electron relativistic calculations of the low-lying excited states of Si 2 + have been performed at MRCI+Q/AVQZ level. The calculated electronic states, including 12 doublet and 12 quartet Λ–S states, are correlated to the dissociation limit of Si( 3 P g ) + Si + ( 2 P u ). Spin–orbit interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian, which causes the entire 24 Λ–S states to split into 54 Ω states. This is the first time that spin–orbit coupling (SOC) calculation has been performed on Si 2 + . The obtained potential energy curves (PECs) of Λ–S and Ω states are respectively depicted with the aid of the avoided crossing rule between the same symmetry. The spectroscopic constants of the bound Λ–S and Ω states are determined, and excellent agreements with the latest theoretical results are achieved
Low-lying excited states by constrained DFT
Ramos, Pablo; Pavanello, Michele
2018-04-01
Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.
Isospin Symmetry of Transitions Probed by Weak and Strong Interactions
Roeckl, E
2002-01-01
Under the assumption that isospin is a good quantum number, isospin symmetry is expected for the transitions from the ground states of the pair of T = 1, T$_{z}$ = $\\pm$ 1 nuclei to excited states of the T = 0 nucleus situated in between the pair. In order to study the isospin symmetry of these transitions, we propose to perform an accurate comparison of Gamow-Teller (GT) transitions for the A = 58 system. This system is the heaviest for which such a comparison is possible. The $^{58}$Ni(T$_{z}$ = 1 ) $\\rightarrow^{58}$Cu(T$_{z}$ = 0 ) GT transitions are presently studied by using high-resolution charge exchange reaction at RNCP Osaka, while those of $^{58}$Zn(T$_{z}$ = -1) $\\rightarrow^{58}$Cu will be investigated in the $\\beta$-decay study at ISOLDE. Due to the large $Q\\scriptstyle_\\textrm{EC}$-value of $^{58}$Zn, GT transitions can be observed up to high excitation energies in $^{58}$Cu. In order to reach this goal, it is proposed to measure $\\beta$-delayed protons and $\\gamma$-rays by using a dedicated de...
Rydberg energies using excited state density functional theory
International Nuclear Information System (INIS)
Cheng, C.-L.; Wu Qin; Van Voorhis, Troy
2008-01-01
We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.
Luminescence and excited state dynamics of Bi{sup 3+} centers in Y{sub 2}O{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Chernenko, K., E-mail: nuclearphys@yandex.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Peter the Great Saint-Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St. Petersburg (Russian Federation); Lipińska, L. [Institute of Electronic Materials Technology, Wólczyńska 133, 01919 Warsaw (Poland); Mihokova, E.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Schulman, L.S. [Physics Department, Clarkson University, Potsdam, NY 13699-5820 (United States); Shalapska, T. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, University of Bydgoszcz, Weyssenhoffa 11, 85072 Bydgoszcz (Poland); Zazubovich, S. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Zhydachevskii, Ya. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Lviv Polytechnic National University, Bandera 12, 79646 Lviv (Ukraine)
2015-11-15
Photoluminescence of Y{sub 2}O{sub 3}:Bi nanopowder synthesized by the modified sol–gel method is studied using time-resolved luminescence spectroscopy in the 4.2–300 K temperature range. Bi{sup 3+} ions are substituted for Y{sup 3+} ions in two different crystal lattice sites, one having S{sub 6} symmetry (Bi(S{sub 6})) and the other C{sub 2} symmetry (Bi(C{sub 2})). The luminescence characteristics of these two centers are found to have strongly different electron–phonon interactions. The luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers peak at 3.04 eV and 2.41 eV, respectively, and arise from the radiative decay of the triplet relaxed excited state (RES) of Bi{sup 3+} ions. The model and structure of the RES, responsible for the luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers in Y{sub 2}O{sub 3}:Bi, as well as radiative and nonradiative processes, taking place in the excited states of these centers, are investigated. The parameters of the triplet RES (the separation between the metastable and radiative levels and probabilities of radiative and nonradiative transitions from these levels) are determined. Low-temperature quenching of the triplet luminescence of these centers is explained by nonradiative quantum tunneling transitions from the metastable minima of their triplet RES to closely located defect- or exciton-related levels. - Highlights: • Photoluminescence of Bi{sup 3+} centers of two types in Y{sub 2}O{sub 3}:Bi is investigated. • Bi(S{sub 6}) and Bi(C{sub 2}) centers reveal strongly different electron–phonon interaction. • Radiative and nonradiative processes in their triplet excited states are clarified. • Low-temperature luminescence quenching in Bi(S{sub 6}) and Bi(C{sub 2}) centers is studied. • New fast weak ≈2.9 eV emission is suggested to arise from Bi(C{sub 2}) centers.
Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo
2009-04-01
Electronic structures and molecular constants of the ground ∑7+ and low-lying A 7Π and a ∑5+ electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C∞v symmetry using Slater-type basis sets. To correctly describe the ∑7+ electronic ground state, X ∑7+, at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B ∑7+ excited state. The A 7Π and a ∑5+ states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X ∑7+, A 7Π, and a ∑5+ states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., re and ωe of these states and excitation energy from the X ∑7+ state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.
Tomonari, Mutsumi; Nagashima, Umpei; Hirano, Tsuneo
2009-04-21
Electronic structures and molecular constants of the ground (7)Sigma(+) and low-lying A (7)Pi and a (5)Sigma(+) electronic excited states of the MnH molecule were studied by multireference single and double excitation configuration interaction (MR-SDCI) with Davidson's correction (+Q) calculations under exact C(infinity v) symmetry using Slater-type basis sets. To correctly describe the (7)Sigma(+) electronic ground state, X (7)Sigma(+), at the MR-SDCI+Q calculation, we employed a large number of reference configurations in terms of the state-averaged complete active space self-consistent field (CASSCF) orbitals, taking into account the contribution from the B (7)Sigma(+) excited state. The A (7)Pi and a (5)Sigma(+) states can well be described by the MR-SDCI wave functions based on the CASSCF orbitals obtained for the lowest state only. In the MR-SDCI+Q, calculations of the X (7)Sigma(+), A (7)Pi, and a (5)Sigma(+) states required 16, 7, and 17 reference configurations, respectively. Molecular constants, i.e., r(e) and omega(e) of these states and excitation energy from the X (7)Sigma(+) state, obtained at the MR-SDCI+Q level, showed a good agreement with experimental values. The small remaining differences may be accounted for by taking relativistic effects into account.
The triplet excited state of Bodipy: formation, modulation and application.
Zhao, Jianzhang; Xu, Kejing; Yang, Wenbo; Wang, Zhijia; Zhong, Fangfang
2015-12-21
Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet-triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were
Vibronic coupling in the excited-states of carotenoids
Energy Technology Data Exchange (ETDEWEB)
Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany
2016-01-01
The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S_{2}to the optically dark state S_{1}.
Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions
Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang
2018-01-01
We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.
Rearrangements in ground and excited states
de Mayo, Paul
1980-01-01
Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;
Excitation of lowest electronic states of thymine by slow electrons
Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.
2013-11-01
Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.
Constraining the physical state by symmetries
Fatibene, L.; Ferraris, M.; Magnano, G.
2017-03-01
After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. For this scenario to be effective, the group G of formal transformations needs to be a subgroup of dynamical symmetries (otherwise field equations, which are written in terms of configurations would not induce equations for the physical state classes) and it must contain the group D generated by Cauchy transformations (otherwise the equations induced on physical state classes would not be well posed, either). We argue that it is exactly because of this double inclusion that the hole argument in its initial problem formulation is more powerful than in its boundary formulation. In the boundary formulation of the hole argument one still has that the group G of formal transformations is a subgroup of dynamical symmetries, but there is no evidence for it to contain a particular non-trivial subgroup.In this paper we shall show that this scenario is exactly implemented in generally covariant theories. In the last section we shall show it to be implemented in gauge theories as well.Norton also argued (see [1]) that the definition of physical state is something to be discussed in physics and it is not
Electron-impact excitation and ionization cross sections for ground state and excited helium atoms
International Nuclear Information System (INIS)
Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de
2008-01-01
Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form
Study of a Quantum Dot in an Excited State
Slamet, Marlina; Sahni, Viraht
We have studied the first excited singlet state of a quantum dot via quantal density functional theory (QDFT). The quantum dot is represented by a 2D Hooke's atom in an external magnetostatic field. The QDFT mapping is from an excited singlet state of this interacting system to one of noninteracting fermions in a singlet ground state. The results of the study will be compared to (a) the corresponding mapping from a ground state of the quantum dot and (b) to the similar mapping from an excited singlet state of the 3D Hooke's atom.
On the symmetry algebra of the discrete states in d<2 closed string theory
International Nuclear Information System (INIS)
Panda, S.; Roy, S.
1993-01-01
The symmetry charges associated with the Lian-Zuckerman states for d<2 closed string theory are constructed. Unlike in the open string case, it is shown here that the symmetry charges commute among themselves and act trivially on all the physical states. (author). 19 refs
Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei
Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T
2010-01-01
Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.
Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.
Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong
2018-04-17
The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.
Random-phase approximation and broken symmetry
International Nuclear Information System (INIS)
Davis, E.D.; Heiss, W.D.
1986-01-01
The validity of the random-phase approximation (RPA) in broken-symmetry bases is tested in an appropriate many-body system for which exact solutions are available. Initially the regions of stability of the self-consistent quasiparticle bases in this system are established and depicted in a 'phase' diagram. It is found that only stable bases can be used in an RPA calculation. This is particularly true for those RPA modes which are not associated with the onset of instability of the basis; it is seen that these modes do not describe any excited state when the basis is unstable, although from a formal point of view they remain acceptable. The RPA does well in a stable broken-symmetry basis provided one is not too close to a point where a phase transition occurs. This is true for both energies and matrix elements. (author)
Consequences of the collision symmetry on the observed electron spectra produced by autoionisation
International Nuclear Information System (INIS)
Gleizes, A.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.
1980-01-01
Some properties of symmetrical collisions observed in the decay of the helium autoionising states by electron emission are reported. They have been seen in the He + on He and the He on He collisional systems within the 7 to 140 keV energy range. Comparison of the excitation processes for the fast and slow atoms is made through the measurement of ejected-electron line shape and angular distributions for various autoionising states. At low energy the symmetry of the two systems is well verified; discrepancies from the symmetry requirements are observed in the angular distributions for the neutral-neutral system at high collision energy. (author)
Quadrupole collective excitations in rapidly rotating nuclej
International Nuclear Information System (INIS)
Mikhajlov, I.N.
1983-01-01
The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum
Electronically excited negative ion resonant states in chloroethylenes
Energy Technology Data Exchange (ETDEWEB)
Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.
2015-02-15
Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.
Lifetime measurements of excited states in 196Pt
International Nuclear Information System (INIS)
Bolotin, H.H.; Katayama, Ichiro; Sakai, Hideyuki; Fujita, Yoshitaka; Fujiwara, Mamoru
1979-01-01
The lifetimes of six excited states in 196 Pt up to an excitation energy of 1525 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 220 MeV 58 Ni ion beams. The measured lifetimes of the 2 1 + , 4 1 + , 6 1 + , 2 2 + , 4 2 + and 0 2 + states and the B(E2) values inferred for the depopulating transitions from these levels are presented. With the exception of the 2 1 + state, the meanlives of all other levels are the first such direct experimental determinations to be reported. (author)
Computing correct truncated excited state wavefunctions
Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.
2016-12-01
We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.
Probability of collective excited state decay
International Nuclear Information System (INIS)
Manykin, Eh.A.; Ozhovan, M.I.; Poluehktov, P.P.
1987-01-01
Decay mechanisms of condensed excited state formed of highly excited (Rydberg) atoms are considered, i.e. stability of so-called Rydberg substance is analyzed. It is shown that Auger recombination and radiation transitions are the basic processes. The corresponding probabilities are calculated and compared. It is ascertained that the ''Rydberg substance'' possesses macroscopic lifetime (several seconds) and in a sense it is metastable
Excited-state dynamics of pentacene derivatives with stable radical substituents.
Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio
2014-06-23
The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Excitation of nuclear states by synchrotron radiation
International Nuclear Information System (INIS)
Olariu, Albert
2003-01-01
We study the excitation of nuclear states by gamma ray beams of energy up to 200 keV produced as synchrotron radiation. We consider the possibility to populate an excited state |i> in two steps, from the ground state |g> to an intermediary state |n> which decays by gamma emission or internal conversion to a lower state |i>. The aim of this study is to establish that the probability P 2 of the two-step transition |g> → |n> → |i> should be greater than the probability P 1 of the direct transition |g> → |i>. The probabilities P 1 and P 2 correspond to a radiation pulse of duration equal to the half-time of the state |i>. We have written a computer program in C++ which computes the probability P 2 , the ratio P 2 /P 1 and the rate C 2 of the two-step transitions for any nuclei and different configurations of states. The program uses a database which contains information on the energy levels, half-lives, spins and parities of nuclear states and on the relative intensities of the nuclear transitions. If the half-lives or the relative intensities are not known the program uses the Weisskopf estimates for the transition half-lives. An interpolation program of internal conversion coefficients has also been used. We listed the values obtained for P 2 , P 2 /P 1 and C 2 in a number of cases in which P 2 is significant from the 2900 considered cases. The states |i> and |n> have the energies E i and E n , the corresponding half-lives being t i and t n . The spectral density of the synchrotron radiation has been considered to be 10 12 photons cm -2 s -1 eV -1 . We listed only the cases for which the relative intensities of the transitions from levels |n> and |i> to lower states are known. The calculations carried out in this study allowed us to identify nuclei for which P 2 has relatively great values. In the listed cases P 2 /P 1 >>1, so that the two-step excitation by synchrotron radiation is more efficient than the direct excitation |g> → |i>. For a sample having 10
Anomalous Symmetry Fractionalization and Surface Topological Order
Directory of Open Access Journals (Sweden)
Xie Chen
2015-10-01
Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.
Faraday waves under time-reversed excitation.
Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas
2013-03-01
Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.
The formation and decay of triply excited He- states in e-He scattering
International Nuclear Information System (INIS)
Heideman, H.G.M.
1988-01-01
A description is given of doubly and triply excited negative-ion states and their effects on the electron impact excitation of atomic states. Mechanisms for indirect excitation of singly excited states are discussed with respect to:- negative-ion resonance, autoionisation and post-collision interaction, and excitation of an autoionising state via a negative ion resonance. A classification of doubly excited states is considered. Experimental results on the excitation of the n'S states of helium as a function of the incident electron energy are presented, along with theoretical PCI (post collision interaction) profiles in excitation functions, and an interpretation of the results. (UK)
Excitation and decay of correlated atomic states
International Nuclear Information System (INIS)
Rau, A.R.P.
1992-01-01
Doubly excited states of atoms and ions in which two electrons are excited from the ground configuration display strong radial and angular electron correlations. They are prototypical examples of quantum-mechanical systems with strong coupling. Two distinguishing characteristics of these states are: (1) their organization into successive families, with only weak coupling between families, and (2) a hierarchical nature of this coupling, with states from one family decaying primarily to those in the next lower family. A view of the pair of electrons as a single entity, with the electron-electron repulsion between them divided into a adiabatic and nonadiabatic piece, accounts for many of the dominant features. The stronger, adiabatic part determines the family structure and the weaker, nonadiabatic part the excitation and decay between successive families. Similar considerations extend to three-electron atomic states, which group into five different classes. They are suggestive of composite models for quarks in elementary particle physics, which exhibit analogous groupings into families with a hierarchical arrangement of masses and electroweak decays. 49 refs., 6 figs., 2 tabs
Superdeformations and fermion dynamical symmetries
International Nuclear Information System (INIS)
Wu, Cheng-Li
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs
Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.
Mondal, Sayan; Puranik, Mrinalini
2016-05-18
The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first
Goldstone mode and pair-breaking excitations in atomic Fermi superfluids
Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.
2017-10-01
Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.
Broken chiral symmetry and the structure of hadrons
International Nuclear Information System (INIS)
Spence, W.L.
1982-01-01
The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
Energy Technology Data Exchange (ETDEWEB)
Godunov, A.L. [Department of Physics, Tulane University, New Orleans, LA 70118-5698 (United States); Ivanov, P.B.; Schipakov, V.A. [Troitsk Institute of Innovation and Fusion Research Troitsk, Moscow region, 142092 (Russian Federation); Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS-Universite Paul Sabatier, 31062 Toulouse Cedex (France)
2000-03-14
Mechanisms of two-electron excitation of the (2s{sup 2}){sup 1} S, (2p{sup 2} ){sup 1} D and (2s2p){sup 1} P autoionizing states of helium are studied both experimentally and theoretically. It is shown that an explicit introduction of a kinematic factor, with a process-specific phase leads to a productive parametrization of experimental cross sections of ionization, allowing one to extract cross sections of excitation of autoionizing states. Using a new fitting procedure together with the proposed parametrization made it possible to obtain the excitation cross sections and magnetic sublevel population from electron spectra as well as, for the first time, to resolve the contribution of resonance and interference components to resonance profiles. Interference with direct ionization is shown to contribute significantly into resonance formation even for backward ejection angles. We demonstrate theoretically that the excitation cross sections thus extracted from experimental electron spectra hold information about the interaction of autoionizing states with an adjacent continuum. (author)
Bound state and localization of excitation in many-body open systems
Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.
2018-04-01
We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.
International Nuclear Information System (INIS)
Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.
1981-01-01
Resonance Raman and electronic absorption spectra are reported for the S 0 and T 1 states of the carotenoids β-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C 50 )-β-carotene, β-apo-8'-carotenal, and ethyl β-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S 0 and T 1 , regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S 0 and T 1 reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T 1 states of carotenoids and in the S 1 states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S 1 lifetime (of the 1 B/sub u/ and/or the 1 A/sub g/* states) of β-carotene in benzene is less than 1 ps
Inelastic scattering of 9Li and excitation mechanism of its first excited state
International Nuclear Information System (INIS)
Al Falou, H.; Kanungo, R.; Andreoiu, C.; Cross, D.S.; Davids, B.; Djongolov, M.; Gallant, A.T.; Galinski, N.; Howell, D.; Kshetri, R.; Niamir, D.; Orce, J.N.; Shotter, A.C.; Sjue, S.; Tanihata, I.; Thompson, I.J.; Triambak, S.; Uchida, M.; Walden, P.; Wiringa, R.B.
2013-01-01
The first measurement of inelastic scattering of 9 Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution
Energy Technology Data Exchange (ETDEWEB)
Warming, Till
2009-02-20
The application of quantum-mechanical effects in semiconductor nanostructures enables the realization of novel opto-electronic devices. Examples are given by single-photon emitters and emitters of entangled photon pairs, both being essential for quantum cryptography, or for qubit systems as needed for quantum computing. InAs/GaAs quantum dots are one of the most promising candidates for such applications. A detailed knowledge of the electronic properties of quantum dots is a prerequisite for this development. The aim of this work is an experimental access to the detailed electronic structure of the excited states in single InAs/GaAs quantum dots including few-particle effects and in particular exchange interaction. The experimental approach is micro photoluminescence excitation spectroscopy ({mu}PLE). One of the main difficulties using {mu}PLE to probe single QDs is the unambiguous assignment of the observed resonances in the spectrum to specific transitions. By comparing micro photoluminescence ({mu}PL) and {mu}PLE spectra, the identification of the main resonances becomes possible. The key is given by the fine structure of the hot trion. Excitation spectroscopy on single charged QDs enables for the first time the complete observation of a non-trivial fine structure of an excitonic complex in a QD, the hot trion. Modelling based on eight-band k.p theory in combination with a configuration interaction scheme is in excellent agreement. Therewith the simulation also enables realistic predictions on the fine structure of the ground-state exciton which is of large importance for single quantum dot devices. Theory concludes from the observed transitions that the structural symmetry of the QDs is broken. Micro photoluminescence excitation spectroscopy combined with resonantly excited micro photoluminescence enables an optical access to the single particle states of the hole without the influence of few-particle coulomb interactions. Based on this knowledge the exciton
Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.
Kowalczyk, Tim; Le, Khoa; Irle, Stephan
2016-01-12
We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.
Systematics in Rydberg state excitations for ion-atom collisions
International Nuclear Information System (INIS)
Andresen, B.; Jensen, K.; Petersen, N.B.; Veje, E.
1976-01-01
Rydberg state excitations in the Ne + , Mg + -He collisions have been studied in the projectile energy range 10-75 keV by means of optical spectrometry in a search for systematic trends. The relative excitation cross sections for levels of a Rydberg term series are found to follow a general (nsup(x))sup(P) behaviour with P < approximately -3 varying with collision energy and particles, regardless of whether the excited state population results from direct excitation, single electron transfer, or double electron transfer. At higher collision energies P is approximately -3 as predicted by theory. Polarization of the emitted line radiation indicates that there is no general rule for the relative excitation of the different magnetic substates of the same level. A statistical distribution of excitation is found for levels within the same term when the fine structure splitting is small. (Auth.)
Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states
Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier
2018-01-01
The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1-10 2Σ+, 1-6 2Π and 1-3 2Δ electronic states of the Sr+Ar molecule and for the 1-6 1Σ+, 1-4 3Σ+, 1-3 1,3Π and 1-3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.
Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities
International Nuclear Information System (INIS)
Barrett, S.D.; Kok, Pieter; Spiller, T.P.; Nemoto, Kae; Beausoleil, R.G.; Munro, W.J.
2005-01-01
We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr nonlinearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is nondestructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to construct a nondestructive Bell-state detector
Symmetries of the Euler compressible flow equations for general equation of state
Energy Technology Data Exchange (ETDEWEB)
Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-15
The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.
SU(3) flavour symmetry breaking and charmed states
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Hyogo (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics; Collaboration: QCDSF-UKQCD Collaborations
2013-11-15
By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.
Symmetry and symmetry breaking
International Nuclear Information System (INIS)
Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.
1999-01-01
The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)
Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A
2015-04-15
A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.
On excited states in real-time AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Botta-Cantcheff, Marcelo; Martínez, Pedro J.; Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)
2016-02-25
The Skenderis-van Rees prescription, which allows the calculation of time-ordered correlation functions of local operators in CFT’s using holographic methods is studied and applied for excited states. Calculation of correlators and matrix elements of local CFT operators between generic in/out states are carried out in global Lorentzian AdS. We find the precise form of such states, obtain an holographic formula to compute the inner product between them, and using the consistency with other known prescriptions, we argue that the in/out excited states built according to the Skenderis-Van Rees prescription correspond to coherent states in the (large-N) AdS-Hilbert space. This is confirmed by explicit holographic computations. The outcome of this study has remarkable implications on generalizing the Hartle-Hawking construction for wave functionals of excited states in AdS quantum gravity.
From fusion hierarchy to excited state TBA
International Nuclear Information System (INIS)
Juettner, G.; Kluemper, A.
1998-01-01
Functional relations among the fusion hierarchy of quantum transfer matrices give a novel derivation of the TBA equations, namely without string hypothesis. This is demonstrated for two important models of 1D highly correlated electron systems, the supersymmetric t-J model and the supersymmetric extended Hubbard model. As a consequence, ''the excited state TBA'' equations, which characterize correlation lengths, are explicitly derived for the t-J model. To the authors' knowledge, this is the first explicit derivation of excited state TBA equations for 1D lattice electron systems. (orig.)
Symmetry fractionalization of visons in Z2 spin liquids
Qi, Yang; Cheng, Meng; Fang, Chen
In this work we study symmetry fractionalization of vison excitations in topological Z2 spin liquids. We show that in the presence of the full SO (3) spin-rotational symmetry and if there is an odd number of spin-1/2 per unit cell, the symmetry fractionalization of visons is completely fixed. On the other hand, visons can have different classes of symmetry fractionalization if the spin-rotational symmetry is reduced. As a concrete example, we show that visons in the Balents-Fisher-Girvin Z2 spin liquid have crystal symmetry fractionalization classes which are not allowed in SO (3) symmetric spin liquids, due to the reduced spin-rotational symmetry.
Method of producing excited states of atomic nuclei
International Nuclear Information System (INIS)
Morita, M.; Morita, R.
1976-01-01
A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation
International Nuclear Information System (INIS)
Borovik, A; Roman, V; Zatsarinny, O; Bartschat, K
2013-01-01
Electron impact excitation of the (4p 5 5s 2 ) 2 P 3/2,1/2 and (4p 5 4d5s) 4 P 1/2,3/2,5/2 autoionizing states in rubidium atoms was studied experimentally by measuring the ejected-electron excitation functions and theoretically by employing a fully relativistic Dirac B-spline R-matrix (close-coupling) model. The experimental data were collected in an impact energy range from the respective excitation thresholds up to 50 eV with an incident electron energy resolution of 0.2 eV and an observation angle of 54.7°. Absolute values of the excitation cross sections were obtained by normalizing to the theoretical predictions. The observed near-threshold resonance structures were also analysed by comparison with theory. For the 2 P 3/2,1/2 doublet states, a detailed analysis of the R-matrix results reveals that the most intense resonances are related to odd-parity negative-ion states with dominant configurations 4p 5 5s5p 2 and 4p 5 4d5s6s. The measured excitation functions for the 2 P 1/2 and 4 P J states indicate a noticeable cascade population due to the radiative decay from high-lying autoionizing states. A comparative analysis with similar data for other alkali atoms is also presented.
Controlling excited-state contamination in nucleon matrix elements
Energy Technology Data Exchange (ETDEWEB)
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank
2016-06-01
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.
Topological orders in rigid states
International Nuclear Information System (INIS)
Wen, X.G.
1990-01-01
The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation
Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states
Energy Technology Data Exchange (ETDEWEB)
Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2016-12-20
The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.
Excited state populations and charge-exchange of fast ions in solids
International Nuclear Information System (INIS)
Miller, P.D.; Sofield, C.J.; Woods, C.J.
1984-01-01
Excited state populations and charge state fractions of 445 MeV Cl ions have been measured for a range of thicknesses of solid C targets. Cross sections for electron capture, loss, excitation and excited state quenching have been determined and these data are found to predict a quantitative difference between equilibrium charge state distributions from gases and solids for a special case of the Bohr-Lindhard density effect model. 8 references, 1 figure, 1 table
Explicit symmetry breaking in electrodynamic systems and electromagnetic radiation
Sinha, Dhiraj
2016-01-01
This book is an introduction to the concept of symmetries in electromagnetism and explicit symmetry breaking. It begins with a brief background on the origin of the concept of symmetry and its meaning in fields such as architecture, mathematics and physics. Despite the extensive developments of symmetry in these fields, it has yet to be applied to the context of classical electromagnetism and related engineering applications. This book unravels the beauty and excitement of this area to scientists and engineers.
Excited states of open strings from N=4 SYM
International Nuclear Information System (INIS)
Dzienkowski, Eric
2015-01-01
We continue the analysis of building open strings stretched between giant gravitons from N=4 SYM by going to second order in perturbation theory using the three-loop dilatation generator from the field theory. In the process we build a Fock-like space of states using Cuntz oscillators which can be used to access the excited open string states. We find a remarkable cancellation among the excited states that shows the ground state energy is consistent with a fully relativistic dispersion relation.
Symmetry Breakdown in Ground State Dissociation of HD+
International Nuclear Information System (INIS)
Ben-Itzhak, I.; Wells, E.; Carnes, K. D.; Krishnamurthi, Vidhya; Weaver, O. L.; Esry, B. D.
2000-01-01
Experimental studies of the dissociation of the electronic ground state of HD + following ionization of HD by fast proton impact indicate that the H + +D 1s dissociation channel is more likely than the H1s+D + dissociation channel by about 7% . This isotopic symmetry breakdown is due to the finite nuclear mass correction to the Born-Oppenheimer approximation which makes the 1sσ state 3.7 meV lower than the 2pσ state at the dissociation limit. The measured fractions of the two dissociation channels are in agreement with coupled-channels calculations of 1sσ to 2pσ transitions. (c) 2000 The American Physical Society
Inelastic scattering of {sup 9}Li and excitation mechanism of its first excited state
Energy Technology Data Exchange (ETDEWEB)
Al Falou, H. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Kanungo, R., E-mail: ritu@triumf.ca [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Andreoiu, C.; Cross, D.S. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Davids, B.; Djongolov, M. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Gallant, A.T. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of British Columbia, British Columbia V6T 1Z4 (Canada); Galinski, N.; Howell, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Kshetri, R.; Niamir, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Orce, J.N. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 (South Africa); Shotter, A.C. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Sjue, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Tanihata, I. [Research Center for Nuclear Physics, Osaka University, Mihogaoka, Ibaraki, Osaka 567 0047 (Japan); Thompson, I.J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Triambak, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Uchida, M. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Walden, P. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Wiringa, R.B. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2013-04-25
The first measurement of inelastic scattering of {sup 9}Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution.
Energy Technology Data Exchange (ETDEWEB)
Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)
2016-07-07
In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.
The Sommerfeld enhancement for dark matter with an excited state
International Nuclear Information System (INIS)
Slatyer, Tracy R.
2010-01-01
We present an analysis of the Sommerfeld enhancement to dark matter annihilation in the presence of an excited state, where the interaction inducing the enhancement is purely off-diagonal, such as in models of exciting or inelastic dark matter. We derive a simple and accurate semi-analytic approximation for the s-wave enhancement, which is valid provided the mass splitting between the ground and excited states is not too large, and discuss the cutoff of the enhancement for large mass splittings. We reproduce previously derived results in the appropriate limits, and demonstrate excellent agreement with numerical calculations of the enhancement. We show that the presence of an excited state leads to generically larger values of the Sommerfeld enhancement, larger resonances, and shifting of the resonances to lower mediator masses. Furthermore, in the presence of a mass splitting the enhancement is no longer a monotonic function of velocity: the enhancement where the kinetic energy is close to that required to excite the higher state can be up to twice as large as the enhancement at zero velocity
International Nuclear Information System (INIS)
Liptak, J.; Kristiak, J.; Kristiakova, K.
1977-01-01
The β + -decay of 79 Rb has been studied with Ge(Li) detectors in single and coincidence modes. The half-life of the 147.06 keV level in 79 Kr has been determined to be (78+-6) ns. The relative electron intensities of seventeen transitions have been measured with a magnetic Si(Li) spectrometer. The internal conversion coefficients have been determined. The transition multipolarities have been deduced. The spin-parity assignments have been made for excited states of 79 Kr and a β-decaying sta 79 Rb(5/2 + ). The structure of excited states in 79 Kr is discussed in the framework of the Alaga and Coriolis coupling models. It is shown that the properties of some levels in 79 Kr can be explained by the existence of relatively pure rotational bands
Excited state electron affinity calculations for aluminum
Hussein, Adnan Yousif
2017-08-01
Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.
Magnetic excitations and amplitude fluctuations in insulating cuprates
Chelwani, N.; Baum, A.; Böhm, T.; Opel, M.; Venturini, F.; Tassini, L.; Erb, A.; Berger, H.; Forró, L.; Hackl, R.
2018-01-01
We present results from light scattering experiments on three insulating antiferromagnetic cuprates, YBa2Cu3O6.05 , Bi2Sr2YCu2O8 +δ , and La2CuO4 as a function of polarization and excitation energy using samples of the latest generation. From the raw data we derive symmetry-resolved spectra. The spectral shape in B1 g symmetry is found to be nearly universal and independent of excitation energy. The spectra agree quantitatively with predictions by field theory [Eur. Phys. J. B 88, 237 (2015), 10.1140/epjb/e2015-60438-1] facilitating the precise extraction of the Heisenberg coupling J . In addition, the asymmetric lineshape on the high-energy side is found to be related to amplitude fluctuations of the magnetization. In La2CuO4 alone, minor contributions from resonance effects may be identified. The spectra in the other symmetries are not universal. The variations may be traced back to weak resonance effects and extrinsic contributions. For all three compounds we find support for the existence of chiral excitations appearing as a continuum in A2 g symmetry having an onset slightly below 3 J . In La2CuO4 an additional isolated excitation appears on top of the A2 g continuum.
Kowalski, Karol
2009-05-21
In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others
1997-04-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
International Nuclear Information System (INIS)
Butorin, S.M.; Guo, J.; Magnuson, M.
1997-01-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state
Doubly and triply excited states for different plasma sources
International Nuclear Information System (INIS)
More, R.M.; Safronova, U.I.
2000-01-01
Autoionizing rates of doubly excited states as nln'l' configurations with n=2-9 and n'=2-9 are calculated. Analytical expressions of decay amplitude for two-electron system are derived. Expressions for autoionizing rates with averaging over LS are obtained for many-electron systems. The n and l dependence of doubly excited states as nln'l' configurations are investigated. (author)
Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking
International Nuclear Information System (INIS)
Colatto, L.P.; Penna, A.L.A.; Santos, W.C.
2003-10-01
We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)
Examination of excited state populations in sputtering using Multiphoton Resonance Ionization
International Nuclear Information System (INIS)
Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.
1984-01-01
Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper the authors examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed
Zheng, Guo-Qing
Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.
Dinamical polarizability of highly excited hydrogen-like states
International Nuclear Information System (INIS)
Delone, N.B.; Krajnov, V.P.
1982-01-01
Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered
International Nuclear Information System (INIS)
Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs.; Niyonzima, S.; Tennyson, J.; Schneider, I.F.
2017-01-01
A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH"+ , induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of "2σ"+, "2σ and "2δ symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.
Excitation of non-normal parity states by inelastic proton scattering
Energy Technology Data Exchange (ETDEWEB)
Emery, G. T. [Indiana Univ. (USA). Cyclotron Facility; Ikegami, Hidetsugu; Muraoka, Mitsuo [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics
1980-01-01
This is a review of the works done at the Indiana University Cyclotron Facility. The purposes of works are to find excitations that should have especially simple particle-hole structure in proton inelastic scattering, to use the data on these excitations to try to understand the mechanism and the effective interaction for the (p, p') reaction in this energy range, and to go on to study the nuclear structure involved in less simple excitation. As an example, the single-nucleon level diagram for the region of Si-28 is presented. A high spin state was made, and its spin-parity was 6/sup -/. It was tried to interpret the data in terms of a on-step distorted-wave impulse approximation. The optical model parameters derived from the extensive and precise elastic scattering results were used. The cross sections for the excitation of the 6/sup -/ states found in various reactions were not large. The T = 1 state is mainly excited by the direct tensor interaction, while the T = 0 state gets its strength mainly from the knock-on exchange contribution of both the tensor and spin-orbit interactions. Experiments on Pb-208 and Fe-54 are being performed.
Examination of excited state populations in sputtering using multiphoton resonance ionization
International Nuclear Information System (INIS)
Kimock, F.M.; Baxter, J.P.; Pappas, D.L.; Kobrin, P.H.; Winograd, N.
1984-01-01
Multiphoton Resonance Ionization has been employed to study the populations of excited state atoms ejected from ion bombarded metal surfaces. Preliminary investigations have focused on three model systems: aluminum, indium and cobalt. In this paper we examine the effect of primary ion energy (2 to 12 keV Ar + ) on excited state yields for these three systems. The influence of the sample matrix on excited state populations of sputtered atoms is also discussed. 8 refs., 4 figs
Entropy of entangled states and SU(1,1) and SU(2) symmetries
International Nuclear Information System (INIS)
Santana, A.E.; Khanna, F.C.; Revzen, M.
2002-01-01
Based on a recent definition of a measure for entanglement [Plenio and Vedral, Contemp. Phys. 39, 431 (1998)], examples of maximum entangled states are presented. The construction of such states, which have symmetry SU(1,1) and SU(2), follows the guidance of thermofield dynamics formalism
Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy
International Nuclear Information System (INIS)
Lee, Ingu; Pang, Yoonsoo; Lee, Sebok
2014-01-01
Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states
Cathodoluminescence imaging and spectroscopy of excited states in InAs self-assembled quantum dots
International Nuclear Information System (INIS)
Khatsevich, S.; Rich, D.H.; Kim, Eui-Tae; Madhukar, A.
2005-01-01
We have examined state filling and thermal activation of carriers in buried InAs self-assembled quantum dots (SAQDs) with excitation-dependent cathodoluminescence (CL) imaging and spectroscopy. The InAs SAQDs were formed during molecular-beam epitaxial growth of InAs on undoped planar GaAs (001). The intensities of the ground- and excited-state transitions were analyzed as a function of temperature and excitation density to study the thermal activation and reemission of carriers. The thermal activation energies associated with the thermal quenching of the luminescence were measured for ground- and excited-state transitions of the SAQDs, as a function of excitation density. By comparing these activation energies with the ground- and excited-state transition energies, we have considered various processes that describe the reemission of carriers. Thermal quenching of the intensity of the QD ground- and first excited-state transitions at low excitations in the ∼230-300-K temperature range is attributed to dissociation of excitons from the QD states into the InAs wetting layer. At high excitations, much lower activation energies of the ground and excited states are obtained, suggesting that thermal reemission of single holes from QD states into the GaAs matrix is responsible for the observed temperature dependence of the QD luminescence in the ∼230-300-K temperature range. The dependence of the CL intensity of the ground-and first excited-state transition on excitation density was shown to be linear at all temperatures at low-excitation density. This result can be understood by considering that carriers escape and are recaptured as excitons or correlated electron-hole pairs. At sufficiently high excitations, state-filling and spatial smearing effects are observed together with a sublinear dependence of the CL intensity on excitation. Successive filling of the ground and excited states in adjacent groups of QDs that possess different size distributions is assumed to
DEFF Research Database (Denmark)
Reynisson, J.; Wilbrandt, R.; Brinck, V.
2002-01-01
. The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....
Photoionization of furan from the ground and excited electronic states.
Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero
2016-02-28
Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.
DILEPTON YIELD FROM THE DECAY OF EXCITED SI-28 STATES
BACELAR, JC; BUDA, A; BALANDA, A; KRASZNAHORKAY, A; VANDERPLOEG, H; SUJKOWSKI, Z; VANDERWOUDE, A
1994-01-01
The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in Si-28, with an initial excitation energy E* = 50 MeV, were populated via the isospin T = 0 reaction He-4 + Mg-24 and the
Thermality and excited state Rényi entropy in two-dimensional CFT
Energy Technology Data Exchange (ETDEWEB)
Lin, Feng-Li [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Wang, Huajia [Department of Physics, University of Illinois,Urbana-Champaign, IL 61801 (United States); Zhang, Jia-ju [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)
2016-11-21
We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.
Electron scattering from H2+: Resonances in the Σ and Π symmetries
International Nuclear Information System (INIS)
Collins, L.A.; Schneider, B.I.; Lynch, D.L.; Noble, C.J.
1995-01-01
We present results of calculations for e - +H 2 + scattering in the energy regime below the first excited state for resonance symmetries Σ and Π. We employ three distinct and independent methods: close-coupling linear algebraic, effective optical potential linear algebraic, and R matrix. We report extended calculations on the 1 Π g resonance, important to dissociative recombination. We show binding of the 1 Σ g state resonance between 2.6 and 2.7 bohrs. Our 1 Σ u state results agree very well with previous calculations and reside a factor of 2 below a recent experiment
Electronic excited states and relaxation dynamics in polymer heterojunction systems
Ramon, John Glenn Santos
The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally
Interference between radiative emission and autoionization in the decay of excited states of atoms
International Nuclear Information System (INIS)
Armstrong, L. Jr.; Theodosiou, C.E.; Wall, M.J.
1978-01-01
An excited state of an atom which can autoionize can also undergo radiative decay. We consider the interaction between the final states resulting from these two modes of decay, and its effects on such quantities as the fluorescence yield of the excited state, excitation profile of the excited state, and the spectra of the emitted photons and electrons. It is shown that the fraction of decays of the excited state resulting in a photon (fluorescence yield) is particularly sensitive to the details of the final-state interaction. In lowest order in the final-state interaction, the fluorescence yield is increased by a factor (1 + 1/q 2 ) from the traditional value, where q is the Fano q parameter relating to the excited state and the final atomic state
Physical state condition in quantum general relativity as a consequence of BRST symmetry
International Nuclear Information System (INIS)
Castellana, Michele; Montani, Giovanni
2008-01-01
Quantization of systems with constraints can be carried out with several methods. In the Dirac formulation the classical generators of gauge transformations are required to annihilate physical quantum states to ensure their gauge invariance. Carrying on BRST symmetry it is possible to get a condition on physical states which, different from the Dirac method, requires them to be invariant under the BRST transformation. Employing this method for the action of general relativity expressed in terms of the spin connection and tetrad fields with path integral methods, we construct the generator of the BRST transformation associated with the underlying local Lorentz symmetry of the theory and write a physical state condition following from BRST invariance. This derivation is based on the general results on the dependence of the effective action used in path integrals and consequently of Green's functions on the gauge-fixing functionals used in the DeWitt-Faddeev-Popov method. The condition we gain differs from the one obtained within Ashtekar's canonical formulation, showing how we recover the latter only by a suitable choice of the gauge-fixing functionals. Finally we discuss how it should be possible to obtain all of the requested physical state conditions associated with all the underlying gauge symmetries of the classical theory using our approach
Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors
Energy Technology Data Exchange (ETDEWEB)
Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)
2017-04-15
Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.
Excited State Assignment and Laser Action in π-Conjugated Polymers
Vardeny, Z. V.
1998-03-01
We have applied a variety of ps transient and cw spectroscopies to elucidate the ground and excited electronic states of luminescent and nonluminescent thin films and solutions of π-conjugated polymers. These techniques include photoinduced absorption (PA), photoluminescence (PL), resonant Raman scattering (RRS), electro-absorption (EA), two photon absorption (TPA), and PA detected magnetic resonance. We found that the luminescence efficiency, the resonant and subgap third-order nonlinear optical properties and the RRS dispersion in these polymers are determined by the energies and symmetries of a subset of the excited states, including a series of singlet excitons with odd (B_u) and even (A_g) parity lying below a continuum band. Among them, the lowest Bu exciton (1B_u) and two other dominant Ag excitons (mAg and kA_g) are particularly important in determining the EA, TPA, and excitonic ps PA spectra.(S.V. Frolov, M. Liess, P.A. Lane, W. Gellermann, Z.V. Vardeny, M. Ozaki, and K. Yoshino, Phys. Rev. Lett). 78, 4285 (1997). We also found(M. Ozaki, E. Ehrenfreund, R.E. Benner, T.J. Baron, K. Yoshino, and Z.V. Vardeny, Phys. Rev. Lett). 79, 1762 (1997). that the RRS phonon dispersion with the laser excitation energy is governed by the dependence of lowest Ag exciton (2A_g) on the chain length distribution in the polymer. This leads to stronger RRS dispersion in nonluminescent polymers. Moreover the relative energies of the 1Bu and 2Ag excitons determine the PL quantum efficiency η, regardless of the ground state degeneracy. If E(2A_g) < E(1B_u) then η is small because of the dipole forbidden character of the lowest singlet. We will give examples of nonluminescent polymers which belong to this class with both degenerate and nondegenerate ground state, respectively. On the other hand, if E(1B_u) < E(2A_g) then η is large and the polymer might be considered as active material for display applications. Again we give examples of highly luminescent polymers with
Hu, Zhenming; Boyd, Russell J; Nakatsuji, Hiroshi
2002-03-20
Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.
Suo, Bingbing; Lei, Yibo; Han, Huixian; Wang, Yubin
2018-04-01
This mini-review introduces our works on the Xi'an-CI (configuration interaction) package using graphical unitary group approach (GUGA). Taking advantage of the hole-particle symmetry in GUGA, the Galfand states used to span the CI space are classified into CI subspaces according to the number of holes and particles, and the coupling coefficients used to calculate Hamiltonian matrix elements could be factorised into the segment factors in the hole, active and external spaces. An efficient multi-reference CI with single and double excitations (MRCISD) algorithm is thus developed that reduces the storage requirement and increases the number of correlated electrons significantly. The hole-particle symmetry also gives rise to a doubly contracted MRCISD approach. Moreover, the internally contracted Gelfand states are defined within the CI subspace arising from the hole-particle symmetry, which makes the implementation of internally contracted MRCISD in the framework of GUGA possible. In addition to MRCISD, the development of multi-reference second-order perturbation theory (MRPT2) also benefits from the hole-particle symmetry. A configuration-based MRPT2 algorithm is proposed and extended to the multi-state n-electron valence-state second-order perturbation theory.
The influence of autoionizing states on the excitation of helium by electrons
International Nuclear Information System (INIS)
Ittersum, T. van
1976-01-01
The work described in this thesis deals with resonance effects in the scattering of electrons by helium at energies near the threshold of the autoionizing states (50-70 eV). The investigation is performed by studying light emission following the excitation of singly excited states. In some cases, the polarization of the radiation was also investigated. The purpose of the research was (i) to enlarge our knowledge of triply excited negative ion states, i.e. resonance states which are formed by temporary binding of the incident electron to a doubly excited (autoionizing) state of neutral helium, and (ii) to clear up the nature of some resonance structures which could not be explained in terms of negative ion resonances
Mott transition: Low-energy excitations and superconductivity
International Nuclear Information System (INIS)
Ioffe, L.B.; Larkin, A.I.
1988-09-01
It is possible that metal-dielectric transition does not result in changes of magnetic or crystallographic symmetry. In this case a fermionic spectrum is not changed at the transition, but additional low-energy excitations appear which can be described as a gauge field that has the same symmetry as an electromagnetic one. In the case of a non half-filled band gapless scalar Bose excitations also appear. Due to the presence of additional gauge field the physical conductivity is determined by the lowest conductivity of the Fermi or Bose subsystems. (author). 11 refs
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
Excited-state relaxation of some aminoquinolines
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.
Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)
2014-03-15
Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.
Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption
Larsen, D.S.; Papagiannakis, E.; van Stokkum, I.H.M.; Vengris, M.; Kennis, J.T.M.; van Grondelle, R.
2003-01-01
The excited-state dynamics of β-carotene in hexane was studied with dispersed ultrafast transient absorption techniques. A new excited state is produced after blue-edge excitation. Pump-repump-probe and pump-dump-probe measurements identified and characterized this state, termed S‡, which exhibits a
Quantum entanglement of localized excited states at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)
2015-01-20
In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.
Dielectronic recombination rate coefficients to the excited states of CI from CII
International Nuclear Information System (INIS)
Dubau, J.; Kato, T.; Safronova, U.I.
1998-01-01
The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated including 1s 2 2l 1 2l 2 2l 3 nl (n=2-6, l≤(n-1)) states. The values for the excited states higher than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The rate coefficients to the excited states are fitted to an analytical formula and the fit parameters are given. (author)
Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband
Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.
2006-01-01
Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.
Excited state properties of aryl carotenoids
Czech Academy of Sciences Publication Activity Database
Fuciman, M.; Chábera, P.; Župčanová, Anita; Hříbek, P.; Arellano, J.B.; Vácha, František; Pšenčík, J.; Polívka, Tomáš
2010-01-01
Roč. 12, č. 13 (2010), s. 3112-3120 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited-states * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 3.454, year: 2010
Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation
Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš
2017-09-01
Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.
International Nuclear Information System (INIS)
Ogawa, Teiichiro
1986-01-01
Emission spectrum by controlled electron impact has been a successful technique for the investigation of molecular dynamics. (1) Molecular excitation. Aromatic molecules give an optical emission similar to fluorescence. However, as is shown by the vibrational structure and the electron energy dependence of benzene emission, its excitation process is not necessarily optical. Some aliphatic molecules also exhibit an emission band at the ultraviolet region. (2) Molecular dissociation. Analysis of the Doppler profile, the threshold energy, the excitation function and the isotope effect of the atomic emission produced in electron-molecule collisions has clarified the dynamics of the molecular dissociation. Especially the Doppler profile has given the translational energy distribution of the fragment atom, which is very useful to disclose the potential energy curve. Its angular dependence has recently found to allow determination of the symmetry of the intermediate excited state and the magnetic sublevel distribution of the fragment atom. These finding has revealed detailed state-to-state dynamics of the molecular dissociation. (author)
Formation and role of excited states in radiolysis - a foreword
International Nuclear Information System (INIS)
Singh, A.
1976-01-01
It is stated that the choice of contributions to the special issue of this Journal has been limited to those which bear on the details of the mechanisms of excited state formation and are likely to be useful to radiation chemists. Since more than half the energy deposited in radiolysis goes into excitation, studies on the fate of the excited species formed are very important. A brief reference is made to the subject matter of each of the fifteen contributions, and its significance to the development of the technique of radiolysis is outlined. (U.K.)
Symmetry chains and adaptation coefficients
International Nuclear Information System (INIS)
Fritzer, H.P.; Gruber, B.
1985-01-01
Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains
Local density approximation for exchange in excited-state density functional theory
Harbola, Manoj K.; Samal, Prasanjit
2004-01-01
Local density approximation for the exchange energy is made for treatment of excited-states in density-functional theory. It is shown that taking care of the state-dependence of the LDA exchange energy functional leads to accurate excitation energies.
Dielectronic recombination rate coefficients to the excited states of CI from CII
Energy Technology Data Exchange (ETDEWEB)
Dubau, J. [Observatoire of Paris, 92 MEUDON (France); Kato, T.; Safronova, U.I.
1998-01-01
The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated including 1s{sup 2}2l{sub 1}2l{sub 2}2l{sub 3}nl (n=2-6, l{<=}(n-1)) states. The values for the excited states higher than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The rate coefficients to the excited states are fitted to an analytical formula and the fit parameters are given. (author)
Lu, Jin-Cheng; Chen, Xiao-Dong; Deng, Wei-Min; Chen, Min; Dong, Jian-Wen
2018-07-01
The valley is a flexible degree of freedom for light manipulation in photonic systems. In this work, we introduce the valley concept in magnetic photonic crystals with broken inversion symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap where bulk states only exist at one single valley. In addition, the transition between Hall and valley-Hall nontrivial topological phases is also studied in terms of the competition between the broken inversion and time-reversal symmetries. At the photonic boundary between two topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and demonstrate their robustness against defects.
A broken symmetry ontology: Quantum mechanics as a broken symmetry
International Nuclear Information System (INIS)
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance
International Nuclear Information System (INIS)
Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.
2014-01-01
We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports
Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy
International Nuclear Information System (INIS)
Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.
2013-01-01
Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)
Constraints on the symmetry energy from neutron star equation of state
Miyazaki, K
2006-01-01
We develop an equation of state (EOS) for neutron star (NS) matter, which forbids the direct URCA cooling and satisfies the recent information on the mass and the radius, simultaneously. At sub-saturation densities, the symmetry energy of the EOS is well described by a function E_{sym}(\\rho)=31.6(\\rho/\\rho_0)^{\\gamma} with 0.70\\leq\\gamma\\leq0.77. This constraint on the density dependence of the symmetry energy is much severer than that obtained from the analysis of the isospin diffusion date in heavy-ion collisions. Consequently, we can obtain the valuable information on nuclear matter from the astrophysical observations of NSs.
Directory of Open Access Journals (Sweden)
Sergienko Alexander V.
2014-01-01
The potential for efficient identification of objects carrying elements of high-order symmetry using correlated orbital angular momentum (OAM states is demonstrated. The enhanced information capacity of this approach allows the recognition of specific spatial symmetry signatures present in objects with the use of fewer resources than in a conventional pixel-by-pixel imaging, representing the first demonstration of compressive sensing using OAM states. This approach demonstrates the capability to quickly evaluate multiple Fourier coefficients directly linked with the symmetry features of the object. The results suggest further application in small-scale biological contexts where symmetry and small numbers of noninvasive measurements are important.
Laughlin states on the Poincare half-plane and its quantum group symmetry
Alimohammadi, M.; Sadjadi, H. Mohseni
1996-01-01
We find the Laughlin states of the electrons on the Poincare half-plane in different representations. In each case we show that there exist a quantum group $su_q(2)$ symmetry such that the Laughlin states are a representation of it. We calculate the corresponding filling factor by using the plasma analogy of the FQHE.
Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase
International Nuclear Information System (INIS)
Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoit
2008-01-01
The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states
Symmetry groups of state vectors in canonical quantum gravity
International Nuclear Information System (INIS)
Witt, D.M.
1986-01-01
In canonical quantum gravity, the diffeomorphisms of an asymptotically flat hypersurface S, not connected to the identity, but trivial at infinity, can act nontrivially on the quantum state space. Because state vectors are invariant under diffeomorphisms that are connected to the identity, the group of inequivalent diffeomorphisms is a symmetry group of states associated with S. This group is the zeroth homotopy group of the group of diffeomorphisms fixing a frame of infinity on S. It is calculated for all hypersurfaces of the form S = S 3 /G-point, where the removed point is thought of as infinity on S and the symmetry group S is the zeroth homotopy group of the group of diffeomorphisms of S 3 /G fixing a point and frame, denoted π 0 Diff/sub F/(S 3 /G). Before calculating π 0 Diff/sub F/ (S 3 /G), it is necessary to find π 0 of the group of diffeomorphisms. Once π 0 Diff(S 3 /G) is known, π 0 Diff/sub x/ 0 (S 3 /G) is calculated using a fiber bundle involving Diff(S 3 /G), Diff/sub x/ 0 (S 3 /G), and S 3 /G. Finally, a fiber bundle involving Diff/sub F/(S 3 /G), Diff(S 3 /G), and the bundle of frames over S 3 /G is used along with π 0 Diff/sub x/ 0 (S 3 /G) to calculate π 0 Diff/sub F/(S 3 /G)
Matrix Elements in Fermion Dynamical Symmetry Model
Institute of Scientific and Technical Information of China (English)
LIU Guang-Zhou; LIU Wei
2002-01-01
In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.
Matrix Elements in Fermion Dynamical Symmetry Model
Institute of Scientific and Technical Information of China (English)
LIUGuang－Zhou; LIUWei
2002-01-01
In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.
First 3- excited state of 56Fe
International Nuclear Information System (INIS)
Fotiades, N.; Nelson, R. O.; Devlin, M.
2010-01-01
There is no reliable evidence for the existence of the 3.076 MeV (3 - ) level adopted in the ENSDF evaluation for 56 Fe although it has been reported in a few experiments. Previous reports of the observation of this level appear to be based on an incorrect assignment in early (e,e ' ) work. Recent neutron inelastic scattering measurements by Demidov et al. [Phys. At. Nucl. 67, 1884, (2004)] show that the assigned γ-ray decay of this state does not occur at a level consistent with known properties of inelastic scattering. In the present work the 56 Fe(n,n ' γ) reaction was used to populate excited states in 56 Fe. Neutrons in the energy range from 1 to 250 MeV were provided by the pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility. Deexciting γ rays were detected with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. The γ-γ data obtained with GEANIE were used to establish coincidence relations between transitions. All previously reported levels up to E x =3.6 MeV excitation energy were observed except for the 3.076 MeV (3 - ) level. The 991- and 2229-keV transitions, previously reported to deexcite this level, were not observed in the γ-γ coincidence data obtained in the present experiment. The present work supports the assignment of the 4509.6 keV level as the first 3 - excited state in 56 Fe by observation of two previously known transitions deexciting this state.
Raman active high energy excitations in URu{sub 2}Si{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Buhot, Jonathan [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); High Field Magnet Laboratory (HFML - EMFL), Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); Piekarz, Przemysław [Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakòw (Poland); Lapertot, Gérard [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Aoki, Dai [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Méasson, Marie-Aude, E-mail: marie-aude.measson@univ-paris-diderot.fr [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France)
2017-02-01
We have performed Raman scattering measurements on URu{sub 2}Si{sub 2} single crystals on a large energy range up to ∼1300 cm{sup −1} and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the E{sub g} symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A{sub 1g} symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.
Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems
Energy Technology Data Exchange (ETDEWEB)
Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)
2006-01-01
This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.
Aniello, Paolo; Chruściński, Dariusz
2017-07-01
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.
Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation
Energy Technology Data Exchange (ETDEWEB)
Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)
2014-11-10
The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.
Symmetry rules How science and nature are founded on symmetry
Rosen, Joe
2008-01-01
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.
Electron scattering from H2+: Resonances in the Π symmetries
International Nuclear Information System (INIS)
Collins, L.A.; Schneider, B.I.; Noble, C.J.
1992-01-01
We present the results of calculations for e - +H 2 + scattering in the region below the first excited state. We employ three distinct and independent methods, close-coupling linear algebraic, effective-optical-potential linear algebraic, and R matrix, to examine the collision at the highest level of sophistication and to provide a valuable check on the results of a single technique. For the 1 Π u and 3 Π u symmetries, we find strong interference effects between various autoionizing series, leading to significant variations of the resonance width with internuclear separation R. Such variations may have profound effects on such processes as photoionization, dissociation, and recombination. For the 1 Π g and 3 Π g symmetries, we observe monotonic behavior of the width with R and find no evidence of strong interference effects or rapid changes
Embedding potentials for excited states of embedded species
International Nuclear Information System (INIS)
Wesolowski, Tomasz A.
2014-01-01
Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed
Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas
2014-03-01
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Spin dynamics in the pseudo-gap state of a high-temperature superconductor
Energy Technology Data Exchange (ETDEWEB)
Hinkov, V; Lin, C T; Chen, D P; Keimer, B [Max Planck Inst Solid State Res, D-70569 Stuttgart, (Germany); Bourges, P; Pailhes, S; Sidis, Y [CEA, CNRS, CE Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Ivanov, A [Inst Max Von Laue Paul Langevin, F-38042 Grenoble, (France); Frost, C D; Perring, T G [Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, (United Kingdom)
2007-07-01
The pseudo-gap is one of the most pervasive phenomena of high-temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature, Tc, or to a hidden order parameter competing with superconductivity. Here, we use inelastic neutron scattering from under-doped YBa{sub 2}Cu{sub 3}O{sub 6.6} to show that the dispersion relations of spin excitations in the superconducting and pseudo-gap states are qualitatively different. Specifically, the extensively studied 'hour glass' shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudo-gap state and we observe an unusual 'vertical' dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudo-gap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudo-gap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work. (authors)
Selective excitation of atoms or molecules to high-lying states
International Nuclear Information System (INIS)
Ducas, T.W.
1978-01-01
This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)
International Nuclear Information System (INIS)
Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki
2011-01-01
Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S 1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S 2 state or two-photon excitation to the symmetry-forbidden S 1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S 1 .
Symmetries and statistical behavior in fermion systems
International Nuclear Information System (INIS)
French, J.B.; Draayer, J.P.
1978-01-01
The interplay between statistical behavior and symmetries in nuclei, as revealed, for example, by spectra and by distributions for various kinds of excitations is considered. Methods and general results, rather than specific applications, are given. 16 references
Spontaneous symmetry breaking in 4-dimensional heterotic string
International Nuclear Information System (INIS)
Maharana, J.
1989-07-01
The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action. 19 refs
Does the excited state of the 3He nucleus exist?
International Nuclear Information System (INIS)
Barabanov, A.L.
1994-01-01
The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases
Energy Technology Data Exchange (ETDEWEB)
Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)
2014-12-14
In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.
Supersymmetric quantum mechanics and higher excited states of a non-polynomial potential
International Nuclear Information System (INIS)
Drigo Filho, E.; Ricotta, R.M.
1989-03-01
Supersymmetric quantum mechanics is used to evaluate new excited states of a non-polynomial potential. This illustrates a method of evaluating higher excited states of quantum mechanical potentials. (A.C.A.S.) [pt
Energy Technology Data Exchange (ETDEWEB)
Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)
2009-10-26
The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.
The properties of 4'-N,N-dimethylaminoflavonol in the ground and excited states
Moroz, V. V.; Chalyi, A. G.; Roshal, A. D.
2008-09-01
The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.
Symmetries and statistical behavior in fermion systems
Energy Technology Data Exchange (ETDEWEB)
French, J.B.; Draayer, J.P.
1978-01-01
The interplay between statistical behavior and symmetries in nuclei, as revealed, for example, by spectra and by distributions for various kinds of excitations is considered. Methods and general results, rather than specific applications, are given. 16 references. (JFP)
Optimal control of peridinin excited-state dynamics
Czech Academy of Sciences Publication Activity Database
Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš
2010-01-01
Roč. 373, 1-2 (2010), s. 129-136 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010
Symmetry rules. How science and nature are founded on symmetry
Energy Technology Data Exchange (ETDEWEB)
Rosen, J.
2008-07-01
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences. (orig.)
Anisotropy of electronic states excited in ion-atom collisions
International Nuclear Information System (INIS)
Boskamp, E.B.
1983-01-01
The author reports coincidence measurements made on the He + + Ne and He + + He systems. The complex population amplitudes for the magnetic sublevels of the investigated excited states, Ne(2p 4 3s 2 ) 1 D and He(2p 2 ) 1 D, were completely determined and possible excitation mechanisms are described. (Auth.)
Can $\\beta$-decay probe excited state halos?
2002-01-01
In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.
Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho
2018-03-06
Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To
Excitations in the field-induced quantum spin liquid state of α-RuCl3
Banerjee, Arnab; Lampen-Kelley, Paula; Knolle, Johannes; Balz, Christian; Aczel, Adam Anthony; Winn, Barry; Liu, Yaohua; Pajerowski, Daniel; Yan, Jiaqiang; Bridges, Craig A.; Savici, Andrei T.; Chakoumakos, Bryan C.; Lumsden, Mark D.; Tennant, David Alan; Moessner, Roderich; Mandrus, David G.; Nagler, Stephen E.
2018-03-01
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.
Production of autoionizing di-excited states of barium with high angular momentum
International Nuclear Information System (INIS)
Roussel, F.; Breger, P.; Gounand, F.; Spiess, G.
1988-01-01
Autoionizing di-excited states Ba(6p 1/2 27l) with 7 ≤l≤26, have been experimentally detected. They have been produced by a method combining excitation by two lasers and l-mixing collisions between barium and xenon. Results show that a long delay between the two laser excitation steps is favourable to the production of these states. The method has proved to be very efficient (measured cross-section: σ = 3.1 . 10 -13 cm 2 ) for populating high-angular-momentum autoionizing states of barium
Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.
Martirez, John Mark P; Carter, Emily A
2017-03-29
Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH 3 synthesis from N 2 and H 2 is notoriously energy intensive. This is due to the difficulty of N 2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N 2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N 2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N 2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N 2 , with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.
Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems
International Nuclear Information System (INIS)
Van Tassle, Aaron Justin
2006-01-01
This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting
Giant dipole resonances built on excited states
International Nuclear Information System (INIS)
Snover, K.A.
1983-01-01
The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references
Deciphering excited state evolution in halorhodopsin with stimulated emission pumping.
Bismuth, Oshrat; Komm, Pavel; Friedman, Noga; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford
2010-03-04
The primary photochemical dynamics of Hb. pharaonis Halorhodopsin (pHR) are investigated by femtosecond visible pump-near IR dump-hyperspectral probe spectroscopy. The efficiency of excited state depletion is deduced from transient changes in absorption, recorded with and without stimulated emission pumping (SEP), as a function of the dump delay. The concomitant reduction of photocycle population is assessed by probing the "K" intermediate difference spectrum. Results show that the cross section for stimulating emission is nearly constant throughout the fluorescent state lifetime. Probing "K" demonstrates that dumping produces a proportionate reduction in photocycle yields. We conclude that, despite its nonexponential internal conversion (IC) kinetics, the fluorescent state in pHR constitutes a single intermediate in the photocycle. This contrasts with conclusions drawn from the study of primary events in the related chloride pump from Hb. salinarum (sHR), believed to produce the "K" intermediate from a distinct short-lived subpopulation in the excited state. Our discoveries concerning internal conversion dynamics in pHR are discussed in light of recent expectations for similar excited state dynamics in both proteins.
DEFF Research Database (Denmark)
Bohr, Henrik; Malik, F. Bary
2013-01-01
The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...
International Nuclear Information System (INIS)
Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.
2006-01-01
Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l dom for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T) n A . The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists
Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.
Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M
2016-09-27
Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.
Statistical density of nuclear excited states
Directory of Open Access Journals (Sweden)
V. M. Kolomietz
2015-10-01
Full Text Available A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* < m is used. The approach provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small temperatures T ≤ 1 MeV but reduce strongly the results for the excitation energy at high temperatures. By use of standard Woods - Saxon potential and nucleon effective mass m* = 0.7m the A-dependency of the statistical level density parameter K was evaluated in a good qualitative agreement with experimental data.
Filatov, Mikhail A.
2015-10-13
The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.
Filatov, Mikhail A.; Etzold, Fabian; Gehrig, Dominik; Laquai, Fré dé ric; Busko, Dmitri; Landfester, Katharina; Baluschev, Stanislav
2015-01-01
The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.
Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems
Directory of Open Access Journals (Sweden)
Jutho Haegeman
2015-02-01
Full Text Available We present an operational procedure to transform global symmetries into local symmetries at the level of individual quantum states, as opposed to typical gauging prescriptions for Hamiltonians or Lagrangians. We then construct a compatible gauging map for operators, which preserves locality and reproduces the minimal coupling scheme for simple operators. By combining this construction with the formalism of projected entangled-pair states (PEPS, we can show that an injective PEPS for the matter fields is gauged into a G-injective PEPS for the combined gauge-matter system, which potentially has topological order. We derive the corresponding parent Hamiltonian, which is a frustration-free gauge-theory Hamiltonian closely related to the Kogut-Susskind Hamiltonian at zero coupling constant. We can then introduce gauge dynamics at finite values of the coupling constant by applying a local filtering operation. This scheme results in a low-parameter family of gauge-invariant states of which we can accurately probe the phase diagram, as we illustrate by studying a Z_{2} gauge theory with Higgs matter.
Excited-state formation as H+ and He+ ions scatter from metal surfaces
International Nuclear Information System (INIS)
Baird, W.E.; Zivitz, M.; Thomas, E.W.
1975-01-01
Impact of 10-to30KeV H + or He + ions on polycrystalline metal surfaces causes some projectiles to be backscattered in a neutral excited state. These projectiles subsequently radiatively decay, emitting Doppler-broadened spectral lines. By analysis of the spectral shape of these lines, we are able to determine the probability of radiationless deexcitation of the excited backscattered atoms. Quantitative measurements of spectral intensity indicate that less than 1% of all projectiles are backscattered in an excited state. The relative variation of total spectral line intensity with angle of projectile incidence and with projectile primary energy has been successfully predicted using a model which assumes that the probability for excited-state formation is independent of the scattered projectile's energy and direction. The variation in total spectral line intensity with target atomic number is predicted, and the sputtering and excitation of Al under He + impact is briefly examined
Di-lepton yield from the decay of excited 28Si states
International Nuclear Information System (INIS)
Bacelar, J.C.; Buda, A.; Balanda, A.; Krasznahorkay, A.; Ploeg, H. van der; Sujkowski, Z.; Woude, A. van der
1994-01-01
The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28 Si, with an initial excitation energy E * =50 MeV, were populated via the isospin T=0 reaction 4 He+ 24 Mg and the mixed-isospin 3 He+ 25 Mg reaction. In both reactions the dilepton (e + e - ) and photon decay yields were measured concurrently. An excess of counts in the e + e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states. (orig.)
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
2016-01-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for BSPT state, while either charge insulator/spin insulator or cha...
Energy Technology Data Exchange (ETDEWEB)
Kosumi, Daisuke, E-mail: kosumi@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kusumoto, Toshiyuki [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fujii, Ritsuko; Sugisaki, Mitsuru [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan); Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko [South Product Co. Ltd., 12-75 Suzaki, Uruma-shi, Okinawa 904-2234 (Japan); Frank, Harry A. [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan)
2011-03-15
Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S{sub 1} or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S{sub 2} state or two-photon excitation to the symmetry-forbidden S{sub 1} state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S{sub 1}.
Energy Technology Data Exchange (ETDEWEB)
Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)
2014-05-14
We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.
Sensitivity of (α,α') cross sections to excited-state quadrupole moments
International Nuclear Information System (INIS)
Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.
1977-01-01
Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2
Nuclear charge-exchange excitations in a self-consistent covariant approach
International Nuclear Information System (INIS)
Liang, Haozhao
2010-01-01
Nowadays, charge-exchange excitations in nuclei become one of the central topics in nuclear physics and astrophysics. Basically, a systematic pattern of the energy and collectivity of these excitations could provide direct information on the spin and isospin properties of the in-medium nuclear interaction, and the equation of state of asymmetric nuclear matter. Furthermore, a basic and critical quantity in nuclear structure, neutron skin thickness, can be determined indirectly by the sum rule of spin-dipole resonances (SDR) or the excitation energy spacing between the isobaric analog states (IAS) and Gamow-Teller resonances (GTR). More generally, charge-exchange excitations allow one to attack other kinds of problems outside the realm of nuclear structure, like the description of neutron star and supernova evolutions, the β-decay of nuclei which lie on the r-process path of stellar nucleosynthesis, and the neutrino-nucleus cross sections. They also play an essential role in extracting the value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V ud via the nuclear 0 + → 0 + superallowed Fermi β decays. For all these reasons, it is important to develop the microscopic theories of charge-exchange excitations and it is the main motivation of the present work. In this work, a fully self-consistent charge-exchange relativistic random phase approximation (RPA) based on the relativistic Hartree-Fock (RHF) approach is established. Its self-consistency is verified by the so-called IAS check. This approach is then applied to investigate the nuclear spin-isospin resonances, isospin symmetry-breaking corrections for the superallowed β decays, and the charged-current neutrino-nucleus cross sections. For two important spin-isospin resonances, GTR and SDR, it is shown that a very satisfactory agreement with the experimental data can be obtained without any readjustment of the energy functional. Furthermore, the isoscalar mesons are found to play an essential role in spin
Thermodynamics of pion gas using states predicted from κ-deformed Poincare algebra
International Nuclear Information System (INIS)
Cordeiro, Claudete E.; Delfino, Antonio; Dey, Jishnu
1995-01-01
K-deformed Poincare algebra, which preserves rotational and translational symmetries, can successfully predict the angular and radial excited states of the pion. At high temperature, T these states can be excited in the pion gas, in addition to the usual momentum excitation. We exploit this to look at pion free energy finding it increases linearly with T. The energy per particle and the entropy show evidence of a smooth phase transition after T=0.2 GeV. (author)
Grozdanov, Sašo; Poovuttikul, Napat
2018-05-01
In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.
Particle hole excitations coupled to complex states in heavy-ion collisions
International Nuclear Information System (INIS)
Jolos, R.V.; Schmidt, R.
1982-01-01
The excitation of uncorrelated 1p-1h states in one nucleus due to the action of the time-dependent mean field of the other nucleus was studied earlier. No statistical assumptions or average procedures were made. Such a mechanism can be responsible for an appreciable excitation of the two nuclei during the short approach phase of the reaction (E* approximately> 100 MeV). The reversibility of the equations of motion leads to a deexcitation of the initially stored excitation energy into that of the relative motion for later times. This feedback behaviour of the internal excitation energy which results in particular to the deexcitation of high energetic 1p-1h pairs is probably not realistic due to the coupling of this states to more complex states with high density. It is studied the influence of this coupling due to the residual interaction between the nucleons on the dynamics of two colliding heavy ions
Observation of excited state charge transfer with fs/ps-CARS
International Nuclear Information System (INIS)
Blom, Alex Jason
2009-01-01
Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4(prime)-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4(prime)-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles
Observation of excited state charge transfer with fs/ps-CARS
Energy Technology Data Exchange (ETDEWEB)
Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)
2009-01-01
Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.
Energies and lifetimes of excited states in copperlike Kr VIII
International Nuclear Information System (INIS)
Livingston, A.E.; Curtis, L.J.; Schectman, R.M.; Berry, H.G.
1980-01-01
The spectrum of Kr VIII has been observed between 180 and 2000 A by using foil excitation of 2.5--3.5-MeV krypton ions. Twenty new transitions have been classified and eleven new excited-state energies have been determined within the n=4 --7 shells. The ionization potential is derived to be 1 015 800 +- 200 cm -1 . The excited-state energies and fine structures are compared with recent relativistic Hartree-Fock calculations. The 4p-state lifetime has been measured by performing a simultaneous analysis of decay data for the 4p level and for its dominant cascade-repopulating levels. The 4p lifetime is found to be 30% shorter than previously measured values and is in excellent agreement with the result of a recent multiconfiguration Hartree-Fock calculation. The source of the discrepancy between this result and earlier measurements is discussed
International Nuclear Information System (INIS)
Hiskes, J.R.
1991-01-01
The excitation cross sections, σ(v,v double-prime), for an H 2 molecule initially in any one of the 15 vibrational levels, v belonging to the ground electronic state and excited to a final vibrational level, v double-prime are evaluated for direct excitations via all members of the excited electronic singlet spectrum. Account is taken of predissociation, autoionization, and radiative decay of the excited electronic spectrum that leads to a final population distribution for the ground electronic state, X 1 Σ + g (v double-prime). For v=0, account is taken explicitly of transitions via the B, C, B', and D electronic states in evaluating the cross sections. The additional contribution of excitations via all Rydberg states lying above the D state enhances these cross sections by approximately 10%. For v>0, cross sections are evaluated taking explicit account of transitions through the B and C states; higher singlet excitations enhance these values by 25%. The choice of the reference total cross sections remains a subjective one, causing the values calculated here to have a possible uncertainty of +20% -30% . For excitations occurring within a hydrogen discharge, collisional excitation-ionization events among the intermediate singlet states will effectively quench the v, v double-prime excitation process for discharge densities in excess of the range 10 15 --10 16 electrons/cm -3
Watson-Crick base pairing controls excited-state decay in natural DNA.
Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang
2014-10-13
Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Ioniclike energy structure of neutral core-excited states in free Kr clusters
International Nuclear Information System (INIS)
Peredkov, S.; Sorensen, S.L.; Kivimaeki, A.; Schulz, J.; Maartensson, N.; Oehrwall, G.; Lundwall, M.; Rander, T.; Lindblad, A.; Bergersen, H.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.
2005-01-01
The development of electronic states in krypton clusters is investigated by high-resolution core-level electron spectroscopy. The energy ordering of bulk versus surface 3d -1 np(n>5) core-excited states in neutral clusters is demonstrated to be reversed to the 3d -1 5p level situation. The cluster 3d -1 6p,7p states are proven to be at a lower energy than the corresponding atomic levels. These findings reveal the ioniclike energy structure of the neutral cluster core-excited levels. The phenomenon is explained by a spatial spread of the excited orbitals over the cluster lattice
Clustered chimera states in systems of type-I excitability
International Nuclear Information System (INIS)
Vüllings, Andrea; Omelchenko, Iryna; Hövel, Philipp; Hizanidis, Johanne
2014-01-01
The chimera state is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras have been found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative of neural excitability type I. We obtain chimera states with multiple coherent regions (clustered chimeras/multi-chimeras) depending on the distance from the excitability threshold, the range of nonlocal coupling and the coupling strength. A detailed stability diagram for these chimera states and other interesting coexisting patterns (like traveling waves) is presented. (paper)
The triplet excited state of bilirubin
International Nuclear Information System (INIS)
Land, E.J.
1976-01-01
Pulse radiolysis of benzene solutions of 40 μM bilirubin alone or with 0.1 M biphenyl has yielded evidence for the formation of the triplet excited state of bilirubin. Measurements were made of a number of properties, including the absorption spectrum (lambdasub(max)500nm), lifetime 9μs), extinction coefficient (8800 M -1 cm -1 ), energy level (approximately 150 kJ mol -1 ) and the rate of quenching by oxygen (rate constant, 8.2 x 10 8 M -1 s -1 ). An upper limit of 0.1 has also been obtained for the singlet to triplet crossover efficiency of bilirubin following excitation by 353 nm radiation. Consideration is given to the relevance of these data to the mechanism of bilirubin photo-destruction, both in vivo and in vitro. (U.K.)
International Nuclear Information System (INIS)
Smirnova, N.A.; Van Isacker, P.; Smirnova, N.A; Pietralla, N.; Yale Univ., New Haven, CT; Mizusaki, T.
2000-01-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2 + 1 state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the γ-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei 142 Ce and 94 Mo. (authors)
Energy Technology Data Exchange (ETDEWEB)
Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics
2000-07-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)
Technique for description of nonrotational excited states in a semiphenomenological nuclear theory
International Nuclear Information System (INIS)
Krutov, V.A.
1985-01-01
A non-standard technique for microscopic description of excited nonrotational states is considered; it is suitable for inseparable force application. Besides, an additional binding operator, mixing quasi-particle excitations and E1-resonance states, is considered. Instead of the standard technique of state ''collectivization'' of the random phase approximation type it is used the so-called ''method of bound amplitudes''
Non-orthogonal configuration interaction for the calculation of multielectron excited states
Energy Technology Data Exchange (ETDEWEB)
Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2014-03-21
We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.
DEFF Research Database (Denmark)
Wallace-Williams, Stacie E.; Møller, Søren; Goldbeck, Robert A.
1993-01-01
with the wavelength independence observed for the excited singlet-state absorption and fluorescence emission spectra of 1,5-diphenyl-2,3,4,6,7,8- hexahydronaphthalene and for the fluorescence emission spectra of 1,4diphenyl-1,3-cyclopentadiene, s-trans and s-cis structural analogs of DPB, respectively. The spectral...... changes in DPB can be explained in terms of an excitation wavelength-dependent production of s-cis and s-trans rotamer populations in the excited state. The DPB fluorescence emission spectrum was resolved into s-cis and s-trans components. The vibronic structure of the s-cis fluorescence spectrum...... is similar to that of s-trans, but the band origin is red-shifted and there is a slightly larger amplitude on the red edge. The excited-state absorption spectrum of s-cis DPB appears to be red-shifted relative to that of s-trans DPB as well....
Study of highly excited high spin states via the (HI, α) reaction
International Nuclear Information System (INIS)
Kubono, S.
1982-01-01
Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)
It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.
Coherent excitation of a single atom to a Rydberg state
DEFF Research Database (Denmark)
Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles
2010-01-01
We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...
Energy Technology Data Exchange (ETDEWEB)
Salmon, G A [Leeds Univ. (UK). Cookridge High Energy Radiation Research Centre
1976-01-01
This paper reviews the work of the author and his co-workers on the radiation-induced formation of excited states of aromatic compounds in solution. The experimental methods used are surveyed and in particular the method of measuring the yields of triplet and singlet excited states of the solute are described. The problems discussed are: (1) the effect of solvent on the yields of excited states, (2) formation of excited states in cyclohexane and other alicyclic hydrocarbons, (3) the formation of excited states in benzene and (4) the identification of T-T absorption spectra.
Excitation of spin-1 states in 166168170Er using bremsstrahlung
International Nuclear Information System (INIS)
Metzger, F.R.
1976-01-01
Some 40 states in 166 , 168 , 170 Er, most of them previously unknown, have been excited using bremsstrahlung with < or =4.2 MeV endpoint energy. For all but three of these levels, the angular distribution of the resonantly scattered radiation favors the assignment of spin 1. For some of the strongly excited levels, linear polarization measurements have been performed. They indicate that these levels have positive parity. The branching ratios further characterize them as K=1 excitations
Excited-state dynamics of the medicinal pigment curcumin in a hydrogel.
Harada, Takaaki; Lincoln, Stephen F; Kee, Tak W
2016-10-12
Curcumin is a yellow polyphenol with multiple medicinal effects. These effects, however, are limited due to its poor aqueous stability and solubility. A hydrogel of 3% octadecyl randomly substituted polyacrylate (PAAC18) has been shown to provide high aqueous stability for curcumin under physiological conditions, offering a route for photodynamic therapy. In this study, the excited-state photophysics of curcumin in the PAAC18 hydrogel is investigated using a combination of femtosecond transient absorption and fluorescence upconversion spectroscopy. The transient absorption results reveal a multiexponential decay in the excited-state kinetics with fast (1 ps & 15 ps) and slow (110 ps & ≈5 ns) components. The fast decay component exhibits a deuterium isotope effect with D 2 O in the hydrogel, indicating that the 15 ps decay component is attributable to excited-state intramolecular hydrogen atom transfer of curcumin in the PAAC18 hydrogel. In addition, solvent reorganisation of excited-state curcumin is investigated using multiwavelength femtosecond fluorescence upconversion spectroscopy. The results show that the dominant solvation response (τ = 0.08 ps) is a fast inertial motion owing to the presence of bulk-like water in the vicinity of the hydrophobic octadecyl substituents of the PAAC18 hydrogel. The results also show an additional response with longer time constants of 1 and 6 ps, which is attributable to translational diffusion of confined water molecules in the three-dimensional, cross-linking network of the octadecyl substituents of PAAC18. Overall, we show that excited-state intramolecular hydrogen atom transfer and solvent reorganisation are major photophysical events for curcumin in the PAAC18 hydrogel.
Rearrangements in ground and excited states
de Mayo, Paul
1980-01-01
Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.
Tracking excited-state charge and spin dynamics in iron coordination complexes
DEFF Research Database (Denmark)
Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe
2014-01-01
to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...
Linear-scaling quantum mechanical methods for excited states.
Yam, ChiYung; Zhang, Qing; Wang, Fan; Chen, GuanHua
2012-05-21
The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and
International Nuclear Information System (INIS)
Kimura, M.; Rice Univ., Houston, TX
1990-01-01
The two-electron capture or excitation process resulting from collisions of H + and O 6+ ions with He atoms in the energy range from 0.5 keV/amu to 5 keV/amu is studied within a molecular representation. The collision dynamics for formation of doubly excited O 4+ ions and He** atoms and their (n ell, n'ell ') populations are analyzed in conjunction with electron correlations. Autoionizing states thus formed decay through the Auger process. An experimental study of an ejected electron energy spectrum shows ample structures in addition to two characteristic peaks that are identified by atomic and molecular autoionizations. These structures are attributable to various interferences among electronic states and trajectories. We examine the dominant sources of the interferences. 12 refs., 5 figs
Jailaubekov, Askat E.; Song, Sang-Hun; Vengris, Mikas; Cogdell, Richard J.; Larsen, Delmar S.
2010-02-01
The hypothesis that S∗ is a vibrationally-excited ground-state population is tested and discarded for two carotenoid samples: β-carotene in solution and rhodopin glucoside embedded in the light harvesting 2 protein from Rhodopseudomonas acidophila. By demonstrating that the transient absorption signals measured in both systems that are induced by broadband (1000 cm -1) and narrowband (50 cm -1) excitation pulses are near identical and hence bandwidth independent, the impulsive stimulated Raman scattering mechanism proposed as the primary source for S∗ generation is discarded. To support this conclusion, previously published multi-pulse pump-dump-probe signals [17] are revisited to discard secondary mechanisms for S∗ formation.
Self-energy correction to the hyperfine splitting for excited states
International Nuclear Information System (INIS)
Wundt, B. J.; Jentschura, U. D.
2011-01-01
The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions using an expansion in the binding parameter Zα, where Z is the nuclear-charge number and α is the fine-structure constant. We present analytic results for D, F, and G states, and for a number of highly excited Rydberg states, with principal quantum numbers in the range 13≤n≤16, and orbital angular momenta l=n-2 and l=n-1. A closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with l≥2 and arbitrary n, l, and total angular momentum j. The low-energy contributions are written in the form of generalized Bethe logarithms and evaluated for selected states.
Zhou, Qiao; Du, Can; Yang, Li; Zhao, Meiyu; Dai, Yumei; Song, Peng
2017-06-22
The single and dual cooperated proton transfer dynamic process in the excited state of 1,5-dihydroxyanthraquinone (1,5-DHAQ) was theoretically investigated, taking solvent effects (ethanol) into account. The absorption and fluorescence spectra were simulated, and dual fluorescence exhibited, which is consistent with previous experiments. Analysis of the calculated IR and Raman vibration spectra reveals that the intramolecular hydrogen bonding interactions (O 20 -H 21 ···O 24 and O 22 -H 23 ···O 25 ) are strengthened following the excited proton transfer process. Finally, by constructing the potential energy surfaces of the ground state, first excited singlet state, and triplet state, the mechanism of the intramolecular proton transfer of 1,5-DHAQ can be revealed.
Equations of state for self-excited MHD generator studies
Energy Technology Data Exchange (ETDEWEB)
Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.
1980-02-26
We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.
Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.
Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G
2016-10-12
Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .
DEFF Research Database (Denmark)
Coimbatore Balram, Ajit; Jain, Jainendra
2017-01-01
The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry...... in the fractional quantum Hall effect, namely the PH symmetry of {\\em composite fermions}, which relates states at composite fermion filling factors $\
Direct excitation in heavy atom collisions: A propensity rule for charge cloud orientation
International Nuclear Information System (INIS)
Andersen, N.; Aarhus Univ.; Nielsen, S.E.; Royal Danish School of Pharmacy, Copenhagen)
1985-01-01
The Massey Criterion prescribes maximum electronic excitation of atoms in heavy particle collisions for collision velocities v where Δε a/ℎv ≅ π. Here Δε is the energy defect and a is the effective interaction length. Experiments with planar symmetry have revealed a preferred way of rotation of the excited charge cloud in this velocity region. We demonstrate by analysis of a simple, yet realistic model why excitation favors states with a specific orientation. A general propensity rule is derived and its validity evaluated for a specific case, the Na-He system. Implications for future experiments are pointed out. In particular, the propensity rule predicts very different collisions behaviors of oppositely oriented atoms, as prepared e.g. by circular polarized laser light. (orig.)
Snake states and their symmetries in graphene
Tiwari, Rakesh; Liu, Yang; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.
Snake states are open trajectories for charged particles moving in two dimensions under the influence of a spatially varying perpendicular magnetic field. They can also occur in a constant perpendicular magnetic field when the particle density is made nonuniform as realized at a pn junction in a semiconductor, or in graphene. We examine the correspondence of such trajectories in monolayer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric perpendicular magnetic field and (b) antisymmetric carrier density distribution in a uniform perpendicular magnetic field. Although, these families support different internal symmetries, the pattern of the boundary and interface currents is the same in both cases. We demonstrate that these two physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these two problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p-wave paired state.
The structure of nuclear states at low, intermediate and high excitation energies
International Nuclear Information System (INIS)
Soloviev, V.G.
1976-01-01
It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed
Quark excitations through the prism of direct photon plus jet at the LHC
International Nuclear Information System (INIS)
Bhattacharya, Satyaki; Chauhan, Sushil Singh; Choudhary, Brajesh Chandra; Choudhury, Debajyoti
2009-01-01
The quest to know the structure of matter has resulted in various theoretical speculations wherein additional colored fermions are postulated. Arising either as Kaluza-Klein excitations of ordinary quarks, or as excited states in scenarios wherein the quarks themselves are composites, or even in theories with extended gauge symmetry, the presence of such fermions (q*) can potentially be manifested in γ+jet final states at the LHC. Using unitarized amplitudes and the CMS setup, we demonstrate that in the initial phase of LHC operation (with an integrated luminosity of 200 pb -1 ) one can discover such states for a mass up to 2.0 TeV. The discovery of a q* with a mass as large as ∼5 TeV can be achieved for an integrated luminosity of ∼140 fb -1 . We also comment on the feasibility of mass determination.
Ultra-high resolution spectroscopy of the He doubly excited states
International Nuclear Information System (INIS)
Bozek, J.D.; Schlachter, A.S.; Kaindl, G.; Schulz, K.
1995-11-01
Photoionization spectra of the doubly-excited states of He were measured using beamline 9.0.1 at the Advanced Light Source. The beamline utilizes a 4.5 m long 8 cm period undulator as its source together with a spherical grating monochromator to provide an extremely bright source of photons in the range of 20 - 300 eV. A resolving power (E/ΔE) of 64,000 was obtained from the 1 MeV FWEM (2p,3d) doubly excited state resonance of He at 64.12 eV. The high brightness of the source and the very high quality optical elements of the beamline were all essential for achieving such a high resolution. The beamline components and operation are described and spectra of the double excitation resonances of He presented
Neutral excitations in the Gaffnian state
Kang, Byungmin; Moore, Joel E.
2017-06-01
We study a model fractional quantum Hall (FQH) wave function called the Gaffnian state, which is believed to represent a gapless, strongly correlated state that is very different from conventional metals. To understand this exotic gapless state better, we provide a representation based on work of Halperin in which the pairing structure of the Gaffnian state becomes more explicit. We employ the single-mode approximation introduced by Girvin, MacDonald, and Platzman, here extended to three-body interactions, in order to treat a neutral collective excitation mode in order to clarify the physical origin of the gaplessness of the Gaffnian state. We discuss approaches to extract systematically the relevant physics in the long-distance, large-electron-number limit of FQH states using numerical calculations with relatively few electrons. In Appendices, we provide second-quantized expressions for many-body Haldane pseudopotentials in various geometries including the plane, sphere, cylinder, and torus based on the proper definition of the relative angular momentum.
Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V
2014-05-14
Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.
Triplet Excited States as a Source of Relevant (Bio)Chemical Information
Jiménez Molero, María Consuelo; Miranda Alonso, Miguel Ángel
2014-01-01
The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and alpha(1)-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external...
The role of the excited electronic states in the C++H2O reaction
International Nuclear Information System (INIS)
Flores, Jesus R.; Gonzalez, Adan B.
2008-01-01
The electronic excited states of the [COH 2 ] + system have been studied in order to establish their role in the dynamics of the C + +H 2 O→[COH] + +H reaction, which is a prototypical ion-molecule reaction. The most relevant minima and saddle points of the lowest excited state have been determined and energy profiles for the lowest excited doublet and quartet electronic states have been computed along the fragmentation and isomerization coordinates. Also, nonadiabatic coupling strengths between the ground and the first excited state have been computed where they can be large. Our analysis suggests that the first excited state could play an important role in the generation of the formyl isomer, which has been detected in crossed beam experiments [D. M. Sonnenfroh et al., J. Chem. Phys. 83, 3985 (1985)], but could not be explained in quasiclassical trajectory computations [Y. Ishikawa et al., Chem. Phys. Lett. 370, 490 (2003); J. R. Flores, J. Chem. Phys. 125, 164309 (2006)
Thermodynamics of lattice QCD with 2 quark flavours : chiral symmetry and topology
International Nuclear Information System (INIS)
Lagae, J.-F.
1998-01-01
We have studied the restoration of chiral symmetry in lattice QCD at the finite temperature transition from hadronic matter to a quark-gluon plasma. By measuring the screening masses of flavour singlet and non-singlet meson excitations, we have seen evidence that, although flavour chiral symmetry is restored at this transition, flavour singlet (U(1)) axial symmetry is not. We conclude that this indicates that instantons continue to play an important role in the quark-gluon plasma phase
Excited states in stochastic electrodynamics
International Nuclear Information System (INIS)
Franca, H.M.; Marshall, T.W.
1987-12-01
It is shown that the set of Wigner functions associated with the excited states of the harmonic oscillator constitute a complete set of functions over the phase space. An arbitraty distribution can be expanded in terms of these Wigner functions. By studying the time evolution, according to Stochastic Electrodynamics, of the expansion coefficients, becomes feasible to separate explicity the contributionsof the radiative reaction and the vaccuum field to the Einsten. A coefficients for this system. A simple semiclassical explanation of the Weisskopf-Heitler phenomenon in resonance fluorescence is also supplied. (author) [pt
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
IAS Admin
At the Heart of Quantum Field Theory! Aritra Kr. ... principle of symmetry was not held as something very fundamental ... principle of local symmetry: the laws of physics are invariant un- .... Next, we would show that different coefficients of a state ...
The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation
Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.
2016-05-02
The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...
Collective excitations and supersolid behavior of bosonic atoms inside two crossed optical cavities
Lang, J.; Piazza, F.; Zwerger, W.
2017-12-01
We discuss the nature of symmetry breaking and the associated collective excitations for a system of bosons coupled to the electromagnetic field of two optical cavities. For the specific configuration realized in a recent experiment at ETH [1, 2], we show that, in absence of direct intercavity scattering and for parameters chosen such that the atoms couple symmetrically to both cavities, the system possesses an approximate U(1) symmetry which holds asymptotically for vanishing cavity field intensity. It corresponds to the invariance with respect to redistributing the total intensity I={I}1+{I}2 between the two cavities. The spontaneous breaking of this symmetry gives rise to a broken continuous translation-invariance for the atoms, creating a supersolid-like order in the presence of a Bose-Einstein condensate. In particular, we show that atom-mediated scattering between the two cavities, which favors the state with equal light intensities {I}1={I}2 and reduces the symmetry to {{Z}}2\\otimes {{Z}}2, gives rise to a finite value ˜ \\sqrt{I} of the effective Goldstone mass. For strong atom driving, this low energy mode is clearly separated from an effective Higgs excitation associated with changes of the total intensity I. In addition, we compute the spectral distribution of the cavity light field and show that both the Higgs and Goldstone mode acquire a finite lifetime due to Landau damping at non-zero temperature.
Effects of crossed states on photoluminescence excitation spectroscopy of InAs quantum dots
Directory of Open Access Journals (Sweden)
Lin Chien-Hung
2011-01-01
Full Text Available Abstract In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states on photoluminescence excitation (PLE spectra of InAs quantum dots (QDs was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T were compared. Our findings show that the profile of the PLE resonances associated with the bound transitions disintegrated and broadened. This was attributed to the coupling of the localized QD excited states to the crossed states and scattering of longitudinal acoustical (LA phonons. The degree of spectral linewidth broadening was larger for the excited state in smaller QDs because of the higher crossed joint density of states and scattering rate.
Observation of valleylike edge states of sound at a momentum away from the high-symmetry points
Xia, Bai-Zhan; Zheng, Sheng-Jie; Liu, Ting-Ting; Jiao, Jun-Rui; Chen, Ning; Dai, Hong-Qing; Yu, De-Jie; Liu, Jian
2018-04-01
In condensed matter physics, topologically protected edge transportation has drawn extensive attention over recent years. Thus far, the topological valley edge states have been produced near the Dirac cones fixed at the high-symmetry points of the Brillouin zone. In this paper, we demonstrate a unique valleylike phononic crystal (PnC) with the position-varying Dirac cones at the high-symmetry lines of the Brillouin zone boundary. The emergence of such Dirac cones, characterized by the vortex structure in a momentum space, is attributed to the unavoidable band crossing protected by the mirror symmetry. The Dirac cones can be unbuckled and a complete band gap can be induced through breaking the mirror symmetry. Interestingly, by simply rotating the square columns, we realize the valleylike vortex states and the band inversion effect which leads to the valley Hall phase transition. Along the valleylike PnC interfaces separating two distinct acoustic valley Hall phases, the valleylike protected edge transport of sound in domain walls is observed in both the simulations and the experiments. These results are promising for the exploration of alternative topological phenomena in the valleylike PnCs beyond the graphenelike lattice.
Excited states of 12C above the alpha-decay threshold
International Nuclear Information System (INIS)
Freer, M; Ashwood, N I; Barr, M; Curtis, N; Malcolm, J D; Wheldon, C; Ziman, V A; Almaraz-Calderon, S; Aprahamian, A; Bucher, B; Couder, M; Fang, X; Jung, F; Lu, W; Roberts, A; Tan, W P; Copp, P; Lesher, S
2011-01-01
The excitation energy spectrum of 12 C is important for both structural and astrophysical reasons; here we present evidence for a new state in 12 C. The two reactions 12 C( 4 He, 4 He+ 4 He+ 4 He) 4 He and 9 Be( 4 He, 4 He+ 4 He+ 4 He)n were measured using an array of four double sided strip detectors. Excited states in 12 C were reconstructed filtered by the condition that the alpha-decay proceeded via the 8 Be ground-state. In both measurements evidence was found for a new state at 13.3(0.2) MeV with a width 1.7(0.2) MeV. Angular correlation measurements from the 12 C( 4 He, 4 He+ 4 He+ 4 He) 4 He reaction indicates that the state may have J π = 4 + .
Calculation of neutral beam deposition accounting for excited states
International Nuclear Information System (INIS)
Gianakon, T.A.
1992-09-01
Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations
Dark excited states of carotenoids: Consensus and controversy
Czech Academy of Sciences Publication Activity Database
Polívka, Tomáš; Sundström, V.
2009-01-01
Roč. 477, 1-3 (2009), s. 1-11 ISSN 0009-2614 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited states * relaxation pathways * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.291, year: 2009
Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.
Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo
2012-08-21
Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.
Structure of the nucleon's low-lying excitations
Chen, Chen; El-Bennich, Bruno; Roberts, Craig D.; Schmidt, Sebastian M.; Segovia, Jorge; Wan, Shaolong
2018-02-01
A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to perform a comparative study of the four lightest (I =1 /2 ,JP=1 /2±) baryon isospin doublets in order to elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike, electromagnetically active quark-quark (diquark) correlations within all baryons; and in these doublets, isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In the two lightest (1 /2 ,1 /2+) doublets, however, scalar and pseudovector diquarks are overwhelmingly dominant. The associated rest-frame wave functions are largely S -wave in nature; and the first excited state in this 1 /2+ channel has the appearance of a radial excitation of the ground state. The two lightest (1 /2 ,1 /2-) doublets fit a different picture: accurate estimates of their masses are obtained by retaining only pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are predominantly P -wave in nature, but possess measurable S -wave components. Moreover, the first excited state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field theory, all differences between positive- and negative-parity channels must owe to chiral symmetry breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that can validate the contrasts drawn herein between the structure of the four lightest (1 /2 ,1 /2±) doublets will prove valuable in testing links between emergent mass generation and observable phenomena and, plausibly, thereby revealing dynamical features of confinement.
Radiative and Excited State Charmonium Physics
Energy Technology Data Exchange (ETDEWEB)
Jozef Dudek
2007-07-30
Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.
Selective two-photon excitation of a vibronic state by correlated photons.
Oka, Hisaki
2011-03-28
We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.
Amplitudes and state parameters from ion- and atom-atom excitation processes
International Nuclear Information System (INIS)
Andersen, T.; Horsdal-Pedersen, E.
1984-01-01
This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy
Mixed-symmetry superconductivity in two-dimensional Fermi liquids
International Nuclear Information System (INIS)
Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R.
1996-01-01
We consider a two-dimensional (2D) isotropic Fermi liquid with attraction in both s and d channels and examine the possibility of a superconducting state with mixed s and d symmetry of the gap function. We show that both in the weak-coupling limit and at strong coupling, a mixed s+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+d symmetry state at any coupling. copyright 1996 The American Physical Society
Winter, Michael W.; Prabhu, Dinesh K.
2011-01-01
Spectroscopic measurements of non-equilibrium emission were made in the free stream of the 60 megawatts Interaction Heating Facility at NASA Ames Research Center. In the visible near infrared wavelength region, the most prominent emission was from molecular N2, and in the ultra violet region, the spectra were dominated by emission from molecular NO. The only atomic lines observed were those of copper (an erosion product of the electrodes). The bands of the 1st Positive system of N2 (if B is true then A is true) differed significantly from spectra computed spectra assuming only thermal excitation, suggesting overpopulation of the high vibrational states of the B state of N2. Populations of these high vibrational levels (peaking at v (sub upper) equals 13) of the N2 B state were determined by scaling simulated spectra; calculations were performed for each upper vibrational state separately. The experimental-theoretical procedure was repeated for several radial positions away from the nozzle axis to obtain spatial distributions of the upper state populations; rotational symmetry of the flow was assumed in simulations. The overpopulation of the high vibrational levels has been interpreted as the effect of inverse pre-dissociation of neutral atoms in the N2 A state, which populates the N2 B state through a level crossing process at v (sub upper) is greater than 10.
Anisotropy in the simultaneous excitation of two colliding atoms to various substate combinations
International Nuclear Information System (INIS)
Moorman, L.
1987-01-01
In this thesis double-atom excitation (DAE) processes in atomic collision experiments are studied by measuring the angular correlation of two coincident photons emitted by both excited collision particles. The analytical expression for the angular correlation function is derived which contains as adjustable parameters the various (complex) excitation amplitudes integrated over all scattering angles. The He+He system is investigated, for projectile energies between 0.5 and 3.5 keV, in which both particles are excited simultaneously to the 2 1 P state. The relation between photon correlations and atomic state correlations is investigated and the density matrix elements are calculated for a statistical distribution of the excited atomic substates into which a certain symmetry is incorporated. Collisions between metastable and groundstate He atoms are considered. Single-photon spectra are presented and compared with spectra from the He+He collision system. Coincidence measurements were performed on these collision systems to study possible double-atom excitations. Coincidences between two ultraviolet as well as an ultraviolet and a visible photon were measu0515 Also a measurement is reported of the relative population of the magnetic substates of the 3 1 D state of helium. Coincidence measurements on two ultraviolet photons emitted upon Ne-Ne and He-Ne collisions are described and the double-atom excitations for these systems are studied. For Ne+Ne no coincidence peaks were found. For He+Ne double-atom excitation was observed and from the measured angular correlations the corresponding density matrix elements for some kinetic energies of the projectile. (Auth.)
Aspects of the SO(5) symmetry and the problem of high temperature superconductivity
Demler, Eugene A.
This dissertation reviews several aspects of the SO(5) theory, that unifies superconductivity and antiferromagnetism and that has recently been suggested in connection with the problem of high temperature superconductivity. Microscopic analysis of the pi operators (generators of the SO(5) symmetry) is given for the t-J and Hubbard models and it is argued that pseudo-Goldstone bosons that correspond to these operators produce resonant peaks observed in neutron scattering experiments on YBCO. Microscopic models with exact SO(5) symmetry are considered and the nature of the AF/SC transition in these systems is discussed. Analysis of a non-Abelian SU(2) holonomy of the SO (5) spinor states is presented, the SO(5) Berry's phase is shown to be related to the second Hopf map and described by a Yang monopole at the degeneracy point. These results are used to show that fermionic excitations in models with exact SO(5) symmetry may be described as four component Dirac fermions coupled to SU(2) gauge fields in 2 + 1 dimensions. Finally some experimental tests of the SO(5) model are suggested.
New Boundary-Driven Twist States in Systems with Broken Spatial Inversion Symmetry
Hals, Kjetil M. D.; Everschor-Sitte, Karin
2017-09-01
A full description of a magnetic sample includes a correct treatment of the boundary conditions (BCs). This is in particular important in thin film systems, where even bulk properties might be modified by the properties of the boundary of the sample. We study generic ferromagnets with broken spatial inversion symmetry and derive the general micromagnetic BCs of a system with Dzyaloshinskii-Moriya interaction (DMI). We demonstrate that the BCs require the full tensorial structure of the third-rank DMI tensor and not just the antisymmetric part, which is usually taken into account. Specifically, we study systems with C∞ v symmetry and explore the consequences of the DMI. Interestingly, we find that the DMI already in the simplest case of a ferromagnetic thin film leads to a purely boundary-driven magnetic twist state at the edges of the sample. The twist state represents a new type of DMI-induced spin structure, which is completely independent of the internal DMI field. We estimate the size of the texture-induced magnetoresistance effect being in the range of that of domain walls.
International Nuclear Information System (INIS)
Suzuki, D.; Iwasaki, H.; Ong, H.J.; Imai, N.; Sakurai, H.; Nakao, T.; Aoi, N.; Baba, H.; Bishop, S.; Ichikawa, Y.; Ishihara, M.; Kondo, Y.; Kubo, T.; Kurita, K.; Motobayashi, T.; Nakamura, T.; Okumura, T.; Onishi, T.K.; Ota, S.; Suzuki, M.K.
2008-01-01
Lifetime measurements were performed on low-lying excited states of the neutron-rich isotope 17 C using the recoil shadow method. The γ-decay mean lifetimes were determined to be 583±21(stat)±35(syst) ps for the first excited state at 212 keV and 18.9±0.6(stat)±4.7(syst) ps for the second excited state at 333 keV. Based on a comparison with the empirical upper limits for the electromagnetic transition strengths, these decays are concluded to be predominantly M1 transitions. The reduced M1 transition probabilities to the ground state were deduced to be (1.0±0.1)x10 -2 μ N 2 and (8.2 -1.8 +3.2 )x10 -2 μ N 2 , respectively, for the first and second excited states. The strongly hindered M1 strength as well as the lowered excitation energy represents unique nature of the 212-keV state
Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures
Energy Technology Data Exchange (ETDEWEB)
Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in
2013-12-15
Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.
Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures
International Nuclear Information System (INIS)
Saini, R.K.; Das, K.
2013-01-01
Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment
Chiral symmetry breaking and the spin content of the ρ and ρ' mesons
International Nuclear Information System (INIS)
Glozman, L.Ya.; Lang, C.B.; Limmer, M.
2011-01-01
Using interpolators with different SU(2) L xSU(2) R transformation properties we study the chiral symmetry and spin contents of the ρ and ρ ' mesons in lattice simulations with dynamical quarks. A ratio of couplings of the q-bar γ i τq and q-bar σ 0i τq interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of ∼1 fm. In the ground state ρ meson the chiral symmetry is strongly broken with comparable contributions of both the (0,1)+(1,0) and (1/2,1/2) b chiral representations with the former being the leading contribution. In contrast, in the ρ ' meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1/2,1/2) b . Using a unitary transformation from the chiral basis to the 2S+1 L J basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The ρ meson is practically a 3 S 1 state with no obvious trace of a 'spin crisis'. The ρ ' meson has a sizeable contribution of the 3 D 1 wave, which implies that the ρ ' meson cannot be considered as a pure radial excitation of the ρ meson.
Dynamic study of excited state hydrogen-bonded complexes of harmane in cyclohexane-toluene mixtures.
Carmona, Carmen; Balón, Manuel; Galán, Manuel; Guardado, Pilar; Muñoz, María A
2002-09-01
Photoinduced proton transfer reactions of harmane or 1-methyl-9H-pyrido[3,4-b]indole (HN) in the presence of the proton donor hexafluoroisopropanol (HFIP) in cyclohexane-toluene mixtures (CY-TL; 10% vol/vol of TL) have been studied. Three excited state species have been identified: a 1:2 hydrogen-bonded proton transfer complex (PTC), between the pyridinic nitrogen of the substrate and the proton donor, a hydrogen-bonded cation-like exciplex (CL*) with a stoichiometry of at least 1:3 and a zwitterionic exciplex (Z*). Time-resolved fluorescence measurements evidence that upon excitation of ground state PTC, an excited state equilibrium is established between PTC* and the cationlike exciplex, CL*, lambdaem approximately/= 390 nm. This excited state reaction is assisted by another proton donor molecule. Further reaction of CL* with an additional HFIP molecule produces the zwitterionic species, Z*, lambda(em) approximately/= 500 nm. From the analysis of the multiexponential decays, measured at different emission wavelengths and as a function of HFIP concentration, the mechanism of these excited state reactions has been established. Thus, three rate constants and three reciprocal lifetimes have been determined. The simultaneous study of 1,9-dimethyl-9H-pyrido[3,4-b]indole (MHN) under the same experimental conditions has helped to understand the excited state kinetics of these processes.
Hubert, Mickaël; Olsen, Jeppe; Loras, Jessica; Fleig, Timo
2013-11-21
We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.
Concluding remarks of international symposium on highly excited states in nuclear reactions
Energy Technology Data Exchange (ETDEWEB)
Bernstein, A. M.; Ikegami, H.; Muraoka, M. [eds.
1980-01-01
This is the concluding remarks in the international symposium on highly excited states in nuclear reactions. The remarks concentrate on the giant quadrupole states. In the framework of the distorted wave Born approximation (DWB), the differential cross section can be deduced. The relevant transition matrix elements are defined, and the quantities which are measured in inelastic hadron (h, h') reactions are shown. These are used to obtain both neutron and proton transition multipole matrix elements. This is equivalent to make the isospin decomposition of the electromagnetic transition matrix elements. The ratios of the transition matrix elements of neutrons and protons of the lowest 2/sup +/ states in even-even single closed shell nuclei are evaluated and compared with experimental results. For each nucleus, the consistency between various measurements is generally good. The effect of the virtual excitation of giant 2/sup +/ states into the ground and first excited states of even-even nuclei is discussed. The accuracy of (h, h') results can be tested.
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
On satellite lines anomalies in OH excited states
International Nuclear Information System (INIS)
Elitzur, M.
1976-01-01
It is argued that different pumps produce similar distributions of populations in the first two excited states of OH. The pattern observed recently in G 219.3 - 07 by Whiteoak and Gardner can be due either to radiative or collisional pump. (author)
Calculations of core-excited states in Li
International Nuclear Information System (INIS)
Verbockhaven, G.; Hansen, J.E.
1999-01-01
We report on progress in the calculation of three-electron states making use of B-spline basis sets. In particular we discuss the advantages and disadvantages of using a Hartree-Fock basis (expanded in B-splines) compared to the use of hydrogenic basis states. Preliminary results are presented for the 2 S terms in Li below the 1s2s 3 S limit at 64.4 eV. The 2 S terms have been studied less extensively than other core-excited states in Li. In this particular case the choice of basis has a large influence on the quality of the results. (orig.)
Exact finite volume expectation values of local operators in excited states
Energy Technology Data Exchange (ETDEWEB)
Pozsgay, B. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Szécsényi, I.M. [Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Institute of Theoretical Physics, Eötvös Loránd University,Pázmány Péter sétány 1/A, 1117 Budapest (Hungary); Takács, G. [MTA-BME “Momentum” Statistical Field Theory Research Group,Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics,Budafoki út 8, 1111 Budapest (Hungary)
2015-04-07
We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.
Exact finite volume expectation values of local operators in excited states
International Nuclear Information System (INIS)
Pozsgay, B.; Szécsényi, I.M.; Takács, G.
2015-01-01
We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.
Formation of excited states in high-Z helium-like systems
International Nuclear Information System (INIS)
Fritzsche, S.; Fricke, B.; Brinzanescu, O.
1999-12-01
High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)
Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen
Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.
2012-12-01
Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13
Excited state dynamics of DNA bases
Czech Academy of Sciences Publication Activity Database
Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.
2013-01-01
Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA (US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013
Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.
Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern
2018-04-17
The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.
On some aspects of Coulomb excitation of nuclear rotational states
International Nuclear Information System (INIS)
Massmann, H.; Robotham, H.
1979-01-01
The Coulomb excitation of nuclear rotational states is studied with a semiclassical method using classical trajectories and the classical action in order to construct the excitation probabilities. This method allows one to consider the effect on the excitation probabilities of a weak nuclear potential. An explicit expression for the 'safe bombarding energy' that is the largest bombarding energy for which the nuclear force can be neglected, is found. Also the transfer of angular momentum to the projectile's orbit is considered. One finds that the dynamical distortion of the orbit has a measurable effect on the excitation probabilities for the case of very heavy ions. Furthermore, new dimensionless parameters measuring the dynamical distortion and the effect of the adiabaticity of the collision are introduced and discussed. (author)
Enhanced α-Transfer population of the 2ms+ mixed-symmetry state in 52Ti
Ali, Fuad A.; Muecher, Dennis; Bildstein, Vinzenz; Greaves, Beau; Kilic, Ali. I.; Holt, Jason D.; Berner, Christian; Gernhaeuser, R.; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.
2017-09-01
The residual nucleon-nucleon interaction plays a crucial role in nuclear structure physics. In spherical even-even nuclei the quadrupole interaction leads to so called proton-neutron mixed symmetry states, which are sensitive to the underlying subshell structure. We present new data using the MINIBALL germanium array. States in 52Ti were populated via the α-transfer reaction 48Ca(12C,8Be)52Ti using a 48Ca beam from the Maier-Leibnitz-Laboratory in Munich. In the frame work of IBM-2, Alonso et al. have shown that the population of the 2ms+ state is strictly forbidden for the alpha transfer from a doubly magic nucleus. In contrast, we measured a large relative cross section into the 22+ mixed-symmetry state in 52Ti relative to the 21+ state of 31.1(20) %. This value exceeds earlier measurements in the 140Ba nucleus, representing the case of a particular strong population of the 2ms,SUP>+ state. This points towards effects of core polarizations of 48Ca in the low-lying structure of 52Ti. We have performed ab-initio shell model calculations to understand the origin of the discovered discrepancies. Permanent Address: Department of Physics, College of Education, University of Sulaimani, P. O. Box 334, Sulaimani, Kurdistan Region, Iraq.
DEFF Research Database (Denmark)
Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto
2017-01-01
iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...
International Nuclear Information System (INIS)
Burgt, P.J.M. van der; Eck, J. van; Heideman, H.G.M.
1986-01-01
Optical excitation functions of singly excited helium states are presented, measured by detecting the yield of emitted photons as a function of the incident electron energy from 56 to 66 eV. Many structures are observed, which are caused by negative-ion resonances and by the decay of autoionising states followed by post-collision interaction. Some of the structures are interpreted as being caused by hitherto unknown shape resonances lying very close to the thresholds of a particular class of autoionising states. As these shape resonances almost exclusively decay to their respective parent (autoionising) states, thereby considerably enhancing the threshold excitation cross sections of these states, they can only be observed via the PCI effect on the excitation functions of (higher lying) singly excited states. Using the recently introduced supermultiplet classification for doubly excited states a selection rule for the near-threshold excitation of doubly excited states by electron impact is deduced from the measurements. Only states with large probabilities in the Wannier region of configuration space (where the two electrons are at nearly equal distances and on opposite sides of the nucleus) are strongly excited. It is pointed out that these states are precisely the states that can support the above mentioned shape resonances at their thresholds. (author)
Dielectronic recombination rate coefficients to the excited states of CIII from CIV
Energy Technology Data Exchange (ETDEWEB)
Safronova, U.; Kato, Takako; Ohira, Mituhiko
1996-07-01
Energy levels, radiative transition probabilities and autoionization rates for CIII including 1s{sup 2}2pnl` (n=2/6, l`{<=}(n-1)) and 1s{sup 2}3lnl` (n=3/6, l`{<=}(n-1)) states were calculated by using multi-configurational Hartree-Fock (Cowan code) method. Autoionizing levels above the 1s{sup 2}2s and 1s{sup 2}2p thresholds were considered and their contributions were computed. Branching ratios on the autoionization rate to the first threshold and intensity factor were calculated for satellite lines of CIII ion. The dielectronic recombination rate coefficients to the excited states for n=2-6 were calculated. The values for the excited states higher than n=6 were extrapolated and the total dielectronic recombination rate coefficients were also derived. The rate coefficients to the excited states were fitted to an analytical formula and the fitting parameters are given. (author)
Rotational bands on few-particle excitations of very high spin
International Nuclear Information System (INIS)
Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.
1980-01-01
An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)
Application of spectroscopy and super-resolution microscopy: Excited state
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)
2016-02-19
Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10^{-9} s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.
International Nuclear Information System (INIS)
Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.
2005-01-01
In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function
Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals
Mei, Jun
2016-09-02
We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î
Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals
Mei, Jun; Chen, Zeguo; Wu, Ying
2016-01-01
We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î
Monthus, Cécile
2018-03-01
For the line of critical antiferromagnetic XXZ chains with coupling J > 0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.
Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD
Hall, Jonathan M. M.; Leinweber, Derek B.
2016-11-01
Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).
Closser, Kristina Danielle
This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as
Directory of Open Access Journals (Sweden)
Yuyuan Zhang
2016-11-01
Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.
DEFF Research Database (Denmark)
Kjær, Kasper Skov; Kunnus, Kristjan; Harlang, Tobias C. B.
2018-01-01
The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer...... the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state...... developed for solar applications....
Symmetry in Kaluza-Klein theory
International Nuclear Information System (INIS)
Strathdee, J.
1982-12-01
A method is described for making harmonic expansions on the internal space of a Kaluza-Klein vacuum in cases where this space is a coset space. This method fully exploits the symmetry of the space and should be useful for the analysis of excitation spectra and, in particular, for constructing the correct zero-mode ansatz in cases where the multi-dimensional gravitational fields are coupled to matter fields of various kinds. (author)
Interference spectra induced by a bichromatic field in the excited state of a three-level atom
International Nuclear Information System (INIS)
Mavroyannis, C.
1998-01-01
The interference spectra for the excited state of a three-level atom have been considered, where the strong and the weak atomic transitions leading to an electric dipole allowed excited state and to a metastable excited state are driven by resonant and nonresonant laser fields, respectively. In the low intensity limit of the strong laser field, there are two short lifetime excitations, the spontaneous one described by the weak signal field and the one induced by the strong laser field, both of which appear at the same frequency, and a long lifetime excitation induced by the weak laser field. The maximum intensities (heights) of the two peaks describing the short lifetime excitations take equal positive and negative values and, therefore, cancel each other out completely, while the long lifetime excitation dominates. This indicates the disappearance of the short lifetime excitations describing the strong atomic transition for a period equal to the lifetime of the long lifetime excitation, which is roughly equal to half of the lifetime of the metastable state. The computed spectra have been graphically presented and discussed at resonance and for finite detunings. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Heat capacity for systems with excited-state quantum phase transitions
Energy Technology Data Exchange (ETDEWEB)
Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz
2017-03-18
Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.
Configuration mixing of mean-field states
International Nuclear Information System (INIS)
Bender, M; Heenen, P-H
2005-01-01
Starting from self-consistent mean-field models, we discuss how to include correlations from fluctuations in collective degrees of freedom through symmetry restoration and configuration mixing, which give access to ground-state correlations and collective excitations. As an example for the method, we discuss the spectroscopy of neutron-deficient Pb isotopes
Theory and computation of triply excited resonances: Application to states of He-
International Nuclear Information System (INIS)
Nicolaides, C.A.; Piangos, N.A.; Komninos, Y.
1993-01-01
Autoionizing multiply excited states offer unusual challenges to the theory of electronic structure and spectra because of the presence of strong electron correlations, of their occasional weak binding, of their proximity to more than one threshold, and of their degeneracy with many continua. Here we discuss a theory that addresses these difficulties in conjunction with the computation of their wave functions and intrinsic properties. Emphasis is given on the justification of the possible presence of self-consistently obtained open-channel-like (OCL) correlating configurations in the square-integrable representation of such states and on their effect on the energy E and the width Γ. Application of the theory has allowed the prediction of two hitherto unknown He - triply excited resonances, the 2s2p 2 2 P (E=59.71 eV, above the He ground state, Γ=79 meV) and the 2p 3 2 Do (E=59.46 eV, Γ=282 meV) (1 a.u.=27.2116 eV). These resonances are above the singly excited states of He and are embedded in its doubly excited spectrum. The relatively broad 2p 3 2 Do state interacts strongly with the He 2s2p 3 Po εd continuum. The effect of this interaction has been studied in terms of the coupling with fixed core scattering states as well as with a self-consistently computed OCL bound configuration
International Nuclear Information System (INIS)
Degoli, Elena; Bisi, O.; Ossicini, Stefano; Cantele, G.; Ninno, D.; Luppi, Eleonora; Magri, Rita
2004-01-01
Electronic and structural properties of small hydrogenated silicon nanoclusters as a function of dimension are calculated from ab initio technique. The effects induced by the creation of an electron-hole pair are discussed in detail, showing the strong interplay between the structural and optical properties of the system. The distortion induced on the structure after an electronic excitation of the cluster is analyzed together with the role of the symmetry constraint during the relaxation. We point out how the overall effect is that of significantly changing the electronic spectrum if no symmetry constraint is imposed to the system. Such distortion can account for the Stokes shift and provides a possible structural model to be linked to the four-level scheme invoked in the literature to explain recent results for the optical gain in silicon nanoclusters. Finally, formation energies for clusters with increasing dimension are calculated and their relative stability discussed
Time-reversal symmetry breaking in quantum billiards
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Florian
2009-01-26
The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally
Time-reversal symmetry breaking in quantum billiards
International Nuclear Information System (INIS)
Schaefer, Florian
2009-01-01
The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally
Ab initio excited states from the in-medium similarity renormalization group
Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.
2017-04-01
We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.
Chiral symmetry breaking and the spin content of the ρ and ρ‧ mesons
Glozman, L. Ya.; Lang, C. B.; Limmer, M.
2011-11-01
Using interpolators with different SU(2)L × SU(2)R transformation properties we study the chiral symmetry and spin contents of the ρ and ρ‧ mesons in lattice simulations with dynamical quarks. A ratio of couplings of the qbarγi τq and qbarσ0i τq interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of ∼ 1 fm. In the ground state ρ meson the chiral symmetry is strongly broken with comparable contributions of both the (0 , 1) + (1 , 0) and (1 / 2 , 1 / 2) b chiral representations with the former being the leading contribution. In contrast, in the ρ‧ meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1 / 2 , 1 / 2) b. Using a unitary transformation from the chiral basis to the LJ2S+1 basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The ρ meson is practically a 3S1 state with no obvious trace of a "spin crisis". The ρ‧ meson has a sizeable contribution of the 3D1 wave, which implies that the ρ‧ meson cannot be considered as a pure radial excitation of the ρ meson.
Luminescent materials: probing the excited state of emission centers by spectroscopic methods
International Nuclear Information System (INIS)
Mihóková, E; Nikl, M
2015-01-01
We review recent methods employed to study the excited state of rare-earth centers in various luminescent and scintillating materials. The focus is on processes that help determine localization of the excited state within the material band gap, namely photoionization and thermally stimulated ionization. Then the tunneling process between the luminescence center and the trapping state is addressed. We describe the experimental implementation of methods recently developed to study these processes. We report theoretical models helping the data interpretation. We also present application to currently investigated materials. (topical review)
Li, Zhendong; Liu, Wenjian
2016-01-12
A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters.
Predictions for Excited Strange Baryons
Energy Technology Data Exchange (ETDEWEB)
Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.
Exchange interactions in two-state systems: rare earth pyrochlores
Curnoe, S. H.
2018-06-01
The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.
Studies of the fluorescent excited state of impurities in ionic crystals
International Nuclear Information System (INIS)
Romestain, Robert
1972-01-01
The author of this research thesis first presents experimental methods used in this research: principles (recall on the optical spectrum of an impurity in a solid, use of fluorescence polarization) and techniques (sample preparation, liquid helium cryostat, application of a disturbance, optical detection). Then, he reports the study of the Mn ++ ion in a tetrahedron crystalline field, the study of the Jahn Teller effect on the excited state of the F + centre in CaO, and the study by double resonance of a specific excited state of this same centre in CaO
Pion inelastic scattering to the first three excited states of lithium-6
International Nuclear Information System (INIS)
Kiziah, R.R.
1984-10-01
Using the Energetic Pion Channel and Spectrometer system at the Clinton P. Anderson Meson Physics Facility, differential cross sections were measured for π + inelastic scattering to the 3 + , T=0, 2.185-MeV, 0 + , T=1, 3.563-MeV, and 2 + , T=0, 4.25-MeV states of 6 Li at incident pion energies of 120 and 180 MeV and laboratory scattering angles between 15 0 and 47 0 . Excitation functions were measured at a constant momentum transfer of approximately 109 MeV/c for incident pion energies from 100 to 260 MeV. The constant momentum transfer corresponds to the maxima of the angular distributions for π + inelastic scattering to the 3.563-MeV level. Microscopic calculations using the distorted-wave impulse approximation (DWIA) agree well with the measured angular distributions and excitation functions for the 2.185- and 4.25-MeV levels. However, microscopic DWIA calculations do not adequately reproduce the measured angular distributions for the 3.563-MeV level and fail to reproduce the observed anomalous excitation function. The shape of the 3.563-MeV excitation function is similar to that previously observed for π +- inelastic scattering to the 1 + , T=1, 15.11-MeV state of 12 C. The same mechanism may be responsible for the observed excitation functions of both ΔS=ΔT=1 transitions. A possible mechanism is the direct excitation of Δ particle-nucleon hole (Δ-h) components in the final state wave functions. Within the Δ-h model interpretation, the peak of the 3.563-MeV excitation function is reproduced with an estimated probability amplitude for the Δ-h component of the 3.563-MeV state with respect to the ground state of 0.01 less than or equal to β less than or equal to 0.13, a range of values of β consistent with the range estimated for the 15.11-MeV level of 12 C (0.026 less than or equal to β less than or equal to 0.096)
Parametric excitation of the J=2+ modes by zero sound in superfluid 3He-B
International Nuclear Information System (INIS)
Sauls, J.A.; McKenzie, R.H.
1991-01-01
We discuss order-parameter collective modes in weakly inhomogeneous states of superfluid 3 He-B, i.e., states in which the scale of the inhomogeneities is considerably longer than the coherence length ξ 0 =v t /2πTc and the energy associated with the inhomogeneity is small compared to the condensation energy. The theory describes resonance phenomena between order-parameter modes and zero sound. We discuss two specific cases, both of which involve excitation of the J=2 + modes via a parametric field that lifts the selection rule due to particle-hole symmetry. In the case of a static superflow the modes with J=2 + , M=±1 couple to sound for qparallelH, and should be observable as Zeeman states with a maximum absorption that scales as the square of the superflow velocity. The J=2 + modes may also be excited parametrically in a three-wave resonance process involving two zero-sound phonons. We summarize the nonlinear response theory for two-phonon excitation of these modes. (orig.)
Dynamical symmetries for fermions
International Nuclear Information System (INIS)
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R
1999-01-01
The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...
Aryanpour, K.; Shukla, A.; Mazumdar, S.
2013-01-01
We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing $D_{6h}$ point group symmetry versus ovalene with $D_{2h}$ symmetry, within the Pariser-Parr-Pople model of interacting $\\pi$-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitat...
Measurements of photoionization cross sections from the 4p, 5d and 7s excited states of potassium
International Nuclear Information System (INIS)
Amin, Nasir; Mahmood, S.; Haq, S.U.; Kalyar, M.A.; Rafiq, M.; Baig, M.A.
2008-01-01
New measurements of the photoionization cross sections from the 4p 2 P 1/2,3/2 , 5d 2 D 5/2,3/2 and 7s 2 S 1/2 excited states of potassium are presented. The cross sections have been measured by two-step excitation and ionization using a Nd:YAG laser in conjunction with a thermionic diode ion detector. By applying the saturation technique, the absolute values of the cross sections from the 4p 2 P 3/2 and 4p 2 P 1/2 states at 355 nm are determined as 7.2±1.1 and 5.6±0.8 Mb, respectively. The photoionization cross section from the 5d 2 D 5/2,3/2 excited state has been measured using two excitation paths, two-step excitation and two-photon excitation from the ground state. The measured values of the cross sections from the 5d 2 D 5/2 state by two-photon excitation from the ground state is 28.9±4.3 Mb, whereas in the two-step excitation, the cross section from the 5d 2 D 3/2 state via the 4p 2 P 1/2 state and from the 5d 2 D 5/2,3/2 states via the 4p 2 P 3/2 state are determined as 25.1±3.8 and 30.2±4.5 Mb, respectively. Besides, we have measured the photoionization cross sections from the 7s 2 S 1/2 excited state using the two-photon excitation from the ground state as 0.61±0.09 Mb
Pulsed laser study of excited states of aromatic molecules absorbed in globular proteins
International Nuclear Information System (INIS)
Cooper, M.; Thomas, J.K.
1977-01-01
Pyrene and several derivatives of pyrene such as pyrene sulfonic acid, and pyrene butyric acid were incorporated into bovine serum albumin (BSA) in aqueous solution. The pyrene chromophore was subsequently excited by a pulse of uv light (lambda = 3471 A) from a Q switched frequency doubled ruby laser. The lifetime of the pyrene excited singlet and triplet states were monitored by time resolved spectrophotometry. Various molecules, such as O 2 and I - , dissolved in the aqueous phase, diffused into the protein and quenched pyrene excited states. The rates of these reactions were followed under a variety of conditions such as pH and temperature and in the presence of inert additives. The rates of pyrene excited-state quenching were often considerably smaller than the rates observed in simple solutions. A comparison of the rates in the protein and homogeneous solutions gives information on the factors such as temperature, charge, and pH that control the movement of small molecules in and into BSA
Excited states of ethylene interpreted in terms of perturbed Rydberg series
International Nuclear Information System (INIS)
Yamamoto, Shigeyoshi; Tatewaki, Hiroshi
2003-01-01
We have investigated the excited states of the ethylene molecule by the multireference configuration interaction (MRCI) method. In particular, the nature of the V state (1 1 B 1u π→π*) was interpreted in terms of perturbed Rydberg series. To clarify the role of the perturbers, we use pseudo-restricted Hartree-Fock natural orbitals (PRHFNO), which would be the most suitable molecular orbital set to describe Rydberg series. It is well known that the expectation value of x 2 for the V state is reduced from 44a 0 2 (RHF) to around 17a 0 2 by considering electron correlation effects, where x is the direction out of the molecular plane. In the present study, a reasonable 2 > value was obtained from small multireference configuration interaction with single excitations (MRCIS), where the π→π* configurations and a few perturbers were assigned as the reference configurations. The major perturbers were found to be five configurations represented by 3a g → 3b 1u , 1b 3g → 3b 2u , 2b 1u → 4a g , 2a g → 3b 1u , and 1b 2u → 2b 3g with respect to the ground state configuration. The V state can therefore be described as a scattering process of the π→π* state by these perturbers. Other low-lying excited states are also investigated by the MRCI method
EPR studies of excited state exchange and crystal-field effects in rare earth compounds
International Nuclear Information System (INIS)
Huang, C.Y.; Sugawara, K.; Cooper, B.R.
1976-01-01
EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig
Circumvention of orbital symmetry restraints by 1,3-H-shifts of enolic radical cations.
Hudson, Charles E; McAdoo, David J
2004-07-01
The reaction coordinates of 1,3-H-shifts across double bonds are traced by theory for three reactions, CH(3)C(OH)CH(2)(+*) (1) --> CH(3)C(O(+*))CH(3) (2), CH(2)C(OH)(2)(+*) (3) --> CH(3)CO(2)H(+*) (4) and CH(3)C(OH)CH(2)(+*) (1) --> CH(2)C(OH)CH(3)(+*) (1'), to explore how the need to conserve orbital symmetry influences the pathways for these reactions. In the first and second reactions, prior to the start of the H-transfer the methylene rotates from being in the skeletal plane to being bisected by it. Thus these reactions are neither antarafacial nor suprafacial, but precisely between those possibilities. This stems from a counterbalancing between the need to conserve orbital symmetry and the large distorting forces required to attain an allowed antarafacial transition state. In contrast to the first two reactions, 1 --> 1' follows a suprafacial pathway. However, this pathway does not violate conservation of orbital symmetry, as it utilizes lower lying orbitals of appropriate symmetry rather than the antisymmetric uppermost occupied allyl-type orbital. Changes in geometry which presumably produce asymmetric vibrational excitation and the unequal losses of methyl that follow 1 --> 2, i.e., nonergodic behavior, are also characterized.
Excitation processes in slow K+--He, Ne, Ar, H2, N2 and Na+--He collisions
International Nuclear Information System (INIS)
Kikiani, B.I.; Gochitashvili, M.R.; Kvizhinadze, R.V.; Ankudinov, V.A.
1984-01-01
Quasimolecular features of excitation processes in K + --He, Ne, Ar, H 2 , N 2 and Na + --He collisions were investigated by measuring the cross sections for the emission of the resonance lines of potassium (lambda = 766.5 and 769.9 nm), sodium (lambda = 589 and 589.6 nm), and helium (lambda = 584 nm) atoms at ion energies in the range 0.5--10 keV. In Na + --He collisions, the resonance-line excitation functions obtained for sodium and helium atoms exhibit oscillations that are in antiphase and are due to phase interference between the quasimolecular states of the system of colliding particles. Experimental data on K + --Ar collisions are interpreted in terms of schematic correlation diagrams for molecular orbitals. The excitation mechanisms for K + --N 2 and K + --Ar have beenfound to be similar, and this leads to the conclusion that the quasimolecular model used for the ion-atom case is also valid for the ion-molecule case. It is shown that the excitation of the 4p-state of the potassium atom in the K + --Ar case is due to a Landau-Zener type of interaction in the region of the quasicrossing of (KAr) + terms. Analysis of the excitation of this state in K + --N 2 collisions also shows that the capture of an electron into the excited 4p-state of the potassium atom is due to a nonadiabatic transition in the region of quasicrossing of energy terms of the same symmetry
Dwyer, C
2015-04-01
The inelastic scattering of a high-energy electron in a solid constitutes a bipartite quantum system with an intrinsically large number of excitations, posing a considerable challenge for theorists. It is demonstrated how and why the utilization of symmetries, or approximate symmetries, can lead to significant improvements in both the description of the scattering physics and the efficiency of numerical computations. These ideas are explored thoroughly for the case of core-loss excitations, where it is shown that the coupled angular momentum basis leads to dramatic improvements over the bases employed in previous work. The resulting gains in efficiency are demonstrated explicitly for K-, L- and M-shell excitations, including such excitations in the context of atomic-resolution imaging in the scanning transmission electron microscope. The utilization of other symmetries is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Zeng, Qiao; Liang, WanZhen
2015-10-07
The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.
Electronically excited and ionized states in condensed phase: Theory and applications
Sadybekov, Arman
Predictive modeling of chemical processes in silico is a goal of XXI century. While robust and accurate methods exist for ground-state properties, reliable methods for excited states are still lacking and require further development. Electronically exited states are formed by interactions of matter with light and are responsible for key processes in solar energy harvesting, vision, artificial sensors, and photovoltaic applications. The greatest challenge to overcome on our way to a quantitative description of light-induced processes is accurate inclusion of the effect of the environment on excited states. All above mentioned processes occur in solution or solid state. Yet, there are few methodologies to study excited states in condensed phase. Application of highly accurate and robust methods, such as equation-of-motion coupled-cluster theory EOM-CC, is limited by a high computational cost and scaling precluding full quantum mechanical treatment of the entire system. In this thesis we present successful application of the EOM-CC family of methods to studies of excited states in liquid phase and build hierarchy of models for inclusion of the solvent effects. In the first part of the thesis we show that a simple gasphase model is sufficient to quantitatively analyze excited states in liquid benzene, while the latter part emphasizes the importance of explicit treatment of the solvent molecules in the case of glycine in water solution. In chapter 2, we use a simple dimer model to describe exciton formation in liquid and solid benzene. We show that sampling of dimer structures extracted from the liquid benzene is sufficient to correctly predict exited-state properties of the liquid. Our calculations explain experimentally observed features, which helped to understand the mechanism of the excimer formation in liquid benzene. Furthermore, we shed light on the difference between dimer configurations in the first solvation shell of liquid benzene and in unit cell of solid
Lifetime measurements of excited states in 73As
International Nuclear Information System (INIS)
Singh, K.P.; Kavakand, T.; Hajivaliei, M.
2004-01-01
The excited states of 73 As have been investigated via the 73 Ge(p, nγ) 73 As reaction with proton beam energies from 2.5–4.3 MeV. The lifetimes of the levels at 769.6, 860.5, 1177.8, 1188.7, 1274.9, 1344.1, 1557.1 and 1975.2 keV excitation energies have been measured for the first time using the Doppler shift attenuation method. The angular distributions have been used to assign the spins and the multipole mixing ratios using statistical theory for compound nuclear reactions. The ambiguity in the spin values for the various levels has been removed. The multipole mixing ratios for eight γ-transitions have been newly measured. (author)
Dudek, J.; Curien, D.; Dedes, I.; Mazurek, K.; Tagami, S.; Shimizu, Y. R.; Bhattacharjee, T.
2018-02-01
We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach, and general point-group theory considerations to guide the experimental identification method as illustrated on published experimental data. Following group theory the examined symmetries imply the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based. These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets at well-defined spins. In the exact-symmetry limit those bands involve no E 2 transitions. We show that coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei—impacting the nucleosynthesis processes in astrophysics—and an existence of 16-fold degenerate particle-hole excitations. Specifically designed experiments which aim at strengthening the identification arguments are briefly discussed.
Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields
International Nuclear Information System (INIS)
Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.
2004-01-01
Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
In this work, we study the transport through a quantum point contact for two-channel interacting helical liquids that exist at the edge of a bilayer graphene under a strong magnetic field. We identify ``smoking gun'' transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for a weak repulsive interaction in the BSPT state, while either charge insulator/spin insulator or charge conductor/spin conductor phase is expected for the two-channel QSH state. In the strong interaction limit, shot noise measurement for the BSPT state is expect to reveal charge-2e instanton tunneling, in comparison with the charge-e tunneling in the two-channel QSH phase.
Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong
2009-11-01
The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.
Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift
Energy Technology Data Exchange (ETDEWEB)
Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2015-11-07
We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.
Wobbling excitations in odd-A nuclei with high-j aligned particles
International Nuclear Information System (INIS)
Hamamoto, Ikuko
2002-01-01
Using the particle-rotor model in which one high-j quasiparticle is coupled to the core of triaxial shape, wobbling excitations are studied. The family of wobbling phonon excitations can be characterized by: (a) very similar intrinsic structure while collective rotation shows the wobbling feature; (b) strong B(E2;I→I-1) values for Δn w =1 transitions where n w expresses the number of wobbling phonons. For the Fermi level lying below the high-j shell with the most favorable triaxiality γ≅+20 deg., the wobbling phonon excitations may be more easily identified close to the yrast line, compared with the Fermi level lying around the middle of the shell with γ≅-30 deg. The spectroscopic study of the yrast states for the triaxial shape with -60 deg. <γ<0 are illustrated by taking a representative example with γ=-30 deg., in which a quantum number related with the special symmetry is introduced to help the physics understanding
Structure of excited states in nuclei near doubly magic {sup 100}SN
Energy Technology Data Exchange (ETDEWEB)
Gorska, M.
1998-11-01
The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)
International Nuclear Information System (INIS)
Gruber, B.; Thomas, M.S.
1980-01-01
In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)
Lifetime measurements of the excited states in {sup 145} Sm
Energy Technology Data Exchange (ETDEWEB)
El-Badry, A M; Abdel Samie, Sh; Ahmad, A A [Depatment of Physics, Faculty of Science, ElMinia University, ElMinia, (Egypt); Kuroyanagi, T; Odahara, A; Gono, Y; Morinobu, S [Tandem Accelerator Laboratory, Department of Physics, Kyushu University, (Japan)
1997-12-31
Lifetime of the excited levels in {sup 145} Sm has been measured through the {sup 139} La ({sup 10} B, 4 n){sup 145} Sm nuclear reaction. The optimal beam energy of 49 MeV was determined from the measurements of the excitation function and Cascade program. With the possibility of studying lifetime of this nucleus a conventional plunger system have been designed and constructed at kyushu University tandem accelerator laboratory. A La target of 0.22 mg/cm{sup 2} thickness which was evaporated onto a Au foil of 2 mg/cm{sup 2} thickness was used. Since the recoil velocity was estimated to be 1.76 mm/ns (beta 0.00585), the measurable time range resulted in the range from 5 Ps to 5 ns. The single spectra measurements were performed at the 20 plunger positions in the range from 10 {mu} to 10 mm. Analyses of the data were carried using hypermet and/or GF2 program to obtain the lifetimes. A new list of lifetimes for 12 excited states up to 3.922 MeV excitations for {sup 145} Sm were determined for the first time. Decay curves of the these transitions are discussed. The new lifetimes of excited states in {sup 145} Sm enabled us to understand the electromagnetic properties. The deduced transition probabilities were established and compared with that of N = 83 isotones and the closed shell nucleus {sup 144} Sm. In addition, a nuclear structure of {sup 145} Sm have been discussed and proposed in framework of the shell model. 4 figs., 1 tab.
Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT
International Nuclear Information System (INIS)
Berardo, Enrico; Hu, Han-Shi; Van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.
2014-01-01
We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes' shift
International Nuclear Information System (INIS)
Prosmiti, Rita; Valdés, Álvaro; Kalemost, Apostolos
2014-01-01
The study of electronically excited van der Waals (vdW) systems presents a challenge for the theory of intermolecular interactions, and here we show how far ab initio computations can go. We found that the interaction energies for such electronically excited systems can indeed be determined, providing a reliable and accurate description for the E state potential of the HeI 2 , that in combination with the ground X and electronic excited B state of the complex, is useful to model experimental data related with potential minima and also predict higher vibrational vdW states
Excited-State Dynamics of Oxyluciferin in Firefly Luciferase
Snellenburg, Joris J.; Laptenok, Sergey P.; DeSa, Richard J.; Naumov, Pance; Solntsev, Kyril M.
2016-01-01
The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.
Excited-State Dynamics of Oxyluciferin in Firefly Luciferase
Snellenburg, Joris J.
2016-11-23
The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.
Discrete symmetries and de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Chemical modulation of electronic structure at the excited state
Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.
2017-12-01
Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.
Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores
Cekli, Seda; Winkel, Russell W.; Alarousu, Erkki; Mohammed, Omar F.; Schanze, Kirk S.
2016-01-01
A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores
Cekli, Seda
2016-02-12
A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.
International Nuclear Information System (INIS)
Ho, Yew Kam; Lin, Chien-Hao
2015-01-01
In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)
Excited states above the proton threshold in {sup 26}Si
Energy Technology Data Exchange (ETDEWEB)
Komatsubara, T. [Institute for Basic Science (IBS), Rare Isotope Science Project, Yuseong-gu Daejeon (Korea, Republic of); Kubono, S.; Ito, Y. [RIKEN, Saitama (Japan); Hayakawa, T.; Shizuma, T. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Ozawa, A.; Ishibashi, Y. [University of Tsukuba, Institute of Physics, Tsukuba, Ibaraki (Japan); Moriguchi, T. [National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka (Japan); Yamaguchi, H.; Kahl, D. [University of Tokyo, Wako Branch, Center for Nuclear Study (CNS), Wako, Saitama (Japan); Hayakawa, S. [Laboratori Nazionali del Sud-INFN, Catania (Italy); Nguyen Binh, Dam [Vietnamese Academy for Science and Technology, Institute of Physics, Hanoi (Viet Nam); Chen, A.A.; Chen, J. [McMaster University, Hamilton, Ontario (Canada); Setoodehnia, K. [University of Notre Dame, Department of Physics, Notre Dame, Indiana (United States); Kajino, T. [National Astronomical Observatory, Tokyo (Japan); University of Tokyo, Department of Astronomy, Graduate School of Science, Tokyo (Japan)
2014-09-15
The level scheme above the proton threshold in {sup 26}Si is crucial for evaluating the {sup 25}Al(p, γ){sup 26}Si stellar reaction, which is important for understanding the astrophysical origin of the long-lived cosmic radioactivity {sup 26}Al(T{sub 1/2} = 7.17 x 10{sup 5} y) in the Galaxy. The excited states in {sup 26}Si have been studied using an in-beam γ-ray spectroscopy technique with the {sup 24}Mg({sup 3}He, nγ){sup 26}Si reaction. γ-rays with energies up to 4.6 MeV emitted from excited states in {sup 26}Si have been measured using large volume HPGe detectors. The spin-parity of one of the most important states reported recently at 5890.0keV has been assigned as 0{sup +} by γ-γ angular correlation measurements in this work. (orig.)
Excited state intramolecular charge transfer reaction in non-aqueous ...
Indian Academy of Sciences (India)
polar phase and thus leading to less swelling of reverse .... ues were restricted up to the limit at which no phase separation was ..... The lower panel of figure 1 also indicates that the slopes of ... probe in its ground and excited states.55.
Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites
Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.
2018-05-01
Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.
Excitation of the lowest 1- state in 18O by scattering from 16O
International Nuclear Information System (INIS)
Carter, J.; Sellschop, J.P.F.; Clarkson, R.G.; Hnizdo, V.; Osterfeld, F.; Frahn, W.E.; Richter, A.
1981-01-01
The 1 - (4.45 MeV) state in 18 O, together with the 2 + (1.98 MeV) and 3 - (5.09 MeV) states, were excited by inelastic scattering from 16 O at E(lab)=35 MeV. In an attempt to understand the 1 - excitation, various macroscopic models, including a ralationship derived recently by Frahn, were considered. However, this excitation was found to be best explained by a microscopic description. A comparison is made with inelastic α-scattering from 18 O [af
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Farmer, David W
1995-01-01
In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ
Generalized Bethe-Negele inequalities for excited states in muonic atoms
International Nuclear Information System (INIS)
Klarsfeld, S.
1976-11-01
Rigorous upper and lower bounds are derived for the Bethe logarithms in excited states of muonic atoms. Comparison with previous empirical estimates shows that the latter are inadequate in certain cases
Isoelectronic study of triply excited Li-like states
International Nuclear Information System (INIS)
Benis, E P; Zouros, T J M; Gorczyca, T W; Zamkov, M; Richard, P
2003-01-01
Absolute doubly differential cross sections (DDCSs) for the production and Auger decay of the intra-shell 2s2p 22 D triply excited state formed in collisions of He-like ions (Z = 5-9) with H 2 were determined experimentally, using zero-degree Auger projectile electron spectroscopy. The 2 D e state was directly produced by 180 deg. resonant scattering of the quasi-free H 2 electrons from the 1s2s 3 S metastable state of the ion. Resonant energies and DDCSs calculated using the R-matrix approach within the electron scattering model were found to be in good overall agreement with experiment. (letter to the editor)
Excited states by analytic continuation of TBA equations
International Nuclear Information System (INIS)
Dorey, P.; Tateo, R.
1996-01-01
We suggest an approach to the problem of finding integral equations for the excited states of an integrable model, starting from the thermodynamic Bethe ansatz equations for its ground state. The idea relies on analytic continuation through complex values of the coupling constant, and an analysis of the monodromies that the equations and their solutions undergo. For the scaling Lee-Yang model, we find equations in this way for the one- and two-particle states in the spin-zero sector, and suggest various generalisations. Numerical results show excellent agreement with the truncated conformal space approach, and we also treat some of the ultraviolet and infrared asymptotics analytically. (orig.)
Momentum dependence of the symmetry potential and its influence on nuclear reactions
International Nuclear Information System (INIS)
Feng Zhaoqing
2011-01-01
A Skyrme-type momentum-dependent nucleon-nucleon force distinguishing isospin effect is parametrized and further implemented in the Lanzhou quantum molecular dynamics model, which leads to a splitting of nucleon effective mass in nuclear matter. Based on the isospin- and momentum-dependent transport model, we investigate the influence of momentum-dependent symmetry potential on several isospin-sensitive observables in heavy-ion collisions. It is found that symmetry potentials with and without the momentum dependence but corresponding to the same density dependence of the symmetry energy result in different distributions of the observables. The midrapidity neutron/proton ratios at high transverse momenta and the excitation functions of the total π - /π + and K 0 /K + yields are particularly sensitive to the momentum dependence of the symmetry potential.
International Nuclear Information System (INIS)
Johnson, Matthew P.; Zia, Ahmad; Horton, Peter; Ruban, Alexander V.
2010-01-01
Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to ∼0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting (F m ) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F m lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.
Characterization of excited-state reactions with instant spectra of fluorescence kinetics
International Nuclear Information System (INIS)
Tomin, Vladimir I.; Ushakou, Dzmitryi V.
2015-01-01
Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state
Characterization of excited-state reactions with instant spectra of fluorescence kinetics
Energy Technology Data Exchange (ETDEWEB)
Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.
2015-10-15
Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state
Studies of isotopic effects in the excited electronic states of molecular systems
International Nuclear Information System (INIS)
1982-01-01
Rare gas halogen (RGH) lasers serve as convenient tools for a range of photophysical processes which exhibit isotope effects. This document summarizes progress in the production of molecular systems in their electronic excited states with the aid of RGH lasers, and the various isotopic effects one can study under these conditions. We conclude that the basic physical mechanisms involved in the isotopically sensitive characteristics of excited molecular electronic states are sufficiently selective to be useful in both the detection and separation of many atomic materials
Pushing the limits of excited-state g-factor measurements
Stuchbery, Andrew E.; McCormick, Brendan P.; Gray, Timothy J.; Coombes, Ben J.
2018-05-01
Current developments in excited-state g-factor measurements are discussed with an emphasis on cases where the experimental methodology is being extended into new regimes. The transient-field technique, the recoil in vacuum method, and moment measurements with LaBr3 detectors are discussed.
Fingerprints of a Bosonic Symmetry-Protected Topological State in a Quantum Point Contact
Zhang, Rui-Xing; Liu, Chao-Xing
2017-05-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish a bosonic symmetry-protected topological (BSPT) state from a fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge-insulator-spin-conductor phase is found for the BSPT state, while either the charge-insulator-spin-insulator or the charge-conductor-spin-conductor phase is expected for the two-channel QSH state. Consequently, a simple transport measurement will reveal the fingerprint of bosonic topological physics in bilayer graphene systems.
Triplet excited States as a source of relevant (bio)chemical information.
Jiménez, M Consuelo; Miranda, Miguel A
2014-01-01
The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and α1-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external quenchers. With proteins, formation of spatially confined triplet excited states is favored over competitive processes affording ionic species. Remarkably, under aerobic atmosphere, the triplet decay of drug@protein complexes is dramatically longer than in bulk solution. This offers a convenient dynamic range for assignment of different triplet populations or for stereochemical discrimination. In this review, selected examples of the application of the laser flash photolysis technique are described, including drug distribution between the bulk solution and the protein cavities, or between two types of proteins, detection of drug-drug interactions inside proteins, and enzyme-like activity processes mediated by proteins. Finally, protein encapsulation can also modify the photoreactivity of the guest. This is illustrated by presenting an example of retarded photooxidation.
Theory of the disordered ν =5/2 quantum thermal Hall state: Emergent symmetry and phase diagram
Lian, Biao; Wang, Juven
2018-04-01
Fractional quantum Hall (FQH) system at Landau level filling fraction ν =5 /2 has long been suggested to be non-Abelian, either Pfaffian (Pf) or antiPfaffian (APf) states by numerical studies, both with quantized Hall conductance σx y=5 e2/2 h . Thermal Hall conductances of the Pf and APf states are quantized at κx y=7 /2 and κx y=3 /2 , respectively, in a proper unit. However, a recent experiment shows the thermal Hall conductance of ν =5 /2 FQH state is κx y=5 /2 . It has been speculated that the system contains random Pf and APf domains driven by disorders, and the neutral chiral Majorana modes on the domain walls may undergo a percolation transition to a κx y=5 /2 phase. In this paper, we do perturbative and nonperturbative analyses on the domain walls between Pf and APf. We show the domain wall theory possesses an emergent SO(4) symmetry at energy scales below a threshold Λ1, which is lowered to an emergent U (1 )×U (1) symmetry at energy scales between Λ1 and a higher value Λ2, and is finally lowered to the composite fermion parity symmetry Z2F above Λ2. Based on the emergent symmetries, we propose a phase diagram of the disordered ν =5 /2 FQH system and show that a κx y=5 /2 phase arises at disorder energy scales Λ >Λ1 . Furthermore, we show the gapped double-semion sector of ND compact domain walls contributes nonlocal topological degeneracy 2ND-1, causing a low-temperature peak in the heat capacity. We implement a nonperturbative method to bootstrap generic topological 1 +1 D domain walls (two-surface defects) applicable to any 2 +1 D non-Abelian topological order. We also identify potentially relevant spin topological quantum field theories (TQFTs) for various ν =5 /2 FQH states in terms of fermionic version of U (1) ±8 Chern-Simons theory ×Z8 -class TQFTs.
2016-06-03
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited -State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited -State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited -state
Dynamics and control of vibratory gyroscopes with special spherical symmetry
CSIR Research Space (South Africa)
Shatalov, M
2006-01-01
Full Text Available It was shown in 1985 by Acad. V. Zhuravlev that the angular rate of a pure vibrating mode excited in a vibratory gyroscope with spherical symmetry is proportional to an inertial angular rate of the gyroscope. The effect is three dimensional...
Global Anomaly Detection in Two-Dimensional Symmetry-Protected Topological Phases
Bultinck, Nick; Vanhove, Robijn; Haegeman, Jutho; Verstraete, Frank
2018-04-01
Edge theories of symmetry-protected topological phases are well known to possess global symmetry anomalies. In this Letter we focus on two-dimensional bosonic phases protected by an on-site symmetry and analyze the corresponding edge anomalies in more detail. Physical interpretations of the anomaly in terms of an obstruction to orbifolding and constructing symmetry-preserving boundaries are connected to the cohomology classification of symmetry-protected phases in two dimensions. Using the tensor network and matrix product state formalism we numerically illustrate our arguments and discuss computational detection schemes to identify symmetry-protected order in a ground state wave function.
Directory of Open Access Journals (Sweden)
T. Watashige
2015-08-01
Full Text Available Junctions and interfaces consisting of unconventional superconductors provide an excellent experimental playground to study exotic phenomena related to the phase of the order parameter. Not only does the complex structure of unconventional order parameters have an impact on the Josephson effects, but it also may profoundly alter the quasiparticle excitation spectrum near a junction. Here, by using spectroscopic-imaging scanning tunneling microscopy, we visualize the spatial evolution of the LDOS near twin boundaries (TBs of the nodal superconductor FeSe. The π/2 rotation of the crystallographic orientation across the TB twists the structure of the unconventional order parameter, which may, in principle, bring about a zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in contrast, does not exhibit any signature of a zero-energy peak, and an apparent gap amplitude remains finite all the way across the TB. The low-energy quasiparticle excitations associated with the gap nodes are affected by the TB over a distance more than an order of magnitude larger than the coherence length ξ_{ab}. The modification of the low-energy states is even more prominent in the region between two neighboring TBs separated by a distance ≈7ξ_{ab}. In this region, the spectral weight near the Fermi level (≈±0.2 meV due to the nodal quasiparticle spectrum is almost completely removed. These behaviors suggest that the TB induces a fully gapped state, invoking a possible twist of the order parameter structure, which breaks time-reversal symmetry.
An excited state underlies gene regulation of a transcriptional riboswitch
Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi
2017-01-01
Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589
Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers
International Nuclear Information System (INIS)
Izosimov, I.N.
2015-01-01
It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.
Spontaneous symmetry breakdown in gauge theories
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)
Orientation and alignment of the first excited p state in Li+He and Na+He scattering
International Nuclear Information System (INIS)
Archer, B.J.; Lane, N.F.; Kimura, M.
1990-01-01
Orientation and alignment parameters for the first excited p state of Li and Na in collisions with He through direct excitation from the ground state are studied theoretically in the energy region up to E c.m. =100 keV by using a quasi-one-electron theory. Scattering states are expanded in terms of molecular orbitals, which are calculated by using the pseudopotential method and include electron translation factors. The approach appears to work well for Li+He, giving good agreement for the 2p excitation probability and orientation. For alignment, the situation is less clear because of difficulty in experimental measurement. Two-electron effects and cascades from more highly excited states cause our description of Na+He collisions to be less satisfactory. However, agreement with the experimental 3p excitation probability and orientation parameters where all data are available is fairly good at lower energies (E c.m. 1.25 a.u.)
Search for two-neutrino double-β decay of 96Zr to excited states of 96Mo
Finch, S. W.; Tornow, W.
2015-10-01
Background: Double-β decay is a rare second-order nuclear decay. The importance of this decay stems from the possibility of neutrinoless double-β decay and its applications to neutrino physics. Purpose: A search was conducted for the 2 ν β β decay of 96Zr to excited final states of the daughter nucleus, 96Mo. Measurements of this decay are important to test nuclear matrix element calculations, which are necessary to extract the neutrino mass from a measurement of the neutrinoless double-β decay half-life. Method: Two coaxial high-purity germanium detectors were used in coincidence to detect γ rays produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 d of data with a 17.91 g enriched sample. Results: No counts were seen above background. For the decay to the first excited 0+ state, a limit of T1 /2>3.1 ×1020 yr was produced. Limits to higher excited states are also reported. Conclusion: The new limits on double-β decay are an improvement over previous experiments by a factor of 2 to 5 for the various excited states. The nuclear matrix element for the double-β decay to the first excited 0+ state is found to be <0.13 .
Nonlinear phenomena in the highly excited state of C60
International Nuclear Information System (INIS)
Byrne, H.J.; Maser, W.K.; Kaiser, M.; Akselrod, L.; Anders, J.; Ruehle, W.W.; Zhou, X.Q.; Mittelbach, A.; Roth, S.
1993-01-01
Under high intensity illumination, the optical and electronic properties of fullerenes are seen to undergo dramatic, nonlinear changes. The photoluminescence emission is seen to increase with approximately the third power of the input intensity above an apparent threshold intensity. Associated with this nonlinear increase is the emergence of a long lifetime emission component and a redshifting of the emission spectrum. Above the threshold intensity the photoconductive response increases with approximately the cube of the input power. In the highly excited state, the photoconductive response becomes relatively temperature independent compared to the thermally activated behaviour observed at low intensities. The characteristics of the temperature dependence are associated with a metallic-like phase in the highly excited state and therefore an optically driven insulator to metal transition is proposed as a description of the observed phenomena. (orig.)
Byrne, Owen; McCaffrey, John G
2011-03-28
Absorption spectroscopy recorded for annealed samples of matrix-isolated atomic europium reveals a pair of thermally stable sites in Ar and Kr while a single site exists in Xe. Plots of the matrix shifts of the visible s → p bands versus host polarizability, allowed the association of the single site in Xe and the blue sites in Ar and Kr. On the basis of the similar ground state bond lengths expected for the Eu-rare gas (RG) diatomics and the known Na-RG molecules, the blue sites are attributed to Eu occupancy in the smaller tetra-vacancy while the red sites are proposed to arise from hexa-vacancy sites. Both sites are of cubic symmetry, consistent with the pronounced Jahn-Teller structure present on the y(8)P ← a(8)S(7/2) transition for these bands in the three hosts studied. Site-selective excitation spectroscopy has been used to reanalyze complex absorption spectra previously published by Jakob et al. [Phys. Lett. A 57, 67 (1976)] for the near-UV f → d transitions. On the basis that a pair of thermally stable sites exist in solid argon, the occurrence of crystal field splitting has been identified to occur for the J ≥ 5/2 level of the (8)P state when isolated in these two sites with cubic symmetry. From a detailed lineshape analysis, the magnitude of the crystal field splittings on the J = 5/2 level in Ar is found to be 105 and 123 cm(-1) for the red and blue sites, respectively.
Energy Technology Data Exchange (ETDEWEB)
Ferraudi, G J; Prasad, D R
1874-01-01
Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.
Collective and single-particle states at high excitation energy
International Nuclear Information System (INIS)
Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.
2000-01-01
Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)
Hidden Symmetries of Stochastic Models
Directory of Open Access Journals (Sweden)
Boyka Aneva
2007-05-01
Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.
Photoemission from excited states in rare gas solids by combining synchrotronradiation with a laser
International Nuclear Information System (INIS)
Bernstorff, S.
1984-09-01
A new spectroscopic method has been developed to study excited states in rare gas solids: Excitons and conductionband-states are populated by synchrotron radiation (photon energy hw SR =5 - 30 eV). Subsequently electrons from these bound or conduction band-states are excited above the vacuum level of the solid by a pulsed dye laser (hw L =1.9 - 3.7 eV). This experimental technique was applied to solid Xe, Kr, Ar and Ne. (orig./GSCH)
Symmetry and Phase Transitions in Nuclei
International Nuclear Information System (INIS)
Iachello, F.
2009-01-01
Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)
Symmetry adaptation and two-photon spectroscopy of ions in molecular or solid-state finite symmetry
International Nuclear Information System (INIS)
Kibler, M.; Daoud, M.
1991-01-01
Finite symmetry adaptation techniques are applied to the determination of the intensity strength of two-photon transitions for ions with one partly-filled shell nl in crystalline environments of symmetry G. The case of intra-configurational (nl N →nl N ) transitions as well as the case of inter-configurational (nl N →nl N-1 n'l' with (-) l+( l')=-1) transitions is treated. In both cases, the Wigner-Racah algebra of the chain O(3) contains G allows to extract the polarization dependence from the intensity. The reported results are valid for any strength of the crystalline field. (author) 19 refs
Excited states in 146Sm and 147Sm
International Nuclear Information System (INIS)
Kownacki, J.; Sujkowski, Z.; Hammaren, E.; Liukkonen, E.; Piiparinen, M.; Lindblad, Th.; Ryde, H.
1979-10-01
The sup(144,146)Nd(α,xn) and sup(146,148)Nd( 3 He,xn) reactions with Esub(α) = 20 - 43 MeV and E 3 sub(He) = 19 - 27 MeV are used to investigate excited states in the isotopes 146 Sm and 147 Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three parameter (E sub(γ)E sub(γ) time) coincidences. From these experiments information is obtained for states with spin up to I = 13 + and I = 27/2 - , respectively, These states are interpeted within the framework of the cluster-vibration model (CVM) as well as the shell model. (author)
Highly selective population of two excited states in nonresonant two-photon absorption
International Nuclear Information System (INIS)
Zhang Hui; Zhang Shi-An; Sun Zhen-Rong
2011-01-01
A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)
Size dependent deactivation of the excited state of DHICA
DEFF Research Database (Denmark)
Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia
2008-01-01
Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...
Joo, Taiha; Albrecht, A. C.
1993-06-01
Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.
Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho
1994-08-01
The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.
Energy Technology Data Exchange (ETDEWEB)
Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)
2016-01-07
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.
International Nuclear Information System (INIS)
Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert
2016-01-01
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate
Fifty years of symmetry operations
International Nuclear Information System (INIS)
Wigner, E.P.
1978-01-01
The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions
Effect of symmetry breaking on transition strength distributions
International Nuclear Information System (INIS)
Mitchell, G.E.; Shriner, J.F. Jr.
2001-01-01
The quantum numbers of over 100 states in 30 P have been determined from the ground state to 8 MeV. Previous measurements had provided complete spectroscopy in 26 Al. For these N=Z=odd nuclei, states of isospin T=0 and T=1 coexist at all energies. These spectra provide a unique opportunity to test the effect of symmetry breaking (of the approximate symmetry isospin) on the level statistics and on the transition strength distributions. The level statistics are strongly affected by the small symmetry breaking and the transition strength distributions differ from the Porter-Thomas distribution
Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane
Mohapatra, Monalisa; Mishra, Ashok K.
2012-03-01
Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.
Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S.; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J. P.
2005-01-01
Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO2 nanoparticles in the colloidal solution. The LH2/TiO2 assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO2. The possibility that the decrease of the LH2 excited-state lifetime being caused by ...
Wigner function for the generalized excited pair coherent state
International Nuclear Information System (INIS)
Meng Xiangguo; Wang Jisuo; Liang Baolong; Li Hongqi
2008-01-01
This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state |η> representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 , η 2 , τ 1 , τ 2 >. The entangled states |η> and η 1 , η 2 , τ 1 , τ 2 > provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states
Excited Landau levels, orbital angular momentum and axial anomaly
International Nuclear Information System (INIS)
Teryaev, O.V.
1993-01-01
The IR cutoff via the exclusion of the high orbital momentum components for the excited Landau levels leads to the physical interpretation of the cancellation between the explicity and anomalous chiral symmetry breaking. 21 refs
Symmetry of quantum molecular dynamics
International Nuclear Information System (INIS)
Burenin, A.V.
2002-01-01
The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru
Chiral symmetry breaking and the spin content of the {rho} and {rho}{sup '} mesons
Energy Technology Data Exchange (ETDEWEB)
Glozman, L.Ya., E-mail: leonid.glozman@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Lang, C.B., E-mail: christian.lang@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria); Limmer, M., E-mail: markus.limmer@uni-graz.at [Institut fuer Physik, FB Theoretische Physik, Universitaet Graz, A-8010 Graz (Austria)
2011-11-03
Using interpolators with different SU(2){sub L}xSU(2){sub R} transformation properties we study the chiral symmetry and spin contents of the {rho} and {rho}{sup '} mesons in lattice simulations with dynamical quarks. A ratio of couplings of the q-bar {gamma}{sup i}{tau}q and q-bar {sigma}{sup 0}i{tau}q interpolators to a given meson state at different resolution scales tells one about the degree of chiral symmetry breaking in the meson wave function at these scales. Using a Gaussian gauge invariant smearing of the quark fields in the interpolators, we are able to extract the chiral content of mesons up to the infrared resolution of {approx}1 fm. In the ground state {rho} meson the chiral symmetry is strongly broken with comparable contributions of both the (0,1)+(1,0) and (1/2,1/2){sub b} chiral representations with the former being the leading contribution. In contrast, in the {rho}{sup '} meson the degree of chiral symmetry breaking is manifestly smaller and the leading representation is (1/2,1/2){sub b}. Using a unitary transformation from the chiral basis to the {sup 2S+1}L{sub J} basis, we are able to define and measure the angular momentum content of mesons in the rest frame. This definition is different from the traditional one which uses parton distributions in the infinite momentum frame. The {rho} meson is practically a {sup 3}S{sub 1} state with no obvious trace of a 'spin crisis'. The {rho}{sup '} meson has a sizeable contribution of the {sup 3}D{sub 1} wave, which implies that the {rho}{sup '} meson cannot be considered as a pure radial excitation of the {rho} meson.
Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E; Kohler, Bern
2008-07-29
Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.
BOOK REVIEW: Symmetry Breaking
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Energy Technology Data Exchange (ETDEWEB)
Higashi, Yoichi, E-mail: higashiyoichi@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Nagai, Yuki [CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Yoshida, Tomohiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Yanase, Youichi [Department of Physics, Niigata University, Niigata 950-2181 (Japan)
2015-11-15
Highlights: • We focus on the pair-density wave state in bilayer Rashba superconductors. • The zero energy Bogoliubov wave functions are localized at the edge and vortex core. • We investigate the excitation spectra of edge and vortex bound states. - Abstract: We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.
Cluster decay of Ba isotopes from ground state and as an excited ...
Indian Academy of Sciences (India)
otherwise, inclusion of excitation energy decreases the T1/2 values. ... penetrates the nuclear barrier and reaches scission configuration after running .... between the ground-state energy levels of the parent nuclei and the ground-state energy.
The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
Song, Yin
2015-06-07
© 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
International Nuclear Information System (INIS)
Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.
2015-01-01
Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ 1 ,T ~ 2 ,λ 3 )) along the population time (T ~ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ 1 ,ν ~ 2 ,λ 3 )). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν ~ 2 ) in the rephasing beating map and at negative frequency (−ν ~ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems
Molecular and excited state properties of isomeric scarlet disperse dyes
Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.
2018-06-01
This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.
Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison
International Nuclear Information System (INIS)
Khvostenko, O.G.
2014-01-01
Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy
Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison
Energy Technology Data Exchange (ETDEWEB)
Khvostenko, O.G., E-mail: khv@mail.ru
2014-08-15
Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy.
International Nuclear Information System (INIS)
Chamoun, E.; Lombardi, M.; Carre, M.; Gaillard, M.L.
1977-01-01
In the last paper of this series devoted to relaxation phenomena in a low pressure cell of helium excited by an accelerated ion beam, experimental evidence is given for a new mechanism of transfer between alignment and orientation through anisotropic relaxation of initially aligned excited states. The theory predicting this effect is briefly outlined and then description is given of the exact experimental conditions to detect the circularly polarized component of the light emitted by the target excited in the 4 1 D level of He I by Na + impact [fr