WorldWideScience

Sample records for excited state spectra

  1. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  2. Excited state mass spectra of doubly heavy Ξ baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)

    2017-02-15

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ{sub cc}{sup +}, Ξ{sub cc}{sup ++}, Ξ{sub bb}{sup -}, Ξ{sub bb}{sup 0}, Ξ{sub bc}{sup 0} and Ξ{sub bc}{sup +}. These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in (n, M{sup 2}) and (J, M{sup 2}) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated. (orig.)

  3. Excited state mass spectra and Regge trajectories of bottom baryons

    Science.gov (United States)

    Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.

    2017-09-01

    We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.

  4. Excited state mass spectra of singly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)

    2016-10-15

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)

  5. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1,3-cyc...... indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....

  6. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  7. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  8. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  9. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.

    2015-10-15

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  10. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: vibrations and structure of its excited S(1)(π,π(*)) electronic state.

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J; Kim, Sunghwan; Laane, Jaan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π(*)) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π(*)) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π(*)) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π(*)) excited state.

  11. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  12. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  13. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state.

  14. Evidence of a state dependent depletion process in the two-photon fluorescence excitation spectra of saturated amines

    Science.gov (United States)

    Halpern, Arthur M.; Gerrity, D. P.; Rothberg, L. J.; Vaida, V.

    1982-01-01

    The two-photon fluorescence excitation (TPFE) spectra of regions of the ? states of two saturated amines 1-azabicyclo [2.2.2]octane (ABCO) and trimethylamine (TMA) are reported. These spectra are compared with the respective one-photon absorption (OPA), one-photon fluorescence excitation (OPFE), and multiphoton ionization (MPI) spectra for both molecules. For ABCO, this comparison clearly indicates major differences in both the vibronic band intensities and the amount of sequence structure present in the TPFE spectrum relative to the MPI, OPA, and OPFE spectra, which are all comparable. The ''distortions'' of the TPFE spectrum are interpreted in terms of a laser-induced ? state-dependent depletion process from ? which results in ionization. Pressure effects on the TPFE spectrum imply that the rate of this up-pumping process depends strongly upon the particular vibrational modes excited in the two-photon-induced ?←? transition. A further implication of this interpretation is that the intramolecular vibrational relaxation time T1 of some initially prepared levels is ?100 ps. A kinetic model is presented which illustrates how (small) variations in the ionization cross sections of the ? state can have large effects on the TPFE spectrum but not on the MPI spectrum.

  15. Excited States and Optical Spectra Based on GW-BSE: Dimensionality and Screening

    Science.gov (United States)

    Louie, Steven G.

    In this talk, I discuss some recent developments and applications of first-principles GW plus Bethe Salpeter equation (GW-BSE) approach to the understanding and prediction of photo-excited states, optical responses, and related spectroscopic properties of materials, in particular atomically thin two-dimensional (2D) crystals. Owing to their reduced dimensionality, quasi-2D materials and their nanostructures can exhibit highly unusual behaviors. Symmetry, many-body interactions, doping, and substrate screening effects play a critical role in shaping qualitatively and quantitatively their excited-state properties. Accurate treatment of these effects, in particular many-electron interactions, poses new theoretical and computational challenges. I will present some new developments in addressing these challenges, and present studies on monolayer and few-layer transition metal dichalcogenides and metal monochalcogenides, as well as black phosphorus and other 2D crystals. Several highly interesting and unexpected phenomena are discovered: unusual excitonic level structures and optical selection rules; exchange-induced light-like (massless) exciton dispersion in 2D; tunable optical and plasmonic properties; and the dominant influence of substrate screening. I would like to acknowledge collaborations with members of the Louie group. This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences & Engineering Division, and by National Science Foundation.

  16. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Arulmozhiraja, Sundaram, E-mail: raja@cat.hokudai.ac.jp; Coote, Michelle L. [ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, 2601 ACT (Australia); Hasegawa, Jun-ya [Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021 (Japan)

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  17. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  18. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  19. Effects of solvent on the electronic absorption and fluorescence spectra of quinazolines, and determination of their ground and excited singlet-state dipole moments

    Science.gov (United States)

    Aaron, J. J.; Tine, A.; Gaye, M. D.; Parkanyi, C.; Boniface, C.; Bieze, T. W. N.

    The electronic absorption, and fluorescence excitation and emission spectra of 11 quinazolines have been measured at room temperature (298 K) in several solvents of different polarities (cyclohexane, dioxane, ethylether, chloroform, ethylacetate, 1-butanol, 2-propanol, ethanol, methanol, acetonitrile, dimethylformamide and dimethyl sulfoxide). The effects of the solvent upon the spectral properties are discussed. Experimental ground-state dipole moments were measured for quinazolines and were used in combination with the spectral results to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method. The theoretical ground and excited singlet-state dipole moments for selected quinazolines were calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). A reasonable agreement was observed between the experimental and the theoretical values. Excited singlet-state dipole moments are higher than the ground-state values for most quinazolines.

  20. Excited state mass spectra of doubly heavy baryons Ω{sub cc}, Ω{sub bb} and Ω{sub bc}

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering college, Department of Applied Sciences and Humanities, Abrama, Navsari (India)

    2016-10-15

    We discuss the mass spectrum of Ω baryon with two heavy quarks and one light quark (ccs, bbs, and bcs). The main goal of the paper is to calculate the ground state masses and after that, the positive and negative parity excited states masses are also obtained within a hypercentral constituent quark model, using Coulomb plus linear potential framework. We also added a first order correction to the potential. The mass spectra up to 5S for radial excited states and 1P-5P, 1D-4D, and 1F-2F states for orbital excited states are computed for Ω{sub cc}, Ω{sub bb} and Ω{sub bc} baryons. Our obtained results are compared with other theoretical predictions, which could be a useful complementary tool for the interpretation of experimentally unknown heavy baryon spectra. The Regge trajectory is constructed in both the (n{sub r}, M{sup 2}) and the (J, M{sup 2}) planes for Ω{sub cc}, Ω{sub bb} and Ω{sub bc} baryons and their slopes and intercepts are also determined. Magnetic moments of doubly heavy Ω{sup '}s are also calculated. (orig.) 8.

  1. Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and first excited singlet-state dipole moments

    Science.gov (United States)

    Aaron, Jean Jacques; Maafi, Mounir; Párkányi, Cyril; Boniface, Christian

    1995-04-01

    Electronic absorption and fluorescence excitation and emission spectra of four acridines (acridine, Acridine Yellow, 9-aminoacridine and proflavine) and three phenazines (phenazine, neutral Red and safranine) are determined at room temperature (298 K) in several solvents of various polarities (dioxane, chloroform, ethyl ether, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, dimethylformamide, acetonitrile and dimethyl sulfoxide). The effect of the solvent upon the spectral characteristics of the above compounds, is studied. In combination with the ground-state dipole moments of these compounds, the spectral data are used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski-Chamma-Viallet's correlations). The theoretical ground and excited singlet-state dipole moments for acridines and phenazines are also calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). For most acridines and phenazines under study, the experimental excited singlet-state dipole moments are found to be higher than their ground state counterpart. The application of the Kamlet-Abboud-Taft solvatochromic parameters to the solvent effect on spectral properties of acridine and phenazine derivatives is discussed.

  2. Millimeter-wave and Submillimeter-wave Spectra of Aminoacetonitrile in the Three Lowest Vibrational Excited States

    Energy Technology Data Exchange (ETDEWEB)

    Esposti, Claudio Degli; Dore, Luca; Melosso, Mattia [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, I-40126 Bologna (Italy); Kobayashi, Kaori [Department of Physics, Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Fujita, Chiho; Ozeki, Hiroyuki, E-mail: ozeki@env.sci.toho-u.ac.jp [Department of Environmental Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510 (Japan)

    2017-06-01

    It is important to study possible precursors of amino acids such as glycine to enable future searches in interstellar space. Aminoacetonitrile (NH{sub 2}CH{sub 2}CN) is one of the most feasible molecules for this purpose. This molecule was already detected toward Sgr B2(N). Aminoacetonitrile has a few low-lying vibrational excited states, and transitions within these states may be found in space. In this study, the pure-rotational transitions in the three lowest vibrational states in the 80–450 GHz range have been assigned and analyzed. It was found to be very important to include Coriolis coupling between the two lowest vibrational fundamentals, while the third one was unperturbed. The partition function was evaluated considering these new results.

  3. S1←S0 vibronic spectra and structure of cyclopropanecarboxaldehyde molecule in the S1 lowest excited singlet electronic state

    Science.gov (United States)

    Godunov, I. A.; Yakovlev, N. N.; Terentiev, R. V.; Maslov, D. V.; Bataev, V. A.; Abramenkov, A. V.

    2016-11-01

    The S1←S0 vibronic spectra of gas-phase absorption at room temperature and fluorescence excitation of jet-cooled cyclopropanecarboxaldehyde (CPCA, c-C3H5CHO)were obtained and analyzed. In addition, the quantum chemical calculation (CASPT2/cc-pVTZ)was carried out for CPCA in the ground (S0) and lowest excited singlet (S1) electronic states. As a result, it was proved that the S1←S0 electronic excitation of the CPCA conformers (syn and anti) causes (after geometrical relaxation) significant structural changes, namely, the carbonyl fragments become non-planar and the cyclopropyl groups rotate around the central C-C bond. As a consequence, the potential energy surface of CPCA in the S1 state has six minima, 1ab, 2ab, and 3ab, corresponding to three pairs of mirror symmetry conformers: a and b. It was shown that vibronic bands of experimental spectra can be assigned to the 2(S1)←syn(S0) electronic transition with the origin at 30,481 cm-1. A number of fundamental vibrational frequencies for the 2 conformer of CPCA were assigned. In addition, several inversional energy levels for the 2 conformer were found and the 2a↔2b potential function of inversion was determined. The experimental barrier to inversion and the equilibrium angle between the CH bond and the CCO plane were calculated as 570 cm-1 and 28°, respectively.

  4. Excited state solvatochromic and prototropic behaviour of 4-aminodiphenylamine and 4,4'-diaminodiphenylamine—A comparative study by electronic spectra

    Science.gov (United States)

    Nayaki, S. Kothai; Swaminathan, M.

    2006-06-01

    Solvatochromic and prototropic behaviour of 4-aminodiphenylamine (4ADA) and 4,4'-diaminodiphenylamine (DADA) have been investigated in the solvents of different polarity and at various acid-base concentrations in the ground and excited states using absorption and fluorescence spectra. Solvatochromic shifts have been analysed and observed shifts are explained by the hydrogen bonding interactions. The prototropic study reveals that (i) absorption maximum of monocation of DADA is red shifted to its neutral form, and (ii) the fluorescence of 4ADA is red shifted on protonation. The abnormal fluorescence of 4ADA + is found to be due to large solvent relaxation in polar medium.

  5. Excited state solvatochromic and prototropic behaviour of 4-aminodiphenylamine and 4,4'-diaminodiphenylamine--a comparative study by electronic spectra.

    Science.gov (United States)

    Nayaki, S Kothai; Swaminathan, M

    2006-06-01

    Solvatochromic and prototropic behaviour of 4-aminodiphenylamine (4ADA) and 4,4'-diaminodiphenylamine (DADA) have been investigated in the solvents of different polarity and at various acid-base concentrations in the ground and excited states using absorption and fluorescence spectra. Solvatochromic shifts have been analysed and observed shifts are explained by the hydrogen bonding interactions. The prototropic study reveals that (i) absorption maximum of monocation of DADA is red shifted to its neutral form, and (ii) the fluorescence of 4ADA is red shifted on protonation. The abnormal fluorescence of 4ADA+ is found to be due to large solvent relaxation in polar medium.

  6. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Callcott, T.A.; Jia, J.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  7. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  8. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  9. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  10. Ab Initio Potential Energy Surfaces for Both the Ground (X̃1A′ and Excited (A∼1A′′ Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr

    Directory of Open Access Journals (Sweden)

    Anyang Li

    2012-01-01

    Full Text Available Ab initio potential energy surfaces for the ground (X̃1A′ and excited (A˜A′′1 electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.

  11. Rotational spectra of vibrationally excited CCH and CCD.

    Science.gov (United States)

    Killian, T C; Gottlieb, C A; Thaddeus, P

    2007-09-21

    The millimeter-wave rotational spectra of the lowest bending and stretching vibrational levels of CCH and CCD were observed in a low pressure discharge through acetylene and helium. The rotational, centrifugal distortion, and fine structure constants were determined for the (02(0)0) and (02(2)0) bending states, the (100) and (001) stretching levels, and the (011) combination level of CCH. The same pure bending and stretching levels, and the (110) combination level were observed in CCD. Apparent anomalies in the spectroscopic constants in the bending states were shown to be due to l-type resonances. Hyperfine constants, which in CCH are sensitive to the degree of admixture of the A 2Pi excited electronic state, were determined in the excited vibrational levels of both isotopic species. Theoretical Fermi contact and dipole-dipole hyperfine constants calculated by Peric et al. [J. Mol. Spectrosc. 150, 70 (1991)] were found to be in excellent agreement with the measured constants. In CCD, new rotational lines tentatively assigned to the (100) level largely on the basis of the observed hyperfine structure support the assignment of the C-H stretching fundamental (nu1) by Stephens et al. [J. Mol. Struct. 190, 41 (1988)]. Rotational lines in the excited vibrational levels of CCH are fairly intense in our discharge source because the vibrational excitation temperatures of the bending vibrational levels and the (110) and (011) combination levels are only about 100 K higher than the gas kinetic temperature, unlike the higher frequency stretching vibrations, where the excitation temperatures are five to ten times higher.

  12. Excitation spectra of liquid iron up to superhigh temperatures

    Science.gov (United States)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Brazhkin, V. V.

    2017-08-01

    Investigation of excitation spectra of liquids is one of the hot test topics nowadays. In particular, recent experimental works showed that liquid metals can demonstrate transverse excitations and positive sound dispersion. However, the theoretical description of these experimental observations is still missing. Here we report a molecular dynamics study of excitation spectra of liquid iron. We compare the results with available experimental data to justify the method. After that we perform calculations for high temperatures to find the location of the Frenkel line introduced in our previous works.

  13. A mixed quantum-classical molecular dynamics study of anti-tetrol and syn-tetrol dissolved in liquid chloroform II: infrared emission spectra, vibrational excited-state lifetimes, and nonequilibrium hydrogen-bond dynamics.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2013-11-21

    The effect of vibrational excitation and relaxation of the hydroxyl stretch on the hydrogen-bond structure and dynamics of stereoselectively synthesized syn-tetrol and anti-tetrol dissolved in deuterated chloroform are investigated via a mixed quantum-classical molecular dynamics simulation. Emphasis is placed on the changes in hydrogen-bond structure upon photoexcitation and the nonequilibrium hydrogen-bond dynamics that follows the subsequent relaxation from the excited to the ground vibrational state. The propensity to form hydrogen bonds is shown to increase upon photoexcitation of the hydroxyl stretch, thereby leading to a sizable red-shift of the infrared emission spectra relative to the corresponding absorption spectra. The vibrational excited state lifetimes are calculated within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, and found to be sensitive reporters of the underlying hydrogen-bond structure. The energy released during the relaxation from the excited to the ground state is shown to break hydrogen bonds involving the relaxing hydroxyl. The spectral signature of this nonequilibrium relaxation process is analyzed in detail.

  14. A quantitative study of the effect of solvent on the electronic absorption and fluorescence spectra of substituted phenothiazines: evaluation of their ground and excited singlet-state dipole moments

    Science.gov (United States)

    Párkányi, C.; Boniface, C.; Aaron, J. J.; Maafi, M.

    1993-11-01

    Electronic absorption and fluorescence excitation and emission spectra of five phenothiazines (phenothiazine, promethazine, thionine, methylene blue and Azure A) were determined at room temperature (293 K) in several solvents of various polarities (cyclohexane, dioxane, ethyl ether, chloroform, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, acetonitrile, dimethylformamide and dimethyl sulfoxide). The effect of the solvents upon the spectral characteristics was studied. In combination with the ground state dipole moments of these phenothiazines, the spectral data were used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski—Chamma—Viallet correlations). The theoretical ground and excited singlet-state dipole moments for phenothiazines were calculated as a vector sum of the π component (obtained by the Pariser—Parr—Pople method) and the σ component (obtained from σ-bond moments). A reasonable agreement was found with the experimental values. For most phenothiazines under study, excited singlet-state dipole moments were found to be significantly higher than their ground-state counterparts. The application of the Kamlet—Abboud—Taft solvatochromic parameters to the solvent effect on spectral properties of phenothiazines is discussed.

  15. Relative Stability of the La and Lb Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra.

    Science.gov (United States)

    Santoro, Fabrizio; Improta, Roberto; Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-06-05

    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.

  16. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  17. Vibrationally excited state stectroscopy of radicals in a supersonic plasma

    NARCIS (Netherlands)

    G. Bazalgette Courreges-Lacoste, J. Bulthuis, S. Stolte, T. Motylewski; Linnartz, H.V.J.

    2001-01-01

    A plasma source based on a multilayer discharge geometry in combination with a time-of-flight REMPI experiment is used to study rotationally cold spectra of highly excited vibrational states of mass selected radicals. The rovibrational state distributions upon discharge excitation are characterised

  18. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    Science.gov (United States)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  19. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  20. Luminescence and excitation spectra of YAG:Nd{sup 3+} excited by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ning Lixin [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tanner, Peter A. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bhtan@cityu.edu.hk; Harutunyan, Vachagan V.; Aleksanyan, Eduard [Yerevan Physics Institute, 2 Alikhanian Brothers Str., 375036 Yerevan (Armenia); Makhov, Vladimir N. [Lebedev Physical Institute, Leninskii Prospect 53, 119991 Moscow (Russian Federation); Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kirm, Marco [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2007-12-15

    The low-temperature 4f{sup 2}5d{yields}4f{sup 3} fast emission of Nd{sup 3+} from YAG:Nd{sup 3+} has been studied under excitation by synchrotron radiation. Additionally, 4f{sup 3}{yields}4f{sup 3} luminescence of Nd{sup 3+} has been observed and assigned to transitions from the {sup 2}F(2){sub 5/2} and {sup 4}F{sub 3/2} multiplet terms. The observed experimental spectra of Nd{sup 3+} d-f emission and f-d excitation are well simulated by crystal-field calculations.

  1. Hydrogen and surface excitation in electron spectra of polyethylene

    Science.gov (United States)

    Orosz, G. T.; Gergely, G.; Menyhard, M.; Tóth, J.; Varga, D.; Lesiak, B.; Jablonski, A.

    2004-09-01

    The inelastic mean free path (IMFP) of electrons of polyethylene was determined by elastic peak electron spectroscopy (EPES). Hydrogen cannot be detected directly by conventional electron spectroscopies, such as Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), reflection electron energy loss spectroscopy (REELS) and EPES. The evaluation of electron spectra on polyethylene (PE) and other polymers needs corrections for hydrogen and surface excitation. Electron elastic backscattering on H atoms appears in the splitting of the elastic peak, shifting and Doppler broadening of the H peak produced by recoil effect. This shift is 0.34-3.8 eV for E=0.2-2.0 keV. Experiments resulted in separating the very low H elastic signal from the background. Surface excitation is characterised by the parameter Pse( E) which was described by formulae of Tanuma, Werner and Chen, using different definitions. The Pse( E) of PE was determined by our new procedure. Si and Ag were used as reference samples for its determination by EPES experiments. Experiments were made with a HSA spectrometer of high energy resolution. Their Monte Carlo evaluation was based on the NIST 64 database and IMFP of Tanuma et al., Gries and Cumpson. Pse( E) of PE was determined by best fit of experimental parameters, comparing the different IMFPs and surface excitation correction factors of Chen and Werner et al. The criteria of best fit are the RMS deviations from the different corrections. The total backscattering spectra (elastic and inelastic) of PE, C and Cu resulted in indirect observation of H.

  2. Excited B states at LEP

    CERN Document Server

    Kluit, Peter M

    2005-01-01

    The first orbitally excited B states were discovered at LEP in 1995. In subsequent years evidence was put forward for the existence of several excited B hadron states. Now, ten years later it is time to review the situation. New analyses have been performed in DELPHI using the full LEP data set with improved and high performance analysis tools. Measurements for the production rate and masses of narrow and broad B/sub u, d//sup **/ mesons will be presented as well as results for the search for B/sub s//sup **/ mesons and Sigma /sub b//sup (*)/ baryons. The results will be compared to earlier measurements, predictions from HQET and measurements in the charm sector.

  3. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    Science.gov (United States)

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photoluminescence excitation and quenching spectra in CVD diamond films

    OpenAIRE

    Iakoubovskii, K; Adriaenssens, G.J.; Nesladek, Milos; STALS, Lambert

    1999-01-01

    Photoluminescence excitation and quenching spectroscopy techniques were applied to the red band, and the 1.68, 1.945 and 2.156 eV lines in chemical vapour deposition diamond films. Ground state positions for the 1.68, 1.945 and 2.156 eV centers are found as E-C -2.1, -2.0 and -2.8 eV, respectively. Interpretation of the 1.945 and 2.156 eV centers as [N-V](-) and [N-V](0) defect states is supported. (C) 1999 Elsevier Science S.A. All rights reserved.

  5. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra

    National Research Council Canada - National Science Library

    Hill, Steven C; Mayo, Michael W; Chang, Richard K

    2009-01-01

    The fluorescence intensity as a function of excitation and emission wavelengths (EEM spectra) was measured for different species of bacteria, biochemical constituents of cells, pollens, and vegetation...

  6. Excited-state Wigner crystals

    Science.gov (United States)

    Rogers, Fergus J. M.; Loos, Pierre-François

    2017-01-01

    Wigner crystals (WCs) are electronic phases peculiar to low-density systems, particularly in the uniform electron gas. Since its introduction in the early twentieth century, this model has remained essential to many aspects of electronic structure theory and condensed-matter physics. Although the (lowest-energy) ground-state WC (GSWC) has been thoroughly studied, the properties of excited-state WCs (ESWCs) are basically unknown. To bridge this gap, we present a well-defined procedure to obtain an entire family of ESWCs in a one-dimensional electron gas using a symmetry-broken mean-field approach. While the GSWC is a commensurate crystal (i.e., the number of density maxima equals the number of electrons), these ESWCs are incommensurate crystals exhibiting more or less maxima. Interestingly, they are lower in energy than the (uniform) Fermi fluid state. For some of these ESWCs, we have found asymmetrical band gaps, which would lead to anisotropic conductivity. These properties are associated with unusual characteristics in their electronic structure.

  7. Vibronic energy map and excited state vibrational characteristics of magnesium myoglobin determined by energy-selective fluorescence.

    OpenAIRE

    Kaposi, A D; Vanderkooi, J. M.

    1992-01-01

    The vibrational frequencies of the singlet excited state of Mg-substituted myoglobin and relative absorption probabilities were determined by fluorescence line-narrowing spectroscopy. These spectra contain information on the structure of the excited state species, and the availability of vibrationally resolved spectra from excited state biomolecules should aid in elucidating their structure and reactivity.

  8. Quantum marginals from pure doubly excited states

    Science.gov (United States)

    Maciążek, Tomasz; Tsanov, Valdemar

    2017-11-01

    The possible spectra of one-particle reduced density matrices that are compatible with a pure multipartite quantum system of finite dimension form a convex polytope. We introduce a new construction of inner- and outer-bounding polytopes that constrain the polytope for the entire quantum system. The outer bound is sharp. The inner polytope stems only from doubly excited states. We find all quantum systems, where the bounds coincide giving the entire polytope. We show, that those systems are: (i) any system of two particles (ii) L qubits, (iii) three fermions on N≤slant 7 levels, (iv) any number of bosons on any number of levels and (v) fermionic Fock space on N≤slant 5 levels. The methods we use come from symplectic geometry and representation theory of compact Lie groups. In particular, we study the images of proper momentum maps, where our method describes momentum images for all representations that are spherical.

  9. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  10. Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region

    Science.gov (United States)

    Shimizu, Yuhei; Ueda, Kazushige; Inaguma, Yoshiyuki

    2017-04-01

    To understand luminescent mechanisms of lanthanide (Ln) doped phosphors, it is important to know the energy positions of unoccupied Ln2+ 4f and Ln3+ 5d states, as well as occupied Ln3+ 4f states, relative to the energy bands of host materials. Photoluminescence excitation (PLE) spectra of Ln doped YAlO3 were measured in a vacuum ultraviolet (VUV) region and the energy positions of Ln2+ 4f and Ln3+ 5d states in the wide-gap YAlO3 were elucidated. Peaks assignable to host lattice excitation were observed in all samples at approximately 8 eV in the PLE spectra. PLE peaks derived from charge transfer (CT) and 4f-5d transitions were observed at lower energy than the bandgap energy. Ln2+ 4f energy levels were obtained from the PLE peak energies for the CT transitions along with the valence band maximum. In contrast, Ln3+ 5d energy levels were evaluated from those for the 4f-5d transitions along with the Ln3+ 4f energy levels, which were obtained previously from X-ray photoelectron spectroscopy measurements. The elucidated Ln2+ 4f and Ln3+ 5d energy levels were exhibited in an energy diagram together with Ln3+ 4f energy levels and host energy bands. The experimental Ln2+ 4f and Ln3+ 5d energy levels were in good agreement with the reported theoretical data.

  11. Melanin fluorescence spectra by step-wise three photon excitation

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; DiMarzio, Charles A.

    2012-03-01

    Melanin is the characteristic chromophore of human skin with various potential biological functions. Kerimo discovered enhanced melanin fluorescence by stepwise three-photon excitation in 2011. In this article, step-wise three-photon excited fluorescence (STPEF) spectrum between 450 nm -700 nm of melanin is reported. The melanin STPEF spectrum exhibited an exponential increase with wavelength. However, there was a probability of about 33% that another kind of step-wise multi-photon excited fluorescence (SMPEF) that peaks at 525 nm, shown by previous research, could also be generated using the same process. Using an excitation source at 920 nm as opposed to 830 nm increased the potential for generating SMPEF peaks at 525 nm. The SMPEF spectrum peaks at 525 nm photo-bleached faster than STPEF spectrum.

  12. A Bloch equation approach to intensity dependent optical spectra of light harvesting complex II: excitation dependence of light harvesting complex II pump-probe spectra.

    Science.gov (United States)

    Richter, Marten; Renger, Thomas; Knorr, Andreas

    2008-01-01

    On the basis of the recent progress in the resolution of the structure of the antenna light harvesting complex II (LHC II) of the photosystem II, we propose a microscopically motivated theory to predict excitation intensity-dependent spectra. We show that optical Bloch equations provide the means to include all 2( N ) excited states of an oligomer complex of N coupled two-level systems and analyze the effects of Pauli Blocking and exciton-exciton annihilation on pump-probe spectra. We use LHC Bloch equations for 14 Coulomb coupled two-level systems, which describe the S (0) and S (1) level of every chlorophyll molecule. All parameter introduced into the Hamiltonian are based on microscopic structure and a quantum chemical model. The derived Bloch equations describe not only linear absorption but also the intensity dependence of optical spectra in a regime where the interplay of Pauli Blocking effects as well as exciton-exciton annihilation effects are important. As an example, pump-probe spectra are discussed. The observed saturation of the spectra for high intensities can be viewed as a relaxation channel blockade on short time scales due to Pauli blocking. The theoretical investigation is useful for the interpretation of the experimental data, if the experimental conditions exceed the low intensity pump limit and effects like strong Pauli Blocking and exciton-exciton annihilation need to be considered. These effects become important when multiple excitations are generated by the pump pulse in the complex.

  13. Thermally excited multiplet states in macerals separated from bituminous coal

    Science.gov (United States)

    Wieckowski; Pilawa; Swiatkowska; Wojtowicz; Slowik; Lewandowski

    2000-07-01

    Electron paramagnetic resonance searches of thermally excited multiplet states in macerals, exinite, vitrinite, and inertinite of Polish medium-rank coal (85.6 wt% C), were performed. Numerical analysis of lineshape indicates a multicomponent structure of the EPR spectra of macerals heated at 300 degrees and 650 degrees C. EPR spectra of exinite and vitrinite are a superposition of broad Gauss, broad Lorentz (Lorentz 1), and narrow Lorentz (Lorentz 3) lines. Two narrow Lorentz (Lorentz 2 and Lorentz 3) lines were observed in the resonance absorption curves of inertinite. The influence of the measuring temperature (100-300 K) on the EPR lines of the macerals was also studied. The experimentally obtained temperature dependence of the EPR line intensities were fitted by the theoretical functions characteristic for paramagnetic centers with ground doublet state (S = 12) and paramagnetic centers with thermally excited triplet (S = 1) and quadruplet (S = 32) states. Thermally excited multiplet states were found in exinite and vitrinite. Both paramagnetic centers with doublet ground state (S = 12) and paramagnetic centers with thermally excited states, probably quadruplet states (S = 32), exist in the group of paramagnetic centers of exinite and vitrinite with the broad Lorentz 1 lines. Intensities (I) of the broad Gauss and the narrow Lorentz 3 lines of exinite and vitrinite changes with temperature according to the Curie law (I = C/T). The existence of thermally excited multiplet states was not stated for inertinite. The two groups of paramagnetic centers of inertinite with Lorentz 2 and Lorentz 3 lines obey the Curie law. Copyright 2000 Academic Press.

  14. Excitation Spectra of Carbon Nuclei near η ' Emission Threshold

    Science.gov (United States)

    Itahashi, Kenta; Ayyad, Yassid; Benlliure, Jose; Brinkmann, Kai-Thomas; Friedrich, Stefan; Fujioka, Hiroyuki; Geissel, Hans; Gellanki, Jnaneswari; Guo, Chenlei; Gutz, Eric; Haettner, Emma; Harakeh, Muhsin N.; Hayano, Ryugo S.; Higashi, Yuko; Hirenzaki, Satoru; Hornung, Christine; Igarashi, Yoichi; Ikeno, Natsumi; Iwasaki, Masahiko; Jido, Daisuke; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Knoebel, Ronja; Kurz, Nikolaus; Metag, Volker; Mukha, Ivan; Nagae, Tomofumi; Nagahiro, Hideko; Nanova, Mariana; Nishi, Takahiro; Ong, Hooi Jin; Pietri, Stephane; Prochazka, Andrej; Rappold, Christophe; Reiter, Moritz P.; Rodríguez-Sánchez, José L.; Scheidenberger, Christoph; Simon, Haik; Sitar, Branislav; Strmen, Peter; Sun, Baohua; Suzuki, Ken; Szarka, Imrich; Takechi, Maya; Tanaka, Yoshiki K.; Tanihata, Isao; Terashima, Satoru; Watanabe, Yuni N.; Weick, Helmut; Widmann, Eberhard; Winfield, John S.; Xu, Xiaodong; Yamakami, Hiroki; Zhao, Jianwei

    We measured an excitation spectrum of 12C(p, d) reaction near the η' emission threshold using a 2.5 GeV proton beam. The measured spectrum shows no peak structures which are associated to formation of η'-mesic nuclei. Further analysis is ongoing to deduce upper limits of the formation cross section and to set constraints in the η'-nucleus interaction.

  15. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  16. On the relationship between luminescence excitation spectra and feldspar mineralogy

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Johnsen, O.

    1996-01-01

    Feldspar minerals can be used as naturally occurring radiation dosemeters, with dose assessment commonly using luminescence techniques. Since many feldspars contain radioactive K-40, knowledge of the mineralogy of the luminescent samples being measured is of high importance. Most feldspars contain...... more than trace amounts of highly luminescent Fe3+ impurities, and this article examines the relationship between features of the luminescence excitation spectrum of this ion with sample mineralogy. It is demonstrated that there is a near linear correspondence between the plagioclase feldspar...

  17. Charmonium excited state spectrum in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  18. Search for excited states in 25O

    Science.gov (United States)

    Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.

    2017-11-01

    Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.

  19. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  20. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Computing correct truncated excited state wavefunctions

    Science.gov (United States)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  2. Interference through the resonant Auger process via multiple core-excited states

    Science.gov (United States)

    Chatterjee, Souvik; Nakajima, Takashi

    2017-12-01

    We theoretically investigate the resonant Auger process via multiple core-excited states. The presence of multiple core-excited states sets off interference into the common final continuum, and we show that the degree of interference depends on the various parameters such as the intensity of the employed x-ray pulse and the lifetimes of the core-excited states. For the specific examples we employ the double (1 s-13 p and 1 s-14 p ) core-excited states of Ne atom and numerically solve the time-dependent Schrödinger equation to demonstrate that the energy-resolved electron spectra clearly exhibit the signature of interference.

  3. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    Science.gov (United States)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  4. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    Muonium formation in excited states in muon-hydrogen charge-exchange collision is investigated using a method developed in a previous paper. Differential cross-section results are found to resemble positronium formation cross-section results of positron-hydrogen charge-exchange problem. Forward differential and ...

  5. Comparative Studies in the Fluorescence and Excitation Spectra of 3-Hydroxyflavone and 2(2 '-Heteroaryl)-3-Hydroxy-4H-Chromen-4-Ones

    Science.gov (United States)

    Kaur, R.; Kaur, K.; Bansal, M.

    2017-05-01

    The absorption, fluorescence, and excitation spectra of FHC and THC have been studied and compared with 3HF in cyclohexane, acetonitrile, and methanol. Anion formation in acetonitrile and methanol has been observed in all three flavonols in the order THC-FHC-3HF in their ground states. As excitation and absorption spectra are similar in all the cases (including the anion one), it is possible to observe the absorption spectra of the pure anion of the flavonols in neutral solvents, which is difficult to measure directly.

  6. Calculations on the electronic excited states of ureas and oligoureas.

    Science.gov (United States)

    Oakley, Mark T; Guichard, Gilles; Hirst, Jonathan D

    2007-03-29

    We report CASPT2 calculations on the electronic excited states of several ureas. For monoureas, we find an electric dipole forbidden n --> pi* transition between 180 and 210 nm, dependent on the geometry and substituents of the urea. We find two intense pinb --> pi* transitions between 150 and 210 nm, which account for the absorptions seen in the experimental spectra. The n' --> pi* and pib --> pi* transitions are at wavelengths below 125 nm, which is below the lower limit of the experimental spectra. Parameter sets modeling the charge densities of the electronic transitions have been derived and permit calculations on larger oligoureas, using the exciton matrix method. For glycouril, a urea dimer, both the CASPT2 method and the matrix method yield similar results. Calculations of the electronic circular dichroism spectrum of an oligourea containing eight urea groups indicate that the experimental spectrum cannot be reproduced without the inclusion of electronic excitations involving the side chains. These calculations are one of the first attempts to understand the relationship between the structure and excited states of this class of macromolecule.

  7. Ultrafast excited state dynamics in 9,9'-bifluorenylidene.

    Science.gov (United States)

    Conyard, Jamie; Heisler, Ismael A; Browne, Wesley R; Feringa, Ben L; Amirjalayer, Saeed; Buma, Wybren Jan; Woutersen, Sander; Meech, Stephen R

    2014-08-07

    9,9'-Bifluorenylidene has been proposed as an alternative and flexible electron acceptor in organic photovoltaic cells. Here we characterize its excited state properties and photokinetics, combining ultrafast fluorescence and transient IR measurements with quantum chemical calculations. The fluorescence decay is ultrafast (sub-100 fs) and remarkably independent of viscosity. This suggests that large scale structure change is not the primary relaxation mode. The ultrafast decay populates a dark state characterized by distinct vibrational and electronic spectra. This state decays with a 6 ps time constant to a hot ground state that ultimately populates the initial state with a 20 ps time constant; these times are also insensitive to solvent viscosity. No metastable intermediate structures are resolved in the photocycle after population of the dark state. The implications of these results for the operation of 9,9'-bifluorenylidene as an electron acceptor and as a potential molecular switch are discussed.

  8. Discernment of lint trash in raw cotton using multivariate analysis of excitation-emission luminescence spectra

    Science.gov (United States)

    Excitation-Emission luminescence spectra of basic (pH 12.5) phosphate buffer solution extracts were used to distinguish among botanical components of trash within seed cotton. All components were separated from whole plants removed from a field in southern New Mexico. Unfolded Principal Component An...

  9. Probing excited electronic states and ionisation mechanisms of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Campbell, Eleanor E B

    2013-07-07

    Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively simple, well-resolved structure in fs laser photoelectron spectra of fullerenes. We focus on the application of velocity map imaging combined with fs laser photoionisation to study angular-resolved photoelectron emission.

  10. Wide-field microscopic FRET imaging using simultaneous spectral unmixing of excitation and emission spectra.

    Science.gov (United States)

    Du, Mengyan; Zhang, Lili; Xie, Shusen; Chen, Tongsheng

    2016-07-11

    Simultaneous spectral unmixing of excitation and emission spectra (ExEm unmixing) has the inherent ability to resolve donor emission, fluorescence resonance energy transfer (FRET)-sensitized acceptor emission and directly excited acceptor emission. We here develop an ExEm unmixing-based quantitative FRET measurement method (EES-FRET) independent of excitation intensity and detector parameter setting. The ratio factor (rK), predetermined using a donor-acceptor tandem construct, of total acceptor absorption to total donor absorption in excitation wavelengths used is introduced for determining the concentration ratio of acceptor to donor. We implemented EES-FRET method on a wide-field microscope to image living cells expressing tandem FRET constructs with different donor-acceptor stoichiometry.

  11. Excited states of {sup 4}He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R.; Navarro, J.; Portesi, M.

    2001-06-01

    We study low-lying excited states of {sup 4}He clusters up to a cluster size of 40 atoms in a variational framework. The ansatz wave function combines two- and three-body correlations, coming from a translationally invariant configuration interaction description, and Jastrow-type short-range correlation. We have previously used this scheme to determine the ground-state energies of {sup 4}He and {sup 3}He clusters. Here we present an extension of this ansatz wave function having a good quantum angular momentum L. The variational procedure is applied independently to the cases with L=0,2,4, and upper bounds for the corresponding energies are thus obtained. Moreover, centroid energies for L excitations are calculated through the use of sum rules. A comparison with previous calculations is also made.

  12. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase.

    Science.gov (United States)

    Snellenburg, Joris J; Laptenok, Sergey P; DeSa, Richard J; Naumov, Panče; Solntsev, Kyril M

    2016-12-21

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time-resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH-dependent emission to a single chemical species would be an oversimplification.

  13. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  14. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  15. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".

    Science.gov (United States)

    Oshokoya, Olayinka O; JiJi, Renee D

    2015-09-10

    Protein secondary structural analysis is important for understanding the relationship between protein structure and function, or more importantly how changes in structure relate to loss of function. The structurally sensitive protein vibrational modes (amide I, II, III and S) in deep-ultraviolet resonance Raman (DUVRR) spectra resulting from the backbone C-O and N-H vibrations make DUVRR a potentially powerful tool for studying secondary structure changes. Experimental studies reveal that the position and intensity of the four amide modes in DUVRR spectra of proteins are largely correlated with the varying fractions of α-helix, β-sheet and disordered structural content of proteins. Employing multivariate calibration methods and DUVRR spectra of globular proteins with varying structural compositions, the secondary structure of a protein with unknown structure can be predicted. A disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles. Second-order curve resolution methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the "second-order advantage." An exceptional feature of DUVRR spectroscopy is that DUVRR spectra are linearly dependent on both excitation wavelength and secondary structure composition. Thus, higher order data can be created by combining protein DUVRR spectra of several proteins collected at multiple excitation wavelengths to give multi-excitation ultraviolet resonance Raman data (ME-UVRR). PARAFAC has been used to analyze ME-UVRR data of nine proteins to resolve the pure spectral, excitation and compositional profiles. A three factor model with non-negativity constraints produced three unique factors that were correlated with the relative abundance of helical, β-sheet and poly-proline II dihedral angles. This is the first empirical evidence that the typically resolved "disordered" spectrum represents the better defined poly-proline II type structure

  16. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  17. Measurement of Excitation Spectra in the 12/SUP>C 1(p ,d ) Reaction near the η' Emission Threshold

    Science.gov (United States)

    Tanaka, Y. K.; Itahashi, K.; Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knöbel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.; η-PRiME/Super-FRS Collaboration

    2016-11-01

    Excitation spectra of 11C are measured in the 12C (p ,d ) reaction near the η' emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η'-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η'-nucleus interaction.

  18. Measurement of Excitation Spectra in the ^{12}C(p,d) Reaction near the η^{'} Emission Threshold.

    Science.gov (United States)

    Tanaka, Y K; Itahashi, K; Fujioka, H; Ayyad, Y; Benlliure, J; Brinkmann, K-T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knöbel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J

    2016-11-11

    Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.

  19. Measurement of excitation spectra in the ${}^{12}$C$(p,d)$ reaction near the $\\eta'$ emission threshold

    CERN Document Server

    Tanaka, Y K; Fujioka, H; Ayyad, Y; Benlliure, J; Brinkmann, K -T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knöbel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J

    2016-01-01

    Excitation spectra of $^{11}$C were measured in the $^{12}$C$(p,d)$ reaction near the $\\eta'$ emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinged on a carbon target. The momenta of deuterons emitted at 0 degrees were precisely measured with the fragment separator FRS operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound $\\eta'$ mesic states in carbon nuclei, no distinct structures were observed associated with the formation of bound states. The spectra were analyzed to set stringent constraints on the formation cross section and on the hitherto barely-known $\\eta'$-nucleus interaction.

  20. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  1. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...... functional theory which we denote the PE-DFT method. It has been implemented in combination with time-dependent quantum mechanical linear and nonlinear response techniques, thus allowing for assessment of electronic excitation processes and dynamic ground- and excited-state molecular properties using...

  2. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...

  3. Holographic construction of excited CFT states

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Ariana; Skenderis, Kostas [STAG Research Centre and Mathematical Sciences, University of Southampton,High-field, Southampton SO17 1BJ (United Kingdom)

    2016-04-15

    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on R×S{sup 1} or on R{sup 1,1}. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.

  4. Identification of excited states in conjugated polymers

    CERN Document Server

    Hartwell, L J

    2003-01-01

    This thesis reports quasi steady state photoinduced absorption measurements from three conjugated polymers: polypyridine (PPy), polyfluorene (PFO) and the emeraldine base (EB) form of polyaniline. The aim of these experiments was to determine the nature of the photoexcited states existing in these materials in the millisecond time domain, as this has important consequences for the operation of real devices manufactured using these materials. The results from the photoinduced absorption experiments are closely compared with published results from pulse radiolysis experiments. In all cases there is very good correspondence between the two data sets, which has enabled the photoexcited states to be assigned with a high degree of confidence. Quasi steady-state photoinduced absorption involves the measurement of the change in absorption of a material in response to optical excitation with a laser beam. The changes in absorption are small, so a instrument was developed and optimised for each different sample. Lock-i...

  5. First 3- excited state of Fe56

    Science.gov (United States)

    Fotiades, N.; Nelson, R. O.; Devlin, M.

    2010-03-01

    There is no reliable evidence for the existence of the 3.076 MeV (3-) level adopted in the ENSDF evaluation for Fe56 although it has been reported in a few experiments. Previous reports of the observation of this level appear to be based on an incorrect assignment in early (e,e') work. Recent neutron inelastic scattering measurements by Demidov [Phys. At. Nucl. 67, 1884, (2004)] show that the assigned γ-ray decay of this state does not occur at a level consistent with known properties of inelastic scattering. In the present work the Fe56(n,n'γ) reaction was used to populate excited states in Fe56. Neutrons in the energy range from 1 to 250 MeV were provided by the pulsed neutron source of the Los Alamos Neutron Science Center’s WNR facility. Deexciting γ rays were detected with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. The γ-γ data obtained with GEANIE were used to establish coincidence relations between transitions. All previously reported levels up to Ex=3.6 MeV excitation energy were observed except for the 3.076 MeV (3-) level. The 991- and 2229-keV transitions, previously reported to deexcite this level, were not observed in the γ-γ coincidence data obtained in the present experiment. The present work supports the assignment of the 4509.6 keV level as the first 3- excited state in Fe56 by observation of two previously known transitions deexciting this state.

  6. Exciting hot carrier to a high energy state by impact excitation in low density nanocrystalline Si films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei, E-mail: yuwei_hbu@126.com [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Wang, Xinzhan; Dai, Wanlei; Liu, Yumei; Xu, Yanmei; Lu, Wanbing; Fu, Guangsheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2013-02-15

    The carrier recombination processes in low density nanocrystalline (nc-) Si films have been studied by steady and time-resolved photoluminescence (PL) spectra, and the hot carriers have been excited to a high energy state by impact excitation. A yellow-green PL band locating at 580 nm appears when the studied film is excited by two optical beams. The yellow-green PL band results from band-to-band transition in Si nanocrystals with double-bonded oxygen atoms, which is caused by impact excitation among the carriers in the nc-Si film. The decay time of the yellow-green PL band is 230 ns, which is much longer than the hot carrier cooling. The results indicate that the lost energy in the solar cell may be collected from the new recombination center in the further structural design.

  7. Semiclassical quantization of highly excited scar states

    Science.gov (United States)

    Vergini, Eduardo G.

    2017-04-01

    The semiclassical quantization of Hamiltonian systems with classically chaotic dynamics is restricted to low excited states, close to the ground state, because the number of required periodic orbits grows exponentially with energy. Nevertheless, here we demonstrate that it is possible to find eigenenergies of highly excited states scarred by a short periodic orbit. Specifically, by using 18146 homoclinic orbits (HO)s of the shortest periodic orbit of the hyperbola billiard, we find eigenenergies of the strongest scars over a range which includes 630 even eigenfunctions. The analysis of data reveals that the used semiclassical formula presents two regimes. First, when all HOs with excursion time smaller than the Heisenberg time t H are included, the error is around 3.3% of the mean level spacing. Second, in the energy region defined by \\tilde{t}/ tH > 0.13 , where \\tilde{t} is the maximum excursion time included in the calculation, the error is around 15% of the mean level spacing.

  8. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA(US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  9. EUV spectra of Gd and Tb ions excited in laser-produced and vacuum spark plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Churilov, S S; Kildiyarova, R R; Ryabtsev, A N; Sadovsky, S V [Establishment of the Russian Academy of Sciences Institute of Spectroscopy RAS, Troitsk, Moscow region 142190 (Russian Federation)], E-mail: ryabtsev@isan.troitsk.ru

    2009-10-15

    Extreme UV spectra of the gadolinium and terbium ions excited in the laser-produced plasma and vacuum spark sources were recorded in the 40-120 A region and investigated on the basis of the Hartree-Fock calculations using Cowan code. The intense peaks in the 65-75 A region of the vacuum spark spectra were interpreted as a manifold of the 4d{sup 10}4f{sup m}-4d{sup 9}4f{sup m+1} transitions in the ions with a partially filled 4f shell. The drastic narrowing of these peaks was observed in the spectra of the laser-produced plasma. It was explained by a change of the 4d{sup 10}4f{sup m}-4d{sup 9}4f{sup m+1} (m>2) transition arrays mostly contributing to the intensity of the peaks in the vacuum spark spectra for the 4-4 transitions in the simplest spectra of the 4p{sup 6}4d{sup k} (k=8-10) and 4d{sup 10}4f{sup m} (m=1-2) ground configuration ions predominantly excited in hotter laser-produced plasma. The most intense lines of the 4d{sup 10}4f{sup 2}-4d{sup 10}4f5d transitions in the Gd XVII and Tb XVIII spectra were classified for the first time.

  10. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    Science.gov (United States)

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics.

  11. Excitation spectra and ground-state properties from density functional theory for the inverted band-structure systems $\\beta$-HgS, HgSe, and HgTe

    CERN Document Server

    Delin, A

    2002-01-01

    We have performed a systematic density-functional study of the mercury chalcogenide compounds $\\beta$-HgS, HgSe, and HgTe using an all-electron full-potential linear muffin-tin orbital (FP-LMTO) method. We find that, in the zinc-blende structure, both HgSe and HgTe are semimetals whereas $\\beta$-HgS has a small spin-orbit induced band gap. Our calculated relativistic photoemission and inverse photoemission spectra (PES and IPES, respectively) reproduce very well the most recently measured spectra, as do also our theoretical optical spectra. In contrast to the normal situation, we find that the local density approximation (LDA) to the density functional gives calculated equilibrium volumes in much better agreement with experiment than does the generalized gradient corrected functional (GGA). We also address the problem of treating relativistic $p$ electrons with methods based on a scalar-relativistic basis set, and show that the effect is rather small for the present systems.

  12. Quantitative first-principles calculations of valence and core excitation spectra of solid C60

    Science.gov (United States)

    Fossard, F.; Hug, G.; Gilmore, K.; Kas, J. J.; Rehr, J. J.; Vila, F. D.; Shirley, E. L.

    2017-03-01

    We present calculated valence and C 1 s near-edge excitation spectra of solid C60 and experimental results measured with high-resolution electron energy-loss spectroscopy. The near-edge calculations are carried out using three different methods: solution of the Bethe-Salpeter equation (BSE) as implemented in the ocean suite (Obtaining Core Excitations with Ab Initio methods and the NIST BSE solver), the excited-electron core-hole approach, and the constrained-occupancy method using the Stockholm-Berlin core excitation code, StoBe. The three methods give similar results and are in good agreement with experiment, though the BSE results are the most accurate. The BSE formalism is also used to carry out valence level calculations using the NIST BSE solver. Theoretical results include self-energy corrections to the band gap and bandwidths, lifetime-damping effects, and Debye-Waller effects in the core excitation case. A comparison of spectral features to those observed experimentally illustrates the sensitivity of certain features to computational details, such as self-energy corrections to the band structure and core-hole screening.

  13. Neutral excitations in the Gaffnian state

    Science.gov (United States)

    Kang, Byungmin; Moore, Joel E.

    2017-06-01

    We study a model fractional quantum Hall (FQH) wave function called the Gaffnian state, which is believed to represent a gapless, strongly correlated state that is very different from conventional metals. To understand this exotic gapless state better, we provide a representation based on work of Halperin in which the pairing structure of the Gaffnian state becomes more explicit. We employ the single-mode approximation introduced by Girvin, MacDonald, and Platzman, here extended to three-body interactions, in order to treat a neutral collective excitation mode in order to clarify the physical origin of the gaplessness of the Gaffnian state. We discuss approaches to extract systematically the relevant physics in the long-distance, large-electron-number limit of FQH states using numerical calculations with relatively few electrons. In Appendices, we provide second-quantized expressions for many-body Haldane pseudopotentials in various geometries including the plane, sphere, cylinder, and torus based on the proper definition of the relative angular momentum.

  14. Radiative and Excited State Charmonium Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek

    2007-07-30

    Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.

  15. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    Science.gov (United States)

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A treatment of excited states in nucleosynthesis

    Science.gov (United States)

    Gupta, Sanjib Shankar

    2002-10-01

    Many isotopes of importance to nucleosynthesis have metastable states whose decay to the ground state is strongly inhibited by a high angular momentum difference. Traditionally, excited states of a nucleus have been treated by assuming attainment of thermal equilibrium; a Hauser-Feshbach calculation is then performed on the whole nucleus to determine nuclear reaction rates. A description of the nucleus when it is not in equilibrium, and a method for computing reaction rates that does not presume thermalization are presented in this work. In nucleosynthesis calculations, we may characterize the internal electromagnetic transitions of a nucleus as a Markov process. This allows us to decompose the interaction of radiation with nucleons into effective interactions between ensembles. Rather than consider a single isotope, we construct the canonical ensembles which are the true nuclear species of interest. We are then in a position to specify nonequilibrium occupations of the ensembles by discretizing the Nuclear Level Density function. The generality of the stochastic process identified at the outset now permits the description of nucleosynthesis as Markov flows in networks of suitably populated ensembles. This allows us to use as many excited states as we wish in nucleosyn thesis while tracking their nonequilibrium evolution as substochastic processes. A website utilizing these principles is discussed in some detail. It accesses the theoretical NLD database from the Brussels Intitute of Astrophysics to supplement adopted experimental data from the ENSDF database (maintained by Brookhaven National Laboratories). The composite is processed by a CGI (Common Gateway Interface) application to dynamically obtain plots and tables of rates on a specified temperature grid. Beta-decay rates are discussed for an isotope important to nuclear astrophysics ( 180TA) as a test-bed for the techniques implemented.

  17. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  18. Mid-IR Plasmonics, Cavity Coupled Excitations, and IR Spectra of Individual Airborne Particulate Matter

    Science.gov (United States)

    Luthra, Antriksh

    With the advances in plasmonics, new fields have evolved involving the mixing of light with various states like Surface Plasmons (SPs), Surface Phonons (SPh), molecular emitters or resonators, and wavelength scale cavities. This work concentrates on the interaction of infrared (IR) light with SPs, cavity modes, and molecular vibrations. In the first chapter, the field of Plasmonics is introduced from a classical and a quantum mechanical perspective and a comparison of both is presented. In Chapter 2, the interaction of cavity modes with vibrations is discussed. Briefly, when IR light is illuminated upon an etalon, its fringes disperse as function of angle. If there is a dielectric in a cavity having a vibrational transition in the fringe region, it leads to a strong interaction that gives rise to a Rabi splitting. Data was obtained from collaborators at the U.S. Naval Research Laboratory (NRL) and a derivation for the dispersion of etalon cavity modes was carried out to model the peak positions of the fringes. In Chapter 3, the excitation of Surface Plasmons Polaritons (SPPs) on metal bi-gratings is discussed. The resonance condition occurs when the momentum of the IR light parallel to the surface plus the grating vector match the momentum of the SPP. Experiments were performed in the GammaX space (ky=0) and the resonance peak positions were modeled with SPP momentum matching equations. In Chapter 4, the application of plasmonics in the mid-IR frequency range that overlaps with the frequencies of molecular vibrations is explored. The plasmonic mesh has interesting optical properties, it focuses more light in the holes and that leads to an enhancement of the IR spectra of a particle trapped in the mesh hole. In this work, plasmonic mesh is used to study airborne particles that are usually difficult to study using FTIR spectroscopy due to strong Mie scattering effect. Respiring dust particles of 4 microns size has significant negative health consequences. Different

  19. Search for excited $B_c^{+}$ states

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bordyuzhin, Igor; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Da Silva, Cesar Luiz; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Durham, John Matthew; Dutta, Deepanwita; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Lopes, Lino; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hopchev, Plamen Hristov; Hu, Wenhua; Huang, Wenqian; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Liang, Xixin; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Pereima, Dmitrii; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pietrzyk, Guillaume; Pikies, Malgorzata; Pinci, Davide; Pisani, Flavio; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Qin, Jia-Jia; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Walsh, John; Wang, Jianchun; Wang, Yilong; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wyllie, Kenneth; Xie, Yuehong; Xu, Menglin; Xu, Qingnian; Xu, Zehua; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2017-01-01

    A search is performed in the invariant mass spectrum of the $B_c^{+}\\pi^{+}\\pi^{-}$ system for the excited $B_c^{+}$ states $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ using a data sample of $pp$ collisions collected by the LHCb experiment at the centre-of-mass energy of $\\sqrt{s} = 8 \\,{\\mathrm{TeV}}$, corresponding to an integrated luminosity of $2 \\,{\\mathrm{fb^{-1}}}$. No evidence is seen for either state. Upper limits on the ratios of the production cross-sections of the $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ states times the branching fractions of ${B_c(2^{1}S_{0})^+} \\to {B_c^{+}\\pi^{+}\\pi^{-}}$ and ${B_c(2^{3}S_{1})^+} \\to {B_c^{*+}\\pi^{+}\\pi^{-}}$ over the production cross-section of the $B_c^{+}$ state are given as a function of their masses. They are found to be between 0.02 and 0.14 at $95\\%$ confidence level for $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ in the mass ranges $[6830, 6890] \\,{\\mathrm{MeV}}/c^{2}$ and $[6795,6890] \\,{\\mathrm{MeV}}/c^{2}$, respectively.

  20. Incoherent population mixing contributions to phase-modulation two-dimensional coherent excitation spectra

    Science.gov (United States)

    Grégoire, Pascal; Srimath Kandada, Ajay Ram; Vella, Eleonora; Tao, Chen; Leonelli, Richard; Silva, Carlos

    2017-09-01

    We present theoretical and experimental results showing the effects of incoherent population mixing on two-dimensional (2D) coherent excitation spectra that are measured via a time-integrated population and phase-sensitive detection. The technique uses four collinear ultrashort pulses and phase modulation to acquire two-dimensional spectra by isolating specific nonlinear contributions to the photoluminescence or photocurrent excitation signal. We demonstrate that an incoherent contribution to the measured line shape, arising from nonlinear population dynamics over the entire photoexcitation lifetime, generates a similar line shape to the expected 2D coherent spectra in condensed-phase systems. In those systems, photoexcitations are mobile such that inter-particle interactions are important on any time scale, including those long compared with the 2D coherent experiment. Measurements on a semicrystalline polymeric semiconductor film at low temperatures show that, in some conditions in which multi-exciton interactions are suppressed, the technique predominantly detects coherent signals and can be used, in our example, to extract homogeneous line widths. The same method used on a lead-halide perovskite photovoltaic cell shows that incoherent population mixing of mobile photocarriers can dominate the measured signal since carrier-carrier bimolecular scattering is active even at low excitation densities, which hides the coherent contribution to the spectral line shape. In this example, the intensity dependence of the signal matches the theoretical predictions over more than two orders of magnitude, confirming the incoherent nature of the signal. While these effects are typically not significant in dilute solution environments, we demonstrate the necessity to characterize, in condensed-phase materials systems, the extent of nonlinear population dynamics of photoexcitations (excitons, charge carriers, etc.) in the execution of this powerful population-detected coherent

  1. Excited states in {sup 155}Yb and

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. Y.; Cizewski, J. A.; Seweryniak, D.; Amro, H.; Carpenter, M. P.; Davids, C. N.; Fotiades, N.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J. (and others)

    2001-09-01

    The 270-MeV {sup 58}Ni+{sup 102}Pd reaction was used for the first recoil-decay tagging measurement with Gammasphere coupled to the Fragment Mass Analyzer at Argonne National Laboratory. Level structures of {sup 155}Yb, {sup 156}Lu, and {sup 157}Lu, as well as the excited states associated with the 25/2{sup -} isomer in {sup 155}Lu, are identified for the first time. The systematical behavior of the energy levels is compared with that of neighboring isotones and isotopes. The attractive interaction between h{sub 11/2} protons and h{sub 9/2} neutrons plays an important role in the structure of {sup 155}Yb and {sup 155,156}Lu.

  2. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  3. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  4. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    Science.gov (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  5. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    Science.gov (United States)

    Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.

    2017-01-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  6. Photophysical behavior of doubly bridged d7-d7 metal-metal bonded compounds - The crystal structure and the excited- and ground-state electronic spectra of Re2(CO)6(dmpm)2 (dmpm = bis/dimethylphosphino/ methane)

    Science.gov (United States)

    Milder, Steven J.; Castellani, Michael P.; Weakley, Timothy J. R.; Tyler, David R.; Miskowski, Vincent M.; Stiegman, A. E.

    1990-01-01

    Re2(CO)6(dmpm)2 shows photophysical behavior in a rigid medium that differs dramatically from that observed in fluid solution. In a hydrocarbon glass at 77 K, metal-metal bond homolysis is suppressed and an intense phosphorescence is observed. The transient absorption spectrum, which shows only weak transitions to the red of the ground state 1(sigma-sigma asterisk) transition, permits assignment of the emitting state to a 3(sigma-sigma asterisk) transition. The crystal structure of Re2(CO)6(dmpm)2 is also reported. The ground-state electronic structure is discussed relative to the structural data.

  7. Effects of crossed states on photoluminescence excitation spectroscopy of InAs quantum dots

    Directory of Open Access Journals (Sweden)

    Lin Chien-Hung

    2011-01-01

    Full Text Available Abstract In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states on photoluminescence excitation (PLE spectra of InAs quantum dots (QDs was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T were compared. Our findings show that the profile of the PLE resonances associated with the bound transitions disintegrated and broadened. This was attributed to the coupling of the localized QD excited states to the crossed states and scattering of longitudinal acoustical (LA phonons. The degree of spectral linewidth broadening was larger for the excited state in smaller QDs because of the higher crossed joint density of states and scattering rate.

  8. Excited State Properties of Hybrid Perovskites.

    Science.gov (United States)

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  9. Excited states populated via nucleon transfer in the reaction [sup 32]S+[sup 208]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, L.; Petrache, C.M.; Ackermann, D.; De Angelis, G.; Moreno, H.; Napoli, D.R.; Spolaore, P.; Stefanini, A.M. (INFN, Lab. Nazionali di Legnaro (Italy)); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; Signorini, C. (Padua Univ. (Italy). Dipt. di Fisica INFN, Padua (Italy)); Pollarolo, G. (Turin Univ. (Italy). Dipt. di Fisica INFN, Turin (Italy))

    1993-01-01

    The population strengths of excited states in nuclei produced via transfer reactions in the 185 MeV[sup 32]S+[sup 208]Pb reaction have been investigated by heavy-ion-[gamma] coincidence techniques. The cross sections extracted from the [gamma] spectra, have been analyzed in the framework of the Complex WKB approximation theory. (orig.).

  10. Near-infrared long-slit spectra of Seyfert galaxies: gas excitation across the central kiloparsec

    Science.gov (United States)

    van der Laan, T. P. R.; Schinnerer, E.; Böker, T.; Armus, L.

    2013-12-01

    Context. The excitation of the gas phase of the interstellar medium can be driven by various mechanisms. In galaxies with an active nucleus, such as Seyfert galaxies, both radiative and mechanical energy from the central black hole, or the stars in the disk surrounding it may play a role. Aims: We investigate the relative importance and range of influence of the active galactic nucleus for the excitation of ionized and molecular gas in the central kiloparsec of its host galaxy. Methods: We present H- and K-band long-slit spectra for a sample of 21 nearby (D University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.Table 4 and Appendix A are available in electronic form at http://www.aanda.orgThe fully calibrated long-slit spectra and fitting are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A99

  11. Photoemission spectra of charge density wave states in cuprates

    Science.gov (United States)

    Tu, Wei-Lin; Chen, Peng-Jen; Lee, Ting-Kuo

    Angle-resolved photoemission spectroscopy(ARPES) experiments have reported many exotic properties of cuprates, such as Fermi arc at normal state, two gaps at superconducting state and particle-hole asymmetry at the antinodal direction. On the other hand, a number of inhomogeneous states or so-called charge density waves(CDW) states have also been discovered in cuprates by many experimental groups. The relation between these CDW states and ARPES spectra is unclear. With the help of Gutzwiller projected mean-field theory, we can reproduce the quasiparticle spectra in momentum space. The spectra show strong correspondence to the experimental data with afore-mentioned exotic features in it.

  12. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    Science.gov (United States)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  13. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  14. Excited-State Effective Masses in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  15. Electron impact excitation and assignment of the low-lying electronic states of CO2

    Science.gov (United States)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  16. Electronic structures and population dynamics of excited states of xanthione and its derivatives

    Science.gov (United States)

    Fedunov, Roman G.; Rogozina, Marina V.; Khokhlova, Svetlana S.; Ivanov, Anatoly I.; Tikhomirov, Sergei A.; Bondarev, Stanislav L.; Raichenok, Tamara F.; Buganov, Oleg V.; Olkhovik, Vyacheslav K.; Vasilevskii, Dmitrii A.

    2017-09-01

    A new compound, 1,3-dimethoxy xanthione (DXT), has been synthesized and its absorption (stationary and transient) and luminescence spectra have been measured in n-hexane and compared with xanthione (XT) spectra. The pronounced broadening of xanthione vibronic absorption band related to the electronic transition to the second singlet excited state has been observed. Distinctions between the spectra of xanthione and its methoxy derivatives are discussed. Quantum chemical calculations of these compounds in the ground and excited electronic states have been accomplished to clarify the nature of electronic spectra changes due to modification of xanthione by methoxy groups. Appearance of a new absorption band of DXT caused by symmetry changes has been discussed. Calculations of the second excited state structure of xanthione and its methoxy derivatives confirm noticeable charge transfer (about 0.1 of the charge of an electron) from the methoxy group to thiocarbonyl group. Fitting of the transient spectra of XT and DXT has been fulfilled and the time constants of internal conversion S2 →S1 and intersystem crossing S1 →T1 have been determined. A considerable difference between the time constants of internal conversion S2 →S1 in XT and DXT is uncovered.

  17. Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Cammi, Roberto

    2014-02-01

    A perturbative approximation of the state specific polarizable continuum model (PCM) symmetry-adapted cluster-configuration interaction (SAC-CI) method is proposed for efficient calculations of the electronic excitations and absorption spectra of molecules in solutions. This first-order PCM SAC-CI method considers the solvent effects on the energies of excited states up to the first-order with using the zeroth-order wavefunctions. This method can avoid the costly iterative procedure of the self-consistent reaction field calculations. The first-order PCM SAC-CI calculations well reproduce the results obtained by the iterative method for various types of excitations of molecules in polar and nonpolar solvents. The first-order contribution is significant for the excitation energies. The results obtained by the zeroth-order PCM SAC-CI, which considers the fixed ground-state reaction field for the excited-state calculations, are deviated from the results by the iterative method about 0.1 eV, and the zeroth-order PCM SAC-CI cannot predict even the direction of solvent shifts in n-hexane for many cases. The first-order PCM SAC-CI is applied to studying the solvatochromisms of (2,2'-bipyridine)tetracarbonyltungsten [W(CO)4(bpy), bpy = 2,2'-bipyridine] and bis(pentacarbonyltungsten)pyrazine [(OC)5W(pyz)W(CO)5, pyz = pyrazine]. The SAC-CI calculations reveal the detailed character of the excited states and the mechanisms of solvent shifts. The energies of metal to ligand charge transfer states are significantly sensitive to solvents. The first-order PCM SAC-CI well reproduces the observed absorption spectra of the tungsten carbonyl complexes in several solvents.

  18. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    CERN Document Server

    Padmanath, M; Mathur, Nilmani; Peardon, Michael

    2013-01-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)$\\otimes$O(3) symmetry.

  19. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  20. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  1. Raman spectra of normal and cancerous mouse mammary gland tissue using near infrared excitation energy

    Science.gov (United States)

    Naik, Vaman; Serhatkulu, G. K.; Dai, H.; Shukla, N.; Weber, R.; Thakur, J. S.; Freeman, D. C.; Pandya, A. K.; Auner, G. W.; Naik, R.; Miller, R. F.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra of normal mammary gland tissues, malignant mammary gland tumors, and lymph nodes have been recorded using fresh tissue from mice. Tumors were induced in mice by subcutaneously injecting 4T1 BALB/c mammary tumor (a highly malignant) cell line. The Raman spectra were collected using the same tissues that were examined by histopathology for determining the cancerous/normal state of the tissue. Differences in various peak intensities, peak shifts and peak ratios were analyzed to determine the Raman spectral features that differentiate mammary gland tumors from non-tumorous tissue. Tissues that were confirmed by pathology as cancerous (tumors) show several distinctive features in the Raman spectra compared to the spectra of the normal tissues. For example, the cancerous tissues show Raman peaks at 621, 642, 1004, 1032, 1175 and 1208 cm-1 that are assignable to amino acids containing aromatic side-chains such as phenylalanine, tryptophan and tyrosine. Further, the cancerous tissues show a greatly reduced level of phospholipids compared to the normal tissues. The Raman spectral regions that are sensitive to pathologic alteration in the tissue will be discussed.

  2. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  3. 4f-5d Transitions of Tb3+ in Cs2NaYF6: The Effect of Distortion of the Excited-State Configuration

    NARCIS (Netherlands)

    Duan, C.K.; Tanner, P.A.; Meijerink, A.; Makhov, V.

    2011-01-01

    The low-temperature absorption and excitation spectra of interconfigurational 4f–5d transitions of Tb3+ in a cubic fluoride host demonstrate the appearance of a first-order linear Jahn–Teller effect for the high-spin excited states of the excited electronic configuration 4f75d involving 5d t2g

  4. A Simple Hubbard Model for the Excited States of Dibenzoterrylene

    CERN Document Server

    Sadeq, Z S

    2016-01-01

    We use a simple Hubbard model to characterize the electronic excited states of the dibenzoterrylene (DBT) molecule; we compute the excited state transition energies and oscillator strengths from the ground state to several singlet excited states. We consider the lowest singlet and triplet states of the molecule, examine their wavefunctions, and compute the density correlation functions that describe these states. We find that the DBT ground state is mostly a closed shell singlet with very slight radical character. We predict a relatively small singlet-triplet splitting of 0.75 eV, which is less than the mid-sized -acenes but larger than literature predictions for this state; this is because the Hubbard interaction makes a very small correction to the singlet and triplet states.

  5. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  6. Electronically excited states of tryptamine and its microhydrated complex

    NARCIS (Netherlands)

    Schmitt, M.; Brause, R.; Marian, C.M.; Salzmann, S.; Meerts, W.L.

    2006-01-01

    The lowest electronically excited singlet states of tryptamine and the tryptamine (H2O)(1) cluster have been studied, using time dependent density functional theory for determination of the geometries and multireference configuration interaction for the vertical and adiabatic excitation energies,

  7. Excited state of {sup 7}He and its unique structure

    Energy Technology Data Exchange (ETDEWEB)

    Korsheninnikov, A.A.; Golovkov, M.S.; Ozawa, A.; Yoshida, K.; Tanihata, I.; Fulop, Z.; Kusaka, K.; Morimoto, K.; Otsu, H.; Petrascu, H.; Tokanai, F. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kuzmin, E.A.; Nikolskii, E.Yu.; Novatskii, B.G.; Ogloblin, A.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2000-07-01

    The transfer reaction p({sup 8}He,d){sup 7}He with the exotic {sup 8}He-beam has been studied by correlational measurements, and an excited state of {sup 7}He was observed. Most likely, it has a structure with a neutron in an excited state coupled to the {sup 6}He-core which itself is in the excited 2{sup +}-state. The transfer reaction p({sup 8}He,{sup 2}He){sup 7}H was also studied, and manifestation on the possible existence of the resonance {sup 7}H was obtained. (orig.)

  8. Excited State Dynamics of DNA and RNA bases

    Science.gov (United States)

    Hudock, Hanneli; Levine, Benjamin; Martinez, Todd

    2007-03-01

    Recent ultrafast spectroscopic experiments have reported excited state lifetimes for DNA and RNA bases and assigned these lifetimes to various electronic states. We have used theoretical and simulation methods to describe the excited state dynamics of these bases in an effort to provide a mechanistic explanation for the observed lifetimes. Our simulations are based on ab initio molecular dynamics, where the electronic and nuclear Schrodinger equations are solved simultaneously. The results are further verified by comparison to high-level ab initio electronic structure methods, including dynamic electron correlation effects through multireference perturbation theory, at important points along the dynamical pathways. Our results provide an explanation of the photochemical mechanism leading to nonradiative decay of the electronic excited states and some suggestions as to the origin of the different lifetimes. Comparisons between pyrimidines illustrate how chemical differences impact excited state dynamics and may play a role in explaining the propensity for dimer formation in thymine.

  9. Negative Binomial States of the Radiation Field and their Excitations are Nonlinear Coherent States

    OpenAIRE

    Wang, Xiao-Guang; Fu, Hong-Chen

    1999-01-01

    We show that the well-known negative binomial states of the radiation field and their excitations are nonlinear coherent states. Excited nonlinear coherent state are still nonlinear coherent states with different nonlinear functions. We finally give exponential form of the nonlinear coherent states and remark that the binomial states are not nonlinear coherent states.

  10. Cyclopropyl Group: An Excited-State Aromaticity Indicator?

    Science.gov (United States)

    Ayub, Rabia; Papadakis, Raffaello; Jorner, Kjell; Zietz, Burkhard; Ottosson, Henrik

    2017-10-04

    The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first ππ* triplet and singlet excited states (T 1 and S 1 ). Baird's rule says that the π-electron counts for aromaticity and antiaromaticity in the T 1 and S 1 states are opposite to Hückel's rule in the ground state (S 0 ). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4nπ-electron heterocycles with two or more heteroatoms represent limitations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G.; Lunardon, M.; Bazzacco, D. [dell`Universita, Padova (Italy)]|[INFN, Padova (Italy)] [and others

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  12. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    Science.gov (United States)

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E. H.

    2015-11-01

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ˜1.7 eV, values that are lower than the RCB of the uncomplexed PtCl62- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl62- ṡ thymine and PtCl62- ṡ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)42- ṡ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl62- ṡ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)42- ṡ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  13. Neutron correlations in the decay of the first excited state of {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.K., E-mail: jsmith@triumf.ca [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T.; Bazin, D. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Brown, J. [Department of Physics, Wabash College, Crawfordsville, IN 47933 (United States); DeYoung, P.A. [Department of Physics, Hope College, Holland, MI 49422 (United States); Frank, N. [Department of Physics and Astronomy, Augustana College, Rock Island, IL 61201 (United States); Jones, M.D. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Kohley, Z. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Luther, B. [Department of Physics, Concordia College, Moorhead, MN 56562 (United States); Marks, B. [Department of Physics, Hope College, Holland, MI 49422 (United States); Spyrou, A. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Stephenson, S.L. [Department of Physics, Gettysburg College, Gettysburg, PA 17325 (United States); Thoennessen, M. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Volya, A. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States)

    2016-11-15

    The decay of unbound excited {sup 11}Li was measured after being populated by a two-proton removal from a {sup 13}B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the {sup 9}Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded.

  14. Excited state dynamics of liquid water near the surface

    Directory of Open Access Journals (Sweden)

    Schultz Thomas

    2013-03-01

    Full Text Available Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.

  15. Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent

    Science.gov (United States)

    Bjorgaard, J. A.; Nelson, T.; Kalinin, K.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-07-01

    An efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments.

  16. Vibrational kinetics of electronically excited states in H2 discharges

    Science.gov (United States)

    Colonna, Gianpiero; Pietanza, Lucia D.; D'Ammando, Giuliano; Celiberto, Roberto; Capitelli, Mario; Laricchiuta, Annarita

    2017-11-01

    The evolution of atmospheric pressure hydrogen plasma under the action of repetitively ns electrical pulse has been investigated using a 0D state-to-state kinetic model that self-consistently couples the master equation of heavy particles and the Boltzmann equation for free electrons. The kinetic model includes, together with atomic hydrogen states and the vibrational kinetics of H2 ground state, vibrational levels of singlet states, accounting for the collisional quenching, having a relevant role because of the high pressure. The mechanisms of excitations, radiative decay and collisional quenching involving the excited H2 states and the corresponding cross sections, integrated over the non-equilibrium electron energy distribution function (EEDF) to obtain kinetic rates, are discussed in the light of the kinetic simulation results, i.e. the time evolution during the pulse of the plasma composition, of the EEDF and of the vibrational distributions of ground and singlet excited states.

  17. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    WINTEC

    Pramanik et al proposed the twisted intramolecular charge transfer (TICT) process in the S1 state, which .... trile clearly suggests that a photon of 400 nm light excites the molecule to its S2 state, the higher energy emission .... 400 nm photon as well as the dynamics of the re- laxation processes taking place in the S1 state. At.

  18. Metastable states of highly excited heavy ions

    Science.gov (United States)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  19. Excitation Emission Matrix Spectra (EEMS) of Chromophoric Dissolved Organic Matter Produced during Microbial Incubation

    Science.gov (United States)

    McDonald, N.; Nelson, N. B.; Parsons, R.

    2013-12-01

    The chromophoric or light-absorbing fraction of dissolved organic matter (CDOM) is present ubiquitously in natural waters and has a significant impact on ocean biogeochemistry, affecting photosynthesis and primary production as well direct and indirect photochemical reactions (Siegel et al., 2002; Nelson et al., 2007). It has been largely researched in the past few decades, however the exact chemical composition remains unknown. Instrumental methods of analysis including simultaneous excitation-emission fluorescence spectra have allowed for further insight into source and chemical composition. While certain excitation-emission peaks have been associated with ';marine' sources, they have not been exclusively linked to bacterial production of CDOM (Coble, 1996; Zepp et al., 2004). In this study, ';grazer diluted' seawater samples (70% 0.2μm filtered water; 30% whole water) were collected at the Bermuda Atlantic Time Series (BATS) site in the Sargasso Sea (31° 41' N; 64° 10' W) and incubated with an amendment of labile dissolved organic carbon (10μM C6H12O6), ammonium (1μM NH4Cl) and phosphate (0.1μM K2HPO4) to facilitate bacterial production. These substrates and concentrations have been previously shown to facilitate optimum bacterial and CDOM production (Nelson et al., 2004). Sample depths were chosen at 1m and 200m as water at these depths has been exposed to UV light (the Subtropical Mode Water at 200m has been subducted from the surface) and therefore has low initial concentrations of CDOM. After the samples were amended, they were incubated at in-situ temperatures in the dark for 72 hours, with bacteria counts, UV-Vis absorption and EEMS measurements taken at 6-8 hour intervals. Dissolved organic carbon (DOC) measurements were collected daily. For the surface water experiment specific bacteria populations were investigated using Fluorescence In-Situ Hybridization (FISH) analysis. Results showed a clear production of bacteria and production of CDOM, which

  20. Duschinsky, Herzberg-Teller, and Multiple Electronic Resonance Interferential Effects in Resonance Raman Spectra and Excitation Profiles. The Case of Pyrene.

    Science.gov (United States)

    Avila Ferrer, Francisco J; Barone, Vincenzo; Cappelli, Chiara; Santoro, Fabrizio

    2013-08-13

    We show that a recently developed time-independent approach for the calculation of vibrational resonance Raman (vRR) spectra is able to describe Duschinsky and Herzberg-Teller (HT) effects acting on a single resonant state, together with interferential contributions arising from multiple electronic resonances, allowing us to investigate in detail how their interplay determines both the vRR spectra at selected wavelengths and the Raman excitation profiles. We apply this methodology to the study of the spectra of pyrene in acetonitrile, an ideal system since it exhibits three close-lying electronic transitions that are bright but also subjected to HT effects. To single out the different contributions to vRR line shapes we adopted two different adiabatic models for resonant-state potential energy surfaces, namely, Adiabatic Shift (only accounting from equilibrium geometry displacements) and Adiabatic Hessian (AH, including also the Duschinsky effects), and Franck-Condon (FC) or HT approximations for the transition dipole. We show that, on balance, FC+HT calculations within the AH model provide the best agreement with experiment. Moreover, our methodology permits to individuate bands in the experimental spectra due to the simultaneous contribution of more than one resonant state and to point out and analyze interferential effects between the FC and HT terms in each resonance Raman process, together with FC-HT and HT-HT interferences between different electronic states.

  1. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    Science.gov (United States)

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  2. Direct observation of photoinduced bent nitrosyl excited-state complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  3. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.

    Science.gov (United States)

    Nettels, Daniel; Haenni, Dominik; Maillot, Sacha; Gueye, Moussa; Barth, Anders; Hirschfeld, Verena; Hübner, Christian G; Léonard, Jérémie; Schuler, Benjamin

    2015-12-28

    Single-molecule Förster resonance energy transfer (FRET) experiments are an important method for probing biomolecular structure and dynamics. The results from such experiments appear to be surprisingly independent of the excitation power used, in contradiction to the simple photophysical mechanism usually invoked for FRET. Here we show that excited-state annihilation processes are an essential cause of this behavior. Singlet-singlet annihilation (SSA) is a mechanism of fluorescence quenching induced by Förster-type energy transfer between two fluorophores while they are both in their first excited singlet states (S1S1), which is usually neglected in the interpretation of FRET experiments. However, this approximation is only justified in the limit of low excitation rates. We demonstrate that SSA is evident in fluorescence correlation measurements for the commonly used FRET pair Alexa 488/Alexa 594, with a rate comparable to the rate of energy transfer between the donor excited state and the acceptor ground state (S1S0) that is exploited in FRET experiments. Transient absorption spectroscopy shows that SSA occurs exclusively via energy transfer from Alexa 488 to Alexa 594. Excitation-power dependent microsecond correlation experiments support the conclusion based on previously reported absorption spectra of triplet states that singlet-triplet annihilation (STA) analogously mediates energy transfer if the acceptor is in the triplet state. The results indicate that both SSA and STA have a pronounced effect on the overall FRET process and reduce the power dependence of the observed FRET efficiencies. The existence of annihilation processes thus seems to be essential for using FRET as a reliable spectroscopic ruler at the high excitation rates commonly employed in single-molecule spectroscopy.

  4. Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate).

    Science.gov (United States)

    Park, Sun-Young; Lee, Young-Shin; Jang, Du-Jeon

    2008-11-28

    The excited-state intrinsic proton transfer and its geminate recombination, as well as the ground-state equilibria, of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate) have been studied by measuring time-resolved and steady-state fluorescence spectra along with absorption and excitation spectra. Proton transfer takes place within 3.3 ns to form ion pairs while its back-reaction occurs on the time scale of 3.7 ns. The ion pairs in the rigid alcoholic matrix go through neither diffusion to form free ions nor subsequent electronic rearrangement to form the keto species within their excited-state lifetimes.

  5. Theoretical study of the low-lying excited states of ABCO, DABCO and homologous cage amines

    Science.gov (United States)

    Galasso, V.

    1997-02-01

    The electronic spectra of 1-azabicyclo[2.2.2]octane (ABCO), 1,4-diazabicyclo[2.2.2]octane (DABCO), and their [1.1.1] and [3.3.3] congeners have been studied at the ab initio level using the symmetry adapted cluster configuration interaction method. A comprehensive theoretical prediction of the discrete excitation spectra, up to the HOMO → 5s transition, is presented. All the low-lying singlet and triplet electronic states of these symmetric cage amines are found to have essentially Rydberg nature and originate from excitations out of the n-type molecular orbitals. The theoretical results correlate with the available spectroscopic data satisfactorily and provide quantitative support to a number of experimental assignments based on REMPI and MCD measurements.

  6. Acute excited states and sudden death

    National Research Council Canada - National Science Library

    Farnham, Frank R; Kennedy, Henry G

    1997-01-01

    ... mortality. 2 Such deaths, often in police custody or other highly charged situations, commonly give rise to high profile coroner's hearings and inquiries. 3 In the era before neuroleptics death in such agitated states was attributed to exhaustion, though neuroleptic malignant syndrome and the cardiac effects of neuroleptics now often enter into considerat...

  7. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    Differential cross-section results are found to resemble positronium formation cross-section results of positron–hydrogen charge-exchange problem. Forward ... using velocity scaling are compared with the results of the present calculation. .... to carry out calculations for e− capture by muon into n = 2 and n = 3 states.

  8. Magnetophonon resonance in photoluminescence excitation spectra of magnetoexcitons in GaAs/Al0.3Ga0.7As superlattice

    DEFF Research Database (Denmark)

    Dickmann, S.; Tartakovskii, A. I.; Timofeev, V. B.

    2000-01-01

    to the sample layers. While varying B, the intensities of the PLE peaks have been measured as functions of energy separation Delta E between excited ME peaks and the ground state of the system. The resonance profiles have been found to have maxima at Delta E-max close to the energy of the GaAs LO phonon......A strong increase in the intensity of the peaks of excited magnetoexciton (ME) states in the photoluminescence excitation (PLE) spectra recorded for the ground heavy-hole magnetoexcitons (of the 1sHH type) has been found in a GaAs/Al0.3Ga0.7As superlattice in strong magnetic field B applied normal....... However, the value of Delta E-max depends on quantum numbers of the excited ME state. The revealed very low quantum efficiency of the investigated sample allows us to ascribe the observed resonance to the enhancement of the nonradiative magnetoexciton relaxation rate arising due to LO-phonon emission...

  9. Entanglement entropy in excited states of the quantum Lifshitz model

    Science.gov (United States)

    Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.

    2017-06-01

    We investigate the entanglement properties of an infinite class of excited states in the quantum Lifshitz model (QLM). The presence of a conformal quantum critical point in the QLM makes it unusually tractable for a model above one spatial dimension, enabling the ground state entanglement entropy for an arbitrary domain to be expressed in terms of geometrical and topological quantities. Here we extend this result to excited states and find that the entanglement can be naturally written in terms of quantities which we dub ‘entanglement propagator amplitudes’ (EPAs). EPAs are geometrical probabilities that we explicitly calculate and interpret. A comparison of lattice and continuum results demonstrates that EPAs are universal. This work shows that the QLM is an example of a 2  +  1d field theory where the universal behavior of excited-state entanglement may be computed analytically.

  10. Two-neutron decay of excited states of 11Li

    Science.gov (United States)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  11. Excited states behavior of nucleobases in solution: insights from computational studies.

    Science.gov (United States)

    Improta, Roberto; Barone, Vincenzo

    2015-01-01

    We review the most significant results obtained in the study of isolated nucleobases in solution by quantum mechanical methods, trying to highlight also the most relevant open issues. We concisely discuss some methodological issues relevant to the study of molecular electronic excited molecular states in condensed phases, focussing on the methods most commonly applied to the study of nucleobases, i.e. continuum models as the Polarizable Continuum Model and explicit solvation models. We analyse how the solvent changes the relative energy of the lowest energy excited states in the Franck-Condon region, their minima and the Conical Intersections among the different states, interpreting the experimental optical spectra, both steady state and time-resolved. Several methods are available for accurately including solvent effects in the Franck-Condon region, and for most of the nucleobases the solvent shift on the different excited states can be considered assessed. The study of the excited state decay, both radiative and non-radiative, in solution still poses instead significant theoretical challenges.

  12. Comparison of luminescence spectra of natural spodumene under KrCl laser and e-beam excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, E.I. [High Current Electronics Institute SB RAS, 2/3, Akademichesky Avenue, Tomsk 634055 (Russian Federation)]. E-mail: lipatov@loi.hcei.tsc.ru; Orlovskii, V.M. [High Current Electronics Institute SB RAS, 2/3, Akademichesky Avenue, Tomsk 634055 (Russian Federation); Tarasenko, V.F. [High Current Electronics Institute SB RAS, 2/3, Akademichesky Avenue, Tomsk 634055 (Russian Federation); Solomonov, V.I. [Institute of Electrophysics UB RAS, 106, Amundsen Street, Ekaterinburg (Russian Federation)

    2007-10-15

    Spectral characteristics of pulsed photoluminescence (PL) and pulsed cathodoluminescence (PCL) of a natural spodumene were investigated. PL was excited by laser radiation at 222 nm with pulse duration of 10 ns at FWHM. PCL was excited by electron beams with pulse duration from 0.1 up to 4 ns and with current densities of 40-200 A/cm{sup 2}. There was a dominant broad band at 600 nm due to the manganese impurity in PCL spectra. But in PL spectra, the orange band had the intensity comparable with intensities of intrinsic defect bands. At sample cooling by liquid nitrogen, the intensity of orange band in the PCL spectrum increased by two times and the short-wave shoulder of the band reduced.

  13. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    The close coupling -matrix method is used to calculate cross-sections for photoionization of Mg III from its first three excited states. Configuration interaction wave functions are used to represent two target states of Mg III retained in the -matrix expansion. The positions and effective quantum numbers for the Rydberg ...

  14. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-01-31

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  15. The energy structure and decay channels of the 4p6-shell excited states in Sr

    Science.gov (United States)

    Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.

    2017-11-01

    The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac–Fock–Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.

  16. Reactions of excited triplet states of metal substituted myoglobin with dioxygen and quinone.

    Science.gov (United States)

    Papp, S; Vanderkooi, J M; Owen, C S; Holtom, G R; Phillips, C M

    1990-01-01

    The triplet state absorption and phosphorescence of Zn and Pd derivatives of myoglobin were compared. Both metal derivatives exhibit long triplet state lifetimes at room temperature, but whereas the Pd derivative showed exponential decay and an isosbestic point in the transient absorption spectra, the decay of the Zn derivative was nonsingle exponential and the transient absorption spectra showed evidence of more than one excited state species. No difference was seen in triplet quenching by oxygen for either derivative, indicating that differences in the polypeptide chain between the two derivatives are not large enough to affect oxygen penetrability. Quenching was also observed by anthraquinone sulfonate. In this case, the possibility of long-range transfer by an exchange mechanism is considered. PMID:2383630

  17. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  18. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  19. The Microwave Spectroscopy of HCOO^{13}CH_3 in the Second Torsional Excited State

    Science.gov (United States)

    Kobayashi, Kaori; Kuwahara, Takuro; Urata, Yuki; Ohashi, Nobukimi; Fujitake, Masaharu

    2017-06-01

    Methyl formate (HCOOCH_3) is an abundant interstellar molecule, found almost everywhere in the star-forming region. The interstellar abundance of the ^{13}C is about 1/50 of ^{12}C. The ^{13}C substituted methyl formate in the ground and first excited states were already found toward massive star-forming regions including Orion KL. With the aid of the state-of-the-art telescope like ALMA, the pure rotational transitions in the second torsional excited may be identified in the near future and laboratory data are necessary. We recorded the spectra of HCOOCH_3 below 340 GHz by using conventional source-modulation microwave spectrometer. The assignment of the pure rotational spectra in the second torsional excited state and the analysis by using pseudo-PAM Hamiltonian, which was effective to analyze the normal species, will be reported. C. Favre, M. Carvajal, D. Field, J. K. Jørgensen, S. E. Bisschop, N. Brouillet, D. Despois, A. Baudry, I. Kleiner, E. A. Bergin, N. R. Crockett, J. L. Neill, L. Marguès, T. R. Huet, and J. Demaison, Astrophys. J. Suppl. Ser. 215, 25 (2014).

  20. Excited state carbene formation from UV irradiated diazomethane.

    Science.gov (United States)

    Lee, Hosik; Miyamoto, Yoshiyuki; Tateyama, Yoshitaka

    2009-01-16

    The laser flash photolysis process of diazomethane has been studied by using a real time propagation time-dependent density functional theory (RTP-TDDFT) combined with molecular dynamics. The activation energy barrier for disintegrating diazomethane into nitrogen (N(2)) and carbene (CH(2)) molecules significantly decreases in the electronic excited S(1) state compared to that in the S(0) ground state. Furthermore, the produced carbene molecule can be in the electronic excited state of (1)CH(2) ((1)B(1)) instead of the lowest state among singlet states (1)CH(2) ((1)A(1)), which is evident in the wave function characteristics of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) throughout the disintegration. This is regarded as the initial stage of the rearrangement in the excited state (RIES), the evidence of which has been given by experiments in the past decade. In the RIES mechanism scheme, we suggest that the photoreaction in the S(1) state contributes considerably to the photochemistry of carbene formation. The passing near the S(1)/S(0) conical intersection, which allows the transition to ground state diazomethane producing the lowest singlet state carbene molecule, is considered a rare event from our molecular dynamics, although this has been regarded as the dominant mechanism in previous theoretical studies.

  1. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KLII&III, KLI) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Govind, Niranjan [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Huthwelker, Thomas [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bylaska, Eric J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Vjunov, Aleksei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pin, Sonia [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Smurthwaite, Tricia D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&III and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at

  2. Entanglement spectra of superconductivity ground states on the honeycomb lattice

    Science.gov (United States)

    Predin, Sonja; Schliemann, John

    2017-12-01

    We analytically evaluate the entanglement spectra of the superconductivity states in graphene, primarily focusing on the s-wave and chiral d x2- y2 + id xy superconductivity states. We demonstrate that the topology of the entanglement Hamiltonian can differ from that of the subsystem Hamiltonian. In particular, the topological properties of the entanglement Hamiltonian of the chiral d x2- y2 + id xy superconductivity state obtained by tracing out one spin direction clearly differ from those of the time-reversal invariant Hamiltonian of noninteracting fermions on the honeycomb lattice.

  3. Ab initio excited states from the in-medium similarity renormalization group

    Science.gov (United States)

    Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.

    2017-04-01

    We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.

  4. Extracting the differential inverse inelastic mean free path and differential surface excitation probability of Tungsten from X-ray photoelectron spectra and electron energy loss spectra

    Science.gov (United States)

    Afanas’ev, V. P.; Gryazev, A. S.; Efremenko, D. S.; Kaplya, P. S.; Kuznetcova, A. V.

    2017-12-01

    Precise knowledge of the differential inverse inelastic mean free path (DIIMFP) and differential surface excitation probability (DSEP) of Tungsten is essential for many fields of material science. In this paper, a fitting algorithm is applied for extracting DIIMFP and DSEP from X-ray photoelectron spectra and electron energy loss spectra. The algorithm uses the partial intensity approach as a forward model, in which a spectrum is given as a weighted sum of cross-convolved DIIMFPs and DSEPs. The weights are obtained as solutions of the Riccati and Lyapunov equations derived from the invariant imbedding principle. The inversion algorithm utilizes the parametrization of DIIMFPs and DSEPs on the base of a classical Lorentz oscillator. Unknown parameters of the model are found by using the fitting procedure, which minimizes the residual between measured spectra and forward simulations. It is found that the surface layer of Tungsten contains several sublayers with corresponding Langmuir resonances. The thicknesses of these sublayers are proportional to the periods of corresponding Langmuir oscillations, as predicted by the theory of R.H. Ritchie.

  5. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    . In the present work we have used the close coupling R-matrix method [8,11] to ob- tain accurate photoionization cross-section from the first three excited 1s22s22p53s 3 1P0,. 1s22s22p53p 3Se states of Mg III, allowing for the residual ion to ...

  6. Excited electronic state decomposition mechanisms of clusters of ...

    Indian Academy of Sciences (India)

    In this report, electronically non-adiabatic decomposition pathways of clusters of dimethylnitramine and aluminum (DMNA-Al and DMNA-Al2) are discussed in comparison to isolated dimethylnitramine (DMNA). Electronically excited state processes of DMNA-Al and DMNA-Al2 are explored using the complete active space ...

  7. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  8. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several.

  9. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other ...

  10. Renormalized energy of ground and first excited state of Fröhlich polaron in the range of weak coupling

    Directory of Open Access Journals (Sweden)

    M.V. Tkach

    2015-09-01

    Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.

  11. Lattice QCD determination of patterns of excited baryon states

    CERN Document Server

    Basak, Subhasish; Fleming, G T; Juge, K J; Lichtl, A; Morningstar, C; Richards, D G; Sato, I; Wallace, S J

    2007-01-01

    Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.

  12. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  13. Optimized resonating valence bond state in square lattice: correlations & excitations

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2009-09-01

    Full Text Available We consider RVB state as a variational estimate for the ground state of Heisenberg antiferromagnet in square lattice. We present numerical calculation of energy, spin-spin correlation function and spin excitation spectrum. We show, that the quantum flactuations reduce of magnetization respect to Neel order. Our results are in good agreement with other methods such as spin-wave calculation and series expansions.

  14. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  15. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    Energy Technology Data Exchange (ETDEWEB)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg, E-mail: hans-jorg.himmel@aci.uni-heidelberg.de [Institut für Anorganische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)

    2015-07-14

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  16. Excited S-symmetry states of positronic lithium and beryllium.

    Science.gov (United States)

    Strasburger, Krzysztof

    2016-04-14

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection.

  17. Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster Resonance Energy Transfer (FRET) studies

    NARCIS (Netherlands)

    Hink, M.A.; Visser, N.V.; Borst, J.W.; Hoek, van A.; Visser, A.J.W.G.

    2003-01-01

    Corrected fluorescence excitation and emission spectra have been obtained from several enhanced variants of the green fluorescent protein (EGFP) isolated from the jellyfish Aequorea victoria, blue fluorescence protein (EBFP), cyan fluorescent protein (ECFP), EGFP and yellow fluorescent protein

  18. Three-photon Gaussian–Gaussian–Laguerre–Gaussian excitation of a localized atom to a highly excited Rydberg state

    Science.gov (United States)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light–matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian–Gaussian-Laguerre–Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre–Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  19. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  20. Electronic excited states at ultrathin dielectric-metal interfaces

    Science.gov (United States)

    Sementa, L.; Marini, A.; Barcaro, G.; Negreiros, F. R.; Fortunelli, A.

    2013-09-01

    Electronic excited states at a bcc(110) lithium surface, both bare and covered by ionic ultrathin (1-2 monolayers) LiF epitaxial films, are investigated via many-body perturbation theory calculations achieving an atomistic level of detail. The full self-consistent solution of the GW equations is used to account for correlation effects and to properly describe the screened potential in the vacuum. In addition to the correct prediction of image-potential states, we find that the mixing between resonances and image states and the charge compression due to the dielectric ultrathin overlayer give rise to excitations with a hybrid localized but low-lying character whose accurate description cannot intrinsically be achieved via simple models or low-level calculations, but which are expected to play a crucial role in determining the electronic response and transport properties of these systems.

  1. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  2. The multi-resolution capability of Tchebichef moments and its applications to the analysis of fluorescence excitation-emission spectra

    Science.gov (United States)

    Li, Bao Qiong; Wang, Xue; Li Xu, Min; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2018-01-01

    Fluorescence spectroscopy with an excitation-emission matrix (EEM) is a fast and inexpensive technique and has been applied to the detection of a very wide range of analytes. However, serious scattering and overlapping signals hinder the applications of EEM spectra. In this contribution, the multi-resolution capability of Tchebichef moments was investigated in depth and applied to the analysis of two EEM data sets (data set 1 consisted of valine-tyrosine-valine, tryptophan-glycine and phenylalanine, and data set 2 included vitamin B1, vitamin B2 and vitamin B6) for the first time. By means of the Tchebichef moments with different orders, the different information in the EEM spectra can be represented. It is owing to this multi-resolution capability that the overlapping problem was solved, and the information of chemicals and scatterings were separated. The obtained results demonstrated that the Tchebichef moment method is very effective, which provides a promising tool for the analysis of EEM spectra. It is expected that the applications of Tchebichef moment method could be developed and extended in complex systems such as biological fluids, food, environment and others to deal with the practical problems (overlapped peaks, unknown interferences, baseline drifts, and so on) with other spectra.

  3. A semiempirical study for the ground and excited states of free-base and zinc porphyrin-fullerene dyads

    Science.gov (United States)

    Parusel, A. B.

    2000-01-01

    The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free

  4. Signature of nonadiabatic coupling in excited-state vibrational modes.

    Science.gov (United States)

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  5. An experimental and theoretical investigation into the excited electronic states of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B.; Chiari, L. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2014-08-21

    We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.

  6. Pulsed excitation of Rydberg-atom-pair states in an ultracold Cs gas

    CERN Document Server

    Saßmannshausen, Heiner; Deiglmayr, Johannes

    2015-01-01

    Pulsed laser excitation of a dense ultracold Cs vapor has been used to study the pairwise interactions between Cs atoms excited to $n$p$_{3/2}$ Rydberg states of principal quantum numbers in the range $n=22-36$. Molecular resonances were observed that correspond to excitation of Rydberg-atom-pair states correlated not only to the $n$p$_{3/2}+n$p$_{3/2}$ dissociation asymptotes, but also to $n$s$_{1/2}+(n+1)$s$_{1/2}$, $n$s$_{1/2}+n'$f$_{j}$, and $(n-4)$f$_{j}+(n-3)$f$_{j}$ $(j=5/2,7/2)$ dissociation asymptotes. These pair resonances are interpreted as arising from dipole-dipole, and higher long-range-interaction terms between the Rydberg atoms on the basis of i) their spectral positions, ii) their response to static and pulsed electric fields, and iii) millimeter-wave spectra between pair states correlated to different pair-dissociation asymptotes. The Rydberg-atom--pair states were found to spontaneously decay by Penning ionization and the dynamics of the ionization process were investigated during the first...

  7. Dynamics of Excited State Proton Transfer in Nitro Substituted 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Marciak, H; Hristova, S.; Deneva, V

    2017-01-01

    of the ground state enol–keto tautomeric equilibrium (ΔG values of 1.03 and 0.62 kcal mol−1 respectively for 2 and 3). The fluorescence stems from the keto form even if the enol form is optically excited as proven by the shape of the excitation spectra indicating that ESIPT takes place. The Stokes shift...... of the substituted compounds is substantially lower compared to HBQ, which follows from the fact that the substitution occurs in the formal cyclohexa-2,4-dienone moiety and leads to a decrease of the HOMO level of the keto tautomer. The pump–probe experiments show that in the nitro substituted HBQs 2 and 3 ESIPT...

  8. Minimal-excitation states for electron quantum optics using levitons.

    Science.gov (United States)

    Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C

    2013-10-31

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  9. Ab initio calculation of resonance Raman cross sections based on excited state geometry optimization.

    Science.gov (United States)

    Gaff, J F; Franzen, S; Delley, B

    2010-11-04

    A method for the calculation of resonance Raman cross sections is presented on the basis of calculation of structural differences between optimized ground and excited state geometries using density functional theory. A vibrational frequency calculation of the molecule is employed to obtain normal coordinate displacements for the modes of vibration. The excited state displacement relative to the ground state can be calculated in the normal coordinate basis by means of a linear transformation from a Cartesian basis to a normal coordinate one. The displacements in normal coordinates are then scaled by root-mean-square displacement of zero point motion to calculate dimensionless displacements for use in the two-time-correlator formalism for the calculation of resonance Raman spectra at an arbitrary temperature. The method is valid for Franck-Condon active modes within the harmonic approximation. The method was validated by calculation of resonance Raman cross sections and absorption spectra for chlorine dioxide, nitrate ion, trans-stilbene, 1,3,5-cycloheptatriene, and the aromatic amino acids. This method permits significant gains in the efficiency of calculating resonance Raman cross sections from first principles and, consequently, permits extension to large systems (>50 atoms).

  10. Periodic calculations of excited state properties for solids using a semiempirical approach.

    Science.gov (United States)

    Gadaczek, Immanuel; Hintze, Kim Julia; Bredow, Thomas

    2012-01-14

    The semiempirical SCF MO method MSINDO (modified symmetrically orthogonalized intermediate neglect of differential overlap) [T. Bredow and K. Jug, Electronic Encyclopedia of Computational Chemistry, 2004] is extended to the calculation of excited state properties through implementation of the configuration interaction singles (CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) [T. Bredow et al., J. Comput. Chem., 2001, 22, 89] which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The CIS equations are solved for a cluster with periodic boundary conditions using the Davidson-Liu iterative block diagonalization approach. As a proof-of-principle, MSINDO-CCM-CIS is applied for the calculation of optical spectra of ZnO and TiO(2), oxygen-defective rutile, and F-centers in NaCl. The calculated spectra are compared to available experimental and theoretical literature data. After re-adjustment of the empirical parameters the quantitative agreement with experiment is satisfactory. The present approximate approach is one of the first examples of a quantum-chemical methodology for solids where excited states are correctly described as n-electron state functions. After careful benchmark testing it will allow calculation of photophysical and photochemical processes relevant to materials science and catalysis.

  11. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    OpenAIRE

    Veronica Vaida; Karl J. Feierabend; Nabilah Rontu; Kaito Takahashi

    2008-01-01

    Atmospheric chemical reactions are often initiated by ultraviolet (UV) solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical re...

  12. Probing excited electronic states and ionisation mechanisms of fullerenes

    OpenAIRE

    Johansson, Olof; Campbell, Eleanor E. B.

    2013-01-01

    Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively s...

  13. Lifetimes of excited states in neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Stoyanka; Kroell, Thorsten [Institut fuer Kernphysik, TU Darmstadt (Germany); Collaboration: EXILL-FATIMA-Collaboration

    2016-07-01

    The EXILL and FATIMA campaign at ILL, Grenoble is the first prompt-fission γ-ray spectroscopy experiment performed with a mixed array of Ge detectors (EXILL) and fast LaBr{sub 3}(Ce) scintillators (FATIMA). The lifetimes of excited states, populated by neutron-induced fission of {sup 235}U and {sup 241}Pu targets, were directly measured. The high-resolution EXILL detector gives us the possibility to identify the nuclides of interest among the large amount of produced fission fragments. Using the generalized centroid difference method to analyse the data from FATIMA we could measure lifetimes down to ∼ 10 ps. The lifetime of an excited state is a direct measure for the strength (collectivity) of a transition. The properties of the excited states in even-even nuclei can be largely described by quadrupole and octupole degrees of freedom. This contribution will present the current status of the analysis for the neutron-rich even-even {sup 138,140,142}Xe isotopes which lie in the vicinity of the double shell closure Z=50 and N=82. Through the direct lifetime measurement we aim to study the evolution of quadrupole and octupole collectivity above {sup 132}Sn.

  14. Excitation spectra of the negative-U Hubbard model: A small-cluster study

    Science.gov (United States)

    Ohta, Y.; Nakauchi, A.; Eder, R.; Tsutsui, K.; Maekawa, S.

    1995-12-01

    An exact-diagonalization technique on small clusters is used to study low-lying excitations and superconductivity in the two-dimensional negative-U Hubbard model. We first calculate the Bogoliubov-quasiparticle spectrum, condensation amplitude, and coherence length as functions of the coupling strength U/t, thereby working out how the picture of Bogoliubov quasiparticles in the BCS superconductors is affected by increasing the attraction. We then define the Cooper-pair operator as a spatially extended composite boson and make a variational evaluation of its internal structure. We thereby calculate the single-particle spectral function of the Cooper pair and obtain the dispersion relation for its translational motion. The dynamical density correlation function of the pairs is also calculated. We thus demonstrate the applicability of our numerical method for gaining insight into low-lying excitations of models for the intermediate coupling superconductivity relevant to cuprate materials.

  15. Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghwa; Joo, Taiha [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ∼300 fs component observed frequently in ESIPT dynamics arises from the S{sub 2}→S{sub 1} internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in S{sub 1} state to the keto isomer in S{sub 2} state.

  16. Modular Hamiltonian for Excited States in Conformal Field Theory.

    Science.gov (United States)

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  17. Effect of the fluorine substitution in ethyl groups of 1,4-distyrylbenzene on the fine structure fluorescence and fluorescence excitation spectra

    Science.gov (United States)

    Vasil'eva, I. A.; Voitova, N. A.; Nurmukhametov, R. N.

    2012-03-01

    The fine-structure fluorescence and fluorescence excitation spectra of conjugated chain compounds, 1,4-distyrylbenzene (DSB) and its fluorine-substituted derivative α,ω-1,4-distyrylbenzene, have been obtained by the Shpolskii method in an n-octane matrix at a temperature of 4.2 K. These spectra have been simulated by representing the band of each of the vibronic transitions as the sum of a zero-phonon line and a phonon wing with the corresponding parameters, such as the half-widths of the spectral lines and the Debye-Waller factors. Based on this simulation, the relative intensities of vibronic transitions have been determined and the frequencies of normal vibrations in the S 0 and S {1/*} states have been refined. It has been found that the energy of the purely electronic transition in the molecule of the fluorine-substituted derivative is higher by 950 cm-1 compared to the unsubstituted DSB. The parameters of the Franck-Condon and Herzberg-Teller interactions have been determined. The observed violation of the mirror symmetry between the conjugated spectra is explained by the interference of intramolecular interactions.

  18. Photoluminescence and excited states dynamics in PbWO4:Pr3+ crystals

    CERN Document Server

    Auffray, E; Shalapska, T; Zazubovich, S

    2014-01-01

    Luminescence and photo-thermally stimulated defects creation processes are studied for a Pr3+-doped PbWO4 crystal at 4.2-400 K under excitation in the band-to-band, exciton, and charge-transfer transitions regions, as well as in the Pr3+-related absorption bands. Emission spectra of Pr3+ centers depend on the excitation energy, indicating the presence of Pr3+ centers of two types. The origin of these centers is discussed. The 2.03-2.06 eV emission, arising from the D-1(2) -> H-3(4) transitions of Pr3+ ions, is found to be effectively excited in a broad intense absorption band peaking at 4.2 K at 3.92 eV. By analogy with some other Pe(3+)-doped compounds, this band is suggested to arise from an electron transfer from an impurity Pr3+ ion to the crystal lattice W6+ or Pb2+ ions. The dynamics of the Pr3+-related excited states is clarified. In the PbWO4:Pr crystal studied, the concentration of single oxygen and lead vacancies as traps for electrons and holes is found to be negligible.

  19. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  20. Excited State Atom-Ion Charge-Exchange

    Science.gov (United States)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  1. Excited states using semistochastic heat-bath configuration interaction

    Science.gov (United States)

    Holmes, Adam A.; Umrigar, C. J.; Sharma, Sandeep

    2017-10-01

    We extend our recently developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to calculate excited-state wavefunctions and energies. We employ time-reversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the full CI limit. The resulting algorithm is used to compute fourteen low-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 μHa compared to full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values.

  2. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  3. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  4. Time-resolved resonance Raman study of proton transferring systems in the excited triplet state: 2,2'-bipyridine and 2,2'-bipyridine-3,3'-diol

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Mordzinski, A.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman (RR) spectra of the excited triplet state T1 of 2,2'-bipyridine (BP), 2,2'-bipyridine-3,3'-diol BP(OH)2, and 5,5'-dimethyl-2,2'-bipyridine-3,3'-diol Me2BP(OH)2 are obtained. and interpreted by comparison with their ground-state Raman spectra and the T1 spectrum...

  5. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    OpenAIRE

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a highe...

  6. Laguerre polynomial excited coherent state: generation and nonclassical properties

    Science.gov (United States)

    Ye, Wei; Zhou, Weidong; Zhang, Haoliang; Liu, Cunjin; Huang, Jiehui; Hu, Liyun

    2017-11-01

    We propose a theoretical protocol to generate a kind of non-Gaussian state—a Laguerre polynomial excited coherent state (LPECS) by exploiting a two-mode squeezing transformation and a conditional measurement with a coherent state input. Then we investigate the nonclassical features of the LPECS according to the Glauber-Sudarshan P(α ) function, photon number distribution, Mandel’s Q parameter, second-order correlation function, and squeezing properties as well as negative Wigner distribution. Our results show that the generated output state presents obvious nonclassical properties which can be modulated by a coherent amplitude, a squeezing parameter and a conditional measurement. In particular, the squeezing and negative Wigner function are clear.

  7. Triaxiality near the 110Ru ground state from Coulomb excitation

    Directory of Open Access Journals (Sweden)

    D.T. Doherty

    2017-03-01

    Full Text Available A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2=12 s isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  8. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  9. Compton scattering artifacts in electron excited X-ray spectra measured with a silicon drift detector.

    Science.gov (United States)

    Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P

    2011-12-01

    Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.

  10. Observation of interference effects via four photon excitation of highly excited Rydberg states in thermal cesium vapor

    CERN Document Server

    Kondo, Jorge M; Guttridge, Alex; Wade, Christopher G; De Melo, Natalia R; Adams, Charles S; Weatherill, Kevin J

    2015-01-01

    We report on the observation of Electromagnetically Induced Transparency (EIT) and Absorption (EIA) of highly-excited Rydberg states in thermal Cs vapor using a 4-step excitation scheme. The advantage of this 4-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to 2 or 3 step excitation schemes using two orders of magnitude less laser power. Consequently each step is driven by a relatively low power infra-red diode laser opening up the prospect for new applications. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

  11. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  12. Reduced probabilities for E2 transitions between excited collective states of triaxial even–even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nadyrbekov, M. S., E-mail: nodirbekov@inp.uz; Bozarov, O. A. [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2017-01-15

    Reduced probabilities for intra- and interband E2 transitions in excited collective states of even–even lanthanide and actinide nuclei are analyzed on the basis of a model that admits an arbitrary triaxiality. They are studied in detail in the energy spectra of {sup 154}Sm, {sup 156}Gd, {sup 158}Dy, {sup 162,164}Er, {sup 230,232}Th, and {sup 232,234,236,238}U even–even nuclei. Theoretical and experimental values of the reduced probabilities for the respective E2 transitions are compared. This comparison shows good agreement for all states, including high-spin ones. The ratios of the reduced probabilities for the E2 transitions in question are compared with results following from the Alaga rules. These comparisons make it possible to assess the sensitivity of the probabilities being considered to the presence of quadrupole deformations.

  13. Optical limiting and excited-state absorption in fullerene solutions and doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    McBranch, D.; Smilowitz, L.; Klimov, V. [and others

    1995-09-01

    We report the ground state and excited state optical absorption spectra in the visible and near infrared for several substituted fullerenes and higher fullerenes in toluene solutions. Based on these measurements, broadband predictions of the optical limiting performance of these molecules can be deduced. These predictions are then tested at 532 to 700 nm in intensity-dependent transmission measurements. We observe optical limiting in all fullerenes measured; higher fullerenes show the greatest potential for limiting in the near infrared (650-1000 nm), while substituted C{sub 60} shows optimal limiting in the visible (450-700 nm). We observe dramatically reduced limiting for solid forms of C{sub 60} (thin films and C{sub 60}-doped porous glasses), indicating that efficient optical limiting in fullerenes requires true molecular solutions.

  14. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  15. The origin of radiationless conversion of the excited state in the kindling fluorescent protein (KFP): femtosecond studies and quantum modeling

    Science.gov (United States)

    Shelaev, I.; Mironov, V.; Rusanov, A.; Gostev, F.; Bochenkova, A.; Sarkisov, O.; Nemukhin, A.; Savitsky, A.

    2011-06-01

    The Ala143Gly variant of the chromoprotein asCP from the sea anemony Anemonia sulcata, called the kindling fluorescent protein (KFP), is a promising candidate for the development of novel subdiffraction method of fluorescent microscopy. The pump-probe method with the delay times between the pump and probe pulses up to 5 ps was applied to study dynamics of the primary processes upon excitation of KFP. The differential absorption spectra at 80 fs delay showed the absorption peak in the range 450-510 nm with the maximum wavelength at 490 nm, which diminished almost twice by intensity by 400 fs and practically disappeared by 1.5 ps. The quantum calculations showed that upon photo-excitation of KFP to the first excited state S1, the fast radiationless relaxation occurred to the ground state S0 due to rotation of the phenolic fragment of the chromophore.

  16. Unbound excited states in $^{19}$,$^{17}$C

    CERN Document Server

    Satou, Y; Fukuda, N; Sugimoto, T; Kondo, Y; Matsui, N; Hashimoto, Y; Nakabayashi, T; Okumura, T; Shinohara, M; Motobayashi, T; Yanagisawa, Y; Aoi, N; Takeuchi, S; Gomi, T; Togano, Y; Kawai, S; Sakuraï, H; Ong, H J; Onishi, T K; Shimoura, S; Tamaki, M; Kobayashi, T; Otsu, H; Matsuda, Y; Endo, N; Kitayama, M; Ishihara, M

    2008-01-01

    The neutron-rich carbon isotopes 19,17C have been investigated via proton inelastic scattering on a liquid hydrogen target at 70 MeV/nucleon. The invariant mass method in inverse kinematics was employed to reconstruct the energy spectrum, in which fast neutrons and charged fragments were detected in coincidence using a neutron hodoscope and a dipole magnet system. A peak has been observed with an excitation energy of 1.46(10) MeV in 19C, while three peaks with energies of 2.20(3), 3.05(3), and 6.13(9) MeV have been observed in 17C. Deduced cross sections are compared with microscopic DWBA calculations based on p-sd shell model wave functions and modern nucleon-nucleus optical potentials. Jpi assignments are made for the four observed states as well as the ground states of both nuclei.

  17. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  18. Structural Influence on Excited State Dynamics in Simple Amines

    DEFF Research Database (Denmark)

    Klein, Liv Bærenholdt

    experiments with calculations, provides new insight into the nature of the internal conversion processes that mediate the dynamical evolution between Rydberg states, and how structural variations in simple amine system have a large impact on the non-adiabatic processes. The experimental method of choice......Simple amines are basic model system of nitrogen-containing chromophores that appear widely in nature. They are also ideal systems for detailed investigation of nonadiabatic dynamical processes and ultrafast temporal evolution of electronic states of the Rydberg type. This investigation, combining...... and sensitive collection of photoelectron spectra. In particular, the angleresolved data available from the VMI approach provides highly detailed mechanistic insight about the relaxation pathways. One striking novel nding is that for tertiary amines, the critical factor driving the non-adiabatic dynamics...

  19. Characterization of trans-dioxotechnetium(V) and technetium(II)phosphine excited states and spectroelectrochemical detection of pertechnetate

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A.; Del Negro, Andy S.; Wang, Zheming; Hubler, Timothy L.; Heineman, William R.; Seliskar, Carl J.; Sullivan, Brian P.

    2006-06-01

    We report the first examples of excited-state luminescence from technetium complexes. We have examined a series of trans-dioxo complexes of Tc(V) and a Tc(I/II) phosphine complex and compare their respective photophysical properties with the corresponding rhenium analogues. When excited with a 415 nm laser, the Tc(V) complexes luminesce in the 700-800 nm range and have excited state lifetimes in the range of several microseconds at room temperature. The low-temperature luminescence spectra of the technetium complexes have also been investigated. Distinct vibrational band progressions are resolved in the low-temperature luminescence spectra. Excited state lifetimes at 5 K vary between tens of microseconds to several milliseconds for the dioxo-technetium complexes. In addition, a previously known Tc(I) complex, [Tc(DMPE) 3]+ which has been used as a radiography imaging agent has been demonstrated in our labs to fluoresce in the visible wavelength region upon a one-electron reversible oxidation to form the Tc(II), [Tc(DMPE)3]2+ complex in aqueous solution. The luminescence of [Tc(DMPE)3]2+ was observed by illuminating the solution complex with a 404 nm excitation while performing the reversible electrochemical experiment. In a recent application, we have focused on making thin chemically-selective films for sensing radioactive technetium compounds and in this effort have developed a fluorescence-based spectroelectrochemical sensor. Characterization of the new dioxo-technetium(V) and technetium(II)phosphine excited states as well as application of the respective chromophores for use in a spectroelectrochemical sensor for pertechnetate will be discussed.

  20. Radiative Decay Widths of Ground and Excited States of Vector Charmonium and Bottomonium

    Directory of Open Access Journals (Sweden)

    Hluf Negash

    2017-01-01

    Full Text Available We study the radiative decay widths of vector quarkonia for the process of J/ψ(nS→ηc(nSγ and Υ(nS→ηb(nSγ (for principal quantum numbers n=1,2,3 in the framework of Bethe-Salpeter equation under the covariant instantaneous ansatz using a 4×4 form of BSE. The parameters of the framework were determined by a fit to the mass spectrum of ground states of pseudoscalar and vector quarkonia, such as ηc, ηb, J/ψ, and Υ. These input parameters so fixed were found to give good agreements with data on mass spectra of ground and excited states of pseudoscalar and vector quarkonia, leptonic decay constants of pseudoscalar and vector quarkonia, two-photon decays, and two-gluon decays of pseudoscalar quarkonia in our recent paper. With these input parameters so fixed, the radiative decay widths of ground (1S and excited (2S,3S states of heavy vector quarkonia (J/Ψ and Υ are calculated and found to be in reasonable agreement with data.

  1. Excited-state intramolecular proton transfer and conformational relaxation in 4'-N,N-dimethylamino-3-hydroxyflavone doped in acetonitrile crystals.

    Science.gov (United States)

    Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi

    2016-10-19

    The effect of intermolecular interactions on excited-state intramolecular proton transfer (ESIPT) in 4'-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring its temperature dependence of steady-state fluorescence excitation and fluorescence spectra and picosecond time-resolved spectra. The relative intensity of emission from the excited state of the normal form (N*) to that from the excited state of the tautomer form (T*) and spectral features changed markedly with temperature. Unusual changes in the spectral shift and spectral features were observed in the fluorescence spectra measured between 200 and 218 K, indicating that a solid-solid phase transition of DMHF-doped acetonitrile crystals occurred. Time-resolved fluorescence spectra suggested conformational relaxation of the N* state competed with ESIPT after photoexcitation and the ESIPT rate increased with temperature in the low-temperature phase of acetonitrile. However, the intermolecular interaction of N* with acetonitrile in the high-temperature phase markedly stabilized the potential minimum of the fluorescent N* state and slowed the ESIPT. This stabilization can be explained by reorganization of acetonitrile originating from the strong electric dipole-dipole interaction between DMHF and acetonitrile molecules.

  2. Excited State Chemistry in the Free Stream of the NASA IHF Arc Jet Facility Observed by Emission Spectroscopy

    Science.gov (United States)

    Winter, Michael W.; Prabhu, Dinesh K.

    2011-01-01

    Spectroscopic measurements of non-equilibrium emission were made in the free stream of the 60 megawatts Interaction Heating Facility at NASA Ames Research Center. In the visible near infrared wavelength region, the most prominent emission was from molecular N2, and in the ultra violet region, the spectra were dominated by emission from molecular NO. The only atomic lines observed were those of copper (an erosion product of the electrodes). The bands of the 1st Positive system of N2 (if B is true then A is true) differed significantly from spectra computed spectra assuming only thermal excitation, suggesting overpopulation of the high vibrational states of the B state of N2. Populations of these high vibrational levels (peaking at v (sub upper) equals 13) of the N2 B state were determined by scaling simulated spectra; calculations were performed for each upper vibrational state separately. The experimental-theoretical procedure was repeated for several radial positions away from the nozzle axis to obtain spatial distributions of the upper state populations; rotational symmetry of the flow was assumed in simulations. The overpopulation of the high vibrational levels has been interpreted as the effect of inverse pre-dissociation of neutral atoms in the N2 A state, which populates the N2 B state through a level crossing process at v (sub upper) is greater than 10.

  3. Electronic structure and excited-state properties of Co2TiSn and Co2ZrSn from ab initio calculations

    Directory of Open Access Journals (Sweden)

    L.V.Bekenov

    2005-01-01

    Full Text Available The electronic structure, magnetism as well as the excited-state properties such as the optical and x-ray magnetic circular dichroism (XMCD spectra of the Heusler alloys Co2TiSn and Co2ZrSn were investigated theoretically from first principles using the fully relativistic Dirac LMTO band structure method. The origin of the XMCD spectra at the Co L2,3 edges in the compounds is examined. Densities of valence states, orbital and spin magnetic moments as well as optical spectra are analyzed and discussed. The calculated results are compared with the available experimental data.

  4. Coherent secondary emission from resonantly excited two-exciton states

    DEFF Research Database (Denmark)

    Birkedal, Dan

    2000-01-01

    The coherent interaction of light and the electronic states of semiconductors near the fundamental bandgap has been a very active topic of research since the advent of ultrafast lasers. While many of the ultrafast nonlinear properties of semiconductors have been well explained within mean field...... to the nonlinear susceptibility. The method exploits that emission from two-exciton coherences can occur in non-specular directions, with the recoil momentum taken up by an exciton left behind in the sample. Using ultrafast spectral interferometry we demonstrate the presence of this new coherent component...... of the secondary emission from quantum wells following ultrafast resonant excitation and find that it provides information on not only the bound biexcitons but also the biexciton continuum. Due to the heterodyne nature of the experimental technique we obtain both amplitude and phase of the coherent emission...

  5. Contribution of electronically excited states to the radiation chemistry of organic systems. Progress report, September 1, 1978-August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Lipsky, S.

    1979-01-01

    The effect of n-perfluorohexane to quench both the emission and photoionization current of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in isooctane and in tetramethylsilane has been shown to be consistent with an interaction of perfluorohexane with some relatively long-lived, coherently excited state of TMPD that is generated at the photoionization threshold and which decays either to the emitting state of TMPD or to a geminate ion-pair. The 0/sup 0/ and 90/sup 0/ electron impact spectra of the stable isomers of C/sub 3/, C/sub 4/, and C/sub 5/ saturated hydrocarbons are being determined. Preliminary results show large structural effects on the lowest Rydberg singlet-triplet splittings. Two photon excited emission spectra of decalin, bicyclohexyl, and cyclohexane have been observed in good agreement with previously reported one-photon spectra. A weak emission from propylene has also been detected. From measurement of the photosensitized singlet emission of p-xylene by bicyclohexyl excited at 1740 A, it appears that the bicyclohexyl triplet contributes importantly to the sensitization. Also previously reported deviations from Stern-Volmer behavior in the fast-electron-excited process are found too in the photo-excited process (at 1740 A) and therefore cannot be attributed exclusively to ionic processes. The much larger ratio of excimer to monomer intensity in polystyrene as compared to neat liquid benzene appears to be due mainly to a reduced entropy of dissociation of the excimer when the phenyls are tied to the polymer backbone. Excimers formed therefore from distant phenyl groups may manifest themselves at high quencher concentrations and thus provide a new technique for probing polymer conformation.

  6. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  7. Complicated Fermi-type vibronic resonance: Untangling of the single-site quasi-line fluorescence excitation spectra of a methylated dibenzoporphin

    Science.gov (United States)

    Arabei, S. M.; Kuzmitsky, V. A.; Solovyov, K. N.

    2008-09-01

    The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of 2,3,12,13-tetramethyldibenzo[ g,q]porphin introduced into an n-octane matrix have been measured in the range of the S 2 ← S 0 electronic transition at selective fluorescence monitoring for the two main types of impurity centers (sites). A characteristic feature of these spectra is that a conglomerate of quasi-lines - a structured complex band - is observed instead of one 0-0 quasi-line of the S 2 ← S 0 transition. In this band, the intensity distributions for the two main sites considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic vibrational-electronic interaction between the vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the vibronic-interaction matrix elements between them. This problem is solved with a method developed previously. The experimental results and their analysis are compared to the analogous data obtained earlier for meso-tetraazaporphin and meso-tetrapropylporphin. The energy intervals between the S 2 and S 1 electronic levels (ΔES) of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other, the values of this difference (δΔES) being considerably greater for tetramethyldibenzoporphin, δΔES=228cm, than for the two other porphyrins. At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level participating in the resonance are very close to each other for these two sites.

  8. Using Diffusion Monte Carlo to Probe Rotational Excited States

    Science.gov (United States)

    Petit, Andrew S.; McCoy, Anne B.

    2009-06-01

    Since its inception in 1975 by Anderson, has been successfully applied to a wide range of electronic and vibrational problems. In the latter case, it has been shown to be a powerful method for studying highly fluxional systems exhibiting large amplitude vibrational motions. We report here our recent work developing a new DMC algorithm capable of treating rotational excited states. We first develop the appropriate coordinates, nodal structures, and re-crossing corrections for this problem. Then, using H_3O^+ and D_3O^+ as model systems, we show that our method can successfully describe a range of rotational states from mid0,0,0> to {1}/{√{2}} (mid10,10,0 > + mid 10,-10,0 >). In particular, we examine the combined effects of rotational and zero-point vibrational motion on the geometric structure of the molecules. Finally, we find the mid 10,0,0 > state to be somewhat problematic but show that the problem is straightforward to identify and has a well-defined solution. J. B. Anderson, J. Chem. Phys., 63, 1499 (1975). X. Huang, S. Carter, and J. Bowman, J. Chem. Phys., 118, 5431 (2003).

  9. Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm.

    Science.gov (United States)

    Xiong, Junyu; Yin, Longfei; Luo, Bin; Guo, Hong

    2016-06-27

    In this work, a detailed theoretical analysis of 1529 nm ES-FADOF (excited state Faraday anomalous dispersion optical filter) based on rubidium atoms pumped by 780 nm laser is introduced, where Zeeman splitting, Doppler broadening, and relaxation processes are considered. Experimental results are carefully compared with the derivation. The results prove that the optimal pumping frequency is affected by the working magnetic field. The population distribution among all hyperfine Zeeman sublevels under the optimal pumping frequency has also been obtained, which shows that 85Rb atoms are the main contribution to the population. The peak transmittance above 90% is obtained, which is in accordance with the experiment. The calculation also shows that the asymmetric spectra observed in the experiment are caused by the unbalanced population distribution among Zeeman sublevels. This theoretical model can be used for all kinds of calculations for FADOF.

  10. Enhanced negative ion formation via electron attachment to electronically-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, L.A. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  11. Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Charles A. [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    The 9-aminoacridine molecule is important in several different fields of chemistry. The absorption and fluorescence spectra of this compound are pH sensitive and it is this property that allowed it to be used as a pH probe in different chemical environments. The compound exhibits proton transfer reactions which are among the most fundamental of chemical reactions. The planarity of 9-aminoacridine allows it to intercalate into DNA. Intercalation is a process in which the aromatic flat surface of the intercalator inserts between adjacent base pairs of DNA. The large surface area of 9-aminoacridine`s fused tricyclic ring system allows strong intercalative binding through van der Waals attractions. 9-aminoacridine and many of its derivatives have been tried as possible antitumor drugs. The cytotoxicity of an antitumor agent can be dramatically increased through the addition of one or two cationic side chains. This increase in cytotoxicity using the 9-aminoacridine compound as a parent molecule has been investigated through various derivatives with cationic side chains consisting of different number of carbon atoms between the proximal and distal N atoms. Similar derivatives varied the position of the carboxamide side chain on the aromatic ring system. The objective of this work is to first create a baseline study of the excited state kinetics of the 9-aminoacridine carboxamides in the absence of DNA. The baseline study will allow the excited state kinetics of these antitumor drugs when placed in DNA to be more fully understood.

  12. MAGNETIC-FIELD DEPENDENCE OF ROTATIONALLY RESOLVED EXCITATION-SPECTRA OF THE B-1(3U)0(0)(0) TRANSITION OF JET-COOLED PYRAZINE

    NARCIS (Netherlands)

    DELANGE, PJ; JONKMAN, HT; DRABE, KE

    1991-01-01

    We report rotationally resolved excitation spectra of the 1B3u 0(0)0 transition of jet-cooled pyrazine in magnetic fields up to 50 kG. The emission intensity of every rotational line is found to decrease by a factor of three for magnetic fields larger than about 300 G. For still larger magnetic

  13. Magnetic field dependence of rotationally resolved excitation spectra of the 1B3u 000 transition of jet-cooled pyrazine

    NARCIS (Netherlands)

    Jonkman, Harry Th.; Drabe, Karel E.

    1991-01-01

    We report rotationally resolved excitation spectra of the 1B3u 000 transition of jet-cooled pyrazine in magnetic fields up to 50 kG. The emission intensity of every rotational line is found to decrease by a factor of three for magnetic fields larger than about 300 G. For still larger magnetic fields

  14. Theoretical study on the excited-state intramolecular proton-transfer reaction of 10-hydroxybenzo[h]quinoline in methanol and cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng [Department of Chemistry, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao, Jinfeng [Department of Physics, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cui, Yanling; Wang, Qianyu [Department of Physics, Liaoning University, Shenyang 110036 (China); Dai, Yumei [Normal College, Shenyang University, Shenyang 110044 (China); Song, Peng, E-mail: songpeng@lnu.edu.cn [Department of Physics, Liaoning University, Shenyang 110036 (China); Xia, Lixin, E-mail: lixinxia@lnu.edu.cn [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2015-05-15

    The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 10-hydroxybenzoquinoline (HBQ) in different solvents, have been investigated based on the time-dependent density functional theory (TD-DFT) in detail. Upon excitation, the intramolecular hydrogen bond between the hydroxyl and phenanthrene functionality is significantly strengthened in the S{sub 1} state, which can be used as a reasonable tendency for facilitating the ESIPT process. In addition, the calculated vertical excitation energies in the S{sub 0} state and S{sub 1} state reproduce the experimental UV–vis absorbance and fluorescence emission spectra well. Through calculating the fluorescence spectra of the HBQ chromophore, two outcomes for this chromophore were found in the S{sub 1} state, which demonstrates that the ESIPT process occurs. The potential energy curves have been calculated to account for the mechanism of the proton-transfer process in the excited-state. As a result, the barrierless ESIPT process can occur in the S{sub 1} state with proton transfer from the O atom to the N atom. And maybe the ESIPT process is easier in methanol solvent due to the higher potential energy difference. - Highlights: • The hydrogen bond between the hydroxyl and phenanthrene is strengthened. • The hydrogen bond facilitates the proton transfer from the hydroxyl group to the N atom. • The spontaneous excited-state intramolecular proton transfer reaction can be observed.

  15. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy)(2)](2+)

    DEFF Research Database (Denmark)

    Vanko, Gyoergy; Bordage, Amelie; Pápai, Mátyás Imre

    2015-01-01

    to investigate the quintet state of [Fe(terpy)(2)](2+) 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)(2)](2+) molecule; moreover...... for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations....

  16. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes: I. C60, C59N+ and C48N12

    Energy Technology Data Exchange (ETDEWEB)

    Xie, R; Bryant, G W; Sun, G; C.Nicklaus, M; Heringer, D; Frauenheim, T; Manaa, M R; Smith, Jr., V H; Araki, Y; Ito, O

    2003-10-02

    Low-energy excitations and optical absorption spectrum of C{sub 60} are computed by using time-dependent (TD) Hartree-Fock (HF), TD-density functional theory (TD-DFT), TD-DFT-based tight-binding (TD-DFT-TB) and a semiempirical ZINDO method. A detailed comparison of experiment and theory for the excitation energies, optical gap and absorption spectrum of C{sub 60} is presented. It is found that electron correlations and collective effects of exciton pairs play important roles in assigning accurately the spectral features of C{sub 60} and the TD-DFT method with non-hybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C{sub 60} justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C{sub 59}N{sup +} exhibits distinguishing spectral features different from C{sub 60}: (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C{sub 59}N{sup +} characterize and explain well our measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C{sub 59}N][Ag(CB{sub 11}H{sub 6}Cl{sub 6}){sub 2}]. For the most stable isomer of C{sub 48}N{sub 12}, we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C{sub 60}, and optical absorption maxima occur at 585, 528, 443, 363, 340, 314 and 303 nm. We point out that the characterization of the UV-vis and transient absorption spectra of C{sub 48}N{sub 12} isomers is helpful in distinguishing the isomer structures required for applications in molecular electronics. For C{sub 59}N{sup +} and C{sub 48}N

  17. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...... iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  18. Fluorescence and picosecond induced absorption from the lowest singlet excited states of quercetin in solutions and polymer films

    Science.gov (United States)

    Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.

    2017-03-01

    The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.

  19. Thermodynamical analysis of spin-state transitions in LaCo O3 : Negative energy of mixing to assist thermal excitation to the high-spin excited state

    Science.gov (United States)

    Kyômen, Tôru; Asaka, Yoshinori; Itoh, Mitsuru

    2005-01-01

    Magnetic susceptibility and heat capacity due to the spin-state transition in LaCoO3 were calculated by a molecular-field model in which the energy-level diagram of high-spin state reported by Ropka and Radwanski [Phys. Rev. B 67, 172401 (2003)] is assumed for the excited state, and the energy and entropy of mixing of high-spin Co ions and low-spin Co ions are introduced phenomenologically. The experimental data below 300K were well reproduced by this model, which proposes that the high-spin excited state can be populated even if the energy of high-spin state is much larger than that of low-spin state, because the negatively large energy of mixing reduces the net excitation energy. The stability of each spin state including the intermediate-spin state is discussed based on the present results and other reports.

  20. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described.

  1. Rydberg and valence state excitation dynamics: a velocity map imaging study involving the E-V state interaction in HBr.

    Science.gov (United States)

    Zaouris, Dimitris; Kartakoullis, Andreas; Glodic, Pavle; Samartzis, Peter C; Rafn Hróðmarsson, Helgi; Kvaran, Ágúst

    2015-04-28

    Photoexcitation dynamics of the E((1)Σ(+)) (v' = 0) Rydberg state and the V((1)Σ(+)) (v') ion-pair vibrational states of HBr are investigated by velocity map imaging (VMI). H(+) photoions, produced through a number of vibrational and rotational levels of the two states were imaged and kinetic energy release (KER) and angular distributions were extracted from the data. In agreement with previous work, we found the photodissociation channels forming H*(n = 2) + Br((2)P3/2)/Br*((2)P1/2) to be dominant. Autoionization pathways leading to H(+) + Br((2)P3/2)/Br*((2)P1/2) via either HBr(+)((2)Π3/2) or HBr(+)*((2)Π1/2) formation were also present. The analysis of KER and angular distributions and comparison with rotationally and mass resolved resonance enhanced multiphoton ionization (REMPI) spectra revealed the excitation transition mechanisms and characteristics of states involved as well as the involvement of the E-V state interactions and their v' and J' dependence.

  2. A Simple Hubbard Model for the Excited States of $\\pi$ Conjugated -acene Molecules

    CERN Document Server

    Sadeq, Z S

    2015-01-01

    In this paper we present a model that elucidates in a simple way the electronic excited states of $\\pi$ conjugated -acene molecules such as tetracene, pentacene, and hexacene. We use a tight-binding and truncated Hubbard model written in the electron-hole basis to describe the low lying excitations with reasonable quantitative accuracy. We are able to produce semi-analytic wavefunctions for the electronic states of the system, which allows us to compute the density correlation functions for various states such as the ground state, the first two singly excited states, and the lowest lying doubly excited state. We show that in this lowest lying doubly excited state, a state which has been speculated as to being involved in the singlet fission process, the electrons and holes behave in a triplet like manner.

  3. Influence of excitation power density on temperature dependencies of NaYF4: Yb, Er nanoparticles luminescence spectra

    Science.gov (United States)

    Ustalkov, Sergey O.; Kozlova, Ekaterina A.; Savenko, Olga A.; Mohammed, Ammar H. M.; Kochubey, Vyacheslav I.; Skaptsov, Alexander A.

    2017-03-01

    Upconversion nanoparticles are good candidates for nanothermometry. The wavelength of the excitation and luminescence lie in optical window. The influence of the excitation power density on the luminescence temperature dependences is studded. Ratio of luminescence intensities linearly depends on temperature.

  4. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  5. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  6. Development and implementation of theoretical methods for the description of electronically core-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Jan

    2016-03-23

    My PhD project mainly consists of two important parts. One was to enhance and develop variants of the core-valence-separation-algebraic-diagrammatic-construction (CVS-ADC) method and implement all approaches efficiently in the adcman program, which is part of the Q-chem program package. Secondly, I benchmarked these implementations and simulated X-ray absorption spectra of small- and medium-sized molecules from different fields. In this thesis, I present my implementations, as well as the results and applications obtained with the CVS-ADC methods and give a general introduction into quantum chemical methods. At first, I implemented the CVS-ADC approach up to the extended second in an efficient way. The program is able to deal with systems up to 500 basis functions in an adequate computational time, which allows for accurate calculations of medium-sized closed-shell molecules, e.g. acenaphthenequinone (ANQ). Afterwards, the CVS-ADC implementation was extended for the first time to deal with open-shell systems, i.e. ions and radicals, which implies a treatment of unrestricted wave functions and spin-orbitals. The resulting method is denoted as CVS-UADC(2)-x. For the first time, I applied the CVS approximation to the the third order ADC scheme, derived the working equations, and implemented the CVS-ADC(3) method in adcman. As the last step, I applied the CVS formalism for the first time to the ISR approach to enable calculations of core-excited state properties and densities. To benchmark all restricted and unrestricted CVS-ADC/CVS-ISR methods up to third order in perturbation theory, I chose a set of small molecules, e.g. carbon monoxide (CO). The calculated values of core-excitation energies, transition moments and static dipole moments are compared with experimental data or other approaches, thereby estimating complete basis set (CBS) limits. Furthermore, a comprehensive study of different basis sets is performed. In combination with the CBS limit of the aug

  7. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  8. Cluster decay of Ba isotopes from ground state and as an excited ...

    Indian Academy of Sciences (India)

    122 is studied by modifying the Coulomb and proximity potential model for both the ground and excited state decays ... 20 and they arise as multiple clusters and are accompanied by multiple light particles. (Z ≤ 2). ... all aspects of α and cluster decay from these isotopes from both ground and excited states beginning with ...

  9. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents

    Science.gov (United States)

    Beckstead, Ashley Ann

    UV radiation from the sun is strongly absorbed by DNA, and the resulting electronic excited states can lead to the formation of mutagenic photoproducts. Decades of research have brought to light the excited-state dynamics of single RNA and DNA nucleobases, but questions remain about the nature of excited states accessed in DNA strands. In this thesis, I present ultrafast spectroscopic observations of photoinduced electron transfer from the oxidatively damaged bases, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine, to adenine in three dinucleotides. The results reveal that charge transfer states are formed on a timescale faster than our instrumental resolution (electron transfer efficiently returns the excited-state population to the ground state on timescales from tens to hundreds of ps. In addition to recent spectroscopic observations of charge transfer state species in DNA by other groups, our results have augmented understanding of the long-lived transient signals observed in DNA strands. The observation of photoinduced electron transfer in these oxidatively damaged nucleobases also supports a recent proposal regarding the role of oxidative products in pre-RNA catalysis. I discuss these observations in the contexts of fundamental DNA excited-state dynamics and prebiotic chemical evolution. In this thesis, I also present the first ultrafast spectroscopic investigation of violacein, a pigment isolated from Antarctic bacteria. Despite claims for the photoprotective role of this pigment, there has never been a spectroscopic analysis of excited-state deactivation in violacein. Emission spectra, fluorescence quantum yields and excited-state lifetimes of violacein in various solvents were measured for the first time. Both the fluorescence quantum yield and excited-state lifetime of violacein increase in increasingly viscous solvents, suggesting a large-scale motion mediates excited-state deactivation. I compare these

  10. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    Science.gov (United States)

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  11. Ultrafast fluorescence study of the effect of carboxylic and carboxylate substituents on the excited state properties of anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Córdoba, William [Escuela de Física, Universidad Nacional de Colombia Sede Medellín, A.A. 3840, Medellín (Colombia); Noria-Moreno, Raquel; Navarro, Pedro [Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510 México, DF (Mexico); Peon, Jorge, E-mail: jpeon@unam.mx [Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510 México, DF (Mexico)

    2014-01-15

    With the objective of understanding the interaction between carboxylic substituents and aromatic systems in electronically excited states, we have studied the photophysics of anthracene-9-carboxylic acid and its conjugate base through spectroscopic and computational approaches. We measured the emission spectrum evolution with femtosecond resolution observing that the formation of the relaxed fluorescent state of the acid corresponds to a red shifting of the emission which takes place within the first picosecond after excitation, a time-scale defined by the solvent response (acetone). For the case of the anthracene-9-carboxylate system, the spectral evolution is practically absent, indicating a lack of relaxation of the substituent orientation in the S{sub 1} state. Computational work at the time-dependent density functional theory level, considering the novel state-specific formalism, indicates that for anthracene-9-carboxylic acid, the first electronically excited state evolves from a structure with a nearly 60° dihedral angle between the carboxylic and aromatic systems, to a relaxed structure with a nearly 30° angle. On the other hand, the calculations show that for the salt, the carboxylate group remains decoupled from the aromatic system both in the ground and fluorescent state, remaining in both states at nearly 90°. Our results elucidate that the emission spectra of the acid and conjugate base are defined by the degree of interaction between the carboxylic (or carboxylate) group and the aromatic system. Such interactions are drastically different from the formal charge present in the carboxylate ion. -- Highlights: • Understanding of the interaction between carboxylic substituents and aromatic systems in electronically excited states. • Elucidation of the excited state dynamics of 9-ACA and its conjugated base in acetone solutions. • The spectral evolution time-scale of the aromatic acid and its salt depends on the solvation dynamics. • The

  12. Theoretical study of the low-lying excited states of {beta}-carotene isomers by a multireference configuration interaction method

    Energy Technology Data Exchange (ETDEWEB)

    Ceron-Carrasco, Jose P., E-mail: jpceron@um.es [Departamento de Quimica Fisica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Requena, Alberto, E-mail: rqna@um.es [Departamento de Quimica Fisica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Marian, Christel M., E-mail: Christel.Marian@uni-duesseldorf.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University, Duesseldorf, Universitaetsstr. 1, D-40225 Duesseldorf (Germany)

    2010-07-19

    Graphical abstract: Quantum chemical calculations reveal a linear correlation between the intensity of the cis-band and the shape of {beta}-carotene isomers. - Abstract: The combined density functional theory and multireference configuration interaction method (DFT/MRCI) has been employed to explore the ground and low-lying electronically excited states of various {beta}-carotene monocis and dicis isomers. Although the excitation energies are generally somewhat underestimated by DFT/MRCI, the experimental trends are well reproduced and allow an interpretation of the main bands of the UV-Vis spectra. The optically bright signal is correctly assigned to S{sub 0}{yields}S{sub 2}, corresponding to the HOMO {yields} LUMO transition, whereas the so-called cis-band originates mainly from the S{sub 0}{yields}S{sub 4} transition and arises from HOMO-1 {yields} LUMO and HOMO {yields} LUMO+1 excitations. The calculations reveal a correlation between the oscillator strengths of these transitions and the C6-C6' distance thus explaining the effect of the molecular configuration on the shape of the UV-Vis spectra.

  13. Excited-state free energy surfaces in solution: time-dependent density functional theory∕reference interaction site model self-consistent field method.

    Science.gov (United States)

    Minezawa, Noriyuki

    2013-06-28

    Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.

  14. Theoretical study on water-mediated excited-state multiple proton transfer in 7-azaindole: significance of hydrogen bond rearrangement.

    Science.gov (United States)

    Yu, Xue-fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2012-11-01

    Excited-state multiple proton transfer (ESMPT) in the cluster of 7-azaindole with three water molecules [7-azaindole(H(2)O)(3)] is theoretically investigated by the TDDFT, CASPT2, and CC2 methods. Examination of the potential energy surface in the first excited state indicates that ESMPT in 7-azaindole(H(2)O)(3) proceeds initially with the rearrangement of hydrogen bond structure of water molecules from a bridged-planar isomer to a cyclic-nonplanar isomer, followed by triple proton transfer in the latter. This reaction is found to be energetically more favorable than quadruple proton transfer in the bridged-planar isomer without hydrogen bond reorganization. It is also shown that all proton-transfer processes follow a concerted mechanism rather than a stepwise mechanism. The computational results show good consistency with the unexpected experimental observations as to the electronic spectra and excited-state lifetime. In particular, the barrier of the hydrogen bond rearrangement is found to be less than 1 kcal/mol, consistent with the missing vibronic bands for 7-azaindole(H(2)O)(3) with an excess energy of more than 200 cm(-1) in the S(1) state.

  15. State-averaged Monte Carlo configuration interaction applied to electronically excited states

    CERN Document Server

    Coe, J P

    2014-01-01

    We introduce state-averaging into the method of Monte Carlo configuration interaction (SA-MCCI) to allow the stable and efficient calculation of excited states. We show that excited potential curves for H$_{3}$, including a crossing with the ground state, can be accurately reproduced using a small fraction of the FCI space. A recently introduced error measure for potential curves [J. P. Coe and M. J. Paterson, J. Chem. Phys., 137, 204108 (2012)] is shown to also be a fair approach when considering potential curves for multiple states. We demonstrate that potential curves for LiF using SA-MCCI agree well with the FCI results and the avoided crossing occurs correctly. The seam of conical intersections for CH$_{2}$ found by Yarkony [J. Chem. Phys., 104, 2932 (1996)] is used as a test for SA-MCCI and we compare potential curves from SA-MCCI with FCI results for this system for the first three triplet states. We then demonstrate the improvement from using SA-MCCI on the dipole of the $2$ $^{1}A_{1}$ state of carbo...

  16. Determination of dipole moment change on the electronic excitation of isolated Coumarin 153 by pendular-state spectroscopy

    Science.gov (United States)

    Kanya, Reika; Ohshima, Yasuhiro

    2003-03-01

    The change (Δ μ) in the permanent dipole moment on the S 1←S 0 electronic excitation is determined for Coumarin 153 (C153) in a molecular beam from the spectral change induced by applying a strong dc electric field up to 200 kV/cm. The comparison of the observed fluorescence excitation spectra under various external fields with the corresponding simulations for a pendular-state molecule yields Δμ=7.1±0.4 D for both the syn and anti conformers of C153. Previous experimental results on Δ μ in the condensed phase, as well as the theoretical predictions reported in the literature, are discussed on the basis of the present value under an isolated condition.

  17. Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples.

    Science.gov (United States)

    Osticioli, Iacopo; Zoppi, Angela; Castellucci, Emilio Mario

    2007-08-01

    The feasibility of the shift-excitation Raman difference spectroscopy-difference deconvolution (SERDS-DDM) method for fluorescence suppression from Raman spectra of solid samples is discussed. For SERDS measurements a tunable diode laser source with an emission band centered at 684 nm is coupled to a conventional micro-Raman apparatus and a monochromator device is used for checking the excitation frequency stability. The shifted Raman spectra are then mathematically treated and a deconvolution procedure is used to reconstruct the Raman spectrum devoid of fluorescence. Two different cases are presented. In the first one, fluorescence is intrinsic to the sample and the Raman spectrum of cinnabar pigment is finally reconstructed. In the second, the presence of an external luminescence background in the spectrum of a pure sulfur crystal is considered. The SERDS-DDM reconstructed spectra are compared with spectra obtained via multi-point baseline subtraction and a significant improvement in the detection of weak bands is demonstrated. Practical insights for the application of this method are presented as well.

  18. E2 transitions between excited single-phonon states: Role of ground-state correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre Kurchatov Institute (Russian Federation); Voitenkov, D. A., E-mail: dvoytenkov@ippe.ru [Institute for Physics and Power Engineering (Russian Federation)

    2016-11-15

    The probabilities for E2 transitions between low-lying excited 3{sup −} and 5{sup −} single-phonon states in the {sup 208}Pb and {sup 132}Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  19. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    Science.gov (United States)

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  20. Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states.

    Science.gov (United States)

    Capitelli, M; Celiberto, R; Gorse, C; Laricchiuta, A; Pagano, D; Traversa, P

    2004-02-01

    A study of the dependence of transport coefficients (thermal conductivity, viscosity, electrical conductivity) of local thermodynamic equilibrium H2 plasmas on the presence of electronically atomic excited states, H(n), is reported. The results show that excited states with their "abnormal" cross sections strongly affect the transport coefficients especially at high pressure. Large relative errors are found when comparing the different quantities with the corresponding values obtained by using ground-state transport cross sections. The accuracy of the present calculation is finally discussed in the light of the selection of transport cross sections and in dependence of the considered number of excited states.

  1. How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: a simple generalization of ground-state Kubo theory.

    Science.gov (United States)

    Petit, Andrew S; Subotnik, Joseph E

    2014-07-07

    In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces.

  2. Role of the electronically excited-state hydrogen bonding and water clusters in the luminescent metal-organic framework.

    Science.gov (United States)

    Sui, Xiao; Ji, Min; Lan, Xin; Mi, Weihong; Hao, Ce; Qiu, Jieshan

    2013-05-20

    The electronically excited state and luminescence property of metal-organic framework Zn(3-tzba)(2,2'-bipy)(H2O)·nH2O have been investigated using the density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated geometry and infrared spectra in the ground state are consistent with the experimental results. The frontier molecular orbitals and electronic configuration indicated that the origin of luminescence is attributed to a ligand-to-ligand charge transfer (LLCT). We theoretically demonstrated that the hydrogen bond H47···O5═C is weakened in the excited state S1; the weakening of the excited-state hydrogen bonding should be beneficial to the luminescence. To explore the effect of the water clusters on the luminescence, we studied four complexes Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·2H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·H2O, and Zn(3-tzba)(2,2'-bipy)(H2O). The results reveal that the presence of water should play an important role in the emission characteristics of the MOF. Also, the UV-vis absorption and emission spectra of Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O are in good agreement with the experimental results.

  3. Femtosecond photoelectron imaging of transient electronic states and Rydberg atom emission from electronically excited he droplets.

    Science.gov (United States)

    Kornilov, Oleg; Bünermann, Oliver; Haxton, Daniel J; Leone, Stephen R; Neumark, Daniel M; Gessner, Oliver

    2011-07-14

    Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.

  4. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    Science.gov (United States)

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  5. Excited-state dynamics of hybrid multichromophoric systems: toward an excitation wavelength control of the charge separation pathways.

    Science.gov (United States)

    Banerji, Natalie; Duvanel, Guillaume; Perez-Velasco, Alejandro; Maity, Santanu; Sakai, Naomi; Matile, Stefan; Vauthey, Eric

    2009-07-23

    The photophysical properties of two hybrid multichromophoric systems consisting of an oligophenylethynyl (OPE) scaffold decorated by 10 red or blue naphthalene diimides (NDIs) have been investigated using femtosecond spectroscopy. Ultrafast charge separation was observed with both red and blue systems. However, the nature of the charge-separated state and its lifetime were found to differ substantially. For the red system, electron transfer occurs from the OPE scaffold to an NDI unit, independently of whether the OPE or an NDI is initially excited. However, charge separation upon OPE excitation is about 10 times faster, and takes place with a 100 fs time constant. The average lifetime of the ensuing charge-separated state amounts to about 650 ps. Charge separation in the blue system depends on which of the OPE scaffold or an NDI is excited. In the first case, an electron is transferred from the OPE to an NDI and the hole subsequently shifts to another NDI unit, whereas in the second case symmetry-breaking charge separation between two NDI units occurs. Although the charges are located on two NDIs in both cases, different recombination dynamics are observed. This is explained by the location of the ionic NDI moieties that depends on the charge separation pathway, hence on the excitation wavelength. The very different dynamics observed with red and blue systems can be accounted for by the oxidation potentials of the respective NDIs that are higher and lower than that of the OPE scaffold. Because of this, the relative energies of the two charge-separated states (hole on the OPE or an NDI) are inverted.

  6. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Blazhev, A; Braun, N; Jolie, J [Universitaet zu Koeln, Cologne (Germany); Grawe, H; Boutachkov, P; Gorska, M; Pietri, S; Domingo-Pardo, C; Kojouharov, I; Caceres, L; Engert, T; Farinon, F; Gerl, J; Goel, N [GSI, Darmstadt (Germany); Singh, B S Nara; Brock, T; Wadsworth, R [University of York, York (United Kingdom); Liu, Zh [University of Edinburgh, Edinburgh (United Kingdom); Nowacki, F [IPHC, Strasbourg (France); Grebosz, J, E-mail: a.blazhev@ikp.uni-koeln.d [IFJ PAN, Krakow (Poland)

    2010-01-01

    In {sup 98}Cd a new high-energy isomeric {gamma}-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the {sup 98}Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around {sup 100}Sn are discussed.

  7. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature...... of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic...

  8. Size effect of water cluster on the excited-state proton transfer in aqueous solvent

    Science.gov (United States)

    Liu, Yu-Hui; Chu, Tian-Shu

    2011-03-01

    Time-dependent density functional theory (TDDFT) was used to investigate the excited-state proton transfer (ESPT) dynamics of 6-hydroxyquinolinium (6HQc) in aqueous solvent, resulting in the excited zwitterionic form (6HQz). The optimized excited-state energy profiles of 6HQc:(H 2O) n complexes have been calculated along the phenolic O sbnd H bond to simulate the minimum energy pathway (MEP) in the excited state. The results suggested that the threshold of the size of the water cluster is 3 for the excited-state proton transfer of 6HQc in aqueous solvent, since the conformation of the stable hydrated proton requires proton transferring to the second or deeper shell of water solvent. Moreover, the stability of the hydrated proton can be improved significantly by adding one more H 2O molecule to form an Eigen cation in the excited-state 6HQz:H 9O 4+. The effect of the size of water cluster on the proton transfer is investigated theoretically in the excited state for the first time.

  9. Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Ma, Yuchen; Rohlfing, Michael

    2012-03-13

    Excited states of dicyanovinyl-substituted oligothiophenes are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. By varying the number of oligomer repeat units, we investigate the effects of resonant-antiresonant transition coupling, dynamical screening, and molecular conformations on calculated excitations. We find that the full dynamically screened Bethe-Salpeter equation yields absorption and emission energies in good agreement with experimental data. The effect of resonant-antiresonant coupling on the first singlet π → π* excitation monotonically decreases with increasing size of the molecule, while dynamical screening effects uniformly lower the excitation energies.

  10. Excited-state entanglement and thermal mutual information in random spin chains

    Science.gov (United States)

    Huang, Yichen; Moore, Joel E.

    2014-12-01

    Entanglement properties of excited eigenstates (or of thermal mixed states) are difficult to study with conventional analytical methods. We approach this problem for random spin chains using a recently developed real-space renormalization group technique for excited states ("RSRG-X"). For the random XX and quantum Ising chains, which have logarithmic divergences in the entanglement entropy of their (infinite-randomness) critical ground states, we show that the entanglement entropy of excited eigenstates retains a logarithmic divergence while the mutual information of thermal mixed states does not. However, in the XX case the coefficient of the logarithmic divergence extends from the universal ground-state value to a universal interval due to the degeneracy of excited eigenstates. These models are noninteracting in the sense of having free-fermion representations, allowing strong numerical checks of our analytical predictions.

  11. Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jinwu, E-mail: jy306@ccs.msstate.edu [Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762 (United States); Zhang, K.Y.; Li, Yan [Department of Physics, East China Normal university, Shanghai, 200062 (China); Chen, Yan [Department of Physics, State Key Laboratory of Surface Physics and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Zhang, W.P. [Department of Physics, East China Normal university, Shanghai, 200062 (China)

    2013-01-15

    Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases and quantum phase transitions between these phases. However, so far, how to detect these quantum phases and phase transitions effectively remains an outstanding challenge. In this paper, we will develop a systematic and unified theory of using the optical Bragg scattering, atomic Bragg scattering or cavity QED to detect the ground state and the excitation spectrum of many quantum phases of interacting bosons loaded in bipartite and frustrated optical lattices. The physically measurable quantities of the three experiments are the light scattering cross sections, the atom scattered clouds and the cavity leaking photons respectively. We show that the two photon Raman transition processes in the three detection methods not only couple to the density order parameter, but also the valence bond order parameter due to the hopping of the bosons on the lattice. This valence bond order coupling is very sensitive to any superfluid order or any valence bond (VB) order in the quantum phases to be probed. These quantum phases include not only the well-known superfluid and Mott insulating phases, but also other important phases such as various kinds of charge density waves (CDW), valence bond solids (VBS), and CDW-VBS phases with both CDW and VBS orders unique to frustrated lattices, and also various kinds of supersolids. We analyze respectively the experimental conditions of the three detection methods to probe these various quantum phases and their corresponding excitation spectra. We also address the effects of a finite temperature and a harmonic trap. We contrast the three scattering methods with recent in situ measurements inside a harmonic trap and argue that the two kinds of measurements are complementary to each other. The combination of both kinds of detection methods could be used to match the combination of

  12. State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface

    Science.gov (United States)

    Voráč, Jan; Synek, Petr; Procházka, Vojtěch; Hoder, Tomáš

    2017-07-01

    Optical emission spectroscopy applied to non-equilibrium plasmas in molecular gases can give important information on basic plasma parameters, including the rotational and vibrational temperatures and densities of the investigated radiative states. In order to precisely understand the non-equilibrium of rotational-vibrational state distribution from the investigated spectra without limiting presumptions, a state-by-state temperature-independent fitting procedure is the ideal approach. In this paper, we present a novel software tool developed for this purpose, freely available for the scientific community. The introduced tool offers a convenient way to construct Boltzmann plots even from partially overlapping spectra, in a user-friendly environment. We apply the novel software to the challenging case of OH spectra in surface streamer discharges generated from the triple-line of the argon/water/dielectrics interface. After the barrier discharge is characterised by ICCD and electrical measurements, the spatially and phase resolved rotational temperatures from N2(C-B) and OH(A-X) spectra are determined and compared. The precise analysis shows that OH(A) states with quantum numbers ≤ft({{v}\\prime}=0,~9≤slant {{N}\\prime}≤slant 13\\right) are overpopulated with respect to the found two-Boltzmann distribution. We hypothesise that fast vibrational-energy transfer is responsible for this phenomenon, observed here for the first time. Finally, the vibrational temperature of the plasma and the relative populations of hot and cold OH(A) states are quantified spatially and phase resolved.

  13. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shelby, Megan L. [Chemical; Department; Lestrange, Patrick J. [Department; Jackson, Nicholas E. [Department; Haldrup, Kristoffer [Physics; Mara, Michael W. [Chemical; Department; Stickrath, Andrew B. [Chemical; Zhu, Diling [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Lemke, Henrik T. [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Chollet, Matthieu [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Hoffman, Brian M. [Department; Li, Xiaosong [Department; Chen, Lin X. [Chemical; Department

    2016-07-06

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  14. Triphenylamine-benzimidazole derivatives: synthesis, excited-state characterization, and DFT studies.

    Science.gov (United States)

    Pina, João; Seixas de Melo, J Sérgio; Batista, Rosa M F; Costa, Susana P G; Raposo, M Manuela M

    2013-11-15

    The synthesis and comprehensive characterization of the excited states of four novel triphenylamine-benzimidazole derivatives has been undertaken in solution (ethanol and methylcyclohexane) at room temperature. This includes the determination of the absorption, fluorescence, and triplet-triplet absorption spectra, together with quantum yields of fluorescence, internal conversion, intersystem crossing, and singlet oxygen. From the overall data the radiative and radiationless rate constants could be obtained, and it is shown that the compounds are highly emissive with the radiative decay dominating, with more than 70% of the quanta loss through this deactivation channel. The basic structure of the triphenylamine-benzimidazole derivatives (1a) was modified at position 5 of the heterocyclic moiety with electron-donating (OH (1b), OCH3 (1c)) or electron-withdrawing groups (CN, (1d)). It was found that the photophysical properties remain basically unchanged with the different substitutions, although a marked Stokes shift was observed with 1d. The presence and nature of a charge-transfer transition is discussed with the help of theoretical (DFT and TDFT) data. All compounds displayed exceptionally high thermal stability (between 399 and 454 °C) as seen by thermogravimetric analysis.

  15. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew P.; Zia, Ahmad [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Horton, Peter [Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Ruban, Alexander V., E-mail: a.ruban@qmul.ac.uk [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2010-07-19

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to {approx}0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting (F{sub m}) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F{sub m} lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  16. Dual fluorescent polyaniline model compounds: steric and temperature effects on excited state charge separation.

    Science.gov (United States)

    Kapelle, Sabine; Rettig, Wolfgang; Lapouyade, René

    2002-07-01

    Low temperature dual fluorescence of several derivatives of 4-aminodiphenylamine is investigated quantitatively. A strong thermochromic and solvatochromic redshift is indicative of the high dipole moment of the CT state emitting at long wavelength. The combination of steady state and time-resolved data allowed the calculation of the excited-state equilibrium. The absence of CT-risetimes in diethyl ether and their presence in butyronitrile points to the complication by additional ground state conformational equilibria. Both ground and excited state equilibria depend on solvent polarity and temperature. High solvent polarity favours one of the ground state conformers.

  17. Constraining the equation of state with identified particle spectra

    Science.gov (United States)

    Monnai, Akihiko; Ollitrault, Jean-Yves

    2017-10-01

    We show that in a central nucleus-nucleus collision, the variation of the mean transverse mass with the multiplicity is determined, up to a rescaling, by the variation of the energy over entropy ratio as a function of the entropy density, thus providing a direct link between experimental data and the equation of state. Each colliding energy thus probes the equation of state at an effective entropy density, whose approximate value is 19 fm-3 for Au+Au collisions at 200 GeV and 41 fm-3 for Pb+Pb collisions at 2.76 TeV, corresponding to temperatures of 227 and 279 MeV if the equation of state is taken from lattice calculations. The relative change of the mean transverse mass as a function of the colliding energy gives a direct measure of the pressure over energy density ratio P /ɛ , at the corresponding effective density. Using Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) data, we obtain P /ɛ =0.21 ±0.10 , in agreement with the lattice value P /ɛ =0.23 in the corresponding temperature range. Measurements over a wide range of colliding energies using a single detector with good particle identification would help reduce the error.

  18. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures

    Science.gov (United States)

    Robert, C.; Semina, M. A.; Cadiz, F.; Manca, M.; Courtade, E.; Taniguchi, T.; Watanabe, K.; Cai, H.; Tongay, S.; Lassagne, B.; Renucci, P.; Amand, T.; Marie, X.; Glazov, M. M.; Urbaszek, B.

    2018-01-01

    The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing us to extrapolate an exciton binding energy of ≈220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.

  19. Unusual emission properties of the selected organosilicon compounds containing a styryl-carbazole chromophore: inversion of the singlet excited states.

    Science.gov (United States)

    Rachuta, K; Bayda, M; Majchrzak, M; Koput, J; Marciniak, B

    2017-05-10

    The spectroscopic and photophysical properties of silicon-containing styryl-carbazole were investigated in various solvents, and the results were analyzed with reference to its carbon derivatives. In n-hexane, both the silicon- and the carbon-containing compounds had very similar emission properties. In acetonitrile, the emission properties remained the same for the C-compound but changed significantly for the Si-compounds. In particular, the fluorescence spectra of the latter were red-shifted, and their radiative rate constants were even 7 times larger than in n-hexane, which suggested that the emissive states of the silicon-containing compounds were different in these two solvents. DFT calculations using the CAM-B3LYP functional showed that the emissive state of the C-compound involves the LUMO+1 orbital regardless of the medium. In contrast, for the Si-compound, changing the medium from n-hexane to acetonitrile resulted in the inversion of the emissive states from an excited state involving the LUMO+1 orbital (the dipole moment μ = 4.2 D) to an excited state involving the LUMO orbital (μ = 8.9 D).

  20. High-resolution spectroscopy of jet-cooled 1,1'-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system.

    Science.gov (United States)

    Smolarek, Szymon; Vdovin, Alexander; Rijs, Anouk; van Walree, Cornelis A; Zgierski, Marek Z; Buma, Wybren J

    2011-09-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We find that the excitation spectrum of S(1) displays extensive vibrational progressions that we identify to arise from large changes in the torsional angles of the phenyl rings upon electronic excitation. The extensive activity of the antisymmetric inter-ring torsional vibration provides conclusive evidence for a loss of symmetry upon excitation, leading to an inequivalence of the two phenyl rings. Nonresonant zero kinetic energy photoelectron spectroscopy from the ground state of the neutral molecule to the ground state of the radical cation, on the other hand, demonstrates that upon ionization symmetry is retained, and that the geometry changes are considerably smaller. Apart from elucidating how removal of an electron affects the structure of the molecule, these measurements provide an accurate value for the adiabatic ionization energy (65274 ± 1 cm(-1) (8.093 eV)). Zero kinetic energy photoelectron spectra obtained after excitation of vibronic levels in S(1) confirm these conclusions and provide us with an extensive atlas of ionic vibronic energy levels. For higher excitation energies the excitation spectrum of S(1) becomes quite congested and shows unexpected large intensities. Ab initio calculations strongly suggest that this is caused by a conical intersection between S(1) and S(2). © 2011 American Chemical Society

  1. Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states.

    Science.gov (United States)

    Podlesnyak, A; Streule, S; Mesot, J; Medarde, M; Pomjakushina, E; Conder, K; Tanaka, A; Haverkort, M W; Khomskii, D I

    2006-12-15

    A gradual spin-state transition occurs in LaCoO3 around T approximately 80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering and found that with increasing temperature an excitation at approximately 0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal-field interaction and spin-orbit coupling, we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (t(2g)(5)e(g)(1), S=1) versus high-spin (t(2g)(4)e(g)(2), S=2) states. Since the g factor obtained from the field dependence of the inelastic neutron scattering is g approximately 3, the second interpretation is definitely favored.

  2. FT-Raman and FTIR spectra of photoactive aminobenzazole derivatives in the solid state: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Martins [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil); Rodembusch, Fabiano Severo [Universidade Federal do Rio Grande do Sul, Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS (Brazil); Habis, Charles [Northern Virginia Community College, Manassas, VA (United States); Moreira, Eduardo Ceretta, E-mail: eduardomoreira@unipampa.edu.br [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil)

    2014-12-15

    This study reports the experimental investigation of two photoactive aminobenzazole derivatives in the solid state by FT-Raman and Infrared Spectroscopies (FTIR) and its comparison with theoretical models. The optimized molecular structure, vibrational frequencies, and corresponding vibrational assignments of these compounds have been investigated experimentally and theoretically using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) and Gaussian03 Software Package. The FT-Raman and FTIR spectra were acquired with high resolution and emission frequencies identified by simulating the vibrational modes. The most intense peak observed in the FT-Raman spectra is the in-plane deformation vibrational of O–H bond that could be related to the vibrational region responsible for the stabilization of the enol conformer in the ground state which undergoes ESIPT to form a keto tautomer in the excited state. Additionally, the position of the amino group played an important role on the vibrational characteristics of the studied compounds. Also, the simulations proved to be a good approach in undertaking the FTIR and FT-Raman experiments. The use of graphic correlations helps us to determine the method and basis that best fit the experimental results. - Highlights: • Structural and vibrational properties of two aminobenzazoles were reported. • Comparison between experimental techniques and theoretical models. • The position of the amino group played an important role on the vibrational characteristics of the studied compounds.

  3. Interception of excited vibrational quantum states by O2 in atmospheric association reactions.

    Science.gov (United States)

    Glowacki, David R; Lockhart, James; Blitz, Mark A; Klippenstein, Stephen J; Pilling, Michael J; Robertson, Struan H; Seakins, Paul W

    2012-08-31

    Bimolecular reactions in Earth's atmosphere are generally assumed to proceed between reactants whose internal quantum states are fully thermally relaxed. Here, we highlight a dramatic role for vibrationally excited bimolecular reactants in the oxidation of acetylene. The reaction proceeds by preliminary adduct formation between the alkyne and OH radical, with subsequent O(2) addition. Using a detailed theoretical model, we show that the product-branching ratio is determined by the excited vibrational quantum-state distribution of the adduct at the moment it reacts with O(2). Experimentally, we found that under the simulated atmospheric conditions O(2) intercepts ~25% of the excited adducts before their vibrational quantum states have fully relaxed. Analogous interception of excited-state radicals by O(2) is likely common to a range of atmospheric reactions that proceed through peroxy complexes.

  4. Tracking the Excited-State Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry

    National Research Council Canada - National Science Library

    Luis Manuel Frutos; Tadeusz Andruniów; Fabrizio Santoro; Nicolas Ferré; Massimo Olivucci

    2007-01-01

    ...). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh...

  5. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  6. Description of ground and excited electronic states by ensemble density functional method with extended active space

    Science.gov (United States)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-01

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units. We demonstrate that the new method correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated with π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.

  7. Nonaxial shapes of even–even lantanide and actinide nuclei in excited collective states

    Energy Technology Data Exchange (ETDEWEB)

    Nadirbekov, M. S., E-mail: nodirbekov@inp.uz; Bozarov, O. A. [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2016-07-15

    Quadrupole-type excited states of even–even nuclei are studied on the basis of arbitrary-triaxiality model. It is shown that the inclusion of high-order terms in the expansion of the rotational-energy operator in the variable γ improves substantially agreement between our theoretical results and respective experimental data. The proposed model makes it possible to explain the intricate character of the spectrum of excited states of even–even lanthanide and actinide nuclei.

  8. OPTIMIZATION OF A BOXCAR INTEGRATOR AVERAGER SYSTEM FOR EXCITED-STATE LIFETIME MEASUREMENTS

    OpenAIRE

    NOVO, JBM; PESSINE, FBT

    1992-01-01

    The instrumental distortions due to adjustable parameters of the SR250 boxcar integrator/averager system and a pulsed-laser luminescence spectrometer on the excited-state lifetime decay waveforms were investigated. A theoretical model which takes into account the exponential moving average for this instrument and also RC distortion on the time-dependent luminescence signal is presented. An analytical expression relating the sample's excited-state lifetime and the adjustable instrumental param...

  9. Influence of excited states on the energy loss of fast ions in a hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. (Max-Planck-Institut fuer Quantenoptik, D-8046 Garching, Germany (DE)); Peter, T. (Max-Planck-Institut fuer Chemie, D-6500 Mainz, Germany (DE))

    1991-04-01

    Stopping power calculations of fast ions penetrating a hydrogen plasma target in local thermodynamic equilibrium at arbitrary temperatures are performed. Excited state contributions to the energy loss are included in the framework of the Bethe formalism. Average ionization potentials for the excited ions are given in a quasiclassical approximation. It is shown that the net effect is an enhancement of the stopping power compared to the energy loss when assuming all atoms to be in their ground state.

  10. Sum rule analysis of vector and axial-vector spectral functions with excited states in vacuum

    OpenAIRE

    Hohler, Paul M.; Rapp, Ralf

    2012-01-01

    We simultaneously analyze vector and axial-vector spectral functions in vacuum using hadronic models constrained by experimental data and the requirement that Weinberg-type sum rules are satisfied. Upon explicit inclusion of an excited vector state, viz. rho', and the requirement that the perturbative continua are degenerate in vector and axial-vector channels, we deduce the existence of an excited axial-vector resonance state, a1', in order that the Weinberg sum rules are satisfied. The resu...

  11. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state.

    Science.gov (United States)

    Hanuza, J; Godlewska, P; Lisiecki, R; Ryba-Romanowski, W; Kadłubański, P; Lorenc, J; Łukowiak, A; Macalik, L; Gerasymchuk, Yu; Legendziewicz, J

    2018-01-04

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln=Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass. Copyright © 2018. Published by Elsevier B.V.

  12. Dataset of the absorption, emission and excitation spectra and fluorescence intensity graphs of fluorescent cyanine dyes for the quantification of low amounts of dsDNA

    Directory of Open Access Journals (Sweden)

    Brigitte Bruijns

    2017-02-01

    Full Text Available This article describes data related to a research article entitled “Fluorescent cyanine dyes for the quantification of low amounts of dsDNA” (B. Bruijns, R. Tiggelaar, J. Gardeniers, 2016 [1]. Six cyanine dsDNA dyes - EvaGreen, SYBR Green, PicoGreen, AccuClear, AccuBlue NextGen and YOYO-1 – are investigated and in this article the absorption spectra, as well as excitation and emission spectra, for all six researched cyanine dyes are given, all recorded under exactly identical experimental conditions. The intensity graphs, with the relative fluorescence in the presence of low amounts of dsDNA, are also provided.

  13. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  14. Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres.

    Science.gov (United States)

    Manton, Jennifer C; Amirjalayer, Saeed; Coleman, Anthony C; McMahon, Suzanne; Harvey, Emma C; Greetham, Gregory M; Clark, Ian P; Buma, Wybren Jan; Woutersen, Sander; Pryce, Mary T; Long, Conor

    2014-12-21

    The photochemistry and photophysics of three model "half-sandwich" complexes (η(6)-benzophenone)Cr(CO)3, (η(6)-styrene)Cr(CO)3, and (η(6)-allylbenzene)Cr(CO)3 were investigated using pico-second time-resolved infrared spectroscopy and time-dependent density functional theory methods. The (η(6)-benzophenone)Cr(CO)3 complex was studied using two excitation wavelengths (470 and 320 nm) while the remaining complexes were irradiated using 400 nm light. Two independent excited states were detected spectroscopically for each complex, one an unreactive excited state of metal-to-arene charge-transfer character and the other with metal-to-carbonyl charge transfer character. This second excited state leads to an arrested release of CO on the pico-second time-scale. Low-energy excitation (470 nm) of (η(6)-benzophenone)Cr(CO)3 populated only the unreactive excited state which simply relaxes to the parent complex. Higher energy irradiation (320 nm) induced CO-loss. Irradiation of (η(6)-styrene)Cr(CO)3, or (η(6)-allylbenzene)Cr(CO)3 at 400 nm provided evidence for the simultaneous population of both the reactive and unreactive excited states. The efficiency at which the unreactive excited state is populated depends on the degree of conjugation of the substituent with the arene π-system and this affects the efficiency of the CO-loss process. The quantum yield of CO-loss is 0.50 for (η(6)-allylbenzene)Cr(CO)3 and 0.43 for (η(6)-styrene)Cr(CO)3. These studies provide evidence for the existence of two photophysical routes to CO loss, a minor ultrafast route and an arrested mechanism involving the intermediate population of a reactive excited state. This reactive excited state either relaxes to reform the parent species or eject CO. Thus the quantum yield of the CO-loss is strongly dependent on the excitation wavelength. Time-dependent density functional theory calculations confirm that the state responsible for ultrafast CO-loss has significant metal-centred character while

  15. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  16. Photochemistry of excited-state species in natural waters: a role for particulate organic matter.

    Science.gov (United States)

    Cottrell, Barbara A; Timko, Stephen A; Devera, Lianne; Robinson, Alice K; Gonsior, Michael; Vizenor, Ashley E; Simpson, André J; Cooper, William J

    2013-09-15

    Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Norbert; Blazhev, Andrey; Jolie, Jan [Institut fuer Kernphysik, Universitaet Koeln (Germany); Boutachkov, Plamen; Gorska, Magda; Grawe, Hubert; Pietri, Stephane [GSI, Darmstadt (Germany); Brock, Tim; Nara Singh, B.S.; Wadsworth, Robert [Department of Physics, University of York, York (United Kingdom); Liu, Zhong [University of Edinburgh, Edinburgh (United Kingdom)

    2009-07-01

    Studies of isomerism in the proton-rich N {approx_equal}Z nuclei around {sup 100}Sn give important insights into the role of proton-neutron pairing and also serve as testing grounds for nuclear models. In summer 2008, an experiment on {sup 96,97,98}Cd was performed using the FRS fragment separator and the RISING germanium array at GSI. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u {sup 124}Xe beam on a 4 g/cm{sup 2} {sup 9}Be target and finally implanted into an active stopper consisting of 9 double-sided silicon strip detectors. In {sup 98}Cd, a new high-energy isomeric transition was identified. Preliminary results on {sup 98}Cd are presented and their implications for the high-excitation level scheme are discussed.

  18. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination

    Energy Technology Data Exchange (ETDEWEB)

    Bhosale, J. S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S. [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-01-15

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  19. Electronically excited states of vitamin B12 and methylcobalamin: theoretical analysis of absorption, CD, and MCD data.

    Science.gov (United States)

    Solheim, Harald; Kornobis, Karina; Ruud, Kenneth; Kozlowski, Pawel M

    2011-02-03

    Linear and quadratic response time-dependent density functional theory (TD-DFT) has been applied to investigate absorption (Abs), circular dichroism (CD), and magnetic CD (MCD) spectra of cyanocobalamin (CNCbl) and methylcobalamin (MeCbl). Although electronically excited states of both cobalamins have been probed by applying different experimental techniques, their exact nature remains poorly understood from an electronic structure point of view. Recent theoretical studies have revealed a lot of relevant information about their properties but also left some unresolved issues related to the nature of individual transitions. In this contribution, not only Abs but also CD and MCD spectra of both cobalamins were computed for direct comparison with experiment. The results were evaluated with respect to the choice of exchange-correlation functional, basis set, and the environment (gas phase or solvent) used in the calculation. Taking into account the complexity of the CNCbl and MeCbl systems, reliable agreement between theory and experiment was achieved based on calculations employing the BP86 functional, particularly for the low-energy α/β bands. This spectral range has been traditionally interpreted as a vibrational progression associated with a single electronic excitation, but according to the present analysis for both cobalamins, these bands are best interpreted as consisting of multiple electronic transitions.

  20. Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study.

    Science.gov (United States)

    Banyasz, Akos; Douki, Thierry; Improta, Roberto; Gustavsson, Thomas; Onidas, Delphine; Vayá, Ignacio; Perron, Marion; Markovitsi, Dimitra

    2012-09-12

    The study addresses interconnected issues related to two major types of cycloadditions between adjacent thymines in DNA leading to cyclobutane dimers (TTs) and (6-4) adducts. Experimental results are obtained for the single strand (dT)(20) by steady-state and time-resolved optical spectroscopy, as well as by HPLC coupled to mass spectrometry. Calculations are carried out for the dinucleoside monophosphate in water using the TD-M052X method and including the polarizable continuum model; the reliability of TD-M052X is checked against CASPT2 calculations regarding the behavior of two stacked thymines in the gas phase. It is shown that irradiation at the main absorption band leads to cyclobutane dimers (TTs) and (6-4) adducts via different electronic excited states. TTs are formed via (1)ππ* excitons; [2 + 2] dimerization proceeds along a barrierless path, in line with the constant quantum yield (0.05) with the irradiation wavelength, the contribution of the (3)ππ* state to this reaction being less than 10%. The formation of oxetane, the reaction intermediate leading to (6-4) adducts, occurs via charge transfer excited states involving two stacked thymines, whose fingerprint is detected in the fluorescence spectra; it involves an energy barrier explaining the important decrease in the quantum yield of (6-4) adducts with the irradiation wavelength.

  1. On excited states in real-time AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Botta-Cantcheff, Marcelo; Martínez, Pedro J.; Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2016-02-25

    The Skenderis-van Rees prescription, which allows the calculation of time-ordered correlation functions of local operators in CFT’s using holographic methods is studied and applied for excited states. Calculation of correlators and matrix elements of local CFT operators between generic in/out states are carried out in global Lorentzian AdS. We find the precise form of such states, obtain an holographic formula to compute the inner product between them, and using the consistency with other known prescriptions, we argue that the in/out excited states built according to the Skenderis-Van Rees prescription correspond to coherent states in the (large-N) AdS-Hilbert space. This is confirmed by explicit holographic computations. The outcome of this study has remarkable implications on generalizing the Hartle-Hawking construction for wave functionals of excited states in AdS quantum gravity.

  2. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  3. First-order derivative couplings between excited states from adiabatic TDDFT response theory.

    Science.gov (United States)

    Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  4. Mass spectra of four-quark states in the hidden charm sector

    Science.gov (United States)

    Patel, Smruti; Shah, Manan; Vinodkumar, P. C.

    2014-08-01

    Masses of the low-lying four-quark states in the hidden charm sector ( are calculated within the framework of a non-relativistic quark model. The four-body system is considered as two two-body systems such as diquark-antidiquark ( - and quark-antiquark-quark-antiquark ( - q molecular-like four-quark states. Here, the Cornell-type potential has been used for describing the two-body interactions among Q - q , - , Q - , Qq - and Q - q , with appropriate string tensions. Our present analysis suggests the following exotic states: X(3823) , Z c(3900) , X(3915) , Z c(4025) , (4040) , Z 1(4050) and X(4160) as Q - q molecular-like four-quark states, while Z c(3885) , X(3940) and Y(4140) as the diquark-antidiquark four-quark states. We have been able to assign the JPC values for many of the recently observed exotic states according to their structure. Apart from this, we have identified the charged state Z(4430) recently confirmed by LHCb as the first radial excitation of Zc(3885) with G = + 1 and Y(4360) state as the first radial excitation of Y(4008) with G = - 1 and the state as the first radial excitation of the state.

  5. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light.

  6. Dual fluorescence of ellipticine: excited state proton transfer from solvent versus solvent mediated intramolecular proton transfer.

    Science.gov (United States)

    Banerjee, Sanghamitra; Pabbathi, Ashok; Sekhar, M Chandra; Samanta, Anunay

    2011-08-25

    Photophysical properties of a natural plant alkaloid, ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), which comprises both proton donating and accepting sites, have been studied in different solvents using steady state and time-resolved fluorescence techniques primarily to understand the origin of dual fluorescence that this molecule exhibits in some specific alcoholic solvents. Ground and excited state calculations based on density functional theory have also been carried out to help interpretation of the experimental data. It is shown that the long-wavelength emission of the molecule is dependent on the hydrogen bond donating ability of the solvent, and in methanol, this emission band arises solely from an excited state reaction. However, in ethylene glycol, both ground and excited state reactions contribute to the long wavelength emission. The time-resolved fluorescence data of the system in methanol and ethylene glycol indicates the presence of two different hydrogen bonded species of ellipticine of which only one participates in the excited state reaction. The rate constant of the excited state reaction in these solvents is estimated to be around 4.2-8.0 × 10(8) s(-1). It appears that the present results are better understood in terms of solvent-mediated excited state intramolecular proton transfer reaction from the pyrrole nitrogen to the pyridine nitrogen leading to the formation of the tautomeric form of the molecule rather than excited state proton transfer from the solvents leading to the formation of the protonated form of ellipticine. © 2011 American Chemical Society

  7. Accounting for highly excited states in detailed opacity calculations

    CERN Document Server

    Pain, Jean-Christophe

    2015-01-01

    In multiply-charged ion plasmas, a significant number of electrons may occupy high-energy orbitals. These "Rydberg" electrons, when they act as spectators, are responsible for a number of satellites of X-ray absorption or emission lines, yielding a broadening of the red wing of the resonance lines. The contribution of such satellite lines may be important, because of the high degeneracy of the relevant excited configurations which give these large Boltzmann weights. However, it is in general difficult to take these configurations into account since they are likely to give rise to a large number of lines. We propose to model the perturbation induced by the spectators in a way similar to the Partially-Resolved-Transition-Array approach recently published by C. Iglesias. It consists in a partial detailed-line-accounting calculation in which the effect of the Rydberg spectators is included through a shift and width, expressed in terms of the canonical partition functions, which are key-ingredients of the Super-Tr...

  8. Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.

    2015-04-07

    A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.

  9. Collective excitations in liquid dimethyl sulfoxide (DMSO): FIR spectrum, low frequency vibrational density of states, and ultrafast dipolar solvation dynamics

    Science.gov (United States)

    Hazra, Milan K.; Bagchi, Biman

    2017-01-01

    Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through a study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work, we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infrared spectrum obtained through the Fourier transform of total dipole moment auto-time correlation function, (ii) from the Fourier transform of the translational and angular velocity time autocorrelation functions, and (iii) a quenched normal mode analysis of the parent liquid at 300 K. The three spectra, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. The study of participation ratio of the density of states obtained from the normal mode analysis shows that the broad spectrum around 100 cm-1 involves collective oscillations of 300-400 molecules. Dipolar solvation dynamics exhibit ultrafast energy relaxation with an initial time constant around 157 fs which can be attributed to the coupling to the collective excitations. We compare the properties of DMSO with those of water vis-a-vis the existence of the low frequency collective modes. Last, we find that the collective excitation spectrum exhibits strong temperature dependence.

  10. Collective excitations in liquid dimethyl sulfoxide (DMSO): FIR spectrum, low frequency vibrational density of states, and ultrafast dipolar solvation dynamics.

    Science.gov (United States)

    Hazra, Milan K; Bagchi, Biman

    2017-01-14

    Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through a study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work, we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infrared spectrum obtained through the Fourier transform of total dipole moment auto-time correlation function, (ii) from the Fourier transform of the translational and angular velocity time autocorrelation functions, and (iii) a quenched normal mode analysis of the parent liquid at 300 K. The three spectra, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. The study of participation ratio of the density of states obtained from the normal mode analysis shows that the broad spectrum around 100 cm -1 involves collective oscillations of 300-400 molecules. Dipolar solvation dynamics exhibit ultrafast energy relaxation with an initial time constant around 157 fs which can be attributed to the coupling to the collective excitations. We compare the properties of DMSO with those of water vis-a-vis the existence of the low frequency collective modes. Last, we find that the collective excitation spectrum exhibits strong temperature dependence.

  11. Improvements in design of spectra of multisine and binary excitation signals for multi-frequency bioimpedance measurement.

    Science.gov (United States)

    Land, Raul; Cahill, Brian P; Parve, Toomas; Annus, Paul; Min, Mart

    2011-01-01

    The paper discusses the usability of multi-frequency binary waveforms for broadband excitation in fast measurements of impedance spectrum of biological objects. It is shown that up to 70% of the energy of the amplitude spectrum of such two-level binary signals can be concentrated into the selected separate frequencies. The levels of selected frequency components are controllable in tens and hundreds of times. In this way we can underline the most important frequencies enhancing the corresponding amplitudes in the spectrum of excitation signal. As an implementation example, we consider the impedance spectroscopy in micro-fluidic devices for inline measurement of the conductivity of droplets in segmented flow. We use a thin-walled glass capillary with electrodes contacting the outer surface so that the contactless measurement of conductivity of liquid with biologic cells becomes possible.

  12. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    propdienylaniline)-cyclopentanone (MPAC), a ketocyanine dye, have been investigated using steady-state absorption and emission as well as femtosecond time-resolved absorption spectroscopic techniques. Following photoexcitation using 400 ...

  13. Existence of excited states for a nonlinear Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Balabane, M.; Cazenave, T.; Douady, A.; Merle, F.

    1988-01-21

    We prove the existence of infinitely many stationary states for the nonlinear Dirac equation. Seeking eigenfunctions splitted in spherical coordinates leads to analyse a nonautonomous dynamical system in R/sup 2/. The number of eigenfunctions is given by the number of intersections of the stable manifold of the origin with the curve of admissible data. This proves the existence of infinitely many stationary states ordered by the number of nodes of the components

  14. Head-to-tail interactions in tyrosine/benzophenone dyads in the ground and the excited state: NMR and laser flash photolysis studies.

    Science.gov (United States)

    Hörner, Gerald; Hug, Gordon L; Pogocki, Dariusz; Filipiak, Piotr; Bauer, Walter; Grohmann, Andreas; Lämmermann, Anica; Pedzinski, Tomasz; Marciniak, Bronislaw

    2008-01-01

    The formation of head-to-tail contacts in de novo synthesized benzophenone/tyrosine dyads, bp logical sum Tyr, was probed in the ground and excited triplet state by NMR techniques and laser flash photolysis, respectively. The high affinity of triplet-excited ketones towards phenols was used to trace the geometric demands for high reactivity in the excited state. A retardation effect on the rates with increasing hydrogen-bond-acceptor ability of the solvent is correlated with ground-state masking of the phenol. In a given solvent the efficiencies of the intramolecular hydrogen-atom-transfer reaction depend strongly on the properties of the linker: rate constants for the intramolecular quenching of the triplet state cover the range of 10(5) to 10(8) s(-1). The observed order of reactivity correlates to a) the probability of close contacts (from molecular-dynamics simulations) and b) the extent of the electronic overlap between the pi systems of the donor and acceptor moieties (from NMR). A broad survey of the NMR spectra in nine different solvents showed that head-to-tail interactions between the aromatic moieties of the bp logical sum Tyr dyads already exist in the ground state. Favourable aromatic-aromatic interactions in the ground state appear to correspond to high excited-state reactivity.

  15. Resonance Raman Intensities Demonstrate that C5 Substituents Affect the Initial Excited-State Structural Dynamics of Uracil More than C6 Substituents.

    Science.gov (United States)

    Teimoory, Faranak; Loppnow, Glen R

    2016-05-04

    Resonance Raman derived initial excited-state structural dynamics provide insight into the photochemical mechanisms of pyrimidine nucleobases, in which the photochemistry appears to be dictated by the C5 and C6 substituents. The absorption and resonance Raman spectra and excitation profiles of 5,6-dideuterouracil were measured to further test this photochemical dependence on the C5 and C6 substituents. The resulting set of excited-state reorganization energies of the observed internal coordinates were calculated and compared to those of other 5- and 6-substituted uracils. The results show that the initial excited-state dynamics along the C5C6 stretch responds to changes in mass at C5 and C6 in the same manner but that the in-plane bends at C5 and C6 are more sensitive to substituents at the C5 position than at the C6 position. In addition, the presence of two deuterium substituents at C5 and C6 decreases the initial excited-state structural dynamics along these in-plane bends, in contrast to what is observed in the presence of two CH3 groups on C5 and C6. The results are discussed in the context of DNA nucleobase photochemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  17. Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183.

    Science.gov (United States)

    Joung, Joonyoung F; Kim, Sangin; Park, Sungnam

    2015-12-17

    Coumarin 183 (C183) was used as a photoacid to study excited-state proton transfer (ESPT) reactions. Here, we studied the effect of ions on the ESPT of C183 in aqueous NaCl solutions using a steady-state fluorescence spectroscopy and time-correlated single photon counting (TCSPC) method. The acid dissociation equilibrium of excited-state C183 and the activation energy for the ESPT of C183 were determined as a function of NaCl concentration. The change in the equilibrium constant was found to be correlated with the solvation energy of deprotonated C183. Frequency-resolved TCSPC signals measured at several temperatures were analyzed by using a global fitting analysis method which enabled us to extract all the rate constants involving the ESPT reaction and the spectra of individual species. The activation energy for the ESPT reaction of C183 was highly dependent on NaCl concentration. Quantum chemical calculations were used to calculate the local hydrogen-bond (H-bond) configurations around C183 in aqueous NaCl solutions. It was found that the activation energy for the ESPT was determined by the local H-bond configurations around C183 which were significantly influenced by the dissolved ions.

  18. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  19. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  20. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    OpenAIRE

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.

    2011-01-01

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a star-like geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S_{1/2}->5P_{3/2}->6S_{1/2}->nP in Rb atoms have shown that compared to the one- and two-photon laser excitation this approach provides much narrower line width and longer coherence time for both cold atom samples and hot...

  1. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.

    Science.gov (United States)

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T

    2008-03-27

    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  2. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  3. Excited electronic states from a variational approach based on symmetry-projected Hartree--Fock configurations

    CERN Document Server

    Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2013-01-01

    Recent work from our research group has demonstrated that symmetry-projected Hartree--Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C$_2$ dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model $C_{2v}$ insertion pathway for BeH$_2$. The variational excited state methodolo...

  4. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2......,2'-bipyridine)(3)](2+), where the excited-state charge and spin dynamics involved in the transition from a low-to a high-spin state (spin crossover) have long been a source of interest and controversy(6-15). Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity...

  5. Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature

    CERN Document Server

    Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-01-01

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.

  6. Quantum Entanglement and Shannon Information Entropy for the Doubly Excited Resonance State in Positronium Negative Ion

    Directory of Open Access Journals (Sweden)

    Chien-Hao Lin

    2015-09-01

    Full Text Available In the present work, we report an investigation on quantum entanglement in the doubly excited 2s2 1Se resonance state of the positronium negative ion by using highly correlated Hylleraas type wave functions, determined by calculation of the density of resonance states with the stabilization method. Once the resonance wave function is obtained, the spatial (electron-electron orbital entanglement entropies (von Neumann and linear can be quantified using the Schmidt decomposition method. Furthermore, Shannon entropy in position space, a measure for localization (or delocalization for such a doubly excited state, is also calculated.

  7. Shannon information entropy in position space for doubly excited states of helium with finite confinements

    Science.gov (United States)

    Ou, Jen-Hao; Ho, Yew Kam

    2017-12-01

    Quantifying electron localization in quantum confined systems remains challenging, especially for excited states. A quantum dot (QD) is represented by a helium atom in a finite oscillator potential. The effect of dot width variation on the electron localization in QD is systematically examined via Shannon entropy for low-lying doubly excited states (2s21Se, 2p21Se, 2s3s 1Se) obtained using highly correlated Hylleraas functions. In particular, the most effective dot width where the electron density is the most localized is determined successfully and justified by the electron density plot for all three states.

  8. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    Science.gov (United States)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be observed in the outgoing beam behind the crystal. To get the probabilities for the ion to be

  9. Dicationic states of hydrocarbons and a statistical approach to their Auger spectra

    Science.gov (United States)

    Ohrendorf, E. M.-L.; Tarantelli, F.; Cederbaum, L. S.

    1990-03-01

    The valence doubly ionized states of acetylene and ethane are computed and discussed, complementing previous investigations on other hydrocarbons via the Green's function method. The vertical double ionization potentials are used for the interpretation of the Auger spectra of the molecules. The analysis is performed by employing a simple statistical approach to the Auger rates where the states are weighted by their two-hole components. For all hydrocarbons studied the resulting theoretical spectra exhibit maxima in good agreement with the experimental Auger peaks and reproduce the essential features of the experimental spectra. Strong final-state correlation effects are found for acetylene, ethylene, and benzene. They lead to a breakdown of the molecular orbital picture of double ionization which seems to be a typical phenomenon for unsaturated molecules. This phenomenon manifests itself in the Auger spectrum by the appearance of a high density of dicationic states which cannot be described in the independent-particle approximation. By contrast, the Auger spectrum of ethane is found to be dominated by the appearance of main states accompanied by weak satellite states at high energy. There is a correspondence between many-body effects in the Auger spectrum and the chemical bond. General aspects of correlation effects in dicationic states are discussed and related to the case of singly ionized states.

  10. Switching of the triplet excited state of rhodamine-C60 dyads.

    Science.gov (United States)

    Wang, Fen; Cui, Xiaoneng; Lou, Zhangrong; Zhao, Jianzhang; Bao, Ming; Li, Xingwei

    2014-12-21

    Acid-switching of the triplet excited state in rhodamine-C60 dyads was achieved. The rhodamine moiety acts as an acid-activated visible light-harvesting antenna and C60 as the singlet energy acceptor and the spin converter, and production of the triplet state was enhanced in the presence of acid.

  11. Electron impact excitation of the D states of Mg, Ca and Sr atoms ...

    Indian Academy of Sciences (India)

    We have used non-relativistic and relativistic distorted wave approximation methods to study the excitation of the 1 states of magnesium ( = 3), calcium ( = 4) and strontium ( = 5) from the ground 1 state. Calculations have been performed for the complete set of parameters ( , L ~ ⊥ + , L ~ ⊥ − , ~ + , ~ − ) .

  12. Thermality and excited state Rényi entropy in two-dimensional CFT

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng-Li [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Wang, Huajia [Department of Physics, University of Illinois,Urbana-Champaign, IL 61801 (United States); Zhang, Jia-ju [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)

    2016-11-21

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  13. ARTICLE Volume-conserved Twist Excited-state of π-Conjugated Molecules

    Science.gov (United States)

    Sun, Qin-chao; Liu, Jian-yong; Hao, Yan; Yang, Xi-chuan

    2010-12-01

    The excited state characters of HY103 have been studied by means of time-resolved photon emission (time-correlated single photon counting) and time dependent density functional theory calculations. The experimental and theoretical results demonstrate that HY103 dyes undergo an efficient one-bond-flip motion after photoexicitation at room temperature, which leads to a very short lifetime of the normal fluorescence state, and a weak fluorescence emission around 670 nm. However, when HY103 are excited in amorphous glasses at 77 K, the normal fluorescence emission is prolonged to nanoseconds time scale about 2 ns, and the fluorescence emission is enhanced. Furthermore, a new emission state is produced, which is characterized as a volume-conserved twisted (VCT) state. This is the first observation of a VCT state. The experiment indicates that the VCT motion of excited state of π-conjugated molecules in restricted environment can form a stable emission state, and the excited state character of π-conjugated molecules in restricted environment is complex.

  14. Relativistic and correlated calculations on the ground, excited, and ionized states of iodine

    NARCIS (Netherlands)

    de Jong, W.A.; Visscher, L; Nieuwpoort, W.C

    1997-01-01

    The electronic structure, spectroscopic, and bonding properties of the ground, excited, and ionized states of iodine are studied within a four-component relativistic framework using the MOLFDIR program package, The experimentally determined properties of the (1) Sigma(g)(+) ground state are well

  15. PARAFAC modeling of fluorescence excitation-emission spectra of fish bile for rapid en route screening of PAC exposure.

    Science.gov (United States)

    Christensen, Jan H; Tomasi, Giorgio; Strand, Jakob; Andersen, Ole

    2009-06-15

    Polycyclic aromatic compound (PAC) metabolites in fish bile can be used as biomarkers for recent environmental exposure to PACs. Here, a novel method for rapid screening of nonhydrolyzed fish bile is presented. The method is based on excitation-emission fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and may constitute an alternative to fixed wavelength fluorescence and synchronous fluorescence spectroscopy (SFS). PARAFAC was applied to excitation-emission matrices (EEMs) of bile samples of shorthorn sculpins and European eels collected in Greenland and Denmark. The EEMs were decomposed into a four-factor PARAFAC model. The comparison of the PARAFAC factors with the EEMs of PAC metabolites and amino acids suggests that two factors are related to PAC metabolites and two correspond to fluorescent residues of tryptophan and tyrosine in bile proteins. A new standardization procedure based on the mean of the scores for the biological factors was used to correct for feeding status and sample dilution and, upon such normalization, the score plots of PARAFAC factors showed a clear distinction between exposed and nonexposed fish. A good correlation was found between the factor scores and 1-hydroxypyrene equivalents determined by SFS for high contamination levels, whereas the sensitivity was better for the EEM method.

  16. Investigations into photo-excited state dynamics in colloidal quantum dots

    Science.gov (United States)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  17. Synergy effects of electric and magnetic fields on locally excited-state fluorescence of photoinduced electron transfer systems in a polymer film.

    Science.gov (United States)

    Awasthi, Kamlesh; Iimori, Toshifumi; Ohta, Nobuhiro

    2009-10-08

    Photoluminescence of electron donor-acceptor pairs that show photoinduced electron transfer (PIET) has been measured in a polymer film under simultaneous application of electric field and magnetic field. Fluorescence emitted from the locally excited state (LE fluorescence) of 9-methylanthracene (MAnt) and pyrene (Py) is quenched by an electric field in a mixture of 1,3-dicyanobenzene (DCB) with MAnt or Py, indicating that PIET from the excited state of MAnt or Py to DCB is enhanced by an electric field. Simultaneous application of electric and magnetic fields enhances the reverse process from the radical-ion pair produced by PIET to the LE fluorescent state of MAnt or Py. As a result, the electric-field-induced quenching of the LE fluorescence is reduced by application of the magnetic fields. Thus, the synergy effect of electric and magnetic fields is observed on the LE fluorescence of MAnt or Py. Exciplex fluorescence spectra resulting from PIET can be obtained by analyzing the field effects on photoluminescence spectra, even when the exciplex fluorescence is too weak to be determined from the steady-state or time-resolved photoluminescence spectra at zero field.

  18. Production of excited beauty states in Z decays

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rossowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Van Gemmeren, P; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    A data sample of about 3.0 million hadronic Z decays collected by the ALEPH experiment at LEP in the years 1991 through 1994, is used to make an inclusive selection of B~hadron events. In this event sample 4227 \\pm 140 \\pm 252 B^* mesons in the decay B^* \\to B \\gamma and 1944 \\pm 108 \\pm 161 B^{**} mesons decaying into a B~meson and a charged pion are reconstructed. For the well established B^* meson the following quantities areobtained: \\Delta M = M_{B^*} - M_{B} = (45.30\\pm 0.35\\pm 0.87)~\\mathrm{MeV}/c^2 and N_{B^*}/(N_B+N_{B^*}) = (77.1 \\pm 2.6 \\pm 7.0)\\%. The angular distribution of the photons in the B^* rest frame is used to measure the relative contribution of longitudinal B^* polarization states to be \\sigma_L/(\\sigma_L + \\sigma_T)= (33 \\pm 6 \\pm 5)\\%. \\\\ Resonance structure in the M(B\\pi)-M(B) mass difference is observed at (424 \\pm 4 \\pm 10)~\\mathrm{MeV}/c^2. Its shape and position is in agreement with the expectation for B^{**}_{u,d} states decaying into B_{u,d}^{(*)} \\pi^\\pm. The signal is therefo...

  19. Transient Development of Excited State Densities in Atomic Helium Plasmas

    Science.gov (United States)

    1976-03-01

    n s t i t u e n t s caus ing a t . ransfer to bound e l e c t r o n s b e t w e e n the l o w - l y i n g s t a t e s and u p p e r s t a t...r y and t h e s e a r e d i s c u s s e d in de ta i l . 4.1 ENERGY LEVELS The h e l i u m e n e r g y l e v e l s u s e d in th i s s...e t h e n d e t e r m i n e d f r o m t h e s e v a l u e s . 4] AEDC-TR-76-5 Table 1. Helium Energy Lwel$ State g E (i/cm) State g E (i

  20. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    Science.gov (United States)

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  2. Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase.

    Science.gov (United States)

    Hada, Masaki; Saito, Shohei; Tanaka, Sei'ichi; Sato, Ryuma; Yoshimura, Masahiko; Mouri, Kazuhiro; Matsuo, Kyohei; Yamaguchi, Shigehiro; Hara, Mitsuo; Hayashi, Yasuhiko; Röhricht, Fynn; Herges, Rainer; Shigeta, Yasuteru; Onda, Ken; Miller, R J Dwayne

    2017-11-08

    Aromaticity of photoexcited molecules is an important concept in organic chemistry. Its theory, Baird's rule for triplet aromaticity since 1972 gives the rationale of photoinduced conformational changes and photochemical reactivities of cyclic π-conjugated systems. However, it is still challenging to monitor the dynamic structural change induced by the excited-state aromaticity, particularly in condensed materials. Here we report direct structural observation of a molecular motion and a subsequent packing deformation accompanied by the excited-state aromaticity. Photoactive liquid crystal (LC) molecules featuring a π-expanded cyclooctatetraene core unit are orientationally ordered but loosely packed in a columnar LC phase, and therefore a photoinduced conformational planarization by the excited-state aromaticity has been successfully observed by time-resolved electron diffractometry and vibrational spectroscopy. The structural change took place in the vicinity of excited molecules, producing a twisted stacking structure. A nanoscale torque driven by the excited-state aromaticity can be used as the working mechanism of new photoresponsive materials.

  3. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  4. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    Science.gov (United States)

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  5. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  6. PARAFAC modeling of fluorescence excitation - Emission spectra of fish bile for rapid en route screening of PAC exposure

    DEFF Research Database (Denmark)

    Christensen, Jan H.; Tomasi, Giorgio; Strand, Jakob

    2009-01-01

    . The EEMs were decomposed into a four-factor PARAFAC model. The comparison of the PARAFAC factors with the EEMs of PAC metabolites and amino acids suggests that two factors are related to PAC metabolites and two correspond to fluorescent residues of tryptophan and tyrosine in bile proteins. A new......Polycyclic aromatic compound (PAC) metabolites in fish bile can be used as biomarkers for recent environmental exposure to PACs. Here, a novel method for rapid screening of nonhydrolyzed fish bile is presented. The method is based on excitation-emission fluorescence spectroscopy combined...... standardization procedure based on the mean of the scores for the biological factors was used to correct for feeding status and sample dilution and, upon such normalization, the score plots of PARAFAC factors showed a clear distinction between exposed and nonexposed fish. A good correlation was found between...

  7. Spectra of random operators with absolutely continuous integrated density of states

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com [Departamento de Fisica Matematica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510, México D.F. (Mexico)

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  8. Electron impact excitation and assignment of the low-lying electronic states of N2O

    Science.gov (United States)

    Hall, R. I.; Chutjian, A.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of nitrous oxide are reported in the 5- to 10-eV energy-loss range at scattering angles of 20, 30, 90, and 130 deg at a residual energy of 7.0 eV; and at residual energies of 10.0, 2.0, 1.0, 0.6, and 0.2 eV at a scattering angle of 90 deg. Several new distinct and overlapping continua are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of semiempirical INDO calculations of Chutjian and Segal (1972) of the vertical transition energies of N2O. An assignment of the symmetries of the observed excitations consistent with the experimental and theoretical data is suggested.

  9. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.

    Science.gov (United States)

    Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca

    2014-02-01

    The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chirped-pulse Fourier transform millimeter-wave spectroscopy of ten vibrationally excited states of i-propyl cyanide: exploring the far-infrared region.

    Science.gov (United States)

    Arenas, Benjamin E; Gruet, Sébastien; Steber, Amanda L; Giuliano, Barbara M; Schnell, Melanie

    2017-01-18

    We report here further spectroscopic investigation of the astrochemically relevant molecule i-propyl cyanide. We observed and analysed the rotational spectra of the ground state of the molecule and ten vibrationally excited states with energies between 180-500 cm(-1). For this, we used a segmented W-band spectrometer (75-110 GHz) and performed the experiments under room temperature conditions. This approach thus provides access to high-resolution, pure rotational data of vibrational modes that occur in the far-infrared fingerprint region, and that can be difficult to access with other techniques. The obtained, extensive data set will support further astronomical searches and identifications, such as in warmer regions of the interstellar space where contributions from vibrationally excited states become increasingly relevant.

  11. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    Science.gov (United States)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  12. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically......), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d...

  13. State-To Rotational and Vibrational Energy Transfers Following Vibrational Excitation of (1010000) and (0112000) in the Ground Electronic State of Acetylene

    Science.gov (United States)

    Han, Jiande; Freel, Keith; Heaven, Michael C.

    2011-06-01

    We have examined state-to-state rotational and vibrational energy transfers for the vibrational levels (1010000) and (0112000) of C2H2 in the ground electronic state at ambient temperature. Measurements were made using a pulsed IR - UV double resonance technique. Total removal rate constants and state-to-state rotational energy transfer rate constants have been characterized for certain even-numbered rotational levels from J = 0 to 12 within the two vibrational modes. The measured state-to-state rotational energy transfer rate constants were fit to some energy-based empirical scaling and fitting laws, and the rate constants were found to be best reproduced by the statistical power-exponential gap law (PEGL). The measured rate constants were then further evaluated by a kinetic model which simulated the experimental spectra by solving simultaneous first order differential rate equations. Some rotationally-resolved vibrational energy transfer channels were also observed following excitation of (1010000). The vibrational relaxation channels were found to contribute less than 30% to the total removal rate constants of the measured rotational levels for both of the studied vibrational states.

  14. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  15. Variation of excited-state dynamics in trifluoromethyl functionalized C60 fullerenes.

    Science.gov (United States)

    Park, Jaehong; Ramirez, Jessica J; Clikeman, Tyler T; Larson, Bryon W; Boltalina, Olga V; Strauss, Steven H; Rumbles, Garry

    2016-08-17

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1 → T1 intersystem crossing quantum yield (ΦISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1 → S0 relaxation mechanism and negligible ΦISC, therefore decreasing the average excited-state lifetime (τavg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (τavg ≈ 17 μs and 54 μs for C60/4-1 and C60/6-2, respectively, whereas τavg ≈ 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited-state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  16. Variation of excited-state dynamics in trifluoromethyl functionalized C 60 fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehong; Ramirez, Jessica J.; Clikeman, Tyler T.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry

    2016-01-01

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1--T1 intersystem crossing quantum yield (..phi..ISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1--S0 relaxation mechanism and negligible ..phi..ISC, therefore decreasing the average excited-state lifetime (..tau..avg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (..tau..avg approx. 17 us and 54 us for C60/4-1 and C60/6-2, respectively, whereas ..tau..avg approx. 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited- state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  17. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    Science.gov (United States)

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  18. Tracking the charge and spin dynamics of electronic excited states in inorganic complexes

    Science.gov (United States)

    Gaffney, Kelly

    2015-03-01

    Inorganic complexes have many advantageous properties for solar energy applications, including strong visible absorption and photocatalytic activity. Whether used as a photocatalyst or a photosensitizer, the lifetime of electronic excited states and the earth abundance of the molecular components represent a key property for solar energy applications. These dual needs have undermined the usefulness of many coordination compounds. Isoelectronic iron and ruthenium based complexes represent a clear example. Ru-polypyridal based molecules have been the workhorse of solar energy related research and dye sensitized solar cells for decades, but the replacement of low abundance Ru with Fe leads to million-fold reductions in metal to ligand charge transfer (MLCT) excited state lifetimes. Understanding the origin of this million-fold reduction in lifetime and how to control excited state relaxation in 3d-metal complexes motivates the work I will discuss. We have used the spin sensitivity of hard x-ray fluorescence spectroscopy and the intense femtosecond duration pulses generated by the LCLS x-ray laser to probe the spin dynamics in a series of electronically excited [Fe(CN)6-2N(2,2'-bipyridine)N]2 N - 4 complexes, with N = 1-3. These femtosecond resolution measurements demonstrate that modification of the solvent and ligand environment can lengthen the MLCT excited state lifetime by more than two orders of magnitude. They also verify the role of triplet ligand field excited states in the spin crossover dynamics from singlet to quintet spin configurations. Work supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  19. Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution.

    Science.gov (United States)

    Formosinho, Sebastião J; Burrows, Hugh D; da Graça Miguel, Maria; Azenha, M Emília D G; Saraiva, Isabel M; Ribeiro, A Catarina D N; Khudyakov, Igor V; Gasanov, Rashid G; Bolte, Michèle; Sarakha, Mohamed

    2003-05-01

    A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.

  20. Probing the excited state dynamics of a new family of Cu(I)-complexes with an enhanced light absorption capacity: excitation-wavelength dependent population of states through branching.

    Science.gov (United States)

    Papanikolaou, Panagiotis A; Tkachenko, Nikolai V

    2013-08-21

    The ultrafast dynamics of six homoleptic Cu(I)-complexes and their respective ligands was examined through time-resolved electronic absorption spectroscopy in the subpicosecond time domain, in a variety of solvents, and at different excitation wavelengths. Results indicate that after excitation of the complexes in the blue part of the spectrum, the initially formed intraligand (IL) singlet excited state decays via two pathways yielding simultaneously both the lower-lying MLCT excited state and the ligand locally excited triplet state. The latter is also observed in the case of the free ligands and relaxes back to the ground state in a timescale of 40 ps. Excitation in the red part results in the formation of the MLCT excited state of the complexes which decays to the ground state through the same intraligand triplet excited state. The solvent viscosity does not affect the overall relaxation kinetics. The short time constant observed for the intersystem crossing of the MLCT singlet excited state is discussed in terms of the contribution of the d-orbitals of copper to the wavefunction of these states.

  1. Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states

    Science.gov (United States)

    Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier

    2018-01-01

    The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1–10 2Σ+, 1–6 2Π and 1–3 2Δ electronic states of the Sr+Ar molecule and for the 1–6 1Σ+, 1–4 3Σ+, 1–3 1,3Π and 1–3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.

  2. The MRSDCI/CIS study of excited electronic states of the SF 2 radical

    Science.gov (United States)

    Liu, Y.-J.; Huang, M.-B.; Zhou, X.; Yu, S.

    2001-09-01

    The vertical ( Tv) and adiabatic ( T0) excitation energies for singlet electronic excited states of the SF 2 radical have been calculated by using the multireference single and double excitation configuration interaction (MRSDCI) method and aug-cc-pVTZ basis sets augmented by Rydberg functions. The MRSDCI Tv calculations indicate that the X1A1, 1 1A2, 1 1B1, 2 1B1, 2 1A2, 2 1A1, 3 1B1, 4 1B1, 3 1A1, and 1 1B2 states are the 10 lowest-lying singlet states. Based on the MRSDCI//CIS T0 calculations (using CIS optimized geometries for excited states), the A, B, C, E, F, G, H, and I states of SF 2 are assigned to 1 1B1, 2 1B1, 3 1B1, 2 1A2, 2 1A1, 3 1A1, 4 1B1, and 1 1B2, respectively.

  3. The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation

    CERN Document Server

    Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-02

    The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...

  4. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  5. Extended Eckart Theorem and New Variation Method for Excited States of Atoms

    CERN Document Server

    Xiong, Zhuang; Bacalis, N C; Zhou, Qin

    2016-01-01

    We extend the Eckart theorem, from the ground state to excited statew, which introduces an energy augmentation to the variation criterion for excited states. It is shown that the energy of a very good excited state trial function can be slightly lower than the exact eigenvalue. Further, the energy calculated by the trial excited state wave function, which is the closest to the exact eigenstate through Gram-Schmidt orthonormalization to a ground state approximant, is lower than the exact eigenvalue as well. In order to avoid the variation restrictions inherent in the upper bound variation theory based on Hylleraas, Undheim, and McDonald [HUM] and Eckart Theorem, we have proposed a new variation functional Omega-n and proved that it has a local minimum at the eigenstates, which allows approaching the eigenstate unlimitedly by variation of the trial wave function. As an example, we calculated the energy and the radial expectation values of Triplet-S(even) Helium atom by the new variation functional, and by HUM a...

  6. DETERMINATION OF THE ABSOLUTE EXCITED-STATE DENSITY OF A SODIUM TARGET BY MEANS OF BEAM DEFLECTION MEASUREMENTS

    NARCIS (Netherlands)

    WIERSEMA, WP; SCHLATMANN, AR; MORGENSTERN, R

    1994-01-01

    The average deflection of a laser excited, divergent sodium beam with a broad velocity distribution is measured by means of a Langmuir-Taylor detector and exploited for determining the absolute density of the excited state in the interaction area. Simulations of the excitation and deflection process

  7. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission.

    Science.gov (United States)

    Dyba, Marcus; Hell, Stefan W

    2003-09-01

    Saturated stimulated-emission depletion (STED) of a fluorescent marker has been shown to break the diffraction barrier in far-field fluorescence microscopy and to facilitate spatial resolution down to a few tens of nanometers. Here we investigate the photostability of a fluorophore that, in this concept, is repeatedly excited and depleted by synchronized laser pulses. Our study of bacteria labeled with RH-414, a membrane marker, reveals that increasing the duration of the STED pulse from approximately 10 to 160 ps fundamentally improves the photostability of the dye. At the same time the STED efficiency is maintained. The observed photobleaching of RH-414 is due primarily to multiphoton absorption from its ground state. One can counteract photobleaching by employing STED pulses that range from 150 ps to approximately half of the lifetime of the excited state. The results also have implications for multiphoton excitation microscopy.

  8. Conformational analysis of acetamide in the ground and lowest excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-05-01

    For acetamide molecule (CH3CONH2) in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states calculations of equilibrium geometry parameters, harmonic vibrational frequencies and barriers to conformational transitions (also conformer energy differences in excited states) using following ab initio methods: MP2, CCSD(T), CASSCF, CASPT2 and MRCI were performed. One-, two- and three-dimensional potential energy surface (PES) sections by different large amplitude motions (LAM) coordinates were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1, T1). As a result of electronic excitation, both CCON and CNH2 fragments become pyramidal. On 2D PES sections by torsion (CN) and inversion coordinates there are six minima forming three pairs of enantiomers. Using PES sections different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were estimated.

  9. First experimental evidence of 2He decay from 18Ne excited states

    CERN Document Server

    Rapisarda, E; Cardella, G; De Napoli, M; Raciti, G; Sfienti, C

    2010-01-01

    Two-proton decay from 18Ne excited states has been studied by complete kinematical detection of the decay products. The 18Ne nucleus has been produced as a radioactive beam by 20Ne projectile fragmentation at 45 AMeV on a 9Be target, using the FRIBs in-flight facility of the LNS. The 18Ne at 33 AMeV incident energy has been excited via Coulomb excitation on a natPb target. The correlated 2p emission has been disentangled from the uncorrelated 2p emission using a high granularity particle detector setup allowing the reconstruction of momentum and angle correlations of the two emitted protons. The obtained results unambiguously show that the 6.15 MeV 18Ne state two-proton decay proceeds through 2He emission (31%) and democratic or virtual sequential decay (69%).

  10. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  11. Charge-transfer excited states in aqueous DNA: Insights from many-body Green's function theory.

    Science.gov (United States)

    Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael

    2014-06-06

    Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (∼1  eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.

  12. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy)2](2.)

    Science.gov (United States)

    Vankó, György; Bordage, Amélie; Pápai, Mátyás; Haldrup, Kristoffer; Glatzel, Pieter; March, Anne Marie; Doumy, Gilles; Britz, Alexander; Galler, Andreas; Assefa, Tadesse; Cabaret, Delphine; Juhin, Amélie; van Driel, Tim B; Kjær, Kasper S; Dohn, Asmus; Møller, Klaus B; Lemke, Henrik T; Gallo, Erik; Rovezzi, Mauro; Németh, Zoltán; Rozsályi, Emese; Rozgonyi, Tamás; Uhlig, Jens; Sundström, Villy; Nielsen, Martin M; Young, Linda; Southworth, Stephen H; Bressler, Christian; Gawelda, Wojciech

    2015-03-19

    Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2](2+). The differences in the structure and molecular properties of these (5)B2 and (5)E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2](2+) 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2](2+) molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as (5)E, in agreement with our theoretical expectations.

  13. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    Science.gov (United States)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  14. Tetracarboxy-phthalocyanines: From excited state dynamics to photodynamic inactivation against Bovine herpesvirus type 1.

    Science.gov (United States)

    Cocca, Leandro H Z; Oliveira, Taise M A; Gotardo, Fernando; Teles, Amanda V; Menegatti, Ricardo; Siqueira, Jonathas P; Mendonça, Cleber R; Bataus, Luiz A M; Ribeiro, Anderson O; Souza, Thalita F M; Souza, Guilherme R L; Gonçalves, Pablo J; De Boni, Leonardo

    2017-10-01

    Herein we present the excited state dynamic of zinc and aluminum tetracarboxy-phthalocyanines (ZnPc and AlPc) and its application in the photodynamic inactivation (PDI) of Bovine herpesvirus type 1 (BoHV-1) in vitro. The excited state dynamic provides valuable data to describe the excited state properties of potential optical limiters and/or photosensitizers (PSs), such as: the excited state cross-sections, fluorescence lifetime and triplet state quantum yield. The excited state characterization was performed using three different Z-scan techniques: Single Pulse, White Light Continuum and Pulse Train. Considering the photodynamic inactivation of BoHV-1, an initial viral suspension containing 10 5.75 TCID 50 /mL was incubated with the PSs for 1h at 37°C under agitation and protected from light. The samples were placed in microtiter plates and irradiated (180mW/cm 2 ). During irradiation, a sample was taken every 15min and the viability of the virus was evaluated. The results show that both phthalocyanines were efficient against viruses. However, a higher photodynamic efficiency was observed by ZnPc, which can be attributed to its higher triplet and singlet quantum yields. The results presented here are important for animal health (treatment of BoHV-1) and also open up a field of studies to use AlPc and ZnPc as potential agents against a wide range of microorganisms of veterinary interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2017-03-29

    Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH3 synthesis from N2 and H2 is notoriously energy intensive. This is due to the difficulty of N2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N2, with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.

  16. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    Science.gov (United States)

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a higher fluorescence quantum yield in EtOH (0.41 ± 0.02) than in buffer solution (0.089 ± 0.002), which is also higher than that of the PHEO monomer (0.28). Quenching of the PHEO fluorescence by DNA nucleosides and double-stranded oligonucleotides was also observed and the bimolecular quenching rate constants were determined. The quenching rate constant increase as the oxidation potential of the DNA nucleoside increases. Larger quenching constants were obtained in the presence of CARBOQ suggesting that CARBOQ enhances DNA photo-oxidation, presumably by inhibiting the back–electron-transfer reaction from the photoreduced PHEO to the oxidized base. Thus, the enhanced DNA-base photosensitized oxidation by PHEO in the presence of CARBOQ may be related to the large extent by which this quinone covalently binds to DNA, as previously reported. PMID:21138440

  17. Before there was light : Excited state dynamics in luminescent (nano)materials

    NARCIS (Netherlands)

    Rabouw, F.T.|info:eu-repo/dai/nl/413318036

    2015-01-01

    In this thesis we examine two types of luminescent materials: colloidal semiconductor nanocrystals (also known as quantum dots), and crystals doped with lanthanide ions. These materials convert one color of light to another. By investigating the dynamics of the excited state, we gain new insights

  18. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  19. Supporting Information for the article entitled, “Excited State Charge ...

    Indian Academy of Sciences (India)

    Supporting Information for the article entitled, “Excited State Charge Transfer Reaction in (Mixed Solvent + Electrolyte) Systems: Role of Reactant-Solvent and ... S2: Composition dependence of the reaction time (, upper panels) and long time ( , lower panels) constants obtained from bi-exponential fit of the collected LE ...

  20. Temperature dependent excited state relaxation of a red emitting DNA-templated silver nanocluster

    DEFF Research Database (Denmark)

    Cerretani, Cecilia; Carro-Temboury, Miguel R.; Krause, Stefan

    2017-01-01

    The nanosecond excited state temporal and spectral relaxation of a purified, red-emitting DNA-templated silver nanocluster (DNA–AgNC) was characterized as a function of temperature. The findings are explained by introducing a phenomenological electronic structure diagram. The reproducibility...

  1. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  2. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  3. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet.

    Science.gov (United States)

    Han, Tian-Heng; Helton, Joel S; Chu, Shaoyan; Nocera, Daniel G; Rodriguez-Rivera, Jose A; Broholm, Collin; Lee, Young S

    2012-12-20

    The experimental realization of quantum spin liquids is a long-sought goal in physics, as they represent new states of matter. Quantum spin liquids cannot be described by the broken symmetries associated with conventional ground states. In fact, the interacting magnetic moments in these systems do not order, but are highly entangled with one another over long ranges. Spin liquids have a prominent role in theories describing high-transition-temperature superconductors, and the topological properties of these states may have applications in quantum information. A key feature of spin liquids is that they support exotic spin excitations carrying fractional quantum numbers. However, detailed measurements of these 'fractionalized excitations' have been lacking. Here we report neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu(3)(OD)(6)Cl(2) (also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids. At low temperatures, we find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in ordered antiferromagnets. The observation of such a continuum is noteworthy because, so far, this signature of fractional spin excitations has been observed only in one-dimensional systems. The results also serve as a hallmark of the quantum spin-liquid state in herbertsmithite.

  4. Polarization of the excited states of twisted ethylene in a non-symmetrical environment

    NARCIS (Netherlands)

    Zijlstra, R.W J; van Duijnen, P.T.; de Vries, Alex

    1996-01-01

    The polarization behavior of the low lying excited states in the vicinity of the perpendicularly twisted (D-2d) ethylene has been investigated in a quantum mechanical CISD approach, in which the quantum system was embedded in a polarized dielectric continuum modeling a non-symmetrical distribution

  5. Electronic properties of excited states in single InAs quantum dots; Elektronische Struktur angeregter Zustaende einzelner InAs-Quantenpunkte

    Energy Technology Data Exchange (ETDEWEB)

    Warming, Till

    2009-02-20

    The application of quantum-mechanical effects in semiconductor nanostructures enables the realization of novel opto-electronic devices. Examples are given by single-photon emitters and emitters of entangled photon pairs, both being essential for quantum cryptography, or for qubit systems as needed for quantum computing. InAs/GaAs quantum dots are one of the most promising candidates for such applications. A detailed knowledge of the electronic properties of quantum dots is a prerequisite for this development. The aim of this work is an experimental access to the detailed electronic structure of the excited states in single InAs/GaAs quantum dots including few-particle effects and in particular exchange interaction. The experimental approach is micro photoluminescence excitation spectroscopy ({mu}PLE). One of the main difficulties using {mu}PLE to probe single QDs is the unambiguous assignment of the observed resonances in the spectrum to specific transitions. By comparing micro photoluminescence ({mu}PL) and {mu}PLE spectra, the identification of the main resonances becomes possible. The key is given by the fine structure of the hot trion. Excitation spectroscopy on single charged QDs enables for the first time the complete observation of a non-trivial fine structure of an excitonic complex in a QD, the hot trion. Modelling based on eight-band k.p theory in combination with a configuration interaction scheme is in excellent agreement. Therewith the simulation also enables realistic predictions on the fine structure of the ground-state exciton which is of large importance for single quantum dot devices. Theory concludes from the observed transitions that the structural symmetry of the QDs is broken. Micro photoluminescence excitation spectroscopy combined with resonantly excited micro photoluminescence enables an optical access to the single particle states of the hole without the influence of few-particle coulomb interactions. Based on this knowledge the exciton

  6. Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution.

    Science.gov (United States)

    Pirojsirikul, Teerapong; Götz, Andreas W; Weare, John; Walker, Ross C; Kowalski, Karol; Valiev, Marat

    2017-07-05

    Combined quantum mechanical molecular mechanics (QM/MM) calculations have become a popular methodology for efficient and accurate description of large molecular systems. In this work we introduce our development of a QM/MM framework based on two well-known codes-NWChem and AMBER. As an initial application area we are focused on excited state properties of small molecules in an aqueous phase using an analogue of the green fluorescent protein (GFP) chromophore as a particular test case. Our approach incorporates high level coupled cluster theory for the analysis of excited states providing a reliable theoretical analysis of effects of an aqueous solvation environment on the photochemical properties of the GFP chromophore. Using a systematic approach, which involves comparison of gas phase and aqueous phase results for different protonation states and conformations, we resolve existing uncertainties regarding the theoretical interpretation of experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts of the absorption spectra, but the magnitude of the effect is sensitive to both protonation state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level electron correlated method is essential for a proper description of excited states of GFP. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  8. Structure of excited states in nuclei near doubly magic {sup 100}SN

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M.

    1998-11-01

    The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)

  9. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  10. Particle diffusion and localized acceleration in inhomogeneous AGN jets - Part I: Steady-state spectra

    OpenAIRE

    Chen, Xuhui; Pohl, Martin; Boettcher, Markus

    2014-01-01

    We study the acceleration, transport, and emission of particles in relativistic jets. Localized stochastic particle acceleration, spatial diffusion, and synchrotron as well as synchrotron self-Compton emission are considered in a leptonic model. To account for inhomogeneity, we use a 2D axi-symmetric cylindrical geometry for both relativistic electrons and magnetic field. In this first phase of our work, we focus on steady-state spectra that develop from a time-dependent model. We demonstrate...

  11. Electron impact excitation of the D states of Mg, Ca and Sr atoms ...

    Indian Academy of Sciences (India)

    decay of the atom from D → P and then P → S) is required [3,7–9]. ... for the excitation of helium from its ground 1S state to the 3 1D state at 40 eV. We ..... Further, we use for the projectile electron distorted wave function. FDW i(f) the following relativistic form of partial wave expansion: F± ch,µch (kch, r) = 1. (2π)3/2 ∑ κm.

  12. Electronic, structural and optical properties of hydrogenated silicon nanocrystals: the role of the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Cantele, G.; Ninno, D.; Iadonisi, G. [Coherentia-INFM and Universita di Napoli ' ' Federico II' ' - Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Degoli, Elena; Bisi, O.; Ossicini, Stefano [INFM-S' ' 3 and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Fogliani, 42100 Reggio Emilia (Italy); Luppi, Eleonora; Magri, Rita [INFM-S' ' 3 and Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via Campi 213/A, 41100 Modena (Italy)

    2005-06-01

    In this paper we report on a first-principle calculation of the electronic and structural properties of hydrogenated silicon nanocrystals both in the ground- and in an excited-state configuration. The presence of an electron-hole pair created under excitation is taken into account and its effects on both the electronic spectrum and the cluster geometry are pointed out. The interpretation of the results is done within a four-level model, which also allows the explanation of the experimentally observed Stokes shift. Size-related aspects are also analysed and discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States

    Directory of Open Access Journals (Sweden)

    Hermann Boos

    2011-01-01

    Full Text Available We generalize the results of [Comm. Math. Phys. 299 (2010, 825-866] (hidden Grassmann structure IV to the case of excited states of the transfer matrix of the six-vertex model acting in the so-called Matsubara direction. We establish an equivalence between a scaling limit of the partition function of the six-vertex model on a cylinder with quasi-local operators inserted and special boundary conditions, corresponding to particle-hole excitations, on the one hand, and certain three-point correlation functions of conformal field theory (CFT on the other hand. As in hidden Grassmann structure IV, the fermionic basis developed in previous papers and its conformal limit are used for a description of the quasi-local operators. In paper IV we claimed that in the conformal limit the fermionic creation operators generate a basis equivalent to the basis of the descendant states in the conformal field theory modulo integrals of motion suggested by A. Zamolodchikov (1987. Here we argue that, in order to completely determine the transformation between the above fermionic basis and the basis of descendants in the CFT, we need to involve excitations. On the side of the lattice model we use the excited-state TBA approach. We consider in detail the case of the descendant at level 8.

  14. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.

  15. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yoshizo [Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Sasaki, Fumio; Mochizuki, Hiroyuki [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ishitsuka, Tomoaki; Tomie, Toshihisa [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ootsuka, Teruhisa [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Watanabe, Shuji [Graduate School of Science and Engineering, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560 (Japan); Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Shimoi, Yukihiro [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Yamao, Takeshi; Hotta, Shu [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2013-02-28

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  16. Excitation energy and spins of the Yrast superdeformed states in {sup 193}Tl; Energie d`excitation et spins des etats superdeformes Yrast de {sup 193}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Duprat, J.; Azaiez, F. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others

    1999-11-01

    Discrete {gamma}-rays of high energy connecting states of the two Yrast superdeformed bands in {sup 193}Tl to the normal deformed states have been identified. Thus, for the first time, in an odd SD nucleus, it has been possible to propose an excitation energy and spins of the two lowest bands. (authors) 3 refs., 2 figs.

  17. Hydrogen-related excitons and their excited-state transitions in ZnO

    Science.gov (United States)

    Heinhold, R.; Neiman, A.; Kennedy, J. V.; Markwitz, A.; Reeves, R. J.; Allen, M. W.

    2017-02-01

    The role of hydrogen in the photoluminescence (PL) of ZnO was investigated using four different types of bulk ZnO single crystal, with varying concentrations of unintentional hydrogen donor and Group I acceptor impurities. Photoluminescence spectra were measured at 3 K, with emission energies determined to ±50 μeV, before and after separate annealing in O2, N2, and H2 atmospheres. Using this approach, several new hydrogen-related neutral-donor-bound excitons, and their corresponding B exciton, ionized donor, and two electron satellite (TES) excited state transitions were identified and their properties further investigated using hydrogen and deuterium ion implantation. The commonly observed I4 (3.36272 eV) emission due to excitons bound to multicoordinated hydrogen inside an oxygen vacancy (HO), that is present in most ZnO material, was noticeably absent in hydrothermally grown (HT) ZnO and instead was replaced by a doublet of two closely lying recombination lines I4 b ,c (3.36219, 3.36237 eV) due to a hydrogen-related donor with a binding energy (ED) of 47.7 meV. A new and usually dominant recombination line I6 -H (3.36085 eV) due to a different hydrogen-related defect complex with an ED of 49.5 meV was also identified in HT ZnO. Here, I4 b ,c and I6 -H were stable up to approximately 400 and 600 °C, respectively, indicating that they are likely to contribute to the unintentional n -type conductivity of ZnO. Another doublet I5 (3.36137, 3.36148 eV) was identified in hydrogenated HT ZnO single crystals with low Li concentrations, and this was associated with a defect complex with an ED of 49.1 meV. A broad near band edge (NBE) emission centered at 3.366 eV was associated with excitons bound to subsurface hydrogen. We further demonstrate that hydrogen incorporates on different lattice sites for different annealing conditions and show that the new features I4 b ,c, I6 -H, and I5 most likely originate from the lithium-hydrogen defect complexes L iZn-HO , A l

  18. Depopulation of lowly excited ns-states of Rb colliding with the He atom

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S.K. [Jagdam College, Chapra (India). Dept. of Physics; Khan, A.A. [ZAI College, Siwan (India). Dept. of Physics; Kumar, V. [Rajendra College, Chapra (India). Dept. of Physics; Kumar, A. [JP University, Chapra (India). Dept. of Physics

    1996-03-28

    A semiclassical impact-parameter method has been used to study the total depopulation of lowly excited ns-states of the Rb atom colliding with ground-state He in the thermal energy region. A fairly large basis set of STO has been used to generate MO states and then a 14-state calculation has been carried out to evaluate the total as well as individual cross sections for quenching. A comparative study with the previously investigated Li-He and Na-He pairs is also presented. (Author).

  19. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation

    Science.gov (United States)

    Stensitzki, Till; Yang, Yang; Kozich, Valeri; Ahmed, Ashour A.; Kössl, Florian; Kühn, Oliver; Heyne, Karsten

    2018-02-01

    Infrared (IR) excitation of vibrations that participate in the reaction coordinate of an otherwise thermally driven chemical reaction are believed to lead to its acceleration. Attempts at the practical realization of this concept have been hampered so far by competing processes leading to sample heating. Here we demonstrate, using femtosecond IR-pump IR-probe experiments, the acceleration of urethane and polyurethane formation due to vibrational excitation of the reactants for 1:1 mixtures of phenylisocyanate and cyclohexanol, and toluene-2,4-diisocyanate and 2,2,2-trichloroethane-1,1-diol, respectively. We measured reaction rate changes upon selective vibrational excitation with negligible heating of the sample and observed an increase of the reaction rate up to 24%. The observation is rationalized using reactant and transition-state structures obtained from quantum chemical calculations. We subsequently used IR-driven reaction acceleration to write a polyurethane square on sample windows using a femtosecond IR pulse.

  20. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A. [A. V. Rzhanov Institute of Semiconductor Physics SB RAS, Prospekt Lavrentyeva 13, 630090 Novosibirsk (Russian Federation)

    2011-11-15

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a starlike geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S{sub 1/2}{yields}5P{sub 3/2}{yields}6S{sub 1/2}{yields}nP in Rb atoms have shown that, compared to the one- and two-photon laser excitation, this approach provides much narrower linewidth and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.

  1. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  2. Time-resolved study of excited states of N2 near its first ionization threshold

    Science.gov (United States)

    Moise, Angelica; Prince, Kevin C.; Richter, Robert

    2011-03-01

    Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing 1Σg- state has been excited via the intermediate c4 (v = 0) 1Πu Rydberg state. We present the analysis of the band located at Tv = 10 800.7 ± 2 cm-1 with respect to the intermediate state, 126 366 ± 11 cm-1 with respect to the ground state, approximately 700 cm-1 above the first ionization threshold. From the analysis a rotational constant of Bv = 1.700 ± 0.005 cm-1 has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c4 (0) and c5 (0) states are 5.6 and 4.4 ns, respectively, while the b' (12), c'4 (4, 5, 6), and c'5 (0) states all have lifetimes in the range of hundreds of picoseconds.

  3. Base sequence and higher-order structure induce the complex excited-state dynamics in DNA.

    Science.gov (United States)

    Schwalb, Nina K; Temps, Friedrich

    2008-10-10

    The high photostability of DNA is commonly attributed to efficient radiationless electronic relaxation processes. We used femtosecond time-resolved fluorescence spectroscopy to reveal that the ensuing dynamics are strongly dependent on base sequence and are also affected by higher-order structure. Excited electronic state lifetimes in dG-doped d(A)20 single-stranded DNA and dG.dC-doped d(A)20.d(T)20 double-stranded DNA decrease sharply with the substitution of only a few bases. In duplexes containing d(AGA).d(TCT) or d(AG).d(TC) repeats, deactivation of the fluorescing states occurs on the subpicosecond time scale, but the excited-state lifetimes increase again in extended d(G) runs. The results point at more complex and molecule-specific photodynamics in native DNA than may be evident in simpler model systems.

  4. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  5. Measurement of the excited-state transverse hyperfine coupling in NV centers via dynamic nuclear polarization

    Science.gov (United States)

    Poggiali, F.; Cappellaro, P.; Fabbri, N.

    2017-05-01

    Precise knowledge of a quantum system's Hamiltonian is a critical pre-requisite for its use in many quantum information technologies. Here, we report a method for the precise characterization of the nonsecular part of the excited-state Hamiltonian of an electronic-nuclear spin system in diamond. The method relies on the investigation of the dynamic nuclear polarization mediated by the electronic spin, which is currently exploited as a primary tool for initializing nuclear qubits and performing enhanced nuclear magnetic resonance. By measuring the temporal evolution of the population of the ground-state hyperfine levels of a nitrogen-vacancy center, we obtain the first direct estimation of the excited-state transverse hyperfine coupling between its electronic and nitrogen nuclear spin. Our method could also be applied to other electron-nuclear spin systems, such as those related to defects in silicon carbide.

  6. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1993-01-01

    A systematic study of intramolecular photoassociation and photoinduced charge transfer (CT) was initiated in bichromophoric systems of M-X-M, where two identical aromatic hydrocarbons M are joined by X=CH[sub 2], O, NH, etc. Dinaphthylamines, dinaphthylethers, and dinaphthylmethanes in nonpolar solvents form triplet excimers, following inter system crossing of singlets to the triplet manifold; in polar solvents, the molecule forms an intramolecular CT state. The interchromophore interaction study was extended to N-phenyl-2-naphthylamine. The lowest excited singlet states of the dinaphthylamines were studied by semiempirical quantum chemical methods. Exciplex formation was studied in excited states of jet-cooled van der Waals complexes, such as fluorene/substituted benzenes and 1-cyanonaphthalene-aliphatic amines.

  7. Excited state potential energy surfaces of bistridentate RuII complexes - A TD-DFT study

    Science.gov (United States)

    Österman, Tomas; Persson, Petter

    2012-10-01

    Time-dependent density functional theory (TD-DFT) calculations have been used to investigate low-energy singlet and triplet excited state potential energy surfaces (PES) of two prototype RuII-bistridentate complexes: [RuII(tpy)2]2+ (tpy is 2,2':6',2''-terpyridine) and [RuII(dqp)2]2+ (dqp is 2,6-di(quinolin-8-yl)pyridine). Solvent effects were considered using a self-consistent reaction field scheme. The calculations provide information about the excited state manifold along pathways for activated decay of metal-to-ligand charge-transfer (MLCT) excited states via metal-centered (MC) states for the two complexes. Significant differences in the energy profiles of the investigated PESs are explained through characterization of the electronic properties of the involved states calculated by the TD-DFT calculations. Finally, implications of the computational results for the design of octahedral metal complexes utilizing ligand field splitting (LFS) strategies for efficient light-harvesting in photochemical applications such as artificial photosynthesis are discussed.

  8. Switching of the triplet excited state of rhodamine/naphthaleneimide dyads: an experimental and theoretical study.

    Science.gov (United States)

    Cui, Xiaoneng; Zhao, Jianzhang; Lou, Zhangrong; Li, Shujing; Wu, Huijian; Han, Ke-Li

    2015-01-02

    Rhodamine-bromonaphthaleneimide (RB-NI) and rhodamine-bromonaphthalenediimide (RB-NDI) dyads were prepared for switching of the triplet excited states. Bromo-NI or bromo-NDI parts in the dyads are the spin converters, i.e., the triplet state producing modules, whereas the RB unit is the acid-activatable electron donor/energy acceptor. NI and NDI absorb at 359 and 541 nm, and the T1 state energy levels are 2.25 and 1.64 eV, respectively. RB undertakes the reversible spirolactam (RB-c) ↔ opened amide (RB-o) transformation. RB-c shows no visible light absorption, and the triplet-state energy level is ET1 = 3.36 eV. Conversely RB-o shows strong absorption at 557 nm, and ET1 is 1.73 eV. Thus, the acid-activated fluorescence-resonance-energy-transfer (FRET) competes with the ISC of NI or NDI. No triplet state was observed for the dyads with nanosecond time-resolved transient absorption spectroscopy. Upon addition of acid, strong fluorescence and long-living triplet excited states were observed. Thus, the producing of triplet state is acid-activatable. The triplet state of RB-NI is localized on RB-o part, whereas in RB-NDI the triplet state is delocalized on both the NDI and RB-o units. The ISC of spin converter was not outcompeted by RET. These studies are useful for switching of triplet excited state.

  9. Radius of {sup 12}C in the excited 2{sub 2} {sup +} Hoyle state

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblin, A.A.; Danilov, A.N.; Demyanova, A.S. [RRC Kurchatov Institute, Moscow (Russian Federation); Belyaeva, T.L. [Universidad Autonoma del Estado de Mexico, C.P. 50000, Toluca (Mexico); Goncharov, S.A. [Lomonosov Moscow State University, Moscow (Russian Federation)

    2013-04-15

    The differential cross sections of the inelastic {alpha} + {sup 12}C scattering leading to the excitation of the short-lived 2{sub 2} {sup +} (E{sub x} = 9.84 or 9.6 MeV) state in {sup 12}C have been analysed within a modified diffraction model. We determined the diffraction radii of {sup 12}C in this excited state at E{sub {alpha}} = 386 and 240 MeV and compared them with the diffraction radius for the 0{sub 2} {sup +} (E{sub x} = 7.65 MeV) Hoyle state. We found that the rms radii for the 2{sub 2} {sup +} state is left angle R(2{sub 2} {sup +}) right angle = 3.07 {+-} 0.13fm, which agrees well with the rms radius of the 0{sub 2} {sup +}, 7.65 MeV Hoyle state and is a factor of 1.3 larger than the rms radius for the ground state of {sup 12}C. The similarity between the rms radii of the 0{sub 2} {sup +} and 2{sub 2} {sup +} states provides a strong argument in favor of a hypothesis that the 2{sub 2} {sup +} state is the first member of a rotational band based on the 0{sub 2} {sup +} Hoyle state. (orig.)

  10. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  11. Phonon-like excitations in the two-state Bose-Hubbard model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2015-12-01

    Full Text Available The spectrum of phonon-like collective excitations in the system of Bose-atoms in optical lattice (more generally, in the system of quantum particles described by the Bose-Hubbard model is investigated. Such excitations appear due to displacements of particles with respect to their local equilibrium positions. The two-level model taking into account the transitions of bosons between the ground state and the first excited state in potential wells, as well as interaction between them, is used. Calculations are performed within the random phase approximation in the hard-core boson limit. It is shown that excitation spectrum in normal phase consists of the one exciton-like band, while in the phase with BE condensate an additional band appears. The positions, spectral weights and widths of bands strongly depend on chemical potential of bosons and temperature. The conditions of stability of a system with respect to the lowering of symmetry and displacement modulation are discussed.

  12. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.

    Science.gov (United States)

    Herbert, John M; Zhang, Xing; Morrison, Adrian F; Liu, Jie

    2016-05-17

    Single-excitation methods, namely, configuration interaction singles and time-dependent density functional theory (TDDFT), along with semiempirical versions thereof, represent the most computationally affordable electronic structure methods for describing electronically excited states, scaling as [Formula: see text] absent further approximations. This relatively low cost, combined with a treatment of electron correlation, has made TDDFT the most widely used excited-state quantum chemistry method over the past 20+ years. Nevertheless, certain inherent problems (beyond just the accuracy of this or that exchange-correlation functional) limit the utility of traditional TDDFT. For one, it affords potential energy surfaces whose topology is incorrect in the vicinity of any conical intersection (CI) that involves the ground state. Since CIs are the conduits for transitions between electronic states, the TDDFT description of photochemistry (internal conversion and intersystem crossing) is therefore suspect. Second, the [Formula: see text] cost can become prohibitive in large systems, especially those that involve multiple electronically coupled chromophores, for example, the antennae structures of light-harvesting complexes or the conjugated polymers used in organic photovoltaics. In such cases, the smallest realistic mimics might already be quite large from the standpoint of ab initio quantum chemistry. This Account describes several new computational methods that address these problems. Topology around a CI can be rigorously corrected using a "spin-flip" version of TDDFT, which involves an α → β spin-flipping transition in addition to occupied → virtual excitation of one electron. Within this formalism, singlet states are generated via excitation from a high-spin triplet reference state, doublets from a quartet, etc. This provides a more balanced treatment of electron correlation between ground and excited states. Spin contamination is problematic away from the

  13. Non-Markovian Quantum State Diffusion for Temperature-Dependent Linear Spectra of Light Harvesting Aggregates

    CERN Document Server

    Ritschel, Gerhard; Möbius, Sebastian; Strunz, Walter T; Eisfeld, Alexander

    2014-01-01

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an effective method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the strong coupling of electronic transitions to vibrational modes of the chromophores. In this paper we show how to calculate linear optical spectra at finite temperatures in an efficient way. To this end we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The zero temperature case equations can then be solved efficiently by standard integrators. As an example we calculate absorption and circular dichroism spectra of a linear aggregate. The formalism developed can be applied to calculate arbitrary correlation functions.

  14. Ground State and Excited State Tuning in Ferric Dipyrrin Complexes Promoted by Ancillary Ligand Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.

    2017-04-24

    Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type (ArL)FeX2 [ArL = 1,9-(2,4,6-Ph3C6H2)2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution results in a nearly 600 mV cathodic shift of the FeIII/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in (ArL)FeCl(OtBu) is evidenced by hydrogen atom abstraction to yield (ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride (ArL)FeCl2 analogue does not react under these conditions.

  15. Probing ground and low-lying excited states for HIO{sub 2} isomers

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Gabriel L. C. de [Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900 (Brazil); Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas 69100-000 (Brazil); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Brown, Alex, E-mail: alex.brown@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  16. Reactions of excited states of phenoxazin-3-one dyes with amino acids.

    Science.gov (United States)

    Villegas, M L; Bertolotti, S G; Previtali, C M; Encinas, M V

    2005-01-01

    The interaction with amino acids of the excited states of the N-oxide resazurin and its deoxygenation product resorufin, has been studied in aqueous solution at pH 7.5. Steady-state and time-resolved studies show that the fluorescence is quenched by amino acids. Complexation of the dyes in the ground state with aromatic amino acids was also observed. The singlet quenching is attributed to electron transfer from the amino acids to the excited dye based on the dependence of the bimolecular rate constants with the ionization potential of quenchers. Flash photolysis experiments allowed determination of the quenching rate constants for the triplet deactivation of dyes by several amino acids, as well as the characterization of the transients formed in the process. These data show that the triplet is also deactivated by an electron transfer process. However, the deactivation of the N-oxide dye by tryptophan can be described by a hydrogen atom transfer. The protolytic dissociation constants of the dye radical ions are reported. The irradiation of rezasurin in the presence of amino acids leads to deoxygenation of the dye to give resorufin. This process involves the triplet excited state of resazurin and is efficient only in the presence of amino acids containing the -SH group.

  17. Unbound Excited States of the N = 16 Closed Shell Nucleus 24O

    Science.gov (United States)

    Rogers, W. F.; MoNA Collaboration

    2015-10-01

    The energies of two low-lying neutron-unbound excited states of 24O, which were populated by proton-knockout reactions on 26F, have been measured using the MoNA and LISA arrays in combination with the Sweeper Magnet at the Coupled Cyclotron Facility at the NSCL using invariant mass spectroscopy. The current measurement confirms for the first time the separate identity of 2+ and (1+) neutron-unbound excited states in 24O with decay energies 0.51(5) MeV state and 1.20(7) MeV, respectively, to the 23O ground state. These measured decay energies are consistent with two previous lower resolution measurements to within 2 σ. The level energies for the two states are computed using the decay energies and the 1-neutron separation energy for 24O, resulting in 4.70(15) MeV for the 2+ state and 5.39(16) MeV for the (1+) state. Errors in the level energies are dominated by uncertainty in the 24O neutron separation energy, underscoring the need for a higher resolution 24O ground state mass measurement. Results will be compared with 3 phenomenological and 2 ab initio model calculations. Work Supported by NSF Grants PHY-0922335, PHY-0922409, PHY-0922446, PHY-0922462, PHY-0922473, PHY-0922537, PHY-0922559, PHY-0922622, PHY-0922794, PHY-0969173, PHY-1101745, PHY-1205357, PHY- 1205537.

  18. Triplet state spectra and dynamics of peridinin analogs having different extents of pi-electron conjugation.

    Science.gov (United States)

    Kaligotla, Shanti; Doyle, Sara; Niedzwiedzki, Dariusz M; Hasegawa, Shinji; Kajikawa, Takayuki; Katsumura, Shigeo; Frank, Harry A

    2010-03-01

    The Peridinin-Chlorophyll a-Protein (PCP) complex has both an exceptionally efficient light-harvesting ability and a highly effective protective capacity against photodynamic reactions involving singlet oxygen. These functions can be attributed to presence of a substantial amount of the highly-substituted and complex carotenoid, peridinin, in the protein and the facts that the low-lying singlet states of peridinin are higher in energy than those of chlorophyll (Chl) a, but the lowest-lying triplet state of peridinin is below that of Chl a. Thus, singlet energy can be transferred from peridinin to Chl a, but the Chl a triplet state is quenched before it can sensitize the formation of singlet oxygen. The present investigation takes advantage of Chl a as an effective triplet state donor to peridinin and explores the triplet state spectra and dynamics of a systematic series of peridinin analogs having different numbers of conjugated carbon-carbon double bonds. The carotenoids investigated are peridinin, which has a C(37) carbon skeleton and eight conjugated carbon-carbon double bonds, and three synthetic analogs: C(33)-peridinin, having two less double bonds than peridinin, C(35)-peridinin which has one less double bond than peridinin, and C(39)-peridinin which has one more double bond than peridinin. In this study, the behavior of the triplet state spectra and kinetics exhibited by these molecules has been investigated in polar and nonpolar solvents and reveals a substantial effect of both pi-electron conjugated chain length and solvent environment on the spectral lineshapes. However, only a small dependence of these factors is observed on the kinetics of triplet energy transfer from Chl a and on carotenoid triplet state deactivation to the ground state.

  19. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  20. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible....

  1. Excitation of the W triplet Delta (U), W singlet Delta (U), B prime triplet Sigma (U) (minus), and A prime singlet Epsison (U) (minus) states of N2 by electron impact

    Science.gov (United States)

    Cartwright, D. C.; Chutjian, A.; Trajmar, S.

    1973-01-01

    Electron energy-loss spectra have been obtained for N2 at 20.6 eV impact energy, and scattering angles of 10-138 deg. The differential cross section for excitation of the W triplet Delta(U) state is the largest triplet-state cross section at all scattering angles, and is the largest inelastic cross section at angles greater than 70 degrees. (Author Modified Abstract)

  2. Simultaneous two-photon excitation of photodynamic therapy agents

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, E.A.; Fisher, W.G. [Oak Ridge National Lab., TN (United States)]|[Photogen, Inc., Knoxville, TN (United States); Partridge, W.P. [Oak Ridge National Lab., TN (United States); Dees, H.C. [Photogen, Inc., Knoxville, TN (United States); Petersen, M.G. [Univ. of Tennessee, Knoxville, TN (United States). College of Veterinary Medicine

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  3. Relaxation of vibrationally excited states in solid "nitrate-nitrite" binary systems

    Science.gov (United States)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2017-10-01

    The processes of molecular relaxation in the solid NaNO3-NaNO2 and KNO3-KNO2 "nitrate-nitrite" binary systems have been investigated by Raman spectroscopy. The relaxation time of the vibration ν1(A) of an NO- 3 anion in the binary system is found to be shorter than that in individual nitrate. The increase in the relaxation rate is explained by the existence of an additional mechanism of relaxation of vibrationally excited states of the nitrate ion in the system. This mechanism is related to the excitation of vibration of another anion (NO- 2) and generation of a lattice phonon. It has been established that this relaxation mechanism is implemented provided that the difference between the frequencies of the aforementioned vibrations correspond to the range of sufficiently high density of states in the phonon spectrum.

  4. Importance of local exact exchange potential in hybrid functionals for accurate excited states

    CERN Document Server

    Kim, Jaewook; Hwang, Sang-Yeon; Ryu, Seongok; Choi, Sunghwan; Kim, Woo Youn

    2016-01-01

    Density functional theory has been an essential analysis tool for both theoretical and experimental chemists since accurate hybrid functionals were developed. Here we propose a local hybrid method derived from the optimized effective potential (OEP) method and compare its distinct features with conventional nonlocal ones from the Hartree-Fock (HF) exchange operator. Both are formally exact for ground states and thus show similar accuracy for atomization energies and reaction barrier heights. For excited states, the local version yields virtual orbitals with N-electron character, while those of the nonlocal version have mixed characters between N- and (N+1)-electron orbitals. As a result, the orbital energy gaps from the former well approximate excitation energies with a small mean absolute error (MAE = 0.40 eV) for the Caricato benchmark set. The correction from time-dependent density functional theory with a simple local density approximation kernel further improves its accuracy by incorporating multi-config...

  5. On large amplitude motions of simplest amides in the ground and excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-01-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  6. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  7. On large amplitude motions of simplest amides in the ground and excited electronic states

    Directory of Open Access Journals (Sweden)

    Tukachev N.V.

    2017-01-01

    Full Text Available For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0 and lowest excited singlet (S1 and triplet (T1 electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T, CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES sections corresponding to different large amplitude motions (LAM were calculated by means of MP2/aug-cc-pVTZ (S0 and CASPT2/cc-pVTZ (S1,T1. For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  8. Two-neutrino double β decay of 96Zr to excited 2+ state of 96Mo

    Indian Academy of Sciences (India)

    pp. 517–522. Two-neutrino double β decay of 96Zr to excited. 2+ state of 96Mo. J SINGH1, R CHANDRA1, P K RAINA2 and P K RATH1. 1Department of Physics, University of Lucknow, Lucknow 226 007, India. 2Department of Physics, Indian Institute of Technology, Kharagpur 721 302, India. E-mail: pkrath lu@yahoo.co.in.

  9. Formation of H-atom in 2s excited state of proton-lithium and proton ...

    Indian Academy of Sciences (India)

    Abstract. The differential and total cross-sections have been investigated in the forma- tion of H-atom in the 2s excited state of proton-lithium and proton-sodium scattering by using the Coulomb projected Born (CPB) approximation in the energy range from 50 to. 10,000 keV. The results thus obtained are compared with the ...

  10. Determination of the Excited State Density Distribution within a Nonequilibrium, Freely Expanding Argon Arcjet Plume

    Science.gov (United States)

    1977-03-01

    transport problem for the radially dependent number densi- ties is required. The details of this inversion technique, based upon an " onion peel... chat of the arcJeC. The reference signal from the chopper and the preampllfled photomultlpller cube output signal were input to a PAR ® synchronous...condition for equilibrium with the free electron density and thus shows Chat the four lowest excited states are demonstrably nonequllibrium and lie

  11. Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers.

    Science.gov (United States)

    Kahmann, Simon; Salazar Rios, Jorge M; Zink, Matthias; Allard, Sybille; Scherf, Ullrich; Dos Santos, Maria C; Brabec, Christoph J; Loi, Maria A

    2017-11-16

    We employ photoluminescence and pump-probe spectroscopy on films of semiconducting single-walled carbon nanotubes (CNTs) of different chirality wrapped with either a wide band gap polyfluorene derivative (PF12) or a polythiophene with narrower gap (P3DDT) to elucidate the excited states' interplay between the two materials. Excitation above the polymer band gap gives way to an ultrafast electron transfer from both polymers toward the CNTs. By monitoring the hole polaron on the polymer via its mid infrared signature, we show that also illumination below the polymer band gap leads to the formation of this fingerprint and infer that holes are also transferred toward the polymer. As this contradicts the standard way of discussing the involved energy levels, we propose that polymer-wrapped CNTs should be considered as a single hybrid system, exhibiting states shared between the two components. This proposition is validated through quantum chemical calculations that show hybridization of the first excited states, especially for the thiophene-CNT sample.

  12. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  13. Theoretical Insights Into the Excited State Double Proton Transfer Mechanism of Deep Red Pigment Alkannin.

    Science.gov (United States)

    Zhao, Jinfeng; Dong, Hao; Zheng, Yujun

    2018-01-24

    As the most important component of deep red pigments, alkannin is investigated theoretically in detail based on time-dependent density functional theory (TDDFT) method. Exploring the dual intramolecular hydrogen bonds (O1-H2···O3 and O4-H5···O6) of alkannin, we confirm the O1-H2···O3 may play a more important role in the first excited state than the O4-H5···O6 one. Infrared (IR) vibrational analyses and subsequent charge redistribution also support this viewpoint. Via constructing the S1-state potential energy surface (PES) and searching transition state (TS) structures, we illuminate the excited state double proton transfer (ESDPT) mechanism of alkannin is the stepwise process that can be first launched by the O1-H2···O3 hydrogen bond wire in gas state, acetonitrile (CH3CN) and cyclohexane (CYH) solvents. We present a novel mechanism that polar aprotic solvents can contribute to the first-step proton transfer (PT) process in the S1 state, and nonpolar solvents play important roles in lowering the potential energy barrier of the second-step PT reaction.

  14. Equation of Motion Theory for Excited States in Variational Monte Carlo and the Jastrow Antisymmetric Geminal Power in Hilbert Space.

    Science.gov (United States)

    Zhao, Luning; Neuscamman, Eric

    2016-08-09

    An equation of motion formalism for excited states in variational Monte Carlo is derived, and a pilot implementation for the Jastrow-modified antisymmetric geminal power is tested. In single excitations across a range of small molecules, this combination is shown to be intermediate in accuracy between configuration interaction singles and equation of motion coupled cluster with singles and doubles. For double excitations, energy errors are found to be similar to those for coupled cluster.

  15. Excitation of the 3p states in electron-sodium scattering at intermediate energies

    Science.gov (United States)

    Kamali, M. Z. M.; Wong, B. R.; Chin, J. H.; Ratnavelu, K.

    2014-03-01

    A coupled-channel-optical method (CCOM), to investigate the excitation of the 3p states for e--Na scattering at intermediate energies, is reported. Nine atomic states( Na(3s), Na(3p), Na(4s), Na(3d), Na(4p), Na(5s), Na(4d), Na(5p), Na(5d) ) together with three optical potentials are used in this work. The inelastic differential cross sections (DCS) as well as the reduced Stokes parameters are compared with latest theoretical data and experimental measurements.

  16. Relative entropy of excited states in conformal field theories of arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Theoretische Natuurkunde, Vrije Universiteit Brussels and International Solvay Institutes,Pleinlaan 2, Brussels, B-1050 (Belgium); David Rittenhouse Laboratory, University of Pennsylvania,Philadelphia, PA 19104 (United States); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2017-02-10

    Extending our previous work, we study the relative entropy between the reduced density matrices obtained from globally excited states in conformal field theories of arbitrary dimensions. We find a general formula in the small subsystem size limit. When one of the states is the vacuum of the CFT, our result matches with the holographic entanglement entropy computations in the corresponding bulk geometries, including AdS black branes. We also discuss the first asymmetric part of the relative entropy and comment on some implications of the results on the distinguishability of black hole microstates in AdS/CFT.

  17. The Total Gaussian Class of Quasiprobabilities and its Relation to Squeezed-State Excitations

    Science.gov (United States)

    Wuensche, Alfred

    1996-01-01

    The class of quasiprobabilities obtainable from the Wigner quasiprobability by convolutions with the general class of Gaussian functions is investigated. It can be described by a three-dimensional, in general, complex vector parameter with the property of additivity when composing convolutions. The diagonal representation of this class of quasiprobabilities is connected with a generalization of the displaced Fock states in direction of squeezing. The subclass with real vector parameter is considered more in detail. It is related to the most important kinds of boson operator ordering. The properties of a specific set of discrete excitations of squeezed coherent states are given.

  18. Efficient enhancement of below-threshold harmonic generation by laser-driven excited states of Cs atom

    Science.gov (United States)

    Guo, Qiao-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin; Chu, Shih-I.

    2018-03-01

    We propose an efficient method for the enhancement of below-threshold harmonic generation (BTHG) by mid-infrared laser-driven excited states of a Cs atom. The BTHG is calculated by solving three-dimensional time-dependent Schrödinger equation accurately and efficiently using the time-dependent generalized pseudospectral method. We adopt an excited state as the initial state of a Cs atom. As a result, the BTHG is significantly enhanced by two orders of magnitude compared with the case of the initial ground state. Furthermore, we find that a single vacuum-ultraviolet pulse can be generated by mid-infrared laser-driven excited states by superposing several below-threshold harmonics of a Cs atom. Our finding suggests that the generation of below-threshold harmonics by laser-driven excited states of an atom can provide a powerful methodology for the production of intense vacuum-ultraviolet pulses.

  19. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    Science.gov (United States)

    Gil, Michał; Kijak, Michał; Piwoński, Hubert; Herbich, Jerzy; Waluk, Jacek

    2017-03-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters. We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donor-acceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  20. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  1. a. Structural Perturbations of the Electronic Excited States of Zinc Complexes. B. Construction of a Thermal Modulation Emission Apparatus.

    Science.gov (United States)

    Jordan, Kevin James

    Zinc(II) complexes containing both 2,9-dimethyl -1,10,-phenanthroline and substituted benzenethiol ligands were found to crystallize in different phases. Subtle changes in emission lifetimes and bandshapes recorded over periods of months from the same batch were manifestations of slow interphase conversions. Heating the crystals to near their melting points generated the unique high temperature phases. Two phases of the benzenethiol complex were characterized by x-ray crystallography. The 2500 cm^ {-1} energy difference between the peak of the 77 K emission from the ligand-ligand charge-transfer (LLCT) transition in the two phases was considered to arise from the sensitivities of the donor orbitals to rotation of the benzene rings about the sulfur-carbon bonds. The energy of the ^3pipi^ * emission from the nitrogen heterocycle was found to be insensitive both to complexation with Zn(II) and to the presence of the LLCT transitions. The intensity decrease of the ^3pipi^ * phosphorescence in alcoholic glasses with UV exposure was related to the generation of free radicals. Multiple LLCT lifetimes and emission bands with the longer-lived components at higher energies were found in the rigid glasses. LLCT emissions from an analogous dithiol complex revealed similar characteristics. Also the relative intensities of the LLCT components were independent of excitation wavelength. These results indicated that the multiple emissions were not attributable to multiple geometrical conformations. Thermally -modulated emission (TME) spectra were obtained from compounds dispersed in rigid glasses. For bis(cis-1,2-bis(diphenylphosphino)ethylene)Rh(I) perchlorate the maximum temperature excursion was 3.5 and 4.5 K for the resistive and infra-red absorption heating methods respectively. The TME spectrum of crystalline (Cr(urea)_6) Cl_3 .3H_2O demonstrated the technique's advantages for the vibronic analysis of emissions from near-degenerate excited states. The negative signal of the

  2. Preconditioning and excitability of the human orbicularis oculi reflex as a function of state.

    Science.gov (United States)

    Silverstein, L D; Graham, F K; Calloway, J M

    1980-04-01

    Reflex excitability and unstimulated activity of orbicularis oculi were found to vary as a function of state but the effects of weak conditioning stimuli, preceding reflex stimulation by 30--210 msec, were independent of state. Electromyographic activity was recorded from 23 young adults: 12 subjects with eyes closed during quiet wakefulness, 3 subjects during all-night sleep, 8 subjects during an afternoon nap. Stimulation with a 50 msec, 105 dB(A) white noise burst elicited a reflex response in 92% of waking trials and 87% of trials during REM sleep, but responses occurred in only 54% of trials during NREM sleep. Further, response latency was longer and magnitude less during the NREM state. Despite the differences in reflex excitability associated with state, state did not affect the modifications of reflex activity produced by a 20 msec, 70 dB(A) conditioning tone. At all lead intervals, reflex magnitude was reduced by the weak prestimulation even though, at the shortest interval, reflex activity was initiated more rapidly. The discordant changes in reflex size and latency have been seen in previous waking studies and appear to be mediated by different mechanisms. The persistence of both effects during sleep suggests that neither effect depends on high-level central processes.

  3. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Tarek A. [Chemistry Department, Faculty of Science, Tanta University, 31527-Tanta (Egypt)], E-mail: tfayed2003@yahoo.co.uk

    2006-05-31

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state ({delta}{mu} {sub eg} = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn{sup 2+}, Cd{sup 2+} and Hg{sup 2+}. This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions.

  4. Excited-state dynamics in fac-[Re(CO)3(Me4phen)(L)]+.

    Science.gov (United States)

    Patrocinio, Antonio Otavio T; Brennaman, M Kyle; Meyer, Thomas J; Murakami Iha, Neyde Y

    2010-11-25

    Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, (3)IL(cis-L), (3)MLCT(Re→Me(4)phen), and (3)IL(Me(4)phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (ΔE(a)) for interconversion between (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) emitting states were determined. For L = cis-stpy, ΔE(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, ΔE(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(Me(4)phen) state to (3)MLCT(Re→Me(4)phen), k(i) ≅ 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.

  5. Highly-sensitive Eu3+ ratiometric thermometers based on excited state absorption with predictable calibration

    Science.gov (United States)

    Souza, Adelmo S.; Nunes, Luiz A. O.; Silva, Ivan G. N.; Oliveira, Fernando A. M.; da Luz, Leonis L.; Brito, Hermi F.; Felinto, Maria C. F. C.; Ferreira, Rute A. S.; Júnior, Severino A.; Carlos, Luís D.; Malta, Oscar L.

    2016-02-01

    Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu3+ emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be

  6. Spectroscopic and excited-state properties of tri-9-anthrylborane I: Solvent polarity effects.

    Science.gov (United States)

    Kitamura, Noboru; Sakuda, Eri

    2005-08-25

    Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.

  7. Investigating Velocity Spectra at the Hugoniot State of Shock Loaded Heterogeneous Materials

    Science.gov (United States)

    Lajeunesse, Jeff; Borg, John; Stewart, Sarah; Thadhani, Naresh

    2015-06-01

    Hugoniot states achieved in heterogeneous materials have shown oscillations in particle velocity about an averaged state for both experimental and simulated data. These oscillations arise from the scattering of the transmitted shock wave due to the presence of internal interfaces within heterogeneous materials. The goal of this work is to determine if the spectra of oscillatory behavior can be associated to characteristic length scales of the corresponding un-shocked heterogeneous material. Similarities between different types of shock-loaded materials are compared such as sand, concrete, aluminum foam, and layered composites. I would like to acknowledge the AFOSR under grant: FA9550-12-1-0128, ``Dynamic High-Pressure Behavior of Hierarchical Heterogenous Geological Granular Materials'' and the D.o.D. Supercomputing Resource Center.

  8. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  9. Assignment of the Charge-Transfer Excited States of Bis(N-Heterocyclic) Complexes of Copper(I)

    Science.gov (United States)

    1989-03-21

    Excited States of Bis (N-Heterocyclic) Complexes of Copper ( I) 12 PERSONAL AUTHOR(S( W. L. Parker and G. A. Crosby 3a 7YPE OF REPORT i b ’!ME COVERED ~ aDATE...Assignment of the Charge-Transfer Excited States of Bis (N-Heterocyclic) Complexes of Copper (I) by W. L. Parker and G. A. Crosby Prepared for Publication in...IHmited. Assignment of the Charge-Transfer Excited States of Bis (N-Heterocycl ic) Complexes of Copper (I) W. L. Parker and G. A. Crosby* Chemical

  10. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases

    OpenAIRE

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E.; Kohler, Bern

    2008-01-01

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal n...

  11. Excited state absorption measurement in the 900-1250 nm wavelength range for bismuth-doped silicate fibers.

    Science.gov (United States)

    Yoo, Seongwoo; Kalita, Mridu P; Nilsson, Johan; Sahu, Jayanta

    2009-02-15

    The feasibility of direct laser diode pumping of Bi-doped fiber lasers at the wavelengths of 915 and 975 nm was examined by measuring excited state absorption in Bi-doped silicate fibers for the wavelength range of 900-1250 nm. When the Bi-doped fibers were pumped at 1047 nm a strong excited state absorption was found at 915 and 975 nm, whereas no significant excited state absorption was observed in the 1080 nm pumping band nor in the emission band, approximately 1160 nm, of Bi-doped fiber lasers.

  12. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    Science.gov (United States)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  13. An ALMA Imaging Study of Methyl Formate (HCOOCH3) in Torsionally Excited States toward Orion KL

    Science.gov (United States)

    Sakai, Yusuke; Kobayashi, Kaori; Hirota, Tomoya

    2015-04-01

    We recently reported the first identification of rotational transitions of methyl formate (HCOOCH3) in the second torsionally excited state toward Orion Kleinmann-Low (KL), observed with the Nobeyama 45 m telescope. In combination with the identified transitions of methyl formate in the ground state and the first torsional excited state, it was found that there is a difference in rotational temperature and vibrational temperature, where the latter is higher. In this study, high spatial resolution analysis by using Atacama Large Millimeter/Submillimeter Array (ALMA) science verification data was carried out to verify and understand this difference. Toward the Compact Ridge, two different velocity components at 7.3 and 9.1 km s-1 were confirmed, while a single component at 7.3 km s-1 was identified toward the Hot Core. The intensity maps in the ground, first, and second torsional excited states have quite similar distributions. Using extensive ALMA data, we determined the rotational and vibrational temperatures for the Compact Ridge and Hot Core by the conventional rotation diagram method. The rotational temperature and vibrational temperatures agree for the Hot Core and for one component of the Compact Ridge. At the 7.3 km s-1 velocity component for the Compact Ridge, the rotational temperature was found to be higher than the vibrational temperature. This is different from what we obtained from the results by using the single-dish observation. The difference might be explained by the beam dilution effect of the single-dish data and/or the smaller number of observed transitions within the limited range of energy levels (≤30 K) of Eu in the previous study.

  14. Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster

    Science.gov (United States)

    Garniron, Yann; Giner, Emmanuel; Malrieu, Jean-Paul; Scemama, Anthony

    2017-04-01

    A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single and double excitation operators appearing in the exponential wave operators. If the reference space is a complete active space (CAS), the number of these amplitudes is larger than the number of singly and doubly excited determinants on which one may project the eigenequation, and one must impose additional conditions. The present work first defines a state-specific reference-independent operator T˜ ^ m which acting on the CAS component of the wave function |Ψ0m⟩ maximizes the overlap between (1 +T˜ ^ m ) |Ψ0m⟩ and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction (CI) matrix |ΨCAS-SDm⟩ . This operator may be used to generate approximate coefficients of the triples and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian formalism. The process may be iterated to convergence. As a refinement towards a strict coupled cluster formalism, one may exploit reference-independent amplitudes provided by (1 +T˜ ^ m ) |Ψ0m⟩ to define a reference-dependent operator T^ m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The two variants, which are internally uncontracted, give rather similar results. The new MR-CC version has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking) and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of 1 mEh.

  15. Electron impact excitation cross sections and rates from the ground state of atomic calcium

    CERN Document Server

    Samson, A M

    2001-01-01

    New R-matrix calculations are presented for electron excitation of atomic calcium. The target state expansion includes 22 states: 4s sup 2 sup 1 S; 4snl sup 1 sup , sup 3 L, where nl is 3d, 4p, 5s, 5p, 4d and 4f; 3d4p sup 1 sup , sup 3 P,D,F; and 4p sup 2 sup 3 P, sup 1 D, sup 1 S terms. The calculation is in LS coupling, and configuration interaction involving 3p subshell correlation is included. Electron impact excitation cross sections from the 4s sup 2 ground state to the next 10 states are tabulated for low energies, and thermally averaged effective collision strengths are tabulated over a range of electron temperatures from 1000 to 10,000 K. Comparisons are made with previous cross sections calculations for the 4s sup 2 -4s4p sup 3 P deg. transition; excellent agreement is found with experimentally derived rates for 4s sup 2 -4s4p sup 1 P deg

  16. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  17. An analytical description of balanced steady-state free precession with finite radio-frequency excitation.

    Science.gov (United States)

    Bieri, Oliver

    2011-02-01

    Conceptually, the only flaw in the standard steady-state free precession theory is the assumption of quasi-instantaneous radio-frequency pulses, and 10-20% signal deviations from theory are observed for common balanced steady-state free precession protocols. This discrepancy in the steady-state signal can be resolved by a simple T(2) substitution taking into account reduced transverse relaxation effects during finite radio-frequency excitation. However, finite radio-frequency effects may also affect the transient phase of balanced steady-state free precession, its contrast or its spin-echo nature and thereby have an adverse effect on common steady-state free precession magnetization preparation methods. As a result, an in-depth understanding of finite radio-frequency effects is not only of fundamental theoretical interest but also has direct practical implications. In this article, an analytical solution for balanced steady-state free precession with finite radio-frequency pulses is derived for the transient phase (under ideal conditions) and in the steady state demonstrating that balanced steady-state free precession key features are preserved but revealing an unexpected dependency of finite radio-frequency effects on relaxation times for the transient decay. Finally, the mathematical framework reveals that finite radio-frequency theory can be understood as a generalization of alternating repetition time and fluctuating equilibrium steady-state free precession sequence schemes. Copyright © 2010 Wiley-Liss, Inc.

  18. Photocycloaddition of the T1 excited state of thioinosine to uridine and adenosine.

    Science.gov (United States)

    Wenska, Grazyna; Filipiak, Piotr; Burdziński, Gotard; Pedzinski, Tomasz; Hug, Gordon L; Gdaniec, Zofia

    2009-10-01

    Novel photoadducts were obtained by irradiation of thioinosine (6-thiopurine riboside, TI) in deaerated aqueous solution without and in the presence of uridine and adenosine. Excitation (lambda > 300 nm) of TI to its excited S2 state yields a single bimolecular photoproduct. It is a purine-pyrimidine diriboside in which the purine ring is attached to the amide nitrogen of 6-amino-4-thioxo-5-formamidopyrimidine. When TI was irradiated in the presence of an excess of adenosine, two photoproducts were isolated: diribosides of N-(4,6-diaminopirymidin-5-yl)-N-formyl-6-aminopurine and N-(4-amino-6-formylamino-pyrimidin-5-yl)-6-aminopurine, both containing a purine and a formylaminopyrimidine (Fapy) fragment. The photoreaction of TI with uridine gave two regioisomeric photoproducts identified as diribosides containing either 5- or 6-(purin-6-yl)uracil as aglycones. A multistep mechanism leading to the stable photoproducts is proposed. In the first step of the mechanism, the C=S group of the excited TI undergoes a [2 + 2] cycloaddition regioselectively to the N(7)=C(8) bond of the purine ring or adds in a non-regioselective manner to the C(5)=C(6) bond of uracil. The unstable photoproducts thus formed undergo a series of dark reactions at room temperature. The photocycloaddition reactions originate from the excited T1 state of TI. This conclusion is supported by a combination of evidence from reaction quenching studies using both steady-state quantum yield determinations and kinetics results from nanosecond laser flash photolysis. The T1 state of TI is quenched by other TI molecules in their S0 state (self-quenching) and also by uridine and adenosine, all with large rate constants (0.8-5) x 10(9) M(-1) s(-1). The quantum yields of the reactions are in general very low (phi(R) < or = 8 x 10(-3)). The sources of the inefficiency in the photocycloaddition of TI to uridine and adenosine are discussed. The photoproducts containing the Fapy residue undergo deformylation and

  19. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  20. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  1. Theoretical and experimental study of the electronic states and spectra of KBi and KSb

    Science.gov (United States)

    Setzer, K. D.; Fink, E. H.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker, R. J.

    2017-03-01

    Gas phase emission spectra of the hitherto unknown free radicals KBi and KSb were measured in the NIR range with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which bismuth or antimony vapor in argon carrier gas was passed through a microwave discharge and mixed with potassium vapor in an observation tube. For KBi, two systems of blue-degraded bands observed in the range 5800-7700 cm-1 are assigned to the transitions A3Π (A20+) → X3Σ-(X10+, X21). Nine bands of the A20+ → X10+ and three bands of the A20+ → X21 system were measured at high spectral resolution and rotationally analysed. The rotational and vibrational analyses yielded the spectroscopic parameters of the X10+, X21, and A20+ states. For KSb, in the range of the sensitive Ge detector, only one sequence of bands was measured near 6880 cm-1. By analogy with the previously observed spectra of NaSb and NaAs these bands were identified to be the Δv = 0 sequence of the a2 → X21 transition of KSb. Some very weak bands observed at low resolution in the range 3800-5200 cm-1 are assigned to the transitions A3Π (A21) → X3Σ -(X10+, X21). To aid in the analysis of the experimental data, a series of relativistic configuration interaction calculations has been carried out to obtain potential energy curves for the low-lying states of KBi and KSb, vibrational constants, equilibrium internuclear distances, and also electric dipole transition moments connecting the states.

  2. The theoretical study of excited-state intramolecular proton transfer of 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol

    Science.gov (United States)

    Lan, Rui-Fang; Yang, Yun-Fan; Ma, Yan-Zhen; Li, Yong-Qing

    2017-08-01

    The symmetrical structures 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (BBTD) can take shape two intramolecular hydrogen bonds in chloroform. In order to research the molecular dynamic behavior of BBTD upon photo-induced process, we utilize density functional theory (DFT) and time-dependent density functional theory (TDDFT) to complete theoretical calculation. Through the comparison of bond length, bond angle, IR spectra, and frontier molecular orbitals between ground state (S0) and first excited state (S1), it clearly indicates that photoexcitation have slightly influence for intensity of hydrogen bond. For the sake of understanding the mechanism of excited state intramolecular proton transfer (ESIPT) of BBTD in chloroform, potential energy surfaces have been scanned along with the orientation of O1-H2 and O4-H5 in S0 and S1 state, respectively. A intrigued hydrogen bond dynamic phenomenon has been found that ESIPT of BBTD is not a synergetic double proton transfer process, but a stepwise single proton transfer process BBTD → BBTD-S → BBTD-D. Moreover, the proton transfer process of BBTD-S → BBTD-D is easier to occur than that of BBTD → BBTD-S in S1 state.

  3. EOMCC over excited state Hartree-Fock solutions (ESHF-EOMCC: An efficient approach for the entire ground state potential energy curves of higher-order bonds

    Directory of Open Access Journals (Sweden)

    Y. Sajeev

    2015-08-01

    Full Text Available The equation-of-motion coupled cluster (EOMCC method based on the excited state Hartree-Fock (ESHF solutions is shown to be appropriate for computing the entire ground state potential energy curves of strongly correlated higher-order bonds. The new approach is best illustrated for the homolytic dissociation of higher-order bonds in molecules. The required multireference character of the true ground state wavefunction is introduced through the linear excitation operator of the EOMCC method. Even at the singles and doubles level of cluster excitation truncation, the nonparallelity error of the ground state potential energy curve from the ESHF based EOMCC method is small.

  4. A New Method To Evaluate Excited States Lifetimes Based on Green's Function: Application to Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Sulzer, David; Iuchi, Satoru; Yasuda, Koji

    2016-07-12

    Dye-sensitized solar cell (DSSCs) are the promising device for electricity generation. However, the initial stage in which an electron is injected from a dye to the semiconductor has not been precisely understood. Standard quantum chemistry methods cannot handle infinite number of orbitals coming from the band structure of the semiconductor, whereas solid state calculations cannot handle many excited states at a reasonable computational cost. In this regard, we propose a new method to evaluate lifetimes of many excited states of a molecule on a semi-infinite surface. On the basis of the theory of resonance state, the effect of the semi-infinite semiconductor is encoded into the complex self-energy from surface Green's function. The lifetimes of excited states are evaluated through the imaginary part of the self-energy, and the self-energy correction is included into excitation energies obtained from time-dependent density functional theory calculations. This new method is applied to a DSSC system composed of black dye attached to the TiO2 semiconductor, and the computed lifetimes are linked to the natures of excited states and to the surface properties. The present method provides the firm ground for analysis of interplay between many excited states of the dye and band structure of the semiconductor.

  5. Ultrafast excited state dynamics of tris-(2,2'-bipyridine) Ruthenium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Alvin T.W. [Univ. of California, Berkeley, CA (United States)

    2000-03-01

    Time resolved anisotropy measurements and time dependent transient absorption measurements are used to study the evolution of the photoexcited Franck-Condon state to the formation of the long-lived triplet metal-to-ligand charge-transfer (3MLCT) state in tris-(2,2’-bipyridine) ruthenium. [Ru(bpy)3]2+ represents a large class of inorganic compounds with interesting and potentially applicable photophysical properties. These compounds have generated much interest in the inorganic chemistry community because their photophysical properties are easily manipulated by synthetic chemistry methods. However, little remains known about the processes which govern the evolution horn initial photoexcitation to the formation of the long-lived excited state.

  6. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  7. Equation-of-motion coupled cluster method for the description of the high spin excited states

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2016-04-21

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5 diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.

  8. Ground- and excited-state structural orientation of 2-(2`-hydroxyphenyl)benzazoles in cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, E.L.; Dey, J.; Warner, I.M. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-12-12

    The effects of {alpha}-, {beta}-, {gamma}-, and 2,6-di-O-methyl-{beta}-cyclodextrins (CDs) on the ground- and excited-state properties of 2-(2`-hydroxyphenyl)benzoxazole, 2-(2`-hydroxyphenyl)benzothiazole, and 2-(2`-hydroxyphenyl)benzimidazole in aqueous media are investigated. Steady-state fluorescence measurements are used to characterize the interaction of CDs with these azoles. Absorbance measurements indicate increased solubility of the azoles in aqueous solutions of CDs. Measurements of acidity constants (pK{sub a}) and data from induced circular dichroism indicate increased ground- and excited-state acidities of the phenolic protons of the molecules in the presence of CDs and axial orientation of the molecules within the CD cavity, respectively. The data further suggest a planar structure for HBO and a twisted confirmation for both HBT and HBI. The association constants of the inclusion complexes have also been estimated. These studies are further supplemented by comparative spectroscopic studies of 2-(2`-methoxyphenyl)benzothiazole in aqueous solutions of CDs. On the basis of the spectral data acquired, it is believed that the HBA molecules exist as zwitterionic tautomers in the presence of CDs. 35 refs., 6 figs., 2 tabs.

  9. Peroxidase-promoted aerobic oxidation of 2-nitropropane: mechanism of excited state formation.

    Science.gov (United States)

    Indig, G L; Cilento, G

    1987-03-19

    Using sensitized emission, the horseradish peroxidase-catalyzed aerobic oxidation of the toxic pollutant 2-nitropropane to nitrite and acetone is shown to produce the latter in the electronically excited triplet state. In turn, this chemiexcitation implies a hydroperoxide precursor. Taking into account the stoichiometry of the reaction and available isotopic data it is inferred that the hydroperoxide reacts with a second molecule of the substrate (aci form). While triplet acetone formed from isobutanal (enol form) is generated within the enzyme, in the present case triplet acetone is formed in the bulk solution.

  10. First identification of excited states in sup 5 sup 9 Zn

    CERN Document Server

    Andreoiu, C; Fahlander, C; Mineva, M N; Rudolph, D; Axiotis, M; Angelis, G D; Farnea, E; Gadea, A; Kröll, T; Martínez, T; Lenzi, S M; Rossi-Alvarez, C; Marginean, N; Ur, C A

    2002-01-01

    Excited states in sup 5 sup 9 Zn were observed for the first time following the fusion-evaporation reaction sup 2 sup 4 Mg+ sup 4 sup 0 Ca at a beam energy of 60 MeV. The GASP array in conjunction with the ISIS Silicon ball and the NeutronRing allowed for the detection of gamma-rays in coincidence with evaporated light particles. The mirror symmetry of sup 5 sup 9 Zn and sup 5 sup 9 Cu is discussed. (orig.)

  11. The H$_2^+$ ion in a strong magnetic field. Lowest excited states

    OpenAIRE

    Turbiner, A. V.; Vieyra, J. C. Lopez

    2003-01-01

    As a continuation of our previous work ({\\it Phys. Rev. A68, 012504 (2003)}) an accurate study of the lowest $1\\si_g$ and the low-lying excited $1\\si_u$, $2\\si_g$, $1\\pi_{u,g}$, $1\\de_{g,u}$ electronic states of the molecular ion $H_2^+$ is made. Since the parallel configuration where the molecular axis coincides with the magnetic field direction is optimal, this is the only configuration which is considered. The variational method is applied and the {\\it same} trial function is used for diff...

  12. New measurements of the lifetimes of excited states of Mn55 below 2.7 MeV

    Science.gov (United States)

    Caggiano, J. A.; Hasty, R. D.; Korbly, S. E.; Park, W. H.; Warren, G. A.

    2009-09-01

    The lifetimes of the excited states of Mn55 between 1.5 and 2.7 MeV were measured using nuclear resonance fluorescence. The absolute lifetimes of the excited levels were determined from simultaneous measurements of manganese and aluminum. In this approach, the precisely known aluminum state serves as a means to normalize the results. Our findings differ from the evaluated level lifetimes in the Evaluated Nuclear Structure Data File (ENSDF), but agree with earlier nuclear resonance fluorescence measurements.

  13. Quantum mechanical modeling of excited electronic states and their relationship to cathodoluminescence of BaZrO3

    OpenAIRE

    Moreira, Mario L.; Andrés Bort, Juan; Gracia Edo, Lourdes; Beltrán Flors, Armando; Montoro, Luciano A.; Varela, José A.; Longo, E.

    2013-01-01

    First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t** ) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were ...

  14. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    OpenAIRE

    Brennan Ashwood; Steffen Jockusch; Carlos E. Crespo-Hernández

    2017-01-01

    6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studie...

  15. Spectroscopic study on deuterated benzenes. I. Microwave spectra and molecular structure in the ground state

    Energy Technology Data Exchange (ETDEWEB)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki, E-mail: baba@kuchem.kyoto-u.ac.jp [Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Nakajima, Masakazu; Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-12-28

    We observed microwave absorption spectra of some deuterated benzenes and accurately determined the rotational constants of all H/D isotopomers in the ground vibrational state. Using synthetic analysis assuming that all bond angles are 120°, the mean bond lengths were obtained to be r{sub 0}(C–C) = 1.3971 Å and r{sub 0}(C–H) = r{sub 0}(C–D) = 1.0805 Å. It has been concluded that the effect of deuterium substitution on the molecular structure is negligibly small and that the mean bond lengths of C–H and C–D are identical unlike small aliphatic hydrocarbons, in which r{sub 0}(C–D) is about 5 mÅ shorter than r{sub 0}(C–H). It is considered that anharmonicity is very small in the C–H stretching vibration of aromatic hydrocarbons.

  16. Observation of an Excited B± Meson State with the ATLAS Detector

    DEFF Research Database (Denmark)

    Aad, G.; Abbott, B.; Abdallah, J.

    2014-01-01

    A search for excited states of the B±c meson is performed using 4.9  fb−1 of 7 TeV and 19.2  fb−1 of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay B......±c→J/ψπ±. The state appears in the m(B±cπ+π−)−m(B±c)−2m(π±) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842±4±5  MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations...... for the second S-wave state of the B±c meson, B±c(2S)....

  17. Generation of excited coherent states for a charged particle in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mojaveri, B., E-mail: bmojaveri@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, P.O. Box 51745-406, Tabriz (Iran, Islamic Republic of); Dehghani, A., E-mail: a-dehghani@tabrizu.ac.ir, E-mail: alireza.dehghani@gmail.com [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of)

    2015-04-15

    We introduce excited coherent states, |β,α;nгЂ‰≔a{sup †n}|β,αгЂ‰, where n is an integer and states |β,αгЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |β,αгЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β,α,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, B{sub ext}, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |β,α;nгЂ‰ in cavities. .

  18. Observation of an excited Bc(±) meson state with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    2014-11-21

    A search for excited states of the Bc(±) meson is performed using 4.9  fb(-1) of 7 TeV and 19.2  fb(-1) of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay Bc(±)→J/ψπ(±). The state appears in the m(Bc(±)π(+)π(-))-m(Bc(±))-2m(π(±)) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842±4±5  MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S-wave state of the Bc(±) meson, Bc(±)(2S).

  19. Observation of an Excited $B^{\\pm}_c$ Meson State with the ATLAS Detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain,